


Computer Architecture Formulas

1. CPU time = Instruction count � Clock cycles per instruction � Clock cycle time   

2. X is n times faster than Y: n   = 

3. Amdahl’s Law: Speedupoverall   =  =

4.

5.

6.

7. Availability = Mean time to fail / (Mean time to fail  + Mean time to repair) 

8.

where Wafer yield accounts for wafers that are so bad they need not be tested and is a parameter called 
the process-complexity factor, a measure of manufacturing difficulty. ranges from 11.5 to 15.5 in 2011.

9. Means—arithmetic (AM), weighted arithmetic (WAM), and geometric (GM):

AM =   WAM =  GM =  

where Timei is the execution time for the ith program of a total of n in the workload, Weighti is the
weighting of the ith program in the workload.

10. Average memory-access time = Hit time + Miss rate � Miss penalty

11. Misses per instruction = Miss rate � Memory access per instruction

12. Cache index size: 2index = Cache size /(Block size � Set associativity)

13. Power Utilization Effectiveness (PUE) of a Warehouse Scale Computer = 

Rules of Thumb

1. Amdahl/Case Rule: A balanced computer system needs about 1 MB of main memory capacity and 1
megabit per second of I/O bandwidth per MIPS of CPU performance.

2. 90/10 Locality Rule: A program executes about 90% of its instructions in 10% of its code.

3. Bandwidth Rule: Bandwidth grows by at least the square of the improvement in latency.

4. 2:1 Cache Rule: The miss rate of a direct-mapped cache of size N is about the same as a two-way set-
associative cache of size N/2.

5. Dependability Rule: Design with no single point of failure.

6. Watt-Year Rule: The fully burdened cost of a Watt per year in a Warehouse Scale Computer in North
America in 2011, including the cost of amortizing the power and cooling infrastructure, is about $2.
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In Praise of Computer Architecture: A Quantitative Approach
Sixth Edition

“Although important concepts of architecture are timeless, this edition has been
thoroughly updated with the latest technology developments, costs, examples,
and references. Keeping pace with recent developments in open-sourced architec-
ture, the instruction set architecture used in the book has been updated to use the
RISC-V ISA.”

—from the foreword by Norman P. Jouppi, Google

“Computer Architecture: A Quantitative Approach is a classic that, like fine wine,
just keeps getting better. I bought my first copy as I finished up my undergraduate
degree and it remains one of my most frequently referenced texts today.”

—James Hamilton, Amazon Web Service

“Hennessy and Patterson wrote the first edition of this book when graduate stu-
dents built computers with 50,000 transistors. Today, warehouse-size computers
contain that many servers, each consisting of dozens of independent processors
and billions of transistors. The evolution of computer architecture has been rapid
and relentless, butComputer Architecture: A Quantitative Approach has kept pace,
with each edition accurately explaining and analyzing the important emerging
ideas that make this field so exciting.”

—James Larus, Microsoft Research

“Another timely and relevant update to a classic, once again also serving as a win-
dow into the relentless and exciting evolution of computer architecture! The new
discussions in this edition on the slowing of Moore's law and implications for
future systems are must-reads for both computer architects and practitioners
working on broader systems.”

—Parthasarathy (Partha) Ranganathan, Google

“I love the ‘Quantitative Approach’ books because they are written by engineers,
for engineers. John Hennessy and Dave Patterson show the limits imposed by
mathematics and the possibilities enabled by materials science. Then they teach
through real-world examples how architects analyze, measure, and compromise
to build working systems. This sixth edition comes at a critical time: Moore’s
Law is fading just as deep learning demands unprecedented compute cycles.
The new chapter on domain-specific architectures documents a number of prom-
ising approaches and prophesies a rebirth in computer architecture. Like the
scholars of the European Renaissance, computer architects must understand our
own history, and then combine the lessons of that history with new techniques
to remake the world.”

—Cliff Young, Google
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Foreword

by Norman P. Jouppi, Google

Much of the improvement in computer performance over the last 40 years has been
provided by computer architecture advancements that have leveraged Moore’s
Law and Dennard scaling to build larger and more parallel systems. Moore’s
Law is the observation that the maximum number of transistors in an integrated
circuit doubles approximately every two years. Dennard scaling refers to the reduc-
tion of MOS supply voltage in concert with the scaling of feature sizes, so that as
transistors get smaller, their power density stays roughly constant. With the end of
Dennard scaling a decade ago, and the recent slowdown of Moore’s Law due to a
combination of physical limitations and economic factors, the sixth edition of the
preeminent textbook for our field couldn’t be more timely. Here are some reasons.

First, because domain-specific architectures can provide equivalent perfor-
mance and power benefits of three or more historical generations of Moore’s
Law and Dennard scaling, they now can provide better implementations than
may ever be possible with future scaling of general-purpose architectures. And
with the diverse application space of computers today, there are many potential
areas for architectural innovation with domain-specific architectures. Second,
high-quality implementations of open-source architectures now have a much lon-
ger lifetime due to the slowdown in Moore’s Law. This gives them more oppor-
tunities for continued optimization and refinement, and hence makes them more
attractive. Third, with the slowing of Moore’s Law, different technology compo-
nents have been scaling heterogeneously. Furthermore, new technologies such as
2.5D stacking, new nonvolatile memories, and optical interconnects have been
developed to provide more than Moore’s Law can supply alone. To use these
new technologies and nonhomogeneous scaling effectively, fundamental design
decisions need to be reexamined from first principles. Hence it is important for
students, professors, and practitioners in the industry to be skilled in a wide range
of both old and new architectural techniques. All told, I believe this is the most
exciting time in computer architecture since the industrial exploitation of
instruction-level parallelism in microprocessors 25 years ago.

The largest change in this edition is the addition of a new chapter on domain-
specific architectures. It’s long been known that customized domain-specific archi-
tectures can have higher performance, lower power, and require less silicon area
than general-purpose processor implementations. However when general-purpose

ix



processors were increasing in single-threaded performance by 40% per year (see
Fig. 1.11), the extra time to market required to develop a custom architecture vs.
using a leading-edge standard microprocessor could cause the custom architecture
to lose much of its advantage. In contrast, today single-core performance is
improving very slowly, meaning that the benefits of custom architectures will
not be made obsolete by general-purpose processors for a very long time, if ever.
Chapter 7 covers several domain-specific architectures. Deep neural networks
have very high computation requirements but lower data precision requirements –
this combination can benefit significantly from custom architectures. Two example
architectures and implementations for deep neural networks are presented: one
optimized for inference and a second optimized for training. Image processing
is another example domain; it also has high computation demands and benefits
from lower-precision data types. Furthermore, since it is often found in mobile
devices, the power savings from custom architectures are also very valuable.
Finally, by nature of their reprogrammability, FPGA-based accelerators can be
used to implement a variety of different domain-specific architectures on a single
device. They also can benefit more irregular applications that are frequently
updated, like accelerating internet search.

Although important concepts of architecture are timeless, this edition has been
thoroughly updated with the latest technology developments, costs, examples, and
references. Keeping pace with recent developments in open-sourced architecture,
the instruction set architecture used in the book has been updated to use the
RISC-V ISA.

On a personal note, after enjoying the privilege of working with John as a grad-
uate student, I am now enjoying the privilege of working with Dave at Google.
What an amazing duo!
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Preface

Why We Wrote This Book

Through six editions of this book, our goal has been to describe the basic principles
underlying what will be tomorrow’s technological developments. Our excitement
about the opportunities in computer architecture has not abated, and we echo what
we said about the field in the first edition: “It is not a dreary science of paper
machines that will never work. No! It’s a discipline of keen intellectual interest,
requiring the balance of marketplace forces to cost-performance-power, leading
to glorious failures and some notable successes.”

Our primary objective in writing our first book was to change the way people
learn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples
and measurements on real computers, rather than simply as a collection of defini-
tions and designs that will never need to be realized. We offer an enthusiastic wel-
come to anyone who came along with us in the past, as well as to those who are
joining us now. Either way, we can promise the same quantitative approach to, and
analysis of, real systems.

As with earlier versions, we have strived to produce a new edition that will
continue to be as relevant for professional engineers and architects as it is for those
involved in advanced computer architecture and design courses. Like the first edi-
tion, this edition has a sharp focus on new platforms—personal mobile devices and
warehouse-scale computers—and new architectures—specifically, domain-
specific architectures. As much as its predecessors, this edition aims to demystify
computer architecture through an emphasis on cost-performance-energy trade-offs
and good engineering design. We believe that the field has continued to mature and
move toward the rigorous quantitative foundation of long-established scientific
and engineering disciplines.
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This Edition

The ending of Moore’s Law and Dennard scaling is having as profound effect on
computer architecture as did the switch to multicore. We retain the focus on the
extremes in size of computing, with personal mobile devices (PMDs) such as cell
phones and tablets as the clients and warehouse-scale computers offering cloud
computing as the server. We also maintain the other theme of parallelism in all
its forms: data-level parallelism (DLP) in Chapters 1 and 4, instruction-level par-
allelism (ILP) in Chapter 3, thread-level parallelism in Chapter 5, and request-
level parallelism (RLP) in Chapter 6.

The most pervasive change in this edition is switching fromMIPS to the RISC-
V instruction set. We suspect this modern, modular, open instruction set may
become a significant force in the information technology industry. It may become
as important in computer architecture as Linux is for operating systems.

The newcomer in this edition is Chapter 7, which introduces domain-specific
architectures with several concrete examples from industry.

As before, the first three appendices in the book give basics on the RISC-V
instruction set, memory hierarchy, and pipelining for readers who have not read
a book like Computer Organization and Design. To keep costs down but still sup-
ply supplemental material that is of interest to some readers, available online at
https://www.elsevier.com/books-and-journals/book-companion/9780128119051
are nine more appendices. There are more pages in these appendices than there are
in this book!

This edition continues the tradition of using real-world examples to demonstrate
the ideas, and the “Putting ItAll Together” sections are brand new.The “Putting ItAll
Together” sectionsof this edition include thepipelineorganizationsandmemoryhier-
archies of the ARM Cortex A8 processor, the Intel core i7 processor, the NVIDIA
GTX-280 and GTX-480 GPUs, and one of the Google warehouse-scale computers.

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains
that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Our intent has always been to focus on material that is not available in equiv-
alent form from other sources, so we continue to emphasize advanced content
wherever possible. Indeed, there are several systems here whose descriptions can-
not be found in the literature. (Readers interested strictly in a more basic introduc-
tion to computer architecture should readComputer Organization and Design: The
Hardware/Software Interface.)
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An Overview of the Content

Chapter 1 includes formulas for energy, static power, dynamic power, integrated cir-
cuit costs, reliability, and availability. (These formulas are also found on the front
inside cover.) Our hope is that these topics can be used through the rest of the book.
In addition to the classic quantitative principles of computer design and performance
measurement, it shows the slowing of performance improvement of general-purpose
microprocessors, which is one inspiration for domain-specific architectures.

Our view is that the instruction set architecture is playing less of a role today
than in 1990, so we moved this material to Appendix A. It now uses the RISC-V
architecture. (For quick review, a summary of the RISC-V ISA can be found on the
back inside cover.) For fans of ISAs, Appendix K was revised for this edition and
covers 8 RISC architectures (5 for desktop and server use and 3 for embedded use),
the 80�86, the DEC VAX, and the IBM 360/370.

We then move onto memory hierarchy in Chapter 2, since it is easy to apply the
cost-performance-energy principles to this material, and memory is a critical
resource for the rest of the chapters. As in the past edition, Appendix B contains
an introductory review of cache principles, which is available in case you need it.
Chapter 2 discusses 10 advanced optimizations of caches. The chapter includes
virtual machines, which offer advantages in protection, software management,
and hardware management, and play an important role in cloud computing. In
addition to covering SRAM and DRAM technologies, the chapter includes new
material both on Flash memory and on the use of stacked die packaging for extend-
ing the memory hierarchy. The PIAT examples are the ARM Cortex A8, which is
used in PMDs, and the Intel Core i7, which is used in servers.

Chapter 3 covers the exploitation of instruction-level parallelism in high-
performance processors, including superscalar execution, branch prediction
(including the new tagged hybrid predictors), speculation, dynamic scheduling,
and simultaneous multithreading. As mentioned earlier, Appendix C is a review
of pipelining in case you need it. Chapter 3 also surveys the limits of ILP. Like
Chapter 2, the PIAT examples are again the ARM Cortex A8 and the Intel Core
i7. While the third edition contained a great deal on Itanium and VLIW, this mate-
rial is now in Appendix H, indicating our view that this architecture did not live up
to the earlier claims.

The increasing importance of multimedia applications such as games and video
processing has also increased the importance of architectures that can exploit data
level parallelism. In particular, there is a rising interest in computing using graph-
ical processing units (GPUs), yet few architects understand howGPUs really work.
We decided to write a new chapter in large part to unveil this new style of computer
architecture. Chapter 4 starts with an introduction to vector architectures, which
acts as a foundation on which to build explanations of multimedia SIMD instruc-
tion set extensions and GPUs. (Appendix G goes into even more depth on vector
architectures.) This chapter introduces the Roofline performance model and then
uses it to compare the Intel Core i7 and the NVIDIAGTX 280 andGTX 480GPUs.
The chapter also describes the Tegra 2 GPU for PMDs.
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Chapter 5 describes multicore processors. It explores symmetric and
distributed-memory architectures, examining both organizational principles and
performance. The primary additions to this chapter include more comparison of
multicore organizations, including the organization of multicore-multilevel
caches, multicore coherence schemes, and on-chip multicore interconnect. Topics
in synchronization and memory consistency models are next. The example is the
Intel Core i7. Readers interested in more depth on interconnection networks should
read Appendix F, and those interested in larger scale multiprocessors and scientific
applications should read Appendix I.

Chapter 6 describes warehouse-scale computers (WSCs). It was extensively
revised based on help from engineers at Google and Amazon Web Services. This
chapter integrates details on design, cost, and performance ofWSCs that few archi-
tects are aware of. It starts with the popular MapReduce programming model
before describing the architecture and physical implementation of WSCs, includ-
ing cost. The costs allow us to explain the emergence of cloud computing, whereby
it can be cheaper to compute usingWSCs in the cloud than in your local datacenter.
The PIAT example is a description of a Google WSC that includes information
published for the first time in this book.

The new Chapter 7 motivates the need for Domain-Specific Architectures
(DSAs). It draws guiding principles for DSAs based on the four examples of DSAs.
EachDSAcorresponds to chips that have been deployed in commercial settings.We
also explain why we expect a renaissance in computer architecture via DSAs given
that single-thread performance of general-purpose microprocessors has stalled.

This brings us to Appendices A through M. Appendix A covers principles of
ISAs, including RISC-V, and Appendix K describes 64-bit versions of RISC V,
ARM,MIPS, Power, and SPARC and their multimedia extensions. It also includes
some classic architectures (80x86, VAX, and IBM 360/370) and popular embed-
ded instruction sets (Thumb-2, microMIPS, and RISCVC). Appendix H is related,
in that it covers architectures and compilers for VLIW ISAs.

As mentioned earlier, Appendix B and Appendix C are tutorials on basic cach-
ing and pipelining concepts. Readers relatively new to caching should read Appen-
dix B before Chapter 2, and those new to pipelining should read Appendix C before
Chapter 3.

Appendix D, “Storage Systems,” has an expanded discussion of reliability and
availability, a tutorial on RAID with a description of RAID 6 schemes, and rarely
found failure statistics of real systems. It continues to provide an introduction to
queuing theory and I/O performance benchmarks. We evaluate the cost, perfor-
mance, and reliability of a real cluster: the Internet Archive. The “Putting It All
Together” example is the NetApp FAS6000 filer.

Appendix E, by Thomas M. Conte, consolidates the embedded material in
one place.

Appendix F, on interconnection networks, is revised by Timothy M. Pinkston
and Jos�e Duato. Appendix G, written originally by Krste Asanovi�c, includes a
description of vector processors. We think these two appendices are some of
the best material we know of on each topic.
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Appendix H describes VLIW and EPIC, the architecture of Itanium.
Appendix I describes parallel processing applications and coherence protocols

for larger-scale, shared-memory multiprocessing. Appendix J, by David Goldberg,
describes computer arithmetic.

Appendix L, by Abhishek Bhattacharjee, is new and discusses advanced tech-
niques for memory management, focusing on support for virtual machines and
design of address translation for very large address spaces. With the growth in
clouds processors, these architectural enhancements are becoming more important.

Appendix M collects the “Historical Perspective and References” from each
chapter into a single appendix. It attempts to give proper credit for the ideas in each
chapter and a sense of the history surrounding the inventions. We like to think of
this as presenting the human drama of computer design. It also supplies references
that the student of architecture may want to pursue. If you have time, we recom-
mend reading some of the classic papers in the field that are mentioned in these
sections. It is both enjoyable and educational to hear the ideas directly from the
creators. “Historical Perspective” was one of the most popular sections of prior
editions.

Navigating the Text

There is no single best order in which to approach these chapters and appendices,
except that all readers should start with Chapter 1. If you don’t want to read every-
thing, here are some suggested sequences:

■ Memory Hierarchy: Appendix B, Chapter 2, and Appendices D and M.

■ Instruction-Level Parallelism: Appendix C, Chapter 3, and Appendix H

■ Data-Level Parallelism: Chapters 4, 6, and 7, Appendix G

■ Thread-Level Parallelism: Chapter 5, Appendices F and I

■ Request-Level Parallelism: Chapter 6

■ ISA: Appendices A and K

Appendix E can be read at any time, but it might work best if read after the ISA and
cache sequences. Appendix J can be read whenever arithmetic moves you. You
should read the corresponding portion of Appendix M after you complete each
chapter.

Chapter Structure

The material we have selected has been stretched upon a consistent framework that
is followed in each chapter. We start by explaining the ideas of a chapter. These
ideas are followed by a “Crosscutting Issues” section, a feature that shows how the
ideas covered in one chapter interact with those given in other chapters. This is
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followed by a “Putting It All Together” section that ties these ideas together by
showing how they are used in a real machine.

Next in the sequence is “Fallacies and Pitfalls,” which lets readers learn from
the mistakes of others. We show examples of common misunderstandings and
architectural traps that are difficult to avoid even when you know they are lying
in wait for you. The “Fallacies and Pitfalls” sections is one of the most popular
sections of the book. Each chapter ends with a “Concluding Remarks” section.

Case Studies With Exercises

Each chapter ends with case studies and accompanying exercises. Authored by
experts in industry and academia, the case studies explore key chapter concepts
and verify understanding through increasingly challenging exercises. Instructors
should find the case studies sufficiently detailed and robust to allow them to create
their own additional exercises.

Brackets for each exercise (<chapter.section>) indicate the text sections of
primary relevance to completing the exercise. We hope this helps readers to avoid
exercises for which they haven’t read the corresponding section, in addition to pro-
viding the source for review. Exercises are rated, to give the reader a sense of the
amount of time required to complete an exercise:

[10] Less than 5 min (to read and understand)

[15] 5–15 min for a full answer

[20] 15–20 min for a full answer

[25] 1 h for a full written answer

[30] Short programming project: less than 1 full day of programming

[40] Significant programming project: 2 weeks of elapsed time

[Discussion] Topic for discussion with others

Solutions to the case studies and exercises are available for instructors who
register at textbooks.elsevier.com.

Supplemental Materials

A variety of resources are available online at https://www.elsevier.com/books/
computer-architecture/hennessy/978-0-12-811905-1, including the following:

■ Reference appendices, some guest authored by subject experts, covering a
range of advanced topics

■ Historical perspectives material that explores the development of the key ideas
presented in each of the chapters in the text
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■ Instructor slides in PowerPoint

■ Figures from the book in PDF, EPS, and PPT formats

■ Links to related material on the Web

■ List of errata

New materials and links to other resources available on the Web will be added
on a regular basis.

Helping Improve This Book

Finally, it is possible to make money while reading this book. (Talk about cost per-
formance!) If you read the Acknowledgments that follow, you will see that we
went to great lengths to correct mistakes. Since a book goes through many print-
ings, we have the opportunity to make even more corrections. If you uncover any
remaining resilient bugs, please contact the publisher by electronic mail
(ca6bugs@mkp.com).

We welcome general comments to the text and invite you to send them to a
separate email address at ca6comments@mkp.com.

Concluding Remarks

Once again, this book is a true co-authorship, with each of us writing half the chap-
ters and an equal share of the appendices.We can’t imagine how long it would have
taken without someone else doing half the work, offering inspiration when the task
seemed hopeless, providing the key insight to explain a difficult concept, supply-
ing over-the-weekend reviews of chapters, and commiserating when the weight of
our other obligations made it hard to pick up the pen.

Thus, once again, we share equally the blame for what you are about to read.

John Hennessy ■ David Patterson
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1
Fundamentals of Quantitative
Design and Analysis

An iPod, a phone, an Internet mobile communicator… these are
NOT three separate devices! And we are calling it iPhone! Today
Apple is going to reinvent the phone. And here it is.

Steve Jobs, January 9, 2007

New information and communications technologies, in particular
high-speed Internet, are changing the way companies do business,
transforming public service delivery and democratizing innovation.
With 10 percent increase in high speed Internet connections,
economic growth increases by 1.3 percent.

The World Bank, July 28, 2009
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1.1 Introduction

Computer technology has made incredible progress in the roughly 70 years since
the first general-purpose electronic computer was created. Today, less than $500
will purchase a cell phone that has as much performance as the world’s fastest
computer bought in 1993 for $50 million. This rapid improvement has come both
from advances in the technology used to build computers and from innovations in
computer design.

Although technological improvements historically have been fairly steady,
progress arising from better computer architectures has been much less consistent.
During the first 25 years of electronic computers, both forces made a major con-
tribution, delivering performance improvement of about 25% per year. The late
1970s saw the emergence of the microprocessor. The ability of the microprocessor
to ride the improvements in integrated circuit technology led to a higher rate of
performance improvement—roughly 35% growth per year.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being based
on microprocessors. In addition, two significant changes in the computer market-
place made it easier than ever before to succeed commercially with a new archi-
tecture. First, the virtual elimination of assembly language programming reduced
the need for object-code compatibility. Second, the creation of standardized,
vendor-independent operating systems, such as UNIX and its clone, Linux, low-
ered the cost and risk of bringing out a new architecture.

These changes made it possible to develop successfully a new set of architec-
tures with simpler instructions, called RISC (Reduced Instruction Set Computer)
architectures, in the early 1980s. The RISC-based machines focused the attention
of designers on two critical performance techniques, the exploitation of instruc-
tion-level parallelism (initially through pipelining and later through multiple
instruction issue) and the use of caches (initially in simple forms and later using
more sophisticated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior architec-
tures to keep up or disappear. The Digital Equipment Vax could not, and so it was
replaced by a RISC architecture. Intel rose to the challenge, primarily by translat-
ing 80x86 instructions into RISC-like instructions internally, allowing it to adopt
many of the innovations first pioneered in the RISC designs. As transistor counts
soared in the late 1990s, the hardware overhead of translating the more complex
x86 architecture became negligible. In low-end applications, such as cell phones,
the cost in power and silicon area of the x86-translation overhead helped lead to a
RISC architecture, ARM, becoming dominant.

Figure 1.1 shows that the combination of architectural and organizational
enhancements led to 17 years of sustained growth in performance at an annual rate
of over 50%—a rate that is unprecedented in the computer industry.

The effect of this dramatic growth rate during the 20th century was fourfold.
First, it has significantly enhanced the capability available to computer users. For
many applications, the highest-performance microprocessors outperformed the
supercomputer of less than 20 years earlier.
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Figure 1.1 Growth in processor performance over 40 years. This chart plots program performance relative to the VAX 11/780 as measured by
the SPEC integer benchmarks (see Section 1.8). Prior to the mid-1980s, growth in processor performance was largely technology-driven and
averaged about 22% per year, or doubling performance every 3.5 years. The increase in growth to about 52% starting in 1986, or doubling every
2 years, is attributable to more advanced architectural and organizational ideas typified in RISC architectures. By 2003 this growth led to a dif-
ference in performance of an approximate factor of 25 versus the performance that would have occurred if it had continued at the 22% rate. In
2003 the limits of power due to the end of Dennard scaling and the available instruction-level parallelism slowed uniprocessor performance to
23% per year until 2011, or doubling every 3.5 years. (The fastest SPECintbase performance since 2007 has had automatic parallelization turned
on, so uniprocessor speed is harder to gauge. These results are limited to single-chip systems with usually four cores per chip.) From 2011 to 2015,
the annual improvement was less than 12%, or doubling every 8 years in part due to the limits of parallelism of Amdahl’s Law. Since 2015, with the
end of Moore’s Law, improvement has been just 3.5% per year, or doubling every 20 years! Performance for floating-point-oriented calculations
follows the same trends, but typically has 1% to 2% higher annual growth in each shaded region. Figure 1.11 on page 27 shows the improvement
in clock rates for these same eras. Because SPEC has changed over the years, performance of newer machines is estimated by a scaling factor that
relates the performance for different versions of SPEC: SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006. There are too few results for SPEC2017
to plot yet.
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Second, this dramatic improvement in cost-performance led to new classes of
computers. Personal computers and workstations emerged in the 1980s with the
availability of the microprocessor. The past decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly using
the Internet to access warehouses containing 100,000 servers, which are being
designed as if they were a single gigantic computer.

Third, improvement of semiconductor manufacturing as predicted by Moore’s
law has led to the dominance of microprocessor-based computers across the entire
range of computer design. Minicomputers, which were traditionally made from
off-the-shelf logic or from gate arrays, were replaced by servers made by using
microprocessors. Even mainframe computers and high-performance supercom-
puters are all collections of microprocessors.

The preceding hardware innovations led to a renaissance in computer design,
which emphasized both architectural innovation and efficient use of technology
improvements. This rate of growth compounded so that by 2003, high-
performance microprocessors were 7.5 times as fast as what would have been
obtained by relying solely on technology, including improved circuit design, that
is, 52% per year versus 35% per year.

This hardware renaissance led to the fourth impact, which was on software
development. This 50,000-fold performance improvement since 1978 (see
Figure 1.1) allowed modern programmers to trade performance for productivity.
In place of performance-oriented languages like C and C++, much more program-
ming today is done in managed programming languages like Java and Scala. More-
over, scripting languages like JavaScript and Python, which are even more
productive, are gaining in popularity along with programming frameworks like
AngularJS and Django. To maintain productivity and try to close the performance
gap, interpreters with just-in-time compilers and trace-based compiling are repla-
cing the traditional compiler and linker of the past. Software deployment is chang-
ing as well, with Software as a Service (SaaS) used over the Internet replacing
shrink-wrapped software that must be installed and run on a local computer.

The nature of applications is also changing. Speech, sound, images, and video
are becoming increasingly important, along with predictable response time that is
so critical to the user experience. An inspiring example is Google Translate. This
application lets you hold up your cell phone to point its camera at an object, and the
image is sent wirelessly over the Internet to a warehouse-scale computer (WSC)
that recognizes the text in the photo and translates it into your native language.
You can also speak into it, and it will translate what you said into audio output
in another language. It translates text in 90 languages and voice in 15 languages.

Alas, Figure 1.1 also shows that this 17-year hardware renaissance is over. The
fundamental reason is that two characteristics of semiconductor processes that
were true for decades no longer hold.

In 1974 Robert Dennard observed that power density was constant for a given
area of silicon even as you increased the number of transistors because of smaller
dimensions of each transistor. Remarkably, transistors could go faster but use less
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power. Dennard scaling ended around 2004 because current and voltage couldn’t
keep dropping and still maintain the dependability of integrated circuits.

This change forced the microprocessor industry to use multiple efficient pro-
cessors or cores instead of a single inefficient processor. Indeed, in 2004 Intel can-
celed its high-performance uniprocessor projects and joined others in declaring
that the road to higher performance would be via multiple processors per chip
rather than via faster uniprocessors. This milestone signaled a historic switch from
relying solely on instruction-level parallelism (ILP), the primary focus of the first
three editions of this book, to data-level parallelism (DLP) and thread-level par-
allelism (TLP), which were featured in the fourth edition and expanded in the fifth
edition. The fifth edition also added WSCs and request-level parallelism (RLP),
which is expanded in this edition. Whereas the compiler and hardware conspire
to exploit ILP implicitly without the programmer’s attention, DLP, TLP, and
RLP are explicitly parallel, requiring the restructuring of the application so that
it can exploit explicit parallelism. In some instances, this is easy; in many, it is
a major new burden for programmers.

Amdahl’s Law (Section 1.9) prescribes practical limits to the number of useful
cores per chip. If 10% of the task is serial, then the maximum performance benefit
from parallelism is 10 no matter how many cores you put on the chip.

The second observation that ended recently is Moore’s Law. In 1965 Gordon
Moore famously predicted that the number of transistors per chip would double
every year, which was amended in 1975 to every two years. That prediction lasted
for about 50 years, but no longer holds. For example, in the 2010 edition of this
book, the most recent Intel microprocessor had 1,170,000,000 transistors. If
Moore’s Law had continued, we could have expected microprocessors in 2016
to have 18,720,000,000 transistors. Instead, the equivalent Intel microprocessor
has just 1,750,000,000 transistors, or off by a factor of 10 from what Moore’s
Law would have predicted.

The combination of

■ transistors no longer getting much better because of the slowing of Moore’s
Law and the end of Dinnard scaling,

■ the unchanging power budgets for microprocessors,

■ the replacement of the single power-hungry processor with several energy-
efficient processors, and

■ the limits to multiprocessing to achieve Amdahl’s Law

caused improvements in processor performance to slow down, that is, to double
every 20 years, rather than every 1.5 years as it did between 1986 and 2003
(see Figure 1.1).

The only path left to improve energy-performance-cost is specialization. Future
microprocessors will include several domain-specific cores that perform only one
class of computations well, but they do so remarkably better than general-purpose
cores. The new Chapter 7 in this edition introduces domain-specific architectures.
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This text is about the architectural ideas and accompanying compiler improve-
ments that made the incredible growth rate possible over the past century, the rea-
sons for the dramatic change, and the challenges and initial promising approaches
to architectural ideas, compilers, and interpreters for the 21st century. At the core is
a quantitative approach to computer design and analysis that uses empirical obser-
vations of programs, experimentation, and simulation as its tools. It is this style and
approach to computer design that is reflected in this text. The purpose of this chap-
ter is to lay the quantitative foundation on which the following chapters and appen-
dices are based.

This book was written not only to explain this design style but also to stimulate
you to contribute to this progress.We believe this approach will serve the computers
of the future just as it worked for the implicitly parallel computers of the past.

1.2 Classes of Computers

These changes have set the stage for a dramatic change in how we view computing,
computing applications, and the computer markets in this new century. Not since
the creation of the personal computer have we seen such striking changes in the way
computers appear and in how they are used. These changes in computer use have led
to five diverse computing markets, each characterized by different applications,
requirements, and computing technologies. Figure 1.2 summarizes these main-
stream classes of computing environments and their important characteristics.

Internet of Things/Embedded Computers

Embedded computers are found in everyday machines: microwaves, washing
machines, most printers, networking switches, and all automobiles. The phrase

Feature
Personal
mobile device
(PMD)

Desktop Server Clusters/warehouse-
scale computer

Internet of
things/
embedded

Price of system $100–$1000 $300–$2500 $5000–$10,000,000 $100,000–$200,000,000 $10–$100,000

Price of
microprocessor

$10–$100 $50–$500 $200–$2000 $50–$250 $0.01–$100

Critical system
design issues

Cost, energy,
media
performance,
responsiveness

Price-
performance,
energy, graphics
performance

Throughput,
availability,
scalability, energy

Price-performance,
throughput, energy
proportionality

Price, energy,
application-
specific
performance

Figure 1.2 A summary of the five mainstream computing classes and their system characteristics. Sales in 2015
included about 1.6 billion PMDs (90% cell phones), 275 million desktop PCs, and 15 million servers. The total number
of embedded processors sold was nearly 19 billion. In total, 14.8 billion ARM-technology-based chips were shipped in
2015. Note the wide range in system price for servers and embedded systems, which go from USB keys to network
routers. For servers, this range arises from the need for very large-scale multiprocessor systems for high-end trans-
action processing.

6 ■ Chapter One Fundamentals of Quantitative Design and Analysis



Internet of Things (IoT) refers to embedded computers that are connected to the
Internet, typically wirelessly. When augmented with sensors and actuators, IoT
devices collect useful data and interact with the physical world, leading to a wide
variety of “smart” applications, such as smart watches, smart thermostats, smart
speakers, smart cars, smart homes, smart grids, and smart cities.

Embedded computers have the widest spread of processing power and cost.
They include 8-bit to 32-bit processors that may cost one penny, and high-end
64-bit processors for cars and network switches that cost $100. Although the range
of computing power in the embedded computing market is very large, price is a key
factor in the design of computers for this space. Performance requirements do exist,
of course, but the primary goal often meets the performance need at a minimum
price, rather than achieving more performance at a higher price. The projections
for the number of IoT devices in 2020 range from 20 to 50 billion.

Most of this book applies to the design, use, and performance of embedded
processors, whether they are off-the-shelf microprocessors or microprocessor
cores that will be assembled with other special-purpose hardware.

Unfortunately, the data that drive the quantitative design and evaluation of
other classes of computers have not yet been extended successfully to embedded
computing (see the challenges with EEMBC, for example, in Section 1.8). Hence
we are left for now with qualitative descriptions, which do not fit well with the rest
of the book. As a result, the embedded material is concentrated in Appendix E. We
believe a separate appendix improves the flow of ideas in the text while allowing
readers to see how the differing requirements affect embedded computing.

Personal Mobile Device

Personal mobile device (PMD) is the term we apply to a collection of wireless
devices with multimedia user interfaces such as cell phones, tablet computers,
and so on. Cost is a prime concern given the consumer price for the whole
product is a few hundred dollars. Although the emphasis on energy efficiency
is frequently driven by the use of batteries, the need to use less expensive packag-
ing—plastic versus ceramic—and the absence of a fan for cooling also limit total
power consumption. We examine the issue of energy and power in more detail
in Section 1.5. Applications on PMDs are often web-based and media-oriented,
like the previously mentioned Google Translate example. Energy and size
requirements lead to use of Flash memory for storage (Chapter 2) instead of
magnetic disks.

The processors in a PMD are often considered embedded computers, but we
are keeping them as a separate category because PMDs are platforms that can
run externally developed software, and they share many of the characteristics of
desktop computers. Other embedded devices are more limited in hardware and
software sophistication. We use the ability to run third-party software as the divid-
ing line between nonembedded and embedded computers.

Responsiveness and predictability are key characteristics for media applica-
tions. A real-time performance requirement means a segment of the application
has an absolute maximum execution time. For example, in playing a video on a
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PMD, the time to process each video frame is limited, since the processor must
accept and process the next frame shortly. In some applications, a more nuanced
requirement exists: the average time for a particular task is constrained as well as
the number of instances when some maximum time is exceeded. Such
approaches—sometimes called soft real-time—arise when it is possible to miss
the time constraint on an event occasionally, as long as not too many are missed.
Real-time performance tends to be highly application-dependent.

Other key characteristics in many PMD applications are the need to minimize
memory and the need to use energy efficiently. Energy efficiency is driven by both
battery power and heat dissipation. The memory can be a substantial portion of the
system cost, and it is important to optimize memory size in such cases. The impor-
tance of memory size translates to an emphasis on code size, since data size is dic-
tated by the application.

Desktop Computing

The first, and possibly still the largest market in dollar terms, is desktop computing.
Desktop computing spans from low-end netbooks that sell for under $300 to high-
end, heavily configured workstations that may sell for $2500. Since 2008, more
than half of the desktop computers made each year have been battery operated lap-
top computers. Desktop computing sales are declining.

Throughout this range in price and capability, the desktop market tends to
be driven to optimize price-performance. This combination of performance
(measured primarily in terms of compute performance and graphics perfor-
mance) and price of a system is what matters most to customers in this market,
and hence to computer designers. As a result, the newest, highest-performance
microprocessors and cost-reduced microprocessors often appear first in desktop
systems (see Section 1.6 for a discussion of the issues affecting the cost of
computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of web-centric, interac-
tive applications poses new challenges in performance evaluation.

Servers

As the shift to desktop computing occurred in the 1980s, the role of servers grew to
provide larger-scale and more reliable file and computing services. Such servers
have become the backbone of large-scale enterprise computing, replacing the tra-
ditional mainframe.

For servers, different characteristics are important. First, availability is critical.
(We discuss availability in Section 1.7.) Consider the servers running ATM
machines for banks or airline reservation systems. Failure of such server systems
is far more catastrophic than failure of a single desktop, since these servers must
operate seven days a week, 24 hours a day. Figure 1.3 estimates revenue costs of
downtime for server applications.
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A second key feature of server systems is scalability. Server systems often
grow in response to an increasing demand for the services they support or an
expansion in functional requirements. Thus the ability to scale up the computing
capacity, the memory, the storage, and the I/O bandwidth of a server is crucial.

Finally, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
We return to the issue of assessing performance for different types of computing
environments in Section 1.8.

Clusters/Warehouse-Scale Computers

The growth of Software as a Service (SaaS) for applications like search, social net-
working, video viewing and sharing, multiplayer games, online shopping, and so
on has led to the growth of a class of computers called clusters. Clusters are col-
lections of desktop computers or servers connected by local area networks to act as
a single larger computer. Each node runs its own operating system, and nodes com-
municate using a networking protocol. WSCs are the largest of the clusters, in that
they are designed so that tens of thousands of servers can act as one. Chapter 6
describes this class of extremely large computers.

Price-performance and power are critical to WSCs since they are so large. As
Chapter 6 explains, the majority of the cost of a warehouse is associated with
power and cooling of the computers inside the warehouse. The annual amortized
computers themselves and the networking gear cost for a WSC is $40 million,
because they are usually replaced every few years. When you are buying that

Application Cost of downtime
per hour

Annual losses with downtime of

1%
(87.6 h/year)

0.5%
(43.8 h/year)

0.1%
(8.8 h/year)

Brokerage service $4,000,000 $350,400,000 $175,200,000 $35,000,000

Energy $1,750,000 $153,300,000 $76,700,000 $15,300,000

Telecom $1,250,000 $109,500,000 $54,800,000 $11,000,000

Manufacturing $1,000,000 $87,600,000 $43,800,000 $8,800,000

Retail $650,000 $56,900,000 $28,500,000 $5,700,000

Health care $400,000 $35,000,000 $17,500,000 $3,500,000

Media $50,000 $4,400,000 $2,200,000 $400,000

Figure 1.3 Costs rounded to nearest $100,000 of an unavailable system are shown by analyzing the cost of down-
time (in terms of immediately lost revenue), assuming three different levels of availability, and that downtime is
distributed uniformly. These data are from Landstrom (2014) and were collected and analyzed by Contingency Plan-
ning Research.
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much computing, you need to buy wisely, because a 10% improvement in price-
performance means an annual savings of $4 million (10% of $40 million) per
WSC; a company like Amazon might have 100 WSCs!

WSCs are related to servers in that availability is critical. For example, Ama-
zon.com had $136 billion in sales in 2016. As there are about 8800 hours in a year,
the average revenue per hour was about $15million. During a peak hour for Christ-
mas shopping, the potential loss would be many times higher. As Chapter 6
explains, the difference between WSCs and servers is that WSCs use redundant,
inexpensive components as the building blocks, relying on a software layer to
catch and isolate the many failures that will happen with computing at this scale
to deliver the availability needed for such applications. Note that scalability for a
WSC is handled by the local area network connecting the computers and not by
integrated computer hardware, as in the case of servers.

Supercomputers are related to WSCs in that they are equally expensive,
costing hundreds of millions of dollars, but supercomputers differ by emphasi-
zing floating-point performance and by running large, communication-intensive
batch programs that can run for weeks at a time. In contrast, WSCs emphasize
interactive applications, large-scale storage, dependability, and high Internet
bandwidth.

Classes of Parallelism and Parallel Architectures

Parallelism at multiple levels is now the driving force of computer design across all
four classes of computers, with energy and cost being the primary constraints.
There are basically two kinds of parallelism in applications:

1. Data-level parallelism (DLP) arises because there are many data items that can
be operated on at the same time.

2. Task-level parallelism (TLP) arises because tasks of work are created that can
operate independently and largely in parallel.

Computer hardware in turn can exploit these two kinds of application parallelism in
four major ways:

1. Instruction-level parallelism exploits data-level parallelism at modest levels
with compiler help using ideas like pipelining and at medium levels using ideas
like speculative execution.

2. Vector architectures, graphic processor units (GPUs), and multimedia instruc-
tion sets exploit data-level parallelism by applying a single instruction to a col-
lection of data in parallel.

3. Thread-level parallelism exploits either data-level parallelism or task-level par-
allelism in a tightly coupled hardware model that allows for interaction between
parallel threads.

4. Request-level parallelism exploits parallelism among largely decoupled tasks
specified by the programmer or the operating system.
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When Flynn (1966) studied the parallel computing efforts in the 1960s, he
found a simple classification whose abbreviations we still use today. They target
data-level parallelism and task-level parallelism. He looked at the parallelism in the
instruction and data streams called for by the instructions at the most constrained
component of the multiprocessor and placed all computers in one of four
categories:

1. Single instruction stream, single data stream (SISD)—This category is the uni-
processor. The programmer thinks of it as the standard sequential computer, but
it can exploit ILP. Chapter 3 covers SISD architectures that use ILP techniques
such as superscalar and speculative execution.

2. Single instruction stream, multiple data streams (SIMD)—The same instruc-
tion is executed bymultiple processors using different data streams. SIMD com-
puters exploit data-level parallelism by applying the same operations to
multiple items of data in parallel. Each processor has its own data memory
(hence, the MD of SIMD), but there is a single instruction memory and control
processor, which fetches and dispatches instructions. Chapter 4 covers DLP and
three different architectures that exploit it: vector architectures, multimedia
extensions to standard instruction sets, and GPUs.

3. Multiple instruction streams, single data stream (MISD)—No commercial mul-
tiprocessor of this type has been built to date, but it rounds out this simple
classification.

4. Multiple instruction streams, multiple data streams (MIMD)—Each processor
fetches its own instructions and operates on its own data, and it targets task-level
parallelism. In general, MIMD is more flexible than SIMD and thus more gen-
erally applicable, but it is inherently more expensive than SIMD. For example,
MIMD computers can also exploit data-level parallelism, although the overhead
is likely to be higher than would be seen in an SIMD computer. This overhead
means that grain size must be sufficiently large to exploit the parallelism effi-
ciently. Chapter 5 covers tightly coupled MIMD architectures, which exploit
thread-level parallelism because multiple cooperating threads operate in paral-
lel. Chapter 6 covers loosely coupled MIMD architectures—specifically, clus-
ters and warehouse-scale computers—that exploit request-level parallelism,
where many independent tasks can proceed in parallel naturally with little need
for communication or synchronization.

This taxonomy is a coarse model, as many parallel processors are hybrids of the
SISD, SIMD, and MIMD classes. Nonetheless, it is useful to put a framework on
the design space for the computers we will see in this book.

1.3 Defining Computer Architecture

The task the computer designer faces is a complex one: determine what attributes
are important for a new computer, then design a computer to maximize
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performance and energy efficiency while staying within cost, power, and availabil-
ity constraints. This task has many aspects, including instruction set design, func-
tional organization, logic design, and implementation. The implementation may
encompass integrated circuit design, packaging, power, and cooling. Optimizing
the design requires familiarity with a very wide range of technologies, from com-
pilers and operating systems to logic design and packaging.

A few decades ago, the term computer architecture generally referred to only
instruction set design. Other aspects of computer design were called implementa-
tion, often insinuating that implementation is uninteresting or less challenging.

We believe this view is incorrect. The architect’s or designer’s job is much
more than instruction set design, and the technical hurdles in the other aspects
of the project are likely more challenging than those encountered in instruction
set design. We’ll quickly review instruction set architecture before describing
the larger challenges for the computer architect.

Instruction Set Architecture: The Myopic View
of Computer Architecture

We use the term instruction set architecture (ISA) to refer to the actual
programmer-visible instruction set in this book. The ISA serves as the boundary
between the software and hardware. This quick review of ISA will use examples
from 80x86, ARMv8, and RISC-V to illustrate the seven dimensions of an ISA.
The most popular RISC processors come from ARM (Advanced RISC Machine),
which were in 14.8 billion chips shipped in 2015, or roughly 50 times as many
chips that shipped with 80x86 processors. Appendices A and K give more details
on the three ISAs.

RISC-V (“RISC Five”) is a modern RISC instruction set developed at the
University of California, Berkeley, which was made free and openly adoptable
in response to requests from industry. In addition to a full software stack (com-
pilers, operating systems, and simulators), there are several RISC-V implementa-
tions freely available for use in custom chips or in field-programmable gate arrays.
Developed 30 years after the first RISC instruction sets, RISC-V inherits its ances-
tors’ good ideas—a large set of registers, easy-to-pipeline instructions, and a lean
set of operations—while avoiding their omissions or mistakes. It is a free and
open, elegant example of the RISC architectures mentioned earlier, which is
why more than 60 companies have joined the RISC-V foundation, including
AMD, Google, HP Enterprise, IBM, Microsoft, Nvidia, Qualcomm, Samsung,
and Western Digital. We use the integer core ISA of RISC-V as the example
ISA in this book.

1. Class of ISA—Nearly all ISAs today are classified as general-purpose register
architectures, where the operands are either registers or memory locations. The
80x86 has 16 general-purpose registers and 16 that can hold floating-point data,
while RISC-V has 32 general-purpose and 32 floating-point registers (see
Figure 1.4). The two popular versions of this class are register-memory ISAs,
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such as the 80x86, which can access memory as part of many instructions, and
load-store ISAs, such as ARMv8 and RISC-V, which can access memory
only with load or store instructions. All ISAs announced since 1985 are
load-store.

2. Memory addressing—Virtually all desktop and server computers, including the
80x86, ARMv8, and RISC-V, use byte addressing to access memory operands.
Some architectures, like ARMv8, require that objects must be aligned. An
access to an object of size s bytes at byte address A is aligned if A mod
s¼0. (See Figure A.5 on page A-8.) The 80x86 and RISC-V do not require
alignment, but accesses are generally faster if operands are aligned.

3. Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. RISC-V addressing
modes are Register, Immediate (for constants), and Displacement, where a con-
stant offset is added to a register to form the memory address. The 80x86
supports those three modes, plus three variations of displacement: no register
(absolute), two registers (based indexed with displacement), and two registers

Register Name Use Saver

x0 zero The constant value 0 N.A.

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer –

x4 tp Thread pointer –

x5–x7 t0–t2 Temporaries Caller

x8 s0/fp Saved register/frame pointer Callee

x9 s1 Saved register Callee

x10–x11 a0–a1 Function arguments/return values Caller

x12–x17 a2–a7 Function arguments Caller

x18–x27 s2–s11 Saved registers Callee

x28–x31 t3–t6 Temporaries Caller

f0–f7 ft0–ft7 FP temporaries Caller

f8–f9 fs0–fs1 FP saved registers Callee

f10–f11 fa0–fa1 FP function arguments/return values Caller

f12–f17 fa2–fa7 FP function arguments Caller

f18–f27 fs2–fs11 FP saved registers Callee

f28–f31 ft8–ft11 FP temporaries Caller

Figure 1.4 RISC-V registers, names, usage, and calling conventions. In addition to the
32 general-purpose registers (x0–x31), RISC-V has 32 floating-point registers (f0–f31)
that can hold either a 32-bit single-precision number or a 64-bit double-precision num-
ber. The registers that are preserved across a procedure call are labeled “Callee” saved.
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where one register is multiplied by the size of the operand in bytes (based with
scaled index and displacement). It has more like the last three modes, minus the
displacement field, plus register indirect, indexed, and based with scaled index.
ARMv8 has the three RISC-V addressing modes plus PC-relative addressing,
the sum of two registers, and the sum of two registers where one register is
multiplied by the size of the operand in bytes. It also has autoincrement and
autodecrement addressing, where the calculated address replaces the contents
of one of the registers used in forming the address.

4. Types and sizes of operands—Like most ISAs, 80x86, ARMv8, and RISC-V
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character
or half word), 32-bit (integer or word), 64-bit (double word or long integer),
and IEEE 754 floating point in 32-bit (single precision) and 64-bit (double
precision). The 80x86 also supports 80-bit floating point (extended double
precision).

5. Operations—The general categories of operations are data transfer, arithmetic
logical, control (discussed next), and floating point. RISC-V is a simple and
easy-to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2017. Figure 1.5 summarizes the integer RISC-V
ISA, and Figure 1.6 lists the floating-point ISA. The 80x86 has a much richer
and larger set of operations (see Appendix K).

6. Control flow instructions—Virtually all ISAs, including these three, support
conditional branches, unconditional jumps, procedure calls, and returns. All
three use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences.
RISC-V conditional branches (BE, BNE, etc.) test the contents of registers,
and the 80x86 and ARMv8 branches test condition code bits set as side effects
of arithmetic/logic operations. The ARMv8 and RISC-V procedure call places
the return address in a register, whereas the 80x86 call (CALLF) places the
return address on a stack in memory.

7. Encoding an ISA—There are two basic choices on encoding: fixed length and
variable length. All ARMv8 and RISC-V instructions are 32 bits long, which
simplifies instruction decoding. Figure 1.7 shows the RISC-V instruction for-
mats. The 80x86 encoding is variable length, ranging from 1 to 18 bytes.
Variable-length instructions can take less space than fixed-length instructions,
so a program compiled for the 80x86 is usually smaller than the same program
compiled for RISC-V. Note that choices mentioned previously will affect how
the instructions are encoded into a binary representation. For example, the num-
ber of registers and the number of addressing modes both have a significant
impact on the size of instructions, because the register field and addressing
mode field can appear many times in a single instruction. (Note that ARMv8
and RISC-V later offered extensions, called Thumb-2 and RV64IC, that
provide a mix of 16-bit and 32-bit length instructions, respectively, to reduce
program size. Code size for these compact versions of RISC architectures
are smaller than that of the 80x86. See Appendix K.)
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Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 12-bit displacement+contents of a GPR

lb, lbu, sb Load byte, load byte unsigned, store byte (to/from integer registers)

lh, lhu, sh Load half word, load half word unsigned, store half word (to/from integer registers)

lw, lwu, sw Load word, load word unsigned, store word (to/from integer registers)

ld, sd Load double word, store double word (to/from integer registers)

flw, fld, fsw, fsd Load SP float, load DP float, store SP float, store DP float

fmv._.x, fmv.x._ Copy from/to integer register to/from floating-point register; “__”¼S for single-
precision, D for double-precision

csrrw, csrrwi, csrrs,
csrrsi, csrrc, csrrci

Read counters and write status registers, which include counters: clock cycles, time,
instructions retired

Arithmetic/logical Operations on integer or logical data in GPRs

add, addi, addw, addiw Add, add immediate (all immediates are 12 bits), add 32-bits only & sign-extend to 64
bits, add immediate 32-bits only

sub, subw Subtract, subtract 32-bits only

mul, mulw, mulh, mulhsu,
mulhu

Multiply, multiply 32-bits only, multiply upper half, multiply upper half signed-
unsigned, multiply upper half unsigned

div, divu, rem, remu Divide, divide unsigned, remainder, remainder unsigned

divw, divuw, remw, remuw Divide and remainder: as previously, but divide only lower 32-bits, producing 32-bit
sign-extended result

and, andi And, and immediate

or, ori, xor, xori Or, or immediate, exclusive or, exclusive or immediate

lui Load upper immediate; loads bits 31-12 of register with immediate, then sign-extends

auipc Adds immediate in bits 31–12 with zeros in lower bits to PC; used with JALR to
transfer control to any 32-bit address

sll, slli, srl, srli, sra,
srai

Shifts: shift left logical, right logical, right arithmetic; both variable and immediate
forms

sllw, slliw, srlw, srliw,
sraw, sraiw

Shifts: as previously, but shift lower 32-bits, producing 32-bit sign-extended result

slt, slti, sltu, sltiu Set less than, set less than immediate, signed and unsigned

Control Conditional branches and jumps; PC-relative or through register

beq, bne, blt, bge, bltu,
bgeu

Branch GPR equal/not equal; less than; greater than or equal, signed and unsigned

jal, jalr Jump and link: save PC+4, target is PC-relative (JAL) or a register (JALR); if specify
x0 as destination register, then acts as a simple jump

ecall Make a request to the supporting execution environment, which is usually an OS

ebreak Debuggers used to cause control to be transferred back to a debugging environment

fence, fence.i Synchronize threads to guarantee ordering of memory accesses; synchronize
instructions and data for stores to instruction memory

Figure 1.5 Subset of the instructions in RISC-V. RISC-V has a base set of instructions (R64I) and offers optional exten-
sions: multiply-divide (RVM), single-precision floating point (RVF), double-precision floating point (RVD). This figure
includes RVM and the next one shows RVF and RVD. Appendix A gives much more detail on RISC-V.
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Instruction type/opcode Instruction meaning

Floating point FP operations on DP and SP formats

fadd.d, fadd.s Add DP, SP numbers

fsub.d, fsub.s Subtract DP, SP numbers

fmul.d, fmul.s Multiply DP, SP floating point

fmadd.d, fmadd.s, fnmadd.d,
fnmadd.s

Multiply-add DP, SP numbers; negative multiply-add DP, SP numbers

fmsub.d, fmsub.s, fnmsub.d,
fnmsub.s

Multiply-sub DP, SP numbers; negative multiply-sub DP, SP numbers

fdiv.d, fdiv.s Divide DP, SP floating point

fsqrt.d, fsqrt.s Square root DP, SP floating point

fmax.d, fmax.s, fmin.d,
fmin.s

Maximum and minimum DP, SP floating point

fcvt._._, fcvt._._u,
fcvt._u._

Convert instructions: FCVT.x.y converts from typex to typey, where x andy are
L (64-bit integer), W (32-bit integer), D (DP), orS (SP). Integers can be unsigned (U)

feq._, flt._,fle._ Floating-point compare between floating-point registers and record the Boolean
result in integer register; “__”¼S for single-precision, D for double-precision

fclass.d, fclass.s Writes to integer register a 10-bit mask that indicates the class of the floating-point
number (�∞, +∞, �0, +0, NaN, …)

fsgnj._, fsgnjn._,
fsgnjx._

Sign-injection instructions that changes only the sign bit: copy sign bit from other
source, the oppositive of sign bit of other source, XOR of the 2 sign bits

Figure 1.6 Floating point instructions for RISC-V. RISC-V has a base set of instructions (R64I) and offers optional
extensions for single-precision floating point (RVF) and double-precision floating point (RVD). SP¼ single precision;
DP¼double precision.

R-type

07 612 1115 1420 1925 2431

I-type

S-type

U-type

opcoderdrs1rs2 funct3funct7

opcodeimm [4:0]

imm [4:1|11]

rs1

rs1

rs2

rs2

funct3

funct3

imm [11:5]

opcoderdrs1 funct3imm [11:0]

opcoderdimm [31:12]

J-typeopcoderdimm [20|10:1|11|19:12]

B-typeopcodeimm [10:5]imm [12]

Figure 1.7 The base RISC-V instruction set architecture formats. All instructions are 32 bits long. The R format is for
integer register-to-register operations, such as ADD, SUB, and so on. The I format is for loads and immediate oper-
ations, such as LD and ADDI. The B format is for branches and the J format is for jumps and link. The S format is for
stores. Having a separate format for stores allows the three register specifiers (rd, rs1, rs2) to always be in the same
location in all formats. The U format is for the wide immediate instructions (LUI, AUIPC).
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The other challenges facing the computer architect beyond ISA design are par-
ticularly acute at the present, when the differences among instruction sets are small
and when there are distinct application areas. Therefore, starting with the fourth
edition of this book, beyond this quick review, the bulk of the instruction set mate-
rial is found in the appendices (see Appendices A and K).

Genuine Computer Architecture: Designing the Organization
and Hardware to Meet Goals and Functional Requirements

The implementation of a computer has two components: organization and hard-
ware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of
the internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). The term microarchitecture is also
used instead of organization. For example, two processors with the same instruc-
tion set architectures but different organizations are the AMDOpteron and the Intel
Core i7. Both processors implement the 80x86 instruction set, but they have very
different pipeline and cache organizations.

The switch to multiple processors per microprocessor led to the term core also
being used for processors. Instead of saying multiprocessor microprocessor, the
term multicore caught on. Given that virtually all chips have multiple processors,
the term central processing unit, or CPU, is fading in popularity.

Hardware refers to the specifics of a computer, including the detailed logic
design and the packaging technology of the computer. Often a line of computers
contains computers with identical instruction set architectures and very similar
organizations, but they differ in the detailed hardware implementation. For exam-
ple, the Intel Core i7 (see Chapter 3) and the Intel Xeon E7 (see Chapter 5) are
nearly identical but offer different clock rates and different memory systems, mak-
ing the Xeon E7 more effective for server computers.

In this book, the word architecture covers all three aspects of computer
design—instruction set architecture, organization or microarchitecture, and
hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, performance, and availability goals. Figure 1.8 summarizes
requirements to consider in designing a new computer. Often, architects also must
determine what the functional requirements are, which can be a major task. The
requirements may be specific features inspired by the market. Application software
typically drives the choice of certain functional requirements by determining how
the computer will be used. If a large body of software exists for a particular instruc-
tion set architecture, the architect may decide that a new computer should imple-
ment an existing instruction set. The presence of a large market for a particular
class of applications might encourage the designers to incorporate requirements
that would make the computer competitive in that market. Later chapters examine
many of these requirements and features in depth.
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Architects must also be aware of important trends in both the technology and
the use of computers because such trends affect not only the future cost but also the
longevity of an architecture.

1.4 Trends in Technology

If an instruction set architecture is to prevail, it must be designed to survive rapid
changes in computer technology. After all, a successful new instruction set

Functional requirements Typical features required or supported

Application area Target of computer

Personal mobile device Real-time performance for a range of tasks, including interactive performance for
graphics, video, and audio; energy efficiency (Chapters 2–5 and 7; Appendix A)

General-purpose desktop Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Chapters 2–5; Appendix A)

Servers Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Chapters 2, 5, and 7; Appendices A, D, and F)

Clusters/warehouse-scale
computers

Throughput performance for many independent tasks; error correction for memory;
energy proportionality (Chapters 2, 6, and 7; Appendix F)

Internet of things/embedded
computing

Often requires special support for graphics or video (or other application-specific
extension); power limitations and power control may be required; real-time constraints
(Chapters 2, 3, 5, and 7; Appendices A and E)

Level of software compatibility Determines amount of existing software for computer

At programming language Most flexible for designer; need new compiler (Chapters 3, 5, and 7; Appendix A)

Object code or binary
compatible

Instruction set architecture is completely defined—little flexibility—but no investment
needed in software or porting programs (Appendix A)

Operating system requirements Necessary features to support chosen OS (Chapter 2; Appendix B)

Size of address space Very important feature (Chapter 2); may limit applications

Memory management Required for modern OS; may be paged or segmented (Chapter 2)

Protection Different OS and application needs: page versus segment; virtual machines (Chapter 2)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE 754 standard (Appendix J), special arithmetic for graphics
or signal processing

I/O interfaces For I/O devices: Serial ATA, Serial Attached SCSI, PCI Express (Appendices D and F)

Operating systems UNIX, Windows, Linux, CISCO IOS

Networks Support required for different networks: Ethernet, Infiniband (Appendix F)

Programming languages Languages (ANSI C, C++, Java, Fortran) affect instruction set (Appendix A)

Figure 1.8 Summary of some of the most important functional requirements an architect faces. The left-hand
column describes the class of requirement, while the right-hand column gives specific examples. The right-hand col-
umn also contains references to chapters and appendices that deal with the specific issues.
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architecture may last decades—for example, the core of the IBM mainframe has
been in use for more than 50 years. An architect must plan for technology changes
that can increase the lifetime of a successful computer.

To plan for the evolution of a computer, the designer must be aware of rapid
changes in implementation technology. Five implementation technologies, which
change at a dramatic pace, are critical to modern implementations:

■ Integrated circuit logic technology—Historically, transistor density increased
by about 35% per year, quadrupling somewhat over four years. Increases in
die size are less predictable and slower, ranging from 10% to 20% per year.
The combined effect was a traditional growth rate in transistor count on a chip
of about 40%–55% per year, or doubling every 18–24 months. This trend is
popularly known as Moore’s Law. Device speed scales more slowly, as we
discuss below. Shockingly, Moore’s Law is no more. The number of devices
per chip is still increasing, but at a decelerating rate. Unlike in the Moore’s
Law era, we expect the doubling time to be stretched with each new technol-
ogy generation.

■ Semiconductor DRAM (dynamic random-access memory)—This technology
is the foundation of main memory, and we discuss it in Chapter 2. The growth
of DRAM has slowed dramatically, from quadrupling every three years as in
the past. The 8-gigabit DRAM was shipping in 2014, but the 16-gigabit
DRAM won’t reach that state until 2019, and it looks like there will be no
32-gigabit DRAM (Kim, 2005). Chapter 2 mentions several other technologies
that may replace DRAM when it hits its capacity wall.

■ Semiconductor Flash (electrically erasable programmable read-only mem-
ory)—This nonvolatile semiconductor memory is the standard storage device
in PMDs, and its rapidly increasing popularity has fueled its rapid growth
rate in capacity. In recent years, the capacity per Flash chip increased by about
50%–60% per year, doubling roughly every 2 years. Currently, Flash
memory is 8–10 times cheaper per bit than DRAM. Chapter 2 describes Flash
memory.

■ Magnetic disk technology—Prior to 1990, density increased by about 30% per
year, doubling in three years. It rose to 60% per year thereafter, and increased to
100% per year in 1996. Between 2004 and 2011, it dropped back to about 40%
per year, or doubled every two years. Recently, disk improvement has slowed
to less than 5% per year. One way to increase disk capacity is to add more plat-
ters at the same areal density, but there are already seven platters within the
one-inch depth of the 3.5-inch form factor disks. There is room for at most
one or twomore platters. The last hope for real density increase is to use a small
laser on each disk read-write head to heat a 30 nm spot to 400°C so that it can
be written magnetically before it cools. It is unclear whether Heat Assisted
Magnetic Recording can be manufactured economically and reliably, although
Seagate announced plans to ship HAMR in limited production in 2018. HAMR
is the last chance for continued improvement in areal density of hard disk
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drives, which are now 8–10 times cheaper per bit than Flash and 200–300 times
cheaper per bit than DRAM. This technology is central to server- and
warehouse-scale storage, and we discuss the trends in detail in Appendix D.

■ Network technology—Network performance depends both on the performance
of switches and on the performance of the transmission system. We discuss the
trends in networking in Appendix F.

These rapidly changing technologies shape the design of a computer that, with
speed and technology enhancements, may have a lifetime of 3–5 years. Key tech-
nologies such as Flash change sufficiently that the designer must plan for these
changes. Indeed, designers often design for the next technology, knowing that,
when a product begins shipping in volume, the following technology may be
the most cost-effective or may have performance advantages. Traditionally, cost
has decreased at about the rate at which density increases.

Although technology improves continuously, the impact of these increases can
be in discrete leaps, as a threshold that allows a new capability is reached. For
example, when MOS technology reached a point in the early 1980s where between
25,000 and 50,000 transistors could fit on a single chip, it became possible to build
a single-chip, 32-bit microprocessor. By the late 1980s, first-level caches could go
on a chip. By eliminating chip crossings within the processor and between the pro-
cessor and the cache, a dramatic improvement in cost-performance and energy-
performance was possible. This design was simply unfeasible until the technology
reached a certain point. With multicore microprocessors and increasing numbers of
cores each generation, even server computers are increasingly headed toward a sin-
gle chip for all processors. Such technology thresholds are not rare and have a sig-
nificant impact on a wide variety of design decisions.

Performance Trends: Bandwidth Over Latency

Aswe shall see in Section 1.8, bandwidth or throughput is the total amount of work
done in a given time, such as megabytes per second for a disk transfer. In contrast,
latency or response time is the time between the start and the completion of an
event, such as milliseconds for a disk access. Figure 1.9 plots the relative improve-
ment in bandwidth and latency for technology milestones for microprocessors,
memory, networks, and disks. Figure 1.10 describes the examples and milestones
in more detail.

Performance is the primary differentiator for microprocessors and networks, so
they have seen the greatest gains: 32,000–40,000� in bandwidth and 50–90� in
latency. Capacity is generally more important than performance for memory and
disks, so capacity has improved more, yet bandwidth advances of 400–2400� are
still much greater than gains in latency of 8–9�.

Clearly, bandwidthhasoutpaced latencyacross these technologies andwill likely
continue to do so. A simple rule of thumb is that bandwidth grows by at least the
square of the improvement in latency. Computer designers should plan accordingly.

20 ■ Chapter One Fundamentals of Quantitative Design and Analysis



Scaling of Transistor Performance and Wires

Integrated circuit processes are characterized by the feature size, which is the min-
imum size of a transistor or a wire in either the x or y dimension. Feature sizes
decreased from 10 μm in 1971 to 0.016 μm in 2017; in fact, we have switched
units, so production in 2017 is referred to as “16 nm,” and 7 nm chips are under-
way. Since the transistor count per square millimeter of silicon is determined by the
surface area of a transistor, the density of transistors increases quadratically with a
linear decrease in feature size.
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Figure 1.9 Log-log plot of bandwidth and latency milestones in Figure 1.10 relative to the first milestone. Note
that latency improved 8–91�, while bandwidth improved about 400–32,000�. Except for networking, we note that
there were modest improvements in latency and bandwidth in the other three technologies in the six years since the
last edition: 0%–23% in latency and 23%–70% in bandwidth. Updated from Patterson, D., 2004. Latency lags band-
width. Commun. ACM 47 (10), 71–75.
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Microprocessor 16-Bit
address/
bus,

microcoded

32-Bit
address/
bus,

microcoded

5-Stage
pipeline,

on-chip I & D
caches, FPU

2-Way
superscalar,
64-bit bus

Out-of-order
3-way

superscalar

Out-of-order
superpipelined,
on-chip L2

cache

Multicore
OOO 4-way
on chip L3
cache, Turbo

Product Intel 80286 Intel 80386 Intel 80486 Intel Pentium Intel Pentium Pro Intel Pentium 4 Intel Core i7

Year 1982 1985 1989 1993 1997 2001 2015

Die size (mm2) 47 43 81 90 308 217 122

Transistors 134,000 275,000 1,200,000 3,100,000 5,500,000 42,000,000 1,750,000,000

Processors/chip 1 1 1 1 1 1 4

Pins 68 132 168 273 387 423 1400

Latency (clocks) 6 5 5 5 10 22 14

Bus width (bits) 16 32 32 64 64 64 196

Clock rate (MHz) 12.5 16 25 66 200 1500 4000

Bandwidth (MIPS) 2 6 25 132 600 4500 64,000

Latency (ns) 320 313 200 76 50 15 4

Memory module DRAM Page mode
DRAM

Fast page
mode DRAM

Fast page
mode DRAM

Synchronous
DRAM

Double data
rate SDRAM

DDR4
SDRAM

Module width (bits) 16 16 32 64 64 64 64

Year 1980 1983 1986 1993 1997 2000 2016

Mbits/DRAM chip 0.06 0.25 1 16 64 256 4096

Die size (mm2) 35 45 70 130 170 204 50

Pins/DRAM chip 16 16 18 20 54 66 134

Bandwidth (MBytes/s) 13 40 160 267 640 1600 27,000

Latency (ns) 225 170 125 75 62 52 30

Local area network Ethernet Fast
Ethernet

Gigabit
Ethernet

10 Gigabit
Ethernet

100 Gigabit
Ethernet

400 Gigabit
Ethernet

IEEE standard 802.3 803.3u 802.3ab 802.3ac 802.3ba 802.3bs

Year 1978 1995 1999 2003 2010 2017

Bandwidth (Mbits/seconds) 10 100 1000 10,000 100,000 400,000

Latency (μs) 3000 500 340 190 100 60

Hard disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPM 15,000 RPM 15,000 RPM

Product CDC WrenI
94145-36

Seagate
ST41600

Seagate
ST15150

Seagate
ST39102

Seagate
ST373453

Seagate
ST600MX0062

Year 1983 1990 1994 1998 2003 2016

Capacity (GB) 0.03 1.4 4.3 9.1 73.4 600

Disk form factor 5.25 in. 5.25 in. 3.5 in. 3.5 in. 3.5 in. 3.5 in.

Media diameter 5.25 in. 5.25 in. 3.5 in. 3.0 in. 2.5 in. 2.5 in.

Interface ST-412 SCSI SCSI SCSI SCSI SAS

Bandwidth (MBytes/s) 0.6 4 9 24 86 250

Latency (ms) 48.3 17.1 12.7 8.8 5.7 3.6

Figure 1.10 Performance milestones over 25–40 years for microprocessors, memory, networks, and disks. The
microprocessor milestones are several generations of IA-32 processors, going from a 16-bit bus, microcoded 80286 to
a 64-bit bus, multicore, out-of-order execution, superpipelined Core i7. Memory module milestones go from 16-bit-
wide, plain DRAM to 64-bit-wide double data rate version 3 synchronous DRAM. Ethernet advanced from 10 Mbits/s
to 400 Gbits/s. Disk milestones are based on rotation speed, improving from 3600 to 15,000 RPM. Each case is best-
case bandwidth, and latency is the time for a simple operation assuming no contention. Updated from Patterson, D.,
2004. Latency lags bandwidth. Commun. ACM 47 (10), 71–75.



The increase in transistor performance, however, is more complex. As feature
sizes shrink, devices shrink quadratically in the horizontal dimension and also
shrink in the vertical dimension. The shrink in the vertical dimension requires a
reduction in operating voltage to maintain correct operation and reliability of the
transistors. This combination of scaling factors leads to a complex interrelationship
between transistor performance and process feature size. To a first approximation, in
the past the transistor performance improved linearly with decreasing feature size.

The fact that transistor count improvesquadraticallywith a linear increase in tran-
sistor performance is both the challenge and the opportunity for which computer
architects were created! In the early days of microprocessors, the higher rate of
improvement in density was used to move quickly from 4-bit, to 8-bit, to 16-bit,
to 32-bit, to 64-bit microprocessors.More recently, density improvements have sup-
ported the introduction ofmultiple processors per chip, wider SIMDunits, andmany
of the innovations in speculative execution and caches found in Chapters 2–5.

Although transistors generally improve in performance with decreased feature
size, wires in an integrated circuit do not. In particular, the signal delay for a wire
increases in proportion to the product of its resistance and capacitance. Of course,
as feature size shrinks, wires get shorter, but the resistance and capacitance per unit
length get worse. This relationship is complex, since both resistance and capaci-
tance depend on detailed aspects of the process, the geometry of a wire, the loading
on a wire, and even the adjacency to other structures. There are occasional process
enhancements, such as the introduction of copper, which provide one-time
improvements in wire delay.

In general, however, wire delay scales poorly compared to transistor perfor-
mance, creating additional challenges for the designer. In addition to the power
dissipation limit, wire delay has become a major design obstacle for large inte-
grated circuits and is often more critical than transistor switching delay. Larger
and larger fractions of the clock cycle have been consumed by the propagation
delay of signals on wires, but power now plays an even greater role than wire delay.

1.5 Trends in Power and Energy in Integrated Circuits

Today, energy is the biggest challenge facing the computer designer for nearly
every class of computer. First, power must be brought in and distributed around
the chip, and modern microprocessors use hundreds of pins and multiple intercon-
nect layers just for power and ground. Second, power is dissipated as heat and must
be removed.

Power and Energy: A Systems Perspective

How should a system architect or a user think about performance, power, and
energy? From the viewpoint of a system designer, there are three primary concerns.

First, what is the maximum power a processor ever requires? Meeting this
demand can be important to ensuring correct operation. For example, if a processor
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attempts to draw more power than a power-supply system can provide (by drawing
more current than the system can supply), the result is typically a voltage drop,
which can cause devices to malfunction. Modern processors can vary widely in
power consumption with high peak currents; hence they provide voltage indexing
methods that allow the processor to slow down and regulate voltage within a wider
margin. Obviously, doing so decreases performance.

Second, what is the sustained power consumption? This metric is widely called
the thermal design power (TDP) because it determines the cooling requirement.
TDP is neither peak power, which is often 1.5 times higher, nor is it the actual aver-
age power that will be consumed during a given computation, which is likely to be
lower still. A typical power supply for a system is typically sized to exceed the
TDP, and a cooling system is usually designed to match or exceed TDP. Failure
to provide adequate cooling will allow the junction temperature in the processor to
exceed its maximum value, resulting in device failure and possibly permanent
damage. Modern processors provide two features to assist in managing heat, since
the highest power (and hence heat and temperature rise) can exceed the long-term
average specified by the TDP. First, as the thermal temperature approaches the
junction temperature limit, circuitry lowers the clock rate, thereby reducing power.
Should this technique not be successful, a second thermal overload trap is activated
to power down the chip.

The third factor that designers and users need to consider is energy and energy
efficiency. Recall that power is simply energy per unit time: 1 watt¼1 joule per
second. Which metric is the right one for comparing processors: energy or power?
In general, energy is always a better metric because it is tied to a specific task and
the time required for that task. In particular, the energy to complete a workload is
equal to the average power times the execution time for the workload.

Thus, if we want to know which of two processors is more efficient for a given
task, we need to compare energy consumption (not power) for executing the task.
For example, processor A may have a 20% higher average power consumption
than processor B, but if A executes the task in only 70% of the time needed by
B, its energy consumption will be 1.2�0.7¼0.84, which is clearly better.

One might argue that in a large server or cloud, it is sufficient to consider the
average power, since the workload is often assumed to be infinite, but this is mis-
leading. If our cloud were populated with processor Bs rather than As, then the
cloud would do less work for the same amount of energy expended. Using energy
to compare the alternatives avoids this pitfall. Whenever we have a fixed workload,
whether for a warehouse-size cloud or a smartphone, comparing energy will be the
right way to compare computer alternatives, because the electricity bill for the
cloud and the battery lifetime for the smartphone are both determined by the energy
consumed.

When is power consumption a useful measure? The primary legitimate use is as
a constraint: for example, an air-cooled chip might be limited to 100 W. It can be
used as a metric if the workload is fixed, but then it’s just a variation of the true
metric of energy per task.
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Energy and Power Within a Microprocessor

For CMOS chips, the traditional primary energy consumption has been in switch-
ing transistors, also called dynamic energy. The energy required per transistor is
proportional to the product of the capacitive load driven by the transistor and
the square of the voltage:

Energydynamic / Capacitive load�Voltage2

This equation is the energy of pulse of the logic transition of 0!1!0 or
1!0!1. The energy of a single transition (0!1 or 1!0) is then:

Energydynamic / 1=2�Capacitive load�Voltage2

The power required per transistor is just the product of the energy of a transition
multiplied by the frequency of transitions:

Powerdynamic / 1=2�Capacitive load�Voltage2�Frequency switched

For a fixed task, slowing clock rate reduces power, but not energy.
Clearly, dynamic power and energy are greatly reduced by lowering the volt-

age, so voltages have dropped from 5 V to just under 1 V in 20 years. The capac-
itive load is a function of the number of transistors connected to an output and the
technology, which determines the capacitance of the wires and the transistors.

Example Some microprocessors today are designed to have adjustable voltage, so a 15%
reduction in voltage may result in a 15% reduction in frequency. What would
be the impact on dynamic energy and on dynamic power?

Answer Because the capacitance is unchanged, the answer for energy is the ratio of the
voltages

Energynew
Energyold

¼ Voltage�0:85ð Þ2
Voltage2

¼ 0:852 ¼ 0:72

which reduces energy to about 72% of the original. For power, we add the ratio of
the frequencies

Powernew
Powerold

¼ 0:72� Frequency switched�0:85ð Þ
Frequency switched

¼ 0:61

shrinking power to about 61% of the original.

As we move from one process to the next, the increase in the number of tran-
sistors switching and the frequency with which they change dominate the decrease
in load capacitance and voltage, leading to an overall growth in power consump-
tion and energy. The first microprocessors consumed less than a watt, and the first
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32-bit microprocessors (such as the Intel 80386) used about 2 W, whereas a
4.0 GHz Intel Core i7-6700K consumes 95 W. Given that this heat must be dissi-
pated from a chip that is about 1.5 cm on a side, we are near the limit of what can be
cooled by air, and this is where we have been stuck for nearly a decade.

Given the preceding equation, you would expect clock frequency growth to
slow down if we can’t reduce voltage or increase power per chip. Figure 1.11
shows that this has indeed been the case since 2003, even for the microprocessors
in Figure 1.1 that were the highest performers each year. Note that this period of
flatter clock rates corresponds to the period of slow performance improvement
range in Figure 1.1.

Distributing the power, removing the heat, and preventing hot spots have
become increasingly difficult challenges. Energy is now the major constraint to
using transistors; in the past, it was the raw silicon area. Therefore modern
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Figure 1.11 Growth in clock rate ofmicroprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved
less than 15% per year while performance improved by 22% per year. During the “renaissance period” of 52% per-
formance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the
clock rate has been nearly flat, growing at less than 2% per year, while single processor performance improved
recently at just 3.5% per year.
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microprocessors offer many techniques to try to improve energy efficiency despite
flat clock rates and constant supply voltages:

1. Do nothing well. Most microprocessors today turn off the clock of inactive
modules to save energy and dynamic power. For example, if no floating-point
instructions are executing, the clock of the floating-point unit is disabled. If
some cores are idle, their clocks are stopped.

2. Dynamic voltage-frequency scaling (DVFS). The second technique comes
directly from the preceding formulas. PMDs, laptops, and even servers have
periods of low activity where there is no need to operate at the highest clock
frequency and voltages. Modern microprocessors typically offer a few clock
frequencies and voltages in which to operate that use lower power and energy.
Figure 1.12 plots the potential power savings via DVFS for a server as the work-
load shrinks for three different clock rates: 2.4, 1.8, and 1 GHz. The overall
server power savings is about 10%–15% for each of the two steps.

3. Design for the typical case. Given that PMDs and laptops are often idle, mem-
ory and storage offer low power modes to save energy. For example, DRAMs
have a series of increasingly lower power modes to extend battery life in PMDs
and laptops, and there have been proposals for disks that have a mode that spins
more slowly when unused to save power. However, you cannot access DRAMs
or disks in these modes, so you must return to fully active mode to read or write,
no matter how low the access rate. As mentioned, microprocessors for PCs have
been designed instead for heavy use at high operating temperatures, relying on
on-chip temperature sensors to detect when activity should be reduced automat-
ically to avoid overheating. This “emergency slowdown” allows manufacturers
to design for a more typical case and then rely on this safety mechanism if some-
one really does run programs that consume much more power than is typical.
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Figure 1.12 Energy savings for a server using an AMD Opteron microprocessor, 8 GB
of DRAM, and one ATA disk. At 1.8 GHz, the server can handle at most up to two-thirds
of the workload without causing service-level violations, and at 1 GHz, it can safely han-
dle only one-third of the workload (Figure 5.11 in Barroso and H€olzle, 2009).

1.5 Trends in Power and Energy in Integrated Circuits ■ 27



4. Overclocking. Intel started offering Turbo mode in 2008, where the chip decides
that it is safe to run at a higher clock rate for a short time, possibly on just a few
cores, until temperature starts to rise. For example, the 3.3 GHz Core i7 can run
in short bursts for 3.6 GHz. Indeed, the highest-performing microprocessors
each year since 2008 shown in Figure 1.1 have all offered temporary overclock-
ing of about 10% over the nominal clock rate. For single-threaded code, these
microprocessors can turn off all cores but one and run it faster. Note that,
although the operating system can turn off Turbo mode, there is no notification
once it is enabled, so the programmers may be surprised to see their programs
vary in performance because of room temperature!

Although dynamic power is traditionally thought of as the primary source of
power dissipation in CMOS, static power is becoming an important issue because
leakage current flows even when a transistor is off:

Powerstatic / Currentstatic�Voltage

That is, static power is proportional to the number of devices.
Thus increasing the number of transistors increases power even if they are idle,

and current leakage increases in processors with smaller transistor sizes. As a
result, very low-power systems are even turning off the power supply (power gat-
ing) to inactive modules in order to control loss because of leakage. In 2011 the
goal for leakage was 25% of the total power consumption, with leakage in
high-performance designs sometimes far exceeding that goal. Leakage can be as
high as 50% for such chips, in part because of the large SRAM caches that need
power to maintain the storage values. (The S in SRAM is for static.) The only hope
to stop leakage is to turn off power to the chips’ subsets.

Finally, because the processor is just a portion of the whole energy cost of a sys-
tem, it canmake sense to use a faster, less energy-efficient processor to allow the rest
of the system to go into a sleep mode. This strategy is known as race-to-halt.

The importance of power and energy has increased the scrutiny on the effi-
ciency of an innovation, so the primary evaluation now is tasks per joule or per-
formance per watt, contrary to performance per mm2 of silicon as in the past. This
new metric affects approaches to parallelism, as we will see in Chapters 4 and 5.

The Shift in Computer Architecture Because of Limits of Energy

As transistor improvement decelerates, computer architects must look elsewhere
for improved energy efficiency. Indeed, given the energy budget, it is easy today
to design a microprocessor with so many transistors that they cannot all be turned
on at the same time. This phenomenon has been called dark silicon, in that much of
a chip cannot be unused (“dark”) at any moment in time because of thermal con-
straints. This observation has led architects to reexamine the fundamentals of pro-
cessors’ design in the search for a greater energy-cost performance.

Figure 1.13, which lists the energy cost and area cost of the building blocks of
a modern computer, reveals surprisingly large ratios. For example, a 32-bit
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floating-point addition uses 30 times as much energy as an 8-bit integer add. The
area difference is even larger, by 60 times. However, the biggest difference is in
memory; a 32-bit DRAM access takes 20,000 times as much energy as an 8-bit
addition. A small SRAM is 125 times more energy-efficient than DRAM, which
demonstrates the importance of careful uses of caches and memory buffers.

The new design principle of minimizing energy per task combined with the
relative energy and area costs in Figure 1.13 have inspired a new direction for com-
puter architecture, which we describe in Chapter 7. Domain-specific processors
save energy by reducing wide floating-point operations and deploying special-pur-
pose memories to reduce accesses to DRAM. They use those saving to provide
10–100 more (narrower) integer arithmetic units than a traditional processor.
Although such processors perform only a limited set of tasks, they perform them
remarkably faster and more energy efficiently than a general-purpose processor.

Like a hospital with general practitioners and medical specialists, computers in
this energy-aware world will likely be combinations of general-purpose cores that
can perform any task and special-purpose cores that do a few things extremely well
and even more cheaply.

1.6 Trends in Cost

Although costs tend to be less important in some computer designs—specifically
supercomputers—cost-sensitive designs are of growing significance. Indeed, in
the past 35 years, the use of technology improvements to lower cost, as well as
increase performance, has been a major theme in the computer industry.

Relative energy cost

1

Energy numbers are from Mark Horowitz *Computing’s Energy problem (and what we can do about it)*. ISSCC 2014
Area numbers are from synthesized result using Design compiler under TSMC 45nm tech node. FP units used DesignWare Library.
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Figure 1.13 Comparison of the energy and die area of arithmetic operations and energy cost of accesses to SRAM
and DRAM. [Azizi][Dally]. Area is for TSMC 45 nm technology node.
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Textbooks often ignore the cost half of cost-performance because costs change,
thereby dating books, and because the issues are subtle and differ across industry
segments. Nevertheless, it’s essential for computer architects to have an under-
standing of cost and its factors in order to make intelligent decisions about whether
a new feature should be included in designs where cost is an issue. (Imagine archi-
tects designing skyscrapers without any information on costs of steel beams and
concrete!)

This section discusses the major factors that influence the cost of a computer
and how these factors are changing over time.

The Impact of Time, Volume, and Commoditization

The cost of a manufactured computer component decreases over time even without
significant improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
yield—the percentage of manufactured devices that survives the testing procedure.
Whether it is a chip, a board, or a system, designs that have twice the yield will have
half the cost.

Understanding how the learning curve improves yield is critical to projecting
costs over a product’s life. One example is that the price per megabyte of DRAM
has dropped over the long term. Since DRAMs tend to be priced in close relation-
ship to cost—except for periods when there is a shortage or an oversupply—price
and cost of DRAM track closely.

Microprocessor prices also drop over time, but because they are less standard-
ized than DRAMs, the relationship between price and cost is more complex. In a
period of significant competition, price tends to track cost closely, although micro-
processor vendors probably rarely sell at a loss.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get through the learn-
ing curve, which is partly proportional to the number of systems (or chips) man-
ufactured. Second, volume decreases cost because it increases purchasing and
manufacturing efficiency. As a rule of thumb, some designers have estimated that
costs decrease about 10% for each doubling of volume. Moreover, volume
decreases the amount of development costs that must be amortized by each com-
puter, thus allowing cost and selling price to be closer and still make a profit.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, Flash memory, monitors,
and keyboards. In the past 30 years, much of the personal computer industry
has become a commodity business focused on building desktop and laptop com-
puters running Microsoft Windows.

Because many vendors ship virtually identical products, the market is highly
competitive. Of course, this competition decreases the gap between cost and selling
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price, but it also decreases cost. Reductions occur because a commodity market has
both volume and a clear product definition, which allows multiple suppliers to
compete in building components for the commodity product. As a result, the over-
all product cost is lower because of the competition among the suppliers of the
components and the volume efficiencies the suppliers can achieve. This rivalry
has led to the low end of the computer business being able to achieve better
price-performance than other sectors and has yielded greater growth at the low
end, although with very limited profits (as is typical in any commodity business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, Flash memory, DRAMs, and so on—are becoming a significant por-
tion of any system’s cost, integrated circuit costs are becoming a greater portion of
the cost that varies between computers, especially in the high-volume, cost-
sensitive portion of the market. Indeed, with PMDs’ increasing reliance of whole
systems on a chip (SOC), the cost of the integrated circuits is much of the cost of the
PMD. Thus computer designers must understand the costs of chips in order to
understand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the basic
process of silicon manufacture is unchanged: A wafer is still tested and chopped
into dies that are packaged (see Figures 1.14–1.16). Therefore the cost of a pack-
aged integrated circuit is

Cost of integrated circuit¼Cost of die +Cost of testing die +Cost of packaging and final test
Final test yield

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end.

Learning how to predict the number of good chips per wafer requires first learn-
ing howmany dies fit on a wafer and then learning how to predict the percentage of
those that will work. From there it is simple to predict cost:

Cost of die¼ Cost of wafer
Dies per wafer�Die yield

The most interesting feature of this initial term of the chip cost equation is its sen-
sitivity to die size, shown below.

The number of dies per wafer is approximately the area of the wafer divided by
the area of the die. It can be more accurately estimated by

Dies per wafer¼ π� Wafer diameter=2ð Þ2
Die area

�π�Wafer diameterffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Die area

p

The first term is the ratio of wafer area (πr2) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periphery
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Figure 1.15 The components of the microprocessor die in Figure 1.14 are labeled with their functions.

Figure 1.14 Photograph of an Intel Skylake microprocessor die, which is evaluated
in Chapter 4.
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of round wafers. Dividing the circumference (πd) by the diagonal of a square die is
approximately the number of dies along the edge.

Example Find the number of dies per 300 mm (30 cm) wafer for a die that is 1.5 cm on a side
and for a die that is 1.0 cm on a side.

Answer When die area is 2.25 cm2:

Dies per wafer¼ π� 30=2ð Þ2
2:25

� π�30ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2:25

p ¼ 706:9
2:25

�94:2
2:12

¼ 270

Because the area of the larger die is 2.25 times bigger, there are roughly 2.25 as
many smaller dies per wafer:

Dies per wafer¼ π� 30=2ð Þ2
1:00

� π�30ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1:00

p ¼ 706:9
1:00

�94:2
1:41

¼ 640

However, this formula gives only the maximum number of dies per wafer. The
critical question is: What is the fraction of good dies on a wafer, or the die yield? A
simple model of integrated circuit yield, which assumes that defects are randomly

Figure 1.16 This 200mmdiameter wafer of RISC-V dies was designed by SiFive. It has
two types of RISC-V dies using an older, larger processing line. An FE310 die is 2.65
mm � 2.72 mm and an SiFive test die that is 2.89 mm � 2.72 mm. The wafer contains
1846 of the former and 1866 of the latter, totaling 3712 chips.
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distributed over the wafer and that yield is inversely proportional to the complexity
of the fabrication process, leads to the following:

Die yield¼Wafer yield�1= 1 +Defects per unit area�Die areað ÞN

This Bose-Einstein formula is an empirical model developed by looking at the
yield of many manufacturing lines (Sydow, 2006), and it still applies today.Wafer
yield accounts for wafers that are completely bad and so need not be tested. For
simplicity, we’ll just assume the wafer yield is 100%. Defects per unit area is a
measure of the random manufacturing defects that occur. In 2017 the value was
typically 0.08–0.10 defects per square inch for a 28-nm node and 0.10–0.30 for
the newer 16 nm node because it depends on the maturity of the process (recall
the learning curve mentioned earlier). The metric versions are 0.012–0.016 defects
per square centimeter for 28 nm and 0.016–0.047 for 16 nm. Finally, N is a
parameter called the process-complexity factor, a measure of manufacturing
difficulty. For 28 nm processes in 2017, N is 7.5–9.5. For a 16 nm process,
N ranges from 10 to 14.

Example Find the die yield for dies that are 1.5 cm on a side and 1.0 cm on a side, assuming a
defect density of 0.047 per cm2 and N is 12.

Answer The total die areas are 2.25 and 1.00 cm2. For the larger die, the yield is

Die yield¼ 1= 1 + 0:047�2:25ð Þ12�270¼ 120

For the smaller die, the yield is

Die yield¼ 1= 1 + 0:047�1:00ð Þ12�640¼ 444

The bottom line is the number of good dies per wafer. Less than half of all the large
dies are good, but nearly 70% of the small dies are good.

Although many microprocessors fall between 1.00 and 2.25 cm2, low-end
embedded 32-bit processors are sometimes as small as 0.05 cm2, processors used
for embedded control (for inexpensive IoT devices) are often less than 0.01 cm2,
and high-end server and GPU chips can be as large as 8 cm2.

Given the tremendous price pressures on commodity products such as DRAM
and SRAM, designers have included redundancy as a way to raise yield. For a
number of years, DRAMs have regularly included some redundant memory cells
so that a certain number of flaws can be accommodated. Designers have used sim-
ilar techniques in both standard SRAMs and in large SRAM arrays used for caches
within microprocessors. GPUs have 4 redundant processors out of 84 for the same
reason. Obviously, the presence of redundant entries can be used to boost the yield
significantly.
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In 2017 processing of a 300 mm (12-inch) diameter wafer in a 28-nm technol-
ogy costs between $4000 and $5000, and a 16-nm wafer costs about $7000.
Assuming a processed wafer cost of $7000, the cost of the 1.00 cm2 die would
be around $16, but the cost per die of the 2.25 cm2 die would be about $58, or
almost four times the cost of a die that is a little over twice as large.

What should a computer designer remember about chip costs? The manufactur-
ing process dictates the wafer cost, wafer yield, and defects per unit area, so the sole
control of the designer is die area. In practice, because the number of defects per
unit area is small, the number of good dies per wafer, and therefore the cost per die,
grows roughly as the square of the die area. The computer designer affects die size,
and thus cost, both by what functions are included on or excluded from the die and
by the number of I/O pins.

Before we have a part that is ready for use in a computer, the die must be tested
(to separate the good dies from the bad), packaged, and tested again after packag-
ing. These steps all add significant costs, increasing the total by half.

The preceding analysis focused on the variable costs of producing a functional
die, which is appropriate for high-volume integrated circuits. There is, however,
one very important part of the fixed costs that can significantly affect the cost
of an integrated circuit for low volumes (less than 1 million parts), namely, the cost
of a mask set. Each step in the integrated circuit process requires a separate mask.
Therefore, for modern high-density fabrication processes with up to 10 metal
layers, mask costs are about $4 million for 16 nm and $1.5 million for 28 nm.

The good news is that semiconductor companies offer “shuttle runs” to dramat-
ically lower the costs of tiny test chips. They lower costs by putting many small
designs onto a single die to amortize the mask costs, and then later split the dies
into smaller pieces for each project. Thus TSMC delivers 80–100 untested dies that
are 1.57�1.57 mm in a 28 nm process for $30,000 in 2017. Although these die are
tiny, they offer the architect millions of transistors to play with. For example, sev-
eral RISC-V processors would fit on such a die.

Although shuttle runs help with prototyping and debugging runs, they don’t
address small-volume production of tens to hundreds of thousands of parts.
Because mask costs are likely to continue to increase, some designers are incorpo-
rating reconfigurable logic to enhance the flexibility of a part and thus reduce the
cost implications of masks.

Cost Versus Price

With the commoditization of computers, the margin between the cost to manufac-
ture a product and the price the product sells for has been shrinking. Those margins
pay for a company’s research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. Many engineers are surprised to find that most companies spend
only 4% (in the commodity PC business) to 12% (in the high-end server business)
of their income on R&D, which includes all engineering.
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Cost of Manufacturing Versus Cost of Operation

For the first four editions of this book, cost meant the cost to build a computer and
price meant price to purchase a computer. With the advent ofWSCs, which contain
tens of thousands of servers, the cost to operate the computers is significant in addi-
tion to the cost of purchase. Economists refer to these two costs as capital expenses
(CAPEX) and operational expenses (OPEX).

As Chapter 6 shows, the amortized purchase price of servers and networks
is about half of the monthly cost to operate a WSC, assuming a short lifetime
of the IT equipment of 3–4 years. About 40% of the monthly operational costs
are for power use and the amortized infrastructure to distribute power and to cool
the IT equipment, despite this infrastructure being amortized over 10–15 years.
Thus, to lower operational costs in a WSC, computer architects need to use energy
efficiently.

1.7 Dependability

Historically, integrated circuits were one of the most reliable components of a com-
puter. Although their pins may be vulnerable, and faults may occur over commu-
nication channels, the failure rate inside the chip was very low. That conventional
wisdom is changing as we head to feature sizes of 16 nm and smaller, because both
transient faults and permanent faults are becoming more commonplace, so archi-
tects must design systems to cope with these challenges. This section gives a quick
overview of the issues in dependability, leaving the official definition of the terms
and approaches to Section D.3 in Appendix D.

Computers are designed and constructed at different layers of abstraction. We
can descend recursively down through a computer seeing components enlarge
themselves to full subsystems until we run into individual transistors. Although
some faults are widespread, like the loss of power, many can be limited to a single
component in a module. Thus utter failure of a module at one level may be con-
sidered merely a component error in a higher-level module. This distinction is
helpful in trying to find ways to build dependable computers.

One difficult question is deciding when a system is operating properly. This
theoretical point became concrete with the popularity of Internet services. Infra-
structure providers started offering service level agreements (SLAs) or service
level objectives (SLOs) to guarantee that their networking or power service would
be dependable. For example, they would pay the customer a penalty if they did not
meet an agreement of some hours per month. Thus an SLA could be used to decide
whether the system was up or down.

Systems alternate between two states of service with respect to an SLA:

1. Service accomplishment, where the service is delivered as specified.

2. Service interruption, where the delivered service is different from the SLA.
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Transitions between these two states are caused by failures (from state 1 to state 2)
or restorations (2 to 1). Quantifying these transitions leads to the two main mea-
sures of dependability:

■ Module reliability is a measure of the continuous service accomplishment (or,
equivalently, of the time to failure) from a reference initial instant. Therefore the
mean time to failure (MTTF) is a reliability measure. The reciprocal ofMTTF is
a rate of failures, generally reported as failures per billion hours of operation, or
FIT (for failures in time). Thus an MTTF of 1,000,000 hours equals 109/106 or
1000 FIT. Service interruption is measured as mean time to repair (MTTR).
Mean time between failures (MTBF) is simply the sum of MTTF+MTTR.
Although MTBF is widely used, MTTF is often the more appropriate term. If
a collection of modules has exponentially distributed lifetimes—meaning that
the age of amodule is not important in probability of failure—the overall failure
rate of the collection is the sum of the failure rates of the modules.

■ Module availability is a measure of the service accomplishment with respect to
the alternation between the two states of accomplishment and interruption. For
nonredundant systems with repair, module availability is

Module availability¼ MTTF
MTTF+MTTRð Þ

Note that reliability and availability are now quantifiable metrics, rather than syn-
onyms for dependability. From these definitions, we can estimate reliability of a
system quantitatively if we make some assumptions about the reliability of com-
ponents and that failures are independent.

Example Assume a disk subsystem with the following components and MTTF:

■ 10 disks, each rated at 1,000,000-hour MTTF

■ 1 ATA controller, 500,000-hour MTTF

■ 1 power supply, 200,000-hour MTTF

■ 1 fan, 200,000-hour MTTF

■ 1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetimes are exponentially distributed
and that failures are independent, compute the MTTF of the system as a whole.

Answer The sum of the failure rates is

Failure ratesystem ¼ 10� 1
1,000,000

+
1

500,000
+

1
200,000

+
1

200,000
+

1
1,000,000

¼ 10 + 2 + 5 + 5 + 1
1,000,000 hours

¼ 23
1,000,000

¼ 23,000
1,000,000,000 hours
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or 23,000 FIT. The MTTF for the system is just the inverse of the failure rate

MTTFsystem ¼ 1
Failure ratesystem

¼ 1,000,000,000 hours
23,000

¼ 43,500 hours

or just under 5 years.

The primary way to cope with failure is redundancy, either in time (repeat the
operation to see if it still is erroneous) or in resources (have other components to
take over from the one that failed). Once the component is replaced and the system
is fully repaired, the dependability of the system is assumed to be as good as new.
Let’s quantify the benefits of redundancy with an example.

Example Disk subsystems often have redundant power supplies to improve dependability.
Using the preceding components andMTTFs, calculate the reliability of redundant
power supplies. Assume that one power supply is sufficient to run the disk subsys-
tem and that we are adding one redundant power supply.

Answer We need a formula to show what to expect when we can tolerate a failure and still
provide service. To simplify the calculations, we assume that the lifetimes of the
components are exponentially distributed and that there is no dependency between
the component failures. MTTF for our redundant power supplies is the mean time
until one power supply fails divided by the chance that the other will fail before the
first one is replaced. Thus, if the chance of a second failure before repair is small,
then the MTTF of the pair is large.

Since we have two power supplies and independent failures, the mean time until
one supply fails is MTTFpower supply/2. A good approximation of the probability of
a second failure is MTTR over the mean time until the other power supply fails.
Therefore a reasonable approximation for a redundant pair of power supplies is

MTTFpower supply pair ¼MTTFpower supply=2
MTTRpower supply

MTTFpower supply

¼MTTF2power supply=2

MTTRpower supply
¼ MTTF2power supply
2�MTTRpower supply

Using the preceding MTTF numbers, if we assume it takes on average 24 hours for
a human operator to notice that a power supply has failed and to replace it, the reli-
ability of the fault tolerant pair of power supplies is

MTTFpower supply pair ¼
MTTF2power supply

2�MTTRpower supply
¼ 200,0002

2�24
ffi 830,000,000

making the pair about 4150 times more reliable than a single power supply.

Having quantified the cost, power, and dependability of computer technology, we
are ready to quantify performance.
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1.8 Measuring, Reporting, and Summarizing Performance

When we say one computer is faster than another one is, what do we mean? The
user of a cell phone may say a computer is faster when a program runs in less time,
while an Amazon.com administrator may say a computer is faster when it com-
pletes more transactions per hour. The cell phone user wants to reduce response
time—the time between the start and the completion of an event—also referred
to as execution time. The operator of a WSC wants to increase throughput—the
total amount of work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different computers, say, X and Y. The phrase “X is faster than Y” is used
here to mean that the response time or execution time is lower on X than on Y
for the given task. In particular, “X is n times as fast as Y” will mean

Execution timeY
Execution timeX

¼ n

Since execution time is the reciprocal of performance, the following relationship
holds:

n¼Execution timeY
Execution timeX

¼
1

PerformanceY
1

PerformanceX

¼ PerformanceX
PerformanceY

The phrase “the throughput of X is 1.3 times as fast as Y” signifies here that the
number of tasks completed per unit time on computer X is 1.3 times the number
completed on Y.

Unfortunately, time is not always the metric quoted in comparing the perfor-
mance of computers. Our position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed alter-
natives to time as the metric or to real programs as the items measured have even-
tually led to misleading claims or even mistakes in computer design.

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time,
response time, or elapsed time, which is the latency to complete a task, including
storage accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming, the processor works on another pro-
gram while waiting for I/O and may not necessarily minimize the elapsed time of
one program. Thus we need a term to consider this activity. CPU time recognizes
this distinction and means the time the processor is computing, not including the
time waiting for I/O or running other programs. (Clearly, the response time seen by
the user is the elapsed time of the program, not the CPU time.)

Computer users who routinely run the same programs would be the perfect can-
didates to evaluate a new computer. To evaluate a new system, these users would
simply compare the execution time of their workloads—the mixture of programs
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and operating system commands that users run on a computer. Few are in this
happy situation, however. Most must rely on other methods to evaluate computers,
and often other evaluators, hoping that these methods will predict performance for
their usage of the new computer. One approach is benchmark programs, which are
programs that many companies use to establish the relative performance of their
computers.

Benchmarks

The best choice of benchmarks to measure performance is real applications, such as
Google Translate mentioned in Section 1.1. Attempts at running programs that are
much simpler than a real application have led to performance pitfalls. Examples
include

■ Kernels, which are small, key pieces of real applications.

■ Toy programs, which are 100-line programs from beginning programming
assignments, such as Quicksort.

■ Synthetic benchmarks, which are fake programs invented to try to match the
profile and behavior of real applications, such as Dhrystone.

All three are discredited today, usually because the compiler writer and architect
can conspire to make the computer appear faster on these stand-in programs than
on real applications. Regrettably for your authors—who dropped the fallacy about
using synthetic benchmarks to characterize performance in the fourth edition of
this book since we thought all computer architects agreed it was disreputable—
the synthetic program Dhrystone is still the most widely quoted benchmark for
embedded processors in 2017!

Another issue is the conditions under which the benchmarks are run. One way
to improve the performance of a benchmark has been with benchmark-specific
compiler flags; these flags often caused transformations that would be illegal on
many programs or would slow down performance on others. To restrict this pro-
cess and increase the significance of the results, benchmark developers typically
require the vendor to use one compiler and one set of flags for all the programs
in the same language (such as C++ or C). In addition to the question of compiler
flags, another question is whether source code modifications are allowed. There are
three different approaches to addressing this question:

1. No source code modifications are allowed.

2. Source code modifications are allowed but are essentially impossible. For
example, database benchmarks rely on standard database programs that are tens
of millions of lines of code. The database companies are highly unlikely to make
changes to enhance the performance for one particular computer.

3. Source modifications are allowed, as long as the altered version produces the
same output.
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Thekey issue that benchmark designers face in deciding to allowmodification of the
source is whether such modifications will reflect real practice and provide useful
insight to users, or whether these changes simply reduce the accuracy of the bench-
marks as predictors of real performance. As we will see in Chapter 7, domain-
specific architects often follow the third option when creating processors for
well-defined tasks.

To overcome the danger of placing too many eggs in one basket, collections of
benchmark applications, called benchmark suites, are a popular measure of perfor-
mance of processors with a variety of applications. Of course, such collections are
only as good as the constituent individual benchmarks. Nonetheless, a key advan-
tage of such suites is that the weakness of any one benchmark is lessened by the
presence of the other benchmarks. The goal of a benchmark suite is that it will char-
acterize the real relative performance of two computers, particularly for programs
not in the suite that customers are likely to run.

A cautionary example is the Electronic Design News Embedded Microproces-
sor Benchmark Consortium (or EEMBC, pronounced “embassy”) benchmarks.

It is a set of 41 kernels used to predict performance of different embedded
applications: automotive/industrial, consumer, networking, office automation,
and telecommunications. EEMBC reports unmodified performance and “full fury”
performance, where almost anything goes. Because these benchmarks use small
kernels, and because of the reporting options, EEMBC does not have the reputation
of being a good predictor of relative performance of different embedded computers
in the field. This lack of success is why Dhrystone, which EEMBC was trying to
replace, is sadly still used.

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in efforts in the late 1980s to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the need
for different benchmark suites, and there are now SPEC benchmarks to cover many
application classes. All the SPEC benchmark suites and their reported results are
found at http://www.spec.org.

Although we focus our discussion on the SPEC benchmarks in many of the
following sections, many benchmarks have also been developed for PCs running
the Windows operating system.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: processor-intensive bench-
marks and graphics-intensive benchmarks, although many graphics benchmarks
include intensive processor activity. SPEC originally created a benchmark set
focusing on processor performance (initially called SPEC89), which has evolved
into its sixth generation: SPEC CPU2017, which follows SPEC2006, SPEC2000,
SPEC95 SPEC92, and SPEC89. SPEC CPU2017 consists of a set of 10 integer
benchmarks (CINT2017) and 17 floating-point benchmarks (CFP2017).
Figure 1.17 describes the current SPEC CPU benchmarks and their ancestry.
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Figure 1.17 SPEC2017 programs and the evolution of the SPEC benchmarks over time, with integer programs above the line and floating-
point programs below the line. Of the 10 SPEC2017 integer programs, 5 are written in C, 4 in C++., and 1 in Fortran. For the floating-point
programs, the split is 3 in Fortran, 2 in C++, 2 in C, and 6 in mixed C, C++, and Fortran. The figure shows all 82 of the programs in the 1989,
1992, 1995, 2000, 2006, and 2017 releases. Gcc is the senior citizen of the group. Only 3 integer programs and 3 floating-point programs survived
three or more generations. Although a few are carried over from generation to generation, the version of the program changes and either the
input or the size of the benchmark is often expanded to increase its running time and to avoid perturbation inmeasurement or domination of the
execution time by some factor other than CPU time. The benchmark descriptions on the left are for SPEC2017 only and do not apply to earlier
versions. Programs in the same row from different generations of SPEC are generally not related; for example, fpppp is not a CFD code like
bwaves.
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SPEC benchmarks are real programs modified to be portable and to minimize
the effect of I/O on performance. The integer benchmarks vary from part of a C
compiler to a go program to a video compression. The floating-point benchmarks
include molecular dynamics, ray tracing, and weather forecasting. The SPEC
CPU suite is useful for processor benchmarking for both desktop systems and
single-processor servers. We will see data on many of these programs throughout
this book. However, these programs share little with modern programming lan-
guages and environments and the Google Translate application that Section 1.1
describes. Nearly half of them are written at least partially in Fortran! They are
even statically linked instead of being dynamically linked like most real pro-
grams. Alas, the SPEC2017 applications themselves may be real, but they are
not inspiring. It’s not clear that SPECINT2017 and SPECFP2017 capture what
is exciting about computing in the 21st century.

In Section 1.11, we describe pitfalls that have occurred in developing the SPEC
CPUbenchmark suite, as well as the challenges in maintaining a useful and pre-
dictive benchmark suite.

SPECCPU2017 is aimed at processor performance, but SPECoffersmanyother
benchmarks. Figure 1.18 lists the 17 SPEC benchmarks that are active in 2017.

Server Benchmarks

Just as servers have multiple functions, so are there multiple types of benchmarks.
The simplest benchmark is perhaps a processor throughput-oriented benchmark.
SPEC CPU2017 uses the SPEC CPU benchmarks to construct a simple throughput
benchmark where the processing rate of a multiprocessor can be measured by run-
ning multiple copies (usually as many as there are processors) of each SPEC CPU
benchmark and converting the CPU time into a rate. This leads to a measurement
called the SPECrate, and it is a measure of request-level parallelism from Section
1.2. To measure thread-level parallelism, SPEC offers what they call high-
performance computing benchmarks around OpenMP and MPI as well as for
accelerators such as GPUs (see Figure 1.18).

Other than SPECrate, most server applications and benchmarks have signifi-
cant I/O activity arising from either storage or network traffic, including bench-
marks for file server systems, for web servers, and for database and transaction-
processing systems. SPEC offers both a file server benchmark (SPECSFS) and
a Java server benchmark. (Appendix D discusses some file and I/O system bench-
marks in detail.) SPECvirt_Sc2013 evaluates end-to-end performance of virtua-
lized data center servers. Another SPEC benchmark measures power, which we
examine in Section 1.10.

Transaction-processing (TP) benchmarks measure the ability of a system to
handle transactions that consist of database accesses and updates. Airline reserva-
tion systems and bank ATM systems are typical simple examples of TP; more
sophisticated TP systems involve complex databases and decision-making.
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In the mid-1980s, a group of concerned engineers formed the vendor-independent
Transaction Processing Council (TPC) to try to create realistic and fair benchmarks
for TP. The TPC benchmarks are described at http://www.tpc.org.

The first TPC benchmark, TPC-A, was published in 1985 and has since been
replaced and enhanced by several different benchmarks. TPC-C, initially created in
1992, simulates a complex query environment. TPC-H models ad hoc decision
support—the queries are unrelated and knowledge of past queries cannot be used
to optimize future queries. The TPC-DI benchmark, a new data integration (DI)
task also known as ETL, is an important part of data warehousing. TPC-E is an
online transaction processing (OLTP) workload that simulates a brokerage firm’s
customer accounts.

Category Name Measures performance of

Cloud Cloud_IaaS 2016 Cloud using NoSQL database transaction and K-Means
clustering using map/reduce

CPU CPU2017 Compute-intensive integer and floating-point workloads

Graphics and
workstation
performance

SPECviewperf® 12 3D graphics in systems running OpenGL and Direct X

SPECwpc V2.0 Workstations running professional apps under the
Windows OS

SPECapcSM for 3ds Max 2015™ 3D graphics running the proprietary Autodesk 3ds Max
2015 app

SPECapcSM for Maya® 2012 3D graphics running the proprietary Autodesk 3ds Max
2012 app

SPECapcSM for PTC Creo 3.0 3D graphics running the proprietary PTC Creo 3.0 app

SPECapcSM for Siemens NX 9.0
and 10.0

3D graphics running the proprietary Siemens NX 9.0 or
10.0 app

SPECapcSM for SolidWorks 2015 3D graphics of systems running the proprietary SolidWorks
2015 CAD/CAM app

High performance
computing

ACCEL Accelerator and host CPU running parallel applications
using OpenCL and OpenACC

MPI2007 MPI-parallel, floating-point, compute-intensive programs
running on clusters and SMPs

OMP2012 Parallel apps running OpenMP

Java client/server SPECjbb2015 Java servers

Power SPECpower_ssj2008 Power of volume server class computers running
SPECjbb2015

Solution File
Server (SFS)

SFS2014 File server throughput and response time

SPECsfs2008 File servers utilizing the NFSv3 and CIFS protocols

Virtualization SPECvirt_sc2013 Datacenter servers used in virtualized server consolidation

Figure 1.18 Active benchmarks from SPEC as of 2017.
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Recognizing the controversy between traditional relational databases and “No
SQL” storage solutions, TPCx-HS measures systems using the Hadoop file system
running MapReduce programs, and TPC-DS measures a decision support system
that uses either a relational database or a Hadoop-based system. TPC-VMS and
TPCx-V measure database performance for virtualized systems, and TPC-Energy
adds energy metrics to all the existing TPC benchmarks.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement so that throughput performance
is measured only when the response time limit is met. To model real-world sys-
tems, higher transaction rates are also associated with larger systems, in terms
of both users and the database to which the transactions are applied. Finally, the
system cost for a benchmark system must be included as well to allow accurate
comparisons of cost-performance. TPC modified its pricing policy so that there
is a single specification for all the TPC benchmarks and to allow verification of
the prices that TPC publishes.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the
results. A SPEC benchmark report requires an extensive description of the com-
puter and the compiler flags, as well as the publication of both the baseline and
the optimized results. In addition to hardware, software, and baseline tuning
parameter descriptions, a SPEC report contains the actual performance times,
shown both in tabular form and as a graph. A TPC benchmark report is even more
complete, because it must include results of a benchmarking audit and cost
information. These reports are excellent sources for finding the real costs of com-
puting systems, since manufacturers compete on high performance and cost-
performance.

Summarizing Performance Results

In practical computer design, one must evaluate myriad design choices for their
relative quantitative benefits across a suite of benchmarks believed to be relevant.
Likewise, consumers trying to choose a computer will rely on performance mea-
surements from benchmarks, which ideally are similar to the users’ applications. In
both cases, it is useful to have measurements for a suite of benchmarks so that the
performance of important applications is similar to that of one or more benchmarks
in the suite and so that variability in performance can be understood. In the best
case, the suite resembles a statistically valid sample of the application space,
but such a sample requires more benchmarks than are typically found in most suites
and requires a randomized sampling, which essentially no benchmark suite uses.
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Once we have chosen to measure performance with a benchmark suite, we
want to be able to summarize the performance results of the suite in a unique num-
ber. A simple approach to computing a summary result would be to compare the
arithmetic means of the execution times of the programs in the suite. An alternative
would be to add a weighting factor to each benchmark and use the weighted arith-
metic mean as the single number to summarize performance. One approach is to
use weights that make all programs execute an equal time on some reference com-
puter, but this biases the results toward the performance characteristics of the ref-
erence computer.

Rather than pick weights, we could normalize execution times to a reference
computer by dividing the time on the reference computer by the time on the
computer being rated, yielding a ratio proportional to performance. SPEC uses this
approach, calling the ratio the SPECRatio. It has a particularly useful property
that matches the way we benchmark computer performance throughout this
text—namely, comparing performance ratios. For example, suppose that the
SPECRatio of computer A on a benchmark is 1.25 times as fast as computer B;
then we know

1:25¼ SPECRatioA
SPECRatioB

¼
Execution timereference

Execution timeA
Execution timereference

Execution timeB

¼ Execution timeB
Execution timeA

¼ PerformanceA
PerformanceB

Notice that the execution times on the reference computer drop out and the choice
of the reference computer is irrelevant when the comparisons are made as a ratio,
which is the approach we consistently use. Figure 1.19 gives an example.

Because a SPECRatio is a ratio rather than an absolute execution time,
the mean must be computed using the geometric mean. (Because SPECRatios
have no units, comparing SPECRatios arithmetically is meaningless.) The
formula is

Geometric mean¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

samplei
n

s

In the case of SPEC, samplei is the SPECRatio for program i. Using the geometric
mean ensures two important properties:

1. The geometric mean of the ratios is the same as the ratio of the geometric means.

2. The ratio of the geometric means is equal to the geometric mean of the perfor-
mance ratios, which implies that the choice of the reference computer is
irrelevant.

Therefore the motivations to use the geometric mean are substantial, especially
when we use performance ratios to make comparisons.
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Example Show that the ratio of the geometric means is equal to the geometric mean of the
performance ratios and that the reference computer of SPECRatio does not matter.

Answer Assume two computers A and B and a set of SPECRatios for each.

Geometric meanA
Geometric meanB

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

SPECRatio Ai
n

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

SPECRatio Bi
n

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

SPECRatio Ai

SPECRatio Bi

n

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn
i¼1

Execution timereferencei
Execution timeAi

Execution timereferencei
Execution timeBi

n

vuuuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

Execution timeBi

Execution timeAi

n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

PerformanceAi

PerformanceBi

n

s

That is, the ratio of the geometric means of the SPECRatios of A and B is the geo-
metric mean of the performance ratios of A to B of all the benchmarks in the suite.
Figure 1.19 demonstrates this validity using examples from SPEC.

Benchmarks

Sun Ultra
Enterprise
2 time

(seconds)

AMD
A10-
6800K
time

(seconds)

SPEC
2006Cint
ratio

Intel Xeon
E5-2690
time

(seconds)

SPEC
2006Cint
ratio

AMD/Intel
times

(seconds)

Intel/AMD
SPEC
ratios

perlbench 9770 401 24.36 261 37.43 1.54 1.54

bzip2 9650 505 19.11 422 22.87 1.20 1.20

gcc 8050 490 16.43 227 35.46 2.16 2.16

mcf 9120 249 36.63 153 59.61 1.63 1.63

gobmk 10,490 418 25.10 382 27.46 1.09 1.09

hmmer 9330 182 51.26 120 77.75 1.52 1.52

sjeng 12,100 517 23.40 383 31.59 1.35 1.35

libquantum 20,720 84 246.08 3 7295.77 29.65 29.65

h264ref 22,130 611 36.22 425 52.07 1.44 1.44

omnetpp 6250 313 19.97 153 40.85 2.05 2.05

astar 7020 303 23.17 209 33.59 1.45 1.45

xalancbmk 6900 215 32.09 98 70.41 2.19 2.19

Geometric mean 31.91 63.72 2.00 2.00

Figure 1.19 SPEC2006Cint execution times (in seconds) for the Sun Ultra 5—the reference computer of
SPEC2006—andexecution timesandSPECRatios for theAMDA10and Intel XeonE5-2690. The final two columns show
the ratiosof executiontimesandSPEC ratios. This figuredemonstrates the irrelevanceof the referencecomputer in relative
performance. The ratio of the execution times is identical to the ratio of the SPEC ratios, and the ratio of the geometric
means (63.7231.91/20.86¼2.00) is identical to the geometricmean of the ratios (2.00). Section 1.11discusses libquantum,
whose performance is orders of magnitude higher than the other SPEC benchmarks.
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1.9 Quantitative Principles of Computer Design

Now that we have seen how to define, measure, and summarize performance, cost,
dependability, energy, and power, we can explore guidelines and principles that are
useful in the design and analysis of computers. This section introduces important
observations about design, as well as two equations to evaluate alternatives.

Take Advantage of Parallelism

Using parallelism is one of the most important methods for improving perfor-
mance. Every chapter in this book has an example of how performance is enhanced
through the exploitation of parallelism. We give three brief examples here, which
are expounded on in later chapters.

Our first example is the use of parallelism at the system level. To improve the
throughput performance on a typical server benchmark, such as SPECSFS or TPC-
C, multiple processors and multiple storage devices can be used. The workload of
handling requests can then be spread among the processors and storage devices,
resulting in improved throughput. Being able to expand memory and the number
of processors and storage devices is called scalability, and it is a valuable asset for
servers. Spreading of data across many storage devices for parallel reads and writes
enables data-level parallelism. SPECSFS also relies on request-level parallelism to
use many processors, whereas TPC-C uses thread-level parallelism for faster pro-
cessing of database queries.

At the level of an individual processor, taking advantage of parallelism among
instructions is critical to achieving high performance. One of the simplest ways to
do this is through pipelining. (Pipelining is explained in more detail in Appendix C
and is a major focus of Chapter 3.) The basic idea behind pipelining is to overlap
instruction execution to reduce the total time to complete an instruction sequence.
A key insight into pipelining is that not every instruction depends on its immediate
predecessor, so executing the instructions completely or partially in parallel may be
possible. Pipelining is the best-known example of ILP.

Parallelism can also be exploited at the level of detailed digital design. For
example, set-associative caches use multiple banks of memory that are typically
searched in parallel to find a desired item. Arithmetic-logical units use carry-
lookahead, which uses parallelism to speed the process of computing sums from
linear to logarithmic in the number of bits per operand. These are more examples of
data-level parallelism.

Principle of Locality

Important fundamental observations have come from properties of programs. The
most important program property that we regularly exploit is the principle of local-
ity: programs tend to reuse data and instructions they have used recently. A widely
held rule of thumb is that a program spends 90% of its execution time in only 10%
of the code. An implication of locality is that we can predict with reasonable
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accuracy what instructions and data a program will use in the near future based on
its accesses in the recent past. The principle of locality also applies to data accesses,
though not as strongly as to code accesses.

Two different types of locality have been observed. Temporal locality states
that recently accessed items are likely to be accessed soon. Spatial locality says
that items whose addresses are near one another tend to be referenced close
together in time. We will see these principles applied in Chapter 2.

Focus on the Common Case

Perhaps the most important and pervasive principle of computer design is to focus
on the common case: in making a design trade-off, favor the frequent case over the
infrequent case. This principle applies when determining how to spend resources,
because the impact of the improvement is higher if the occurrence is commonplace.

Focusing on the common case works for energy as well as for resource allo-
cation and performance. The instruction fetch and decode unit of a processor
may be used much more frequently than a multiplier, so optimize it first. It works
on dependability as well. If a database server has 50 storage devices for every pro-
cessor, storage dependability will dominate system dependability.

In addition, the common case is often simpler and can be done faster than the
infrequent case. For example, when adding two numbers in the processor, we can
expect overflow to be a rare circumstance and can therefore improve performance
by optimizing the more common case of no overflow. This emphasis may slow
down the case when overflow occurs, but if that is rare, then overall performance
will be improved by optimizing for the normal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s Law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s Law. Amdahl’s Law states that the perfor-
mance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl’s Law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a com-
puter that will improve performance when it is used. Speedup is the ratio

Speedup¼ Performance for entire task using the enhancement when possible
Performance for entire task without using the enhancement

Alternatively,

Speedup¼ Execution time for entire task without using the enhancement
Execution time for entire task using the enhancement when possible

1.9 Quantitative Principles of Computer Design ■ 49



Speedup tells us how much faster a task will run using the computer with the enhance-
ment contrary to the original computer.

Amdahl’s Law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original computer that can be con-
verted to take advantage of the enhancement—For example, if 40 seconds of
the execution time of a program that takes 100 seconds in total can use an
enhancement, the fraction is 40/100. This value, which we call Fractionenhanced,
is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode, that is, how much
faster the task would run if the enhanced mode were used for the entire pro-
gram—This value is the time of the original mode over the time of the enhanced
mode. If the enhanced mode takes, say, 4 seconds for a portion of the program,
while it is 40 seconds in the original mode, the improvement is 40/4 or 10. We
call this value, which is always greater than 1, Speedupenhanced.

The execution time using the original computer with the enhanced mode will be the
time spent using the unenhanced portion of the computer plus the time spent using
the enhancement:

Execution timenew ¼Execution timeold� 1�Fractionenhancedð Þ + Fractionenhanced
Speedupenhanced

� �

The overall speedup is the ratio of the execution times:

Speedupoverall ¼
Execution timeold
Execution timenew

¼ 1

1�Fractionenhancedð Þ+ Fractionenhanced
Speedupenhanced

Example Suppose that we want to enhance the processor used for web serving. The new
processor is 10 times faster on computation in the web serving application than
the old processor. Assuming that the original processor is busy with computation
40% of the time and is waiting for I/O 60% of the time, what is the overall speedup
gained by incorporating the enhancement?

Answer Fractionenhanced ¼ 0:4; Speedupenhanced ¼ 10; Speedupoverall ¼
1

0:6 +
0:4
10

¼ 1
0:64

� 1:56

Amdahl’s Law expresses the law of diminishing returns: The incremental improve-
ment in speedup gained by an improvement of just a portion of the computation
diminishes as improvements are added. An important corollary of Amdahl’s
Law is that if an enhancement is usable only for a fraction of a task, then we can’t
speed up the task by more than the reciprocal of 1 minus that fraction.
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A common mistake in applying Amdahl’s Law is to confuse “fraction of time con-
verted to use an enhancement” and “fraction of time after enhancement is in use.”
If, instead of measuring the time that we could use the enhancement in a compu-
tation, we measure the time after the enhancement is in use, the results will be
incorrect!

Amdahl’s Law can serve as a guide to howmuch an enhancement will improve
performance and how to distribute resources to improve cost-performance. The
goal, clearly, is to spend resources proportional to where time is spent. Amdahl’s
Law is particularly useful for comparing the overall system performance of two
alternatives, but it can also be applied to compare two processor design alterna-
tives, as the following example shows.

Example A common transformation required in graphics processors is square root. Imple-
mentations of floating-point (FP) square root vary significantly in performance,
especially among processors designed for graphics. Suppose FP square root
(FSQRT) is responsible for 20% of the execution time of a critical graphics bench-
mark. One proposal is to enhance the FSQRT hardware and speed up this operation
by a factor of 10. The other alternative is just to try to make all FP instructions in the
graphics processor run faster by a factor of 1.6; FP instructions are responsible for
half of the execution time for the application. The design team believes that they
can make all FP instructions run 1.6 times faster with the same effort as required for
the fast square root. Compare these two design alternatives.

Answer We can compare these two alternatives by comparing the speedups:

SpeedupFSQRT ¼
1

1�0:2ð Þ+ 0:2
10

¼ 1
0:82

¼ 1:22

SpeedupFP ¼
1

1�0:5ð Þ+ 0:5
1:6

¼ 1
0:8125

¼ 1:23

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

Amdahl’s Law is applicable beyond performance. Let’s redo the reliability
example from page 39 after improving the reliability of the power supply via
redundancy from 200,000-hour to 830,000,000-hour MTTF, or 4150� better.

Example The calculation of the failure rates of the disk subsystem was

Failure ratesystem ¼ 10� 1
1,000,000

+
1

500,000
+

1
200,000

+
1

200,000
+

1
1,000,000

¼ 10 + 2 + 5 + 5 + 1
1,000,000 hours

¼ 23
1,000,000 hours
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Therefore the fraction of the failure rate that could be improved is 5 per million
hours out of 23 for the whole system, or 0.22.

Answer The reliability improvement would be

Improvementpower supply pair ¼
1

1�0:22ð Þ + 0:22
4150

¼ 1
0:78

¼ 1:28

Despite an impressive 4150� improvement in reliability of one module, from the
system’s perspective, the change has a measurable but small benefit.

In the preceding examples, we needed the fraction consumed by the new and
improved version; often it is difficult to measure these times directly. In the next
section, we will see another way of doing such comparisons based on the use
of an equation that decomposes the CPU execution time into three separate
components. If we know how an alternative affects these three components,
we can determine its overall performance. Furthermore, it is often possible to
build simulators that measure these components before the hardware is actually
designed.

The Processor Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called clock periods, clocks, cycles, or clock cycles.
Computer designers refer to the time of a clock period by its duration (e.g., 1 ns) or
by its rate (e.g., 1 GHz). CPU time for a program can then be expressed two ways:

CPU time¼CPU clock cycles for a program�Clock cycle time

or

CPU time¼CPU clock cycles for a program
Clock rate

In addition to the number of clock cycles needed to execute a program, we can
also count the number of instructions executed—the instruction path length or
instruction count (IC). If we know the number of clock cycles and the instruction
count, we can calculate the average number of clock cycles per instruction (CPI).
Because it is easier to work with, and because we will deal with simple processors
in this chapter, we use CPI. Designers sometimes also use instructions per clock
(IPC), which is the inverse of CPI.

CPI is computed as

CPI¼CPU clock cycles for a program
Instruction count

This processor figure of merit provides insight into different styles of instruction
sets and implementations, and we will use it extensively in the next four
chapters.
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By transposing the instruction count in the preceding formula, clock cycles
can be defined as IC�CPI. This allows us to use CPI in the execution time
formula:

CPU time¼ Instruction count�Cycles per instruction�Clock cycle time

Expanding the first formula into the units of measurement shows how the pieces fit
together:

Instructions
Program

�Clock cycles
Instruction

� Seconds
Clock cycle

¼ Seconds
Program

¼CPU time

As this formula demonstrates, processor performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. Furthermore, CPU time is equally dependent on these three characteristics;
for example, a 10% improvement in any one of them leads to a 10% improvement
in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation from
others because the basic technologies involved in changing each characteristic are
interdependent:

■ Clock cycle time—Hardware technology and organization

■ CPI—Organization and instruction set architecture

■ Instruction count—Instruction set architecture and compiler technology

Luckily, many potential performance improvement techniques primarily enhance
one component of processor performance with small or predictable impacts on the
other two.

In designing the processor, sometimes it is useful to calculate the number of
total processor clock cycles as

CPU clock cycles¼
Xn
i¼1

ICi�CPIi

where ICi represents the number of times instruction i is executed in a program and
CPIi represents the average number of clocks per instruction for instruction i. This
form can be used to express CPU time as

CPU time¼
Xn
i¼1

ICi�CPIi

 !
�Clock cycle time

and overall CPI as

CPI¼

Xn
i¼1

ICi�CPIi

Instruction count
¼
Xn
i¼1

ICi

Instruction count
�CPIi

The latter form of the CPI calculation uses each individual CPIi and the fraction of
occurrences of that instruction in a program (i.e., ICi� Instruction count). Because
it must include pipeline effects, cache misses, and any other memory system
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inefficiencies, CPIi should be measured and not just calculated from a table in the
back of a reference manual.

Consider our performance example on page 52, here modified to use measure-
ments of the frequency of the instructions and of the instruction CPI values, which,
in practice, are obtained by simulation or by hardware instrumentation.

Example Suppose we made the following measurements:

Frequency of FP operations¼25%

Average CPI of FP operations¼4.0

Average CPI of other instructions¼1.33

Frequency of FSQRT¼2%

CPI of FSQRT¼20

Assume that the two design alternatives are to decrease the CPI of FSQRT to 2 or to
decrease the average CPI of all FP operations to 2.5. Compare these two design
alternatives using the processor performance equation.

Answer First, observe that only the CPI changes; the clock rate and instruction
count remain identical. We start by finding the original CPI with neither
enhancement:

CPIoriginal ¼
Xn
i¼1

CPIi� ICi

Instruction count

� �

¼ 4�25%ð Þ+ 1:33�75%ð Þ¼ 2:0

We can compute the CPI for the enhanced FSQRT by subtracting the cycles saved
from the original CPI:

CPIwith new FPSQR ¼CPIoriginal�2%� CPIold FPSQR�CPIof new FPSQR only
� �

¼ 2:0�2%� 20�2ð Þ¼ 1:64

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us

CPInew FP ¼ 75%�1:33ð Þ+ 25%�2:5ð Þ¼ 1:625

Since the CPI of the overall FP enhancement is slightly lower, its performance will
be marginally better. Specifically, the speedup for the overall FP enhancement is

Speedupnew FP ¼
CPU timeoriginal
CPU timenew FP

¼ IC�Clock cycle�CPIoriginal
IC�Clock cycle�CPInew FP

¼CPIoriginal
CPInew FP

¼ 2:00
1:625

¼ 1:23

Happily, we obtained this same speedup using Amdahl’s Law on page 51.

54 ■ Chapter One Fundamentals of Quantitative Design and Analysis



It is often possible tomeasure the constituent parts of the processor performance
equation. Such isolated measurements are a key advantage of using the processor
performance equation versus Amdahl’s Law in the previous example. In particular,
it may be difficult tomeasure things such as the fraction of execution time for which
a set of instructions is responsible. In practice, this would probably be computed
by summing the product of the instruction count and the CPI for each of the instruc-
tions in the set. Since the starting point is often individual instruction count and
CPI measurements, the processor performance equation is incredibly useful.

To use the processor performance equation as a design tool,we need to be able to
measure the various factors. For an existing processor, it is easy to obtain the exe-
cution time by measurement, and we know the default clock speed. The challenge
lies in discovering the instruction count or theCPI.Most processors include counters
for both instructions executed and clock cycles. By periodically monitoring these
counters, it is also possible to attach execution time and instruction count to seg-
ments of the code, which can be helpful to programmers trying to understand and
tune the performance of an application. Often designers or programmers will want
to understand performance at a more fine-grained level than what is available from
the hardware counters. For example, they may want to know why the CPI is what it
is. In such cases, the simulation techniques used are like those for processors that are
being designed.

Techniques that help with energy efficiency, such as dynamic voltage fre-
quency scaling and overclocking (see Section 1.5), make this equation harder to
use, because the clock speed may vary while we measure the program. A simple
approach is to turn off those features to make the results reproducible. Fortunately,
as performance and energy efficiency are often highly correlated—taking less time
to run a program generally saves energy—it’s probably safe to consider perfor-
mance without worrying about the impact of DVFS or overclocking on the results.

1.10 Putting It All Together: Performance, Price, and Power

In the “Putting It All Together” sections that appear near the end of every chapter,
we provide real examples that use the principles in that chapter. In this section, we
look at measures of performance and power-performance in small servers using the
SPECpower benchmark.

Figure 1.20 shows the three multiprocessor servers we are evaluating along
with their price. To keep the price comparison fair, all are Dell PowerEdge servers.
The first is the PowerEdge R710, which is based on the Intel Xeon�85670 micro-
processor with a clock rate of 2.93 GHz. Unlike the Intel Core i7-6700 in Chapters
2–5, which has 20 cores and a 40 MB L3 cache, this Intel chip has 22 cores and a
55 MB L3 cache, although the cores themselves are identical. We selected a two-
socket system—so 44 cores total—with 128 GB of ECC-protected 2400 MHz
DDR4 DRAM. The next server is the PowerEdge C630, with the same processor,
number of sockets, and DRAM. The main difference is a smaller rack-mountable
package: “2U” high (3.5 inches) for the 730 versus “1U” (1.75 inches) for the 630.
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The third server is a cluster of 16 of the PowerEdge 630 s that is connected
together with a 1 Gbit/s Ethernet switch. All are running the Oracle Java HotSpot
version 1.7 Java Virtual Machine (JVM) and the Microsoft Windows Server 2012
R2 Datacenter version 6.3 operating system.

Note that because of the forces of benchmarking (see Section 1.11), these are
unusually configured servers. The systems in Figure 1.20 have little memory rel-
ative to the amount of computation, and just a tiny 120 GB solid-state disk. It is
inexpensive to add cores if you don’t need to add commensurate increases in mem-
ory and storage!

Rather than run statically linked C programs of SPEC CPU, SPECpower uses a
more modern software stack written in Java. It is based on SPECjbb, and it repre-
sents the server side of business applications, with performance measured as the
number of transactions per second, called ssj_ops for server side Java operations
per second. It exercises not only the processor of the server, as does SPEC CPU,
but also the caches, memory system, and even the multiprocessor interconnection
system. In addition, it exercises the JVM, including the JIT runtime compiler and
garbage collector, as well as portions of the underlying operating system.

As the last two rows of Figure 1.20 show, the performance winner is the cluster
of 16 R630s, which is hardly a surprise since it is by far the most expensive. The
price-performance winner is the PowerEdge R630, but it barely beats the cluster at
213 versus 211 ssj-ops/$. Amazingly, the 16 node cluster is within 1% of the same
price-performances of a single node despite being 16 times as large.

System 1 System 2 System 3

Component Cost (% Cost) Cost (% Cost) Cost (% Cost)

Base server PowerEdge R710 $653 (7%) PowerEdge R815 $1437 (15%) PowerEdge R815 $1437 (11%)

Power supply 570 W 1100 W 1100 W

Processor Xeon X5670 $3738 (40%) Opteron 6174 $2679 (29%) Opteron 6174 $5358 (42%)

Clock rate 2.93 GHz 2.20 GHz 2.20 GHz

Total cores 12 24 48

Sockets 2 2 4

Cores/socket 6 12 12

DRAM 12 GB $484 (5%) 16 GB $693 (7%) 32 GB $1386 (11%)

Ethernet Inter. Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 (2%)

Disk 50 GB SSD $1279 (14%) 50 GB SSD $1279 (14%) 50 GB SSD $1279 (10%)

Windows OS $2999 (32%) $2999 (33%) $2999 (24%)

Total $9352 (100%) $9286 (100%) $12,658 (100%)

Max ssj_ops 910,978 926,676 1,840,450

Max ssj_ops/$ 97 100 145

Figure 1.20 Three Dell PowerEdge servers beingmeasured and their prices as of July 2016.We calculated the cost
of the processors by subtracting the cost of a second processor. Similarly, we calculated the overall cost of memory by
seeing what the cost of extra memory was. Hence the base cost of the server is adjusted by removing the estimated
cost of the default processor and memory. Chapter 5 describes how these multisocket systems are connected
together, and Chapter 6 describes how clusters are connected together.
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While most benchmarks (and most computer architects) care only about per-
formance of systems at peak load, computers rarely run at peak load. Indeed,
Figure 6.2 in Chapter 6 shows the results of measuring the utilization of tens of
thousands of servers over 6 months at Google, and less than 1% operate at an aver-
age utilization of 100%. The majority have an average utilization of between 10%
and 50%. Thus the SPECpower benchmark captures power as the target workload
varies from its peak in 10% intervals all the way to 0%, which is called Active Idle.

Figure 1.21 plots the ssj_ops (SSJ operations/second) per watt and the average
power as the target load varies from 100% to 0%. The Intel R730 always has the
lowest power and the single node R630 has the best ssj_ops per watt across each
target workload level. Since watts¼ joules/second, this metric is proportional to
SSJ operations per joule:

ssj_operations=second
Watt

¼ ssj_operations=second
Joule=second

¼ ssj_operations
Joule
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Figure 1.21 Power-performance of the three servers in Figure 1.20. Ssj_ops/watt values are on the left axis, with
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izontal axis shows the target workload, as it varies from 100% to Active Idle. The single node R630 has the best
ssj_ops/watt at each workload level, but R730 consumes the lowest power at each level.
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To calculate a single number to use to compare the power efficiency of sys-
tems, SPECpower uses

Overall ssj_ops=watt¼
X

ssj_opsX
power

The overall ssj_ops/watt of the three servers is 10,802 for the R730, 11,157 for the
R630, and 10,062 for the cluster of 16 R630s. Therefore the single node R630 has
the best power-performance. Dividing by the price of the servers, the ssj_ops/watt/
$1,000 is 879 for the R730, 899 for the R630, and 789 (per node) for the 16-node
cluster of R630s. Thus, after adding power, the single-node R630 is still in first
place in performance/price, but now the single-node R730 is significantly more
efficient than the 16-node cluster.

1.11 Fallacies and Pitfalls

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We call
such misbeliefs fallacies. When discussing a fallacy, we try to give a counterex-
ample. We also discuss pitfalls—easily made mistakes. Often pitfalls are general-
izations of principles that are true in a limited context. The purpose of these
sections is to help you avoid making these errors in computers that you design.

Pitfall All exponential laws must come to an end.

The first to go was Dennard scaling. Dennard’s 1974 observation was that power
density was constant as transistors got smaller. If a transistor’s linear region shrank
by a factor 2, then both the current and voltage were also reduced by a factor of 2,
and so the power it used fell by 4. Thus chips could be designed to operate faster and
still use less power. Dennard scaling ended 30 years after it was observed, not
because transistors didn’t continue to get smaller but because integrated circuit
dependability limited how far current and voltage could drop. The threshold voltage
was driven so low that static power became a significant fraction of overall power.

The next deceleration was hard disk drives. Although there was no law for
disks, in the past 30 years the maximum areal density of hard drives—which deter-
mines disk capacity—improved by 30%–100% per year. In more recent years, it
has been less than 5% per year. Increasing density per drive has come primarily
from adding more platters to a hard disk drive.

Next up was the venerable Moore’s Law. It’s been a while since the number of
transistors per chip doubled every one to two years. For example, the DRAM chip
introduced in 2014 contained 8B transistors, and we won’t have a 16B transistor
DRAM chip in mass production until 2019, but Moore’s Law predicts a 64B tran-
sistor DRAM chip.

Moreover, the actual end of scaling of the planar logic transistor was even pre-
dicted to end by 2021. Figure 1.22 shows the predictions of the physical gate length
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of the logic transistor from two editions of the International Technology Roadmap
for Semiconductors (ITRS). Unlike the 2013 report that projected gate lengths
to reach 5 nm by 2028, the 2015 report projects the length stopping at 10 nm
by 2021. Density improvements thereafter would have to come from ways other
than shrinking the dimensions of transistors. It’s not as dire as the ITRS suggests,
as companies like Intel and TSMC have plans to shrink to 3 nm gate lengths, but
the rate of change is decreasing.

Figure 1.23 shows the changes in increases in bandwidth over time for micro-
processors and DRAM—which are affected by the end of Dennard scaling
and Moore’s Law—as well as for disks. The slowing of technology improvements
is apparent in the dropping curves. The continued networking improvement is
due to advances in fiber optics and a planned change in pulse amplitude modu-
lation (PAM-4) allowing two-bit encoding so as to transmit information at
400 Gbit/s.
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Figure 1.22 Predictions of logic transistor dimensions from two editions of the ITRS report. These reports started
in 2001, but 2015 will be the last edition, as the group has disbanded because of waning interest. The only companies
that can produce state-of-the-art logic chips today are GlobalFoundaries, Intel, Samsung, and TSMC, whereas there
were 19 when the first ITRS report was released. With only four companies left, sharing of plans was too hard to
sustain. From IEEE Spectrum, July 2016, “Transistors will stop shrinking in 2021, Moore’s Law Roadmap Predicts,”
by Rachel Courtland.
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Fallacy Multiprocessors are a silver bullet.

The switch to multiple processors per chip around 2005 did not come from some
breakthrough that dramatically simplified parallel programming or made it easy to
build multicore computers. The change occurred because there was no other option
due to the ILP walls and power walls. Multiple processors per chip do not guar-
antee lower power; it’s certainly feasible to design a multicore chip that uses more
power. The potential is just that it’s possible to continue to improve performance
by replacing a high-clock-rate, inefficient core with several lower-clock-rate, effi-
cient cores. As technology to shrink transistors improves, it can shrink both capac-
itance and the supply voltage a bit so that we can get a modest increase in the
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number of cores per generation. For example, for the past few years, Intel has been
adding two cores per generation in their higher-end chips.

As we will see in Chapters 4 and 5, performance is now a programmer’s bur-
den. The programmers’ La-Z-Boy era of relying on a hardware designer to make
their programs go faster without lifting a finger is officially over. If programmers
want their programs to go faster with each generation, they must make their pro-
grams more parallel.

The popular version of Moore’s law—increasing performance with each gen-
eration of technology—is now up to programmers.

Pitfall Falling prey to Amdahl’s heartbreaking law.

Virtually every practicing computer architect knows Amdahl’s Law. Despite this,
wealmost all occasionally expend tremendous effort optimizing some featurebefore
we measure its usage. Only when the overall speedup is disappointing do we recall
that we should have measured first before we spent so much effort enhancing it!

Pitfall A single point of failure.

The calculations of reliability improvement using Amdahl’s Law on page 53 show
that dependability is no stronger than the weakest link in a chain. No matter how
much more dependable we make the power supplies, as we did in our example, the
single fan will limit the reliability of the disk subsystem. This Amdahl’s Law
observation led to a rule of thumb for fault-tolerant systems to make sure that every
component was redundant so that no single component failure could bring down
the whole system. Chapter 6 shows how a software layer avoids single points of
failure inside WSCs.

Fallacy Hardware enhancements that increase performance also improve energy
efficiency, or are at worst energy neutral.

Esmaeilzadeh et al. (2011) measured SPEC2006 on just one core of a 2.67 GHz
Intel Core i7 using Turbo mode (Section 1.5). Performance increased by a factor
of 1.07 when the clock rate increased to 2.94 GHz (or a factor of 1.10), but the i7
used a factor of 1.37 more joules and a factor of 1.47 more watt hours!

Fallacy Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance, and some change over time. A big factor influencing the usefulness of a
benchmark is its ability to resist “benchmark engineering” or “benchmarketing.”
Once a benchmark becomes standardized and popular, there is tremendous pres-
sure to improve performance by targeted optimizations or by aggressive interpre-
tation of the rules for running the benchmark. Short kernels or programs that spend
their time in a small amount of code are particularly vulnerable.

For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different
300�300 matrix multiplications. In this kernel, 99% of the execution time was
in a single line (see SPEC, 1989). When an IBM compiler optimized this inner loop
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(using a good idea called blocking, discussed in Chapters 2 and 4), performance
improved by a factor of 9 over a prior version of the compiler! This benchmark
tested compiler tuning and was not, of course, a good indication of overall perfor-
mance, nor of the typical value of this particular optimization.

Figure 1.19 shows that if we ignore history, we may be forced to repeat it.
SPEC Cint2006 had not been updated for a decade, giving compiler writers sub-
stantial time to hone their optimizers to this suite. Note that the SPEC ratios of all
benchmarks but libquantum fall within the range of 16–52 for the AMD computer
and from 22 to 78 for Intel. Libquantum runs about 250 times faster on AMD and
7300 times faster on Intel! This “miracle” is a result of optimizations by the Intel
compiler that automatically parallelizes the code across 22 cores and optimizes
memory by using bit packing, which packs together multiple narrow-range inte-
gers to savememory space and thus memory bandwidth. If we drop this benchmark
and recalculate the geometric means, AMD SPEC Cint2006 falls from 31.9 to 26.5
and Intel from 63.7 to 41.4. The Intel computer is now about 1.5 times as fast as the
AMD computer instead of 2.0 if we include libquantum, which is surely closer to
their real relative performances. SPECCPU2017 dropped libquantum.

To illustrate the short lives of benchmarks, Figure 1.17 on page 43 lists the
status of all 82 benchmarks from the various SPEC releases; Gcc is the lone sur-
vivor from SPEC89. Amazingly, about 70% of all programs from SPEC2000 or
earlier were dropped from the next release.

Fallacy The rated mean time to failure of disks is 1,200,000 hours or almost 140 years,
so disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such an MTTF calculated? Early in the process, manufacturers will put thousands
of disks in a room, run them for a few months, and count the number that fail. They
compute MTTF as the total number of hours that the disks worked cumulatively
divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be five years or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the model corresponds to a user who
buys a disk and then keeps replacing the disk every 5 years—the planned lifetime
of the disk. The claim is that if many customers (and their great-grandchildren) did
this for the next century, on average they would replace a disk 27 times before a
failure, or about 140 years.

A more useful measure is the percentage of disks that fail, which is called
the annual failure rate. Assume 1000 disks with a 1,000,000-hour MTTF and
that the disks are used 24 hours a day. If you replaced failed disks with a new
one having the same reliability characteristics, the number that would fail in a year
(8760 hours) is

Failed disks¼Number of disks�Time period
MTTF

¼ 1000 disks�8760 hours=drive
1,000,000 hours=failure

¼ 9

Stated alternatively, 0.9% would fail per year, or 4.4% over a 5-year lifetime.
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Moreover, those high numbers are quoted assuming limited ranges of temper-
ature and vibration; if they are exceeded, then all bets are off. A survey of disk
drives in real environments (Gray and van Ingen, 2005) found that 3%–7% of
drives failed per year, for an MTTF of about 125,000–300,000 hours. An even
larger study found annual disk failure rates of 2%–10% (Pinheiro et al., 2007).
Therefore the real-world MTTF is about 2–10 times worse than the
manufacturer’s MTTF.

Fallacy Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance level
a computer is guaranteed not to exceed.” Figure 1.24 shows the percentage of peak
performance for four programs on four multiprocessors. It varies from 5% to 58%.
Since the gap is so large and can vary significantly by benchmark, peak perfor-
mance is not generally useful in predicting observed performance.
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Figure 1.24 Percentage of peak performance for four programs on four multiprocessors scaled to 64 processors.
The Earth Simulator and X1 are vector processors (see Chapter 4 and Appendix G). Not only did they deliver a higher
fraction of peak performance, but they also had the highest peak performance and the lowest clock rates. Except for
the Paratec program, the Power 4 and Itanium 2 systems delivered between 5% and 10% of their peak. From Oliker,
L., Canning, A., Carter, J., Shalf, J., Ethier, S., 2004. Scientific computations on modern parallel vector systems. In: Proc.
ACM/IEEE Conf. on Supercomputing, November 6–12, 2004, Pittsburgh, Penn., p. 10.
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Pitfall Fault detection can lower availability.

This apparently ironic pitfall is because computer hardware has a fair amount of
state that may not always be critical to proper operation. For example, it is not fatal
if an error occurs in a branch predictor, because only performance may suffer.

In processors that try to exploit ILP aggressively, not all the operations are
needed for correct execution of the program. Mukherjee et al. (2003) found that
less than 30% of the operations were potentially on the critical path for the
SPEC2000 benchmarks.

The same observation is true about programs. If a register is “dead” in a pro-
gram—that is, the program will write the register before it is read again—then
errors do not matter. If you were to crash the program upon detection of a transient
fault in a dead register, it would lower availability unnecessarily.

The Sun Microsystems Division of Oracle lived this pitfall in 2000 with an L2
cache that included parity, but not error correction, in its Sun E3000 to Sun E10000
systems. The SRAMs they used to build the caches had intermittent faults, which
parity detected. If the data in the cache were not modified, the processor would
simply reread the data from the cache. Because the designers did not protect the
cache with ECC (error-correcting code), the operating system had no choice but
to report an error to dirty data and crash the program. Field engineers found no
problems on inspection in more than 90% of the cases.

To reduce the frequency of such errors, Sun modified the Solaris operating sys-
tem to “scrub” the cache by having a process that proactively wrote dirty data to
memory. Because the processor chips did not have enough pins to add ECC, the
only hardware option for dirty data was to duplicate the external cache, using the
copy without the parity error to correct the error.

The pitfall is in detecting faults without providing a mechanism to correct
them. These engineers are unlikely to design another computer without ECC on
external caches.

1.12 Concluding Remarks

This chapter has introduced a number of concepts and provided a quantitative
framework that we will expand on throughout the book. Starting with the last edi-
tion, energy efficiency is the constant companion to performance.

In Chapter 2, we start with the all-important area of memory system design.We
will examine a wide range of techniques that conspire to make memory look infi-
nitely large while still being as fast as possible. (Appendix B provides introductory
material on caches for readers without much experience and background with
them.) As in later chapters, we will see that hardware-software cooperation has
become a key to high-performance memory systems, just as it has to high-
performance pipelines. This chapter also covers virtual machines, an increasingly
important technique for protection.

In Chapter 3, we look at ILP, of which pipelining is the simplest and most com-
mon form. Exploiting ILP is one of the most important techniques for building
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high-speed uniprocessors. Chapter 3 begins with an extensive discussion of basic
concepts that will prepare you for the wide range of ideas examined in both chap-
ters. Chapter 3 uses examples that span about 40 years, drawing from one of the
first supercomputers (IBM 360/91) to the fastest processors on the market in 2017.
It emphasizes what is called the dynamic or runtime approach to exploiting ILP. It
also talks about the limits to ILP ideas and introduces multithreading, which is fur-
ther developed in both Chapters 4 and 5. Appendix C provides introductory mate-
rial on pipelining for readers without much experience and background in
pipelining. (We expect it to be a review for many readers, including those of
our introductory text, Computer Organization and Design: The Hardware/Soft-
ware Interface.)

Chapter 4 explains three ways to exploit data-level parallelism. The classic and
oldest approach is vector architecture, and we start there to lay down the principles
of SIMD design. (Appendix G goes into greater depth on vector architectures.) We
next explain the SIMD instruction set extensions found in most desktop micropro-
cessors today. The third piece is an in-depth explanation of how modern graphics
processing units (GPUs) work. Most GPU descriptions are written from the pro-
grammer’s perspective, which usually hides how the computer really works. This
section explains GPUs from an insider’s perspective, including a mapping between
GPU jargon and more traditional architecture terms.

Chapter 5 focuses on the issue of achieving higher performance using multiple
processors, or multiprocessors. Instead of using parallelism to overlap individual
instructions, multiprocessing uses parallelism to allowmultiple instruction streams
to be executed simultaneously on different processors. Our focus is on the domi-
nant form of multiprocessors, shared-memory multiprocessors, though we intro-
duce other types as well and discuss the broad issues that arise in any
multiprocessor. Here again we explore a variety of techniques, focusing on the
important ideas first introduced in the 1980s and 1990s.

Chapter 6 introduces clusters and then goes into depth on WSCs, which com-
puter architects help design. The designers of WSCs are the professional descen-
dants of the pioneers of supercomputers, such as Seymour Cray, in that they are
designing extreme computers. WSCs contain tens of thousands of servers, and
the equipment and the building that holds them cost nearly $200 million. The con-
cerns of price-performance and energy efficiency of the earlier chapters apply to
WSCs, as does the quantitative approach to making decisions.

Chapter 7 is new to this edition. It introduces domain-specific architectures as
the only path forward for improved performance and energy efficiency given the
end ofMoore’s Law andDennard scaling. It offers guidelines on how to build effec-
tive domain-specific architectures, introduces the exciting domain of deep neural
networks, describes four recent examples that take very different approaches to
accelerating neural networks, and then compares their cost-performance.

This book comes with an abundance of material online (see Preface for more
details), both to reduce cost and to introduce readers to a variety of advanced
topics. Figure 1.25 shows them all. Appendices A–C, which appear in the book,
will be a review for many readers.
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In Appendix D, we move away from a processor-centric view and discuss
issues in storage systems. We apply a similar quantitative approach, but one based
on observations of system behavior and using an end-to-end approach to perfor-
mance analysis. This appendix addresses the important issue of how to store
and retrieve data efficiently using primarily lower-cost magnetic storage technol-
ogies. Our focus is on examining the performance of disk storage systems for typ-
ical I/O-intensive workloads, such as the OLTP benchmarks mentioned in this
chapter. We extensively explore advanced topics in RAID-based systems, which
use redundant disks to achieve both high performance and high availability.
Finally, Appendix D introduces queuing theory, which gives a basis for trading
off utilization and latency.

Appendix E applies an embedded computing perspective to the ideas of each of
the chapters and early appendices.

Appendix F explores the topic of system interconnect broadly, including wide
area and system area networks that allow computers to communicate.

Appendix H reviews VLIW hardware and software, which, in contrast, are less
popular than when EPIC appeared on the scene just before the last edition.

Appendix I describes large-scale multiprocessors for use in high-performance
computing.

Appendix J is the only appendix that remains from the first edition, and it
covers computer arithmetic.

Appendix K provides a survey of instruction architectures, including the
80x86, the IBM 360, the VAX, and many RISC architectures, including ARM,
MIPS, Power, RISC-V, and SPARC.

Appendix L is new and discusses advanced techniques for memory manage-
ment, focusing on support for virtual machines and design of address translation

Appendix Title

A Instruction Set Principles

B Review of Memory Hierarchies

C Pipelining: Basic and Intermediate Concepts

D Storage Systems

E Embedded Systems

F Interconnection Networks

G Vector Processors in More Depth

H Hardware and Software for VLIW and EPIC

I Large-Scale Multiprocessors and Scientific Applications

J Computer Arithmetic

K Survey of Instruction Set Architectures

L Advanced Concepts on Address Translation

M Historical Perspectives and References

Figure 1.25 List of appendices.
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for very large address spaces. With the growth in cloud processors, these architec-
tural enhancements are becoming more important.

We describe Appendix M next.

1.13 Historical Perspectives and References

Appendix M (available online) includes historical perspectives on the key ideas
presented in each of the chapters in this text. These historical perspective sections
allow us to trace the development of an idea through a series of machines or to
describe significant projects. If you’re interested in examining the initial develop-
ment of an idea or processor or want further reading, references are provided at the
end of each history. For this chapter, see Section M.2, “The Early Development of
Computers,” for a discussion on the early development of digital computers and
performance measurement methodologies.

As you read the historical material, you’ll soon come to realize that one of the
important benefits of the youth of computing, compared to many other engineering
fields, is that some of the pioneers are still alive—we can learn the history by
simply asking them!

Case Studies and Exercises by Diana Franklin

Case Study 1: Chip Fabrication Cost

Concepts illustrated by this case study

■ Fabrication Cost

■ Fabrication Yield

■ Defect Tolerance Through Redundancy

Many factors are involved in the price of a computer chip. Intel is spending $7 billion
to complete its Fab 42 fabrication facility for 7 nm technology. In this case study, we
explore a hypothetical company in the same situation and how different design deci-
sions involving fabrication technology, area, and redundancy affect the cost of chips.

1.1 [10/10]<1.6> Figure 1.26 gives hypothetical relevant chip statistics that influence
the cost of several current chips. In the next few exercises, you will be exploring the
effect of different possible design decisions for the Intel chips.

Chip
Die Size
(mm2)

Estimated defect rate
(per cm2) N

Manufacturing
size (nm)

Transistors
(billion) Cores

BlueDragon 180 0.03 12 10 7.5 4

RedDragon 120 0.04 14 7 7.5 4

Phoenix8 200 0.04 14 7 12 8

Figure 1.26 Manufacturing cost factors for several hypothetical current and future processors.
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a. [10] <1.6> What is the yield for the Phoenix chip?

b. [10] <1.6> Why does Phoenix have a higher defect rate than BlueDragon?

1.2 [20/20/20/20] <1.6> They will sell a range of chips from that factory, and they
need to decide how much capacity to dedicate to each chip. Imagine that they will
sell two chips. Phoenix is a completely new architecture designed with 7 nm tech-
nology in mind, whereas RedDragon is the same architecture as their 10 nm Blue-
Dragon. Imagine that RedDragon will make a profit of $15 per defect-free
chip. Phoenix will make a profit of $30 per defect-free chip. Each wafer has
a 450 mm diameter.

a. [20] <1.6> How much profit do you make on each wafer of Phoenix chips?

b. [20] <1.6> How much profit do you make on each wafer of RedDragon
chips?

c. [20] <1.6> If your demand is 50,000 RedDragon chips per month and 25,000
Phoenix chips per month, and your facility can fabricate 70 wafers a month, how
many wafers should you make of each chip?

1.3 [20/20] <1.6> Your colleague at AMD suggests that, since the yield is so poor,
you might make chips more cheaply if you released multiple versions of the same
chip, just with different numbers of cores. For example, you could sell Phoenix8,
Phoenix4, Phoenix2, and Phoenix1, which contain 8, 4, 2, and 1 cores on each chip,
respectively. If all eight cores are defect-free, then it is sold as Phoenix8. Chips with
four to seven defect-free cores are sold as Phoenix4, and those with two or three
defect-free cores are sold as Phoenix2. For simplification, calculate the yield for
a single core as the yield for a chip that is 1/8 the area of the original Phoenix chip.
Then view that yield as an independent probability of a single core being defect
free. Calculate the yield for each configuration as the probability of at the corre-
sponding number of cores being defect free.

a. [20] <1.6> What is the yield for a single core being defect free as well as the
yield for Phoenix4, Phoenix2 and Phoenix1?

b. [5] <1.6> Using your results from part a, determine which chips you think it
would be worthwhile to package and sell, and why.

c. [10]<1.6> If it previously cost $20 dollars per chip to produce Phoenix8, what
will be the cost of the new Phoenix chips, assuming that there are no additional
costs associated with rescuing them from the trash?

d. [20]<1.6>You currentlymake a profit of $30 for each defect-free Phoenix8, and
you will sell each Phoenix4 chip for $25. How much is your profit per Phoenix8

chip if you consider (i) the purchase price of Phoenix4 chips to be entirely profit
and (ii) apply the profit of Phoenix4 chips to each Phoenix8 chip in proportion
to how many are produced? Use the yields calculated from part Problem 1.3a,
not from problem 1.1a.
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Case Study 2: Power Consumption in Computer Systems

Concepts illustrated by this case study

■ Amdahl’s Law

■ Redundancy

■ MTTF

■ Power Consumption

Power consumption in modern systems is dependent on a variety of factors, includ-
ing the chip clock frequency, efficiency, and voltage. The following exercises
explore the impact on power and energy that different design decisions and use
scenarios have.

1.4 [10/10/10/10]<1.5>A cell phone performs very different tasks, including stream-
ing music, streaming video, and reading email. These tasks perform very different
computing tasks. Battery life and overheating are two common problems for cell
phones, so reducing power and energy consumption are critical. In this problem,
we consider what to do when the user is not using the phone to its full computing
capacity. For these problems, we will evaluate an unrealistic scenario in which the
cell phone has no specialized processing units. Instead, it has a quad-core, general-
purpose processing unit. Each core uses 0.5 W at full use. For email-related tasks,
the quad-core is 8� as fast as necessary.

a. [10] <1.5> How much dynamic energy and power are required compared to
running at full power? First, suppose that the quad-core operates for 1/8 of
the time and is idle for the rest of the time. That is, the clock is disabled for
7/8 of the time, with no leakage occurring during that time. Compare total
dynamic energy as well as dynamic power while the core is running.

b. [10] <1.5> How much dynamic energy and power are required using fre-
quency and voltage scaling? Assume frequency and voltage are both reduced
to 1/8 the entire time.

c. [10] <1.6, 1.9> Now assume the voltage may not decrease below 50% of the
original voltage. This voltage is referred to as the voltage floor, and any voltage
lower than that will lose the state. Therefore, while the frequency can keep
decreasing, the voltage cannot. What are the dynamic energy and power savings
in this case?

d. [10] <1.5> How much energy is used with a dark silicon approach? This
involves creating specialized ASIC hardware for each major task and power
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gating those elements when not in use. Only one general-purpose core would be
provided, and the rest of the chip would be filled with specialized units.
For email, the one core would operate for 25% the time and be turned
completely off with power gating for the other 75% of the time. During the other
75% of the time, a specialized ASIC unit that requires 20% of the energy of a
core would be running.

1.5 [10/10/10]<1.5> As mentioned in Exercise 1.4, cell phones run a wide variety of
applications. We’ll make the same assumptions for this exercise as the previous
one, that it is 0.5 W per core and that a quad core runs email 3� as fast.

a. [10]<1.5> Imagine that 80% of the code is parallelizable. By howmuch would
the frequency and voltage on a single core need to be increased in order to exe-
cute at the same speed as the four-way parallelized code?

b. [10]<1.5>What is the reduction in dynamic energy from using frequency and
voltage scaling in part a?

c. [10] <1.5> How much energy is used with a dark silicon approach? In this
approach, all hardware units are power gated, allowing them to turn off entirely
(causing no leakage). Specialized ASICs are provided that perform the same
computation for 20% of the power as the general-purpose processor. Imagine
that each core is power gated. The video game requires two ASICS and two
cores. How much dynamic energy does it require compared to the baseline
of parallelized on four cores?

1.6 [10/10/10/10/10/20] <1.5,1.9> General-purpose processes are optimized for
general-purpose computing. That is, they are optimized for behavior that is gener-
ally found across a large number of applications. However, once the domain is
restricted somewhat, the behavior that is found across a large number of the target
applications may be different from general-purpose applications. One such appli-
cation is deep learning or neural networks. Deep learning can be applied to many
different applications, but the fundamental building block of inference—using the
learned information to make decisions—is the same across them all. Inference
operations are largely parallel, so they are currently performed on graphics proces-
sing units, which are specialized more toward this type of computation, and not to
inference in particular. In a quest for more performance per watt, Google has cre-
ated a custom chip using tensor processing units to accelerate inference operations
in deep learning.1 This approach can be used for speech recognition and image
recognition, for example. This problem explores the trade-offs between this pro-
cess, a general-purpose processor (Haswell E5-2699 v3) and a GPU (NVIDIA
K80), in terms of performance and cooling. If heat is not removed from the com-
puter efficiently, the fans will blow hot air back onto the computer, not cold air.
Note: The differences are more than processor—on-chip memory and DRAM also
come into play. Therefore statistics are at a system level, not a chip level.

1Cite paper at this website: https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view.
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a. [10] <1.9> If Google’s data center spends 70% of its time on workload A and
30% of its time on workload B when running GPUs, what is the speedup of the
TPU system over the GPU system?

b. [10] <1.9> If Google’s data center spends 70% of its time on workload A and
30% of its time on workload B when running GPUs, what percentage of Max
IPS does it achieve for each of the three systems?

c. [15] <1.5, 1.9> Building on (b), assuming that the power scales linearly from
idle to busy power as IPS grows from 0% to 100%, what is the performance per
watt of the TPU system over the GPU system?

d. [10] <1.9> If another data center spends 40% of its time on workload A, 10%
of its time on workload B, and 50% of its time on workload C, what are the
speedups of the GPU and TPU systems over the general-purpose system?

e. [10] <1.5> A cooling door for a rack costs $4000 and dissipates 14 kW (into
the room; additional cost is required to get it out of the room). How many
Haswell-, NVIDIA-, or Tensor-based servers can you cool with one cooling
door, assuming TDP in Figures 1.27 and 1.28?

f. [20]<1.5> Typical server farms can dissipate a maximum of 200 W per square
foot. Given that a server rack requires 11 square feet (including front and back
clearance), how many servers from part (e) can be placed on a single rack, and
how many cooling doors are required?

System Chip
Throughput % Max IPS

A B C A B C

General-purpose Haswell E5-2699 v3 5482 13,194 12,000 42% 100% 90%

Graphics processor NVIDIA K80 13,461 36,465 15,000 37% 100% 40%

Custom ASIC TPU 225,000 280,000 2000 80% 100% 1%

Figure 1.28 Performance characteristics for general-purpose processor, graphical processing unit-based or
custom ASIC-based system on two neural-net workloads (cite ISCA paper).Workloads A and B are from published
results. Workload C is a fictional, more general-purpose application.

System Chip TDP Idle power Busy power

General-purpose Haswell E5-2699 v3 504 W 159 W 455 W

Graphics processor NVIDIA K80 1838 W 357 W 991 W

Custom ASIC TPU 861 W 290 W 384 W

Figure 1.27 Hardware characteristics for general-purpose processor, graphical processing unit-based or custom
ASIC-based system, including measured power (cite ISCA paper).
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Exercises

1.7 [10/15/15/10/10]<1.4, 1.5>One challenge for architects is that the design created
today will require several years of implementation, verification, and testing before
appearing on the market. This means that the architect must project what the tech-
nology will be like several years in advance. Sometimes, this is difficult to do.

a. [10] <1.4> According to the trend in device scaling historically observed by
Moore’s Law, the number of transistors on a chip in 2025 should be how many
times the number in 2015?

b. [15] <1.5> The increase in performance once mirrored this trend. Had perfor-
mance continued to climb at the same rate as in the 1990s, approximately what
performance would chips have over the VAX-11/780 in 2025?

c. [15] <1.5> At the current rate of increase of the mid-2000s, what is a more
updated projection of performance in 2025?

d. [10] <1.4>What has limited the rate of growth of the clock rate, and what are
architects doing with the extra transistors now to increase performance?

e. [10] <1.4> The rate of growth for DRAM capacity has also slowed down. For
20 years, DRAM capacity improved by 60% each year. If 8 Gbit DRAM was
first available in 2015, and 16 Gbit is not available until 2019, what is the cur-
rent DRAM growth rate?

1.8 [10/10] <1.5> You are designing a system for a real-time application in which
specific deadlines must be met. Finishing the computation faster gains nothing.
You find that your system can execute the necessary code, in the worst case, twice
as fast as necessary.

a. [10] <1.5> How much energy do you save if you execute at the current speed
and turn off the system when the computation is complete?

b. [10]<1.5>Howmuch energy do you save if you set the voltage and frequency
to be half as much?

1.9 [10/10/20/20] <1.5> Server farms such as Google and Yahoo! provide enough
compute capacity for the highest request rate of the day. Imagine that most of
the time these servers operate at only 60% capacity. Assume further that the power
does not scale linearly with the load; that is, when the servers are operating at 60%
capacity, they consume 90% of maximum power. The servers could be turned off,
but they would take too long to restart in response to more load. A new system has
been proposed that allows for a quick restart but requires 20% of the maximum
power while in this “barely alive” state.

a. [10]<1.5>Howmuch power savings would be achieved by turning off 60% of
the servers?

b. [10] <1.5> How much power savings would be achieved by placing 60% of
the servers in the “barely alive” state?
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c. [20]<1.5> How much power savings would be achieved by reducing the volt-
age by 20% and frequency by 40%?

d. [20] <1.5> How much power savings would be achieved by placing 30% of
the servers in the “barely alive” state and 30% off?

1.10 [10/10/20] <1.7> Availability is the most important consideration for designing
servers, followed closely by scalability and throughput.

a. [10]<1.7>We have a single processor with a failure in time (FIT) of 100.What
is the mean time to failure (MTTF) for this system?

b. [10]<1.7> If it takes one day to get the system running again, what is the avail-
ability of the system?

c. [20]<1.7> Imagine that the government, to cut costs, is going to build a super-
computer out of inexpensive computers rather than expensive, reliable com-
puters. What is the MTTF for a system with 1000 processors? Assume that
if one fails, they all fail.

1.11 [20/20/20]<1.1, 1.2, 1.7> In a server farm such as that used by Amazon or eBay, a
single failure does not cause the entire system to crash. Instead, it will reduce the
number of requests that can be satisfied at any one time.

a. [20]<1.7> If a company has 10,000 computers, each with anMTTF of 35 days,
and it experiences catastrophic failure only if 1/3 of the computers fail, what is
the MTTF for the system?

b. [20] <1.1, 1.7> If it costs an extra $1000, per computer, to double the MTTF,
would this be a good business decision? Show your work.

c. [20]<1.2> Figure 1.3 shows, on average, the cost of downtimes, assuming that
the cost is equal at all times of the year. For retailers, however, the Christmas
season is the most profitable (and therefore the most costly time to lose sales). If
a catalog sales center has twice as much traffic in the fourth quarter as every
other quarter, what is the average cost of downtime per hour during the fourth
quarter and the rest of the year?

1.12 [20/10/10/10/15] <1.9> In this exercise, assume that we are considering enhanc-
ing a quad-core machine by adding encryption hardware to it. When computing
encryption operations, it is 20 times faster than the normal mode of execution.
We will define percentage of encryption as the percentage of time in the original
execution that is spent performing encryption operations. The specialized hard-
ware increases power consumption by 2%.

a. [20] <1.9> Draw a graph that plots the speedup as a percentage of the compu-
tation spent performing encryption. Label the y-axis “Net speedup” and label
the x-axis “Percent encryption.”

b. [10] <1.9> With what percentage of encryption will adding encryption hard-
ware result in a speedup of 2?

c. [10] <1.9> What percentage of time in the new execution will be spent on
encryption operations if a speedup of 2 is achieved?
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d. [15] <1.9> Suppose you have measured the percentage of encryption to be
50%. The hardware design group estimates it can speed up the encryption hard-
ware even more with significant additional investment. You wonder whether
adding a second unit in order to support parallel encryption operations would
be more useful. Imagine that in the original program, 90% of the encryption
operations could be performed in parallel. What is the speedup of providing
two or four encryption units, assuming that the parallelization allowed is limited
to the number of encryption units?

1.13 [15/10]<1.9>Assume that we make an enhancement to a computer that improves
some mode of execution by a factor of 10. Enhanced mode is used 50% of the time,
measured as a percentage of the execution time when the enhanced mode is in use.
Recall that Amdahl’s Law depends on the fraction of the original, unenhanced exe-
cution time that could make use of enhanced mode. Thus we cannot directly use
this 50% measurement to compute speedup with Amdahl’s Law.

a. [15] <1.9> What is the speedup we have obtained from fast mode?

b. [10]<1.9>What percentage of the original execution time has been converted
to fast mode?

1.14 [20/20/15]<1.9>When making changes to optimize part of a processor, it is often
the case that speeding up one type of instruction comes at the cost of slowing down
something else. For example, if we put in a complicated fast floating-point unit,
that takes space, and something might have to be moved farther away from the
middle to accommodate it, adding an extra cycle in delay to reach that unit. The
basic Amdahl’s Law equation does not take into account this trade-off.

a. [20] <1.9> If the new fast floating-point unit speeds up floating-point opera-
tions by, on average, 2x, and floating-point operations take 20% of the original
program’s execution time, what is the overall speedup (ignoring the penalty to
any other instructions)?

b. [20] <1.9> Now assume that speeding up the floating-point unit slowed down
data cache accesses, resulting in a 1.5x slowdown (or 2/3 speedup). Data cache
accesses consume 10% of the execution time. What is the overall speedup now?

c. [15] <1.9> After implementing the new floating-point operations, what per-
centage of execution time is spent on floating-point operations? What percent-
age is spent on data cache accesses?

1.15 [10/10/20/20] <1.10> Your company has just bought a new 22-core processor,
and you have been tasked with optimizing your software for this processor.
You will run four applications on this system, but the resource requirements are
not equal. Assume the system and application characteristics listed in Table 1.1.

Table 1.1 Four applications

Application A B C D

% resources needed 41 27 18 14

% parallelizable 50 80 60 90
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The percentage of resources of assuming they are all run in serial. Assume
that when you parallelize a portion of the program by X, the speedup for that
portion is X.

a. [10] <1.10> How much speedup would result from running application A on
the entire 22-core processor, as compared to running it serially?

b. [10] <1.10> How much speedup would result from running application D on
the entire 22-core processor, as compared to running it serially?

c. [20]<1.10> Given that application A requires 41% of the resources, if we stat-
ically assign it 41% of the cores, what is the overall speedup if A is run paral-
lelized but everything else is run serially?

d. [20] <1.10> What is the overall speedup if all four applications are statically
assigned some of the cores, relative to their percentage of resource needs, and
all run parallelized?

e. [10] <1.10> Given acceleration through parallelization, what new percentage
of the resources are the applications receiving, considering only active time on
their statically-assigned cores?

1.16 [10/20/20/20/25] <1.10> When parallelizing an application, the ideal speedup is
speeding up by the number of processors. This is limited by two things: percentage
of the application that can be parallelized and the cost of communication.
Amdahl’s Law takes into account the former but not the latter.

a. [10]<1.10>What is the speedup with N processors if 80% of the application is
parallelizable, ignoring the cost of communication?

b. [20] <1.10> What is the speedup with eight processors if, for every processor
added, the communication overhead is 0.5% of the original execution time.

c. [20] <1.10> What is the speedup with eight processors if, for every time the
number of processors is doubled, the communication overhead is increased
by 0.5% of the original execution time?

d. [20]<1.10>What is the speedup with N processors if, for every time the num-
ber of processors is doubled, the communication overhead is increased by 0.5%
of the original execution time?

e. [25] <1.10> Write the general equation that solves this question: What is the
number of processors with the highest speedup in an application in which P% of
the original execution time is parallelizable, and, for every time the number of
processors is doubled, the communication is increased by 0.5% of the original
execution time?
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2
Memory Hierarchy
Design

Ideally one would desire an indefinitely large memory capacity
such that any particular… word would be immediately available…
We are… forced to recognize the possibility of constructing a
hierarchy of memories each of which has greater capacity than the
preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine,
and J. von Neumann,

Preliminary Discussion of the
Logical Design of an Electronic
Computing Instrument (1946).
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2.1 Introduction

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. An economical solution to that desire is a memory hierar-
chy, which takes advantage of locality and trade-offs in the cost-performance of
memory technologies. The principle of locality, presented in the first chapter, says
that most programs do not access all code or data uniformly. Locality occurs in time
(temporal locality) and in space (spatial locality). This principle plus the guideline
that for a given implementation technology and power budget, smaller hardware
can be made faster led to hierarchies based on memories of different speeds and
sizes. Figure 2.1 shows several different multilevel memory hierarchies, including
typical sizes and speeds of access. As Flash and next generation memory technol-
ogies continue to close the gap with disks in cost per bit, such technologies are likely
to increasingly replace magnetic disks for secondary storage. As Figure 2.1 shows,
these technologies are already used in many personal computers and increasingly in
servers, where the advantages in performance, power, and density are significant.

Because fast memory is more expensive, a memory hierarchy is organized into
several levels—each smaller, faster, and more expensive per byte than the next
lower level, which is farther from the processor. The goal is to provide a memory
system with a cost per byte that is almost as low as the cheapest level of memory
and a speed almost as fast as the fastest level. In most cases (but not all), the data
contained in a lower level are a superset of the next higher level. This property,
called the inclusion property, is always required for the lowest level of the hierar-
chy, which consists of main memory in the case of caches and secondary storage
(disk or Flash) in the case of virtual memory.

The importance of the memory hierarchy has increased with advances in per-
formance of processors. Figure 2.2 plots single processor performance projections
against the historical performance improvement in time to access main memory.
The processor line shows the increase in memory requests per second on average
(i.e., the inverse of the latency betweenmemory references), while the memory line
shows the increase in DRAM accesses per second (i.e., the inverse of the DRAM
access latency), assuming a single DRAM and a single memory bank. The reality is
more complex because the processor request rate is not uniform, and the memory
system typically has multiple banks of DRAMs and channels. Although the gap in
access time increased significantly for many years, the lack of significant perfor-
mance improvement in single processors has led to a slowdown in the growth of
the gap between processors and DRAM.

Because high-end processors have multiple cores, the bandwidth requirements
are greater than for single cores. Although single-core bandwidth has grown more
slowly in recent years, the gap between CPU memory demand and DRAM band-
width continues to grow as the numbers of cores grow. Amodern high-end desktop
processor such as the Intel Core i7 6700 can generate two data memory references
per core each clock cycle. With four cores and a 4.2 GHz clock rate, the i7 can
generate a peak of 32.8 billion 64-bit data memory references per second, in addi-
tion to a peak instruction demand of about 12.8 billion 128-bit instruction
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Figure 2.1 The levels in a typical memory hierarchy in a personal mobile device (PMD), such as a cell phone or
tablet (A), in a laptop or desktop computer (B), and in a server (C). As wemove farther away from the processor, the
memory in the level below becomes slower and larger. Note that the time units change by a factor of 109 from pico-
seconds to milliseconds in the case of magnetic disks and that the size units change by a factor of 1010 from thou-
sands of bytes to tens of terabytes. If we were to add warehouse-sized computers, as opposed to just servers, the
capacity scale would increase by three to six orders of magnitude. Solid-state drives (SSDs) composed of Flash are
used exclusively in PMDs, and heavily in both laptops and desktops. In many desktops, the primary storage system is
SSD, and expansion disks are primarily hard disk drives (HDDs). Likewise, many servers mix SSDs and HDDs.
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references; this is a total peak demand bandwidth of 409.6 GiB/s! This incredible
bandwidth is achieved by multiporting and pipelining the caches; by using three
levels of caches, with two private levels per core and a shared L3; and by using
a separate instruction and data cache at the first level. In contrast, the peak band-
width for DRAM main memory, using two memory channels, is only 8% of the
demand bandwidth (34.1 GiB/s). Upcoming versions are expected to have an
L4 DRAM cache using embedded or stacked DRAM (see Sections 2.2 and 2.3).

Traditionally, designers of memory hierarchies focused on optimizing average
memory access time, which is determined by the cache access time, miss rate, and
miss penalty. More recently, however, power has become a major consideration. In
high-end microprocessors, there may be 60 MiB or more of on-chip cache, and a
large second- or third-level cache will consume significant power both as leakage
when not operating (called static power) and as active power, as when performing a
read or write (called dynamic power), as described in Section 2.3. The problem is
even more acute in processors in PMDs where the CPU is less aggressive and the
power budget may be 20 to 50 times smaller. In such cases, the caches can account
for 25% to 50% of the total power consumption. Thus more designs must consider
both performance and power trade-offs, and we will examine both in this chapter.
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Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance,
measured as the difference in the time between processor memory requests (for
a single processor or core) and the latency of a DRAM access, is plotted over time.
In mid-2017, AMD, Intel and Nvidia all announced chip sets using versions of HBM
technology. Note that the vertical axis must be on a logarithmic scale to record the size
of the processor-DRAM performance gap. The memory baseline is 64 KiB DRAM in 1980,
with a 1.07 per year performance improvement in latency (see Figure 2.4 on page 88).
The processor line assumes a 1.25 improvement per year until 1986, a 1.52 improve-
ment until 2000, a 1.20 improvement between 2000 and 2005, and only small improve-
ments in processor performance (on a per-core basis) between 2005 and 2015. As you
can see, until 2010 memory access times in DRAM improved slowly but consistently;
since 2010 the improvement in access time has reduced, as compared with the earlier
periods, although there have been continued improvements in bandwidth. See
Figure 1.1 in Chapter 1 for more information.
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Basics of Memory Hierarchies: A Quick Review

The increasing size and thus importance of this gap led to the migration of the
basics of memory hierarchy into undergraduate courses in computer architecture,
and even to courses in operating systems and compilers. Thus we’ll start with
a quick review of caches and their operation. The bulk of the chapter, however,
describes more advanced innovations that attack the processor—memory
performance gap.

When a word is not found in the cache, the word must be fetched from a lower
level in the hierarchy (which may be another cache or the main memory) and
placed in the cache before continuing. Multiple words, called a block (or line),
are moved for efficiency reasons, and because they are likely to be needed soon
due to spatial locality. Each cache block includes a tag to indicate which memory
address it corresponds to.

A key design decision is where blocks (or lines) can be placed in a cache. The
most popular scheme is set associative, where a set is a group of blocks in the
cache. A block is first mapped onto a set, and then the block can be placed any-
where within that set. Finding a block consists of first mapping the block address to
the set and then searching the set—usually in parallel—to find the block. The set is
chosen by the address of the data:

Block addressð Þ MOD Number of sets in cacheð Þ
If there are n blocks in a set, the cache placement is called n-way set associative.
The end points of set associativity have their own names. A direct-mapped cache
has just one block per set (so a block is always placed in the same location), and a
fully associative cache has just one set (so a block can be placed anywhere).

Caching data that is only read is easy because the copy in the cache and mem-
ory will be identical. Caching writes is more difficult; for example, how can the
copy in the cache and memory be kept consistent? There are two main strategies.
A write-through cache updates the item in the cache and writes through to update
main memory. A write-back cache only updates the copy in the cache. When the
block is about to be replaced, it is copied back to memory. Both write strategies can
use a write buffer to allow the cache to proceed as soon as the data are placed in the
buffer rather than wait for full latency to write the data into memory.

One measure of the benefits of different cache organizations is miss rate. Miss
rate is simply the fraction of cache accesses that result in a miss—that is, the
number of accesses that miss divided by the number of accesses.

To gain insights into the causes of high miss rates, which can inspire better
cache designs, the three Cs model sorts all misses into three simple categories:

■ Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. Compulsory misses are those that occur
even if you were to have an infinite-sized cache.

■ Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.
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■ Conflict—If the block placement strategy is not fully associative, conflict mis-
ses (in addition to compulsory and capacity misses) will occur because a block
may be discarded and later retrieved if multiple blocks map to its set and
accesses to the different blocks are intermingled.

Figure B.8 on page 24 shows the relative frequency of cache misses broken down
by the three Cs. As mentioned in Appendix B, the three C’s model is conceptual,
and although its insights usually hold, it is not a definitive model for explaining the
cache behavior of individual references.

As we will see in Chapters 3 and 5, multithreading and multiple cores add com-
plications for caches, both increasing the potential for capacity misses as well as
adding a fourth C, for coherency misses due to cache flushes to keep multiple
caches coherent in a multiprocessor; we will consider these issues in Chapter 5.

However, miss rate can be a misleading measure for several reasons. Therefore
some designers prefer measuring misses per instruction rather than misses per
memory reference (miss rate). These two are related:

Misses
Instruction

¼Miss rate�Memory accesses
Instruction count

¼Miss rate�Memory accesses
Instruction

(This equation is often expressed in integers rather than fractions, as misses per
1000 instructions.)

The problem with both measures is that they don’t factor in the cost of a miss.
A better measure is the average memory access time,

Average memory access time¼Hit time +Miss rate�Miss penalty

where hit time is the time to hit in the cache and miss penalty is the time to replace
the block from memory (that is, the cost of a miss). Average memory access time is
still an indirect measure of performance; although it is a better measure than miss
rate, it is not a substitute for execution time. In Chapter 3 we will see that specu-
lative processors may execute other instructions during a miss, thereby reducing
the effective miss penalty. The use of multithreading (introduced in Chapter 3) also
allows a processor to tolerate misses without being forced to idle. As we will exam-
ine shortly, to take advantage of such latency tolerating techniques, we need caches
that can service requests while handling an outstanding miss.

If this material is new to you, or if this quick review moves too quickly, see
Appendix B. It covers the same introductory material in more depth and includes
examples of caches from real computers and quantitative evaluations of their
effectiveness.

Section B.3 in Appendix B presents six basic cache optimizations, which we
quickly review here. The appendix also gives quantitative examples of the benefits
of these optimizations. We also comment briefly on the power implications of
these trade-offs.

1. Larger block size to reduce miss rate—The simplest way to reduce the miss rate
is to take advantage of spatial locality and increase the block size. Larger blocks
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reduce compulsory misses, but they also increase the miss penalty. Because
larger blocks lower the number of tags, they can slightly reduce static power.
Larger block sizes can also increase capacity or conflict misses, especially in
smaller caches. Choosing the right block size is a complex trade-off that
depends on the size of cache and the miss penalty.

2. Bigger caches to reduce miss rate—The obvious way to reduce capacity misses
is to increase cache capacity. Drawbacks include potentially longer hit time of
the larger cache memory and higher cost and power. Larger caches increase
both static and dynamic power.

3. Higher associativity to reduce miss rate—Obviously, increasing associativity
reduces conflict misses. Greater associativity can come at the cost of increased
hit time. As we will see shortly, associativity also increases power consumption.

4. Multilevel caches to reduce miss penalty—A difficult decision is whether to
make the cache hit time fast, to keep pace with the high clock rate of proces-
sors, or to make the cache large to reduce the gap between the processor
accesses and main memory accesses. Adding another level of cache between
the original cache and memory simplifies the decision. The first-level cache
can be small enough to match a fast clock cycle time, yet the second-level
(or third-level) cache can be large enough to capture many accesses that would
go to main memory. The focus on misses in second-level caches leads to larger
blocks, bigger capacity, and higher associativity. Multilevel caches are more
power-efficient than a single aggregate cache. If L1 and L2 refer, respectively,
to first- and second-level caches, we can redefine the average memory access
time:

Hit timeL1 +Miss rateL1� Hit timeL2 +Miss rateL2�Miss penaltyL2ð Þ

5. Giving priority to read misses over writes to reduce miss penalty—A write
buffer is a good place to implement this optimization. Write buffers create haz-
ards because they hold the updated value of a location needed on a read miss—
that is, a read-after-write hazard through memory. One solution is to check the
contents of the write buffer on a read miss. If there are no conflicts, and if the
memory system is available, sending the read before the writes reduces the miss
penalty. Most processors give reads priority over writes. This choice has little
effect on power consumption.

6. Avoiding address translation during indexing of the cache to reduce hit time—
Caches must cope with the translation of a virtual address from the processor to
a physical address to access memory. (Virtual memory is covered in
Sections 2.4 and B.4.) A common optimization is to use the page offset—the
part that is identical in both virtual and physical addresses—to index the cache,
as described in Appendix B, page B.38. This virtual index/physical tag method
introduces some system complications and/or limitations on the size and struc-
ture of the L1 cache, but the advantages of removing the translation lookaside
buffer (TLB) access from the critical path outweigh the disadvantages.
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Note that each of the preceding six optimizations has a potential disadvantage
that can lead to increased, rather than decreased, average memory access time.

The rest of this chapter assumes familiarity with the preceding material and the
details in Appendix B. In the “Putting It All Together” section, we examine the
memory hierarchy for a microprocessor designed for a high-end desktop or smaller
server, the Intel Core i7 6700, as well as one designed for use in a PMD, the Arm
Cortex-53, which is the basis for the processor used in several tablets and smart-
phones. Within each of these classes, there is a significant diversity in approach
because of the intended use of the computer.

Although the i7 6700 has more cores and bigger caches than the Intel proces-
sors designed for mobile uses, the processors have similar architectures. A proces-
sor designed for small servers, such as the i7 6700, or larger servers, such as the
Intel Xeon processors, typically is running a large number of concurrent processes,
often for different users. Thus memory bandwidth becomes more important, and
these processors offer larger caches and more aggressive memory systems to boost
that bandwidth.

In contrast, PMDs not only serve one user but generally also have smaller oper-
ating systems, usually less multitasking (running of several applications simulta-
neously), and simpler applications. PMDs must consider both performance and
energy consumption, which determines battery life. Before we dive into more
advanced cache organizations and optimizations, one needs to understand the
various memory technologies and how they are evolving.

2.2 Memory Technology and Optimizations

…the one single development that put computers on their feet was the
invention of a reliable form of memory, namely, the core memory. …Its cost
was reasonable, it was reliable and, because it was reliable, it could in due
course be made large. (p. 209)

Maurice Wilkes.
Memoirs of a Computer Pioneer (1985)

This section describes the technologies used in a memory hierarchy, specifically in
building caches and main memory. These technologies are SRAM (static random-
access memory), DRAM (dynamic random-access memory), and Flash. The last of
these is used as an alternative to hard disks, but because its characteristics are based
on semiconductor technology, it is appropriate to include in this section.

Using SRAM addresses the need to minimize access time to caches. When a
cache miss occurs, however, we need to move the data from the main memory as
quickly as possible, which requires a high bandwidth memory. This high memory
bandwidth can be achieved by organizing the many DRAM chips that make up the
main memory into multiple memory banks and by making the memory bus wider,
or by doing both.

To allow memory systems to keep up with the bandwidth demands of modern
processors, memory innovations started happening inside the DRAM chips
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themselves. This section describes the technology inside the memory chips and
those innovative, internal organizations. Before describing the technologies and
options, we need to introduce some terminology.

With the introduction of burst transfer memories, now widely used in both
Flash and DRAM, memory latency is quoted using two measures—access time
and cycle time. Access time is the time between when a read is requested and when
the desired word arrives, and cycle time is the minimum time between unrelated
requests to memory.

Virtually all computers since 1975 have used DRAMs for main memory and
SRAMs for cache, with one to three levels integrated onto the processor chip with
the CPU. PMDs must balance power and performance, and because they have
more modest storage needs, PMDs use Flash rather than disk drives, a decision
increasingly being followed by desktop computers as well.

SRAM Technology

The first letter of SRAM stands for static. The dynamic nature of the circuits in
DRAM requires data to be written back after being read—thus the difference
between the access time and the cycle time as well as the need to refresh. SRAMs
don’t need to refresh, so the access time is very close to the cycle time. SRAMs
typically use six transistors per bit to prevent the information from being disturbed
when read. SRAM needs only minimal power to retain the charge in standbymode.

In earlier times, most desktop and server systems used SRAM chips for their
primary, secondary, or tertiary caches. Today, all three levels of caches are inte-
grated onto the processor chip. In high-end server chips, there may be as many
as 24 cores and up to 60 MiB of cache; such systems are often configured with
128–256 GiB of DRAM per processor chip. The access times for large, third-level,
on-chip caches are typically two to eight times that of a second-level cache. Even
so, the L3 access time is usually at least five times faster than a DRAM access.

On-chip, cache SRAMs are normally organized with a width that matches the
block size of the cache, with the tags stored in parallel to each block. This allows an
entire block to be read out or written into a single cycle. This capability is partic-
ularly useful when writing data fetched after a miss into the cache or when writing
back a block that must be evicted from the cache. The access time to the cache
(ignoring the hit detection and selection in a set associative cache) is proportional
to the number of blocks in the cache, whereas the energy consumption depends
both on the number of bits in the cache (static power) and on the number of blocks
(dynamic power). Set associative caches reduce the initial access time to the mem-
ory because the size of the memory is smaller, but increase the time for hit detection
and block selection, a topic we will cover in Section 2.3.

DRAM Technology

As early DRAMs grew in capacity, the cost of a package with all the necessary
address lines was an issue. The solution was to multiplex the address lines, thereby
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cutting the number of address pins in half. Figure 2.3 shows the basic DRAM orga-
nization. One-half of the address is sent first during the row access strobe (RAS).
The other half of the address, sent during the column access strobe (CAS), follows
it. These names come from the internal chip organization, because the memory is
organized as a rectangular matrix addressed by rows and columns.

An additional requirement of DRAM derives from the property signified by its
first letter, D, for dynamic. To pack more bits per chip, DRAMs use only a single
transistor, which effectively acts as a capacitor, to store a bit. This has two implica-
tions: first, the sensing wires that detect the charge must be precharged, which sets
them “halfway” between a logical 0 and 1, allowing the small charge stored in the cell
to cause a 0 or 1 to be detected by the sense amplifiers. On reading, a row is placed
into a row buffer, where CAS signals can select a portion of the row to read out from
the DRAM. Because reading a row destroys the information, it must be written back
when the row is no longer needed. Thiswrite back happens in overlapped fashion, but
in early DRAMs, it meant that the cycle time before a new row could be read was
larger than the time to read a row and access a portion of that row.

In addition, to prevent loss of information as the charge in a cell leaks away
(assuming it is not read or written), each bit must be “refreshed” periodically. For-
tunately, all the bits in a row can be refreshed simultaneously just by reading that
row and writing it back. Therefore every DRAM in the memory system must
access every row within a certain time window, such as 64 ms. DRAM controllers
include hardware to refresh the DRAMs periodically.

This requirement means that the memory system is occasionally unavailable
because it is sending a signal telling every chip to refresh. The time for a refresh
is a row activation and a precharge that also writes the row back (which takes

Column

Rd/Wr

Pre

Act

Row

Bank

Figure 2.3 Internal organization of a DRAM. Modern DRAMs are organized in banks,
up to 16 for DDR4. Each bank consists of a series of rows. Sending an ACT (Activate)
command opens a bank and a row and loads the row into a row buffer. When the
row is in the buffer, it can be transferred by successive column addresses at whatever
the width of the DRAM is (typically 4, 8, or 16 bits in DDR4) or by specifying a block trans-
fer and the starting address. The Precharge commend (PRE) closes the bank and row
and readies it for a new access. Each command, as well as block transfers, are synchro-
nized with a clock. See the next section discussing SDRAM. The row and column signals
are sometimes called RAS and CAS, based on the original names of the signals.
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roughly 2/3 of the time to get a datum because no column select is needed), and this
is required for each row of the DRAM. Because the memory matrix in a DRAM is
conceptually square, the number of steps in a refresh is usually the square root of
the DRAM capacity. DRAM designers try to keep time spent refreshing to less
than 5% of the total time. So far we have presented main memory as if it operated
like a Swiss train, consistently delivering the goods exactly according to schedule.
In fact, with SDRAMs, a DRAM controller (usually on the processor chip) tries to
optimize accesses by avoiding opening new rows and using block transfer when
possible. Refresh adds another unpredictable factor.

Amdahl suggested as a rule of thumb that memory capacity should grow linearly
with processor speed to keep a balanced system. Thus a 1000 MIPS processor should
have 1000 MiB of memory. Processor designers rely on DRAMs to supply that
demand. In the past, they expected a fourfold improvement in capacity every three
years, or 55% per year. Unfortunately, the performance of DRAMs is growing at a
much slower rate. The slower performance improvements arise primarily because of
smaller decreases in the row access time, which is determined by issues such as
power limitations and the charge capacity (and thus the size) of an individual mem-
ory cell. Before we discuss these performance trends in more detail, we need to
describe the major changes that occurred in DRAMs starting in the mid-1990s.

Improving Memory Performance Inside
a DRAM Chip: SDRAMs

Although very early DRAMs included a buffer allowing multiple column accesses
to a single row, without requiring a new row access, they used an asynchronous
interface, which meant that every column access and transfer involved overhead
to synchronize with the controller. In the mid-1990s, designers added a clock sig-
nal to the DRAM interface so that the repeated transfers would not bear that over-
head, thereby creating synchronous DRAM (SDRAM). In addition to reducing
overhead, SDRAMs allowed the addition of a burst transfer mode where multiple
transfers can occur without specifying a new column address. Typically, eight or
more 16-bit transfers can occur without sending any new addresses by placing the
DRAM in burst mode. The inclusion of such burst mode transfers has meant that
there is a significant gap between the bandwidth for a stream of random accesses
versus access to a block of data.

To overcome the problem of getting more bandwidth from the memory as
DRAM density increased, DRAMS were made wider. Initially, they offered a
four-bit transfer mode; in 2017, DDR2, DDR3, and DDR DRAMS had up to 4, 8,
or 16 bit buses.

In the early 2000s, a further innovation was introduced: double data rate
(DDR), which allows a DRAM to transfer data both on the rising and the falling
edge of the memory clock, thereby doubling the peak data rate.

Finally, SDRAMs introduced banks to help with power management, improve
access time, and allow interleaved and overlapped accesses to different banks.
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Access to different banks can be overlapped with each other, and each bank has its
own row buffer. Creating multiple banks inside a DRAM effectively adds another
segment to the address, which now consists of bank number, row address, and col-
umn address. When an address is sent that designates a new bank, that bank must
be opened, incurring an additional delay. The management of banks and row
buffers is completely handled by modern memory control interfaces, so that when
a subsequent access specifies the same row for an open bank, the access can happen
quickly, sending only the column address.

To initiate a new access, the DRAM controller sends a bank and row number
(called Activate in SDRAMs and formerly called RAS—row select). That com-
mand opens the row and reads the entire row into a buffer. A column address
can then be sent, and the SDRAM can transfer one or more data items, depending
on whether it is a single item request or a burst request. Before accessing a new
row, the bank must be precharged. If the row is in the same bank, then the pre-
charge delay is seen; however, if the row is in another bank, closing the row
and precharging can overlap with accessing the new row. In synchronous DRAMs,
each of these command cycles requires an integral number of clock cycles.

From 1980 to 1995, DRAMs scaled with Moore’s Law, doubling capacity
every 18 months (or a factor of 4 in 3 years). From the mid-1990s to 2010, capacity
increased more slowly with roughly 26 months between a doubling. From 2010 to
2016, capacity only doubled! Figure 2.4 shows the capacity and access time for
various generations of DDR SDRAMs. From DDR1 to DDR3, access times
improved by a factor of about 3, or about 7% per year. DDR4 improves power
and bandwidth over DDR3, but has similar access latency.

As Figure 2.4 shows, DDR is a sequence of standards. DDR2 lowers power
from DDR1 by dropping the voltage from 2.5 to 1.8 V and offers higher clock
rates: 266, 333, and 400 MHz. DDR3 drops voltage to 1.5 V and has a maximum
clock speed of 800 MHz. (As we discuss in the next section, GDDR5 is a graphics

Best case access time (no precharge) Precharge needed

Production year Chip size DRAM type RAS time (ns) CAS time (ns) Total (ns) Total (ns)

2000 256M bit DDR1 21 21 42 63

2002 512M bit DDR1 15 15 30 45

2004 1G bit DDR2 15 15 30 45

2006 2G bit DDR2 10 10 20 30

2010 4G bit DDR3 13 13 26 39

2016 8G bit DDR4 13 13 26 39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for a randommemory
word and assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged;
if the row is not open, then a precharge is required, and the access time is longer. As the number of banks has
increased, the ability to hide the precharge time has also increased. DDR4 SDRAMs were initially expected in
2014, but did not begin production until early 2016.
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RAM and is based on DDR3 DRAMs.) DDR4, which shipped in volume in early
2016, but was expected in 2014, drops the voltage to 1–1.2 V and has a maximum
expected clock rate of 1600 MHz. DDR5 is unlikely to reach production quantities
until 2020 or later.

With the introduction of DDR, memory designers increasing focused on band-
width, because improvements in access time were difficult. Wider DRAMs, burst
transfers, and double data rate all contributed to rapid increases in memory band-
width. DRAMs are commonly sold on small boards called dual inline memory
modules (DIMMs) that contain 4–16 DRAM chips and that are normally organized
to be 8 bytes wide (+ ECC) for desktop and server systems. When DDR SDRAMs
are packaged as DIMMs, they are confusingly labeled by the peak DIMM band-
width. Therefore the DIMM name PC3200 comes from 200 MHz�2�8 bytes,
or 3200 MiB/s; it is populated with DDR SDRAM chips. Sustaining the confusion,
the chips themselves are labeled with the number of bits per second rather than
their clock rate, so a 200 MHz DDR chip is called a DDR400. Figure 2.5 shows
the relationships’ I/O clock rate, transfers per second per chip, chip bandwidth,
chip name, DIMM bandwidth, and DIMM name.

Reducing Power Consumption in SDRAMs

Power consumption in dynamic memory chips consists of both dynamic power
used in a read or write and static or standby power; both depend on the operating
voltage. In the most advanced DDR4 SDRAMs, the operating voltage has dropped
to 1.2 V, significantly reducing power versus DDR2 and DDR3 SDRAMs. The
addition of banks also reduced power because only the row in a single bank is read.

Standard I/O clock rate M transfers/s DRAM name MiB/s/DIMM DIMM name

DDR1 133 266 DDR266 2128 PC2100

DDR1 150 300 DDR300 2400 PC2400

DDR1 200 400 DDR400 3200 PC3200

DDR2 266 533 DDR2-533 4264 PC4300

DDR2 333 667 DDR2-667 5336 PC5300

DDR2 400 800 DDR2-800 6400 PC6400

DDR3 533 1066 DDR3-1066 8528 PC8500

DDR3 666 1333 DDR3-1333 10,664 PC10700

DDR3 800 1600 DDR3-1600 12,800 PC12800

DDR4 1333 2666 DDR4-2666 21,300 PC21300

Figure 2.5 Clock rates, bandwidth, and names of DDRDRAMS and DIMMs in 2016.Note the numerical relationship
between the columns. The third column is twice the second, and the fourth uses the number from the third column in
the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this number is
used in the name of the DIMM. DDR4 saw significant first use in 2016.
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In addition to these changes, all recent SDRAMs support a power-down mode,
which is entered by telling the DRAM to ignore the clock. Power-down mode dis-
ables the SDRAM, except for internal automatic refresh (without which entering
power-down mode for longer than the refresh time will cause the contents of mem-
ory to be lost). Figure 2.6 shows the power consumption for three situations in a
2 GB DDR3 SDRAM. The exact delay required to return from low power mode
depends on the SDRAM, but a typical delay is 200 SDRAM clock cycles.

Graphics Data RAMs

GDRAMs or GSDRAMs (Graphics or Graphics Synchronous DRAMs) are a spe-
cial class of DRAMs based on SDRAMdesigns but tailored for handling the higher
bandwidth demands of graphics processing units. GDDR5 is based on DDR3 with
earlier GDDRs based on DDR2. Because graphics processor units (GPUs; see
Chapter 4) require more bandwidth per DRAM chip than CPUs, GDDRs have
several important differences:

1. GDDRs have wider interfaces: 32-bits versus 4, 8, or 16 in current designs.

2. GDDRs have a higher maximum clock rate on the data pins. To allow a higher
transfer rate without incurring signaling problems, GDRAMS normally connect
directly to the GPU and are attached by soldering them to the board, unlike
DRAMs, which are normally arranged in an expandable array of DIMMs.

Altogether, these characteristics let GDDRs run at two to five times the bandwidth
per DRAM versus DDR3 DRAMs.
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Figure 2.6 Power consumption for a DDR3 SDRAM operating under three condi-
tions: low-power (shutdown) mode, typical system mode (DRAM is active 30% of
the time for reads and 15% for writes), and fully active mode, where the DRAM is
continuously reading or writing. Reads and writes assume bursts of eight transfers.
These data are based on a Micron 1.5V 2GB DDR3-1066, although similar savings occur
in DDR4 SDRAMs.
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Packaging Innovation: Stacked or Embedded DRAMs

The newest innovation in 2017 in DRAMs is a packaging innovation, rather than a
circuit innovation. It places multiple DRAMs in a stacked or adjacent fashion
embedded within the same package as the processor. (Embedded DRAM also is
used to refer to designs that place DRAM on the processor chip.) Placing the
DRAM and processor in the same package lowers access latency (by shortening
the delay between the DRAMs and the processor) and potentially increases band-
width by allowing more and faster connections between the processor and DRAM;
thus several producers have called it high bandwidth memory (HBM).

One version of this technology places the DRAM die directly on the CPU die
using solder bump technology to connect them. Assuming adequate heat manage-
ment, multiple DRAMdies can be stacked in this fashion. Another approach stacks
only DRAMs and abuts them with the CPU in a single package using a substrate
(interposer) containing the connections. Figure 2.7 shows these two different inter-
connection schemes. Prototypes of HBM that allow stacking of up to eight chips
have been demonstrated. With special versions of SDRAMs, such a package could
contain 8 GiB of memory and have data transfer rates of 1 TB/s. The 2.5D tech-
nique is currently available. Because the chips must be specifically manufactured
to stack, it is quite likely that most early uses will be in high-end server chipsets.

In some applications, it may be possible to internally package enough DRAM
to satisfy the needs of the application. For example, a version of an Nvidia GPU
used as a node in a special-purpose cluster design is being developed using HBM,
and it is likely that HBM will become a successor to GDDR5 for higher-end appli-
cations. In some cases, it may be possible to use HBM as main memory, although
the cost limitations and heat removal issues currently rule out this technology for
some embedded applications. In the next section, we consider the possibility of
using HBM as an additional level of cache.
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Figure 2.7 Two forms of die stacking. The 2.5D form is available now. 3D stacking is
under development and faces heat management challenges due to the CPU.

2.2 Memory Technology and Optimizations ■ 91



Flash Memory

Flash memory is a type of EEPROM (electronically erasable programmable read-
only memory), which is normally read-only but can be erased. The other key prop-
erty of Flash memory is that it holds its contents without any power. We focus on
NAND Flash, which has higher density than NOR Flash and is more suitable for
large-scale nonvolatile memories; the drawback is that access is sequential and
writing is slower, as we explain below.

Flash is used as the secondary storage in PMDs in the same manner that a disk
functions in a laptop or server. In addition, because most PMDs have a limited
amount of DRAM, Flash may also act as a level of the memory hierarchy, to a
much greater extent than it might have to do in a desktop or server with a main
memory that might be 10–100 times larger.

Flash uses a very different architecture and has different properties than stan-
dard DRAM. The most important differences are

1. Reads to Flash are sequential and read an entire page, which can be 512 bytes,
2 KiB, or 4 KiB. Thus NAND Flash has a long delay to access the first byte
from a random address (about 25 μS), but can supply the remainder of a page
block at about 40 MiB/s. By comparison, a DDR4 SDRAM takes about 40 ns to
the first byte and can transfer the rest of the row at 4.8 GiB/s. Comparing the
time to transfer 2 KiB, NAND Flash takes about 75 μS, while DDR SDRAM
takes less than 500 ns, making Flash about 150 times slower. Compared to mag-
netic disk, however, a 2 KiB read from Flash is 300 to 500 times faster. From
these numbers, we can see why Flash is not a candidate to replace DRAM for
main memory, but is a candidate to replace magnetic disk.

2. Flash memory must be erased (thus the name flash for the “flash” erase process)
before it is overwritten, and it is erased in blocks rather than individual bytes or
words. This requirement means that when data must be written to Flash, an
entire block must be assembled, either as new data or by merging the data to
be written and the rest of the block’s contents. For writing, Flash is about
1500 times slower then SDRAM, and about 8–15 times as fast as magnetic disk.

3. Flash memory is nonvolatile (i.e., it keeps its contents even when power is not
applied) and draws significantly less power when not reading or writing (from
less than half in standby mode to zero when completely inactive).

4. Flash memory limits the number of times that any given block can be written,
typically at least 100,000. By ensuring uniform distribution of written blocks
throughout the memory, a system can maximize the lifetime of a Flash memory
system. This technique, called write leveling, is handled by Flash memory
controllers.

5. High-density NAND Flash is cheaper than SDRAM but more expensive than
disks: roughly $2/GiB for Flash, $20 to $40/GiB for SDRAM, and $0.09/GiB
for magnetic disks. In the past five years, Flash has decreased in cost at a rate
that is almost twice as fast as that of magnetic disks.
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Like DRAM, Flash chips include redundant blocks to allow chips with small
numbers of defects to be used; the remapping of blocks is handled in the Flash chip.
Flash controllers handle page transfers, provide caching of pages, and handle write
leveling.

The rapid improvements in high-density Flash have been critical to the devel-
opment of low-power PMDs and laptops, but they have also significantly changed
both desktops, which increasingly use solid state disks, and large servers, which
often combine disk and Flash-based storage.

Phase-Change Memory Technology

Phase-change memory (PCM) has been an active research area for decades. The
technology typically uses a small heating element to change the state of a bulk sub-
strate between its crystalline form and an amorphous form, which have different
resistive properties. Each bit corresponds to a crosspoint in a two-dimensional net-
work that overlays the substrate. Reading is done by sensing the resistance between
an x and y point (thus the alternative namememristor), and writing is accomplished
by applying a current to change the phase of the material. The absence of an active
device (such as a transistor) should lead to lower costs and greater density than that
of NAND Flash.

In 2017 Micron and Intel began delivering Xpoint memory chips that are
believed to be based on PCM. The technology is expected to have much better
write durability than NAND Flash and, by eliminating the need to erase a page
before writing, achieve an increase in write performance versus NAND of up to
a factor of ten. Read latency is also better than Flash by perhaps a factor of
2–3. Initially, it is expected to be priced slightly higher than Flash, but the advan-
tages in write performance and write durability may make it attractive, especially
for SSDs. Should this technology scale well and be able to achieve additional cost
reductions, it may be the solid state technology that will depose magnetic disks,
which have reigned as the primary bulk nonvolatile store for more than 50 years.

Enhancing Dependability in Memory Systems

Large caches and main memories significantly increase the possibility of errors
occurring both during the fabrication process and dynamically during operation.
Errors that arise from a change in circuitry and are repeatable are called hard errors
or permanent faults. Hard errors can occur during fabrication, as well as from a
circuit change during operation (e.g., failure of a Flash memory cell after many
writes). All DRAMs, Flash memory, and most SRAMs are manufactured with
spare rows so that a small number of manufacturing defects can be accommodated
by programming the replacement of a defective row by a spare row. Dynamic
errors, which are changes to a cell’s contents, not a change in the circuitry, are
called soft errors or transient faults.

Dynamic errors can be detected by parity bits and detected and fixed by the use
of error correcting codes (ECCs). Because instruction caches are read-only, parity
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suffices. In larger data caches and in main memory, ECC is used to allow errors to
be both detected and corrected. Parity requires only one bit of overhead to detect a
single error in a sequence of bits. Because a multibit error would be undetected
with parity, the number of bits protected by a parity bit must be limited. One parity
bit per 8 data bits is a typical ratio. ECC can detect two errors and correct a single
error with a cost of 8 bits of overhead per 64 data bits.

In very large systems, the possibility of multiple errors as well as complete fail-
ure of a single memory chip becomes significant. Chipkill was introduced by IBM
to solve this problem, and many very large systems, such as IBM and SUN servers
and the Google Clusters, use this technology. (Intel calls their version SDDC.)
Similar in nature to the RAID approach used for disks, Chipkill distributes the data
and ECC information so that the complete failure of a single memory chip can be
handled by supporting the reconstruction of the missing data from the remaining
memory chips. Using an analysis by IBM and assuming a 10,000 processor server
with 4 GiB per processor yields the following rates of unrecoverable errors in three
years of operation:

■ Parity only: About 90,000, or one unrecoverable (or undetected) failure every
17 minutes.

■ ECC only: About 3500, or about one undetected or unrecoverable failure every
7.5 hours.

■ Chipkill: About one undetected or unrecoverable failure every 2 months.

Another way to look at this is to find the maximum number of servers (each
with 4 GiB) that can be protected while achieving the same error rate as demon-
strated for Chipkill. For parity, even a server with only one processor will have an
unrecoverable error rate higher than a 10,000-server Chipkill protected system. For
ECC, a 17-server system would have about the same failure rate as a 10,000-server
Chipkill system. Therefore Chipkill is a requirement for the 50,000–100,00 servers
in warehouse-scale computers (see Section 6.8 of Chapter 6).

2.3 Ten Advanced Optimizations of Cache Performance

The preceding average memory access time formula gives us three metrics for
cache optimizations: hit time, miss rate, and miss penalty. Given the recent trends,
we add cache bandwidth and power consumption to this list. We can classify the 10
advanced cache optimizations we examine into five categories based on these
metrics:

1. Reducing the hit time—Small and simple first-level caches and way-prediction.
Both techniques also generally decrease power consumption.

2. Increasing cache bandwidth—Pipelined caches, multibanked caches, and non-
blocking caches. These techniques have varying impacts on power consumption.
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3. Reducing the miss penalty—Critical word first and merging write buffers.
These optimizations have little impact on power.

4. Reducing the miss rate—Compiler optimizations. Obviously any improvement
at compile time improves power consumption.

5. Reducing the miss penalty or miss rate via parallelism—Hardware prefetching
and compiler prefetching. These optimizations generally increase power con-
sumption, primarily because of prefetched data that are unused.

In general, the hardware complexity increases as we go through these optimi-
zations. In addition, several of the optimizations require sophisticated compiler
technology, and the final one depends on HBM.We will conclude with a summary
of the implementation complexity and the performance benefits of the 10 tech-
niques presented in Figure 2.18 on page 113. Because some of these are straight-
forward, we cover them briefly; others require more description.

First Optimization: Small and Simple First-Level Caches
to Reduce Hit Time and Power

The pressure of both a fast clock cycle and power limitations encourages limited
size for first-level caches. Similarly, use of lower levels of associativity can reduce
both hit time and power, although such trade-offs are more complex than those
involving size.

The critical timing path in a cache hit is the three-step process of addressing the
tag memory using the index portion of the address, comparing the read tag value to
the address, and setting themultiplexor to choose the correct data item if the cache is
set associative. Direct-mapped caches can overlap the tag check with the transmis-
sion of the data, effectively reducing hit time. Furthermore, lower levels of associa-
tivity will usually reduce power because fewer cache lines must be accessed.

Although the total amount of on-chip cache has increased dramatically with
new generations of microprocessors, because of the clock rate impact arising from
a larger L1 cache, the size of the L1 caches has recently increased either slightly or
not at all. In many recent processors, designers have opted for more associativity
rather than larger caches. An additional consideration in choosing the associativity
is the possibility of eliminating address aliases; we discuss this topic shortly.

One approach to determining the impact on hit time and power consumption in
advance of building a chip is to use CAD tools. CACTI is a program to estimate the
access time and energy consumption of alternative cache structures on CMOS
microprocessors within 10% of more detailed CAD tools. For a given minimum
feature size, CACTI estimates the hit time of caches as a function of cache size,
associativity, number of read/write ports, and more complex parameters.
Figure 2.8 shows the estimated impact on hit time as cache size and associativity
are varied. Depending on cache size, for these parameters, the model suggests that
the hit time for direct mapped is slightly faster than two-way set associative and
that two-way set associative is 1.2 times as fast as four-way and four-way is 1.4
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times as fast as eight-way. Of course, these estimates depend on technology as well
as the size of the cache, and CACTI must be carefully aligned with the technology;
Figure 2.8 shows the relative tradeoffs for one technology.

Example Using the data in Figure B.8 in Appendix B and Figure 2.8, determine whether a
32 KiB four-way set associative L1 cache has a faster memory access time than a
32 KiB two-way set associative L1 cache. Assume the miss penalty to L2 is
15 times the access time for the faster L1 cache. Ignore misses beyond L2. Which
has the faster average memory access time?

Answer Let the access time for the two-way set associative cache be 1. Then, for the two-
way cache,

Average memory access time2-way ¼Hit time +Miss rate�Miss penalty

¼ 1 + 0:038�15¼ 1:38
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Figure 2.8 Relative access times generally increase as cache size and associativity
are increased. These data come from the CACTI model 6.5 by Tarjan et al. (2005).
The data assume typical embedded SRAM technology, a single bank, and 64-byte
blocks. The assumptions about cache layout and the complex trade-offs between inter-
connect delays (that depend on the size of a cache block being accessed) and the cost of
tag checks and multiplexing lead to results that are occasionally surprising, such as the
lower access time for a 64 KiB with two-way set associativity versus direct mapping. Sim-
ilarly, the results with eight-way set associativity generate unusual behavior as cache size
is increased. Because such observations are highly dependent on technology and
detailed design assumptions, tools such as CACTI serve to reduce the search space.
These results are relative; nonetheless, they are likely to shift as wemove to more recent
and denser semiconductor technologies.
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For the four-way cache, the access time is 1.4 times longer. The elapsed time of the
miss penalty is 15/1.4¼10.1. Assume 10 for simplicity:

Average memory access time4-way ¼Hit time2-way�1:4 +Miss rate�Miss penalty

¼ 1:4 + 0:037�10¼ 1:77

Clearly, the higher associativity looks like a bad trade-off; however, because cache
access in modern processors is often pipelined, the exact impact on the clock cycle
time is difficult to assess.

Energy consumption is also a consideration in choosing both the cache size and
associativity, as Figure 2.9 shows. The energy cost of higher associativity ranges
from more than a factor of 2 to negligible in caches of 128 or 256 KiB when going
from direct mapped to two-way set associative.

As energy consumption has become critical, designers have focused on ways
to reduce the energy needed for cache access. In addition to associativity, the
other key factor in determining the energy used in a cache access is the number
of blocks in the cache because it determines the number of “rows” that are
accessed. A designer could reduce the number of rows by increasing the block size
(holding total cache size constant), but this could increase the miss rate, especially
in smaller L1 caches.
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Figure 2.9 Energy consumption per read increases as cache size and associativity
are increased. As in the previous figure, CACTI is used for the modeling with the same
technology parameters. The large penalty for eight-way set associative caches is due to
the cost of reading out eight tags and the corresponding data in parallel.
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An alternative is to organize the cache in banks so that an access activates
only a portion of the cache, namely the bank where the desired block resides.
The primary use of multibanked caches is to increase the bandwidth of the cache,
an optimization we consider shortly. Multibanking also reduces energy because
less of the cache is accessed. The L3 caches in many multicores are logically uni-
fied, but physically distributed, and effectively act as a multibanked cache. Based
on the address of a request, only one of the physical L3 caches (a bank) is actually
accessed. We discuss this organization further in Chapter 5.

In recent designs, there are three other factors that have led to the use of higher
associativity in first-level caches despite the energy and access time costs. First,
many processors take at least 2 clock cycles to access the cache and thus the impact
of a longer hit time may not be critical. Second, to keep the TLB out of the critical
path (a delay that would be larger than that associated with increased associativity),
almost all L1 caches should be virtually indexed. This limits the size of the cache to
the page size times the associativity because then only the bits within the page are
used for the index. There are other solutions to the problem of indexing the cache
before address translation is completed, but increasing the associativity, which also
has other benefits, is the most attractive. Third, with the introduction of multi-
threading (see Chapter 3), conflict misses can increase, making higher associativity
more attractive.

Second Optimization: Way Prediction to Reduce Hit Time

Another approach reduces conflict misses and yet maintains the hit speed of direct-
mapped cache. In way prediction, extra bits are kept in the cache to predict the way
(or block within the set) of the next cache access. This prediction means the mul-
tiplexor is set early to select the desired block, and in that clock cycle, only a single
tag comparison is performed in parallel with reading the cache data. A miss results
in checking the other blocks for matches in the next clock cycle.

Added to each block of a cache are block predictor bits. The bits select which of
the blocks to try on the next cache access. If the predictor is correct, the cache
access latency is the fast hit time. If not, it tries the other block, changes the
way predictor, and has a latency of one extra clock cycle. Simulations suggest that
set prediction accuracy is in excess of 90% for a two-way set associative cache and
80% for a four-way set associative cache, with better accuracy on I-caches than
D-caches. Way prediction yields lower average memory access time for a two-
way set associative cache if it is at least 10% faster, which is quite likely. Way
prediction was first used in the MIPS R10000 in the mid-1990s. It is popular in
processors that use two-way set associativity and was used in several ARM pro-
cessors, which have four-way set associative caches. For very fast processors, it
may be challenging to implement the one-cycle stall that is critical to keeping
the way prediction penalty small.

An extended form of way prediction can also be used to reduce power con-
sumption by using the way prediction bits to decide which cache block to actually
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access (the way prediction bits are essentially extra address bits); this approach,
which might be called way selection, saves power when the way prediction is cor-
rect but adds significant time on a way misprediction, because the access, not just
the tag match and selection, must be repeated. Such an optimization is likely to
make sense only in low-power processors. Inoue et al. (1999) estimated that using
the way selection approach with a four-way set associative cache increases the
average access time for the I-cache by 1.04 and for the D-cache by 1.13 on the
SPEC95 benchmarks, but it yields an average cache power consumption relative
to a normal four-way set associative cache that is 0.28 for the I-cache and 0.35 for
the D-cache. One significant drawback for way selection is that it makes it difficult
to pipeline the cache access; however, as energy concerns have mounted, schemes
that do not require powering up the entire cache make increasing sense.

Example Assume that there are half as many D-cache accesses as I-cache accesses and that
the I-cache and D-cache are responsible for 25% and 15% of the processor’s power
consumption in a normal four-way set associative implementation. Determine if
way selection improves performance per watt based on the estimates from the
preceding study.

Answer For the I-cache, the savings in power is 25�0.28¼0.07 of the total power, while
for the D-cache it is 15�0.35¼0.05 for a total savings of 0.12. The way prediction
version requires 0.88 of the power requirement of the standard four-way cache. The
increase in cache access time is the increase in I-cache average access time plus
one-half the increase in D-cache access time, or 1.04+0.5�0.13¼1.11 times lon-
ger. This result means that way selection has 0.90 of the performance of a standard
four-way cache. Thus way selection improves performance per joule very slightly
by a ratio of 0.90/0.88¼1.02. This optimization is best used where power rather
than performance is the key objective.

Third Optimization: Pipelined Access and Multibanked
Caches to Increase Bandwidth

These optimizations increase cache bandwidth either by pipelining the cache access
or by widening the cache with multiple banks to allow multiple accesses per clock;
these optimizations are the dual to the superpipelined and superscalar approaches to
increasing instruction throughput. These optimizations are primarily targeted at L1,
where access bandwidth constrains instruction throughput. Multiple banks are also
used in L2 and L3 caches, but primarily as a power-management technique.

Pipelining L1 allows a higher clock cycle, at the cost of increased latency. For
example, the pipeline for the instruction cache access for Intel Pentium processors
in the mid-1990s took 1 clock cycle; for the Pentium Pro through Pentium III in the
mid-1990s through 2000, it took 2 clock cycles; and for the Pentium 4, which
became available in 2000, and the current Intel Core i7, it takes 4 clock cycles.
Pipelining the instruction cache effectively increases the number of pipeline stages,
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leading to a greater penalty on mispredicted branches. Correspondingly, pipelining
the data cache leads to more clock cycles between issuing the load and using the
data (see Chapter 3). Today, all processors use some pipelining of L1, if only for
the simple case of separating the access and hit detection, and many high-speed
processors have three or more levels of cache pipelining.

It is easier to pipeline the instruction cache than the data cache because the pro-
cessor can rely on high performance branch prediction to limit the latency effects.
Many superscalar processors can issue and execute more than one memory refer-
ence per clock (allowing a load or store is common, and some processors allow
multiple loads). To handle multiple data cache accesses per clock, we can divide
the cache into independent banks, each supporting an independent access. Banks
were originally used to improve performance of main memory and are now used
inside modern DRAM chips as well as with caches. The Intel Core i7 has four
banks in L1 (to support up to 2 memory accesses per clock).

Clearly, banking works best when the accesses naturally spread themselves
across the banks, so the mapping of addresses to banks affects the behavior of
the memory system. A simple mapping that works well is to spread the addresses
of the block sequentially across the banks, which is called sequential interleaving.
For example, if there are four banks, bank 0 has all blocks whose address modulo 4
is 0, bank 1 has all blocks whose address modulo 4 is 1, and so on. Figure 2.10
shows this interleaving. Multiple banks also are a way to reduce power consump-
tion in both caches and DRAM.

Multiple banks are also useful in L2 or L3 caches, but for a different reason.
With multiple banks in L2, we can handle more than one outstanding L1 miss,
if the banks do not conflict. This is a key capability to support nonblocking caches,
our next optimization. The L2 in the Intel Core i7 has eight banks, while Arm
Cortex processors have used L2 caches with 1–4 banks. As mentioned earlier,
multibanking can also reduce energy consumption.

Fourth Optimization: Nonblocking Caches
to Increase Cache Bandwidth

For pipelined computers that allow out-of-order execution (discussed in Chapter 3),
the processor need not stall on a data cache miss. For example, the processor could
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Figure 2.10 Four-way interleaved cache banks using block addressing. Assuming
64 bytes per block, each of these addresses would be multiplied by 64 to get byte
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100 ■ Chapter Two Memory Hierarchy Design



continue fetching instructions from the instruction cache while waiting for the data
cache to return the missing data. A nonblocking cache or lockup-free cache esca-
lates the potential benefits of such a scheme by allowing the data cache to continue
to supply cache hits during a miss. This “hit under miss” optimization reduces the
effective miss penalty by being helpful during a miss instead of ignoring the
requests of the processor. A subtle and complex option is that the cache may further
lower the effective miss penalty if it can overlap multiple misses: a “hit under
multiple miss” or “miss under miss” optimization. The second option is beneficial
only if thememory system can servicemultiple misses; most high-performance pro-
cessors (such as the Intel Core processors) usually support both, whereas many
lower-end processors provide only limited nonblocking support in L2.

To examine the effectiveness of nonblocking caches in reducing the cache miss
penalty, Farkas and Jouppi (1994) did a study assuming 8 KiB caches with a
14-cycle miss penalty (appropriate for the early 1990s). They observed a reduction
in the effective miss penalty of 20% for the SPECINT92 benchmarks and 30% for
the SPECFP92 benchmarks when allowing one hit under miss.

Li et al. (2011) updated this study to use a multilevel cache, more modern
assumptions about miss penalties, and the larger and more demanding
SPECCPU2006 benchmarks. The study was done assuming a model based on a
single core of an Intel i7 (see Section 2.6) running the SPECCPU2006 benchmarks.
Figure 2.11 shows the reduction in data cache access latency when allowing 1, 2,
and 64 hits under a miss; the caption describes further details of the memory
system. The larger caches and the addition of an L3 cache since the earlier
study have reduced the benefits with the SPECINT2006 benchmarks showing
an average reduction in cache latency of about 9% and the SPECFP2006 bench-
marks about 12.5%.

Example Which is more important for floating-point programs: two-way set associativity or
hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KiB data caches: 5.2% for
floating-point programs with a direct-mapped cache, 4.9% for the programs with
a two-way set associative cache, 3.5% for integer programs with a direct-mapped
cache, and 3.2% for integer programs with a two-way set associative cache. Assume
the miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

Answer For floating-point programs, the average memory stall times are

Miss rateDM�Miss penalty¼ 5:2%�10¼ 0:52

Miss rate2-way�Miss penalty¼ 4:9%�10¼ 0:49

The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. Figure 2.11 caption indicates that a hit under
one miss reduces the average data cache access latency for floating-point programs
to 87.5% of a blocking cache. Therefore, for floating-point programs, the
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direct-mapped data cache supporting one hit under one miss gives better perfor-
mance than a two-way set-associative cache that blocks on a miss.

For integer programs, the calculation is

Miss rateDM�Miss penalty¼ 3:5%�10¼ 0:35

Miss rate2-way�Miss penalty¼ 3:2%�10¼ 0:32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction in access latency when allow-
ing a hit under one miss is 9%, making the two choices about equal.

The real difficulty with performance evaluation of nonblocking caches is that a
cache miss does not necessarily stall the processor. In this case, it is difficult to
judge the impact of any single miss and thus to calculate the average memory
access time. The effective miss penalty is not the sum of the misses but the
nonoverlapped time that the processor is stalled. The benefit of nonblocking caches
is complex, as it depends upon the miss penalty when there are multiple misses, the
memory reference pattern, and how many instructions the processor can execute
with a miss outstanding.

In general, out-of-order processors are capable of hiding much of the miss
penalty of an L1 data cache miss that hits in the L2 cache but are not capable
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Figure 2.11 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2,
or 64 hits under a cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right)
benchmarks. The data memory systemmodeled after the Intel i7 consists of a 32 KiB L1
cache with a four-cycle access latency. The L2 cache (shared with instructions) is 256 KiB
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caches are eight-way set associative and have a 64-byte block size. Allowing one hit
under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5%
for the floating point. Allowing a second hit improves these results to 10% and 16%,
and allowing 64 results in little additional improvement.
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of hiding a significant fraction of a lower-level cache miss. Deciding how many
outstanding misses to support depends on a variety of factors:

■ The temporal and spatial locality in the miss stream, which determines whether
a miss can initiate a new access to a lower-level cache or to memory.

■ The bandwidth of the responding memory or cache.

■ To allow more outstanding misses at the lowest level of the cache (where the
miss time is the longest) requires supporting at least that many misses at a
higher level, because the miss must initiate at the highest level cache.

■ The latency of the memory system.

The following simplified example illustrates the key idea.

Example Assume a main memory access time of 36 ns and a memory system capable of a
sustained transfer rate of 16 GiB/s. If the block size is 64 bytes, what is themaximum
number of outstanding misses we need to support assuming that we can maintain the
peak bandwidth given the request stream and that accesses never conflict. If the prob-
ability of a reference colliding with one of the previous four is 50%, and we assume
that the access has to wait until the earlier access completes, estimate the number of
maximum outstanding references. For simplicity, ignore the time between misses.

Answer In the first case, assuming that we can maintain the peak bandwidth, the memory
system can support (16�10)9/64¼250 million references per second. Because
each reference takes 36 ns, we can support 250�106�36�10�9¼9 references.
If the probability of a collision is greater than 0, then we need more outstanding ref-
erences, because we cannot start work on those colliding references; the memory
systemneedsmore independent references, not fewer! To approximate, we can sim-
ply assume that half the memory references do not have to be issued to the memory.
This means that we must support twice as many outstanding references, or 18.

In Li, Chen, Brockman, and Jouppi’s study, they found that the reduction in
CPI for the integer programs was about 7% for one hit under miss and about
12.7% for 64. For the floating-point programs, the reductions were 12.7% for
one hit under miss and 17.8% for 64. These reductions track fairly closely the
reductions in the data cache access latency shown in Figure 2.11.

Implementing a Nonblocking Cache

Although nonblocking caches have the potential to improve performance, they are
nontrivial to implement. Two initial types of challenges arise: arbitrating conten-
tion between hits and misses, and tracking outstanding misses so that we know
when loads or stores can proceed. Consider the first problem. In a blocking cache,
misses cause the processor to stall and no further accesses to the cache will occur
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until the miss is handled. In a nonblocking cache, however, hits can collide with
misses returning from the next level of the memory hierarchy. If we allow multiple
outstanding misses, which almost all recent processors do, it is even possible for
misses to collide. These collisions must be resolved, usually by first giving priority
to hits over misses, and second by ordering colliding misses (if they can occur).

The second problem arises because we need to track multiple outstanding mis-
ses. In a blocking cache, we always know which miss is returning, because only
one can be outstanding. In a nonblocking cache, this is rarely true. At first glance,
you might think that misses always return in order, so that a simple queue could be
kept to match a returning miss with the longest outstanding request. Consider,
however, a miss that occurs in L1. It may generate either a hit or miss in L2; if
L2 is also nonblocking, then the order in which misses are returned to L1 will
not necessarily be the same as the order in which they originally occurred. Multi-
core and other multiprocessor systems that have nonuniform cache access times
also introduce this complication.

When a miss returns, the processor must know which load or store caused the
miss, so that instruction can now go forward; and it must know where in the cache
the data should be placed (as well as the setting of tags for that block). In recent
processors, this information is kept in a set of registers, typically called the Miss
Status Handling Registers (MSHRs). If we allow n outstanding misses, there will
be n MSHRs, each holding the information about where a miss goes in the cache
and the value of any tag bits for that miss, as well as the information indicating
which load or store caused the miss (in the next chapter, you will see how this
is tracked). Thus, when amiss occurs, we allocate anMSHR for handling that miss,
enter the appropriate information about the miss, and tag the memory request with
the index of the MSHR. The memory system uses that tag when it returns the data,
allowing the cache system to transfer the data and tag information to the appropri-
ate cache block and “notify” the load or store that generated the miss that the data is
now available and that it can resume operation. Nonblocking caches clearly require
extra logic and thus have some cost in energy. It is difficult, however, to assess
their energy costs exactly because they may reduce stall time, thereby decreasing
execution time and resulting energy consumption.

In addition to the preceding issues, multiprocessor memory systems, whether
within a single chip or on multiple chips, must also deal with complex implemen-
tation issues related tomemory coherency and consistency. Also, because cachemis-
ses are no longer atomic (because the request and response are split and may be
interleaved among multiple requests), there are possibilities for deadlock. For the
interested reader, Section I.7 in online Appendix I deals with these issues in detail.

Fifth Optimization: Critical Word First and
Early Restart to Reduce Miss Penalty

This technique is based on the observation that the processor normally needs just
one word of the block at a time. This strategy is impatience: don’t wait for the full
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block to be loaded before sending the requested word and restarting the processor.
Here are two specific strategies:

■ Critical word first—Request the missed word first from memory and send it to
the processor as soon as it arrives; let the processor continue execution while
filling the rest of the words in the block.

■ Early restart—Fetch the words in normal order, but as soon as the requested
word of the block arrives, send it to the processor and let the processor continue
execution.

Generally, these techniques only benefit designs with large cache blocks
because the benefit is low unless blocks are large. Note that caches normally
continue to satisfy accesses to other blocks while the rest of the block is
being filled.

However, given spatial locality, there is a good chance that the next reference is
to the rest of the block. Just as with nonblocking caches, the miss penalty is not
simple to calculate. When there is a second request in critical word first, the effec-
tive miss penalty is the nonoverlapped time from the reference until the second
piece arrives. The benefits of critical word first and early restart depend on the size
of the block and the likelihood of another access to the portion of the block that has
not yet been fetched. For example, for SPECint2006 running on the i7 6700, which
uses early restart and critical word first, there is more than one reference made to a
block with an outstanding miss (1.23 references on average with a range from 0.5
to 3.0). We explore the performance of the i7 memory hierarchy in more detail in
Section 2.6.

Sixth Optimization: Merging Write Buffer
to Reduce Miss Penalty

Write-through caches rely on write buffers, as all stores must be sent to the next
lower level of the hierarchy. Even write-back caches use a simple buffer when
a block is replaced. If the write buffer is empty, the data and the full address
are written in the buffer, and the write is finished from the processor’s perspective;
the processor continues working while the write buffer prepares to write the word
to memory. If the buffer contains other modified blocks, the addresses can be
checked to see if the address of the new data matches the address of a valid write
buffer entry. If so, the new data are combined with that entry.Write merging is the
name of this optimization. The Intel Core i7, among many others, uses write
merging.

If the buffer is full and there is no address match, the cache (and processor)
must wait until the buffer has an empty entry. This optimization uses the memory
more efficiently because multiword writes are usually faster than writes performed
one word at a time. Skadron and Clark (1997) found that even a merging four-entry
write buffer generated stalls that led to a 5%–10% performance loss.
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The optimization also reduces stalls because of the write buffer being full.
Figure 2.12 shows a write buffer with and without write merging. Assume we
had four entries in the write buffer, and each entry could hold four 64-bit words.
Without this optimization, four stores to sequential addresses would fill the buffer
at one word per entry, even though these four words when merged fit exactly
within a single entry of the write buffer.

Note that input/output device registers are often mapped into the physical
address space. These I/O addresses cannot allow write merging because separate
I/O registers may not act like an array of words in memory. For example, they may
require one address and data word per I/O register rather than use multiword writes
using a single address. These side effects are typically implemented by marking the
pages as requiring nonmerging write through by the caches.
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Figure 2.12 In this illustration of write merging, the write buffer on top does not use
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that wrote multiple words at the same time.)
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Seventh Optimization: Compiler Optimizations
to Reduce Miss Rate

Thus far, our techniques have required changing the hardware. This next technique
reduces miss rates without any hardware changes.

This magical reduction comes from optimized software—the hardware
designer’s favorite solution! The increasing performance gap between processors
and main memory has inspired compiler writers to scrutinize the memory hierarchy
to see if compile time optimizations can improve performance. Once again, research
is split between improvements in instruction misses and improvements in data mis-
ses. The optimizations presented next are found in many modern compilers.

Loop Interchange

Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order in which they are stored. Assuming the arrays do not fit in the
cache, this technique reduces misses by improving spatial locality; reorderingmax-
imizes use of data in a cache block before they are discarded. For example, if x is a
two-dimensional array of size [5000,100] allocated so that x[i,j] and x[i,j
+1] are adjacent (an order called row major because the array is laid out by rows),
then the two pieces of the following code show how the accesses can be optimized:

/* Before */
for (j ¼ 0; j < 100; j ¼ j + 1)

for (i ¼ 0; i < 5000; i ¼ i + 1)
x[i][j] ¼ 2 * x[i][j];

/* After */
for (i ¼ 0; i < 5000; i ¼ i + 1)

for (j ¼ 0; j < 100; j ¼ j + 1)
x[i][j] ¼ 2 * x[i][j];

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next
block. This optimization improves cache performance without affecting the num-
ber of instructions executed.

Blocking

This optimization improves temporal locality to reduce misses. We are again deal-
ing with multiple arrays, with some arrays accessed by rows and some by columns.
Storing the arrays row by row (row major order) or column by column (column
major order) does not solve the problem because both rows and columns are used
in every loop iteration. Such orthogonal accesses mean that transformations such
as loop interchange still leave plenty of room for improvement.
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Instead of operating on entire rows or columns of an array, blocked algorithms
operate on submatrices or blocks. The goal is to maximize accesses to the data
loaded into the cache before the data are replaced. The following code example,
which performs matrix multiplication, helps motivate the optimization:

/* Before */
for (i ¼ 0; i < N; i ¼ i + 1)

for (j ¼ 0; j < N; j ¼ j + 1)
{r ¼ 0;
for (k ¼ 0; k < N; k = k + 1)

r ¼ r + y[i][k]*z[k][j];
x[i][j] ¼ r;

};

The two inner loops read all N-by-N elements of z, read the same N elements in a
row of y repeatedly, and write one row of N elements of x. Figure 2.13 gives a
snapshot of the accesses to the three arrays. A dark shade indicates a recent
access, a light shade indicates an older access, and white means not yet accessed.

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N-by-Nmatrices, then all is well, provided there are no cache
conflicts. If the cache can hold one N-by-Nmatrix and one row of N, then at least
the ith row of y and the array z may stay in the cache. Less than that and misses
may occur for both x and z. In the worst case, there would be 2N3+N2 memory
words accessed for N3 operations.

To ensure that the elements being accessed can fit in the cache, the original
code is changed to compute on a submatrix of size B by B. Two inner loops
now compute in steps of size B rather than the full length of x and z. B is called
the blocking factor. (Assume x is initialized to zero.)
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/* After */
for (jj ¼ 0; jj < N; jj ¼ jj + B)
for (kk ¼ 0; kk < N; kk ¼ kk + B)
for (i ¼ 0; i < N; i ¼ i + 1)

for (j ¼ jj; j < min(jj + B,N); j ¼ j + 1)
{r ¼ 0;
for (k ¼ kk; k < min(kk + B,N); k ¼ k + 1)

r ¼ r + y[i][k]*z[k][j];
x[i][j] = x[i][j] + r;

};

Figure 2.14 illustrates the accesses to the three arrays using blocking. Looking
only at capacity misses, the total number of memory words accessed is 2N3/B+N2.
This total is an improvement by an approximate factor of B. Therefore blocking
exploits a combination of spatial and temporal locality, because y benefits from
spatial locality and z benefits from temporal locality. Although our example uses
a square block (BxB), we could also use a rectangular block, which would be nec-
essary if the matrix were not square.

Although we have aimed at reducing cache misses, blocking can also be used to
help register allocation. By taking a small blocking size such that the block can be
held in registers, we can minimize the number of loads and stores in the program.

As we shall see in Section 4.8 of Chapter 4, cache blocking is absolutely nec-
essary to get good performance from cache-based processors running applications
using matrices as the primary data structure.

Eighth Optimization: Hardware Prefetching of Instructions
and Data to Reduce Miss Penalty or Miss Rate

Nonblocking caches effectively reduce the miss penalty by overlapping execution
with memory access. Another approach is to prefetch items before the processor
requests them. Both instructions and data can be prefetched, either directly into
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Figure 2.14 The age of accesses to the arrays x, y, and z when B53. Note that, in contrast to Figure 2.13, a smaller
number of elements is accessed.
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the caches or into an external buffer that can be more quickly accessed than main
memory.

Instructionprefetch is frequently done in hardware outside of the cache. Typically,
the processor fetches two blocks on a miss: the requested block and the next consec-
utive block. The requested block is placed in the instruction cachewhen it returns, and
the prefetched block is placed in the instruction stream buffer. If the requested block is
present in the instruction stream buffer, the original cache request is canceled, the
block is read from the stream buffer, and the next prefetch request is issued.

A similar approach can be applied to data accesses (Jouppi, 1990). Palacharla
and Kessler (1994) looked at a set of scientific programs and considered multiple
stream buffers that could handle either instructions or data. They found that eight
stream buffers could capture 50%–70% of all misses from a processor with two
64 KiB four-way set associative caches, one for instructions and the other for data.

The Intel Core i7 supports hardware prefetching into both L1 and L2 with the
most common case of prefetching being accessing the next line. Some earlier Intel
processors used more aggressive hardware prefetching, but that resulted in reduced
performance for some applications, causing some sophisticated users to turn off the
capability.

Figure 2.15 shows the overall performance improvement for a subset of
SPEC2000 programs when hardware prefetching is turned on. Note that this figure
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includes only 2 of 12 integer programs, while it includes the majority of the
SPECCPU floating-point programs. We will return to our evaluation of prefetch-
ing on the i7 in Section 2.6.

Prefetching relies on utilizing memory bandwidth that otherwise would be
unused, but if it interferes with demand misses, it can actually lower performance.
Help from compilers can reduce useless prefetching. When prefetching works
well, its impact on power is negligible. When prefetched data are not used
or useful data are displaced, prefetching will have a very negative impact
on power.

Ninth Optimization: Compiler-Controlled Prefetching
to Reduce Miss Penalty or Miss Rate

An alternative to hardware prefetching is for the compiler to insert prefetch instruc-
tions to request data before the processor needs it. There are two flavors of
prefetch:

■ Register prefetch loads the value into a register.

■ Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting; that is, the address does or does
not cause an exception for virtual address faults and protection violations. Using
this terminology, a normal load instruction could be considered a “faulting register
prefetch instruction.”Nonfaulting prefetches simply turn into no-ops if they would
normally result in an exception, which is what we want.

The most effective prefetch is “semantically invisible” to a program: it doesn’t
change the contents of registers and memory, and it cannot cause virtual memory
faults. Most processors today offer nonfaulting cache prefetches. This section
assumes nonfaulting cache prefetch, also called nonbinding prefetch.

Prefetching makes sense only if the processor can proceed while prefetching
the data; that is, the caches do not stall but continue to supply instructions and data
while waiting for the prefetched data to return. As you would expect, the data cache
for such computers is normally nonblocking.

Like hardware-controlled prefetching, the goal is to overlap execution with the
prefetching of data. Loops are the important targets because they lend themselves
to prefetch optimizations. If the miss penalty is small, the compiler just unrolls the
loop once or twice, and it schedules the prefetches with the execution. If the miss
penalty is large, it uses software pipelining (see Appendix H) or unrolls many times
to prefetch data for a future iteration.

Issuing prefetch instructions incurs an instruction overhead, however, so com-
pilers must take care to ensure that such overheads do not exceed the benefits.
By concentrating on references that are likely to be cache misses, programs can
avoid unnecessary prefetches while improving average memory access time
significantly.
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Example For the following code, determine which accesses are likely to cause data cache
misses. Next, insert prefetch instructions to reduce misses. Finally, calculate the
number of prefetch instructions executed and the misses avoided by prefetching.
Let’s assume we have an 8 KiB direct-mapped data cache with 16-byte blocks, and
it is a write-back cache that does write allocate. The elements of a and b are 8 bytes
long because they are double-precision floating-point arrays. There are 3 rows and
100 columns for a and 101 rows and 3 columns for b. Let’s also assume they are
not in the cache at the start of the program.

for (i ¼ 0; i < 3; i ¼ i + 1)
for (j ¼ 0; j < 100; j ¼ j + 1)

a[i][j] ¼ b[j][0] * b[j + 1][0];

Answer The compiler will first determine which accesses are likely to cause cache misses;
otherwise, we will waste time on issuing prefetch instructions for data that would
be hits. Elements of a are written in the order that they are stored in memory, so
a will benefit from spatial locality: The even values of j will miss and the odd
values will hit. Because a has 3 rows and 100 columns, its accesses will lead to
3� (100/2), or 150 misses.

The array b does not benefit from spatial locality because the accesses are not in
the order it is stored. The array b does benefit twice from temporal locality: the
same elements are accessed for each iteration of i, and each iteration of j uses
the same value of b as the last iteration. Ignoring potential conflict misses, the
misses because of b will be for b[j+1][0] accesses when i¼0, and also
the first access to b[j][0] when j¼0. Because j goes from 0 to 99 when
i¼0, accesses to b lead to 100+1, or 101 misses.

Thus this loop will miss the data cache approximately 150 times for a plus 101
times for b, or 251 misses.

To simplify our optimization, we will not worry about prefetching the first
accesses of the loop. These may already be in the cache, or we will pay the miss
penalty of the first few elements of a or b. Nor will we worry about suppressing the
prefetches at the end of the loop that try to prefetch beyond the end of a (a[i]
[100] … a[i][106]) and the end of b (b[101][0] … b[107][0]). If
these were faulting prefetches, we could not take this luxury. Let’s assume that
the miss penalty is so large we need to start prefetching at least, say, seven itera-
tions in advance. (Stated alternatively, we assume prefetching has no benefit until
the eighth iteration.) We underline the changes to the preceding code needed to add
prefetching.

for (j ¼ 0; j < 100; j ¼ j + 1) {
prefetch(b[j + 7][0]);
/* b(j,0) for 7 iterations later */
prefetch(a[0][j + 7]);
/* a(0,j) for 7 iterations later */
a[0][j] ¼ b[j][0] * b[j + 1][0];};
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for (i ¼ 1; i < 3; i ¼ i + 1)
for (j ¼ 0; j < 100; j ¼ j + 1) {

prefetch(a[i][j + 7]);
/* a(i,j) for + 7 iterations */
a[i][j] ¼ b[j][0] * b[j + 1][0];}

This revised code prefetches a[i][7] through a[i][99] and b[7][0]
through b[100][0], reducing the number of nonprefetched misses to

■ 7 misses for elements b[0][0], b[1][0], … , b[6][0] in the first loop

■ 4 misses ([7/2]) for elements a[0][0], a[0][1],… , a[0][6] in the first
loop (spatial locality reduces misses to 1 per 16-byte cache block)

■ 4 misses ([7/2]) for elements a[1][0], a[1][1], … , a[1][6] in the
second loop

■ 4 misses ([7/2]) for elements a[2][0], a[2][1], … , a[2][6] in the
second loop

or a total of 19 nonprefetched misses. The cost of avoiding 232 cache misses is
executing 400 prefetch instructions, likely a good trade-off.

Example Calculate the time saved in the preceding example. Ignore instruction cache misses
and assume there are no conflict or capacity misses in the data cache. Assume that
prefetches can overlap with each other and with cache misses, thereby transferring
at the maximum memory bandwidth. Here are the key loop times ignoring cache
misses: the original loop takes 7 clock cycles per iteration, the first prefetch loop
takes 9 clock cycles per iteration, and the second prefetch loop takes 8 clock cycles
per iteration (including the overhead of the outer for loop). A miss takes 100 clock
cycles.

Answer The original doubly nested loop executes the multiply 3�100 or 300 times. Because
the loop takes 7 clock cycles per iteration, the total is 300�7 or 2100 clock cycles
plus cache misses. Cachemisses add 251�100 or 25,100 clock cycles, giving a total
of 27,200 clock cycles. The first prefetch loop iterates 100 times; at 9 clock cycles
per iteration the total is 900 clock cycles plus cache misses. Now add 11�100 or
1100 clock cycles for cache misses, giving a total of 2000. The second loop executes
2�100 or 200 times, and at 8 clock cycles per iteration, it takes 1600 clock cycles
plus 8�100 or 800 clock cycles for cache misses. This gives a total of 2400 clock
cycles. From the prior example, we know that this code executes 400 prefetch
instructions during the 2000+2400 or 4400 clock cycles to execute these two loops.
If we assume that the prefetches are completely overlapped with the rest of the exe-
cution, then the prefetch code is 27,200/4400, or 6.2 times faster.
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Although array optimizations are easy to understand, modern programs are
more likely to use pointers. Luk and Mowry (1999) have demonstrated that
compiler-based prefetching can sometimes be extended to pointers as well. Of
10 programs with recursive data structures, prefetching all pointers when a node
is visited improved performance by 4%–31% in half of the programs. On the other
hand, the remaining programs were still within 2% of their original performance.
The issue is both whether prefetches are to data already in the cache and whether
they occur early enough for the data to arrive by the time it is needed.

Many processors support instructions for cache prefetch, and high-end proces-
sors (such as the Intel Core i7) often also do some type of automated prefetch in
hardware.

Tenth Optimization: Using HBM to Extend
the Memory Hierarchy

Because most general-purpose processors in servers will likely want more memory
than can be packaged with HBM packaging, it has been proposed that the in-
package DRAMs be used to build massive L4 caches, with upcoming technologies
ranging from 128 MiB to 1 GiB and more, considerably more than current on-chip
L3 caches. Using such large DRAM-based caches raises an issue: where do the
tags reside? That depends on the number of tags. Suppose we were to use a
64B block size; then a 1 GiB L4 cache requires 96 MiB of tags—far more static
memory than exists in the caches on the CPU. Increasing the block size to
4 KiB, yields a dramatically reduced tag store of 256 K entries or less than
1 MiB total storage, which is probably acceptable, given L3 caches of
4–16 MiB or more in next-generation, multicore processors. Such large block
sizes, however, have two major problems.

First, the cache may be used inefficiently when content of many blocks are not
needed; this is called the fragmentation problem, and it also occurs in virtual mem-
ory systems. Furthermore, transferring such large blocks is inefficient if much of
the data is unused. Second, because of the large block size, the number of distinct
blocks held in the DRAM cache is much lower, which can result in more misses,
especially for conflict and consistency misses.

One partial solution to the first problem is to add sublocking. Subblocking
allow parts of the block to be invalid, requiring that they be fetched on a miss. Sub-
blocking, however, does nothing to address the second problem.

The tag storage is the major drawback for using a smaller block size. One pos-
sible solution for that difficulty is to store the tags for L4 in the HBM.At first glance
this seems unworkable, because it requires two accesses to DRAM for each L4
access: one for the tags and one for the data itself. Because of the long access time
for random DRAM accesses, typically 100 or more processor clock cycles, such an
approach had been discarded. Loh andHill (2011) proposed a clever solution to this
problem: place the tags and the data in the same row in the HBM SDRAM.
Although opening the row (and eventually closing it) takes a large amount of time,
the CAS latency to access a different part of the row is about one-third the new row
access time. Thus we can access the tag portion of the block first, and if it is a hit,
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then use a column access to choose the correct word. Loh and Hill (L-H) have pro-
posed organizing the L4 HBM cache so that each SDRAM row consists of a set of
tags (at the head of the block) and 29 data segments, making a 29-way set associa-
tive cache. When L4 is accessed, the appropriate row is opened and the tags are
read; a hit requires one more column access to get the matching data.

Qureshi and Loh (2012) proposed an improvement called an alloy cache that
reduces the hit time. An alloy cache molds the tag and data together and uses a
direct mapped cache structure. This allows the L4 access time to be reduced to
a single HBM cycle by directly indexing the HBM cache and doing a burst transfer
of both the tag and data. Figure 2.16 shows the hit latency for the alloy cache, the
L-H scheme, and SRAM based tags. The alloy cache reduces hit time by more than
a factor of 2 versus the L-H scheme, in return for an increase in the miss rate by a
factor of 1.1–1.2. The choice of benchmarks is explained in the caption.

Unfortunately, in both schemes, misses require two full DRAM accesses: one
to get the initial tag and a follow-on access to the main memory (which is even
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Figure 2.16 Average hit time latency in clock cycles for the L-H scheme, a currently-impractical scheme using
SRAM for the tags, and the alloy cache organization. In the SRAM case, we assume the SRAM is accessible in
the same time as L3 and that it is checked before L4 is accessed. The average hit latencies are 43 (alloy cache),
67 (SRAM tags), and 107 (L-H). The 10 SPECCPU2006 benchmarks used here are the most memory-intensive ones;
each of them would run twice as fast if L3 were perfect.
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slower). If we could speed up the miss detection, we could reduce the miss time.
Two different solutions have been proposed to solve this problem: one uses a map
that keeps track of the blocks in the cache (not the location of the block, just
whether it is present); the other uses a memory access predictor that predicts likely
misses using history prediction techniques, similar to those used for global branch
prediction (see the next chapter). It appears that a small predictor can predict likely
misses with high accuracy, leading to an overall lower miss penalty.

Figure 2.17 shows the speedup obtained on SPECrate for the memory-
intensive benchmarks used in Figure 2.16. The alloy cache approach outperforms
the LH scheme and even the impractical SRAM tags, because the combination of a
fast access time for the miss predictor and good prediction results lead to a shorter
time to predict a miss, and thus a lower miss penalty. The alloy cache performs
close to the Ideal case, an L4 with perfect miss prediction and minimal hit time.
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Figure 2.17 Performance speedup running the SPECrate benchmark for the LH scheme, an SRAM tag scheme,
and an ideal L4 (Ideal); a speedup of 1 indicates no improvement with the L4 cache, and a speedup of 2 would
be achievable if L4 were perfect and took no access time. The 10 memory-intensive benchmarks are used with
each benchmark run eight times. The accompanying miss prediction scheme is used. The Ideal case assumes that
only the 64-byte block requested in L4 needs to be accessed and transferred and that prediction accuracy for L4
is perfect (i.e., all misses are known at zero cost).
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HBM is likely to have widespread use in a variety of different configurations,
from containing the entire memory system for some high-performance, special-
purpose systems to use as an L4 cache for larger server configurations.

Cache Optimization Summary

The techniques to improve hit time, bandwidth, miss penalty, and miss rate gen-
erally affect the other components of the average memory access equation as well
as the complexity of the memory hierarchy. Figure 2.18 summarizes these tech-
niques and estimates the impact on complexity, with + meaning that the technique

Technique
Hit
time

Band-
width

Miss
penalty

Miss
rate

Power
consumption

Hardware cost/
complexity Comment

Small and simple
caches

+ – + 0 Trivial; widely used

Way-predicting caches + + 1 Used in Pentium 4

Pipelined & banked
caches

– + 1 Widely used

Nonblocking caches + + 3 Widely used

Critical word first and
early restart

+ 2 Widely used

Merging write buffer + 1 Widely used with write
through

Compiler techniques to
reduce cache misses

+ 0 Software is a challenge, but
many compilers handle
common linear algebra
calculations

Hardware prefetching
of instructions and data

+ + – 2 instr.,
3 data

Most provide prefetch
instructions; modern high-
end processors also
automatically prefetch in
hardware

Compiler-controlled
prefetching

+ + 3 Needs nonblocking cache;
possible instruction
overhead; in many CPUs

HBM as additional
level of cache

+/– – + + 3 Depends on new packaging
technology. Effects depend
heavily on hit rate
improvements

Figure 2.18 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor,�means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest
and 3 being a challenge.
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improves the factor, � meaning it hurts that factor, and blank meaning it has no
impact. Generally, no technique helps more than one category.

2.4 Virtual Memory and Virtual Machines

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine. We explain these notions through the idea of a virtual machine
monitor (VMM)… a VMM has three essential characteristics. First, the VMM
provides an environment for programs which is essentially identical with
the original machine; second, programs run in this environment show at worst
only minor decreases in speed; and last, the VMM is in complete control of
system resources.

Gerald Popek and Robert Goldberg,
“Formal requirements for virtualizable third generation architectures,”

Communications of the ACM (July 1974).

Section B.4 in Appendix B describes the key concepts in virtual memory. Recall
that virtual memory allows the physical memory to be treated as a cache of sec-
ondary storage (which may be either disk or solid state). Virtual memory moves
pages between the two levels of the memory hierarchy, just as caches move blocks
between levels. Likewise, TLBs act as caches on the page table, eliminating the
need to do a memory access every time an address is translated. Virtual memory
also provides separation between processes that share one physical memory but
have separate virtual address spaces. Readers should ensure that they understand
both functions of virtual memory before continuing.

In this section, we focus on additional issues in protection and privacy between
processes sharing the same processor. Security and privacy are two of the most
vexing challenges for information technology in 2017. Electronic burglaries, often
involving lists of credit card numbers, are announced regularly, and it’s widely
believed that many more go unreported. Of course, such problems arise from pro-
gramming errors that allow a cyberattack to access data it should be unable to
access. Programming errors are a fact of life, and with modern complex software
systems, they occur with significant regularity. Therefore both researchers and
practitioners are looking for improved ways to make computing systems more
secure. Although protecting information is not limited to hardware, in our view
real security and privacy will likely involve innovation in computer architecture
as well as in systems software.

This section starts with a review of the architecture support for protecting pro-
cesses from each other via virtual memory. It then describes the added protection
provided by virtual machines, the architecture requirements of virtual machines,
and the performance of a virtual machine. As we will see in Chapter 6, virtual
machines are a foundational technology for cloud computing.
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Protection via Virtual Memory

Page-based virtual memory, including a TLB that caches page table entries, is the
primary mechanism that protects processes from each other. Sections B.4 and B.5
in Appendix B review virtual memory, including a detailed description of protec-
tion via segmentation and paging in the 80x86. This section acts as a quick review;
if it’s too quick, please refer to the denoted Appendix B sections.

Multiprogramming, where several programs running concurrently share a
computer, has led to demands for protection and sharing among programs and
to the concept of a process. Metaphorically, a process is a program’s breathing
air and living space—that is, a running program plus any state needed to continue
running it. At any instant, it must be possible to switch from one process to another.
This exchange is called a process switch or context switch.

The operating system and architecture join forces to allow processes to share the
hardware yet not interfere with each other. To do this, the architecture must limit
what a process can access when running a user process yet allow an operating sys-
tem process to access more. At a minimum, the architecture must do the following:

1. Provide at least two modes, indicating whether the running process is a user
process or an operating system process. This latter process is sometimes called
a kernel process or a supervisor process.

2. Provide a portion of the processor state that a user process can use but not write.
This state includes auser/supervisormodebit, anexceptionenable/disablebit, and
memory protection information. Users are prevented from writing this state
because theoperating systemcannot control user processes if users cangive them-
selves supervisor privileges, disable exceptions, or change memory protection.

3. Provide mechanisms whereby the processor can go from user mode to super-
visor mode and vice versa. The first direction is typically accomplished by a
system call, implemented as a special instruction that transfers control to a ded-
icated location in supervisor code space. The PC is saved from the point of the
system call, and the processor is placed in supervisor mode. The return to user
mode is like a subroutine return that restores the previous user/supervisor mode.

4. Provide mechanisms to limit memory accesses to protect the memory state of a
process without having to swap the process to disk on a context switch.

Appendix A describes several memory protection schemes, but by far the most
popular is adding protection restrictions to each page of virtual memory. Fixed-
sized pages, typically 4 KiB, 16 KiB, or larger, are mapped from the virtual address
space into physical address space via a page table. The protection restrictions are
included in each page table entry. The protection restrictions might determine
whether a user process can read this page, whether a user process can write to this
page, and whether code can be executed from this page. In addition, a process can
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neither read nor write a page if it is not in the page table. Because only the OS can
update the page table, the paging mechanism provides total access protection.

Paged virtual memory means that every memory access logically takes at least
twice as long, with one memory access to obtain the physical address and a second
access to get the data. This cost would be far too dear. The solution is to rely on the
principle of locality; if the accesses have locality, then the address translations for
the accesses must also have locality. By keeping these address translations in a spe-
cial cache, a memory access rarely requires a second access to translate the address.
This special address translation cache is referred to as a TLB.

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page address, protection field, valid
bit, and usually a use bit and a dirty bit. The operating system changes these bits by
changing the value in the page table and then invalidating the corresponding TLB
entry. When the entry is reloaded from the page table, the TLB gets an accurate
copy of the bits.

Assuming the computer faithfully obeys the restrictions on pages and maps vir-
tual addresses to physical addresses, it would seem that we are done. Newspaper
headlines suggest otherwise.

The reason we’re not done is that we depend on the accuracy of the operating
system as well as the hardware. Today’s operating systems consist of tens of mil-
lions of lines of code. Because bugs are measured in number per thousand lines of
code, there are thousands of bugs in production operating systems. Flaws in the OS
have led to vulnerabilities that are routinely exploited.

This problem and the possibility that not enforcing protection could be much
more costly than in the past have led some to look for a protection model with a
much smaller code base than the full OS, such as virtual machines.

Protection via Virtual Machines

An idea related to virtual memory that is almost as old are virtual machines (VMs).
They were first developed in the late 1960s, and they have remained an important
part of mainframe computing over the years. Although largely ignored in the
domain of single-user computers in the 1980s and 1990s, they have recently gained
popularity because of

■ the increasing importance of isolation and security in modern systems;

■ the failures in security and reliability of standard operating systems;

■ the sharing of a single computer among many unrelated users, such as in a data
center or cloud; and

■ the dramatic increases in the raw speed of processors, which make the overhead
of VMs more acceptable.

The broadest definition of VMs includes basically all emulation methods that
provide a standard software interface, such as the Java VM. We are interested in
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VMs that provide a complete system-level environment at the binary instruction set
architecture (ISA) level. Most often, the VM supports the same ISA as the under-
lying hardware; however, it is also possible to support a different ISA, and such
approaches are often employed when migrating between ISAs in order to allow
software from the departing ISA to be used until it can be ported to the new
ISA. Our focus here will be on VMs where the ISA presented by the VM and
the underlying hardware match. Such VMs are called (operating) system virtual
machines. IBM VM/370, VMware ESX Server, and Xen are examples. They pre-
sent the illusion that the users of a VM have an entire computer to themselves,
including a copy of the operating system. A single computer runs multiple VMs
and can support a number of different operating systems (OSes). On a conventional
platform, a single OS “owns” all the hardware resources, but with a VM, multiple
OSes all share the hardware resources.

The software that supports VMs is called a virtual machine monitor (VMM) or
hypervisor; the VMM is the heart of virtual machine technology. The underlying
hardware platform is called the host, and its resources are shared among the guest
VMs. The VMM determines how to map virtual resources to physical resources: A
physical resource may be time-shared, partitioned, or even emulated in software.
The VMM is much smaller than a traditional OS; the isolation portion of a VMM is
perhaps only 10,000 lines of code.

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs, such as SPECCPU2006, have zero virtualization
overhead because the OS is rarely invoked, so everything runs at native speeds.
Conversely, I/O-intensive workloads generally are also OS-intensive and execute
many system calls (which doing I/O requires) and privileged instructions that can
result in high virtualization overhead. The overhead is determined by the number
of instructions that must be emulated by the VMM and how slowly they are emu-
lated. Therefore, when the guest VMs run the same ISA as the host, as we assume
here, the goal of the architecture and the VMM is to run almost all instructions
directly on the native hardware. On the other hand, if the I/O-intensive workload
is also I/O-bound, the cost of processor virtualization can be completely hidden by
low processor utilization because it is often waiting for I/O.

Although our interest here is in VMs for improving protection, VMs provide
two other benefits that are commercially significant:

1. Managing software—VMs provide an abstraction that can run the complete
software stack, even including old operating systems such as DOS. A typical
deployment might be some VMs running legacy OSes, many running the cur-
rent stable OS release, and a few testing the next OS release.

2. Managing hardware—One reason for multiple servers is to have each applica-
tion running with its own compatible version of the operating system on sep-
arate computers, as this separation can improve dependability. VMs allow
these separate software stacks to run independently yet share hardware, thereby
consolidating the number of servers. Another example is that most newer
VMMs support migration of a running VM to a different computer, either to
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balance load or to evacuate from failing hardware. The rise of cloud computing
has made the ability to swap out an entire VM to another physical processor
increasingly useful.

These two reasons are why cloud-based servers, such as Amazon’s, rely on virtual
machines.

Requirements of a Virtual Machine Monitor

What must a VM monitor do? It presents a software interface to guest software, it
must isolate the state of guests from each other, and it must protect itself from guest
software (including guest OSes). The qualitative requirements are

■ Guest software should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fixed resources shared by multiple VMs.

■ Guest software should not be able to directly change allocation of real system
resources.

To “virtualize” the processor, the VMM must control just about everything—
access to privileged state, address translation, I/O, exceptions and interrupts—even
though the guest VM and OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMMwould suspend the cur-
rently running guest VM, save its state, handle the interrupt, determine which guest
VM to run next, and then load its state. Guest VMs that rely on a timer interrupt are
provided with a virtual timer and an emulated timer interrupt by the VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of any
privileged instruction will be handled by the VMM. The basic requirements of sys-
tem virtual machines are almost identical to those for the previously mentioned
paged virtual memory:

■ At least two processor modes, system and user.

■ A privileged subset of instructions that is available only in systemmode, result-
ing in a trap if executed in user mode. All system resources must be controllable
only via these instructions.

Instruction Set Architecture Support for Virtual Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to reduce
both the number of instructions that must be executed by a VMM and how long it
takes to emulate them. An architecture that allows the VM to execute directly on
the hardware earns the title virtualizable, and the IBM 370 architecture proudly
bears that label.
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However, because VMs have been considered for desktop and PC-based server
applications only fairly recently, most instruction sets were created without virtua-
lization in mind. These culprits include 80x86 and most of the original RISC archi-
tectures, although the latter had fewer issues than the 80x86 architecture. Recent
additions to the x86 architecture have attempted to remedy the earlier shortcom-
ings, and RISC V explicitly includes support for virtualization.

Because the VMMmust ensure that the guest system interacts only with virtual
resources, a conventional guest OS runs as a user mode program on top of the
VMM. Then, if a guest OS attempts to access or modify information related to
hardware resources via a privileged instruction—for example, reading or writing
the page table pointer—it will trap to the VMM. The VMM can then effect the
appropriate changes to corresponding real resources.

Therefore, if any instruction that tries to read or write such sensitive informa-
tion traps when executed in user mode, the VMM can intercept it and support a
virtual version of the sensitive information as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that they
behave correctly when executed by a guest OS, thereby increasing the complexity
of the VMM and reducing the performance of running the VM. Sections 2.5 and
2.7 give concrete examples of problematic instructions in the 80x86 architecture.
One attractive extension allows the VM and the OS to operate at different privilege
levels, each of which is distinct from the user level. By introducing an additional
privilege level, some OS operations—e.g., those that exceed the permissions
granted to a user program but do not require intervention by the VMM (because
they cannot affect any other VM)—can execute directly without the overhead of
trapping and invoking the VMM. The Xen design, which we examine shortly,
makes use of three privilege levels.

Impact of Virtual Machines on Virtual Memory and I/O

Another challenge is virtualization of virtual memory, as each guest OS in every
VMmanages its own set of page tables. To make this work, the VMM separates the
notions of real and physical memory (which are often treated synonymously) and
makes real memory a separate, intermediate level between virtual memory and
physical memory. (Some use the terms virtual memory, physical memory, and
machine memory to name the same three levels.) The guest OS maps virtual mem-
ory to real memory via its page tables, and the VMM page tables map the guests’
real memory to physical memory. The virtual memory architecture is specified
either via page tables, as in IBM VM/370 and the 80x86, or via the TLB structure,
as in many RISC architectures.

Rather than pay an extra level of indirection on every memory access, the
VMM maintains a shadow page table that maps directly from the guest virtual
address space to the physical address space of the hardware. By detecting all mod-
ifications to the guest’s page table, the VMM can ensure that the shadow page table
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entries being used by the hardware for translations correspond to those of the guest
OS environment, with the exception of the correct physical pages substituted for
the real pages in the guest tables. Therefore the VMMmust trap any attempt by the
guest OS to change its page table or to access the page table pointer. This is com-
monly done by write protecting the guest page tables and trapping any access to the
page table pointer by a guest OS. As previously noted, the latter happens naturally
if accessing the page table pointer is a privileged operation.

The IBM 370 architecture solved the page table problem in the 1970s with an
additional level of indirection that is managed by the VMM. The guest OS keeps its
page tables as before, so the shadow pages are unnecessary. AMD has implemen-
ted a similar scheme for its 80x86.

To virtualize the TLB in many RISC computers, the VMM manages the real
TLB and has a copy of the contents of the TLB of each guest VM. To pull this off,
any instructions that access the TLBmust trap. TLBs with Process ID tags can sup-
port a mix of entries from different VMs and the VMM, thereby avoiding flushing
of the TLB on a VM switch. Meanwhile, in the background, the VMM supports a
mapping between the VMs’ virtual Process IDs and the real Process IDs. Section
L.7 of online Appendix L describes additional details.

The final portion of the architecture to virtualize is I/O. This is by far the most
difficult part of system virtualization because of the increasing number of I/O
devices attached to the computer and the increasing diversity of I/O device types.
Another difficulty is the sharing of a real device among multiple VMs, and yet
another comes from supporting the myriad of device drivers that are required, espe-
cially if different guest OSes are supported on the same VM system. The VM illu-
sion can be maintained by giving each VM generic versions of each type of I/O
device driver, and then leaving it to the VMM to handle real I/O.

The method for mapping a virtual-to-physical I/O device depends on the type
of device. For example, physical disks are normally partitioned by the VMM to
create virtual disks for guest VMs, and the VMMmaintains the mapping of virtual
tracks and sectors to the physical ones. Network interfaces are often shared
between VMs in very short time slices, and the job of the VMM is to keep track
of messages for the virtual network addresses to ensure that guest VMs receive
only messages intended for them.

Extending the Instruction Set for Efficient Virtualization
and Better Security

In the past 5–10 years, processor designers, including those at AMD and Intel (and
to a lesser extent ARM), have introduced instruction set extensions to more effi-
ciently support virtualization. Two primary areas of performance improvement
have been in handling page tables and TLBs (the cornerstone of virtual memory)
and in I/O, specifically handling interrupts and DMA. Virtual memory perfor-
mance is enhanced by avoiding unnecessary TLB flushes and by using the nested
page table mechanism, employed by IBM decades earlier, rather than a complete
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set of shadow page tables (see Section L.7 in Appendix L). To improve I/O per-
formance, architectural extensions are added that allow a device to directly use
DMA to move data (eliminating a potential copy by the VMM) and allow device
interrupts and commands to be handled by the guest OS directly. These extensions
show significant performance gains in applications that are intensive either in their
memory-management aspects or in the use of I/O.

With the broad adoption of public cloud systems for running critical applica-
tions, concerns have risen about security of data in such applications. Any mali-
cious code that is able to access a higher privilege level than data that must be
kept secure compromises the system. For example, if you are running a credit card
processing application, you must be absolutely certain that malicious users cannot
get access to the credit card numbers, even when they are using the same hardware
and intentionally attack the OS or even the VMM. Through the use of virtualiza-
tion, we can prevent accesses by an outside user to the data in a different VM, and
this provides significant protection compared to a multiprogrammed environment.
That might not be enough, however, if the attacker compromises the VMM or can
find out information by observations in another VMM. For example, suppose the
attacker penetrates the VMM; the attacker can then remap memory so as to access
any portion of the data.

Alternatively, an attack might rely on a Trojan horse (see Appendix B) intro-
duced into the code that can access the credit cards. Because the Trojan horse is
running in the same VM as the credit card processing application, the Trojan horse
only needs to exploit an OS flaw to gain access to the critical data. Most cyberat-
tacks have used some form of Trojan horse, typically exploiting an OS flaw, that
either has the effect of returning access to the attacker while leaving the CPU still in
privilege mode or allows the attacker to upload and execute code as if it were part
of the OS. In either case, the attacker obtains control of the CPU and, using the
higher privilege mode, can proceed to access anything within the VM. Note that
encryption alone does not prevent this attacker. If the data in memory is unen-
crypted, which is typical, then the attacker has access to all such data. Furthermore,
if the attacker knows where the encryption key is stored, the attacker can freely
access the key and then access any encrypted data.

More recently, Intel introduced a set of instruction set extensions, called the
software guard extensions (SGX), to allow user programs to create enclaves, por-
tions of code and data that are always encrypted and decrypted only on use and
only with the key provided by the user code. Because the enclave is always
encrypted, standard OS operations for virtual memory or I/O can access the
enclave (e.g., to move a page) but cannot extract any information. For an enclave
to work, all the code and all the data required must be part of the enclave. Although
the topic of finer-grained protection has been around for decades, it has gotten little
traction before because of the high overhead and because other solutions that are
more efficient and less intrusive have been acceptable. The rise of cyberattacks and
the amount of confidential information online have led to a reexamination of tech-
niques for improving such fine-grained security. Like Intel’s SGX, IBM and
AMD’s recent processors support on-the-fly encryption of memory.
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An Example VMM: The Xen Virtual Machine

Early in the development of VMs, a number of inefficiencies became apparent. For
example, a guest OS manages its virtual-to-real page mapping, but this mapping is
ignored by the VMM, which performs the actual mapping to physical pages. In
other words, a significant amount of wasted effort is expended just to keep the
guest OS happy. To reduce such inefficiencies, VMM developers decided that
it may be worthwhile to allow the guest OS to be aware that it is running on a
VM. For example, a guest OS could assume a real memory as large as its virtual
memory so that no memory management is required by the guest OS.

Allowing small modifications to the guest OS to simplify virtualization is
referred to as paravirtualization, and the open source Xen VMM is a good exam-
ple. The Xen VMM, which is used in Amazon’s web services data centers, pro-
vides a guest OS with a virtual machine abstraction that is similar to the
physical hardware, but drops many of the troublesome pieces. For example, to
avoid flushing the TLB, Xenmaps itself into the upper 64MiB of the address space
of each VM. Xen allows the guest OS to allocate pages, checking only to be sure
the guest OS does not violate protection restrictions. To protect the guest OS from
the user programs in the VM, Xen takes advantage of the four protection levels
available in the 80x86. The Xen VMM runs at the highest privilege level (0),
the guest OS runs at the next level (1), and the applications run at the lowest priv-
ilege level (3). Most OSes for the 80x86 keep everything at privilege levels 0 or 3.

For subsetting to work properly, Xen modifies the guest OS to not use prob-
lematic portions of the architecture. For example, the port of Linux to Xen changes
about 3000 lines, or about 1% of the 80x86-specific code. These changes, how-
ever, do not affect the application binary interfaces of the guest OS.

To simplify the I/O challenge of VMs, Xen assigned privileged virtual
machines to each hardware I/O device. These special VMs are called driver
domains. (Xen calls VMs “domains.”) Driver domains run the physical device
drivers, although interrupts are still handled by the VMM before being sent to
the appropriate driver domain. Regular VMs, called guest domains, run simple vir-
tual device drivers that must communicate with the physical device drivers in the
driver domains over a channel to access the physical I/O hardware. Data are sent
between guest and driver domains by page remapping.

2.5 Cross-Cutting Issues: The Design of Memory Hierarchies

This section describes four topics discussed in other chapters that are fundamental
to memory hierarchies.

Protection, Virtualization, and Instruction Set Architecture

Protection is a joint effort of architecture and operating systems, but architects had
to modify some awkward details of existing instruction set architectures when vir-
tual memory became popular. For example, to support virtual memory in the IBM
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370, architects had to change the successful IBM 360 instruction set architecture
that had been announced just 6 years before. Similar adjustments are being made
today to accommodate virtual machines.

For example, the 80x86 instruction POPF loads the flag registers from the top
of the stack in memory. One of the flags is the Interrupt Enable (IE) flag. Until
recent changes to support virtualization, running the POPF instruction in user
mode, rather than trapping it, simply changed all the flags except IE. In system
mode, it does change the IE flag. Because a guest OS runs in user mode inside
a VM, this was a problem, as the OS would expect to see a changed IE. Extensions
of the 80x86 architecture to support virtualization eliminated this problem.

Historically, IBM mainframe hardware and VMM took three steps to improve
performance of virtual machines:

1. Reduce the cost of processor virtualization.

2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without
invoking VMM.

IBM is still the gold standard of virtual machine technology. For example, an IBM
mainframe ran thousands of Linux VMs in 2000, while Xen ran 25 VMs in 2004
(Clark et al., 2004). Recent versions of Intel and AMD chipsets have added special
instructions to support devices in a VM tomask interrupts at lower levels from each
VM and to steer interrupts to the appropriate VM.

Autonomous Instruction Fetch Units

Many processors with out-of-order execution and even some with simply deep
pipelines decouple the instruction fetch (and sometimes initial decode), using a
separate instruction fetch unit (see Chapter 3). Typically, the instruction fetch unit
accesses the instruction cache to fetch an entire block before decoding it into indi-
vidual instructions; such a technique is particularly useful when the instruction
length varies. Because the instruction cache is accessed in blocks, it no longer
makes sense to compare miss rates to processors that access the instruction cache
once per instruction. In addition, the instruction fetch unit may prefetch blocks into
the L1 cache; these prefetches may generate additional misses, but may actually
reduce the total miss penalty incurred. Many processors also include data prefetch-
ing, which may increase the data cache miss rate, even while decreasing the total
data cache miss penalty.

Speculation and Memory Access

One of the major techniques used in advanced pipelines is speculation, whereby an
instruction is tentatively executed before the processor knows whether it is really
needed. Such techniques rely on branch prediction, which if incorrect requires that
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the speculated instructions are flushed from the pipeline. There are two separate
issues in a memory system supporting speculation: protection and performance.
With speculation, the processor may generate memory references, which will
never be used because the instructions were the result of incorrect speculation.
Those references, if executed, could generate protection exceptions. Obviously,
such faults should occur only if the instruction is actually executed. In the next
chapter, we will see how such “speculative exceptions” are resolved. Because a
speculative processor may generate accesses to both the instruction and data
caches, and subsequently not use the results of those accesses, speculation may
increase the cache miss rates. As with prefetching, however, such speculation
may actually lower the total cache miss penalty. The use of speculation, like the
use of prefetching, makes it misleading to compare miss rates to those seen in pro-
cessors without speculation, even when the ISA and cache structures are otherwise
identical.

Special Instruction Caches

One of the biggest challenges in superscalar processors is to supply the instruc-
tion bandwidth. For designs that translate the instructions into micro-operations,
such as most recent Arm and i7 processors, instruction bandwidth demands and
branch misprediction penalties can be reduced by keeping a small cache of
recently translated instructions. We explore this technique in greater depth in
the next chapter.

Coherency of Cached Data

Data can be found in memory and in the cache. As long as the processor is the sole
component changing or reading the data and the cache stands between the proces-
sor and memory, there is little danger in the processor seeing the old or stale copy.
As we will see, multiple processors and I/O devices raise the opportunity for copies
to be inconsistent and to read the wrong copy.

The frequency of the cache coherency problem is different for multiprocessors
than for I/O. Multiple data copies are a rare event for I/O—one to be avoided when-
ever possible—but a program running on multiple processors will want to have
copies of the same data in several caches. Performance of a multiprocessor pro-
gram depends on the performance of the system when sharing data.

The I/O cache coherency question is this: where does the I/O occur in the com-
puter—between the I/O device and the cache or between the I/O device and main
memory? If input puts data into the cache and output reads data from the cache,
both I/O and the processor see the same data. The difficulty in this approach is that
it interferes with the processor and can cause the processor to stall for I/O. Input
may also interfere with the cache by displacing some information with new data
that are unlikely to be accessed soon.
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The goal for the I/O system in a computer with a cache is to prevent the stale
data problem while interfering as little as possible. Many systems therefore prefer
that I/O occur directly to main memory, with main memory acting as an I/O buffer.
If a write-through cache were used, then memory would have an up-to-date copy of
the information, and there would be no stale data issue for output. (This benefit is a
reason processors used write through.) However, today write through is usually
found only in first-level data caches backed by an L2 cache that uses write back.

Input requires some extra work. The software solution is to guarantee that no
blocks of the input buffer are in the cache. A page containing the buffer can be
marked as noncachable, and the operating system can always input to such a page.
Alternatively, the operating system can flush the buffer addresses from the cache
before the input occurs. A hardware solution is to check the I/O addresses on input
to see if they are in the cache. If there is a match of I/O addresses in the cache, the
cache entries are invalidated to avoid stale data. All of these approaches can also be
used for output with write-back caches.

Processor cache coherency is a critical subject in the age of multicore proces-
sors, and we will examine it in detail in Chapter 5.

2.6 Putting It All Together: Memory Hierarchies in the
ARM Cortex-A53 and Intel Core i7 6700

This section reveals the ARMCortex-A53 (hereafter called the A53) and Intel Core
i76700 (hereafter called i7) memory hierarchies and shows the performance of
their components on a set of single-threaded benchmarks. We examine the
Cortex-A53 first because it has a simpler memory system; we go into more detail
for the i7, tracing out a memory reference in detail. This section presumes that
readers are familiar with the organization of a two-level cache hierarchy using vir-
tually indexed caches. The basics of such a memory system are explained in detail
in Appendix B, and readers who are uncertain of the organization of such a system
are strongly advised to review the Opteron example in Appendix B. Once they
understand the organization of the Opteron, the brief explanation of the A53 sys-
tem, which is similar, will be easy to follow.

The ARM Cortex-A53

The Cortex-A53 is a configurable core that supports the ARMv8A instruction set
architecture, which includes both 32-bit and 64-bit modes. The Cortex-A53 is
delivered as an IP (intellectual property) core. IP cores are the dominant form
of technology delivery in the embedded, PMD, and related markets; billions of
ARM and MIPS processors have been created from these IP cores. Note that IP
cores are different from the cores in the Intel i7 or AMD Athlon multicores. An
IP core (which may itself be a multicore) is designed to be incorporated with
other logic (thus it is the core of a chip), including application-specific processors
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(such as an encoder or decoder for video), I/O interfaces, and memory interfaces,
and then fabricated to yield a processor optimized for a particular application. For
example, the Cortex-A53 IP core is used in a variety of tablets and smartphones; it
is designed to be highly energy-efficient, a key criteria in battery-based PMDs. The
A53 core is capable of being configured with multiple cores per chip for use in
high-end PMDs; our discussion here focuses on a single core.

Generally, IP cores come in two flavors. Hard cores are optimized for a par-
ticular semiconductor vendor and are black boxes with external (but still on-chip)
interfaces. Hard cores typically allow parametrization only of logic outside the
core, such as L2 cache sizes, and the IP core cannot be modified. Soft cores are
usually delivered in a form that uses a standard library of logic elements. A soft
core can be compiled for different semiconductor vendors and can also be modi-
fied, although extensive modifications are very difficult because of the complexity
of modern-day IP cores. In general, hard cores provide higher performance and
smaller die area, while soft cores allow retargeting to other vendors and can be
more easily modified.

The Cortex-A53 can issue two instructions per clock at clock rates up to
1.3 GHz. It supports both a two-level TLB and a two-level cache; Figure 2.19 sum-
marizes the organization of the memory hierarchy. The critical term is returned
first, and the processor can continue while the miss completes; a memory system
with up to four banks can be supported. For a D-cache of 32 KiB and a page size of
4 KiB, each physical page could map to two different cache addresses; such aliases
are avoided by hardware detection on a miss as in Section B.3 of Appendix B.
Figure 2.20 shows how the 32-bit virtual address is used to index the TLB and
the caches, assuming 32 KiB primary caches and a 1 MiB secondary cache with
16 KiB page size.

Structure Size Organization
Typical miss penalty
(clock cycles)

Instruction MicroTLB 10 entries Fully associative 2

Data MicroTLB 10 entries Fully associative 2

L2 Unified TLB 512 entries 4-way set associative 20

L1 Instruction cache 8–64 KiB 2-way set associative; 64-byte block 13

L1 Data cache 8–64 KiB 2-way set associative; 64-byte block 13

L2 Unified cache 128 KiB to 2 MiB 16-way set associative; LRU 124

Figure 2.19 The memory hierarchy of the Cortex A53 includes multilevel TLBs and caches. A page map cache
keeps track of the location of a physical page for a set of virtual pages; it reduces the L2 TLB miss penalty. The
L1 caches are virtually indexed and physically tagged; both the L1 D cache and L2 use a write-back policy defaulting
to allocate on write. Replacement policy is LRU approximation in all the caches. Miss penalties to L2 are higher if both
a MicroTLB and L1 miss occur. The L2 to main memory bus is 64–128 bits wide, and the miss penalty is larger for the
narrow bus.
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Figure 2.20 The virtual address, physical and data blocks for the ARM Cortex-A53 caches and TLBs, assuming 32-
bit addresses. The top half (A) shows the instruction access; the bottom half (B) shows the data access, including L2.
The TLB (instruction or data) is fully associative each with 10 entries, using a 64 KiB page in this example. The L1 I-
cache is two-way set associative, with 64-byte blocks and 32 KiB capacity; the L1 D-cache is 32 KiB, four-way set asso-
ciative, and 64-byte blocks. The L2 TLB is 512 entries and four-way set associative. The L2 cache is 16-way set asso-
ciative with 64-byte blocks and 128 cKiB to 2 MiB capacity; a 1 MiB L2 is shown. This figure doesn’t show the valid bits
and protection bits for the caches and TLB.



Performance of the Cortex-A53 Memory Hierarchy

The memory hierarchy of the Cortex-A8 was measured with 32 KiB primary
caches and a 1 MiB L2 cache running the SPECInt2006 benchmarks. The instruc-
tion cache miss rates for these SPECInt2006 are very small even for just the L1:
close to zero for most and under 1% for all of them. This low rate probably results
from the computationally intensive nature of the SPECCPU programs and the two-
way set associative cache that eliminates most conflict misses.

Figure 2.21 shows the data cache results, which have significant L1 and
L2 miss rates. The L1 rate varies by a factor of 75, from 0.5% to 37.3% with a
median miss rate of 2.4%. The global L2 miss rate varies by a factor of 180, from
0.05% to 9.0% with a median of 0.3%. MCF, which is known as a cache buster,
sets the upper bound and significantly affects the mean. Remember that the L2
global miss rate is significantly lower than the L2 local miss rate; for example,
the median L2 stand-alone miss rate is 15.1% versus the global miss rate of 0.3%.

Using these miss penalties in Figure 2.19, Figure 2.22 shows the average pen-
alty per data access. Although the L1 miss rates are about seven times higher than
the L2 miss rate, the L2 penalty is 9.5 times as high, leading to L2 misses slightly
dominating for the benchmarks that stress the memory system. In the next chapter,
we will examine the impact of the cache misses on overall CPI.
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Figure 2.21 The data miss rate for ARM with a 32 KiB L1 and the global data miss rate for a 1 MiB L2 using the
SPECInt2006 benchmarks are significantly affected by the applications. Applications with largermemory footprints
tend to have higher miss rates in both L1 and L2. Note that the L2 rate is the global miss rate that is counting all
references, including those that hit in L1. MCF is known as a cache buster.
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The Intel Core i7 6700

The i7 supports the x86-64 instruction set architecture, a 64-bit extension of the
80x86 architecture. The i7 is an out-of-order execution processor that includes four
cores. In this chapter, we focus on the memory system design and performance
from the viewpoint of a single core. The system performance of multiprocessor
designs, including the i7 multicore, is examined in detail in Chapter 5.

Each core in an i7 can execute up to four 80x86 instructions per clock cycle,
using a multiple issue, dynamically scheduled, 16-stage pipeline, which we
describe in detail in Chapter 3. The i7 can also support up to two simultaneous
threads per processor, using a technique called simultaneous multithreading,
described in Chapter 4. In 2017 the fastest i7 had a clock rate of 4.0 GHz (in Turbo
Boost mode), which yielded a peak instruction execution rate of 16 billion instruc-
tions per second, or 64 billion instructions per second for the four-core design. Of
course, there is a big gap between peak and sustained performance, as we will see
over the next few chapters.

The i7 can support up to three memory channels, each consisting of a separate
set of DIMMs, and each of which can transfer in parallel. Using DDR3-1066
(DIMM PC8500), the i7 has a peak memory bandwidth of just over 25 GB/s.
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Figure 2.22 The averagememory access penalty per data memory reference coming from L1 and L2 is shown for
the A53 processor when running SPECInt2006. Although the miss rates for L1 are significantly higher, the L2 miss
penalty, which is more than five times higher, means that the L2 misses can contribute significantly.
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i7 uses 48-bit virtual addresses and 36-bit physical addresses, yielding a
maximum physical memory of 36 GiB. Memory management is handled with a
two-level TLB (see Appendix B, Section B.4), summarized in Figure 2.23.

Figure 2.24 summarizes the i7’s three-level cache hierarchy. The first-level
caches are virtually indexed and physically tagged (see Appendix B,
Section B.3), while the L2 and L3 caches are physically indexed. Some versions
of the i7 6700 will support a fourth-level cache using HBM packaging.

Figure 2.25 is labeled with the steps of an access to the memory hierarchy.
First, the PC is sent to the instruction cache. The instruction cache index is

2Index ¼ Cache size
Block size�Set associativity

¼ 32K
64�8

¼ 64¼ 26

Characteristic Instruction TLB Data DLB Second-level TLB

Entries 128 64 1536

Associativity 8-way 4-way 12-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access latency 1 cycle 1 cycle 8 cycles

Miss 9 cycles 9 cycles Hundreds of cycles to access
page table

Figure 2.23 Characteristics of the i7’s TLB structure, which has separate first-level
instruction and data TLBs, both backed by a joint second-level TLB. The first-level TLBs
support the standard 4 KiB page size, as well as having a limited number of entries of
large 2–4 MiB pages; only 4 KiB pages are supported in the second-level TLB. The i7 has
the ability to handle two L2 TLB misses in parallel. See Section L.3 of online Appendix L
for more discussion of multilevel TLBs and support for multiple page sizes.

Characteristic L1 L2 L3

Size 32 KiB I/32 KiB D 256 KiB 2 MiB per core

Associativity both 8-way 4-way 16-way

Access latency 4 cycles, pipelined 12 cycles 44 cycles

Replacement scheme Pseudo-LRU Pseudo-LRU Pseudo-LRU but with an
ordered selection algorithm

Figure 2.24 Characteristics of the three-level cache hierarchy in the i7. All three
caches use write back and a block size of 64 bytes. The L1 and L2 caches are separate
for each core, whereas the L3 cache is shared among the cores on a chip and is a total of
2 MiB per core. All three caches are nonblocking and allow multiple outstanding writes.
A merging write buffer is used for the L1 cache, which holds data in the event that the
line is not present in L1 when it is written. (That is, an L1 write miss does not cause the
line to be allocated.) L3 is inclusive of L1 and L2; we explore this property in further detail
when we explain multiprocessor caches. Replacement is by a variant on pseudo-LRU; in
the case of L3, the block replaced is always the lowest numberedwaywhose access bit is
off. This is not quite random but is easy to compute.
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Figure 2.25 The Intel i7 memory hierarchy and the steps in both instruction and data access.We show only reads.
Writes are similar, except that misses are handled by simply placing the data in a write buffer, because the L1 cache is
not write-allocated.
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or 6 bits. The page frame of the instruction’s address (36¼48�12 bits) is sent to
the instruction TLB (step 1). At the same time, the 12-bit page offset from the vir-
tual address is sent to the instruction cache (step 2). Notice that for the eight-way
associative instruction cache, 12 bits are needed for the cache address: 6 bits to
index the cache plus 6 bits of block offset for the 64-byte block, so no aliases
are possible. The previous versions of the i7 used a four-way set associative
I-cache, meaning that a block corresponding to a virtual address could actually
be in two different places in the cache, because the corresponding physical address
could have either a 0 or 1 in this location. For instructions this did not pose a prob-
lem because even if an instruction appeared in the cache in two different locations,
the two versions must be the same. If such duplication, or aliasing, of data is
allowed, the cache must be checked when the page map is changed, which is an
infrequent event. Note that a very simple use of page coloring (see Appendix B,
Section B.3) can eliminate the possibility of these aliases. If even-address virtual
pages are mapped to even-address physical pages (and the same for odd pages),
then these aliases can never occur because the low-order bit in the virtual and phys-
ical page number will be identical.

The instruction TLB is accessed to find a match between the address and a valid
page table entry (PTE) (steps 3 and 4). In addition to translating the address, the
TLB checks to see if the PTE demands that this access result in an exception
because of an access violation.

An instruction TLB miss first goes to the L2 TLB, which contains 1536 PTEs
of 4 KiB page sizes and is 12-way set associative. It takes 8 clock cycles to
load the L1 TLB from the L2 TLB, which leads to the 9-cycle miss penalty
including the initial clock cycle to access the L1 TLB. If the L2 TLB misses,
a hardware algorithm is used to walk the page table and update the TLB entry.
Sections L.5 and L.6 of online Appendix L describe page table walkers and page
structure caches. In the worst case, the page is not in memory, and the operating
system gets the page from secondary storage. Because millions of instructions
could execute during a page fault, the operating system will swap in another pro-
cess if one is waiting to run. Otherwise, if there is no TLB exception, the instruc-
tion cache access continues.

The index field of the address is sent to all eight banks of the instruction cache
(step 5). The instruction cache tag is 36 bits�6 bits (index)�6 bits (block offset),
or 24 bits. The four tags and valid bits are compared to the physical page frame
from the instruction TLB (step 6). Because the i7 expects 16 bytes each instruction
fetch, an additional 2 bits are used from the 6-bit block offset to select the appro-
priate 16 bytes. Therefore 6+2 or 8 bits are used to send 16 bytes of instructions to
the processor. The L1 cache is pipelined, and the latency of a hit is 4 clock cycles
(step 7). A miss goes to the second-level cache.

As mentioned earlier, the instruction cache is virtually addressed and physi-
cally tagged. Because the second-level caches are physically addressed, the phys-
ical page address from the TLB is composed with the page offset to make an
address to access the L2 cache. The L2 index is

2Index ¼ Cache size
Block size�Set associativity

¼ 256K
64�4

¼ 1024¼ 210
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so the 30-bit block address (36-bit physical address�6-bit block offset) is divided
into a 20-bit tag and a 10-bit index (step 8). Once again, the index and tag are sent
to the four banks of the unified L2 cache (step 9), which are compared in parallel. If
one matches and is valid (step 10), it returns the block in sequential order after the
initial 12-cycle latency at a rate of 8 bytes per clock cycle.

If the L2 cache misses, the L3 cache is accessed. For a four-core i7, which has
an 8 MiB L3, the index size is

2Index ¼ Cache size
Block size�Set associativity

¼ 8M
64�16

¼ 8192¼ 213

The 13-bit index (step 11) is sent to all 16 banks of the L3 (step 12). The L3 tag,
which is 36� (13+6)¼17 bits, is compared against the physical address from the
TLB (step 13). If a hit occurs, the block is returned after an initial latency of 42
clock cycles, at a rate of 16 bytes per clock and placed into both L1 and L3.
If L3 misses, a memory access is initiated.

If the instruction is not found in the L3 cache, the on-chip memory controller
must get the block from main memory. The i7 has three 64-bit memory channels
that can act as one 192-bit channel, because there is only one memory controller
and the same address is sent on both channels (step 14). Wide transfers happen
when both channels have identical DIMMs. Each channel supports up to four
DDR DIMMs (step 15). When the data return they are placed into L3 and L1 (step
16) because L3 is inclusive.

The total latency of the instruction miss that is serviced by main memory is
approximately 42 processor cycles to determine that an L3 miss has occurred, plus
the DRAM latency for the critical instructions. For a single-bank DDR4-2400
SDRAM and 4.0 GHz CPU, the DRAM latency is about 40 ns or 160 clock cycles
to the first 16 bytes, leading to a total miss penalty of about 200 clock cycles. The
memory controller fills the remainder of the 64-byte cache block at a rate of 16
bytes per I/O bus clock cycle, which takes another 5 ns or 20 clock cycles.

Because the second-level cache is a write-back cache, any miss can lead to an
old block being written back to memory. The i7 has a 10-entry merging write
buffer that writes back dirty cache lines when the next level in the cache is unused
for a read. The write buffer is checked on a miss to see if the cache line exists in the
buffer; if so, the miss is filled from the buffer. A similar buffer is used between
the L1 and L2 caches. If this initial instruction is a load, the data address is sent
to the data cache and data TLBs, acting very much like an instruction cache access.

Suppose the instruction is a store instead of a load. When the store issues, it
does a data cache lookup just like a load. A miss causes the block to be placed
in a write buffer because the L1 cache does not allocate the block on a write miss.
On a hit, the store does not update the L1 (or L2) cache until later, after it is known
to be nonspeculative. During this time, the store resides in a load-store queue, part
of the out-of-order control mechanism of the processor.

The I7 also supports prefetching for L1 and L2 from the next level in the
hierarchy. In most cases, the prefetched line is simply the next block in the cache.
By prefetching only for L1 and L2, high-cost unnecessary fetches to memory are
avoided.
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Performance of the i7 memory system

We evaluate the performance of the i7 cache structure using the SPECint2006
benchmarks. The data in this section were collected by Professor Lu Peng and
PhD student Qun Liu, both of Louisiana State University. Their analysis is based
on earlier work (see Prakash and Peng, 2008).

The complexity of the i7 pipeline, with its use of an autonomous instruction
fetch unit, speculation, and both instruction and data prefetch, makes it hard to
compare cache performance against simpler processors. As mentioned on page
110, processors that use prefetch can generate cache accesses independent of
the memory accesses performed by the program. A cache access that is generated
because of an actual instruction access or data access is sometimes called a
demand access to distinguish it from a prefetch access. Demand accesses can
come from both speculative instruction fetches and speculative data accesses,
some of which are subsequently canceled (see Chapter 3 for a detailed description
of speculation and instruction graduation). A speculative processor generates at
least as many misses as an in-order nonspeculative processor, and typically more.
In addition to demand misses, there are prefetch misses for both instructions
and data.

The i7’s instruction fetch unit attempts to fetch 16 bytes every cycle, which com-
plicates comparing instruction cache miss rates because multiple instructions are
fetched every cycle (roughly 4.5 on average). In fact, the entire 64-byte cache line
is readand subsequent16-byte fetchesdonot require additional accesses. Thusmisses
are tracked only on the basis of 64-byte blocks. The 32KiB, eight-way set associative
instruction cache leads to a very low instruction miss rate for the SPECint2006
programs. If, for simplicity, wemeasure the miss rate of SPECint2006 as the number
ofmisses for a 64-byte block divided by the number of instructions that complete, the
miss rates are all under 1% except for one benchmark (XALANCBMK), which has a
2.9% miss rate. Because a 64-byte block typically contains 16–20 instructions, the
effective miss rate per instruction is much lower, depending on the degree of spatial
locality in the instruction stream.

The frequency at which the instruction fetch unit is stalled waiting for the
I-cache misses is similarly small (as a percentage of total cycles) increasing to
2% for two benchmarks and 12% for XALANCBMK, which has the highest
I-cache miss rate. In the next chapter, we will see how stalls in the IFU contribute
to overall reductions in pipeline throughput in the i7.

The L1 data cache is more interesting and even trickier to evaluate because in
addition to the effects of prefetching and speculation, the L1 data cache is not
write-allocated, and writes to cache blocks that are not present are not treated as
misses. For this reason, we focus only on memory reads. The performance monitor
measurements in the i7 separate out prefetch accesses from demand accesses, but
only keep demand accesses for those instructions that graduate. The effect of spec-
ulative instructions that do not graduate is not negligible, although pipeline effects
probably dominate secondary cache effects caused by speculation; we will return
to the issue in the next chapter.
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To address these issues, while keeping the amount of data reasonable,
Figure 2.26 shows the L1 data cache misses in two ways:

1. The L1miss rate relative to demand references given by the L1 miss rate includ-
ing prefetches and speculative loads/L1 demand read references for those
instructions that graduate.
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Figure 2.26 The L1 data cache miss rate for the SPECint2006 benchmarks is shown in two ways relative to the
demand L1 reads: one including both demand and prefetch accesses and one including only demand accesses.
The i7 separates out L1 misses for a block not present in the cache and L1 misses for a block already outstanding that
is being prefetched from L2; we treat the latter group as hits because they would hit in a blocking cache. These data,
like the rest in this section, were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State
University, based on earlier studies of the Intel Core Duo and other processors (see Peng et al., 2008).
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2. The demand miss rate given by L1 demand misses/L1 demand read references,
both measurements only for instructions that graduate.

On average, the miss rate including prefetches is 2.8 times as high as the demand-
only miss rate. Comparing this data to that from the earlier i7 920, which had the
same size L1, we see that the miss rate including prefetches is higher on the newer
i7, but the number of demand misses, which are more likely to cause a stall, are
usually fewer.

To understand the effectiveness of the aggressive prefetch mechanisms in the
i7, let’s look at some measurements of prefetching. Figure 2.27 shows both the
fraction of L2 requests that are prefetches versus demand requests and the prefetch
miss rate. The data are probably astonishing at first glance: there are roughly
1.5 times as many prefetches as there are L2 demand requests, which come directly
from L1 misses. Furthermore, the prefetch miss rate is amazingly high, with an
average miss rate of 58%. Although the prefetch ratio varies considerably, the pre-
fetch miss rate is always significant. At first glance, you might conclude that the
designers made a mistake: they are prefetching too much, and the miss rate is too
high. Notice, however, that the benchmarks with the higher prefetch ratios
(ASTAR, BZIP2, HMMER, LIBQUANTUM, and OMNETPP) also show the
greatest gap between the prefetch miss rate and the demand miss rate, more than
a factor of 2 in each case. The aggressive prefetching is trading prefetch misses,
which occur earlier, for demand misses, which occur later; and as a result, a pipe-
line stall is less likely to occur due to the prefetching.

Similarly, consider the high prefetch miss rate. Suppose that the majority of the
prefetches are actually useful (this is hard to measure because it involves tracking
individual cache blocks), then a prefetch miss indicates a likely L2 cache miss in
the future. Uncovering and handling the miss earlier via the prefetch is likely to
reduce the stall cycles. Performance analysis of speculative superscalars, like
the i7, has shown that cache misses tend to be the primary cause of pipeline stalls,
because it is hard to keep the processor going, especially for longer running L2 and
L3 misses. The Intel designers could not easily increase the size of the caches with-
out incurring both energy and cycle time impacts; thus the use of aggressive pre-
fetching to try to lower effective cache miss penalties is an interesting alternative
approach.

With the combination of the L1 demand misses and prefetches going to L2,
roughly 17% of the loads generate an L2 request. Analyzing L2 performance
requires including the effects of writes (because L2 is write-allocated), as well
as the prefetch hit rate and the demand hit rate. Figure 2.28 shows the miss rates
of the L2 caches for demand and prefetch accesses, both versus the number of L1
references (reads and writes). As with L1, prefetches are a significant contributor,
generating 75% of the L2 misses. Comparing the L2 demand miss rate with that of
earlier i7 implementations (again with the same L2 size) shows that the i7 6700 has
a lower L2 demand miss rate by an approximate factor of 2, which may well justify
the higher prefetch miss rate.
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Because the cost for a miss to memory is over 100 cycles and the average data
miss rate in L2 combining both prefetch and demand misses is over 7%, L3 is obvi-
ously critical. Without L3 and assuming that about one-third of the instructions are
loads or stores, L2 cache misses could add over two cycles per instruction to the
CPI! Obviously, prefetching past L2 would make no sense without an L3.

In comparison, the average L3 data miss rate of 0.5% is still significant but less
than one-third of the L2 demand miss rate and 10 times less than the L1 demand
miss rate. Only in two benchmarks (OMNETPP and MCF) is the L3 miss rate
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Figure 2.27 The fraction of L2 requests that are prefetches is shown via the columns and the left axis. The right
axis and the line shows the prefetch hit rate. These data, like the rest in this section, were collected by Professor Lu
Peng and PhD student Qun Liu, both of Louisiana State University, based on earlier studies of the Intel Core Duo and
other processors (see Peng et al., 2008).
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above 0.5%; in those two cases, the miss rate of about 2.3% likely dominates all
other performance losses. In the next chapter, we will examine the relationship
between the i7 CPI and cache misses, as well as other pipeline effects.

2.7 Fallacies and Pitfalls

As the most naturally quantitative of the computer architecture disciplines, mem-
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet we
were limited here not by lack of warnings, but by lack of space!

Fallacy Predicting cache performance of one program from another.

Figure 2.29 shows the instruction miss rates and data miss rates for three programs
from the SPEC2000 benchmark suite as cache size varies. Depending on the
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Figure 2.28 The L2 demand miss rate and prefetch miss rate, both shown relative to
all the references to L1, which also includes prefetches, speculative loads that do not
complete, and program-generated loads and stores (demand references). These data,
like the rest in this section, were collected by Professor Lu Peng and PhD student Qun
Liu, both of Louisiana State University.
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program, the data misses per thousand instructions for a 4096 KiB cache are 9, 2, or
90, and the instruction misses per thousand instructions for a 4 KiB cache are 55,
19, or 0.0004. Commercial programs such as databases will have significant miss
rates even in large second-level caches, which is generally not the case for the
SPECCPU programs. Clearly, generalizing cache performance from one program
to another is unwise. As Figure 2.24 reminds us, there is a great deal of variation,
and even predictions about the relative miss rates of integer and floating-point-
intensive programs can be wrong, as mcf and sphnix3 remind us!

Pitfall Simulating enough instructions to get accurate performance measures
of the memory hierarchy.

There are really three pitfalls here. One is trying to predict performance of a large
cache using a small trace. Another is that a program’s locality behavior is not con-
stant over the run of the entire program. The third is that a program’s locality
behavior may vary depending on the input.

Figure 2.30 shows the cumulative average instruction misses per thousand
instructions for five inputs to a single SPEC2000 program. For these inputs, the
average memory rate for the first 1.9 billion instructions is very different from
the average miss rate for the rest of the execution.

Pitfall Not delivering high memory bandwidth in a cache-based system.

Caches help with average cache memory latency but may not deliver high memory
bandwidth to an application that must go to main memory. The architect must
design a high bandwidth memory behind the cache for such applications. We will
revisit this pitfall in Chapters 4 and 5.
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Figure 2.30 Instruction misses per 1000 references for five inputs to the perl bench-
mark in SPEC2000. There is little variation in misses and little difference between the
five inputs for the first 1.9 billion instructions. Running to completion shows howmisses
vary over the life of the program and how they depend on the input. The top graph
shows the running average misses for the first 1.9 billion instructions, which starts at
about 2.5 and ends at about 4.7 misses per 1000 references for all five inputs. The bot-
tom graph shows the running average misses to run to completion, which takes 16–41
billion instructions depending on the input. After the first 1.9 billion instructions, the
misses per 1000 references vary from 2.4 to 7.9 depending on the input. The simulations
were for the Alpha processor using separate L1 caches for instructions and data, each
being two-way 64 KiB with LRU, and a unified 1 MiB direct-mapped L2 cache.
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Pitfall Implementing a virtual machine monitor on an instruction set architecture that
wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all
instructions reading or writing information related to hardware resource informa-
tion were privileged. This laissez faire attitude causes problems for VMMs for all
of these architectures, including the 80x86, which we use here as an example.

Figure 2.31 describes the 18 instructions that cause problems for paravirtuali-
zation (Robin and Irvine, 2000). The two broad classes are instructions that

■ read control registers in user mode that reveal that the guest operating system is
running in a virtual machine (such as POPF mentioned earlier) and

■ check protection as required by the segmented architecture but assume that the
operating system is running at the highest privilege level.

Virtual memory is also challenging. Because the 80x86 TLBs do not support
process ID tags, as do most RISC architectures, it is more expensive for the VMM
and guest OSes to share the TLB; each address space change typically requires a
TLB flush.

Problem category Problem 80x86 instructions

Access sensitive registers without
trapping when running in user mode

Store global descriptor table register (SGDT)
Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory
mechanisms in user mode,
instructions fail the
80x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, …)
Push segment register (PUSH CS, PUSH SS, …)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

Figure 2.31 Summary of 18 80x86 instructions that cause problems for virtualization
(Robin and Irvine, 2000). The first five instructions of the top group allow a program in
user mode to read a control register, such as a descriptor table register without causing
a trap. The pop flags instruction modifies a control register with sensitive information
but fails silently when in user mode. The protection checking of the segmented archi-
tecture of the 80x86 is the downfall of the bottom group because each of these instruc-
tions checks the privilege level implicitly as part of instruction execution when reading a
control register. The checking assumes that the OS must be at the highest privilege
level, which is not the case for guest VMs. Only the MOVE to segment register tries
to modify control state, and protection checking foils it as well.
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Virtualizing I/O is also a challenge for the 80x86, in part because it supports
memory-mapped I/O and has separate I/O instructions, but more importantly
because there are a very large number and variety of types of devices and device
drivers of PCs for the VMM to handle. Third-party vendors supply their own
drivers, and they may not properly virtualize. One solution for conventional
VM implementations is to load real device drivers directly into the VMM.

To simplify implementations of VMMs on the 80x86, both AMD and Intel
have proposed extensions to the architecture. Intel’s VT-x provides a new execu-
tion mode for running VMs, a architected definition of the VM state, instructions to
swap VMs rapidly, and a large set of parameters to select the circumstances where
a VMM must be invoked. Altogether, VT-x adds 11 new instructions for the
80x86. AMD’s Secure Virtual Machine (SVM) provides similar functionality.

After turning on themode that enables VT-x support (via the newVMXON instruc-
tion), VT-x offers four privilege levels for the guest OS that are lower in priority than
the original four (and fix issues like the problemwith thePOPF instructionmentioned
earlier).VT-xcapturesall thestatesofavirtualmachine in theVirtualMachineControl
State (VMCS) and then provides atomic instructions to save and restore a VMCS.
In addition to critical state, the VMCS includes configuration information to deter-
mine when to invoke the VMM and then specifically what caused the VMM to be
invoked. To reduce the number of times the VMMmust be invoked, this mode adds
shadowversions of some sensitive registers andaddsmasks that check to seewhether
critical bits of a sensitive register will be changed before trapping. To reduce the cost
of virtualizing virtual memory, AMD’s SVMadds an additional level of indirection,
callednested page tables, whichmakes shadowpage tables unnecessary (see Section
L.7 of Appendix L).

2.8 Concluding Remarks: Looking Ahead

Over the past thirty years there have been several predictions of the eminent [sic]
cessation of the rate of improvement in computer performance. Every such pre-
diction was wrong. They were wrong because they hinged on unstated assump-
tions that were overturned by subsequent events. So, for example, the failure to
foresee themove fromdiscrete components to integrated circuits led to a predic-
tion that the speedof lightwould limit computer speeds to several orders ofmag-
nitude slower than they are now. Our prediction of the memory wall is probably
wrong too but it suggests that we have to start thinking “out of the box.”

Wm. A. Wulf and Sally A. McKee,
Hitting the Memory Wall: Implications of the Obvious,

Department of Computer Science, University of Virginia (December 1994).
This paper introduced the term memory wall.

The possibility of using a memory hierarchy dates back to the earliest days of
general-purpose digital computers in the late 1940s and early 1950s. Virtual mem-
ory was introduced in research computers in the early 1960s and into IBM main-
frames in the 1970s. Caches appeared around the same time. The basic concepts
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have been expanded and enhanced over time to help close the access time gap
between main memory and processors, but the basic concepts remain.

One trend that is causing a significant change in the design of memory hierar-
chies is a continued slowdown in both density and access time of DRAMs. In the
past 15 years, both these trends have been observed and have been even more obvi-
ous over the past 5 years. While some increases in DRAM bandwidth have been
achieved, decreases in access time have come much more slowly and almost van-
ished between DDR4 and DDR3. The end of Dennard scaling as well as a slow-
down in Moore’s Law both contributed to this situation. The trenched capacitor
design used in DRAMs is also limiting its ability to scale. It may well be the case
that packaging technologies such as stacked memory will be the dominant source
of improvements in DRAM access bandwidth and latency.

Independently of improvements in DRAM, Flash memory has been playing a
much larger role. In PMDs, Flash has dominated for 15 years and became the stan-
dard for laptops almost 10 years ago. In the past few years, many desktops have
shipped with Flash as the primary secondary storage. Flash’s potential advantage
over DRAMs, specifically the absence of a per-bit transistor to control writing, is
also its Achilles heel. Flash must use bulk erase-rewrite cycles that are consider-
ably slower. As a result, although Flash has become the fastest growing form of
secondary storage, SDRAMs still dominate for main memory.

Although phase-change materials as a basis for memory have been around for a
while, theyhaveneverbeenseriouscompetitors either formagneticdisksor forFlash.
The recent announcement by Intel and Micron of the cross-point technology may
change this.The technologyappears tohaveseveral advantagesoverFlash, including
the elimination of the slow erase-to-write cycle and greater longevity in terms. It
could be that this technology will finally be the technology that replaces the electro-
mechanical disks that have dominated bulk storage for more than 50 years!

For some years, a variety of predictions have been made about the coming
memory wall (see previously cited quote and paper), which would lead to serious
limits on processor performance. Fortunately, the extension of caches to multiple
levels (from 2 to 4), more sophisticated refill and prefetch schemes, greater com-
piler and programmer awareness of the importance of locality, and tremendous
improvements in DRAM bandwidth (a factor of over 150 times since the mid-
1990s) have helped keep the memory wall at bay. In recent years, the combination
of access time constraints on the size of L1 (which is limited by the clock cycle) and
energy-related limitations on the size of L2 and L3 have raised new challenges. The
evolution of the i7 processor class over 6–7 years illustrates this: the caches are the
same size in the i7 6700 as they were in the first generation i7 processors! The more
aggressive use of prefetching is an attempt to overcome the inability to increase L2
and L3. Off-chip L4 caches are likely to become more important because they are
less energy-constrained than on-chip caches.

In addition to schemes relying on multilevel caches, the introduction of out-of-
order pipelines with multiple outstanding misses has allowed available instruction-
level parallelism to hide the memory latency remaining in a cache-based system.
The introduction of multithreading and more thread-level parallelism takes this a
step further by providing more parallelism and thus more latency-hiding
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opportunities. It is likely that the use of instruction- and thread-level parallelism
will be a more important tool in hiding whatever memory delays are encountered
in modern multilevel cache systems.

One idea that periodically arises is the use of programmer-controlled scratch-
pad or other high-speed visible memories, which we will see are used in GPUs.
Such ideas have never made the mainstream in general-purpose processors for sev-
eral reasons: First, they break the memory model by introducing address spaces
with different behavior. Second, unlike compiler-based or programmer-based
cache optimizations (such as prefetching), memory transformations with scratch-
pads must completely handle the remapping from main memory address space to
the scratchpad address space. This makes such transformations more difficult and
limited in applicability. In GPUs (see Chapter 4), where local scratchpad memories
are heavily used, the burden for managing them currently falls on the programmer.
For domain-specific software systems that can use such memories, the perfor-
mance gains are very significant. It is likely that HBM technologies will thus be
used for caching in large, general-purpose computers and quite possibility as
the main working memories in graphics and similar systems. As domain-specific
architectures become more important in overcoming the limitations arising from
the end of Dennard’s Law and the slowdown in Moore’s Law (see Chapter 7),
scratchpad memories and vector-like register sets are likely to see more use.

The implications of the end of Dennard’s Law affect both DRAM and proces-
sor technology. Thus, rather than a widening gulf between processors and main
memory, we are likely to see a slowdown in both technologies, leading to slower
overall growth rates in performance. New innovations in computer architecture and
in related software that together increase performance and efficiency will be key to
continuing the performance improvements seen over the past 50 years.

2.9 Historical Perspectives and References

In Section M.3 (available online) we examine the history of caches, virtual mem-
ory, and virtual machines. IBM plays a prominent role in the history of all three.
References for further reading are included.

Case Studies and Exercises by Norman P. Jouppi, Rajeev
Balasubramonian, Naveen Muralimanohar, and Sheng Li

Case Study 1: Optimizing Cache Performance via
Advanced Techniques

Concepts illustrated by this case study

■ Nonblocking Caches

■ Compiler Optimizations for Caches

■ Software and Hardware Prefetching

■ Calculating Impact of Cache Performance on More Complex Processors
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The transpose of a matrix interchanges its rows and columns; this concept is
illustrated here:

A11 A11 A21 A31 A41

A12 A22 A32 A42

A13 A23 A33 A43

A14 A24 A34 A44

A12

A22 A23 A24

A13 A14

A21

A31 A32 A33 A34

A41 A42 A43 A44

⇒

Here is a simple C loop to show the transpose:

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
output[j][i] = input[i][j];
}

}

Assume that both the input and output matrices are stored in the row major order
(row major order means that the row index changes fastest). Assume that you are
executing a 256�256 double-precision transpose on a processor with a 16 KB fully
associative (don’t worry about cache conflicts) least recently used (LRU) replace-
ment L1 data cache with 64-byte blocks. Assume that the L1 cache misses or pre-
fetches require 16 cycles and always hit in the L2 cache, and that the L2 cache can
process a request every 2 processor cycles. Assume that each iteration of the pre-
ceding inner loop requires 4 cycles if the data are present in the L1 cache. Assume
that the cache has a write-allocate fetch-on-write policy for write misses. Unreal-
istically, assume that writing back dirty cache blocks requires 0 cycles.

2.1 [10/15/15/12/20] <2.3> For the preceding simple implementation, this execution
order would be nonideal for the input matrix; however, applying a loop interchange
optimization would create a nonideal order for the output matrix. Because loop
interchange is not sufficient to improve its performance, it must be blocked instead.

a. [10]<2.3>What should be the minimum size of the cache to take advantage of
blocked execution?

b. [15] <2.3> How do the relative number of misses in the blocked and
unblocked versions compare in the preceding minimum-sized cache?

c. [15] <2.3> Write code to perform a transpose with a block size parameter B
that uses B�B blocks.

d. [12] <2.3> What is the minimum associativity required of the L1 cache for
consistent performance independent of both arrays’ position in memory?

e. [20] <2.3> Try out blocked and nonblocked 256�256 matrix transpositions on
a computer. How closely do the results match your expectations based on what
you know about the computer’s memory system? Explain any discrepancies if
possible.
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2.2 [10] <2.3> Assume you are designing a hardware prefetcher for the preceding
unblockedmatrix transposition code. The simplest type of hardware prefetcher only
prefetches sequential cache blocks after a miss. More complicated “nonunit stride”
hardware prefetchers can analyze a miss reference stream and detect and prefetch
nonunit strides. In contrast, software prefetching can determine nonunit strides as eas-
ily as it can determine unit strides.Assumeprefetcheswrite directly into the cache and
that there is no “pollution” (overwriting data thatmust be used before the data that are
prefetched). For best performance given a nonunit stride prefetcher, in the steady state
of the inner loop, how many prefetches must be outstanding at a given time?

2.3 [15/20] <2.3>With software prefetching, it is important to be careful to have the
prefetches occur in time for use but also to minimize the number of outstanding
prefetches to live within the capabilities of the microarchitecture and minimize
cache pollution. This is complicated by the fact that different processors have dif-
ferent capabilities and limitations.

a. [15] <2.3> Create a blocked version of the matrix transpose with software
prefetching.

b. [20] <2.3> Estimate and compare the performance of the blocked and
unblocked transpose codes both with and without software prefetching.

Case Study 2: Putting It All Together: Highly Parallel
Memory Systems

Concept illustrated by this case study

■ Cross-Cutting Issues: The Design of Memory Hierarchies

The program in Figure 2.32 can be used to evaluate the behavior of a memory sys-
tem. The key is having accurate timing and then having the program stride through
memory to invoke different levels of the hierarchy. Figure 2.32 shows the code in
C. The first part is a procedure that uses a standard utility to get an accurate measure
of the user CPU time; this procedure may have to be changed to work on some
systems. The second part is a nested loop to read and write memory at different
strides and cache sizes. To get accurate cache timing, this code is repeated many
times. The third part times the nested loop overhead only so that it can be
subtracted from overall measured times to see how long the accesses were. The
results are output in .csv file format to facilitate importing into spreadsheets.
You may need to change CACHE_MAX depending on the question you are answer-
ing and the size of memory on the system you are measuring. Running the program
in single-user mode or at least without other active applications will give more con-
sistent results. The code in Figure 2.32 was derived from a program written by
Andrea Dusseau at the University of California-Berkeley and was based on a
detailed description found in Saavedra-Barrera (1992). It has been modified to
fix a number of issues with more modern machines and to run under Microsoft
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#include "stdafx.h"
#include <stdio.h>
#include <time.h>
#define ARRAY_MIN (1024) /* 1/4 smallest cache */
#define ARRAY_MAX (4096*4096) /* 1/4 largest cache */
int x[ARRAY_MAX]; /* array going to stride through */

double get_seconds() { /* routine to read time in seconds */
__time64_t ltime;
_time64( &ltime );
return (double) ltime;

}
int label(int i) {/* generate text labels */

if (i<1e3) printf("%1dB,",i);
else if (i<1e6) printf("%1dK,",i/1024);
else if (i<1e9) printf("%1dM,",i/1048576);
else printf("%1dG,",i/1073741824);
return 0;

}
int _tmain(int argc, _TCHAR* argv[]) {
int register nextstep, i, index, stride;
int csize;
double steps, tsteps;
double loadtime, lastsec, sec0, sec1, sec; /* timing variables */

/* Initialize output */
printf(" ,");
for (stride=1; stride <= ARRAY_MAX/2; stride=stride*2)

label(stride*sizeof(int));
printf("\n");

/* Main loop for each configuration */
for (csize=ARRAY_MIN; csize <= ARRAY_MAX; csize=csize*2) {

label(csize*sizeof(int)); /* print cache size this loop */
for (stride=1; stride <= csize/2; stride=stride*2) {

/* Lay out path of memory references in array */
for (index=0; index < csize; index=index+stride)

x[index] = index + stride; /* pointer to next */
x[index-stride] = 0; /* loop back to beginning */

/* Wait for timer to roll over */
lastsec = get_seconds();
 sec0 = get_seconds(); while (sec0 == lastsec);

/* Walk through path in array for twenty seconds */
/* This gives 5% accuracy with second resolution */
steps = 0.0; /* number of steps taken */
nextstep = 0; /* start at beginning of path */
sec0 = get_seconds(); /* start timer */

{ /* repeat until collect 20 seconds */
(i=stride;i!=0;i=i-1) { /* keep samples same */

nextstep = 0;
do nextstep = x[nextstep]; /* dependency */
while (nextstep != 0);

}
steps = steps + 1.0; /* count loop iterations */
sec1 = get_seconds(); /* end timer */

} while ((sec1 - sec0) < 20.0); /* collect 20 seconds */
sec = sec1 - sec0;

/* Repeat empty loop to loop subtract overhead */
tsteps = 0.0; /* used to match no. while iterations */
sec0 = get_seconds(); /* start timer */

{ /* repeat until same no. iterations as above */
(i=stride;i!=0;i=i-1) { /* keep samples same */

index = 0;
do index = index + stride;
while (index < csize);

}
tsteps = tsteps + 1.0;
sec1 = get_seconds(); /* - overhead */

} while (tsteps<steps); /* until = no. iterations */
sec = sec - (sec1 - sec0);
loadtime = (sec*1e9)/(steps*csize);
/* write out results in .csv format for Excel */
printf("%4.1f,", (loadtime<0.1) ? 0.1 : loadtime);

  }; /* end of inner for loop */
  printf("\n");
}; /* end of outer for loop */
return 0;

}

Figure 2.32 C program for evaluating memory system.
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Visual C++. It can be downloaded from http://www.hpl.hp.com/research/cacti/
aca_ch2_cs2.c.

The preceding program assumes that program addresses track physical
addresses, which is true on the few machines that use virtually addressed caches,
such as the Alpha 21264. In general, virtual addresses tend to follow physical
addresses shortly after rebooting, so you may need to reboot the machine in order
to get smooth lines in your results. To answer the following questions, assume that
the sizes of all components of the memory hierarchy are powers of 2. Assume that
the size of the page is much larger than the size of a block in a second-level cache (if
there is one) and that the size of a second-level cache block is greater than or equal
to the size of a block in a first-level cache. An example of the output of the program
is plotted in Figure 2.33; the key lists the size of the array that is exercised.

2.4 [12/12/12/10/12] <2.6> Using the sample program results in Figure 2.33:

a. [12]<2.6>What are the overall size and block size of the second-level cache?

b. [12] <2.6> What is the miss penalty of the second-level cache?

c. [12] <2.6> What is the associativity of the second-level cache?

d. [10] <2.6> What is the size of the main memory?

e. [12] <2.6> What is the paging time if the page size is 4 KB?

R
ea

d 
(n

s)

1000

100

10

1
4B 16B 64B 256B 4K1K 16K 64K 256K 4M1M 16M 64M 256M

Stride

8K
16K
32K
64K
128K
256K
512K
1M
2M
4M
8M
16M
32M
64M
128M
256M
512M

Figure 2.33 Sample results from program in Figure 2.32.
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2.5 [12/15/15/20] <2.6> If necessary, modify the code in Figure 2.32 to measure the
following system characteristics. Plot the experimental results with elapsed time on
the y-axis and the memory stride on the x-axis. Use logarithmic scales for both
axes, and draw a line for each cache size.

a. [12] <2.6> What is the system page size?

b. [15] <2.6> How many entries are there in the TLB?

c. [15] <2.6> What is the miss penalty for the TLB?

d. [20] <2.6> What is the associativity of the TLB?

2.6 [20/20] <2.6> In multiprocessor memory systems, lower levels of the memory
hierarchy may not be able to be saturated by a single processor but should be able
to be saturated by multiple processors working together. Modify the code in
Figure 2.32, and run multiple copies at the same time. Can you determine:

a. [20]<2.6>Howmany actual processors are in your computer system and how
many system processors are just additional multithreaded contexts?

b. [20] <2.6> How many memory controllers does your system have?

2.7 [20]<2.6>Can you think of a way to test some of the characteristics of an instruc-
tion cache using a program? Hint: The compiler may generate a large number of
nonobvious instructions from a piece of code. Try to use simple arithmetic instruc-
tions of known length in your instruction set architecture (ISA).

Case Study 3: Studying the Impact of Various
Memory System Organizations

Concepts illustrated by this case study

■ DDR3 memory systems

■ Impact of ranks, banks, row buffers on performance and power

■ DRAM timing parameters

A processor chip typically supports a few DDR3 or DDR4 memory channels. We
will focus on a single memory channel in this case study and explore how its per-
formance and power are impacted by varying several parameters. Recall that the
channel is populated with one or more DIMMs. Each DIMM supports one or more
ranks—a rank is a collection of DRAM chips that work in unison to service a single
command issued by the memory controller. For example, a rank may be composed
of 16 DRAM chips, where each chip deals with a 4-bit input or output on every
channel clock edge. Each such chip is referred to as a �4 (by four) chip. In other
examples, a rank may be composed of 8�8 chips or 4�16 chips—note that in
each case, a rank can handle data that are being placed on a 64-bit memory channel.
A rank is itself partitioned into 8 (DDR3) or 16 (DDR4) banks. Each bank has a
row buffer that essentially remembers the last row read out of a bank. Here’s an
example of a typical sequence of memory commands when performing a read from
a bank:
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(i) The memory controller issues a Precharge command to get the bank ready to
access a new row. The precharge is completed after time tRP.

(ii) The memory controller then issues an Activate command to read the appro-
priate row out of the bank. The activation is completed after time tRCD and the
row is deemed to be part of the row buffer.

(iii) The memory controller can then issue a column-read or CAS command that
places a specific subset of the row buffer on the memory channel. After time
CL, the first 64 bits of the data burst are placed on the memory channel.
A burst typically includes eight 64-bit transfers on the memory channel, per-
formed on the rising and falling edges of 4 memory clock cycles (referred to as
transfer time).

(iv) If thememory controller wants to then access data in a different row of the bank,
referred to as a row buffer miss, it repeats steps (i)–(iii). For now, we will
assume that after CL has elapsed, the Precharge in step (i) can be issued; in some
cases, an additional delay must be added, but we will ignore that delay here. If
the memory controller wants to access another block of data in the same row,
referred to as a row buffer hit, it simply issues another CAS command. Two
back-to-back CAS commands have to be separated by at least 4 cycles so that
the first data transfer is complete before the second data transfer can begin.

Note that a memory controller can issue commands to different banks in successive
cycles so that it can perform many memory reads/writes in parallel and it is not
sitting idle waiting for tRP, tRCD, and CL to elapse in a single bank. For the sub-
sequent questions, assume that tRP¼ tRCD¼CL¼13 ns, and that the memory
channel frequency is 1 GHz, that is, a transfer time of 4 ns.

2.8 [10]<2.2>What is the read latency experienced by a memory controller on a row
buffer miss?

2.9 [10] <2.2> What is the latency experienced by a memory controller on a row
buffer hit?

2.10 [10]<2.2> If the memory channel supports only one bank and the memory access
pattern is dominated by row buffer misses, what is the utilization of the memory
channel?

2.11 [15] <2.2> Assuming a 100% row buffer miss rate, what is the minimum number
of banks that the memory channel should support in order to achieve a 100%mem-
ory channel utilization?

2.12 [10]<2.2>Assuming a 50% row buffer miss rate, what is the minimum number of
banks that the memory channel should support in order to achieve a 100%memory
channel utilization?

2.13 [15]<2.2> Assume that we are executing an application with four threads and the
threads exhibit zero spatial locality, that is, a 100% row buffer miss rate. Every
200 ns, each of the four threads simultaneously inserts a read operation into the
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memory controller queue. What is the average memory latency experienced if the
memory channel supports only one bank? What if the memory channel supported
four banks?

2.14 [10] <2.2> From these questions, what have you learned about the benefits and
downsides of growing the number of banks?

2.15 [20]<2.2>Now let’s turn our attention to memory power. Download a copy of the
Micron power calculator from this link: https://www.micron.com/�/media/
documents/products/power-calculator/ddr3_power_calc.xlsm. This spreadsheet
is preconfigured to estimate the power dissipation in a single 2 Gb �8 DDR3
SDRAM memory chip manufactured by Micron. Click on the “Summary” tab
to see the power breakdown in a single DRAM chip under default usage conditions
(reads occupy the channel for 45% of all cycles, writes occupy the channel for 25%
of all cycles, and the row buffer hit rate is 50%). This chip consumes 535 mW, and
the breakdown shows that about half of that power is expended in Activate oper-
ations, about 38% in CAS operations, and 12% in background power. Next, click
on the “System Config” tab. Modify the read/write traffic and the row buffer hit
rate and observe how that changes the power profile. For example, what is the
decrease in power when channel utilization is 35% (25% reads and 10% writes),
or when row buffer hit rate is increased to 80%?

2.16 [20] <2.2> In the default configuration, a rank consists of eight �8 2 Gb DRAM
chips. A rank can also comprise16�4 chips or 4�16 chips. You can also vary the
capacity of each DRAM chip—1 Gb, 2 Gb, and 4 Gb. These selections can be
made in the “DDR3 Config” tab of the Micron power calculator. Tabulate the total
power consumed for each rank organization. What is the most power-efficient
approach to constructing a rank of a given capacity?

Exercises

2.17 [12/12/15] <2.3> The following questions investigate the impact of small and
simple caches using CACTI and assume a 65 nm (0.065 m) technology. (CACTI
is available in an online form at http://quid.hpl.hp.com:9081/cacti/.)

a. [12]<2.3>Compare the access times of 64 KB caches with 64-byte blocks and
a single bank. What are the relative access times of two-way and four-way set
associative caches compared to a direct mapped organization?

b. [12] <2.3> Compare the access times of four-way set associative caches with
64-byte blocks and a single bank. What are the relative access times of 32 and
64 KB caches compared to a 16 KB cache?

c. [15] <2.3> For a 64 KB cache, find the cache associativity between 1 and
8 with the lowest average memory access time given that misses per instruction
for a certain workload suite is 0.00664 for direct-mapped, 0.00366 for two-way
set associative, 0.000987 for four-way set associative, and 0.000266 for eight-
way set associative cache. Overall, there are 0.3 data references per instruction.
Assume cache misses take 10 ns in all models. To calculate the hit time in
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cycles, assume the cycle time output using CACTI, which corresponds to the
maximum frequency a cache can operate without any bubbles in the pipeline.

2.18 [12/15/15/10] <2.3> You are investigating the possible benefits of a way-
predicting L1 cache. Assume that a 64 KB four-way set associative single-banked
L1 data cache is the cycle time limiter in a system. For an alternative cache orga-
nization, you are considering a way-predicted cache modeled as a 64 KB direct-
mapped cache with 80% prediction accuracy. Unless stated otherwise, assume that
a mispredicted way access that hits in the cache takes one more cycle. Assume the
miss rates and the miss penalties in question 2.8 part (c).

a. [12] <2.3> What is the average memory access time of the current cache (in
cycles) versus the way-predicted cache?

b. [15]<2.3> If all other components could operate with the faster way-predicted
cache cycle time (including the main memory), what would be the impact on
performance from using the way-predicted cache?

c. [15] <2.3> Way-predicted caches have usually been used only for instruction
caches that feed an instruction queue or buffer. Imagine that you want to try out
way prediction on a data cache. Assume that you have 80% prediction accuracy
and that subsequent operations (e.g., data cache access of other instructions,
dependent operations) are issued assuming a correct way prediction. Thus a
way misprediction necessitates a pipe flush and replay trap, which requires
15 cycles. Is the change in average memory access time per load instruction
with data cache way prediction positive or negative, and how much is it?

d. [10] <2.3> As an alternative to way prediction, many large associative L2
caches serialize tag and data access so that only the required dataset array
needs to be activated. This saves power but increases the access time. Use
CACTI’s detailed web interface for a 0.065 m process 1 MB four-way set
associative cache with 64-byte blocks, 144 bits read out, 1 bank, only 1
read/write port, 30 bit tags, and ITRS-HP technology with global wires. What
is the ratio of the access times for serializing tag and data access compared to
parallel access?

2.19 [10/12] <2.3> You have been asked to investigate the relative performance of a
banked versus pipelined L1 data cache for a new microprocessor. Assume a 64 KB
two-way set associative cache with 64-byte blocks. The pipelined cache would
consist of three pipe stages, similar in capacity to the Alpha 21264 data cache.
A banked implementation would consist of two 32 KB two-way set associative
banks. Use CACTI and assume a 65 nm (0.065 m) technology to answer the fol-
lowing questions. The cycle time output in the web version shows at what
frequency a cache can operate without any bubbles in the pipeline.

a. [10]<2.3>What is the cycle time of the cache in comparison to its access time,
and how many pipe stages will the cache take up (to two decimal places)?

b. [12] <2.3> Compare the area and total dynamic read energy per access of the
pipelined design versus the banked design. State which takes up less area and
which requires more power, and explain why that might be.
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2.20 [12/15] <2.3> Consider the usage of critical word first and early restart on
L2 cache misses. Assume a 1 MB L2 cache with 64-byte blocks and a refill path
that is 16 bytes wide. Assume that the L2 can be written with 16 bytes every 4
processor cycles, the time to receive the first 16 byte block from the memory con-
troller is 120 cycles, each additional 16 byte block from main memory requires 16
cycles, and data can be bypassed directly into the read port of the L2 cache. Ignore
any cycles to transfer the miss request to the L2 cache and the requested data to the
L1 cache.

a. [12] <2.3> How many cycles would it take to service an L2 cache miss with
and without critical word first and early restart?

b. [15] <2.3> Do you think critical word first and early restart would be more
important for L1 caches or L2 caches, and what factors would contribute to their
relative importance?

2.21 [12/12]<2.3>You are designing a write buffer between a write-through L1 cache
and a write-back L2 cache. The L2 cache write data bus is 16 B wide and can per-
form a write to an independent cache address every four processor cycles.

a. [12] <2.3> How many bytes wide should each write buffer entry be?

b. [15] <2.3> What speedup could be expected in the steady state by using a
merging write buffer instead of a nonmerging buffer when zeroing memory
by the execution of 64-bit stores if all other instructions could be issued in
parallel with the stores and the blocks are present in the L2 cache?

c. [15] <2.3> What would the effect of possible L1 misses be on the number of
required write buffer entries for systems with blocking and nonblocking
caches?

2.22 [20] <2.1, 2.2, 2.3> A cache acts as a filter. For example, for every 1000 instruc-
tions of a program, an average of 20 memory accesses may exhibit low enough
locality that they cannot be serviced by a 2 MB cache. The 2 MB cache is said
to have an MPKI (misses per thousand instructions) of 20, and this will be largely
true regardless of the smaller caches that precede the 2 MB cache. Assume the fol-
lowing cache/latency/MPKI values: 32 KB/1/100, 128 KB/2/80, 512 KB/4/50,
2 MB/8/40, 8 MB/16/10. Assume that accessing the off-chip memory system
requires 200 cycles on average. For the following cache configurations, calculate
the average time spent accessing the cache hierarchy. What do you observe about
the downsides of a cache hierarchy that is too shallow or too deep?

a. 32 KB L1; 8 MB L2; off-chip memory

b. 32 KB L1; 512 KB L2; 8 MB L3; off-chip memory

c. 32 KB L1; 128 KB L2; 2 MB L3; 8 MB L4; off-chip memory

2.23 [15] <2.1, 2.2, 2.3> Consider a 16 MB 16-way L3 cache that is shared by two
programs A and B. There is a mechanism in the cache that monitors cache miss
rates for each program and allocates 1–15 ways to each program such that the over-
all number of cache misses is reduced. Assume that programA has anMPKI of 100
when it is assigned 1 MB of the cache. Each additional 1 MB assigned to program
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A reduces the MPKI by 1. Program B has an MPKI of 50 when it is assigned 1 MB
of cache; each additional 1 MB assigned to program B reduces its MPKI by 2.
What is the best allocation of ways to programs A and B?

2.24 [20] <2.1, 2.6> You are designing a PMD and optimizing it for low energy. The
core, including an 8 KB L1 data cache, consumes 1 W whenever it is not in hiber-
nation. If the core has a perfect L1 cache hit rate, it achieves an average CPI of 1 for
a given task, that is, 1000 cycles to execute 1000 instructions. Each additional
cycle accessing the L2 and beyond adds a stall cycle for the core. Based on the
following specifications, what is the size of L2 cache that achieves the lowest
energy for the PMD (core, L1, L2, memory) for that given task?

a. The core frequency is 1 GHz, and the L1 has an MPKI of 100.

b. A 256 KB L2 has a latency of 10 cycles, anMPKI of 20, a background power of
0.2 W, and each L2 access consumes 0.5 nJ.

c. A 1 MB L2 has a latency of 20 cycles, an MPKI of 10, a background power of
0.8 W, and each L2 access consumes 0.7 nJ.

d. The memory system has an average latency of 100 cycles, a background power
of 0.5 W, and each memory access consumes 35 nJ.

2.25 [15] <2.1, 2.6> You are designing a PMD that is optimized for low power. Qual-
itatively explain the impact on cache hierarchy (L2 andmemory) power and overall
application energy if you design an L2 cache with:

a. Small block size

b. Small cache size

c. High associativity

2.30 [10/10] <2.1, 2.2, 2.3> The ways of a set can be viewed as a priority list, ordered
from high priority to low priority. Every time the set is touched, the list can be
reorganized to change block priorities. With this view, cache management policies
can be decomposed into three sub-policies: Insertion, Promotion, and Victim
Selection. Insertion defines where newly fetched blocks are placed in the priority
list. Promotion defines how a block’s position in the list is changed every time it is
touched (a cache hit). Victim Selection defines which entry of the list is evicted to
make room for a new block when there is a cache miss.

a. Can you frame the LRU cache policy in terms of the Insertion, Promotion, and
Victim Selection sub-policies?

b. Can you define other Insertion and Promotion policies that may be competitive
and worth exploring further?

2.31 [15] <2.1, 2.3> In a processor that is running multiple programs, the last-level
cache is typically shared by all the programs. This leads to interference, where
one program’s behavior and cache footprint can impact the cache available to other
programs. First, this is a problem from a quality-of-service (QoS) perspective,
where the interference leads to a program receiving fewer resources and lower
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performance than promised, say by the operator of a cloud service. Second, this is a
problem in terms of privacy. Based on the interference it sees, a program can infer
the memory access patterns of other programs. This is referred to as a timing chan-
nel, a form of information leakage from one program to others that can be exploited
to compromise data privacy or to reverse-engineer a competitor’s algorithm. What
policies can you add to your last-level cache so that the behavior of one program is
immune to the behavior of other programs sharing the cache?

2.32 [15] <2.3> A large multimegabyte L3 cache can take tens of cycles to access
because of the long wires that have to be traversed. For example, it may take
20 cycles to access a 16 MB L3 cache. Instead of organizing the 16 MB cache such
that every access takes 20 cycles, we can organize the cache so that it is an array of
smaller cache banks. Some of these banks may be closer to the processor core,
while others may be further. This leads to nonuniform cache access (NUCA),
where 2 MB of the cache may be accessible in 8 cycles, the next 2 MB in 10 cycles,
and so on until the last 2 MB is accessed in 22 cycles. What new policies can you
introduce to maximize performance in a NUCA cache?

2.33 [10/10/10] <2.2> Consider a desktop system with a processor connected to a
2 GB DRAM with error-correcting code (ECC). Assume that there is only one
memory channel of width 72 bits (64 bits for data and 8 bits for ECC).

a. [10] <2.2> How many DRAM chips are on the DIMM if 1 Gb DRAM chips
are used, and how many data I/Os must each DRAM have if only one DRAM
connects to each DIMM data pin?

b. [10] <2.2> What burst length is required to support 32 B L2 cache blocks?

c. [10] <2.2> Calculate the peak bandwidth for DDR2-667 and DDR2-533
DIMMs for reads from an active page excluding the ECC overhead.

2.34 [10/10]<2.2>A sample DDR2 SDRAM timing diagram is shown in Figure 2.34.
tRCD is the time required to activate a row in a bank, and column address
strobe (CAS) latency (CL) is the number of cycles required to read out a column
in a row. Assume that the RAM is on a standard DDR2 DIMM with ECC, having
72 data lines. Also assume burst lengths of 8 that read out 8 bits, or a total of 64 B
from the DIMM. Assume tRCD = CAS (or CL) clock_frequency, and
clock_frequency = transfers_per_second/2. The on-chip latency

ACT
B0, Rx

RD
B0, Cx

Data outCAS latencytRCD Data out

CMD/
ADD

Clock

Data

Figure 2.34 DDR2 SDRAM timing diagram.
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on a cache miss through levels 1 and 2 and back, not including the DRAM access,
is 20 ns.

a. [10] <2.2> How much time is required from presentation of the activate
command until the last requested bit of data from the DRAM transitions
from valid to invalid for the DDR2-667 1 Gb CL¼5 DIMM? Assume that
for every request, we automatically prefetch another adjacent cache line in
the same page.

b. [10]<2.2>What is the relative latency when using the DDR2-667 DIMM of a
read requiring a bank activate versus one to an already open page, including the
time required to process the miss inside the processor?

2.35 [15]<2.2>Assume that a DDR2-667 2GBDIMMwith CL¼5 is available for 130
and a DDR2-533 2 GB DIMM with CL¼4 is available for 100. Assume that two
DIMMs are used in a system, and the rest of the system costs 800. Consider the
performance of the system using the DDR2-667 and DDR2-533 DIMMs on a
workload with 3.33 L2 misses per 1K instructions, and assume that 80% of all
DRAM reads require an activate. What is the cost-performance of the entire system
when using the different DIMMs, assuming only one L2 miss is outstanding at a
time and an in-order core with a CPI of 1.5 not including L2 cache miss memory
access time?

2.36 [12] <2.2> You are provisioning a server with eight-core 3 GHz CMP that can
execute a workload with an overall CPI of 2.0 (assuming that L2 cache miss refills
are not delayed). The L2 cache line size is 32 bytes. Assuming the system uses
DDR2-667 DIMMs, howmany independent memory channels should be provided
so the system is not limited by memory bandwidth if the bandwidth required is
sometimes twice the average? The workloads incur, on average, 6.67 L2 misses
per 1 K instructions.

2.37 [15] <2.2> Consider a processor that has four memory channels. Should consec-
utive memory blocks be placed in the same bank, or should they be placed in dif-
ferent banks on different channels?

2.38 [12/12]<2.2> A large amount (more than a third) of DRAM power can be due to
page activation (see http://download.micron.com/pdf/technotes/ddr2/TN4704.pdf
and http://www.micron.com/systemcalc). Assume you are building a system with
2 GB of memory using either 8-bank 2 Gb �8 DDR2 DRAMs or 8-bank 1 Gb
�8 DRAMs, both with the same speed grade. Both use a page size of 1 KB,
and the last-level cache line size is 64 bytes. Assume that DRAMs that are not
active are in precharged standby and dissipate negligible power. Assume that
the time to transition from standby to active is not significant.

a. [12] <2.2> Which type of DRAM would be expected to provide the higher
system performance? Explain why.

b. [12] <2.2> How does a 2 GB DIMM made of 1 Gb �8 DDR2 DRAMs com-
pare with a DIMM with similar capacity made of 1 Gb �4 DDR2 DRAMs in
terms of power?
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2.39 [20/15/12] <2.2> To access data from a typical DRAM, we first have to activate
the appropriate row. Assume that this brings an entire page of size 8 KB to the row
buffer. Then we select a particular column from the row buffer. If subsequent
accesses to DRAM are to the same page, then we can skip the activation step; oth-
erwise, we have to close the current page and precharge the bitlines for the next
activation. Another popular DRAM policy is to proactively close a page and
precharge bitlines as soon as an access is over. Assume that every read or write
to DRAM is of size 64 bytes and DDR bus latency (data from Figure 2.33) for
sending 512 bits is Tddr.

a. [20] <2.2> Assuming DDR2-667, if it takes five cycles to precharge, five
cycles to activate, and four cycles to read a column, for what value of the row
buffer hit rate (r) will you choose one policy over another to get the best access
time? Assume that every access to DRAM is separated by enough time to finish
a random new access.

b. [15] <2.2> If 10% of the total accesses to DRAM happen back to back or
contiguously without any time gap, how will your decision change?

c. [12] <2.2> Calculate the difference in average DRAM energy per access
between the two policies using the previously calculated row buffer hit rate.
Assume that precharging requires 2 nJ and activation requires 4 nJ and that
100 pJ/bit are required to read or write from the row buffer.

2.40 [15] <2.2> Whenever a computer is idle, we can either put it in standby (where
DRAM is still active) or we can let it hibernate. Assume that, to hibernate, we have
to copy just the contents of DRAM to a nonvolatile medium such as Flash. If read-
ing or writing a cache line of size 64 bytes to Flash requires 2.56 J and DRAM
requires 0.5 nJ, and if idle power consumption for DRAM is 1.6 W (for 8 GB),
how long should a system be idle to benefit from hibernating? Assume a main
memory of size 8 GB.

2.41 [10/10/10/10/10] <2.4> Virtual machines (VMs) have the potential for adding
many beneficial capabilities to computer systems, such as improved total cost
of ownership (TCO) or availability. Could VMs be used to provide the following
capabilities? If so, how could they facilitate this?

a. [10] <2.4> Test applications in production environments using development
machines?

b. [10] <2.4> Quick redeployment of applications in case of disaster or failure?

c. [10] <2.4> Higher performance in I/O-intensive applications?

d. [10] <2.4> Fault isolation between different applications, resulting in higher
availability for services?

e. [10] <2.4> Performing software maintenance on systems while applications
are running without significant interruption?

2.42 [10/10/12/12]<2.4>Virtualmachinescanloseperformance fromanumberofevents,
such as the execution of privileged instructions, TLB misses, traps, and I/O.
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These events are usually handled in system code. Thus one way of estimating the
slowdown when running under a VM is the percentage of application execution
time in system versus user mode. For example, an application spending 10% of its
execution in system mode might slow down by 60% when running on a VM.
Figure 2.35 lists the early performance of various system calls under native execu-
tion, pure virtualization, and paravirtualization for LMbench using Xen on
an Itanium system with times measured in microseconds (courtesy of Matthew
Chapman of the University of New South Wales).

a. [10] <2.4> What types of programs would be expected to have smaller
slowdowns when running under VMs?

b. [10] <2.4> If slowdowns were linear as a function of system time, given the
preceding slowdown, how much slower would a program spending 20% of its
execution in system time be expected to run?

c. [12]<2.4>What is the median slowdown of the system calls in the table above
under pure virtualization and paravirtualization?

d. [12] <2.4> Which functions in the table above have the largest slowdowns?
What do you think the cause of this could be?

2.43 [12]<2.4> Popek and Goldberg’s definition of a virtual machine said that it would
be indistinguishable from a real machine except for its performance. In this ques-
tion, we will use that definition to find out if we have access to native execution on
a processor or are running on a virtual machine. The Intel VT-x technology effec-
tively provides a second set of privilege levels for the use of the virtual machine.
What would a virtual machine running on top of another virtual machine have to
do, assuming VT-x technology?

2.44 [20/25]<2.4>With the adoption of virtualization support on the x86 architecture,
virtual machines are actively evolving and becoming mainstream. Compare and
contrast the Intel VT-x and AMD’s AMD-V virtualization technologies.

Benchmark Native Pure Para

Null call 0.04 0.96 0.50

Null I/O 0.27 6.32 2.91

Stat 1.10 10.69 4.14

Open/close 1.99 20.43 7.71

Install signal handler 0.33 7.34 2.89

Handle signal 1.69 19.26 2.36

Fork 56.00 513.00 164.00

Exec 316.00 2084.00 578.00

Fork+exec sh 1451.00 7790.00 2360.00

Figure 2.35 Early performance of various system calls under native execution, pure
virtualization, and paravirtualization.
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(Information on AMD-V can be found at http://sites.amd.com/us/business/it-
solutions/virtualization/Pages/resources.aspx.)

a. [20] <2.4> Which one could provide higher performance for memory-
intensive applications with large memory footprints?

b. [25]<2.4> Information on AMD’s IOMMU support for virtualized I/O can be
found at http://developer.amd.com/documentation/articles/pages/892006101.
aspx.What do Virtualization Technology and an input/output memory manage-
ment unit (IOMMU) do to improve virtualized I/O performance?

2.45 [30] <2.2, 2.3> Since instruction-level parallelism can also be effectively
exploited on in-order superscalar processors and very long instruction word
(VLIW) processors with speculation, one important reason for building an out-
of-order (OOO) superscalar processor is the ability to tolerate unpredictable mem-
ory latency caused by cache misses. Thus you can think about hardware supporting
OOO issue as being part of the memory system. Look at the floorplan of the Alpha
21264 in Figure 2.36 to find the relative area of the integer and floating-point issue
queues and mappers versus the caches. The queues schedule instructions for issue,
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Figure 2.36 Floorplan of the Alpha 21264 [Kessler 1999].
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and the mappers rename register specifiers. Therefore these are necessary additions
to support OOO issue. The 21264 only has L1 data and instruction caches on chip,
and they are both 64 KB two-way set associative. Use an OOO superscalar sim-
ulator such as SimpleScalar (http://www.cs.wisc.edu/�mscalar/simplescalar.
html) on memory-intensive benchmarks to find out how much performance is lost
if the area of the issue queues and mappers is used for additional L1 data cache area
in an in-order superscalar processor, instead of OOO issue in a model of the 21264.
Make sure the other aspects of the machine are as similar as possible to make the
comparison fair. Ignore any increase in access or cycle time from larger caches and
effects of the larger data cache on the floorplan of the chip. (Note that this com-
parison will not be totally fair, as the code will not have been scheduled for the
in-order processor by the compiler.)

2.46 [15] <2.2, 2.7> As discussed in Section 2.7, the Intel i7 processor has an aggres-
sive prefetcher. What are potential disadvantages in designing a prefetcher that is
extremely aggressive?

2.47 [20/20/20] <2.6> The Intel performance analyzer VTune can be used to make
many measurements of cache behavior. A free evaluation version of VTune on
both Windows and Linux can be downloaded from http://software.intel.com/en-
us/articles/intel-vtune-amplifier-xe/. The program (aca_ch2_cs2.c) used in
Case Study 2 has been modified so that it can work with VTune out of the box
on Microsoft Visual C++. The program can be downloaded from http://www.
hpl.hp.com/research/cacti/aca_ch2_cs2_vtune.c. Special VTune functions have
been inserted to exclude initialization and loop overhead during the performance
analysis process. Detailed VTune setup directions are given in the README sec-
tion in the program. The program keeps looping for 20 seconds for every config-
uration. In the following experiment, you can find the effects of data size on cache
and overall processor performance. Run the program in VTune on an Intel proces-
sor with the input dataset sizes of 8 KB, 128 KB, 4 MB, and 32 MB, and keep a
stride of 64 bytes (stride one cache line on Intel i7 processors). Collect statistics on
overall performance and L1 data cache, L2, and L3 cache performance.

a. [20] <2.6> List the number of misses per 1K instruction of L1 data cache, L2,
and L3 for each dataset size and your processor model and speed. Based on the
results, what can you say about the L1 data cache, L2, and L3 cache sizes on
your processor? Explain your observations.

b. [20] <2.6> List the instructions per clock (IPC) for each dataset size and your
processor model and speed. Based on the results, what can you say about the
L1, L2, and L3 miss penalties on your processor? Explain your observations.

c. [20] <2.6> Run the program in VTune with input dataset size of 8 KB and
128 KB on an Intel OOO processor. List the number of L1 data cache and
L2 cache misses per 1K instructions and the CPI for both configurations. What
can you say about the effectiveness of memory latency hiding techniques in
high-performance OOO processors? Hint: You need to find the L1 data cache
miss latency for your processor. For recent Intel i7 processors, it is approxi-
mately 11 cycles.
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3
Instruction-Level Parallelism
and Its Exploitation

“Who’s first?”
“America.”
“Who’s second?”
“Sir, there is no second.”

Dialog between two observers of the
sailing race in 1851, later named “The America’s Cup,”

which was the inspiration for John Cocke’s
naming of an IBM research processor as “America,” the first

superscalar processor, and a precursor to the PowerPC.

Thus, the IA-64 gambles that, in the future, power will not be the critical
limitation, and massive resources…will not penalize clock speed, path length,
or CPI factors. My view is clearly skeptical…

Marty Hopkins (2000), IBM Fellow and Early RISC pioneer
commenting in 2000 on the new Intel Itanium, a joint development

of Intel and HP. The Itanium used a static ILP approach (see
Appendix H) and was a massive investment for Intel. It never
accounted for more than 0.5% of Intel’s microprocessor sales.

Computer Architecture. https://doi.org/10.1016/B978-0-12-811905-1.00003-1
© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811905-1.00003-1


3.1 Instruction-Level Parallelism: Concepts and Challenges

All processors since about 1985 have used pipelining to overlap the execution of
instructions and improve performance. This potential overlap among instructions
is called instruction-level parallelism (ILP), because the instructions can be eval-
uated in parallel. In this chapter and Appendix H, we look at a wide range of tech-
niques for extending the basic pipelining concepts by increasing the amount of
parallelism exploited among instructions.

This chapter is at a considerably more advanced level than the material on basic
pipelining in Appendix C. If you are not thoroughly familiar with the ideas in
Appendix C, you should review that appendix before venturing into this chapter.

We start this chapter by looking at the limitation imposed by data and control
hazards and then turn to the topic of increasing the ability of the compiler and the
processor to exploit parallelism.These sections introduce a large number of concepts,
whichwebuild on throughout this chapter and the next.While someof themorebasic
material in this chapter could be understood without all of the ideas in the first two
sections, this basic material is important to later sections of this chapter.

There are two largely separable approaches to exploiting ILP: (1) an approach
that relies on hardware to help discover and exploit the parallelism dynamically,
and (2) an approach that relies on software technology to find parallelism statically
at compile time. Processors using the dynamic, hardware-based approach, includ-
ing all recent Intel and many ARM processors, dominate in the desktop and server
markets. In the personal mobile device market, the same approaches are used in
processors found in tablets and high-end cell phones. In the IOT space, where
power and cost constraints dominate performance goals, designers exploit lower
levels of instruction-level parallelism. Aggressive compiler-based approaches
have been attempted numerous times beginning in the 1980s and most recently
in the Intel Itanium series, introduced in 1999. Despite enormous efforts, such
approaches have been successful only in domain-specific environments or in
well-structured scientific applications with significant data-level parallelism.

In the past few years, many of the techniques developed for one approach have
been exploited within a design relying primarily on the other. This chapter intro-
duces the basic concepts and both approaches. A discussion of the limitations on
ILP approaches is included in this chapter, and it was such limitations that directly
led to the movement toward multicore. Understanding the limitations remains
important in balancing the use of ILP and thread-level parallelism.

In this section, we discuss features of both programs and processors that limit
the amount of parallelism that can be exploited among instructions, as well as the
critical mapping between program structure and hardware structure, which is key
to understanding whether a program property will actually limit performance and
under what circumstances.

The value of the CPI (cycles per instruction) for a pipelined processor is the
sum of the base CPI and all contributions from stalls:

PipelineCPI ¼ Ideal pipelineCPI + Structural stalls + Data hazard stalls + Control stalls
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The ideal pipeline CPI is a measure of the maximum performance attainable by the
implementation. By reducing each of the terms of the right-hand side, we decrease
the overall pipeline CPI or, alternatively, increase the IPC (instructions per clock).
The preceding equation allows us to characterize various techniques by what com-
ponent of the overall CPI a technique reduces. Figure 3.1 shows the techniques we
examine in this chapter and in Appendix H, as well as the topics covered in the
introductory material in Appendix C. In this chapter, we will see that the tech-
niques we introduce to decrease the ideal pipeline CPI can increase the importance
of dealing with hazards.

What Is Instruction-Level Parallelism?

All the techniques in this chapter exploit parallelism among instructions. The
amount of parallelism available within a basic block—a straight-line code sequence
with no branches in except to the entry and no branches out except at the exit—is
quite small. For typical RISC programs, the average dynamic branch frequency is
often between 15% and 25%, meaning that between three and six instructions exe-
cute between a pair of branches. Because these instructions are likely to depend
upon one another, the amount of overlap we can exploit within a basic block is
likely to be less than the average basic block size. To obtain substantial performance
enhancements, we must exploit ILP across multiple basic blocks.

The simplest and most common way to increase the ILP is to exploit parallel-
ism among iterations of a loop. This type of parallelism is often called loop-level

Technique Reduces Section

Forwarding and bypassing Potential data hazard stalls C.2

Simple branch scheduling and prediction Control hazard stalls C.2

Basic compiler pipeline scheduling Data hazard stalls C.2, 3.2

Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences C.7

Loop unrolling Control hazard stalls 3.2

Advanced branch prediction Control stalls 3.3

Dynamic scheduling with renaming Stalls from data hazards, output dependences, and
antidependences

3.4

Hardware speculation Data hazard and control hazard stalls 3.6

Dynamic memory disambiguation Data hazard stalls with memory 3.6

Issuing multiple instructions per cycle Ideal CPI 3.7, 3.8

Compiler dependence analysis, software pipelining,
trace scheduling

Ideal CPI, data hazard stalls H.2, H.3

Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

Figure 3.1 The major techniques examined in Appendix C, Chapter 3, and Appendix H are shown together with
the component of the CPI equation that the technique affects.

3.1 Instruction-Level Parallelism: Concepts and Challenges ■ 169



parallelism. Here is a simple example of a loop that adds two 1000-element arrays
and is completely parallel:

for (i=0; i<=999; i=i+1)
x[i] = x[i] + y[i];

Every iteration of the loop can overlap with any other iteration, although within
each loop iteration, there is little or no opportunity for overlap.

We will examine a number of techniques for converting such loop-level
parallelism into instruction-level parallelism. Basically, such techniques work
by unrolling the loop either statically by the compiler (as in the next section) or
dynamically by the hardware (as in Sections 3.5 and 3.6).

An important alternative method for exploiting loop-level parallelism is the use
of SIMD in both vector processors and graphics processing units (GPUs), both of
which are covered in Chapter 4. A SIMD instruction exploits data-level parallelism
by operating on a small to moderate number of data items in parallel (typically
two to eight). A vector instruction exploits data-level parallelism by operating
on many data items in parallel using both parallel execution units and a deep pipe-
line. For example, the preceding code sequence, which in simple form requires
seven instructions per iteration (two loads, an add, a store, two address updates,
and a branch) for a total of 7000 instructions, might execute in one-quarter as many
instructions in some SIMD architecture where four data items are processed per
instruction. On some vector processors, this sequence might take only four instruc-
tions: two instructions to load the vectors x and y from memory, one instruction to
add the two vectors, and an instruction to store back the result vector. Of course,
these instructions would be pipelined and have relatively long latencies, but these
latencies may be overlapped.

Data Dependences and Hazards

Determining how one instruction depends on another is critical to determining how
much parallelism exists in a program and how that parallelism can be exploited.
In particular, to exploit instruction-level parallelism, we must determine which
instructions can be executed in parallel. If two instructions are parallel, they
can execute simultaneously in a pipeline of arbitrary depth without causing any
stalls, assuming the pipeline has sufficient resources (and thus no structural hazards
exist). If two instructions are dependent, they are not parallel and must be executed
in order, although they may often be partially overlapped. The key in both cases is
to determine whether an instruction is dependent on another instruction.

Data Dependences

There are three different types of dependences: data dependences (also called true
data dependences), name dependences, and control dependences. An instruction j
is data-dependent on instruction i if either of the following holds:
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■ Instruction i produces a result that may be used by instruction j.

■ Instruction j is data-dependent on instruction k, and instruction k is data-
dependent on instruction i.

The second condition simply states that one instruction is dependent on another if
there exists a chain of dependences of the first type between the two instructions.
This dependence chain can be as long as the entire program. Note that a depen-
dence within a single instruction (such as add x1,x1,x1) is not considered a
dependence.

For example, consider the following RISC-V code sequence that increments a
vector of values in memory (starting at 0(x1) ending with the last element at
0(x2)) by a scalar in register f2.

Loop: fld f0,0(x1) //f0=array element
fadd.d f4,f0,f2 //add scalar in f2
fsd f4,0(x1) //store result
addi x1,x1,�8 //decrement pointer 8 bytes
bne x1,x2,Loop //branch x1 6¼x2

The data dependences in this code sequence involve both floating-point data:

Loop: fld f0,0(x1) //f0=array element
fadd.d f4,f0,f2 //add scalar in f2
fsd f4,0(x1) //store result

and integer data:

addi  x1,x1,-8 //decrement pointer 
//8 bytes (per DW)

bne  x1,x2,Loop//branch x1ax2

In both of the preceding dependent sequences, as shown by the arrows, each
instruction depends on the previous one. The arrows here and in following exam-
ples show the order that must be preserved for correct execution. The arrow points
from an instruction that must precede the instruction that the arrowhead points to.

If two instructions are data-dependent, they must execute in order and cannot
execute simultaneously or be completely overlapped. The dependence implies that
there would be a chain of one or more data hazards between the two instructions.
(See Appendix C for a brief description of data hazards, which we will define
precisely in a few pages.) Executing the instructions simultaneously will cause
a processor with pipeline interlocks (and a pipeline depth longer than the distance
between the instructions in cycles) to detect a hazard and stall, thereby reducing or
eliminating the overlap. In a processor without interlocks that relies on compiler
scheduling, the compiler cannot schedule dependent instructions in such a way that
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they completely overlap because the program will not execute correctly. The pres-
ence of a data dependence in an instruction sequence reflects a data dependence
in the source code from which the instruction sequence was generated. The effect
of the original data dependence must be preserved.

Dependences are a property of programs.Whether a given dependence results
in an actual hazard being detected and whether that hazard actually causes a stall
are properties of the pipeline organization. This difference is critical to understand-
ing how instruction-level parallelism can be exploited.

A data dependence conveys three things: (1) the possibility of a hazard, (2) the
order in which results must be calculated, and (3) an upper bound on how
much parallelism can possibly be exploited. Such limits are explored in a pitfall
on page 262 and in Appendix H in more detail.

Because a data dependence can limit the amount of instruction-level parallel-
ism we can exploit, a major focus of this chapter is overcoming these limitations. A
dependence can be overcome in two different ways: (1) maintaining the depen-
dence but avoiding a hazard, and (2) eliminating a dependence by transforming
the code. Scheduling the code is the primary method used to avoid a hazard without
altering a dependence, and such scheduling can be done both by the compiler and
by the hardware.

A data value may flow between instructions either through registers or through
memory locations. When the data flow occurs through a register, detecting the
dependence is straightforward because the register names are fixed in the instruc-
tions, although it gets more complicated when branches intervene and correctness
concerns force a compiler or hardware to be conservative.

Dependences that flow through memory locations are more difficult to detect
because two addresses may refer to the same location but look different: For exam-
ple, 100(x4) and 20(x6) may be identical memory addresses. In addition, the
effective address of a load or store may change from one execution of the instruc-
tion to another (so that 20(x4) and 20(x4) may be different), further compli-
cating the detection of a dependence.

In this chapter, we examine hardware for detecting data dependences that
involve memory locations, but we will see that these techniques also have limita-
tions. The compiler techniques for detecting such dependences are critical in unco-
vering loop-level parallelism.

Name Dependences

The second type of dependence is a name dependence.A name dependence occurs
when two instructions use the same register or memory location, called a name, but
there is no flow of data between the instructions associated with that name. There
are two types of name dependences between an instruction i that precedes instruc-
tion j in program order:

1. An antidependence between instruction i and instruction j occurs when instruc-
tion j writes a register or memory location that instruction i reads. The original
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orderingmust be preserved to ensure that i reads the correct value. In the example
on page 171, there is an antidependence between fsd and addi on register x1.

2. An output dependence occurs when instruction i and instruction jwrite the same
register or memory location. The ordering between the instructions must be
preserved to ensure that the value finally written corresponds to instruction j.

Both antidependences and output dependences are name dependences, as opposed
to true data dependences, because there is no value being transmitted between the
instructions. Because a name dependence is not a true dependence, instructions
involved in a name dependence can execute simultaneously or be reordered, if
the name (register number or memory location) used in the instructions is changed
so the instructions do not conflict.

This renaming can be more easily done for register operands, where it is called
register renaming. Register renaming can be done either statically by a compiler or
dynamically by the hardware.Before describingdependences arising frombranches,
let’s examine the relationship between dependences and pipeline data hazards.

Data Hazards

A hazard exists whenever there is a name or data dependence between instructions,
and they are close enough that the overlap during execution would change the
order of access to the operand involved in the dependence. Because of the depen-
dence, we must preserve what is called program order—that is, the order that the
instructions would execute in if executed sequentially one at a time as determined
by the original source program. The goal of both our software and hardware tech-
niques is to exploit parallelism by preserving program order only where it affects
the outcome of the program. Detecting and avoiding hazards ensures that neces-
sary program order is preserved.

Data hazards, which are informally described in Appendix C, may be classified
as one of three types, depending on the order of read and write accesses in the
instructions. By convention, the hazards are named by the ordering in the program
that must be preserved by the pipeline. Consider two instructions i and j, with i
preceding j in program order. The possible data hazards are

■ RAW (read after write)—j tries to read a source before i writes it, so j incor-
rectly gets the old value. This hazard is the most common type and corresponds
to a true data dependence. Program order must be preserved to ensure that j
receives the value from i.

■ WAW (write after write)—j tries to write an operand before it is written by i.
The writes end up being performed in the wrong order, leaving the value writ-
ten by i rather than the value written by j in the destination. This hazard cor-
responds to an output dependence. WAW hazards are present only in pipelines
that write in more than one pipe stage or allow an instruction to proceed even
when a previous instruction is stalled.
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■ WAR (write after read)—j tries to write a destination before it is read by i, so i
incorrectly gets the new value. This hazard arises from an antidependence (or
name dependence). WAR hazards cannot occur in most static issue pipelines—
even deeper pipelines or floating-point pipelines—because all reads are early
(in ID in the pipeline in Appendix C) and all writes are late (in WB in the pipe-
line in Appendix C). AWAR hazard occurs either when there are some instruc-
tions that write results early in the instruction pipeline and other instructions
that read a source late in the pipeline, or when instructions are reordered, as
we will see in this chapter.

Note that the RAR (read after read) case is not a hazard.

Control Dependences

The last type of dependence is a control dependence. A control dependence deter-
mines the ordering of an instruction, i, with respect to a branch instruction so that
instruction i is executed in correct program order and only when it should be. Every
instruction, except for those in the first basic block of the program, is control-
dependent on some set of branches, and in general, these control dependences must
be preserved to preserve program order. One of the simplest examples of a control
dependence is the dependence of the statements in the “then” part of an if statement
on the branch. For example, in the code segment

if p1 {
S1;

};
if p2 {

S2;
}

S1 is control-dependent on p1, and S2 is control-dependent on p2 but not
on p1.

In general, two constraints are imposed by control dependences:

1. An instruction that is control-dependent on a branch cannot be moved before the
branch so that its execution is no longer controlled by the branch. For example,
we cannot take an instruction from the then portion of an if statement and move
it before the if statement.

2. An instruction that is not control-dependent on a branch cannot be moved after
the branch so that its execution is controlled by the branch. For example, we
cannot take a statement before the if statement and move it into the then portion.

When processors preserve strict program order, they ensure that control depen-
dences are also preserved. We may be willing to execute instructions that should
not have been executed, however, thereby violating the control dependences, if we
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can do so without affecting the correctness of the program. Thus control depen-
dence is not the critical property that must be preserved. Instead, the two properties
critical to program correctness—and normally preserved by maintaining both data
and control dependences—are the exception behavior and the data flow.

Preserving the exception behavior means that any changes in the ordering of
instruction execution must not change how exceptions are raised in the program.
Often this is relaxed to mean that the reordering of instruction execution must not
cause any new exceptions in the program. A simple example shows how maintain-
ing the control and data dependences can prevent such situations. Consider this
code sequence:

add x2,x3,x4
beq x2,x0,L1
ld x1,0(x2)

L1:

In this case, it is easy to see that if we do not maintain the data dependence involv-
ing x2, we can change the result of the program. Less obvious is the fact that if we
ignore the control dependence and move the load instruction before the branch, the
load instruction may cause a memory protection exception. Notice that no data
dependence prevents us from interchanging the beqz and the ld; it is only the
control dependence. To allow us to reorder these instructions (and still preserve
the data dependence), we want to just ignore the exception when the branch is
taken. In Section 3.6, we will look at a hardware technique, speculation, which
allows us to overcome this exception problem. Appendix H looks at software tech-
niques for supporting speculation.

The second property preserved by maintenance of data dependences and con-
trol dependences is the data flow. The data flow is the actual flow of data values
among instructions that produce results and those that consume them. Branches
make the data flow dynamic because they allow the source of data for a given
instruction to come from many points. Put another way, it is insufficient to just
maintain data dependences because an instruction may be data-dependent on more
than one predecessor. Program order is what determines which predecessor will
actually deliver a data value to an instruction. Program order is ensured by main-
taining the control dependences.

For example, consider the following code fragment:

add x1,x2,x3
beq x4,x0,L
sub x1,x5,x6

L: ...
or x7,x1,x8

In this example, the value of x1 used by the or instruction depends on whether the
branch is taken or not. Data dependence alone is not sufficient to preserve correct-
ness. The or instruction is data-dependent on both the add and sub instructions,
but preserving that order alone is insufficient for correct execution.
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Instead, when the instructions execute, the data flow must be preserved: If the
branch is not taken, then the value of x1 computed by the sub should be used by
the or, and if the branch is taken, the value of x1 computed by the add should
be used by the or. By preserving the control dependence of the or on the branch,
we prevent an illegal change to the data flow. For similar reasons, the sub instruc-
tion cannot be moved above the branch. Speculation, which helps with the excep-
tion problem, will also allow us to lessen the impact of the control dependence
while still maintaining the data flow, as we will see in Section 3.6.

Sometimes we can determine that violating the control dependence cannot
affect either the exception behavior or the data flow. Consider the following code
sequence:

add x1,x2,x3
beq x12,x0,skip
sub x4,x5,x6
add x5,x4,x9

skip: or x7,x8,x9

Supposeweknew that the register destination of thesub instruction (x4)was unused
after the instruction labeledskip. (Thepropertyofwhether a valuewill beusedbyan
upcoming instruction is called liveness.) If x4were unused, then changing the value
ofx4 just before the branchwould not affect the data flowbecausex4would be dead
(rather than live) in the code region afterskip. Thus, ifx4weredead and the existing
sub instruction could not generate an exception (other than those from which the
processor resumes the same process), we could move the sub instruction before
the branch because the data flow could not be affected by this change.

If the branch is taken, the sub instruction will execute and will be useless, but
it will not affect the program results. This type of code scheduling is also a form of
speculation, often called software speculation, because the compiler is betting on
the branch outcome; in this case, the bet is that the branch is usually not taken.
More ambitious compiler speculation mechanisms are discussed in Appendix H.
Normally, it will be clear when we say speculation or speculative whether the
mechanism is a hardware or software mechanism; when it is not clear, it is best
to say “hardware speculation” or “software speculation.”

Control dependence is preserved by implementing control hazard detection
that causes control stalls. Control stalls can be eliminated or reduced by a variety
of hardware and software techniques, which we examine in Section 3.3.

3.2 Basic Compiler Techniques for Exposing ILP

This section examines the use of simple compiler technology to enhance a proces-
sor’s ability to exploit ILP. These techniques are crucial for processors that use static
issue or static scheduling. Armed with this compiler technology, we will shortly
examine the design and performance of processors using static issuing. Appendix
H will investigate more sophisticated compiler and associated hardware schemes
designed to enable a processor to exploit more instruction-level parallelism.
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Basic Pipeline Scheduling and Loop Unrolling

To keep a pipeline full, parallelism among instructions must be exploited by find-
ing sequences of unrelated instructions that can be overlapped in the pipeline. To
avoid a pipeline stall, the execution of a dependent instruction must be separated
from the source instruction by a distance in clock cycles equal to the pipeline
latency of that source instruction. A compiler’s ability to perform this scheduling
depends both on the amount of ILP available in the program and on the latencies of
the functional units in the pipeline. Figure 3.2 shows the FP unit latencies we
assume in this chapter, unless different latencies are explicitly stated. We assume
the standard five-stage integer pipeline so that branches have a delay of one clock
cycle. We assume that the functional units are fully pipelined or replicated (as
many times as the pipeline depth) so that an operation of any type can be issued
on every clock cycle and there are no structural hazards.

In this section, we look at how the compiler can increase the amount of avail-
able ILP by transforming loops. This example serves both to illustrate an important
technique as well as to motivate the more powerful program transformations
described in Appendix H. We will rely on the following code segment, which adds
a scalar to a vector:

for (i=999; i>=0; i=i�1)
x[i] = x[i] + s;

We can see that this loop is parallel by noticing that the body of each iteration is
independent. We formalize this notion in Appendix H and describe howwe can test
whether loop iterations are independent at compile time. First, let’s look at the per-
formance of this loop, which shows how we can use the parallelism to improve its
performance for a RISC-V pipeline with the preceding latencies.

The first step is to translate the preceding segment toRISC-Vassembly language.
In the following code segment, x1 is initially the address of the element in the array
with the highest address, and f2 contains the scalar value s. Register x2 is precom-
puted so that Regs[x2]+8 is the address of the last element to operate on.

Instruction producing result Instruction using result Latency in clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter. The last column is the
number of intervening clock cycles needed to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit. The latency of a floating-point load
to a store is 0 because the result of the load can be bypassed without stalling the store.
We will continue to assume an integer load latency of 1 and an integer ALU operation
latency of 0 (which includes ALU operation to branch).
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The straightforward RISC-V code, not scheduled for the pipeline, looks like
this:

Loop: fld f0,0(x1) //f0=array element
fadd.d f4,f0,f2 //add scalar in f2
fsd f4,0(x1) //store result
addi x1,x1,�8 //decrement pointer

//8 bytes (per DW)
bne x1,x2,Loop //branch x1 6¼x2

Let’s start by seeing how well this loop will run when it is scheduled on a sim-
ple pipeline for RISC-V with the latencies in Figure 3.2.

Example Show how the loop would look on RISC-V, both scheduled and unscheduled,
including any stalls or idle clock cycles. Schedule for delays from floating-point
operations.

Answer Without any scheduling, the loop will execute as follows, taking nine cycles:

Clock cycle issued
Loop: fld f0,0(x1) 1

stall 2
fadd.d f4,f0,f2 3
stall 4
stall 5
fsd f4,0(x1) 6
addi x1,x1,�8 7
bne x1,x2,Loop 8

We can schedule the loop to obtain only two stalls and reduce the time to seven
cycles:

Loop: fld f0,0(x1)
addi x1,x1,�8
fadd.d f4,f0,f2
stall
stall
fsd f4,8(x1)
bne x1,x2,Loop

The stalls after fadd.d are for use by the fsd, and repositioning the addi pre-
vents the stall after the fld.

In the previous example, we complete one loop iteration and store back one array
element every seven clock cycles, but the actual work of operating on the array
element takes just three (the load, add, and store) of those seven clock cycles.
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The remaining four clock cycles consist of loop overhead—the addi and bne—
and two stalls. To eliminate these four clock cycles, we need to get more operations
relative to the number of overhead instructions.

A simple scheme for increasing the number of instructions relative to the
branch and overhead instructions is loop unrolling. Unrolling simply replicates
the loop body multiple times, adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it eliminates
the branch, it allows instructions from different iterations to be scheduled together.
In this case, we can eliminate the data use stalls by creating additional independent
instructions within the loop body. If we simply replicated the instructions when we
unrolled the loop, the resulting use of the same registers could prevent us from
effectively scheduling the loop. Thus we will want to use different registers for
each iteration, increasing the required number of registers.

Example Show our loop unrolled so that there are four copies of the loop body, assuming
x1� x2 (that is, the size of the array) is initially a multiple of 32, which means that
the number of loop iterations is a multiple of 4. Eliminate any obviously redundant
computations and do not reuse any of the registers.

Answer Here is the result after merging the addi instructions and dropping the unnec-
essary bne operations that are duplicated during unrolling. Note that x2 must
now be set so that Regs[x2]+32 is the starting address of the last four
elements.

Loop: fld f0,0(x1)
fadd.d f4,f0,f2
fsd f4,0(x1) //drop addi & bne
fld f6,�8(x1)
fadd.d f8,f6,f2
fsd f8,�8(x1) //drop addi & bne
fld f0,�16(x1)
fadd.d f12,f0,f2
fsd f12,�16(x1) //drop addi & bne
fld f14,�24(x1)
fadd.d f16,f14,f2
fsd f16,�24(x1)
addi x1,x1,�32
bne x1,x2,Loop

We have eliminated three branches and three decrements of x1. The addresses on
the loads and stores have been compensated to allow the addi instructions on x1
to be merged. This optimization may seem trivial, but it is not; it requires symbolic
substitution and simplification. Symbolic substitution and simplification will rear-
range expressions so as to allow constants to be collapsed, allowing an expression
such as ((i+1)+1) to be rewritten as (i+(1+1)) and then simplified to (i+2).
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We will see more general forms of these optimizations that eliminate dependent
computations in Appendix H.

Without scheduling, every FP load or operation in the unrolled loop is followed
by a dependent operation and thus will cause a stall. This unrolled loop will run in
26 clock cycles—each fld has 1 stall, each fadd.d has 2, plus 14 instruction
issue cycles—or 6.5 clock cycles for each of the four elements, but it can be sched-
uled to improve performance significantly. Loop unrolling is normally done early
in the compilation process so that redundant computations can be exposed and
eliminated by the optimizer.

In real programs, we do not usually know the upper bound on the loop. Sup-
pose it is n, and we want to unroll the loop to make k copies of the body. Instead of a
single unrolled loop, we generate a pair of consecutive loops. The first executes (n
mod k) times and has a body that is the original loop. The second is the unrolled
body surrounded by an outer loop that iterates (n/k) times. (As we will see in
Chapter 4, this technique is similar to a technique called strip mining, used in com-
pilers for vector processors.) For large values of n, most of the execution time will
be spent in the unrolled loop body.

In the previous example, unrolling improves the performance of this loop by
eliminating overhead instructions, although it increases code size substantially.
How will the unrolled loop perform when it is scheduled for the pipeline described
earlier?

Example Show the unrolled loop in the previous example after it has been scheduled for the
pipeline with the latencies in Figure 3.2.

Answer Loop: fld f0,0(x1)
fld f6,�8(x1)
fld f0,�16(x1)
fld f14,�24(x1)
fadd.d f4,f0,f2
fadd.d f8,f6,f2
fadd.d f12,f0,f2
fadd.d f16,f14,f2
fsd f4,0(x1)
fsd f8,�8(x1)
fsd f12,16(x1)
fsd f16,8(x1)
addi x1,x1,�32
bne x1,x2,Loop

The execution time of the unrolled loop has dropped to a total of 14 clock
cycles, or 3.5 clock cycles per element, compared with 8 cycles per element before
any unrolling or scheduling and 6.5 cycles when unrolled but not scheduled.
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The gain from scheduling on the unrolled loop is even larger than on the original
loop. This increase arises because unrolling the loop exposes more computation
that can be scheduled to minimize the stalls; the preceding code has no stalls.
Scheduling the loop in this fashion necessitates realizing that the loads and stores
are independent and can be interchanged.

Summary of the Loop Unrolling and Scheduling

Throughout this chapter and Appendix H, we will look at a variety of hardware and
software techniques that allow us to take advantage of instruction-level parallelism
to fully utilize the potential of the functional units in a processor. The key to most
of these techniques is to know when and how the ordering among instructions may
be changed. In our example, we made many such changes, which to us, as human
beings, were obviously allowable. In practice, this process must be performed in a
methodical fashion either by a compiler or by hardware. To obtain the final
unrolled code, we had to make the following decisions and transformations:

■ Determine that unrolling the loop would be useful by finding that the loop iter-
ations were independent, except for the loop maintenance code.

■ Use different registers to avoid unnecessary constraints that would be forced by
using the same registers for different computations (e.g., name dependences).

■ Eliminate the extra test and branch instructions and adjust the loop termination
and iteration code.

■ Determine that the loads and stores in the unrolled loop can be interchanged by
observing that the loads and stores from different iterations are independent.
This transformation requires analyzing the memory addresses and finding that
they do not refer to the same address.

■ Schedule the code, preserving any dependences needed to yield the same result
as the original code.

The key requirement underlying all of these transformations is an understanding of
how one instruction depends on another and how the instructions can be changed
or reordered given the dependences.

Three different effects limit the gains from loop unrolling: (1) a decrease in the
amount of overhead amortized with each unroll, (2) code size limitations, and
(3) compiler limitations. Let’s consider the question of loop overhead first. When
we unrolled the loop four times, it generated sufficient parallelism among the
instructions that the loop could be scheduled with no stall cycles. In fact, in 14
clock cycles, only 2 cycles were loop overhead: the addi, which maintains the
index value, and the bne, which terminates the loop. If the loop is unrolled eight
times, the overhead is reduced from 1/2 cycle per element to 1/4.

A second limit to unrolling is the resulting growth in code size. For larger
loops, the code size growth may be a concern, particularly if it causes an increase
in the instruction cache miss rate.
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Another factor often more important than code size is the potential shortfall in
registers that is created by aggressive unrolling and scheduling. This secondary
effect that results from instruction scheduling in large code segments is called reg-
ister pressure. It arises because scheduling code to increase ILP causes the number
of live values to increase. After aggressive instruction scheduling, it may not be
possible to allocate all the live values to registers. The transformed code, while the-
oretically faster, may lose some or all of its advantage because it leads to a shortage
of registers. Without unrolling, aggressive scheduling is sufficiently limited by
branches so that register pressure is rarely a problem. The combination of unrolling
and aggressive scheduling can, however, cause this problem. The problem becomes
especially challenging in multiple-issue processors that require the exposure of
more independent instruction sequences whose execution can be overlapped.
In general, the use of sophisticated high-level transformations, whose potential
improvements are difficult to measure before detailed code generation, has led to
significant increases in the complexity of modern compilers.

Loop unrolling is a simple but useful method for increasing the size of straight-
line code fragments that can be scheduled effectively. This transformation is useful
in a variety of processors, from simple pipelines like those we have examined so far
to the multiple-issue superscalars and VLIWs explored later in this chapter.

3.3 Reducing Branch Costs With Advanced Branch
Prediction

Because of the need to enforce control dependences through branch hazards and
stalls, branches will hurt pipeline performance. Loop unrolling is one way to
reduce the number of branch hazards; we can also reduce the performance losses
of branches by predicting how they will behave. In Appendix C, we examine sim-
ple branch predictors that rely either on compile-time information or on the
observed dynamic behavior of a single branch in isolation. As the number of
instructions in flight has increased with deeper pipelines and more issues per clock,
the importance of more accurate branch prediction has grown. In this section, we
examine techniques for improving dynamic prediction accuracy. This section
makes extensive use of the simple 2-bit predictor covered in Section C.2, and
it is critical that the reader understand the operation of that predictor before
proceeding.

Correlating Branch Predictors

The 2-bit predictor schemes in Appendix C use only the recent behavior of a single
branch to predict the future behavior of that branch. It may be possible to improve
the prediction accuracy if we also look at the recent behavior of other branches
rather than just the branch we are trying to predict. Consider a small code fragment
from the eqntott benchmark, a member of early SPEC benchmark suites that dis-
played particularly bad branch prediction behavior:
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if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa!=bb) {

Here is the RISC-V code that we would typically generate for this code frag-
ment assuming that aa and bb are assigned to registers x1 and x2:

addi x3,x1,–2
bnez x3,L1 //branch b1 (aa!=2)
add x1,x0,x0 //aa=0

L1: addi x3,x2,–2
bnez x3,L2 //branch b2 (bb!=2)
add x2,x0,x0 //bb=0

L2: sub x3,x1,x2 //x3=aa-bb
beqz x3,L3 //branch b3 (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the behavior
of branch b3 is correlated with the behavior of branches b1 and b2. Clearly, if nei-
ther branches b1 nor b2 are taken (i.e., if the conditions both evaluate to true and aa
and bb are both assigned 0), then b3 will be taken, because aa and bb are clearly
equal. A predictor that uses the behavior of only a single branch to predict the out-
come of that branch can never capture this behavior.

Branch predictors that use the behavior of other branches to make a prediction
are called correlating predictors or two-level predictors. Existing correlating pre-
dictors add information about the behavior of the most recent branches to decide
how to predict a given branch. For example, a (1,2) predictor uses the behavior of
the last branch to choose from among a pair of 2-bit branch predictors in predicting
a particular branch. In the general case, an (m,n) predictor uses the behavior of the
last m branches to choose from 2m branch predictors, each of which is an n-bit pre-
dictor for a single branch. The attraction of this type of correlating branch predictor
is that it can yield higher prediction rates than the 2-bit scheme and requires only a
trivial amount of additional hardware.

The simplicity of the hardware comes from a simple observation: the global
history of the most recent m branches can be recorded in an m-bit shift register,
where each bit records whether the branch was taken or not taken. The branch-
prediction buffer can then be indexed using a concatenation of the low-order bits
from the branch address with them-bit global history. For example, in a (2,2) buffer
with 64 total entries, the 4 low-order address bits of the branch (word address)
and the 2 global bits representing the behavior of the two most recently executed
branches form a 6-bit index that can be used to index the 64 counters. By combin-
ing the local and global information by concatenation (or a simple hash function),
we can index the predictor table with the result and get a prediction as fast as we
could for the standard 2-bit predictor, as we will do very shortly.
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How much better do the correlating branch predictors work when compared
with the standard 2-bit scheme? To compare them fairly, we must compare
predictors that use the same number of state bits. The number of bits in an
(m,n) predictor is

2m� n� Number of prediction entries selected by the branch address

A 2-bit predictor with no global history is simply a (0,2) predictor.

Example Howmany bits are in the (0,2) branch predictor with 4K entries? Howmany entries
are in a (2,2) predictor with the same number of bits?

Answer The predictor with 4K entries has

20�2�4K¼ 8Kbits

How many branch-selected entries are in a (2,2) predictor that has a total of 8K bits
in the prediction buffer? We know that

22�2�Number of prediction entries selected by the branch¼ 8K

Therefore the number of prediction entries selected by the branch¼1K.

Figure 3.3 compares the misprediction rates of the earlier (0,2) predictor with 4K
entries and a (2,2) predictor with 1K entries. As you can see, this correlating pre-
dictor not only outperforms a simple 2-bit predictor with the same total number of
state bits, but it also often outperforms a 2-bit predictor with an unlimited number
of entries.

Perhaps the best-known example of a correlating predictor is McFarling’s
gshare predictor. In gshare the index is formed by combining the address of the
branch and the most recent conditional branch outcomes using an exclusive-
OR, which essentially acts as a hash of the branch address and the branch history.
The hashed result is used to index a prediction array of 2-bit counters, as shown in
Figure 3.4. The gshare predictor works remarkably well for a simple predictor, and
is often used as the baseline for comparison with more sophisticated predictors.
Predictors that combine local branch information and global branch history are also
called alloyed predictors or hybrid predictors.

Tournament Predictors: Adaptively Combining Local and
Global Predictors

The primary motivation for correlating branch predictors came from the observa-
tion that the standard 2-bit predictor, using only local information, failed on some
important branches. Adding global history could help remedy this situation.
Tournament predictors take this insight to the next level, by using multiple predic-
tors, usually a global predictor and a local predictor, and choosing between them
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with a selector, as shown in Figure 3.5. A global predictor uses the most recent
branch history to index the predictor, while a local predictor uses the address
of the branch as the index. Tournament predictors are another form of hybrid or
alloyed predictors.

Tournament predictors can achieve better accuracy at medium sizes (8K–32K
bits) and also effectively use very large numbers of prediction bits. Existing tour-
nament predictors use a 2-bit saturating counter per branch to choose among two
different predictors based on which predictor (local, global, or even some time-
varying mix) was most effective in recent predictions. As in a simple 2-bit predic-
tor, the saturating counter requires two mispredictions before changing the identity
of the preferred predictor.

The advantage of a tournament predictor is its ability to select the right predic-
tor for a particular branch, which is particularly crucial for the integer benchmarks.
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Figure 3.5 A tournament predictor using the branch address to index a set of 2-bit selection counters, which
choose between a local and a global predictor. In this case, the index to the selector table is the current branch
address. The two tables are also 2-bit predictors that are indexed by the global history and branch address, respec-
tively. The selector acts like a 2-bit predictor, changing the preferred predictor for a branch address when two mis-
predicts occur in a row. The number of bits of the branch address used to index the selector table and the local
predictor table is equal to the length of the global branch history used to index the global prediction table. Note that
misprediction is a bit tricky because we need to change both the selector table and either the global or local predictor.
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A typical tournament predictor will select the global predictor almost 40% of the
time for the SPEC integer benchmarks and less than 15% of the time for the SPEC
FP benchmarks. In addition to the Alpha processors that pioneered tournament pre-
dictors, several AMD processors have used tournament-style predictors.

Figure 3.6 looks at the performance of three different predictors (a local 2-bit
predictor, a correlating predictor, and a tournament predictor) for different num-
bers of bits using SPEC89 as the benchmark. The local predictor reaches its limit
first. The correlating predictor shows a significant improvement, and the tourna-
ment predictor generates a slightly better performance. For more recent versions
of the SPEC, the results would be similar, but the asymptotic behavior would
not be reached until slightly larger predictor sizes.

The local predictor consists of a two-level predictor. The top level is a local
history table consisting of 1024 10-bit entries; each 10-bit entry corresponds to
the most recent 10 branch outcomes for the entry. That is, if the branch is taken
10 or more times in a row, the entry in the local history table will be all 1s. If
the branch is alternately taken and untaken, the history entry consists of alternating
0s and 1s. This 10-bit history allows patterns of up to 10 branches to be discovered
and predicted. The selected entry from the local history table is used to index a table
of 1K entries consisting of 3-bit saturating counters, which provide the local pre-
diction. This combination, which uses a total of 29K bits, leads to high accuracy in
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branch prediction while requiring fewer bits than a single level table with the same
prediction accuracy.

Tagged Hybrid Predictors

The best performing branch prediction schemes as of 2017 involve combining
multiple predictors that track whether a prediction is likely to be associated with
the current branch. One important class of predictors is loosely based on an algo-
rithm for statistical compression called PPM (Prediction by Partial Matching).
PPM (see Jim�enez and Lin, 2001), like a branch prediction algorithm, attempts
to predict future behavior based on history. This class of branch predictors, which
we call tagged hybrid predictors (see Seznec and Michaud, 2006), employs a
series of global predictors indexed with different length histories.

For example, as shown in Figure 3.7, a five-component tagged hybrid predictor
has five prediction tables: P(0), P(1), . . . P(4), where P(i) is accessed using a hash of
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the PC and the history of the most recent i branches (kept in a shift register, h, just
as in gshare). The use of multiple history lengths to index separate predictors is the
first critical difference. The second critical difference is the use of tags in tables
P(1) through P(4). The tags can be short because 100% matches are not required:
a small tag of 4–8 bits appears to gain most of the advantage. A prediction from
P(1), . . . P(4) is used only if the tags match the hash of the branch address and
global branch history. Each of the predictors in P(0…n) can be a standard 2-bit
predictor. In practice a 3-bit counter, which requires three mispredictions to change
a prediction, gives slightly better results than a 2-bit counter.

The prediction for a given branch is the predictor with the longest branch his-
tory that also has matching tags. P(0) always matches because it uses no tags and
becomes the default prediction if none of P(1) through P(n) match. The tagged
hybrid version of this predictor also includes a 2-bit use field in each of the
history-indexed predictors. The use field indicates whether a prediction was
recently used and therefore likely to be more accurate; the use field can be period-
ically reset in all entries so that old predictions are cleared. Many more details are
involved in implementing this style of predictor, especially how to handle mispre-
dictions. The search space for the optimal predictor is also very large because the
number of predictors, the exact history used for indexing, and the size of each pre-
dictor are all variable.

Tagged hybrid predictors (sometimes called TAGE—TAgged GEometic—
predictors) and the earlier PPM-based predictors have been the winners in recent
annual international branch-prediction competitions. Such predictors outperform
gshare and the tournament predictors with modest amounts of memory (32–
64 KiB), and in addition, this class of predictors seems able to effectively use larger
prediction caches to deliver improved prediction accuracy.

Another issue for larger predictors is how to initialize the predictor. It could be
initialized randomly, in which case, it will take a fair amount of execution time to
fill the predictor with useful predictions. Some predictors (including many recent
predictors) include a valid bit, indicating whether an entry in the predictor has been
set or is in the “unused state.” In the latter case, rather than use a random prediction,
we could use some method to initialize that prediction entry. For example, some
instruction sets contain a bit that indicates whether an associated branch is expected
to be taken or not. In the days before dynamic branch prediction, such hint bits
were the prediction; in recent processors, that hint bit can be used to set the initial
prediction. We could also set the initial prediction on the basis of the branch direc-
tion: forward going branches are initialized as not taken, while backward going
branches, which are likely to be loop branches, are initialized as taken. For pro-
grams with shorter running times and processors with larger predictors, this initial
setting can have a measurable impact on prediction performance.

Figure 3.8 shows that a hybrid tagged predictor significantly outperforms
gshare, especially for the less predictable programs like SPECint and server appli-
cations. In this figure, performance is measured as mispredicts per thousand
instructions; assuming a branch frequency of 20%–25%, gshare has a mispredict
rate (per branch) of 2.7%–3.4% for the multimedia benchmarks, while the tagged
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hybrid predictor has a misprediction rate of 1.8%–2.2%, or roughly one-third fewer
mispredicts. Compared to gshare, tagged hybrid predictors are more complex to
implement and are probably slightly slower because of the need to check multiple
tags and choose a prediction result. Nonetheless, for deeply pipelined processors
with large penalties for branch misprediction, the increased accuracy outweighs
those disadvantages. Thus many designers of higher-end processors have opted
to include tagged hybrid predictors in their newest implementations.

The Evolution of the Intel Core i7 Branch Predictor

As mentioned in the previous chapter, there were six generations of Intel Core i7
processors between 2008 (Core i7 920 using the Nehalem microarchitecture) and
2016 (Core i7 6700 using the Skylake microarchitecture). Because of the combi-
nation of deep pipelining and multiple issues per clock, the i7 has many instruc-
tions in-flight at once (up to 256, and typically at least 30). This makes branch
prediction critical, and it has been an area where Intel has been making constant
improvements. Perhaps because of the performance-critical nature of the branch
predictor, Intel has tended to keep the details of its branch predictors highly secret.
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Even for older processors such as the Core i7 920 introduced in 2008, they have
released only limited amounts of information. In this section, we briefly describe
what is known and compare the performance of predictors of the Core i7 920 with
those in the latest Core i7 6700.

The Core i7 920 used a two-level predictor that has a smaller first-level predictor,
designed tomeet the cycle constraints of predicting a branch every clock cycle, and a
larger second-level predictor as a backup. Each predictor combines three different
predictors: (1) the simple 2-bit predictor, which is introduced in Appendix C (and
used in the preceding tournament predictor); (2) a global history predictor, like those
we just saw; and (3) a loop exit predictor. The loop exit predictor uses a counter
to predict the exact number of taken branches (which is the number of loop itera-
tions) for a branch that is detected as a loop branch. For each branch, the best pre-
diction is chosen from among the three predictors by tracking the accuracy of each
prediction, like a tournament predictor. In addition to this multilevel main predictor,
a separate unit predicts target addresses for indirect branches, and a stack to predict
return addresses is also used.

Although even less is known about the predictors in the newest i7 processors,
there is good reason to believe that Intel is employing a tagged hybrid predictor.
One advantage of such a predictor is that it combines the functions of all three
second-level predictors in the earlier i7. The tagged hybrid predictor with different
history lengths subsumes the loop exit predictor as well as the local and global his-
tory predictor. A separate return address predictor is still employed.

As in other cases, speculation causes some challenges in evaluating the predic-
tor because a mispredicted branch can easily lead to another branch being fetched
and mispredicted. To keep things simple, we look at the number of mispredictions
as a percentage of the number of successfully completed branches (those that
were not the result of misspeculation). Figure 3.9 shows these data for SPEC-
PUint2006 benchmarks. These benchmarks are considerably larger than SPEC89
or SPEC2000, with the result being that the misprediction rates are higher than
those in Figure 3.6 even with a more powerful combination of predictors. Because
branch misprediction leads to ineffective speculation, it contributes to the wasted
work, as we will see later in this chapter.

3.4 Overcoming Data Hazards With Dynamic Scheduling

A simple statically scheduled pipeline fetches an instruction and issues it, unless
there is a data dependence between an instruction already in the pipeline and the
fetched instruction that cannot be hidden with bypassing or forwarding. (Forward-
ing logic reduces the effective pipeline latency so that the certain dependences do
not result in hazards.) If there is a data dependence that cannot be hidden, then the
hazard detection hardware stalls the pipeline starting with the instruction that uses
the result. No new instructions are fetched or issued until the dependence is cleared.

In this section, we explore dynamic scheduling, a technique by which the hard-
ware reorders the instruction execution to reduce the stalls while maintaining data
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flow and exception behavior. Dynamic scheduling offers several advantages. First,
it allows code that was compiled with one pipeline in mind to run efficiently on a
different pipeline, eliminating the need to havemultiple binaries and recompile for a
different microarchitecture. In today’s computing environment, where much of the
software is from third parties and distributed in binary form, this advantage is sig-
nificant. Second, it enables handling some cases when dependences are unknown at
compile time; for example, they may involve a memory reference or a data-
dependent branch, or they may result from a modern programming environment
that uses dynamic linking or dispatching. Third, and perhaps most importantly,
it allows the processor to tolerate unpredictable delays, such as cache misses, by
executing other code while waiting for the miss to resolve. In Section 3.6, we
explore hardware speculation, a technique with additional performance advantages,
which builds on dynamic scheduling. As we will see, the advantages of dynamic
scheduling are gained at the cost of a significant increase in hardware complexity.

Although a dynamically scheduled processor cannot change the data flow, it
tries to avoid stalling when dependences are present. In contrast, static pipeline
scheduling by the compiler (covered in Section 3.2) tries to minimize stalls by sep-
arating dependent instructions so that they will not lead to hazards. Of course,
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compiler pipeline scheduling can also be used in code destined to run on a proces-
sor with a dynamically scheduled pipeline.

Dynamic Scheduling: The Idea

Amajor limitation of simple pipelining techniques is that they use in-order instruc-
tion issue and execution: instructions are issued in program order, and if an instruc-
tion is stalled in the pipeline, no later instructions can proceed. Thus, if there is a
dependence between two closely spaced instructions in the pipeline, it will lead to
a hazard, and a stall will result. If there are multiple functional units, these units
could lie idle. If instruction j depends on a long-running instruction i, currently
in execution in the pipeline, then all instructions after j must be stalled until i is
finished and j can execute. For example, consider this code:

fdiv.d f0,f2,f4
fadd.d f10,f0,f8
fsub.d f12,f8,f14

The fsub.d instruction cannot execute because the dependence of fadd.d on
fdiv.d causes the pipeline to stall; yet, fsub.d is not data-dependent on any-
thing in the pipeline. This hazard creates a performance limitation that can be elim-
inated by not requiring instructions to execute in program order.

In the classic five-stage pipeline, both structural and data hazards could be
checked during instruction decode (ID): when an instruction could execute without
hazards, it was issued from ID, with the recognition that all data hazards had been
resolved.

To allow us to begin executing the fsub.d in the preceding example, we must
separate the issue process into two parts: checking for any structural hazards and
waiting for the absence of a data hazard. Thus we still use in-order instruction issue
(i.e., instructions issued in program order), but we want an instruction to begin exe-
cution as soon as its data operands are available. Such a pipeline does out-of-order
execution, which implies out-of-order completion.

Out-of-order execution introduces the possibility of WAR and WAW hazards,
which do not exist in the five-stage integer pipeline and its logical extension to an
in-order floating-point pipeline. Consider the following RISC-V floating-point
code sequence:

fdiv.d f0,f2,f4
fmul.d f6,f0,f8
fadd.d f0,f10,f14

There is an antidependence between the fmul.d and the fadd.d (for the register
f0), and if the pipeline executes the fadd.d before the fmul.d (which is wait-
ing for the fdiv.d), it will violate the antidependence, yielding a WAR hazard.
Likewise, to avoid violating output dependences, such as the write of f0 by
fadd.d before fdiv.d completes, WAW hazards must be handled. As we will
see, both these hazards are avoided by the use of register renaming.
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Out-of-order completion also creates major complications in handling excep-
tions. Dynamic scheduling with out-of-order completion must preserve exception
behavior in the sense that exactly those exceptions that would arise if the program
were executed in strict program order actually do arise. Dynamically scheduled
processors preserve exception behavior by delaying the notification of an associ-
ated exception until the processor knows that the instruction should be the next one
completed.

Although exception behavior must be preserved, dynamically scheduled pro-
cessors could generate imprecise exceptions. An exception is imprecise if the
processor state when an exception is raised does not look exactly as if the instruc-
tions were executed sequentially in strict program order. Imprecise exceptions can
occur because of two possibilities:

1. The pipeline may have already completed instructions that are later in program
order than the instruction causing the exception.

2. The pipeline may have not yet completed some instructions that are earlier in
program order than the instruction causing the exception.

Imprecise exceptions make it difficult to restart execution after an exception.
Rather than address these problems in this section, we will discuss a solution that
provides precise exceptions in the context of a processor with speculation in
Section 3.6. For floating-point exceptions, other solutions have been used, as dis-
cussed in Appendix J.

To allow out-of-order execution, we essentially split the ID pipe stage of our
simple five-stage pipeline into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

An instruction fetch stage precedes the issue stage and may fetch either to an
instruction register or into a queue of pending instructions; instructions are then
issued from the register or queue. The execution stage follows the read operands
stage, just as in the five-stage pipeline. Executionmay takemultiple cycles, depend-
ing on the operation.

We distinguish when an instruction begins execution and when it completes
execution; between the two times, the instruction is in execution. Our pipeline
allows multiple instructions to be in execution at the same time; without this capa-
bility, a major advantage of dynamic scheduling is lost. Having multiple instruc-
tions in execution at once requires multiple functional units, pipelined functional
units, or both. Because these two capabilities—pipelined functional units and
multiple functional units—are essentially equivalent for the purposes of pipeline
control, we will assume the processor has multiple functional units.

In a dynamically scheduled pipeline, all instructions pass through the issue
stage in order (in-order issue); however, they can be stalled or can bypass each
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other in the second stage (read operands) and thus enter execution out of order.
Scoreboarding is a technique for allowing instructions to execute out of order when
there are sufficient resources and no data dependences; it is named after the CDC
6600 scoreboard, which developed this capability. Here we focus on amore sophis-
ticated technique, called Tomasulo’s algorithm. The primary difference is that
Tomasulo’s algorithm handles antidependences and output dependences by effec-
tively renaming the registers dynamically. Additionally, Tomasulo’s algorithm
can be extended to handle speculation, a technique to reduce the effect of control
dependences by predicting the outcome of a branch, executing instructions at the
predicted destination address, and taking corrective actions when the prediction
was wrong. While the use of scoreboarding is probably sufficient to support sim-
pler processors, more sophisticated, higher performance processors make use of
speculation.

Dynamic Scheduling Using Tomasulo’s Approach

The IBM 360/91 floating-point unit used a sophisticated scheme to allow out-of-
order execution. This scheme, invented by Robert Tomasulo, tracks when oper-
ands for instructions are available to minimize RAW hazards and introduces reg-
ister renaming in hardware to minimize WAW and WAR hazards. Although there
are many variations of this scheme in recent processors, they all rely on two key
principles: dynamically determining when an instruction is ready to execute and
renaming registers to avoid unnecessary hazards.

IBM’s goal was to achieve high floating-point performance from an instruction
set and from compilers designed for the entire 360 computer family, rather than
from specialized compilers for the high-end processors. The 360 architecture
had only four double-precision floating-point registers, which limited the effective-
ness of compiler scheduling; this fact was another motivation for the Tomasulo
approach. In addition, the IBM 360/91 had long memory accesses and long
floating-point delays, which Tomasulo’s algorithm was designed to overcome.
At the end of the section, we will see that Tomasulo’s algorithm can also support
the overlapped execution of multiple iterations of a loop.

We explain the algorithm, which focuses on the floating-point unit and load-
store unit, in the context of the RISC-V instruction set. The primary difference
between RISC-V and the 360 is the presence of register-memory instructions in
the latter architecture. Because Tomasulo’s algorithm uses a load functional unit,
no significant changes are needed to add register-memory addressing modes. The
IBM 360/91 also had pipelined functional units, rather than multiple functional
units, but we describe the algorithm as if there were multiple functional units. It
is a simple conceptual extension to also pipeline those functional units.

RAW hazards are avoided by executing an instruction only when its operands
are available, which is exactly what the simpler scoreboarding approach provides.
WAR and WAW hazards, which arise from name dependences, are eliminated by
register renaming. Register renaming eliminates these hazards by renaming all
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destination registers, including those with a pending read or write for an earlier
instruction, so that the out-of-order write does not affect any instructions that
depend on an earlier value of an operand. The compiler could typically implement
such renaming, if there were enough registers available in the ISA. The original
360/91 had only four floating-point registers, and Tomasulo’s algorithm was cre-
ated to overcome this shortage. Whereas modern processors have 32–64 floating-
point and integer registers, the number of renaming registers available in recent
implementations is in the hundreds.

To better understand how register renaming eliminates WAR and WAW haz-
ards, consider the following example code sequence that includes potential WAR
and WAW hazards:

fdiv.d f0,f2,f4
fadd.d f6,f0,f8
fsd f6,0(x1)
fsub.d f8,f10,f14
fmul.d f6,f10,f8

There are two antidependences: between the fadd.d and the fsub.d and
between the fsd and the fmul.d. There is also an output dependence between
the fadd.d and the fmul.d, leading to three possible hazards: WAR hazards on
the use of f8 by fadd.d and its use by the fsub.d, as well as a WAW hazard
because the fadd.d may finish later than the fmul.d. There are also three true
data dependences: between the fdiv.d and the fadd.d, between the fsub.d
and the fmul.d, and between the fadd.d and the fsd.

These three name dependences can all be eliminated by register renaming. For
simplicity, assume the existence of two temporary registers, S and T. Using S and
T, the sequence can be rewritten without any dependences as

fdiv.d f0,f2,f4
fadd.d S,f0,f8
fsd S,0(x1)
fsub.d T,f10,f14
fmul.d f6,f10,T

In addition, any subsequent uses of f8 must be replaced by the register T. In this
example, the renaming process can be done statically by the compiler. Finding any
uses of f8 that are later in the code requires either sophisticated compiler analysis
or hardware support because there may be intervening branches between the pre-
ceding code segment and a later use of f8. As we will see, Tomasulo’s algorithm
can handle renaming across branches.

In Tomasulo’s scheme, register renaming is provided by reservation stations,
which buffer the operands of instructions waiting to issue and are associated with
the functional units. The basic idea is that a reservation station fetches and buffers
an operand as soon as it is available, eliminating the need to get the operand from
a register. In addition, pending instructions designate the reservation station that
will provide their input. Finally, when successive writes to a register overlap in

196 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation



execution, only the last one is actually used to update the register. As instructions
are issued, the register specifiers for pending operands are renamed to the names of
the reservation station, which provides register renaming.

Because there can bemore reservation stations than real registers, the technique
can even eliminate hazards arising from name dependences that could not be elim-
inated by a compiler. As we explore the components of Tomasulo’s scheme, we
will return to the topic of register renaming and see exactly how the renaming
occurs and how it eliminates WAR and WAW hazards.

The use of reservation stations, rather than a centralized register file, leads to
two other important properties. First, hazard detection and execution control are
distributed: the information held in the reservation stations at each functional unit
determines when an instruction can begin execution at that unit. Second, results are
passed directly to functional units from the reservation stations where they are
buffered, rather than going through the registers. This bypassing is done with a
common result bus that allows all units waiting for an operand to be loaded simul-
taneously (on the 360/91, this is called the common data bus, or CDB). In pipelines
that issue multiple instructions per clock and also have multiple execution units,
more than one result bus will be needed.

Figure 3.10 shows the basic structure of a Tomasulo-based processor, includ-
ing both the floating-point unit and the load/store unit; none of the execution con-
trol tables is shown. Each reservation station holds an instruction that has been
issued and is awaiting execution at a functional unit. If the operand values for that
instruction have been computed, they are also stored in that entry; otherwise, the
reservation station entry keeps the names of the reservation stations that will pro-
vide the operand values.

The load buffers and store buffers hold data or addresses coming from and
going to memory and behave almost exactly like reservation stations, so we dis-
tinguish them only when necessary. The floating-point registers are connected
by a pair of buses to the functional units and by a single bus to the store buffers.
All results from the functional units and frommemory are sent on the common data
bus, which goes everywhere except to the load buffer. All reservation stations have
tag fields, employed by the pipeline control.

Before we describe the details of the reservation stations and the algorithm,
let’s look at the steps an instruction goes through. There are only three steps,
although each one can now take an arbitrary number of clock cycles:

1. Issue—Get the next instruction from the head of the instruction queue, which is
maintained in FIFO order to ensure the maintenance of correct data flow. If there
is a matching reservation station that is empty, issue the instruction to the station
with the operand values, if they are currently in the registers. If there is not an
empty reservation station, then there is a structural hazard, and the instruction
issue stalls until a station or buffer is freed. If the operands are not in the reg-
isters, keep track of the functional units that will produce the operands. This step
renames registers, eliminating WAR and WAW hazards. (This stage is some-
times called dispatch in a dynamically scheduled processor.)
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2. Execute—If one or more of the operands is not yet available, monitor the com-
mon data bus while waiting for it to be computed. When an operand becomes
available, it is placed into any reservation station awaiting it. When all the oper-
ands are available, the operation can be executed at the corresponding functional
unit. By delaying instruction execution until the operands are available, RAW
hazards are avoided. (Some dynamically scheduled processors call this step
“issue,” but we use the name “execute,”which was used in the first dynamically
scheduled processor, the CDC 6600.)

From instruction unit

Floating-point
operations

FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
buses

Load/store
operations

Address unit

Load buffers

Memory unit

AddressData

Instruction
queue

Store buffers

Figure 3.10 The basic structure of a RISC-V floating-point unit using Tomasulo’s algorithm. Instructions are sent
from the instruction unit into the instruction queue from which they are issued in first-in, first-out (FIFO) order. The
reservation stations include the operation and the actual operands, as well as information used for detecting and
resolving hazards. Load buffers have three functions: (1) hold the components of the effective address until it is com-
puted, (2) track outstanding loads that are waiting on the memory, and (3) hold the results of completed loads that
are waiting for the CDB. Similarly, store buffers have three functions: (1) hold the components of the effective address
until it is computed, (2) hold the destination memory addresses of outstanding stores that are waiting for the data
value to store, and (3) hold the address and value to store until thememory unit is available. All results from either the
FP units or the load unit are put on the CDB, which goes to the FP register file as well as to the reservation stations and
store buffers. The FP adders implement addition and subtraction, and the FP multipliers do multiplication and
division.
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Notice that several instructions could become ready in the same clock cycle
for the same functional unit. Although independent functional units could
begin execution in the same clock cycle for different instructions, if more than
one instruction is ready for a single functional unit, the unit will have to choose
among them. For the floating-point reservation stations, this choice may bemade
arbitrarily; loads and stores, however, present an additional complication.

Loads and stores require a two-step execution process. The first step com-
putes the effective address when the base register is available, and the effective
address is then placed in the load or store buffer. Loads in the load buffer exe-
cute as soon as the memory unit is available. Stores in the store buffer wait for
the value to be stored before being sent to the memory unit. Loads and stores are
maintained in program order through the effective address calculation, which
will help to prevent hazards through memory.

To preserve exception behavior, no instruction is allowed to initiate execu-
tion until a branch that precedes the instruction in program order has completed.
This restriction guarantees that an instruction that causes an exception during
execution really would have been executed. In a processor using branch predic-
tion (as all dynamically scheduled processors do), this means that the processor
must know that the branch prediction was correct before allowing an instruction
after the branch to begin execution. If the processor records the occurrence of
the exception, but does not actually raise it, an instruction can start execution but
not stall until it enters Write Result.

Speculation provides a more flexible and more complete method to handle
exceptions, so we will delay making this enhancement and show how specula-
tion handles this problem later.

3. Write result—When the result is available, write it on the CDB and from there
into the registers and into any reservation stations (including store buffers) wait-
ing for this result. Stores are buffered in the store buffer until both the value to be
stored and the store address are available; then the result is written as soon as the
memory unit is free.

The data structures that detect and eliminate hazards are attached to the reserva-
tion stations, to the register file, and to the load and store buffers with slightly dif-
ferent information attached to different objects. These tags are essentially names for
an extended set of virtual registers used for renaming. In our example, the tag field is
a 4-bit quantity that denotes one of the five reservation stations or one of the five load
buffers. This combination produces the equivalent of 10 registers (5 reservation sta-
tions+5 load buffers) that can be designated as result registers (as opposed to the
four double-precision registers that the 360 architecture contains). In a processor
with more real registers, we want renaming to provide an even larger set of virtual
registers, often numbering in the hundreds. The tag field describes which reservation
station contains the instruction that will produce a result needed as a source operand.

Once an instruction has issued and is waiting for a source operand, it refers to
the operand by the reservation station number where the instruction that will write
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the register has been assigned. Unused values, such as zero, indicate that the oper-
and is already available in the registers. Because there are more reservation stations
than actual register numbers, WAW andWAR hazards are eliminated by renaming
results using reservation station numbers. Although in Tomasulo’s scheme the res-
ervation stations are used as the extended virtual registers, other approaches could
use a register set with additional registers or a structure like the reorder buffer,
which we will see in Section 3.6.

In Tomasulo’s scheme, as well as the subsequent methods we look at for sup-
porting speculation, results are broadcast on a bus (the CDB), which is monitored
by the reservation stations. The combination of the common result bus and the
retrieval of results from the bus by the reservation stations implements the forward-
ing and bypassing mechanisms used in a statically scheduled pipeline. In doing so,
however, a dynamically scheduled scheme, such as Tomasulo’s algorithm, intro-
duces one cycle of latency between source and result because the matching of a
result and its use cannot be done until the end of the Write Result stage, as opposed
to the end of the Execute stage for a simpler pipeline. Thus, in a dynamically sched-
uled pipeline, the effective latency between a producing instruction and a consum-
ing instruction is at least one cycle longer than the latency of the functional unit
producing the result.

It is important to remember that the tags in the Tomasulo scheme refer to the
buffer or unit that will produce a result; the register names are discarded when an
instruction issues to a reservation station. (This is a key difference between Toma-
sulo’s scheme and scoreboarding: in scoreboarding, operands stay in the registers
and are read only after the producing instruction completes and the consuming
instruction is ready to execute.)

Each reservation station has seven fields:

■ Op—The operation to perform on source operands S1 and S2.

■ Qj, Qk—The reservation stations that will produce the corresponding source
operand; a value of zero indicates that the source operand is already available
in Vj or Vk, or is unnecessary.

■ Vj, Vk—The value of the source operands. Note that only one of the V fields or
the Q field is valid for each operand. For loads, the Vk field is used to hold the
offset field.

■ A—Used to hold information for the memory address calculation for a load or
store. Initially, the immediate field of the instruction is stored here; after the
address calculation, the effective address is stored here.

■ Busy—Indicates that this reservation station and its accompanying functional
unit are occupied.

The register file has a field, Qi:

■ Qi—The number of the reservation station that contains the operation whose
result should be stored into this register. If the value of Qi is blank (or 0), no
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currently active instruction is computing a result destined for this register,
meaning that the value is simply the register contents.

The load and store buffers each have a field, A, which holds the result of the effec-
tive address once the first step of execution has been completed.

In the next section, we will first consider some examples that show how these
mechanisms work and then examine the detailed algorithm.

3.5 Dynamic Scheduling: Examples and the Algorithm

Before we examine Tomasulo’s algorithm in detail, let’s consider a few examples
that will help illustrate how the algorithm works.

Example Show what the information tables look like for the following code sequence when
only the first load has completed and written its result:

1. fld f6,32(x2)
2. fld f2,44(x3)
3. fmul.d f0,f2,f4
4. fsub.d f8,f2,f6
5. fdiv.d f0,f0,f6
6. fadd.d f6,f8,f2

Answer Figure 3.11 shows the result in three tables. The numbers appended to the names
Add, Mult, and Load stand for the tag for that reservation station—Add1 is the tag
for the result from the first add unit. In addition, we have included an instruction
status table. This table is included only to help you understand the algorithm; it is
not actually a part of the hardware. Instead, the reservation station keeps the state of
each operation that has issued.

Tomasulo’s scheme offers two major advantages over earlier and simpler
schemes: (1) the distribution of the hazard detection logic, and (2) the elimination
of stalls for WAW and WAR hazards.

The first advantage arises from the distributed reservation stations and the use
of the CDB. If multiple instructions are waiting on a single result, and each instruc-
tion already has its other operand, then the instructions can be released simulta-
neously by the broadcast of the result on the CDB. If a centralized register file
were used, the units would have to read their results from the registers when reg-
ister buses were available.

The second advantage, the elimination of WAW and WAR hazards, is accom-
plished by renaming registers using the reservation stations and by the process of
storing operands into the reservation station as soon as they are available.

For example, the code sequence in Figure 3.11 issues both the fdiv.d and the
fadd.d, even though there is a WAR hazard involving f6. The hazard is
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eliminated in one of two ways. First, if the instruction providing the value for the
fdiv.d has completed, then Vkwill store the result, allowing fdiv.d to execute
independent of the fadd.d (this is the case shown). On the other hand, if the fld
hasn’t completed, then Qk will point to the Load1 reservation station, and the
fdiv.d instruction will be independent of the fadd.d. Thus, in either case,
the fadd.d can issue and begin executing. Any uses of the result of the
fdiv.d will point to the reservation station, allowing the fadd.d to complete
and store its value into the registers without affecting the fdiv.d.

Instruction status

Instruction Issue Execute Write result

fld f6,32(x2) √ √ √
fld f2,44(x3) √ √
fmul.d f0,f2,f4 √
fsub.d f8,f2,f6 √
fdiv.d f0,f0,f6 √
fadd.d f6,f8,f2 √

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 No

Load2 Yes Load 44 + Regs[x3]

Add1 Yes SUB Mem[32 + Regs[x2]] Load2

Add2 Yes ADD Add1 Load2

Add3 No

Mult1 Yes MUL Regs[f4] Load2

Mult2 Yes DIV Mem[32 + Regs[x2]] Mult1

Register status

Field f0 f2 f4 f6 f8 f10 f12 … f30

Qi Mult1 Load2 Add2 Add1 Mult2

Figure 3.11 Reservation stations and register tags shown when all of the instructions have issued but only the
first load instruction has completed and written its result to the CDB. The second load has completed effective
address calculation but is waiting on the memory unit. We use the array Regs[ ] to refer to the register file and
the array Mem[ ] to refer to the memory. Remember that an operand is specified by either a Q field or a V field
at any time. Notice that the fadd.d instruction, which has a WAR hazard at the WB stage, has issued and could
complete before the fdiv.d initiates.
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We’ll see an example of the elimination of a WAW hazard shortly. But let’s
first look at how our earlier example continues execution. In this example, and
the ones that follow in this chapter, assume the following latencies: load is 1 clock
cycle, add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12 clock
cycles.

Example Using the same code segment as in the previous example (page 201), show what
the status tables look like when the fmul.d is ready to write its result.

Answer The result is shown in the three tables in Figure 3.12. Notice that fadd.d has com-
pleted because the operands of fdiv.d were copied, thereby overcoming the
WAR hazard. Notice that even if the load of f6 was fdiv.d, the add into f6
could be executed without triggering a WAW hazard.

Instruction status

Instruction Issue Execute Write result

fld f6,32(x2) √ √ √
fld f2,44(x3) √ √ √
fmul.d f0,f2,f4 √ √
fsub.d f8,f2,f6 √ √ √
fdiv.d f0,f0,f6 √
fadd.d f6,f8,f2 √ √ √

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 No

Load2 No

Add1 No

Add2 No

Add3 No

Mult1 Yes MUL Mem[44 + Regs[x3]] Regs[f4]

Mult2 Yes DIV Mem[32 + Regs[x2]] Mult1

Register status

Field f0 f2 f4 f6 f8 f10 f12 … f30

Qi Mult1 Mult2

Figure 3.12 Multiply and divide are the only instructions not finished.
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Tomasulo’s Algorithm: The Details

Figure 3.13 specifies the checks and steps that each instruction must go through.
As mentioned earlier, loads and stores go through a functional unit for effective
address computation before proceeding to independent load or store buffers.
Loads take a second execution step to access memory and then go to Write
Result to send the value from memory to the register file and/or any waiting
reservation stations. Stores complete their execution in the Write Result stage,
which writes the result to memory. Notice that all writes occur in Write Result,
whether the destination is a register or memory. This restriction simplifies
Tomasulo’s algorithm and is critical to its extension with speculation in
Section 3.6.

Tomasulo’s Algorithm: A Loop-Based Example

To understand the full power of eliminating WAW and WAR hazards through
dynamic renaming of registers, wemust look at a loop. Consider the following sim-
ple sequence for multiplying the elements of an array by a scalar in f2:

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,�8
bne x1,x2,Loop // branches if x1 6¼x2

If we predict that branches are taken, using reservation stations will allow
multiple executions of this loop to proceed at once. This advantage is gained
without changing the code—in effect, the loop is unrolled dynamically by the hard-
ware using the reservation stations obtained by renaming to act as additional
registers.

Let’s assume we have issued all the instructions in two successive iterations
of the loop, but none of the floating-point load/stores or operations have com-
pleted. Figure 3.14 shows reservation stations, register status tables, and load
and store buffers at this point. (The integer ALU operation is ignored, and it
is assumed the branch was predicted as taken.) Once the system reaches this
state, two copies of the loop could be sustained with a CPI close to 1.0, provided
the multiplies could complete in four clock cycles. With a latency of six cycles,
additional iterations will need to be processed before the steady state can be
reached. This requires more reservation stations to hold instructions that are
in execution. As we will see later in this chapter, when extended with multiple
issue instructions, Tomasulo’s approach can sustain more than one instruction
per clock.

A load and a store can be done safely out of order, provided they access dif-
ferent addresses. If a load and a store access the same address, one of two things
happens:
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Instruction state Wait until Action or bookkeeping

Issue
FP operation

Station r empty if (RegisterStat[rs].Qi 6¼0)
{RS[r].Qj  RegisterStat[rs].Qi}

else {RS[r].Vj  Regs[rs]; RS[r].Qj  0};
if (RegisterStat[rt].Qi 6¼0)

{RS[r].Qk  RegisterStat[rt].Qi
else {RS[r].Vk  Regs[rt]; RS[r].Qk  0};
RS[r].Busy  yes; RegisterStat[rd].Q  r;

Load or store Buffer r empty if (RegisterStat[rs].Qi 6¼0)
{RS[r].Qj  RegisterStat[rs].Qi}

else {RS[r].Vj  Regs[rs]; RS[r].Qj  0};
RS[r].A  imm; RS[r].Busy  yes;

Load only RegisterStat[rt].Qi  r;

Store only if (RegisterStat[rt].Qi 6¼0)
{RS[r].Qk  RegisterStat[rs].Qi}

else {RS[r].Vk  Regs[rt]; RS[r].Qk  0};

Execute
FP operation

(RS[r].Qj = 0) and
(RS[r].Qk = 0)

Compute result: operands are in Vj and Vk

Load/storestep 1 RS[r].Qj ¼ 0 & r is head of
load-store queue

RS[r].A  RS[r].Vj + RS[r].A;

Load step 2 Load step 1 complete Read from Mem[RS[r].A]

Write result
FP operation
or load

Execution complete at r &
CDB available

8x(if (RegisterStat[x].Qi=r) {Regs[x] result;
RegisterStat[x].Qi  0});
8x(if (RS[x].Qj=r)
{RS[x].Vj  
result;RS[x].Qj  0});
8x(if (RS[x].Qk=r)
{RS[x].Vk  
result;RS[x].Qk  0});
RS[r].Busy  no;

Store Execution complete at r &
RS[r].Qk = 0

Mem[RS[r].A]  RS[r].Vk;
RS[r].Busy  no;

Figure 3.13 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the des-
tination, rs and rt are the source register numbers, imm is the sign-extended immediate field, and r is the reser-
vation station or buffer that the instruction is assigned to. RS is the reservation station data structure. The value
returned by an FP unit or by the load unit is called result. RegisterStat is the register status data structure
(not the register file, which is Regs[]). When an instruction is issued, the destination register has its Qi field set
to the number of the buffer or reservation station to which the instruction is issued. If the operands are available
in the registers, they are stored in the V fields. Otherwise, the Q fields are set to indicate the reservation station that
will produce the values needed as source operands. The instruction waits at the reservation station until both its
operands are available, indicated by zero in the Q fields. The Q fields are set to zero either when this instruction
is issued or when an instruction on which this instruction depends completes and does its write back. When an
instruction has finished execution and the CDB is available, it can do its write back. All the buffers, registers, and
reservation stations whose values of Qj or Qk are the same as the completing reservation station update their values
from the CDB and mark the Q fields to indicate that values have been received. Thus the CDB can broadcast its result
to many destinations in a single clock cycle, and if the waiting instructions have their operands, they can all begin
execution on the next clock cycle. Loads go through two steps in execute, and stores perform slightly differently
duringWrite Result, where theymay have to wait for the value to store. Remember that, to preserve exception behav-
ior, instructions should not be allowed to execute if a branch that is earlier in program order has not yet completed.
Because no concept of program order is maintained after the issue stage, this restriction is usually implemented by
preventing any instruction from leaving the issue step if there is a pending branch already in the pipeline. In
Section 3.6, we will see how speculation support removes this restriction.



■ The load is before the store in program order and interchanging them results in
a WAR hazard.

■ The store is before the load in program order and interchanging them results in
a RAW hazard.

Similarly, interchanging two stores to the same address results in a WAW hazard.
Therefore, to determine if a load can be executed at a given time, the processor

can check whether any uncompleted store that precedes the load in program order

Instruction status

Instruction From iteration Issue Execute Write result

fld f0,0(x1) 1 √ √
fmul.d f4,f0,f2 1 √
fsd f4,0(x1) 1 √
fld f0,0(x1) 2 √ √
fmul.d f4,f0,f2 2 √
fsd f4,0(x1) 2 √

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 Yes Load Regs[x1] + 0

Load2 Yes Load Regs[x1] � 8

Add1 No

Add2 No

Add3 No

Mult1 Yes MUL Regs[f2] Load1

Mult2 Yes MUL Regs[f2] Load2

Store1 Yes Store Regs[x1] Mult1

Store2 Yes Store Regs[x1] � 8 Mult2

Register status

Field f0 f2 f4 f6 f8 f10 f12 … f30

Qi Load2 Mult2

Figure 3.14 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reser-
vation stations indicate that the outstanding loads are the sources. The store reservation stations indicate that
the multiply destination is the source of the value to store.
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shares the same data memory address as the load. Similarly, a store must wait until
there are no unexecuted loads or stores that are earlier in program order and share
the same data memory address. We consider a method to eliminate this restriction
in Section 3.9.

To detect such hazards, the processor must have computed the data memory
address associated with any earlier memory operation. A simple, but not necessar-
ily optimal, way to guarantee that the processor has all such addresses is to perform
the effective address calculations in program order. (We really only need to keep
the relative order between stores and other memory references; that is, loads can be
reordered freely.)

Let’s consider the situation of a load first. If we perform effective address
calculation in program order, then when a load has completed effective address
calculation, we can check whether there is an address conflict by examining the A
field of all active store buffers. If the load address matches the address of any
active entries in the store buffer, that load instruction is not sent to the load buffer
until the conflicting store completes. (Some implementations bypass the value
directly to the load from a pending store, reducing the delay for this RAW
hazard.)

Stores operate similarly, except that the processor must check for conflicts in
both the load buffers and the store buffers because conflicting stores cannot be
reordered with respect to either a load or a store.

A dynamically scheduled pipeline can yield very high performance, pro-
vided branches are predicted accurately—an issue we addressed in the previous
section. The major drawback of this approach is the complexity of the Toma-
sulo scheme, which requires a large amount of hardware. In particular, each
reservation station must contain an associative buffer, which must run at high
speed, as well as complex control logic. The performance can also be limited
by the single CDB. Although additional CDBs can be added, each CDB must
interact with each reservation station, and the associative tag-matching hard-
ware would have to be duplicated at each station for each CDB. In the
1990s, only high-end processors could take advantage of dynamic scheduling
(and its extension to speculation); however, recently even processors designed
for PMDs are using these techniques, and processors for high-end desktops and
small servers have hundreds of buffers to support dynamic scheduling.

In Tomasulo’s scheme, two different techniques are combined: the renaming of
the architectural registers to a larger set of registers and the buffering of source
operands from the register file. Source operand buffering resolves WAR hazards
that arise when the operand is available in the registers. As we will see later, it is
also possible to eliminate WAR hazards by the renaming of a register together
with the buffering of a result until no outstanding references to the earlier version
of the register remain. This approach will be used when we discuss hardware
speculation.

Tomasulo’s scheme was unused for many years after the 360/91, but was
widely adopted in multiple-issue processors starting in the 1990s for several
reasons:
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1. Although Tomasulo’s algorithm was designed before caches, the presence of
caches, with the inherently unpredictable delays, has become one of the major
motivations for dynamic scheduling. Out-of-order execution allows the proces-
sors to continue executing instructions while awaiting the completion of a cache
miss, thus hiding all or part of the cache miss penalty.

2. As processors became more aggressive in their issue capability and designers
were concerned with the performance of difficult-to-schedule code (such as
most nonnumeric code), techniques such as register renaming, dynamic sched-
uling, and speculation became more important.

3. It can achieve high performance without requiring the compiler to target code to
a specific pipeline structure, a valuable property in the era of shrink-wrapped
mass market software.

3.6 Hardware-Based Speculation

As we try to exploit more instruction-level parallelism, maintaining control depen-
dences becomes an increasing burden. Branch prediction reduces the direct stalls
attributable to branches, but for a processor executing multiple instructions per
clock, just predicting branches accurately may not be sufficient to generate the
desired amount of instruction-level parallelism. A wide-issue processor may need
to execute a branch every clock cycle to maintain maximum performance. Thus
exploiting more parallelism requires that we overcome the limitation of control
dependence.

Overcoming control dependence is done by speculating on the outcome of
branches and executing the program as if our guesses are correct. This mech-
anism represents a subtle, but important, extension over branch prediction with
dynamic scheduling. In particular, with speculation, we fetch, issue, and exe-
cute instructions, as if our branch predictions are always correct; dynamic
scheduling only fetches and issues such instructions. Of course, we need mech-
anisms to handle the situation where the speculation is incorrect. Appendix H
discusses a variety of mechanisms for supporting speculation by the compiler.
In this section, we explore hardware speculation, which extends the ideas of
dynamic scheduling.

Hardware-based speculation combines three key ideas: (1) dynamic branch
prediction to choose which instructions to execute, (2) speculation to allow
the execution of instructions before the control dependences are resolved
(with the ability to undo the effects of an incorrectly speculated sequence),
and (3) dynamic scheduling to deal with the scheduling of different combina-
tions of basic blocks. (In comparison, dynamic scheduling without speculation
only partially overlaps basic blocks because it requires that a branch be
resolved before actually executing any instructions in the successor basic
block.)
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Hardware-based speculation follows the predicted flow of data values to
choose when to execute instructions. This method of executing programs is essen-
tially a data flow execution: Operations execute as soon as their operands are
available.

To extend Tomasulo’s algorithm to support speculation, we must separate the
bypassing of results among instructions, which is needed to execute an instruction
speculatively, from the actual completion of an instruction. By making this sepa-
ration, we can allow an instruction to execute and to bypass its results to other
instructions, without allowing the instruction to perform any updates that cannot
be undone, until we know that the instruction is no longer speculative.

Using the bypassed value is like performing a speculative register read because
we do not know whether the instruction providing the source register value is pro-
viding the correct result until the instruction is no longer speculative. When an
instruction is no longer speculative, we allow it to update the register file or mem-
ory; we call this additional step in the instruction execution sequence instruction
commit.

The key idea behind implementing speculation is to allow instructions to exe-
cute out of order but to force them to commit in order and to prevent any irrevo-
cable action (such as updating state or taking an exception) until an instruction
commits. Therefore, when we add speculation, we need to separate the process
of completing execution from instruction commit, because instructions may finish
execution considerably before they are ready to commit. Adding this commit phase
to the instruction execution sequence requires an additional set of hardware buffers
that hold the results of instructions that have finished execution but have not com-
mitted. This hardware buffer, which we call the reorder buffer, is also used to pass
results among instructions that may be speculated.

The reorder buffer (ROB) provides additional registers in the same way as the
reservation stations in Tomasulo’s algorithm extend the register set. The ROB
holds the result of an instruction between the time the operation associated with
the instruction completes and the time the instruction commits. The ROB therefore
is a source of operands for instructions, just as the reservation stations provide
operands in Tomasulo’s algorithm. The key difference is that in Tomasulo’s algo-
rithm, once an instruction writes its result, all subsequently issued instructions will
find the result in the register file. With speculation, the register file is not updated
until the instruction commits (and we know definitively that the instruction should
execute); thus, the ROB supplies operands in the interval between completion of
instruction execution and instruction commit. The ROB is similar to the store
buffer in Tomasulo’s algorithm, and we integrate the function of the store buffer
into the ROB for simplicity.

Figure 3.15 shows the hardware structure of the processor including the ROB.
Each entry in the ROB contains four fields: the instruction type, the destination
field, the value field, and the ready field. The instruction type field indicates whether
the instruction is a branch (and has no destination result), a store (which has a mem-
ory address destination), or a register operation (ALU operation or load, which has
register destinations). The destination field supplies the register number (for loads
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and ALU operations) or the memory address (for stores) where the instruction result
should be written. The value field is used to hold the value of the instruction result
until the instruction commits. We will see an example of ROB entries shortly.
Finally, the ready field indicates that the instruction has completed execution,
and the value is ready.

The ROB subsumes the store buffers. Stores still execute in two steps, but the
second step is performed by instruction commit. Although the renaming function
of the reservation stations is replaced by the ROB,we still need a place to buffer oper-
ations (and operands) between the time they issue and the time they begin execution.

From instruction unit

FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
busesAddress unit

Load buffers

Memory unit

Reorder buffer

DataReg #

Store
data Address

Load
data

Store
address

Floating-point
operations

Load/store
operations

Instruction
queue

Figure 3.15 The basic structure of a FP unit using Tomasulo’s algorithm and extended to handle speculation.
Comparing this to Figure 3.10 on page 198, which implemented Tomasulo’s algorithm, we can see that the major
change is the addition of the ROB and the elimination of the store buffer, whose function is integrated into the
ROB. This mechanism can be extended to allow multiple issues per clock by making the CDB wider to allow for mul-
tiple completions per clock.
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This function is still provided by the reservation stations. Because every instruction
has a position in theROBuntil it commits,we tag a result using theROBentry number
rather than using the reservation station number. This tagging requires that the ROB
assigned for an instructionmust be tracked in the reservation station. Later in this sec-
tion,wewill explore an alternative implementation that uses extra registers for renam-
ing and a queue that replaces the ROB to decide when instructions can commit.

Here are the four steps involved in instruction execution:

1. Issue—Get an instruction from the instruction queue. Issue the instruction if
there is an empty reservation station and an empty slot in the ROB; send the
operands to the reservation station if they are available in either the registers
or the ROB. Update the control entries to indicate the buffers are in use. The
number of the ROB entry allocated for the result is also sent to the reservation
station so that the number can be used to tag the result when it is placed on the
CDB. If either all reservations are full or the ROB is full, then the instruction
issue is stalled until both have available entries.

2. Execute—If one or more of the operands is not yet available, monitor the CDB
while waiting for the register to be computed. This step checks for RAW haz-
ards. When both operands are available at a reservation station, execute the
operation. Instructions may take multiple clock cycles in this stage, and loads
still require two steps in this stage. Stores only need the base register at this
step, because execution for a store at this point is only effective address
calculation.

3. Write result—When the result is available, write it on the CDB (with the ROB
tag sent when the instruction issued) and from the CDB into the ROB, as well as
to any reservation stations waiting for this result. Mark the reservation station as
available. Special actions are required for store instructions. If the value to be
stored is available, it is written into the Value field of the ROB entry for the
store. If the value to be stored is not available yet, the CDB must be monitored
until that value is broadcast, at which time the Value field of the ROB entry of
the store is updated. For simplicity we assume that this occurs during the Write
Result stage of a store; we discuss relaxing this requirement later.

4. Commit—This is the final stage of completing an instruction, after which only
its result remains. (Some processors call this commit phase “completion” or
“graduation.”) There are three different sequences of actions at commit depend-
ing on whether the committing instruction is a branch with an incorrect predic-
tion, a store, or any other instruction (normal commit). The normal commit case
occurs when an instruction reaches the head of the ROB and its result is present
in the buffer; at this point, the processor updates the register with the result and
removes the instruction from the ROB. Committing a store is similar except that
memory is updated rather than a result register. When a branch with incorrect
prediction reaches the head of the ROB, it indicates that the speculation was
wrong. The ROB is flushed and execution is restarted at the correct successor
of the branch. If the branch was correctly predicted, the branch is finished.
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Once an instruction commits, its entry in the ROB is reclaimed, and the register or
memory destination is updated, eliminating the need for the ROB entry. If the ROB
fills, we simply stop issuing instructions until an entry is made free. Now let’s
examine how this scheme would work with the same example we used for Toma-
sulo’s algorithm.

Example Assume the same latencies for the floating-point functional units as in earlier exam-
ples: add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.
Using the following code segment, the same one we used to generate Figure 3.12,
show what the status tables look like when the fmul.d is ready to go to commit.

fld f6,32(x2)
fld f2,44(x3)
fmul.d f0,f2,f4
fsub.d f8,f2,f6
fdiv.d f0,f0,f6
fadd.d f6,f8,f2

Answer Figure 3.16 shows the result in the three tables. Notice that although the fsub.d
instruction has completed execution, it does not commit until the fmul.d com-
mits. The reservation stations and register status field contain the same basic infor-
mation that they did for Tomasulo’s algorithm (see page 200 for a description of
those fields). The differences are that reservation station numbers are replaced with
ROB entry numbers in the Qj and Qk fields, as well as in the register status fields,
and we added the Dest field to the reservation stations. The Dest field designates
the ROB entry that is the destination for the result produced by this reservation
station entry.

The preceding example illustrates the key important difference between a pro-
cessor with speculation and a processor with dynamic scheduling. Compare the
content of Figure 3.16 with that of Figure 3.12 on page 184, which shows the same
code sequence in operation on a processor with Tomasulo’s algorithm. The key
difference is that, in the preceding example, no instruction after the earliest uncom-
pleted instruction (fmul.d in preceding example) is allowed to complete. In con-
trast, in Figure 3.12 the fsub.d and fadd.d instructions have also completed.

One implication of this difference is that the processor with the ROB can
dynamically execute code while maintaining a precise interrupt model. For exam-
ple, if the fmul.d instruction caused an interrupt, we could simply wait until it
reached the head of the ROB and take the interrupt, flushing any other pending
instructions from the ROB. Because instruction commit happens in order, this
yields a precise exception.

By contrast, in the example using Tomasulo’s algorithm, the fsub.d and
fadd.d instructions could both complete before the fmul.d raised the excep-
tion. The result is that the registers f8 and f6 (destinations of the fsub.d and
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fadd.d instructions) could be overwritten, in which case the interrupt would be
imprecise.

Some users and architects have decided that imprecise floating-point excep-
tions are acceptable in high-performance processors because the program will
likely terminate; see Appendix J for further discussion of this topic. Other types

Reorder buffer

Entry Busy Instruction State Destination Value

1 No fld f6,32(x2) Commit f6 Mem[32 + Regs[x2]]

2 No fld f2,44(x3) Commit f2 Mem[44 + Regs[x3]]

3 Yes fmul.d f0,f2,f4 Write result f0 #2 � Regs[f4]

4 Yes fsub.d f8,f2,f6 Write result f8 #2�#1

5 Yes fdiv.d f0,f0,f6 Execute f0

6 Yes fadd.d f6,f8,f2 Write result f6 #4 + #2

Reservation stations

Name Busy Op Vj Vk Qj Qk Dest A

Load1 No

Load2 No

Add1 No

Add2 No

Add3 No

Mult1 No fmul.d Mem[44 + Regs[x3]] Regs[f4] #3

Mult2 Yes fdiv.d Mem[32 + Regs[x2]] #3 #5

FP register status

Field f0 f1 f2 f3 f4 f5 f6 f7 f8 f10

Reorder # 3 6 4 5

Busy Yes No No No No No Yes … Yes Yes

Figure 3.16 At the time the fmul.d is ready to commit, only the two fld instructions have committed, although
several others have completed execution. The fmul.d is at the head of the ROB, and the two fld instructions are
there only to ease understanding. The fsub.d and fadd.d instructions will not commit until the fmul.d instruc-
tion commits, although the results of the instructions are available and can be used as sources for other instructions.
The fdiv.d is in execution, but has not completed solely because of its longer latency than that of fmul.d. The
Value column indicates the value being held; the format #X is used to refer to a value field of ROB entry X. Reorder
buffers 1 and 2 are actually completed but are shown for informational purposes. We do not show the entries for the
load/store queue, but these entries are kept in order.
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of exceptions, such as page faults, are much more difficult to accommodate if they
are imprecise because the program must transparently resume execution after han-
dling such an exception.

The use of a ROBwith in-order instruction commit provides precise exceptions,
in addition to supporting speculative execution, as the next example shows.

Example Consider the code example used earlier for Tomasulo’s algorithm and shown in
Figure 3.14 in execution:

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,�8
bne x1,x2,Loop //branches if x1 6¼x2

Assume that we have issued all the instructions in the loop twice. Let’s also assume
that the fld and fmul.d from the first iteration have committed and all other
instructions have completed execution. Normally, the store would wait in the
ROB for both the effective address operand (x1 in this example) and the value
(f4 in this example). Because we are only considering the floating-point pipeline,
assume the effective address for the store is computed by the time the instruction
is issued.

Answer Figure 3.17 shows the result in two tables.

Because neither the register values nor any memory values are actually written
until an instruction commits, the processor can easily undo its speculative actions
when a branch is found to be mispredicted. Suppose that the branch bne is not
taken the first time in Figure 3.17. The instructions prior to the branch will simply
commit when each reaches the head of the ROB; when the branch reaches the head
of that buffer, the buffer is simply cleared and the processor begins fetching
instructions from the other path.

In practice, processors that speculate try to recover as early as possible after a
branch is mispredicted. This recovery can be done by clearing the ROB for all
entries that appear after the mispredicted branch, allowing those that are before
the branch in the ROB to continue, and restarting the fetch at the correct branch
successor. In speculative processors, performance is more sensitive to the branch
prediction because the impact of a misprediction will be higher. Thus all the
aspects of handling branches—prediction accuracy, latency of misprediction
detection, and misprediction recovery time—increase in importance.

Exceptions are handled by not recognizing the exception until it is ready to
commit. If a speculated instruction raises an exception, the exception is recorded
in the ROB. If a branch misprediction arises and the instruction should not have
been executed, the exception is flushed along with the instruction when the
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ROB is cleared. If the instruction reaches the head of the ROB, then we know it is
no longer speculative and the exception should really be taken. We can also try to
handle exceptions as soon as they arise and all earlier branches are resolved, but
this is more challenging in the case of exceptions than for branch mispredict and,
because it occurs less frequently, not as critical.

Figure 3.18 shows the steps of execution for an instruction, as well as the
conditions that must be satisfied to proceed to the step and the actions taken.
We show the case where mispredicted branches are not resolved until commit.
Although speculation seems like a simple addition to dynamic scheduling, a
comparison of Figure 3.18 with the comparable figure for Tomasulo’s algo-
rithm in Figure 3.13 shows that speculation adds significant complications
to the control. In addition, remember that branch mispredictions are somewhat
more complex.

There is an important difference in how stores are handled in a speculative
processor versus in Tomasulo’s algorithm. In Tomasulo’s algorithm, a store
can update memory when it reaches Write Result (which ensures that the effec-
tive address has been calculated) and the data value to store is available. In a
speculative processor, a store updates memory only when it reaches the head of

Reorder buffer

Entry Busy Instruction State Destination Value

1 No fld f0,0(x1) Commit f0 Mem[0 + Regs[x1]]

2 No fmul.d f4,f0,f2 Commit f4 #1 � Regs[f2]

3 Yes fsd f4,0(x1) Write result 0 + Regs[x1] #2

4 Yes addi x1,x1,�8 Write result x1 Regs[x1] � 8

5 Yes bne x1,x2,Loop Write result

6 Yes fld f0,0(x1) Write result f0 Mem[#4]

7 Yes fmul.d f4,f0,f2 Write result f4 #6 � Regs[f2]

8 Yes fsd f4,0(x1) Write result 0 + #4 #7

9 Yes addi x1,x1,�8 Write result x1 #4�8

10 Yes bne x1,x2,Loop Write result

FP register status

Field f0 f1 f2 f3 f4 F5 f6 F7 f8

Reorder # 6

Busy Yes No No No Yes No No … No

Figure 3.17 Only the fld and fmul.d instructions have committed, although all the others have completed
execution. Thus no reservation stations are busy and none are shown. The remaining instructions will be committed
as quickly as possible. The first two reorder buffers are empty, but are shown for completeness.
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Status Wait until Action or bookkeeping

Issue all
instructions

FP
operations
and stores

FP
operations

Loads

Stores

Reservation
station (r)
and
ROB (b)
both available

if (RegisterStat[rs].Busy)/*in-flight instr. writes rs*/
{h RegisterStat[rs].Reorder;
if (ROB[h].Ready)/* Instr completed already */

{RS[r].Vj  ROB[h].Value; RS[r].Qj  0;}
else {RS[r].Qj  h;} /* wait for instruction */

} else {RS[r].Vj Regs[rs]; RS[r].Qj 0;};
RS[r].Busy yes; RS[r].Dest b;
ROB[b].Instruction opcode;ROB[b].Dest rd;ROB[b].Ready no;

if (RegisterStat[rt].Busy) /*in-flight instr writes rt*/
{h RegisterStat[rt].Reorder;
if (ROB[h].Ready)/* Instr completed already */

{RS[r].Vk  ROB[h].Value; RS[r].Qk  0;}
else {RS[r].Qk  h;} /* wait for instruction */

} else {RS[r].Vk Regs[rt]; RS[r].Qk 0;};

RegisterStat[rd].Reorder b; RegisterStat[rd].Busy  yes;
ROB[b].Dest  rd;

RS[r].A imm; RegisterStat[rt].Reorder b;
RegisterStat[rt].Busy yes; ROB[b].Dest  rt;

RS[r].A imm;

Execute FP
op

(RS[r].Qj == 0) and
(RS[r].Qk == 0)

Compute results—operands are in Vj and Vk

Load step 1 (RS[r].Qj == 0) and
there are no stores
earlier in the queue

RS[r].A RS[r].Vj + RS[r].A;

Load step 2 Load step 1 done and
all stores earlier in
ROB have different address

Read from Mem[RS[r].A]

Store (RS[r].Qj == 0) and
store at queue head

ROB[h].Address RS[r].Vj + RS[r].A;

Write result
all but store

Execution done at r and
CDB available

b RS[r].Dest; RS[r].Busy  no;
8x(if (RS[x].Qj==b) {RS[x].Vj result; RS[x].Qj  0});
8x(if (RS[x].Qk==b) {RS[x].Vk result; RS[x].Qk  0});
ROB[b].Value  result; ROB[b].Ready yes;

Store Execution done at r and
(RS[r].Qk == 0)

ROB[h].Value  RS[r].Vk;

Commit Instruction is at the
head of the ROB (entry h)
and ROB[h].ready ==
yes

d ROB[h].Dest; /* register dest, if exists */
if (ROB[h].Instruction==Branch)

{if (branch is mispredicted)
{clear ROB[h], RegisterStat; fetch branch dest;};}

else if (ROB[h].Instruction==Store)
{Mem[ROB[h].Destination] ROB[h].Value;}

else /* put the result in the register destination */
{Regs[d]  ROB[h].Value;};

ROB[h].Busy  no; /* free up ROB entry */
/* free up dest register if no one else writing it */
if (RegisterStat[d].Reorder==h) {RegisterStat[d].Busy no;};

Figure 3.18 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the des-
tination, rs and rt are the sources, r is the reservation station allocated, b is the assigned ROB entry, and h is the
head entry of the ROB. RS is the reservation station data structure. The value returned by a reservation station is called
the result. Register-Stat is the register data structure, Regs represents the actual registers, and ROB is the
reorder buffer data structure.
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the ROB. This difference ensures that memory is not updated until an instruc-
tion is no longer speculative.

Figure 3.18 has one significant simplification for stores, which is unneeded
in practice. Figure 3.18 requires stores to wait in the Write Result stage for the
register source operand whose value is to be stored; the value is then moved
from the Vk field of the store’s reservation station to the Value field of the
store’s ROB entry. In reality, however, the value to be stored need not arrive
until just before the store commits and can be placed directly into the store’s
ROB entry by the sourcing instruction. This is accomplished by having the
hardware track when the source value to be stored is available in the store’s
ROB entry and searching the ROB on every instruction completion to look
for dependent stores.

This addition is not complicated, but adding it has two effects: we would need
to add a field to the ROB, and Figure 3.18, which is already in a small font, would
be even longer! Although Figure 3.18 makes this simplification, in our examples,
we will allow the store to pass through the Write Result stage and simply wait for
the value to be ready when it commits.

Like Tomasulo’s algorithm, we must avoid hazards through memory. WAW
and WAR hazards through memory are eliminated with speculation because the
actual updating of memory occurs in order, when a store is at the head of the
ROB, so no earlier loads or stores can still be pending. RAW hazards through
memory are maintained by two restrictions:

1. Not allowing a load to initiate the second step of its execution if any active ROB
entry occupied by a store has a Destination field that matches the value of the A
field of the load

2. Maintaining the program order for the computation of an effective address of a
load with respect to all earlier stores

Together, these two restrictions ensure that any load that accesses a memory
location written to by an earlier store cannot perform the memory access until
the store has written the data. Some speculative processors will actually bypass
the value from the store to the load directly when such a RAW hazard occurs.
Another approach is to predict potential collisions using a form of value prediction;
we consider this in Section 3.9.

Although this explanation of speculative execution has focused on floating
point, the techniques easily extend to the integer registers and functional units.
Indeed, because such programs tend to have code where the branch behavior is
less predictable, speculation may bemore useful in integer programs. Additionally,
these techniques can be extended to work in a multiple-issue processor by allowing
multiple instructions to issue and commit every clock. In fact, speculation is
probably most interesting in such processors because less ambitious techniques
can probably exploit sufficient ILP within basic blocks when assisted by a
compiler.
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3.7 Exploiting ILP Using Multiple Issue
and Static Scheduling

The techniques of the preceding sections can be used to eliminate data, control
stalls, and achieve an ideal CPI of one. To improve performance further, we want
to decrease the CPI to less than one, but the CPI cannot be reduced below one if we
issue only one instruction every clock cycle.

The goal of themultiple-issue processors, discussed in the next few sections, is
to allow multiple instructions to issue in a clock cycle. Multiple-issue processors
come in three major flavors:

1. Statically scheduled superscalar processors

2. VLIW (very long instruction word) processors

3. Dynamically scheduled superscalar processors

The two types of superscalar processors issue varying numbers of instructions per
clock and use in-order execution if they are statically scheduled or out-of-order
execution if they are dynamically scheduled.

VLIW processors, in contrast, issue a fixed number of instructions formatted
either as one large instruction or as a fixed instruction packet with the parallelism
among instructions explicitly indicated by the instruction. VLIW processors are
inherently statically scheduled by the compiler. When Intel and HP created the
IA-64 architecture, described in Appendix H, they also introduced the name EPIC
(explicitly parallel instruction computer) for this architectural style.

Although statically scheduled superscalars issue a varying rather than a
fixed number of instructions per clock, they are actually closer in concept to
VLIWs because both approaches rely on the compiler to schedule code for
the processor. Because of the diminishing advantages of a statically scheduled
superscalar as the issue width grows, statically scheduled superscalars are used
primarily for narrow issue widths, normally just two instructions. Beyond that
width, most designers choose to implement either a VLIW or a dynamically
scheduled superscalar. Because of the similarities in hardware and required
compiler technology, we focus on VLIWs in this section, and we will see them
again in Chapter 7. The insights of this section are easily extrapolated to a stat-
ically scheduled superscalar.

Figure 3.19 summarizes the basic approaches to multiple issue and their
distinguishing characteristics and shows processors that use each approach.

The Basic VLIW Approach

VLIWs use multiple, independent functional units. Rather than attempting to issue
multiple, independent instructions to the units, a VLIW packages the multiple
operations into one very long instruction or requires that the instructions in the
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issue packet satisfy the same constraints. Because there is no fundamental differ-
ence in the two approaches, we will just assume that multiple operations are placed
in one instruction, as in the original VLIW approach.

Because the advantage of a VLIW increases as the maximum issue rate grows,
we focus on a wider issue processor. Indeed, for simple two-issue processors, the
overhead of a superscalar is probably minimal. Many designers would probably
argue that a four-issue processor has manageable overhead, but as we will see later
in this chapter, the growth in overhead is a major factor limiting wider issue
processors.

Let’s consider a VLIW processor with instructions that contain five operations,
including one integer operation (which could also be a branch), two floating-point
operations, and two memory references. The instruction would have a set of fields
for each functional unit—perhaps 16–24 bits per unit, yielding an instruction
length of between 80 and 120 bits. By comparison, the Intel Itanium 1 and 2 con-
tain six operations per instruction packet (i.e., they allow concurrent issue of two
three-instruction bundles, as Appendix H describes).

To keep the functional units busy, there must be enough parallelism in a code
sequence to fill the available operation slots. This parallelism is uncovered by
unrolling loops and scheduling the code within the single larger loop body. If
the unrolling generates straight-line code, then local scheduling techniques, which
operate on a single basic block, can be used. If finding and exploiting the parallel-
ism require scheduling code across branches, a substantially more complex global

Common
name

Issue
structure

Hazard
detection Scheduling

Distinguishing
characteristic Examples

Superscalar
(static)

Dynamic Hardware Static In-order execution Mostly in the embedded
space: MIPS and ARM,
including the Cortex-A53

Superscalar
(dynamic)

Dynamic Hardware Dynamic Some out-of-order
execution, but no
speculation

None at the present

Superscalar
(speculative)

Dynamic Hardware Dynamic with
speculation

Out-of-order execution
with speculation

Intel Core i3, i5, i7; AMD
Phenom; IBM Power 7

VLIW/LIW Static Primarily
software

Static All hazards determined
and indicated by compiler
(often implicitly)

Most examples are in signal
processing, such as the TI
C6x

EPIC Primarily
static

Primarily
software

Mostly static All hazards determined
and indicated explicitly
by the compiler

Itanium

Figure 3.19 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. Appendix H focuses on compiler-based approaches. The EPIC approach, as embodied in the IA-64
architecture, extends many of the concepts of the early VLIW approaches, providing a blend of static and dynamic
approaches.
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scheduling algorithm must be used. Global scheduling algorithms are not only
more complex in structure, but they also must deal with significantly more com-
plicated trade-offs in optimization, because moving code across branches is
expensive.

In Appendix H, we discuss trace scheduling, one of these global scheduling
techniques developed specifically forVLIWs;wewill also explore special hardware
support that allows some conditional branches to be eliminated, extending the use-
fulness of local scheduling and enhancing the performance of global scheduling.

For now, we will rely on loop unrolling to generate long, straight-line code
sequences so that we can use local scheduling to build up VLIW instructions
and focus on how well these processors operate.

Example Suppose we have a VLIW that could issue two memory references, two FP oper-
ations, and one integer operation or branch in every clock cycle. Show an unrolled
version of the loop x[i] = x[i] + s (see page 158 for the RISC-V code) for such
a processor. Unroll as many times as necessary to eliminate any stalls.

Answer Figure 3.20 shows the code. The loop has been unrolled to make seven copies of
the body, which eliminates all stalls (i.e., completely empty issue cycles), and runs
in 9 cycles for the unrolled and scheduled loop. This code yields a running rate of
seven results in 9 cycles, or 1.29 cycles per result, nearly twice as fast as the
two-issue superscalar of Section 3.2 that used unrolled and scheduled code.

Memory
reference 1

Memory
reference 2 FP operation 1 FP operation 2

Integer
operation/branch

fld f0,0(x1) fld f6,-8(x1)

fld f10,-16(x1) fld f14,-24(x1)

fld f18,-32(x1) fld f22,-40(x1) fadd.d f4,f0,f2 fadd.d f8,f6,f2

fld f26,-48(x1) fadd.d f12,f0,f2 fadd.d f16,f14,f2

fadd.d f20,f18,f2 fadd.d f24,f22,f2

fsd f4,0(x1) fsd f8,-8(x1) fadd.d f28,f26,f24

fsd f12,-16(x1) fsd f16,-24(x1) addi x1,x1,-56

fsd f20,24(x1) fsd f24,16(x1)

fsd f28,8(x1) bne x1,x2,Loop

Figure 3.20 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes 9
cycles assuming correct branch prediction. The issue rate is 23 operations in 9 clock cycles, or 2.5 operations per cycle.
The efficiency, the percentage of available slots that contained an operation, is about 60%. To achieve this issue rate
requires a larger number of registers than RISC-V would normally use in this loop. The preceding VLIW code sequence
requires at least eight FP registers, whereas the same code sequence for the base RISC-V processor can use as few as
two FP registers or as many as five when unrolled and scheduled.
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For the original VLIWmodel, there were both technical and logistical problems
that made the approach less efficient. The technical problems were the increase in
code size and the limitations of the lockstep operation. Two different elements com-
bine to increase code size substantially for a VLIW. First, generating enough oper-
ations in a straight-line code fragment requires ambitiously unrolling loops (as in
earlier examples), thereby increasing code size. Second, whenever instructions are
not full, the unused functional units translate to wasted bits in the instruction encod-
ing. In Appendix H, we examine software scheduling approaches, such as software
pipelining, thatcanachievethebenefitsofunrollingwithoutasmuchcodeexpansion.

To combat this code size increase, clever encodings are sometimes used. For
example, there may be only one large immediate field for use by any functional
unit. Another technique is to compress the instructions in main memory and expand
them when they are read into the cache or are decoded. In Appendix H, we show
other techniques, as well as document the significant code expansion seen in IA-64.

Early VLIWs operated in lockstep; there was no hazard-detection hardware at
all. This structure dictated that a stall in any functional unit pipeline must cause the
entire processor to stall because all the functional units had to be kept synchro-
nized. Although a compiler might have been able to schedule the deterministic
functional units to prevent stalls, predicting which data accesses would encounter
a cache stall and scheduling them were very difficult to do. Thus caches needed to
be blocking and causing all the functional units to stall. As the issue rate and num-
ber of memory references became large, this synchronization restriction became
unacceptable. In more recent processors, the functional units operate more inde-
pendently, and the compiler is used to avoid hazards at issue time, while hardware
checks allow for unsynchronized execution once instructions are issued.

Binary code compatibility has also been a major logistical problem for general-
purpose VLIWs or those that run third-party software. In a strict VLIW approach,
the code sequence makes use of both the instruction set definition and the detailed
pipeline structure, including both functional units and their latencies. Thus differ-
ent numbers of functional units and unit latencies require different versions of the
code. This requirement makes migrating between successive implementations, or
between implementations with different issue widths, more difficult than it is for a
superscalar design. Of course, obtaining improved performance from a new super-
scalar design may require recompilation. Nonetheless, the ability to run old binary
files is a practical advantage for the superscalar approach. In the domain-specific
architectures, which we examine in Chapter 7, this problem is not serious because
applications are written specifically for an architectural configuration.

The EPIC approach, of which the IA-64 architecture is the primary example,
provides solutions to many of the problems encountered in early general-purpose
VLIW designs, including extensions for more aggressive software speculation and
methods to overcome the limitation of hardware dependence while preserving
binary compatibility.

The major challenge for all multiple-issue processors is to try to exploit large
amounts of ILP. When the parallelism comes from unrolling simple loops in FP
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programs, the original loop probably could have been run efficiently on a vector
processor (described in the next chapter). It is not clear that a multiple-issue pro-
cessor is preferred over a vector processor for such applications; the costs are sim-
ilar, and the vector processor is typically the same speed or faster. The potential
advantages of a multiple-issue processor versus a vector processor are the former’s
ability to extract some parallelism from less structured code and to easily cache all
forms of data. For these reasons, multiple-issue approaches have become the pri-
mary method for taking advantage of instruction-level parallelism, and vectors
have become primarily an extension to these processors.

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue,
and Speculation

So farwe have seen how the individualmechanisms of dynamic scheduling,multiple
issue, and speculation work. In this section, we put all three together, which yields a
microarchitecture quite similar to those in modern microprocessors. For simplicity
we consider only an issue rate of two instructions per clock, but the concepts are no
different from modern processors that issue three or more instructions per clock.

Let’s assume we want to extend Tomasulo’s algorithm to support multiple-
issue superscalar pipeline with separate integer, load/store, and floating-point units
(both FP multiply and FP add), each of which can initiate an operation on every
clock. We do not want to issue instructions to the reservation stations out of order
because this could lead to a violation of the program semantics. To gain the full
advantage of dynamic scheduling, we will allow the pipeline to issue any combi-
nation of two instructions in a clock, using the scheduling hardware to actually
assign operations to the integer and floating-point unit. Because the interaction
of the integer and floating-point instructions is crucial, we also extend Tomasulo’s
scheme to deal with both the integer and floating-point functional units and reg-
isters, as well as incorporating speculative execution. As Figure 3.21 shows, the
basic organization is similar to that of a processor with speculation with one issue
per clock, except that the issue and completion logic must be enhanced to allow
multiple instructions to be processed per clock.

Issuing multiple instructions per clock in a dynamically scheduled processor
(with or without speculation) is very complex for the simple reason that the mul-
tiple instructions may depend on one another. Because of this, the tables must be
updated for the instructions in parallel; otherwise, the tables will be incorrect or the
dependence may be lost.

Two different approaches have been used to issue multiple instructions per
clock in a dynamically scheduled processor, and both rely on the observation that
the key is assigning a reservation station and updating the pipeline control tables.
One approach is to run this step in half a clock cycle so that two instructions can be
processed in one clock cycle; this approach cannot be easily extended to handle
four instructions per clock, unfortunately.
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A second alternative is to build the logic necessary to handle two or more
instructions at once, including any possible dependences between the instructions.
Modern superscalar processors that issue four or more instructions per clock may
include both approaches: They both pipeline and widen the issue logic. A key
observation is that we cannot simply pipeline away the problem. By making
instruction issues take multiple clocks because new instructions are issuing every
clock cycle, we must be able to assign the reservation station and to update the
pipeline tables so that a dependent instruction issuing on the next clock can use
the updated information.
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Figure 3.21 The basic organization of a multiple issue processor with speculation. In this case, the organization
could allow a FP multiply, FP add, integer, and load/store to all issues simultaneously (assuming one issue per clock
per functional unit). Note that several datapaths must be widened to support multiple issues: the CDB, the operand
buses, and, critically, the instruction issue logic, which is not shown in this figure. The last is a difficult problem, as we
discuss in the text.
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This issue step is one of the most fundamental bottlenecks in dynamically
scheduled superscalars. To illustrate the complexity of this process, Figure 3.22
shows the issue logic for one case: issuing a load followed by a dependent FP oper-
ation. The logic is based on that in Figure 3.18 on page 197, but represents only one
case. In a modern superscalar, every possible combination of dependent instruc-
tions that is allowed to issue in the same clock cycle must be considered. Because
the number of possibilities climbs as the square of the number of instructions that
can be issued in a clock, the issue step is a likely bottleneck for attempts to go
beyond four instructions per clock.

We can generalize the detail of Figure 3.22 to describe the basic strategy for
updating the issue logic and the reservation tables in a dynamically scheduled
superscalar with up to n issues per clock as follows:

1. Assign a reservation station and a reorder buffer for every instruction that might
be issued in the next issue bundle. This assignment can be done before the
instruction types are known simply by preallocating the reorder buffer entries
sequentially to the instructions in the packet using n available reorder buffer
entries and by ensuring that enough reservation stations are available to issue
the whole bundle, independent of what it contains. By limiting the number
of instructions of a given class (say, one FP, one integer, one load, one store),
the necessary reservation stations can be preallocated. Should sufficient reser-
vation stations not be available (such as when the next few instructions in the
program are all of one instruction type), the bundle is broken, and only a subset
of the instructions, in the original program order, is issued. The remainder of the
instructions in the bundle can be placed in the next bundle for potential issue.

2. Analyze all the dependences among the instructions in the issue bundle.

3. If an instruction in the bundle depends on an earlier instruction in the bundle,
use the assigned reorder buffer number to update the reservation table for
the dependent instruction. Otherwise, use the existing reservation table and
reorder buffer information to update the reservation table entries for the issuing
instruction.

Of course, what makes the preceding very complicated is that it is all done in par-
allel in a single clock cycle!

At the back-end of the pipeline, we must be able to complete and commit mul-
tiple instructions per clock. These steps are somewhat easier than the issue problems
because multiple instructions that can actually commit in the same clock cycle must
have already dealt with and resolved any dependences. As we will see, designers
have figured out how to handle this complexity: The Intel i7, which we examine in
Section 3.12, uses essentially the scheme we have described for speculative mul-
tiple issue, including a large number of reservation stations, a reorder buffer, and
a load and store buffer that is also used to handle nonblocking cache misses.

From a performance viewpoint, we can show how the concepts fit together
with an example.
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Action or bookkeeping Comments

if (RegisterStat[rs1].Busy)/*in-flight instr. writes rs*/
{h  RegisterStat[rs1].Reorder;
if (ROB[h].Ready)/* Instr completed already */

{RS[x1].Vj  ROB[h].Value; RS[x1].Qj  0;}
else {RS[x1].Qj  h;} /* wait for instruction */

} else {RS[x1].Vj  Regs[rs]; RS[x1].Qj  0;};
RS[x1].Busy  yes; RS[x1].Dest  b1;
ROB[b1].Instruction  Load; ROB[b1].Dest  rd1;
ROB[b1].Ready  no;
RS[r].A  imm1; RegisterStat[rt1].Reorder  b1;
RegisterStat[rt1].Busy  yes; ROB[b1].Dest  rt1;

Updating the reservation tables for
the load instruction, which has a
single source operand. Because this
is the first instruction in this issue
bundle, it looks no different than
what would normally happen for a
load.

RS[x2].Qj  b1;} /* wait for load instruction */ Because we know that the first
operand of the FP operation is from
the load, this step simply updates the
reservation station to point to the
load. Notice that the dependence
must be analyzed on the fly and the
ROB entries must be allocated
during this issue step so that the
reservation tables can be correctly
updated.

if (RegisterStat[rt2].Busy) /*in-flight instr writes rt*/
{h  RegisterStat[rt2].Reorder;
if (ROB[h].Ready)/* Instr completed already */

{RS[x2].Vk  ROB[h].Value; RS[x2].Qk  0;}
else {RS[x2].Qk  h;} /* wait for instruction */

} else {RS[x2].Vk  Regs[rt2]; RS[x2].Qk  0;};
RegisterStat[rd2].Reorder  b2;
RegisterStat[rd2].Busy  yes;
ROB[b2].Dest  rd2;

Because we assumed that the
second operand of the FP
instruction was from a prior issue
bundle, this step looks like it would
in the single-issue case. Of course, if
this instruction were dependent on
something in the same issue bundle,
the tables would need to be updated
using the assigned reservation
buffer.

RS[x2].Busy  yes; RS[x2].Dest  b2;
ROB[b2].Instruction  FP operation; ROB[b2].Dest  rd2;
ROB[b2].Ready  no;

This section simply updates the
tables for the FP operation and is
independent of the load. Of course,
if further instructions in this issue
bundle depended on the FP
operation (as could happen with a
four-issue superscalar), the updates
to the reservation tables for those
instructions would be effected by
this instruction.

Figure 3.22 The issue steps for a pair of dependent instructions (called 1 and 2), where instruction 1 is FP load
and instruction 2 is an FP operation whose first operand is the result of the load instruction; x1 and x2 are the
assigned reservation stations for the instructions; and b1 and b2 are the assigned reorder buffer entries. For the
issuing instructions, rd1 and rd2 are the destinations; rs1, rs2, and rt2 are the sources (the load has only one
source); x1 and x2 are the reservation stations allocated; and b1 and b2 are the assigned ROB entries. RS is the
reservation station data structure. RegisterStat is the register data structure, Regs represents the actual regis-
ters, and ROB is the reorder buffer data structure. Notice that we need to have assigned reorder buffer entries for this
logic to operate properly, and recall that all these updates happen in a single clock cycle in parallel, not sequentially.

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation ■ 225



Example Consider the execution of the following loop, which increments each element of an
integer array, on a two-issue processor, once without speculation and once with
speculation:

Loop: ld x2,0(x1) //x2=array element
addi x2,x2,1 //increment x2
sd x2,0(x1) //store result
addi x1,x1,8 //increment pointer
bne x2,x3,Loop //branch if not last

Assume that there are separate integer functional units for effective address cal-
culation, for ALU operations, and for branch condition evaluation. Create a table
for the first three iterations of this loop for both processors. Assume that up to two
instructions of any type can commit per clock.

Answer Figures 3.23 and 3.24 show the performance for a two-issue, dynamically
scheduled processor, without and with speculation. In this case, where a branch

Iteration
number Instructions

Issues at
clock cycle
number

Executes at
clock cycle
number

Memory access at
clock cycle
number

Write CDB at
clock cycle
number Comment

1 ld x2,0(x1) 1 2 3 4 First issue

1 addi x2,x2,1 1 5 6 Wait for ld

1 sd x2,0(x1) 2 3 7 Wait for addi

1 addi x1,x1,8 2 3 4 Execute directly

1 bne x2,x3,Loop 3 7 Wait for addi

2 ld x2,0(x1) 4 8 9 10 Wait for bne

2 addi x2,x2,1 4 11 12 Wait for ld

2 sd x2,0(x1) 5 9 13 Wait for addi

2 addi x1,x1,8 5 8 9 Wait for bne

2 bne x2,x3,Loop 6 13 Wait for addi

3 ld x2,0(x1) 7 14 15 16 Wait for bne

3 addi x2,x2,1 7 17 18 Wait for ld

3 sd x2,0(x1) 8 15 19 Wait for addi

3 addi x1,x1,8 8 14 15 Wait for bne

3 bne x2,x3,Loop 9 19 Wait for addi

Figure 3.23 The time of issue, execution, and writing result for a dual-issue version of our pipeline without spec-
ulation. Note that the ld following the bne cannot start execution earlier because it must wait until the branch out-
come is determined. This type of program, with data-dependent branches that cannot be resolved earlier, shows the
strength of speculation. Separate functional units for address calculation, ALU operations, and branch-condition eval-
uation allow multiple instructions to execute in the same cycle. Figure 3.24 shows this example with speculation.
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can be a critical performance limiter, speculation helps significantly. The third
branch in the speculative processor executes in clock cycle 13, whereas it exe-
cutes in clock cycle 19 on the nonspeculative pipeline. Because the completion
rate on the nonspeculative pipeline is falling behind the issue rate rapidly, the
nonspeculative pipeline will stall when a few more iterations are issued. The
performance of the nonspeculative processor could be improved by allowing
load instructions to complete effective address calculation before a branch is
decided, but unless speculative memory accesses are allowed, this improve-
ment will gain only 1 clock per iteration.

This example clearly shows how speculation can be advantageous when there are
data-dependent branches, which otherwise would limit performance. This advan-
tage depends, however, on accurate branch prediction. Incorrect speculation does
not improve performance; in fact, it typically harms performance and, as we shall
see, dramatically lowers energy efficiency.

Iteration
number Instructions

Issues
at clock
number

Executes
at clock
number

Read
access
at clock
number

Write
CDB at
clock

number

Commits
at clock
number Comment

1 ld x2,0(x1) 1 2 3 4 5 First issue

1 addi x2,x2,1 1 5 6 7 Wait for ld

1 sd x2,0(x1) 2 3 7 Wait for addi

1 addi x1,x1,8 2 3 4 8 Commit in order

1 bne x2,x3,Loop 3 7 8 Wait for addi

2 ld x2,0(x1) 4 5 6 7 9 No execute delay

2 addi x2,x2,1 4 8 9 10 Wait for ld

2 sd x2,0(x1) 5 6 10 Wait for addi

2 addi x1,x1,8 5 6 7 11 Commit in order

2 bne x2,x3,Loop 6 10 11 Wait for addi

3 ld x2,0(x1) 7 8 9 10 12 Earliest possible

3 addi x2,x2,1 7 11 12 13 Wait for ld

3 sd x2,0(x1) 8 9 13 Wait for addi

3 addi x1,x1,8 8 9 10 14 Executes earlier

3 bne x2,x3,Loop 9 13 14 Wait for addi

Figure 3.24 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specu-
lation. Note that the ld following the bne can start execution early because it is speculative.
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3.9 Advanced Techniques for Instruction Delivery
and Speculation

In a high-performance pipeline, especially one with multiple issues,
predicting branches well is not enough; we actually have to be able to deliver a
high-bandwidth instruction stream. In recent multiple-issue processors, this has
meant delivering 4–8 instructions every clock cycle. We look at methods for
increasing instruction delivery bandwidth first. We then turn to a set of key issues
in implementing advanced speculation techniques, including the use of register
renaming versus reorder buffers, the aggressiveness of speculation, and a tech-
nique called value prediction, which attempts to predict the result of a computation
and which could further enhance ILP.

Increasing Instruction Fetch Bandwidth

A multiple-issue processor will require that the average number of instructions
fetched every clock cycle be at least as large as the average throughput.
Of course, fetching these instructions requires wide enough paths to the
instruction cache, but the most difficult aspect is handling branches. In this
section, we look at two methods for dealing with branches and then discuss
how modern processors integrate the instruction prediction and prefetch
functions.

Branch-Target Buffers

To reduce the branch penalty for our simple five-stage pipeline, as well as for dee-
per pipelines, we must know whether the as-yet-undecoded instruction is a branch
and, if so, what the next program counter (PC) should be. If the instruction is a
branch and we know what the next PC should be, we can have a branch penalty
of zero. A branch-prediction cache that stores the predicted address for the next
instruction after a branch is called a branch-target buffer or branch-target cache.
Figure 3.25 shows a branch-target buffer.

Because a branch-target buffer predicts the next instruction address and will
send it out before decoding the instruction, we must know whether the fetched
instruction is predicted as a taken branch. If the PC of the fetched instruction
matches an address in the prediction buffer, then the corresponding predicted
PC is used as the next PC. The hardware for this branch-target buffer is essentially
identical to the hardware for a cache.

If a matching entry is found in the branch-target buffer, fetching begins imme-
diately at the predicted PC. Note that unlike a branch-prediction buffer, the predic-
tive entry must be matched to this instruction because the predicted PC will be sent
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out before it is known whether this instruction is even a branch. If the processor did
not check whether the entry matched this PC, then the wrong PC would be sent out
for instructions that were not branches, resulting in worse performance. We need to
store only the predicted-taken branches in the branch-target buffer because an unta-
ken branch should simply fetch the next sequential instruction, as if it were not a
branch.

Figure 3.26 shows the steps when using a branch-target buffer for a simple five-
stage pipeline. As we can see in this figure, there will be no branch delay if a
branch-prediction entry is found in the buffer and the prediction is correct. Other-
wise, there will be a penalty of at least two clock cycles. Dealing with the mispre-
dictions and misses is a significant challenge because we typically will have to halt
instruction fetch while we rewrite the buffer entry. Thus we want to make this pro-
cess fast to minimize the penalty.

Look up Predicted PC

Number of
entries
in branch-
target
buffer

No:  instruction is not
predicted to be a taken
branch; proceed normally

=

Yes:  then instruction is taken branch and predicted
PC should be used as the next PC

PC of instruction to fetch

Figure 3.25 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruc-
tion addresses stored in the first column; these represent the addresses of known branches. If the PC matches one
of these entries, then the instruction being fetched is a taken branch, and the second field, predicted PC, contains the
prediction for the next PC after the branch. Fetching begins immediately at that address. The third field, which is
optional, may be used for extra prediction state bits.
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To evaluate how well a branch-target buffer works, we first must determine the
penalties in all possible cases. Figure 3.27 contains this information for a simple
five-stage pipeline.

Example Determine the total branch penalty for a branch-target buffer assuming the penalty
cycles for individual mispredictions in Figure 3.27. Make the following assump-
tions about the prediction accuracy and hit rate:

■ Prediction accuracy is 90% (for instructions in the buffer).

■ Hit rate in the buffer is 90% (for branches predicted taken).

IF

ID

EX

Send PC to memory and
branch-target buffer

Entry found in
branch-target

buffer?

No

No

Normal
instruction
execution

Yes

Send out
predicted

PCIs
instruction

a taken
branch?

Taken
branch?

Enter
branch instruction
address and next
PC into branch-

target buffer

Mispredicted branch,
kill fetched instruction;
restart fetch at other
target; delete entry
from target buffer

Branch correctly
predicted;

continue execution
with no stalls

Yes

No Yes

Figure 3.26 The steps involved in handling an instruction with a branch-target buffer.
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Answer We compute the penalty by looking at the probability of two events: the branch is
predicted taken but ends up being not taken, and the branch is taken but is not found
in the buffer. Both carry a penalty of two cycles.

Probability branch in buffer, but actually not takenð Þ ¼ Percent buffer hit rate
�Percent incorrect predictions

¼ 90%�10% ¼ 0:09
Probability branch not in buffer, but actually takenð Þ ¼ 10%

Branch penalty ¼ 0:09 + 0:10ð Þ�2
Branch penalty ¼ 0:38

The improvement from dynamic branch prediction will grow as the pipeline
length, and thus the branch delay grows; in addition, better predictors will yield
a greater performance advantage. Modern high-performance processors have
branch misprediction delays on the order of 15 clock cycles; clearly, accurate pre-
diction is critical!

One variation on the branch-target buffer is to store one or more target instruc-
tions instead of, or in addition to, the predicted target address. This variation has
two potential advantages. First, it allows the branch-target buffer access to take
longer than the time between successive instruction fetches, possibly allowing a
larger branch-target buffer. Second, buffering the actual target instructions allows
us to perform an optimization called branch folding. Branch folding can be used to
obtain 0-cycle unconditional branches and sometimes 0-cycle conditional
branches. As we will see, the Cortex A-53 uses a single-entry branch target cache
that stores the predicted target instructions.

Consider a branch-target buffer that buffers instructions from the predicted
path and is being accessed with the address of an unconditional branch. The
only function of the unconditional branch is to change the PC. Thus, when
the branch-target buffer signals a hit and indicates that the branch is

Instruction in buffer Prediction Actual branch Penalty cycles

Yes Taken Taken 0

Yes Taken Not taken 2

No Taken 2

No Not taken 0

Figure 3.27 Penalties for all possible combinations of whether the branch is in the
buffer and what it actually does, assuming we store only taken branches in
the buffer. There is no branch penalty if everything is correctly predicted and the
branch is found in the target buffer. If the branch is not correctly predicted, the penalty
is equal to 1 clock cycle to update the buffer with the correct information (during which
an instruction cannot be fetched) and 1 clock cycle, if needed, to restart fetching the
next correct instruction for the branch. If the branch is not found and taken, a 2-cycle
penalty is encountered, during which time the buffer is updated.
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unconditional, the pipeline can simply substitute the instruction from the
branch-target buffer in place of the instruction that is returned from the cache
(which is the unconditional branch). If the processor is issuing multiple
instructions per cycle, then the buffer will need to supply multiple instructions
to obtain the maximum benefit. In some cases, it may be possible to eliminate
the cost of a conditional branch.

Specialized Branch Predictors: Predicting Procedure Returns,
Indirect Jumps, and Loop Branches

As we try to increase the opportunity and accuracy of speculation, we face the chal-
lenge of predicting indirect jumps, that is, jumps whose destination address varies
at runtime. High-level language programs will generate such jumps for indirect
procedure calls, select or case statements, and FORTRAN-computed gotos,
although many indirect jumps simply come from procedure returns. For example,
for the SPEC95 benchmarks, procedure returns account for more than 15% of the
branches and the vast majority of the indirect jumps on average. For object-
oriented languages such as C++ and Java, procedure returns are even more fre-
quent. Thus focusing on procedure returns seems appropriate.

Though procedure returns can be predicted with a branch-target buffer, the
accuracy of such a prediction technique can be low if the procedure is called
from multiple sites and the calls from one site are not clustered in time. For
example, in SPEC CPU95, an aggressive branch predictor achieves an accu-
racy of less than 60% for such return branches. To overcome this problem,
some designs use a small buffer of return addresses operating as a stack. This
structure caches the most recent return addresses, pushing a return address on
the stack at a call and popping one off at a return. If the cache is sufficiently
large (i.e., as large as the maximum call depth), it will predict the returns per-
fectly. Figure 3.28 shows the performance of such a return buffer with 0–16
elements for a number of the SPEC CPU95 benchmarks. We will use a similar
return predictor when we examine the studies of ILP in Section 3.10. Both the
Intel Core processors and the AMD Phenom processors have return address
predictors.

In large server applications, indirect jumps also occur for various function calls
and control transfers. Predicting the targets of such branches is not as simple as in a
procedure return. Some processors have opted to add specialized predictors for all
indirect jumps, whereas others rely on a branch target buffer.

Although a simple predictor like gshare does a good job of predicting many
conditional branches, it is not tailored to predicting loop branches, especially
for long running loops. As we observed earlier, the Intel Core i7 920 used a spe-
cialized loop branch predictor. With the emergence of tagged hybrid predictors,
which are as good at predicting loop branches, some recent designers have opted
to put the resources into larger tagged hybrid predictors rather than a separate loop
branch predictor.
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Integrated Instruction Fetch Units

To meet the demands of multiple-issue processors, many recent designers have
chosen to implement an integrated instruction fetch unit as a separate autonomous
unit that feeds instructions to the rest of the pipeline. Essentially, this amounts to
recognizing that characterizing instruction fetch as a simple single pipe stage given
the complexities of multiple issue is no longer valid.

Instead, recent designs have used an integrated instruction fetch unit that inte-
grates several functions:

1. Integrated branch prediction—The branch predictor becomes part of the
instruction fetch unit and is constantly predicting branches, so as to drive
the fetch pipeline.
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Figure 3.28 Prediction accuracy for a return address buffer operated as a stack on a
number of SPEC CPU95 benchmarks. The accuracy is the fraction of return addresses
predicted correctly. A buffer of 0 entries implies that the standard branch prediction is
used. Because call depths are typically not large, with some exceptions, a modest buffer
works well. These data come from Skadron et al. (1999) and use a fix-up mechanism to
prevent corruption of the cached return addresses.
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2. Instruction prefetch—To deliver multiple instructions per clock, the instruction
fetch unit will likely need to fetch ahead. The unit autonomously manages the
prefetching of instructions (see Chapter 2 for a discussion of techniques for
doing this), integrating it with branch prediction.

3. Instruction memory access and buffering—When fetching multiple instructions
per cycle, a variety of complexities are encountered, including the difficulty that
fetching multiple instructions may require accessing multiple cache lines. The
instruction fetch unit encapsulates this complexity, using prefetch to try to hide
the cost of crossing cache blocks. The instruction fetch unit also provides buff-
ering, essentially acting as an on-demand unit to provide instructions to the
issue stage as needed and in the quantity needed.

Virtually all high-end processors now use a separate instruction fetch unit con-
nected to the rest of the pipeline by a buffer containing pending instructions.

Speculation: Implementation Issues and Extensions

In this section, we explore five issues that involve the design trade-offs and chal-
lenges in multiple-issue and speculation, starting with the use of register renaming,
the approach that is sometimes used instead of a reorder buffer. We then discuss
one important possible extension to speculation on control flow: an idea called
value prediction.

Speculation Support: Register Renaming Versus Reorder Buffers

One alternative to the use of a reorder buffer (ROB) is the explicit use of a
larger physical set of registers combined with register renaming. This approach
builds on the concept of renaming used in Tomasulo’s algorithm and extends it.
In Tomasulo’s algorithm, the values of the architecturally visible registers
(x0, . . . r31 and f0, . . . f31) are contained, at any point in execution, in some
combination of the register set and the reservation stations. With the addition of
speculation, register values may also temporarily reside in the ROB. In either case,
if the processor does not issue new instructions for a period of time, all existing
instructions will commit, and the register values will appear in the register file,
which directly corresponds to the architecturally visible registers.

In the register-renaming approach, an extended set of physical registers is used
to hold both the architecturally visible registers as well as temporary values. Thus
the extended registers replace most of the function of the ROB and the reservation
stations; only a queue to ensure that instructions complete in order is needed.
During instruction issue, a renaming process maps the names of architectural
registers to physical register numbers in the extended register set, allocating a
new unused register for the destination. WAW and WAR hazards are avoided
by renaming of the destination register, and speculation recovery is handled
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because a physical register holding an instruction destination does not become the
architectural register until the instruction commits.

The renaming map is a simple data structure that supplies the physical register
number of the register that currently corresponds to the specified architectural reg-
ister, a function performed by the register status table in Tomasulo’s algorithm.
When an instruction commits, the renaming table is permanently updated to indi-
cate that a physical register corresponds to the actual architectural register, thus
effectively finalizing the update to the processor state. Although an ROB is not
necessary with register renaming, the hardware must still track instructions in a
queue-like structure and update the renaming table in strict order.

An advantage of the renaming approach versus the ROB approach is that
instruction commit is slightly simplified because it requires only two simple
actions: (1) record that the mapping between an architectural register number
and physical register number is no longer speculative, and (2) free up any physical
registers being used to hold the “older” value of the architectural register. In a
design with reservation stations, a station is freed up when the instruction using
it completes execution, and a ROB entry is freed up when the corresponding
instruction commits.

With register renaming, deallocating registers is more complex because before
we free up a physical register, we must know that it no longer corresponds to an
architectural register and that no further uses of the physical register are outstand-
ing. A physical register corresponds to an architectural register until the architec-
tural register is rewritten, causing the renaming table to point elsewhere. That is, if
no renaming entry points to a particular physical register, then it no longer corre-
sponds to an architectural register. There may, however, still be outstanding uses of
the physical register. The processor can determine whether this is the case by
examining the source register specifiers of all instructions in the functional unit
queues. If a given physical register does not appear as a source and it is not des-
ignated as an architectural register, it may be reclaimed and reallocated.

Alternatively, the processor can simply wait until another instruction that
writes the same architectural register commits. At that point, there can be no further
uses of the older value outstanding. Although this method may tie up a physical
register slightly longer than necessary, it is easy to implement and is used in most
recent superscalars.

One question you may be asking is how do we ever know which registers are
the architectural registers if they are constantly changing? Most of the time when
the program is executing, it does not matter. There are clearly cases, however,
where another process, such as the operating system, must be able to know exactly
where the contents of a certain architectural register reside. To understand how this
capability is provided, assume the processor does not issue instructions for some
period of time. Eventually all instructions in the pipeline will commit, and the map-
ping between the architecturally visible registers and physical registers will
become stable. At that point, a subset of the physical registers contains the archi-
tecturally visible registers, and the value of any physical register not associated
with an architectural register is unneeded. It is then easy to move the architectural
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registers to a fixed subset of physical registers so that the values can be commu-
nicated to another process.

Both register renaming and reorder buffers continue to be used in high-end pro-
cessors, which now feature the ability to have as many as 100 or more instructions
(including loads and stores waiting on the cache) in flight. Whether renaming or a
reorder buffer is used, the key complexity bottleneck for a dynamically scheduled
superscalar remains issuing bundles of instructions with dependences within the
bundle. In particular, dependent instructions in an issue bundle must be issued with
the assigned virtual registers of the instructions on which they depend. A strategy
for instruction issue with register renaming similar to that used for multiple issue
with reorder buffers (see page 205) can be deployed, as follows:

1. The issue logic reserves enough physical registers for the entire issue bundle
(say, four registers for a four-instruction bundle with at most one register result
per instruction).

2. The issue logic determines what dependences exist within the bundle. If a
dependence does not exist within the bundle, the register renaming structure
is used to determine the physical register that holds, or will hold, the result
on which instruction depends. When no dependence exists within the bundle,
the result is from an earlier issue bundle, and the register renaming table will
have the correct register number.

3. If an instruction depends on an instruction that is earlier in the bundle, then the
pre-reserved physical register in which the result will be placed is used to update
the information for the issuing instruction.

Note that just as in the reorder buffer case, the issue logic must both determine
dependences within the bundle and update the renaming tables in a single clock,
and as before, the complexity of doing this for a larger number of instructions per
clock becomes a chief limitation in the issue width.

The Challenge of More Issues per Clock

Without speculation, there is little motivation to try to increase the issue rate
beyond two, three, or possibly four issues per clock because resolving branches
would limit the average issue rate to a smaller number. Once a processor includes
accurate branch prediction and speculation, we might conclude that increasing the
issue rate would be attractive. Duplicating the functional units is straightforward
assuming silicon capacity and power; the real complications arise in the issue step
and correspondingly in the commit step. The Commit step is the dual of the issue
step, and the requirements are similar, so let’s take a look at what has to happen for
a six-issue processor using register renaming.

Figure 3.29 shows a six-instruction code sequence and what the issue step must
do. Remember that this must all occur in a single clock cycle, if the processor is to
maintain a peak rate of six issues per clock! All the dependences must be detected,
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the physical registers must be assigned, and the instructions must be rewritten
using the physical register numbers: in one clock. This example makes it clear
why issue rates have grown from 3–4 to only 4–8 in the past 20 years. The com-
plexity of the analysis required during the issue cycle grows as the square of the
issue width, and a new processor is typically targeted to have a higher clock rate
than in the last generation! Because register renaming and the reorder buffer
approaches are duals, the same complexities arise independent of the implemen-
tation scheme.

How Much to Speculate

One of the significant advantages of speculation is its ability to uncover events that
would otherwise stall the pipeline early, such as cache misses. This potential
advantage, however, comes with a significant potential disadvantage. Speculation
is not free. It takes time and energy, and the recovery of incorrect speculation fur-
ther reduces performance. In addition, to support the higher instruction execution
rate needed to benefit from speculation, the processor must have additional
resources, which take silicon area and power. Finally, if speculation causes an
exceptional event to occur, such as a cache or translation lookaside buffer
(TLB) miss, the potential for significant performance loss increases, if that event
would not have occurred without speculation.

To maintain most of the advantage while minimizing the disadvantages, most
pipelines with speculation will allow only low-cost exceptional events (such as a
first-level cachemiss) to be handled in speculativemode. If an expensive exceptional
event occurs, such as a second-level cachemiss or a TLBmiss, the processorwillwait

Instr. # Instruction
Physical register assigned

or destination
Instruction with physical

register numbers
Rename map

changes

1 add x1,x2,x3 p32 add p32,p2,p3 x1-> p32

2 sub x1,x1,x2 p33 sub p33,p32,p2 x1->p33

3 add x2,x1,x2 p34 add p34,p33,x2 x2->p34

4 sub x1,x3,x2 p35 sub p35,p3,p34 x1->p35

5 add x1,x1,x2 p36 add p36,p35,p34 x1->p36

6 sub x1,x3,x1 p37 sub p37,p3,p36 x1->p37

Figure 3.29 An example of six instructions to be issued in the same clock cycle and what has to happen. The
instructions are shown in program order: 1–6; they are, however, issued in 1 clock cycle! The notation pi is used
to refer to a physical register; the contents of that register at any point is determined by the renaming map. For sim-
plicity, we assume that the physical registers holding the architectural registers x1, x2, and x3 are initially p1, p2,
and p3 (they could be any physical register). The instructions are issued with physical register numbers, as shown in
column four. The rename map, which appears in the last column, shows how the map would change if the instruc-
tions were issued sequentially. The difficulty is that all this renaming and replacement of architectural registers by
physical renaming registers happens effectively in 1 cycle, not sequentially. The issue logic must find all the depen-
dences and “rewrite” the instruction in parallel.
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until the instruction causing the event is no longer speculative before handling the
event. Although this may slightly degrade the performance of some programs, it
avoids significant performance losses in others, especially those that suffer from a
high frequency of such events coupled with less-than-excellent branch prediction.

In the 1990s the potential downsides of speculation were less obvious. As pro-
cessors have evolved, the real costs of speculation have become more apparent,
and the limitations of wider issue and speculation have been obvious. We return
to this issue shortly.

Speculating Through Multiple Branches

In the examples we have considered in this chapter, it has been possible to resolve a
branch before having to speculate on another. Three different situations can benefit
from speculating on multiple branches simultaneously: (1) a very high branch fre-
quency, (2) significant clustering of branches, and (3) long delays in functional
units. In the first two cases, achieving high performance may mean that multiple
branches are speculated, and it may even mean handling more than one branch per
clock. Database programs and other less structured integer computations, often
exhibit these properties, making speculation on multiple branches important. Like-
wise, long delays in functional units can raise the importance of speculating on
multiple branches as a way to avoid stalls from the longer pipeline delays.

Speculating on multiple branches slightly complicates the process of specula-
tion recovery but is straightforward otherwise. As of 2017, no processor has yet
combined full speculation with resolving multiple branches per cycle, and it
is unlikely that the costs of doing so would be justified in terms of performance
versus complexity and power.

Speculation and the Challenge of Energy Efficiency

What is the impact of speculation on energy efficiency? At first glance, one might
argue that using speculation always decreases energy efficiency because whenever
speculation is wrong, it consumes excess energy in two ways:

1. Instructions that are speculated and whose results are not needed generate
excess work for the processor, wasting energy.

2. Undoing the speculation and restoring the state of the processor to continue exe-
cution at the appropriate address consumes additional energy that would not be
needed without speculation.

Certainly, speculation will raise the power consumption, and if we could control
speculation, it would be possible to measure the cost (or at least the dynamic power
cost). But, if speculation lowers the execution time by more than it increases the
average power consumption, then the total energy consumed may be less.

Thus, to understand the impact of speculation on energy efficiency, we need
to look at how often speculation is leading to unnecessary work. If a significant
number of unneeded instructions is executed, it is unlikely that speculation will
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improve running time by a comparable amount. Figure 3.30 shows the fraction of
instructions that are executed from misspeculation for a subset of the SPEC2000
benchmarks using a sophisticated branch predictor. As we can see, this fraction of
executed misspeculated instructions is small in scientific code and significant
(about 30% on average) in integer code. Thus it is unlikely that speculation is
energy-efficient for integer applications, and the end of Dennard scaling makes
imperfect speculation more problematic. Designers could avoid speculation, try
to reduce the misspeculation, or think about new approaches, such as only spec-
ulating on branches that are known to be highly predictable.

Address Aliasing Prediction

Address aliasing prediction is a technique that predicts whether two stores or a load
and a store refer to the same memory address. If two such references do not refer to
the same address, then they may be safely interchanged. Otherwise, we must wait
until the memory addresses accessed by the instructions are known. Because we
need not actually predict the address values, only whether such values conflict,
the prediction can be reasonably accurate with small predictors. Address prediction
relies on the ability of a speculative processor to recover after a misprediction; that
is, if the actual addresses that were predicted to be different (and thus not alias) turn
out to be the same (and thus are aliases), the processor simply restarts the sequence,
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Figure 3.30 The fraction of instructions that are executed as a result of misspeculation is typically much higher
for integer programs (the first five) versus FP programs (the last five).
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just as though it had mispredicted a branch. Address value speculation has been
used in several processors already and may become universal in the future.

Address prediction is a simple and restricted form of value prediction, which
attempts to predict the value that will be produced by an instruction. Value predic-
tion could, if it were highly accurate, eliminate data flow restrictions and achieve
higher rates of ILP. Despite many researchers focusing on value prediction in the
past 15 years in dozens of papers, the results have never been sufficiently attractive
to justify general value prediction in real processors.

3.10 Cross-Cutting Issues

Hardware Versus Software Speculation

The hardware-intensive approaches to speculation in this chapter and the software
approaches of Appendix H provide alternative approaches to exploiting ILP. Some
of the trade-offs, and the limitations, for these approaches are listed here:

■ To speculate extensively, we must be able to disambiguate memory references.
This capability is difficult to do at compile time for integer programs that con-
tain pointers. In a hardware-based scheme, dynamic runtime disambiguation of
memory addresses is done using the techniques we saw earlier for Tomasulo’s
algorithm. This disambiguation allows us to move loads past stores at runtime.
Support for speculative memory references can help overcome the conserva-
tism of the compiler, but unless such approaches are used carefully, the over-
head of the recovery mechanisms may swamp the advantages.

■ Hardware-based speculation works better when control flow is unpredictable
and when hardware-based branch prediction is superior to software-based
branch prediction done at compile time. These properties hold for many integer
programs, where the misprediction rates for dynamic predictors are usually less
than one-half of those for static predictors. Because speculated instructions
may slow down the computation when the prediction is incorrect, this differ-
ence is significant. One result of this difference is that even statically scheduled
processors normally include dynamic branch predictors.

■ Hardware-based speculation maintains a completely precise exception model
even for speculated instructions. Recent software-based approaches have
added special support to allow this as well.

■ Hardware-based speculation does not require compensation or bookkeeping
code, which is needed by ambitious software speculation mechanisms.

■ Compiler-based approaches may benefit from the ability to see further into the
code sequence, resulting in better code scheduling than a purely hardware-
driven approach.

■ Hardware-based speculation with dynamic scheduling does not require differ-
ent code sequences to achieve good performance for different implementations
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of an architecture. Although this advantage is the hardest to quantify, it may be
the most important one in the long run. Interestingly, this was one of the moti-
vations for the IBM 360/91. On the other hand, more recent explicitly parallel
architectures, such as IA-64, have added flexibility that reduces the hardware
dependence inherent in a code sequence.

The major disadvantage of supporting speculation in hardware is the complex-
ity and additional hardware resources required. This hardware cost must be eval-
uated against both the complexity of a compiler for a software-based approach and
the amount and usefulness of the simplifications in a processor that relies on such a
compiler.

Some designers have tried to combine the dynamic and compiler-based
approaches to achieve the best of each. Such a combination can generate interest-
ing and obscure interactions. For example, if conditional moves are combined with
register renaming, a subtle side effect appears. A conditional move that is annulled
must still copy a value to the destination register because it was renamed earlier in
the instruction pipeline. These subtle interactions complicate the design and ver-
ification process and can also reduce performance.

The Intel Itanium processor was the most ambitious computer ever designed
based on the software support for ILP and speculation. It did not deliver on the
hopes of the designers, especially for general-purpose, nonscientific code. As
designers’ ambitions for exploiting ILP were reduced in light of the difficulties
described on page 244, most architectures settled on hardware-based mechanisms
with issue rates of three to four instructions per clock.

Speculative Execution and the Memory System

Inherent in processors that support speculative execution or conditional instruc-
tions is the possibility of generating invalid addresses that would not occur without
speculative execution. Not only would this be incorrect behavior if protection
exceptions were taken, but also the benefits of speculative execution would be
swamped by false exception overhead. Therefore the memory systemmust identify
speculatively executed instructions and conditionally executed instructions and
suppress the corresponding exception.

By similar reasoning, we cannot allow such instructions to cause the cache
to stall on a miss because, again, unnecessary stalls could overwhelm the
benefits of speculation. Thus these processors must be matched with nonblock-
ing caches.

In reality, the penalty of a miss that goes to DRAM is so large that speculated
misses are handled only when the next level is on-chip cache (L2 or L3). Figure 2.5
on page 84 shows that for some well-behaved scientific programs, the compiler can
sustain multiple outstanding L2 misses to cut the L2 miss penalty effectively. Once
again, for this to work, the memory system behind the cache must match the goals
of the compiler in number of simultaneous memory accesses.
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3.11 Multithreading: Exploiting Thread-Level Parallelism
to Improve Uniprocessor Throughput

The topic we cover in this section, multithreading, is truly a cross-cutting topic,
because it has relevance to pipelining and superscalars, to graphics processing
units (Chapter 4), and to multiprocessors (Chapter 5). A thread is like a process
in that it has state and a current program counter, but threads typically share the
address space of a single process, allowing a thread to easily access data of other
threads within the same process. Multithreading is a technique whereby multiple
threads share a processor without requiring an intervening process switch. The
ability to switch between threads rapidly is what enables multithreading to be used
to hide pipeline and memory latencies.

In the next chapter, we will see how multithreading provides the same advan-
tages in GPUs. Finally, Chapter 5 will explore the combination of multithreading
and multiprocessing. These topics are closely interwoven because multithreading
is a primary technique for exposing more parallelism to the hardware. In a strict
sense, multithreading uses thread-level parallelism, and thus is properly the subject
of Chapter 5, but its role in both improving pipeline utilization and in GPUs moti-
vates us to introduce the concept here.

Although increasing performance by using ILP has the great advantage
that it is reasonably transparent to the programmer, as we have seen, ILP can
be quite limited or difficult to exploit in some applications. In particular, with
reasonable instruction issue rates, cache misses that go to memory or off-chip
caches are unlikely to be hidden by available ILP. Of course, when the processor
is stalled waiting on a cache miss, the utilization of the functional units drops
dramatically.

Because attempts to cover long memory stalls with more ILP have limited
effectiveness, it is natural to ask whether other forms of parallelism in an applica-
tion could be used to hide memory delays. For example, an online transaction pro-
cessing system has natural parallelism among the multiple queries and updates that
are presented by requests. Of course, many scientific applications contain natural
parallelism because they often model the three-dimensional, parallel structure of
nature, and that structure can be exploited by using separate threads. Even desktop
applications that use modern Windows-based operating systems often have mul-
tiple active applications running, providing a source of parallelism.

Multithreading allows multiple threads to share the functional units of a single
processor in an overlapping fashion. In contrast, a more general method to exploit
thread-level parallelism (TLP) is with a multiprocessor that has multiple indepen-
dent threads operating at once and in parallel. Multithreading, however, does not
duplicate the entire processor as a multiprocessor does. Instead, multithreading
shares most of the processor core among a set of threads, duplicating only private
state, such as the registers and program counter. As we will see in Chapter 5, many
recent processors incorporate both multiple processor cores on a single chip and
provide multithreading within each core.
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Duplicating the per-thread state of a processor core means creating a separate
register file and a separate PC for each thread. The memory itself can be shared
through the virtual memory mechanisms, which already support multiprogram-
ming. In addition, the hardware must support the ability to change to a different
thread relatively quickly; in particular, a thread switch should be much more effi-
cient than a process switch, which typically requires hundreds to thousands of pro-
cessor cycles. Of course, for multithreading hardware to achieve performance
improvements, a program must contain multiple threads (we sometimes say that
the application is multithreaded) that could execute in concurrent fashion. These
threads are identified either by a compiler (typically from a language with paral-
lelism constructs) or by the programmer.

There are three main hardware approaches to multithreading: fine-grained,
coarse-grained, and simultaneous. Fine-grained multithreading switches between
threads on each clock cycle, causing the execution of instructions from multiple
threads to be interleaved. This interleaving is often done in a round-robin fashion,
skipping any threads that are stalled at that time. One key advantage of fine-
grained multithreading is that it can hide the throughput losses that arise from
both short and long stalls because instructions from other threads can be executed
when one thread stalls, even if the stall is only for a few cycles. The primary
disadvantage of fine-grained multithreading is that it slows down the execution
of an individual thread because a thread that is ready to execute without stalls
will be delayed by instructions from other threads. It trades an increase in multi-
threaded throughput for a loss in the performance (as measured by latency) of a
single thread.

The SPARC T1 through T5 processors (originally made by Sun, now made by
Oracle and Fujitsu) use fine-grained multithreading. These processors were tar-
geted at multithreaded workloads such as transaction processing and web services.
The T1 supported 8 cores per processor and 4 threads per core, while the T5
supports 16 cores and 128 threads per core. Later versions (T2–T5) also supported
4–8 processors. The NVIDIA GPUs, which we look at in the next chapter, also
make use of fine-grained multithreading.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls, such as level two or three cache misses. Because instructions from other
threads will be issued only when a thread encounters a costly stall, coarse-grained
multithreading relieves the need to have thread-switching be essentially free and is
much less likely to slow down the execution of any one thread.

Coarse-grained multithreading suffers, however, from a major drawback: it is
limited in its ability to overcome throughput losses, especially from shorter stalls.
This limitation arises from the pipeline start-up costs of coarse-grained multi-
threading. Because a processor with coarse-grained multithreading issues instruc-
tions from a single thread, when a stall occurs, the pipeline will see a bubble before
the new thread begins executing. Because of this start-up overhead, coarse-grained
multithreading is much more useful for reducing the penalty of very high-cost
stalls, where pipeline refill is negligible compared to the stall time. Several research
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projects have explored coarse-grained multithreading, but no major current proces-
sors use this technique.

The most common implementation of multithreading is called simultaneous
multithreading (SMT). Simultaneous multithreading is a variation on fine-grained
multithreading that arises naturally when fine-grained multithreading is implemen-
ted on top of a multiple-issue, dynamically scheduled processor. As with other
forms of multithreading, SMT uses thread-level parallelism to hide long-latency
events in a processor, thereby increasing the usage of the functional units. The
key insight in SMT is that register renaming and dynamic scheduling allow mul-
tiple instructions from independent threads to be executed without regard to the
dependences among them; the resolution of the dependences can be handled by
the dynamic scheduling capability.

Figure 3.31 conceptually illustrates the differences in a processor’s ability to
exploit the resources of a superscalar for the following processor configurations:

■ A superscalar with no multithreading support

■ A superscalar with coarse-grained multithreading

Superscalar Coarse MT Fine MT SMT

T
im

e

Execution slots

Figure 3.31 How four different approaches use the functional unit execution slots of a superscalar processor. The
horizontal dimension represents the instruction execution capability in each clock cycle. The vertical dimension rep-
resents a sequence of clock cycles. An empty (white) box indicates that the corresponding execution slot is unused in
that clock cycle. The shades of gray and black correspond to four different threads in the multithreading processors.
Black is also used to indicate the occupied issue slots in the case of the superscalar without multithreading support.
The Sun T1 and T2 (aka Niagara) processors are fine-grained, multithreaded processors, while the Intel Core i7 and
IBM Power7 processors use SMT. The T2 has 8 threads, the Power7 has 4, and the Intel i7 has 2. In all existing SMTs,
instructions issue from only one thread at a time. The difference in SMT is that the subsequent decision to execute an
instruction is decoupled and could execute the operations coming from several different instructions in the same
clock cycle.
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■ A superscalar with fine-grained multithreading

■ A superscalar with simultaneous multithreading

In the superscalar without multithreading support, the use of issue slots is lim-
ited by a lack of ILP, including ILP to hide memory latency. Because of the length
of L2 and L3 cache misses, much of the processor can be left idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor. This
switching reduces the number of completely idle clock cycles. In a coarse-grained
multithreaded processor, however, thread switching occurs only when there is a
stall. Because the new thread has a start-up period, there are likely to be some fully
idle cycles remaining.

In the fine-grained case, the interleaving of threads can eliminate fully empty
slots. In addition, because the issuing thread is changed on every clock cycle, longer
latency operations can be hidden. Because instruction issue and execution are con-
nected, a thread can issue only asmany instructions as are ready.With a narrow issue
width, this is not a problem (a cycle is either occupied or not), which is why fine-
grainedmultithreadingworks perfectly for a single issue processor, and SMTwould
make no sense. Indeed, in the Sun T2, there are two issues per clock, but they are
from different threads. This eliminates the need to implement the complex dynamic
scheduling approach and relies instead on hiding latency with more threads.

If one implements fine-grained threading on top of a multiple-issue, dynami-
cally schedule processor, the result is SMT. In all existing SMT implementations,
all issues come from one thread, although instructions from different threads can
initiate execution in the same cycle, using the dynamic scheduling hardware to
determine what instructions are ready. Although Figure 3.31 greatly simplifies
the real operation of these processors, it does illustrate the potential performance
advantages of multithreading in general and SMT in wider issue, dynamically
scheduled processors.

Simultaneous multithreading uses the insight that a dynamically scheduled
processor already has many of the hardware mechanisms needed to support the
mechanism, including a large virtual register set. Multithreading can be built on
top of an out-of-order processor by adding a per-thread renaming table, keeping
separate PCs, and providing the capability for instructions from multiple threads
to commit.

Effectiveness of Simultaneous Multithreading on Superscalar
Processors

A key question is, how much performance can be gained by implementing SMT?
When this question was explored in 2000–2001, researchers assumed that dynamic
superscalars would get much wider in the next five years, supporting six to eight
issues per clock with speculative dynamic scheduling, many simultaneous loads
and stores, large primary caches, and four to eight contexts with simultaneous issue
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and retirement from multiple contexts. No processor has gotten close to this
combination.

As a result, simulation research results that showed gains for multiprogrammed
workloads of two or more times are unrealistic. In practice, the existing implemen-
tations of SMT offer only two to four contexts with fetching and issue from only
one, and up to four issues per clock. The result is that the gain from SMT is also
more modest.

Esmaeilzadeh et al. (2011) did an extensive and insightful set of measurements
that examined both the performance and energy benefits of using SMT in a single
i7 920 core running a set of multithreaded applications. The Intel i7 920 supported
SMT with two threads per core, as does the recent i7 6700. The changes between
the i7 920 and the 6700 are relatively small and are unlikely to significantly change
the results as shown in this section.

The benchmarks used consist of a collection of parallel scientific applications
and a set of multithreaded Java programs from the DaCapo and SPEC Java suite, as
summarized in Figure 3.32. Figure 3.31 shows the ratios of performance and
energy efficiency for these benchmarks when run on one core of a i7 920 with
SMT turned off and on. (We plot the energy efficiency ratio, which is the inverse
of energy consumption, so that, like speedup, a higher ratio is better.)

The harmonic mean of the speedup for the Java benchmarks is 1.28, despite the
two benchmarks that see small gains. These two benchmarks, pjbb2005 and trade-
beans, while multithreaded, have limited parallelism. They are included because
they are typical of a multithreaded benchmark that might be run on an SMT pro-
cessor with the hope of extracting some performance, which they find in limited
amounts. The PARSEC benchmarks obtain somewhat better speedups than the full
set of Java benchmarks (harmonic mean of 1.31). If tradebeans and pjbb2005 were
omitted, the Java workload would actually have significantly better speedup (1.39)
than the PARSEC benchmarks. (See the discussion of the implication of using har-
monic mean to summarize the results in the caption of Figure 3.33.)

Energy consumption is determined by the combination of speedup and increase
in power consumption. For the Java benchmarks, on average, SMT delivers the
same energy efficiency as non-SMT (average of 1.0), but it is brought down by
the two poor performing benchmarks; without pjbb2005 and tradebeans, the aver-
age energy efficiency for the Java benchmarks is 1.06, which is almost as good as
the PARSEC benchmarks. In the PARSEC benchmarks, SMT reduces energy by
1� (1/1.08)¼7%. Such energy-reducing performance enhancements are very dif-
ficult to find. Of course, the static power associated with SMT is paid in both cases,
thus the results probably slightly overstate the energy gains.

These results clearly show that SMT with extensive support in an aggressive
speculative processor can improve performance in an energy-efficient fashion. In
2011, the balance between offering multiple simpler cores and fewer more sophis-
ticated cores has shifted in favor of more cores, with each core typically being a
three- to four-issue superscalar with SMT supporting two to four threads. Indeed,
Esmaeilzadeh et al. (2011) show that the energy improvements from SMT are even
larger on the Intel i5 (a processor similar to the i7, but with smaller caches and a
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lower clock rate) and the Intel Atom (an 80x86 processor originally designed for
the netbook and PMD market, now focused on low-end PCs, and described in
Section 3.13).

3.12 Putting It All Together: The Intel Core i7 6700
and ARM Cortex-A53

In this section, we explore the design of two multiple issue processors: the ARM
Cortex-A53 core, which is used as the basis for several tablets and cell phones, and
the Intel Core i7 6700, a high-end, dynamically scheduled, speculative processor
intended for high-end desktops and server applications. We begin with the simpler
processor.

blackscholes Prices a portfolio of options with the Black-Scholes PDE

bodytrack Tracks a markerless human body

canneal Minimizes routing cost of a chip with cache-aware simulated annealing

facesim Simulates motions of a human face for visualization purposes

ferret Search engine that finds a set of images similar to a query image

fluidanimate Simulates physics of fluid motion for animation with SPH algorithm

raytrace Uses physical simulation for visualization

streamcluster Computes an approximation for the optimal clustering of data points

swaptions Prices a portfolio of swap options with the Heath–Jarrow–Morton framework

vips Applies a series of transformations to an image

x264 MPG-4 AVC/H.264 video encoder

eclipse Integrated development environment

lusearch Text search tool

sunflow Photo-realistic rendering system

tomcat Tomcat servlet container

tradebeans Tradebeans Daytrader benchmark

xalan An XSLT processor for transforming XML documents

pjbb2005 Version of SPEC JBB2005 (but fixed in problem size rather than time)

Figure 3.32 The parallel benchmarks used here to examine multithreading, as well as in Chapter 5 to
examinemultiprocessingwith an i7. The top half of the chart consists of PARSEC benchmarks collected by
Bienia et al. (2008). The PARSEC benchmarks aremeant to be indicative of compute-intensive, parallel appli-
cations that would be appropriate for multicore processors. The lower half consists of multithreaded Java
benchmarks from the DaCapo collection (see Blackburn et al., 2006) and pjbb2005 from SPEC. All of these
benchmarks contain some parallelism; other Java benchmarks in the DaCapo and SPEC Javaworkloads use
multiple threads but have little or no true parallelism and, hence, are not used here. See Esmaeilzadeh et al.
(2011) for additional information on the characteristics of these benchmarks, relative to the measurements
here and in Chapter 5.
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The ARM Cortex-A53

The A53 is a dual-issue, statically scheduled superscalar with dynamic issue detec-
tion, which allows the processor to issue two instructions per clock. Figure 3.34
shows the basic pipeline structure of the pipeline. For nonbranch, integer instruc-
tions, there are eight stages: F1, F2, D1, D2, D3/ISS, EX1, EX2, and WB, as
described in the caption. The pipeline is in order, so an instruction can initiate exe-
cution only when its results are available and when proceeding instructions have
initiated. Thus, if the next two instructions are dependent, both can proceed to the
appropriate execution pipeline, but they will be serialized when they get to the
beginning of that pipeline. When the scoreboard-based issue logic indicates that
the result from the first instruction is available, the second instruction can issue.
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Figure 3.33 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the Java
benchmarks and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which implies a work-
load where the total time spent executing each benchmark in the single-threaded base set was the same). The
energy efficiency averages 0.99 and 1.07, respectively (using the harmonic mean). Recall that anything above 1.0 for
energy efficiency indicates that the feature reduces execution time by more than it increases average power. Two of
the Java benchmarks experience little speedup and have significant negative energy efficiency because of this issue.
Turbo Boost is off in all cases. These data were collected and analyzed by Esmaeilzadeh et al. (2011) using the Oracle
(Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc v4.4.1 native compiler.
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The four cycles of instruction fetch include an address generation unit that pro-
duces the next PC either by incrementing the last PC or from one of four predictors:

1. A single-entry branch target cache containing two instruction cache fetches (the
next two instructions following the branch, assuming the prediction is correct).
This target cache is checked during the first fetch cycle, if it hits; then the next
two instructions are supplied from the target cache. In case of a hit and a correct
prediction, the branch is executed with no delay cycles.

2. A 3072-entry hybrid predictor, used for all instructions that do not hit in the
branch target cache, and operating during F3. Branches handled by this predic-
tor incur a 2-cycle delay.

3. A 256-entry indirect branch predictor that operates during F4; branches pre-
dicted by this predictor incur a three-cycle delay when predicted correctly.

4. An 8-deep return stack, operating during F4 and incurring a three-cycle delay.

Floating Point execute

Integer execute and load-store
Instruction fetch & predict

Instruction Decode

AGU
+

TLB
Instruction

cache

F1 F3F2

Writeback

D1

Iss Ex1 Ex2 Wr

ALU pipe 0

ALU pipe 1

MAC pipe

Divide pipe

Load pipe

MUL/DIV/SQRT pipe

ALU pipe

Hybrid
predictor

Indirect
predictor

Early
decode

13-Entry
instruction

queue

F4

D2

Main
decode

Late
decode

D3

Issue

Integer
register

file

Store pipe

NEON
register

file

F1 F2 F3 F4 F5

Figure 3.34 The basic structure of the A53 integer pipeline is 8 stages: F1 and F2 fetch the instruction, D1 and D2
do the basic decoding, and D3 decodes some more complex instructions and is overlapped with the first stage of
the execution pipeline (ISS). After ISS, the Ex1, EX2, and WB stages complete the integer pipeline. Branches use four
different predictors, depending on the type. The floating-point execution pipeline is 5 cycles deep, in addition to the 5
cycles needed for fetch and decode, yielding 10 stages in total.
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Branch decisions are made in ALU pipe 0, resulting in a branch misprediction
penalty of 8 cycles. Figure 3.35 shows the misprediction rate for SPECint2006.
The amount of work that is wasted depends on both the misprediction rate and
the issue rate sustained during the time that the mispredicted branch was followed.
As Figure 3.36 shows, wasted work generally follows the misprediction rate,
though it may be larger or occasionally shorter.

Performance of the A53 Pipeline

The A53 has an ideal CPI of 0.5 because of its dual-issue structure. Pipeline stalls
can arise from three sources:

1. Functional hazards, which occur because two adjacent instructions selected for
issue simultaneously use the same functional pipeline. Because the A53 is stat-
ically scheduled, the compiler should try to avoid such conflicts. When such
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Figure 3.35 Misprediction rate of the A53 branch predictor for SPECint2006.
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instructions appear sequentially, they will be serialized at the beginning of the
execution pipeline, when only the first instruction will begin execution.

2. Data hazards, which are detected early in the pipeline and may stall either both
instructions (if the first cannot issue, the second is always stalled) or the second
of a pair. Again, the compiler should try to prevent such stalls when possible.

3. Control hazards, which arise only when branches are mispredicted.

Both TLB misses and cache misses also cause stalls. On the instruction side, a
TLB or cache miss causes a delay in filling the instruction queue, likely leading to a
downstream stall of the pipeline. Of course, this depends on whether it is an L1
miss, which might be largely hidden if the instruction queue was full at the time
of the miss, or an L2 miss, which takes considerably longer. On the data side, a
cache or TLB miss will cause the pipeline to stall because the load or store that
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Figure 3.36 Wasted work due to branch misprediction on the A53. Because the A53 is an in-order machine, the
amount of wasted work depends on a variety of factors, including data dependences and cachemisses, both of which
will cause a stall.
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caused the miss cannot proceed down the pipeline. All other subsequent instruc-
tions will thus be stalled. Figure 3.37 shows the CPI and the estimated contribu-
tions from various sources.

The A53 uses a shallow pipeline and a reasonably aggressive branch predictor,
leading to modest pipeline losses, while allowing the processor to achieve high
clock rates at modest power consumption. In comparison with the i7, the A53 con-
sumes approximately 1/200 the power for a quad core processor!

The Intel Core i7

The i7 uses an aggressive out-of-order speculative microarchitecture with deep
pipelines with the goal of achieving high instruction throughput by combining mul-
tiple issue and high clock rates. The first i7 processor was introduced in 2008; the i7
6700 is the sixth generation. The basic structure of the i7 is similar, but successive
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Figure 3.37 The estimated composition of the CPI on the ARM A53 shows that pipeline stalls are significant but
are outweighed by cachemisses in the poorest performing programs. This estimate is obtained by using the L1 and
L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction. These are subtracted from the
CPI measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all three hazards.
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generations have enhanced performance by changing cache strategies (e.g., the
aggressiveness of prefetching), increasing memory bandwidth, expanding the num-
ber of instructions in flight, enhancing branch prediction, and improving graphics
support. The early i7 microarchitectures used reservations stations and reorder
buffers for their out-of-order, speculative pipeline. Later microarchitectures, includ-
ing the i7 6700, use register renaming, with the reservations stations acting as func-
tional unit queues and the reorder buffer simply tracking control information.

Figure 3.38 shows the overall structure of the i7 pipeline. We will examine the
pipeline by starting with instruction fetch and continuing on to instruction commit,
following steps labeled in the figure.

1. Instruction fetch—The processor uses a sophisticated multilevel branch predic-
tor to achieve a balance between speed and prediction accuracy. There is also a
return address stack to speed up function return. Mispredictions cause a penalty
of about 17 cycles. Using the predicted address, the instruction fetch unit fetches
16 bytes from the instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer—In this step, a pro-
cess called macro-op fusion is executed. Macro-op fusion takes instruction
combinations such as compare followed by a branch and fuses them into a sin-
gle operation, which can issue and dispatch as one instruction. Only certain spe-
cial cases can be fused, since we must know that the only use of the first result is
by the second instruction (i.e., compare and branch). In a study of the Intel Core
architecture (which has many fewer buffers), Bird et al. (2007) discovered that
macrofusion had a significant impact on the performance of integer programs
resulting in an 8%–10% average increase in performance with a few programs
showing negative results. There was little impact on FP programs; in fact, about
half of the SPECFP benchmarks showed negative results frommacro-op fusion.
The predecode stage also breaks the 16 bytes into individual x86 instructions.
This predecode is nontrivial because the length of an x86 instruction can be
from 1 to 17 bytes and the predecoder must look through a number of bytes
before it knows the instruction length. Individual x86 instructions (including
some fused instructions) are placed into the instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-ops.
Micro-ops are simple RISC-V-like instructions that can be executed directly
by the pipeline; this approach of translating the x86 instruction set into simple
operations that are more easily pipelined was introduced in the Pentium Pro in
1997 and has been used since. Three of the decoders handle x86 instructions
that translate directly into one micro-op. For x86 instructions that have more
complex semantics, there is a microcode engine that is used to produce the
micro-op sequence; it can produce up to four micro-ops every cycle and con-
tinues until the necessary micro-op sequence has been generated. The micro-
ops are placed according to the order of the x86 instructions in the 64-entry
micro-op buffer.
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4. The micro-op buffer preforms loop stream detection and microfusion—If
there is a small sequence of instructions (less than 64 instructions) that com-
prises a loop, the loop stream detector will find the loop and directly issue
the micro-ops from the buffer, eliminating the need for the instruction fetch
and instruction decode stages to be activated. Microfusion combines

256 KB unified l2
cache (4-way)
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Figure 3.38 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline
depth is 14 stages, with branch mispredictions typically costing 17 cycles, with the extra few cycles likely due to the
time to reset the branch predictor. The six independent functional units can each begin execution of a readymicro-op
in the same cycle. Up to four micro-ops can be processed in the register renaming table.
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instruction pairs such as ALU operation and a dependent store and issues
them to a single reservation station (where they can still issue indepen-
dently), thus increasing the usage of the buffer. Micro-op fusion produces
smaller gains for integer programs and larger ones for FP, but the results vary
widely. The different results for integer and FP programs with macro and
micro fusion, probably arise from the patterns recognized and fused and
the frequency of occurrence in integer versus FP programs. In the i7, which
has a much larger number of reorder buffer entries, the benefits from both
techniques are likely to be smaller.

5. Perform the basic instruction issue—Looking up the register location in the
register tables, renaming the registers, allocating a reorder buffer entry, and
fetching any results from the registers or reorder buffer before sending
the micro-ops to the reservation stations. Up to four micro-ops can be pro-
cessed every clock cycle; they are assigned the next available reorder buffer
entries.

6. The i7 uses a centralized reservation station shared by six functional units. Up to
six micro-ops may be dispatched to the functional units every clock cycle.

7. Micro-ops are executed by the individual function units, and then results are
sent back to any waiting reservation station as well as to the register retirement
unit, where they will update the register state once it is known that the instruc-
tion is no longer speculative. The entry corresponding to the instruction in the
reorder buffer is marked as complete.

8. When one or more instructions at the head of the reorder buffer have been
marked as complete, the pending writes in the register retirement unit are exe-
cuted, and the instructions are removed from the reorder buffer.

In addition to the changes in the branch predictor, the major changes between the
first generation i7 (the 920, Nehalem microarchitecture) and the sixth generation
(i7 6700, Skylake microarchitecture) are in the sizes of the various buffers, renam-
ing registers, and resources so as to allow many more outstanding instructions.
Figure 3.39 summarizes these differences.

Performance of the i7

In earlier sections, we examined the performance of the i7’s branch predictor
and also the performance of SMT. In this section, we look at single-thread pipeline
performance. Because of the presence of aggressive speculation as well as non-
blocking caches, it is difficult to accurately attribute the gap between idealized per-
formance and actual performance. The extensive queues and buffers on the 6700
reduce the probability of stalls because of a lack of reservation stations, renaming
registers, or reorder buffers significantly. Indeed, even on the earlier i7 920 with
notably fewer buffers, only about 3% of the loads were delayed because no reser-
vation station was available.
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Thus most losses come either from branch mispredicts or cache misses. The
cost of a branch mispredict is 17 cycles, whereas the cost of an L1 miss is about
10 cycles. An L2 miss is slightly more than three times as costly as an L1 miss, and
an L3 miss costs about 13 times what an L1 miss costs (130–135 cycles). Although
the processor will attempt to find alternative instructions to execute during L2 and
L3 misses, it is likely that some of the buffers will fill before a miss completes,
causing the processor to stop issuing instructions.

Figure 3.40 shows the overall CPI for the 19 SPECCPUint2006 benchmarks
compared to the CPI for the earlier i7 920. The average CPI on the i7 6700 is
0.71, whereas it is almost 1.5 times better on the i7 920, at 1.06. This difference
derives from improved branch prediction and a reduction in the demand miss rates
(see Figure 2.26 on page 135).

To understand how the 6700 achieves the significant improvement in CPI, let’s
look at the benchmarks that achieve the largest improvement. Figure 3.41 shows
the five benchmarks that have a CPI ratio on the 920 that is at least 1.5 times higher
than that of the 6700. Interestingly, three other benchmarks show a significant
improvement in branch prediction accuracy (1.5 or more); however, those three
benchmarks (HMMER, LIBQUANTUM, and SJENG) show equal or slightly
higher L1 demand miss rates on the i7 6700. These misses likely arise because
the aggressive prefetching is replacing cache blocks that are actually used. This
type of behavior reminds designers of the challenges of maximizing performance
in complex speculative multiple issue processors: rarely can significant perfor-
mance be achieved by tuning only one part of the microarchitecture!

Resource i7 920 (Nehalem) i7 6700 (Skylake)

Micro-op queue (per thread) 28 64

Reservation stations 36 97

Integer registers NA 180

FP registers NA 168

Outstanding load buffer 48 72

Outstanding store buffer 32 56

Reorder buffer 128 256

Figure 3.39 The buffers and queues in the first generation i7 and the latest
generation i7. Nehalem used a reservation station plus reorder buffer organization.
In later microarchitectures, the reservation stations serve as scheduling resources,
and register renaming is used rather than the reorder buffer; the reorder buffer in
the Skylake microarchitecture serves only to buffer control information. The choices
of the size of various buffers and renaming registers, while appearing sometimes arbi-
trary, are likely based on extensive simulation.
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Figure 3.40 The CPI for the SPECCPUint2006 benchmarks on the i7 6700 and the i7 920. The data in this section
were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University.

Benchmark CPI ratio (920/6700)
Branch mispredict
ratio (920/6700)

L1 demand miss
ratio (920/6700)

ASTAR 1.51 1.53 2.14

GCC 1.82 2.54 1.82

MCF 1.85 1.27 1.71

OMNETPP 1.55 1.48 1.96

PERLBENCH 1.70 2.11 1.78

Figure 3.41 An analysis of the five integer benchmarks with the largest performance gap between the i7 6700
and 920. These five benchmarks show an improvement in the branch prediction rate and a reduction in the L1
demand miss rate.
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3.13 Fallacies and Pitfalls

Our few fallacies focus on the difficulty of predicting performance and energy effi-
ciency and extrapolating from single measures such as clock rate or CPI. We also
show that different architectural approaches can have radically different behaviors
for different benchmarks.

Fallacy It is easy to predict the performance and energy efficiency of two different
versions of the same instruction set architecture, if we hold the technology
constant.

Intel offers a processor for the low-end Netbook and PMD space called the Atom
230, which implements both the 64-bit and 32-bit versions of the x86 architecture.
The Atom is a statically scheduled, 2-issue superscalar, quite similar in its micro-
architecture to the ARM A8, a single-core predecessor of the A53. Interestingly,
both the Atom 230 and the Core i7 920 have been fabricated in the same 45 nm
Intel technology. Figure 3.42 summarizes the Intel Core i7 920, the ARM Cortex-
A8, and the Intel Atom 230. These similarities provide a rare opportunity to
directly compare two radically different microarchitectures for the same instruction
set while holding constant the underlying fabrication technology. Before we do the
comparison, we need to say a little more about the Atom 230.

The Atom processors implement the x86 architecture using the standard tech-
nique of translating x86 instructions into RISC-like instructions (as every x86
implementation since the mid-1990s has done). Atom uses a slightly more pow-
erful microoperation, which allows an arithmetic operation to be paired with a load
or a store; this capability was added to later i7s by the use of macrofusion. This
means that on average for a typical instruction mix, only 4% of the instructions
require more than one microoperation. The microoperations are then executed
in a 16-deep pipeline capable of issuing two instructions per clock, in order, as
in the ARM A8. There are dual-integer ALUs, separate pipelines for FP add
and other FP operations, and two memory operation pipelines, supporting more
general dual execution than the ARM A8 but still limited by the in-order issue
capability. The Atom 230 has a 32 KiB instruction cache and a 24 KiB data cache,
both backed by a shared 512 KiB L2 on the same die. (The Atom 230 also supports
multithreading with two threads, but we will consider only single-threaded
comparisons.)

We might expect that these two processors, implemented in the same technol-
ogy and with the same instruction set, would exhibit predictable behavior, in terms
of relative performance and energy consumption, meaning that power and perfor-
mance would scale close to linearly. We examine this hypothesis using three sets of
benchmarks. The first set is a group of Java single-threaded benchmarks that come
from the DaCapo benchmarks and the SPEC JVM98 benchmarks (see
Esmaeilzadeh et al. (2011) for a discussion of the benchmarks and measurements).
The second and third sets of benchmarks are from SPEC CPU2006 and consist of
the integer and FP benchmarks, respectively.
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As we can see in Figure 3.43, the i7 significantly outperforms the Atom. All
benchmarks are at least four times faster on the i7, two SPECFP benchmarks are
over 10 times faster, and one SPECINT benchmark runs over eight times faster!
Because the ratio of clock rates of these two processors is 1.6, most of the advan-
tage comes from amuch lower CPI for the i7 920: a factor of 2.8 for the Java bench-
marks, a factor of 3.1 for the SPECINT benchmarks, and a factor of 4.3 for the
SPECFP benchmarks.

But the average power consumption for the i7 920 is just under 43 W, while
the average power consumption of the Atom is 4.2 W, or about one-tenth of the
power! Combining the performance and power leads to an energy efficiency
advantage for the Atom that is typically more than 1.5 times better and often
2 times better! This comparison of two processors using the same underlying
technology makes it clear that the performance advantages of an aggressive

Area Specific characteristic

Intel i7 920 ARM A8 Intel Atom 230

Four cores, each
with FP One core, no FP One core, with FP

Physical chip
properties

Clock rate 2.66 GHz 1 GHz 1.66 GHz

Thermal design power 130 W 2 W 4 W

Package 1366-pin BGA 522-pin BGA 437-pin BGA

Memory system

TLB

Two-level Two-level
All four-way set
associative

All four-way set
associativeOne-level fully

associative128 I/64 D 16 I/16 D
512 L2 32 I/32 D 64 L2

Caches

Three-level
32 KiB/32 KiB Two-level Two-level
256 KiB 16/16 or 32/32 KiB 32/24 KiB
2–8 MiB 128 KiB–1 MiB 512 KiB

Peak memory BW 17 GB/s 12 GB/sec 8 GB/s

Pipeline structure

Peak issue rate
4 ops/clock with
fusion 2 ops/clock 2 ops/clock

Pipe line scheduling
Speculating out of
order

In-order dynamic
issue

In-order dynamic
issue

Branch prediction Two-level

Two-level
512-entry BTB
4 K global history
8-entry return stack Two-level

Figure 3.42 An overview of the four-core Intel i7 920, an example of a typical ARM A8 processor chip (with a
256 MiB L2, 32 KiB L1s, and no floating point), and the Intel ARM 230, clearly showing the difference in design
philosophy between a processor intended for the PMD (in the case of ARM) or netbook space (in the case of
Atom) and a processor for use in servers and high-end desktops. Remember, the i7 includes four cores, each of
which is higher in performance than the one-core A8 or Atom. All these processors are implemented in a comparable
45 nm technology.
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Figure 3.43 The relative performance and energy efficiency for a set of single-threaded benchmarks shows the i7 920 is 4 to over 10 times
faster than the Atom 230 but that it is about 2 times less power-efficient on average! Performance is shown in the columns as i7 relative to
Atom, which is execution time (i7)/execution time (Atom). Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the
Atom in energy efficiency, although it is essentially as good on four benchmarks, three of which are floating point. The data shown here were
collected by Esmaeilzadeh et al. (2011). The SPEC benchmarks were compiled with optimization using the standard Intel compiler, while the Java
benchmarks use the Sun (Oracle) Hotspot Java VM. Only one core is active on the i7, and the rest are in deep power saving mode. Turbo Boost is
used on the i7, which increases its performance advantage but slightly decreases its relative energy efficiency.
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superscalar with dynamic scheduling and speculation come with a significant dis-
advantage in energy efficiency.

Fallacy Processors with lower CPIs will always be faster.

Fallacy Processors with faster clock rates will always be faster.

The key is that it is the product of CPI and clock rate that determines performance.
A high clock rate obtained by deeply pipelining the processor must maintain a low
CPI to get the full benefit of the faster clock. Similarly, a simple processor with a
high clock rate but a low CPI may be slower.

As we saw in the previous fallacy, performance and energy efficiency can
diverge significantly among processors designed for different environments even
when they have the same ISA. In fact, large differences in performance can show
up even within a family of processors from the same company all designed for
high-end applications. Figure 3.44 shows the integer and FP performance of
two different implementations of the x86 architecture from Intel, as well as a ver-
sion of the Itanium architecture, also by Intel.

The Pentium 4 was the most aggressively pipelined processor ever built by
Intel. It used a pipeline with over 20 stages, had seven functional units, and cached
micro-ops rather than x86 instructions. Its relatively inferior performance, given
the aggressive implementation, was a clear indication that the attempt to exploit
more ILP (there could easily be 50 instructions in flight) had failed. The Pentium’s
power consumption was similar to the i7, although its transistor count was lower,
as its primary caches were half as large as the i7, and it included only a 2 MiB sec-
ondary cache with no tertiary cache.

The Intel Itanium is a VLIW-style architecture, which despite the potential
decrease in complexity compared to dynamically scheduled superscalars, never
attained competitive clock rates with the mainline x86 processors (although it
appears to achieve an overall CPI similar to that of the i7). In examining these
results, the reader should be aware that they use different implementation technol-
ogies, giving the i7 an advantage in terms of transistor speed and hence clock rate
for an equivalently pipelined processor. Nonetheless, the wide variation in

Processor
Implementation

technology
Clock
rate Power

SPECCInt2006
base

SPECCFP2006
baseline

Intel Pentium 4 670 90 nm 3.8 GHz 115 W 11.5 12.2

Intel Itanium 2 90 nm 1.66 GHz 104 W
approx. 70 W one
core

14.5 17.3

Intel i7 920 45 nm 3.3 GHz 130 W total
approx. 80 W one
core

35.5 38.4

Figure 3.44 Three different Intel processors vary widely. Although the Itanium processor has two cores and the i7
four, only one core is used in the benchmarks; the Power column is the thermal design power with estimates for only
one core active in the multicore cases.
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performance—more than three times between the Pentium and i7—is astonishing.
The next pitfall explains where a significant amount of this advantage comes from.

Pitfall Sometimes bigger and dumber is better.

Much of the attention in the early 2000s went to building aggressive processors to
exploit ILP, including the Pentium 4 architecture, which used the deepest pipeline
ever seen in a microprocessor, and the Intel Itanium, which had the highest peak
issue rate per clock ever seen. What quickly became clear was that the main lim-
itation in exploiting ILP often turned out to be the memory system. Although spec-
ulative out-of-order pipelines were fairly good at hiding a significant fraction of the
10- to 15-cycle miss penalties for a first-level miss, they could do very little to hide
the penalties for a second-level miss that, when going to main memory, were likely
to be 50–100 clock cycles.

The result was that these designs never came close to achieving the peak
instruction throughput despite the large transistor counts and extremely sophisti-
cated and clever techniques. Section 3.15 discusses this dilemma and the turning
away from more aggressive ILP schemes to multicore, but there was another
change that exemplified this pitfall. Instead of trying to hide even more memory
latency with ILP, designers simply used the transistors to build much larger caches.
Both the Itanium 2 and the i7 use three-level caches compared to the two-level
cache of the Pentium 4, and the third-level caches are 9 and 8 MiB compared to
the 2 MiB second-level cache of the Pentium 4. Needless to say, building larger
caches is a lot easier than designing the 20+-stage Pentium 4 pipeline, and based
on the data in Figure 3.44, doing so seems to be more effective.

Pitfall And sometimes smarter is better than bigger and dumber.

One of the more surprising results of the past decade has been in branch prediction.
The emergence of hybrid tagged predictors has shown that a more sophisticated pre-
dictor can outperform the simple gshare predictor with the same number of bits (see
Figure 3.8 on page 171). One reason this result is so surprising is that the tagged
predictor actually stores fewer predictions, because it also consumes bits to store
tags, whereas gshare has only a large array of predictions. Nonetheless, it appears
that the advantage gained by not misusing a prediction for one branch on another
branch more than justifies the allocation of bits to tags versus predictions.

Pitfall Believing that there are large amounts of ILP available, if only we had the right
techniques.

The attempts to exploit large amounts of ILP failed for several reasons, but one
of the most important ones, which some designers did not initially accept, is
that it is hard to find large amounts of ILP in conventionally structured pro-
grams, even with speculation. A famous study by David Wall in 1993 (see
Wall, 1993) analyzed the amount of ILP available under a variety of idealistic
conditions. We summarize his results for a processor configuration with
roughly five to ten times the capability of the most advanced processors in
2017. Wall’s study extensively documented a variety of different approaches,
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and the reader interested in the challenge of exploiting ILP should read the
complete study.

The aggressive processor we consider has the following characteristics:

1. Up to 64 instruction issues and dispatches per clock with no issue restric-
tions, or 8 times the total issue width of the widest processor in 2016 (the
IBM Power8) and with up to 32 times as many loads and stores allowed
per clock! As we have discussed, there are serious complexity and power
problems with large issue rates.

2. A tournament predictor with 1K entries and a 16-entry function return pre-
dictor. This predictor is comparable to the best predictors in 2016; the pre-
dictor is not a primary bottleneck. Mispredictions are handled in one cycle,
but they limit the ability to speculate.

3. Perfect disambiguation of memory references done dynamically—this is
ambitious but perhaps attainable for small window sizes.

4. Register renaming with 64 additional integer and 64 additional FP registers,
which is somewhat less than the most aggressive processor in 2011. Because
the study assumes a latency of only one cycle for all instructions (versus 15
or more on processors like the i7 or Power8), the effective number of rename
registers is about five times larger than either of those processors.

Figure 3.45 shows the result for this configuration as we vary the window size.
This configuration is more complex and expensive than existing implementations,
especially in terms of the number of instruction issues. Nonetheless, it gives a useful
upper limit onwhat future implementationsmight yield. The data in these figures are
likely to be very optimistic for another reason. There are no issue restrictions among
the 64 instructions: for example, they may all be memory references. No one would
even contemplate this capability in a processor for the near future. In addition,
remember that in interpreting these results, cachemisses and non-unit latencieswere
not taken into account, and both these effects have significant impacts.

The most startling observation in Figure 3.45 is that with the preceding realistic
processor constraints, the effect of the window size for the integer programs is not
as severe as for FP programs. This result points to the key difference between these
two types of programs. The availability of loop-level parallelism in two of the FP
programs means that the amount of ILP that can be exploited is higher, but for
integer programs other factors—such as branch prediction, register renaming,
and less parallelism, to start with—are all important limitations. This observation
is critical because most of the market growth in the past decade—transaction pro-
cessing, web servers, and the like—depended on integer performance, rather than
floating point.

Wall’s study was not believed by some, but 10 years later, the reality had
sunk in, and the combination of modest performance increases with significant
hardware resources and major energy issues coming from incorrect speculation
forced a change in direction. We will return to this discussion in our concluding
remarks.
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3.14 Concluding Remarks: What’s Ahead?

As 2000 began the focus on exploiting instruction-level parallelism was at its peak.
In the first five years of the new century, it became clear that the ILP approach had
likely peaked and that new approaches would be needed. By 2005 Intel and all the
other major processor manufacturers had revamped their approach to focus on mul-
ticore. Higher performance would be achieved through thread-level parallelism
rather than instruction-level parallelism, and the responsibility for using the
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Figure 3.45 The amount of parallelism available versus the window size for a variety of integer and floating-
point programs with up to 64 arbitrary instruction issues per clock. Although there are fewer renaming registers
than the window size, the fact that all operations have 1-cycle latency and that the number of renaming registers
equals the issue width allows the processor to exploit parallelism within the entire window.
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processor efficiently would largely shift from the hardware to the software and the
programmer. This change was the most significant change in processor architec-
ture since the early days of pipelining and instruction-level parallelism some 25+
years earlier.

During the same period, designers began to explore the use of more data-level
parallelism as another approach to obtaining performance. SIMD extensions
enabled desktop and server microprocessors to achieve moderate performance
increases for graphics and similar functions. More importantly, graphics proces-
sing units (GPUs) pursued aggressive use of SIMD, achieving significant perfor-
mance advantages for applications with extensive data-level parallelism. For
scientific applications, such approaches represent a viable alternative to the more
general, but less efficient, thread-level parallelism exploited in multicores. The
next chapter explores these developments in the use of data-level parallelism.

Many researchers predicted a major retrenchment in the use of ILP, predicting
that two issue superscalar processors and larger numbers of cores would be the
future. The advantages, however, of slightly higher issue rates and the ability of
speculative dynamic scheduling to deal with unpredictable events, such as level-
one cache misses, led to moderate ILP (typically about 4 issues/clock) being the
primary building block in multicore designs. The addition of SMT and its effective-
ness (both for performance and energy efficiency) further cemented the position of
the moderate issue, out-of-order, speculative approaches. Indeed, even in the
embedded market, the newest processors (e.g., the ARM Cortex-A9 and Cortex-
A73) have introduced dynamic scheduling, speculation, and wider issues rates.

It is highly unlikely that future processors will try to increase the width of issue
significantly. It is simply too inefficient from the viewpoint of silicon utilization
and power efficiency. Consider the data in Figure 3.46 that show the five proces-
sors in the IBM Power series. Over more than a decade, there has been a modest
improvement in the ILP support in the Power processors, but the dominant portion

Power4 Power5 Power6 Power7 Power8

Introduced 2001 2004 2007 2010 2014

Initial clock rate (GHz) 1.3 1.9 4.7 3.6 3.3 GHz

Transistor count (M) 174 276 790 1200 4200

Issues per clock 5 5 7 6 8

Functional units per core 8 8 9 12 16

SMT threads per core 0 2 2 4 8

Cores/chip 2 2 2 8 12

SMT threads per core 0 2 2 4 8

Total on-chip cache (MiB) 1.5 2 4.1 32.3 103.0

Figure 3.46 Characteristics of five generations of IBM Power processors. All except the Power6, which is static and
in-order, were dynamically scheduled; all the processors support two load/store pipelines. The Power6 has the same
functional units as the Power5 except for a decimal unit. Power7 and Power8 use embedded DRAM for the L3 cache.
Power9 has been described briefly; it further expands the caches and supports off-chip HBM.
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of the increase in transistor count (a factor of more than 10 from the Power4 to the
Power8) went to increasing the caches and the number of cores per die. Even the
expansion in SMT support seems to be more of a focus than is an increase in the ILP
throughput: The ILP structure from Power4 to Power8 went from 5 issues to 8,
from 8 functional units to 16 (but not increasing from the original 2 load/store
units), whereas the SMT support went from nonexistent to 8 threads/processor.
A similar trend can be observed across the six generations of i7 processors, where
almost all the additional silicon has gone to supporting more cores. The next two
chapters focus on approaches that exploit data-level and thread-level parallelism.

3.15 Historical Perspective and References

Section M.5 (available online) features a discussion on the development of
pipelining and instruction-level parallelism. We provide numerous references
for further reading and exploration of these topics. Section M.5 covers both
Chapter 3 and Appendix H.

Case Studies and Exercises by Jason D. Bakos
and Robert P. Colwell

Case Study: Exploring the Impact of Microarchitectural
Techniques

Concepts illustrated by this case study

■ Basic Instruction Scheduling, Reordering, Dispatch

■ Multiple Issue and Hazards

■ Register Renaming

■ Out-of-Order and Speculative Execution

■ Where to Spend Out-of-Order Resources

You are tasked with designing a new processor microarchitecture and you are try-
ing to determine how best to allocate your hardware resources. Which of the hard-
ware and software techniques you learned in Chapter 3 should you apply? You
have a list of latencies for the functional units and for memory, as well as some
representative code. Your boss has been somewhat vague about the performance
requirements of your new design, but you know from experience that, all else being
equal, faster is usually better. Start with the basics. Figure 3.47 provides a sequence
of instructions and list of latencies.

3.1 [10]<3.1, 3.2>What is the baseline performance (in cycles, per loop iteration) of
the code sequence in Figure 3.47 if no new instruction’s execution could be
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initiated until the previous instruction’s execution had completed? Ignore front-end
fetch and decode. Assume for now that execution does not stall for lack of the next
instruction, but only one instruction/cycle can be issued. Assume the branch is
taken, and that there is a one-cycle branch delay slot.

3.2 [10]<3.1, 3.2> Think about what latency numbers really mean—they indicate the
number of cycles a given function requires to produce its output. If the overall pipe-
line stalls for the latency cycles of each functional unit, then you are at least guar-
anteed that any pair of back-to-back instructions (a “producer” followed by a
“consumer”) will execute correctly. But not all instruction pairs have a pro-
ducer/consumer relationship. Sometimes two adjacent instructions have nothing
to do with each other. How many cycles would the loop body in the code sequence
in Figure 3.47 require if the pipeline detected true data dependences and only
stalled on those, rather than blindly stalling everything just because one functional
unit is busy? Show the code with <stall> inserted where necessary to accom-
modate stated latencies. (Hint: an instruction with latency +2 requires
two <stall> cycles to be inserted into the code sequence.) Think of it this

Latencies beyond single cycle
Memory LD +3

Memory SD +1

Integer ADD, SUB +0

Branches +1

fadd.d +2

fmul.d +4

fdiv.d +10

Loop: fld f2,0(Rx)

I0: fmul.d f2,f0,f2

I1: fdiv.d f8,f2,f0

I2: fld f4,0(Ry)

I3: fadd.d f4,f0,f4

I4: fadd.d f10,f8,f2

I5: fsd f4,0(Ry)

I6: addi Rx,Rx,8

I7: addi Ry,Ry,8

I8: sub x20,x4,Rx

I9: bnz x20,Loop

Figure 3.47 Code and latencies for Exercises 3.1 through 3.6.
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way: a one-cycle instruction has latency 1+0, meaning zero extra wait states. So,
latency 1+1 implies one stall cycle; latency 1+N has N extra stall cycles.

3.3 [15] <3.1, 3.2> Consider a multiple-issue design. Suppose you have two execu-
tion pipelines, each capable of beginning execution of one instruction per cycle,
and enough fetch/decode bandwidth in the front end so that it will not stall your
execution. Assume results can be immediately forwarded from one execution unit
to another, or to itself. Further assume that the only reason an execution pipeline
would stall is to observe a true data dependency. Now how many cycles does the
loop require?

3.4 [10] <3.1, 3.2> In the multiple-issue design of Exercise 3.3, you may have rec-
ognized some subtle issues. Even though the two pipelines have the exact same
instruction repertoire, they are neither identical nor interchangeable, because there
is an implicit ordering between them that must reflect the ordering of the instruc-
tions in the original program. If instruction N+1 begins execution in Execution
Pipe 1 at the same time that instruction N begins in Pipe 0, and N+1 happens
to require a shorter execution latency than N, then N+1 will complete before N
(even though program ordering would have implied otherwise). Recite at least
two reasons why that could be hazardous and will require special considerations
in the microarchitecture. Give an example of two instructions from the code in
Figure 3.47 that demonstrate this hazard.

3.5 [20] <3.1, 3.2> Reorder the instructions to improve performance of the code in
Figure 3.47. Assume the two-pipe machine in Exercise 3.3 and that the out-of-
order completion issues of Exercise 3.4 have been dealt with successfully. Just
worry about observing true data dependences and functional unit latencies for
now. How many cycles does your reordered code take?

3.6 [10/10/10] <3.1, 3.2> Every cycle that does not initiate a new operation in a
pipe is a lost opportunity, in the sense that your hardware is not living up to its
potential.

a. [10] <3.1, 3.2> In your reordered code from Exercise 3.5, what fraction of all
cycles, counting both pipes, were wasted (did not initiate a new op)?

b. [10] <3.1, 3.2> Loop unrolling is one standard compiler technique for finding
more parallelism in code, in order to minimize the lost opportunities for perfor-
mance. Hand-unroll two iterations of the loop in your reordered code from Exer-
cise 3.5.

c. [10] <3.1, 3.2>What speedup did you obtain? (For this exercise, just color the
N+1 iteration’s instructions green to distinguish them from the Nth iteration’s
instructions; if you were actually unrolling the loop, you would have to reassign
registers to prevent collisions between the iterations.)

3.7 [15] <3.4> Computers spend most of their time in loops, so multiple loop itera-
tions are great places to speculatively find more work to keep CPU resources busy.
Nothing is ever easy, though; the compiler emitted only one copy of that loop’s
code, so even though multiple iterations are handling distinct data, they will
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appear to use the same registers. To keep multiple iterations’ register usages from
colliding, we rename their registers. Figure 3.48 shows example code that we
would like our hardware to rename. A compiler could have simply unrolled the
loop and used different registers to avoid conflicts, but if we expect our hardware
to unroll the loop, it must also do the register renaming. How? Assume your hard-
ware has a pool of temporary registers (call them T registers, and assume that there
are 64 of them, T0 through T63) that it can substitute for those registers designated
by the compiler. This rename hardware is indexed by the src (source) register
designation, and the value in the table is the T register of the last destination that
targeted that register. (Think of these table values as producers, and the src reg-
isters are the consumers; it doesn’t much matter where the producer puts its result
as long as its consumers can find it.) Consider the code sequence in Figure 3.48.
Every time you see a destination register in the code, substitute the next available
T, beginning with T9. Then update all the src registers accordingly, so that true
data dependences are maintained. Show the resulting code. (Hint: see Figure 3.49.)

3.8 [20] <3.4> Exercise 3.7 explored simple register renaming: when the hardware
register renamer sees a source register, it substitutes the destination T register of
the last instruction to have targeted that source register. When the rename table sees
a destination register, it substitutes the next available T for it, but superscalar
designs need to handle multiple instructions per clock cycle at every stage in
the machine, including the register renaming. A SimpleScalar processor would
therefore look up both src register mappings for each instruction and allocate
a new dest mapping per clock cycle. Superscalar processors must be able to
do that as well, but they must also ensure that any dest-to-src relationships
between the two concurrent instructions are handled correctly. Consider the sample
code sequence in Figure 3.50. Assume that we would like to simultaneously

Loop: fld f2,0(Rx)

I0: fmul.d f5,f0,f2

I1: fdiv.d f8,f0,f2

I2: fld f4,0(Ry)

I3: fadd.d f6,f0,f4

I4: fadd.d f10,f8,f2

I5: sd f4,0(Ry)

Figure 3.48 Sample code for register renaming practice.

I0: fld T9,0(Rx)

I1: fmul.d T10,F0,T9

. . .

Figure 3.49 Expected output of register renaming.
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rename the first two instructions. Further assume that the next two available T reg-
isters to be used are known at the beginning of the clock cycle in which these two
instructions are being renamed. Conceptually, what we want is for the first instruc-
tion to do its rename table lookups and then update the table per its destination’s T
register. Then the second instruction would do exactly the same thing, and any
inter-instruction dependency would thereby be handled correctly. But there’s
not enough time to write that T register designation into the renaming table and
then look it up again for the second instruction, all in the same clock cycle. That
register substitution must instead be done live (in parallel with the register rename
table update). Figure 3.51 shows a circuit diagram, using multiplexers and com-
parators, that will accomplish the necessary on-the-fly register renaming. Your task
is to show the cycle-by-cycle state of the rename table for every instruction of the
code shown in Figure 3.50. Assume the table starts out with every entry equal to its
index (T0=0; T1=1, …) (Figure 3.51).

I0: fmul.d f5,f0,f2

I1: fadd.d f9,f5,f4

I2: fadd.d f5,f5,f2

I3: fdiv.d f2,f9,f0

Figure 3.50 Sample code for superscalar register renaming.

Rename table

0
1
2
3
4
5

Next available T register

dst = F4

src1 = F1

src2 = F2

dst = F1

src1 = F2

src2 = F3

dst = T9

src1 = T19

src2 = T38

dst = T10

src1 = T9

src2 = T19(Similar mux
for src2)

Y N

This 9 appears
in the rename
table in next
clock cycle

I1 dst = I2 src?

(As per instr 1)

I1

I2

19

29

8
9

62
63

910. . . 

. . . 

. . . 

21

38

Figure 3.51 Initial state of the register renaming table.
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3.9 [5] <3.4> If you ever get confused about what a register renamer has to do, go
back to the assembly code you’re executing, and ask yourself what has to happen
for the right result to be obtained. For example, consider a three-way superscalar
machine renaming these three instructions concurrently:

addi x1, x1, x1
addi x1, x1, x1
addi x1, x1, x1

If the value of x1 starts out as 5, what should its value be when this sequence has
executed?

3.10 [20] <3.4, 3.7> Very long instruction word (VLIW) designers have a few basic
choices to make regarding architectural rules for register use. Suppose a VLIW is
designed with self-draining execution pipelines: once an operation is initiated, its
results will appear in the destination register at most L cycles later (where L is the
latency of the operation). There are never enough registers, so there is a temptation
to wring maximum use out of the registers that exist. Consider Figure 3.52. If loads
have a 1+2 cycle latency, unroll this loop once, and show how a VLIW capable of
two loads and two adds per cycle can use the minimum number of registers, in the
absence of any pipeline interruptions or stalls. Give an example of an event that, in
the presence of self-draining pipelines, could disrupt this pipelining and yield
wrong results.

3.11 [10/10/10] <3.3> Assume a five-stage single-pipeline microarchitecture (fetch,
decode, execute, memory, write-back) and the code in Figure 3.53. All ops are
one cycle except LW and SW, which are 1+2 cycles, and branches, which are
1+1 cycles. There is no forwarding. Show the phases of each instruction per clock
cycle for one iteration of the loop.

a. [10] <3.3> How many clock cycles per loop iteration are lost to branch
overhead?

b. [10] <3.3> Assume a static branch predictor, capable of recognizing a back-
ward branch in the Decode stage. Now how many clock cycles are wasted
on branch overhead?

Loop: lw x1,0(x2); lw x3,8(x2)

<stall>

<stall>

addi x10,x1,1; addi x11,x3,1

sw x1,0(x2); sw x3,8(x2)

addi x2,x2,8

sub x4,x3,x2

bnz x4,Loop

Figure 3.52 Sample VLIW code with two adds, two loads, and two stalls.
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c. [10]<3.3>Assume a dynamic branch predictor. How many cycles are lost on a
correct prediction?

3.12 [15/20/20/10/20] <3.4, 3.6> Let’s consider what dynamic scheduling might
achieve here. Assume a microarchitecture as shown in Figure 3.54. Assume that
the arithmetic-logical units (ALUs) can do all arithmetic ops (fmul.d,
fdiv.d, fadd.d, addi, sub) and branches, and that the Reservation Station
(RS) can dispatch, at most, one operation to each functional unit per cycle (one op
to each ALU plus one memory op to the fld/ fsd).

a. [15]<3.4> Suppose all of the instructions from the sequence in Figure 3.47 are
present in the RS, with no renaming having been done. Highlight any instruc-
tions in the code where register renaming would improve performance. (Hint:
look for read-after-write and write-after-write hazards. Assume the same func-
tional unit latencies as in Figure 3.47.)

b. [20] <3.4> Suppose the register-renamed version of the code from part (a) is
resident in the RS in clock cycle N, with latencies as given in Figure 3.47. Show
how the RS should dispatch these instructions out of order, clock by clock, to

Loop: lw x1,0(x2)

addi x1,x1, 1

sw x1,0(x2)

addi x2,x2,4

sub x4,x3,x2

bnz x4,Loop

Figure 3.53 Code loop for Exercise 3.11.

Reservation
station

ALU 0

Instructions
from decoder

1

2

ALU 1

LD/ST Mem

Figure 3.54 Microarchitecture for Exercise 3.12.
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obtain optimal performance on this code. (Assume the same RS restrictions as in
part (a). Also assume that results must be written into the RS before they’re
available for use—no bypassing.) How many clock cycles does the code
sequence take?

c. [20]<3.4> Part (b) lets the RS try to optimally schedule these instructions. But
in reality, the whole instruction sequence of interest is not usually present in the
RS. Instead, various events clear the RS, and as a new code sequence streams in
from the decoder, the RS must choose to dispatch what it has. Suppose that the
RS is empty. In cycle 0, the first two register-renamed instructions of this
sequence appear in the RS. Assume it takes one clock cycle to dispatch any
op, and assume functional unit latencies are as they were for Exercise 3.2. Fur-
ther assume that the front end (decoder/register-renamer) will continue to supply
two new instructions per clock cycle. Show the cycle-by-cycle order of dispatch
of the RS. How many clock cycles does this code sequence require now?

d. [10] <3.4> If you wanted to improve the results of part (c), which would have
helped most: (1) Another ALU? (2) Another LD/ST unit? (3) Full bypassing of
ALU results to subsequent operations? or (4) Cutting the longest latency in half?
What’s the speedup?

e. [20] <3.6> Now let’s consider speculation, the act of fetching, decoding, and
executing beyond one or more conditional branches. Our motivation to do this
is twofold: the dispatch schedule we came up with in part (c) had lots of nops,
and we know computers spend most of their time executing loops (which implies
the branch back to the top of the loop is pretty predictable). Loops tell us where to
find more work to do; our sparse dispatch schedule suggests we have opportuni-
ties to do some of that work earlier than before. In part (d) you found the critical
path through the loop. Imagine folding a second copy of that path onto the sched-
ule you got in part (b). Howmanymore clock cycles would be required to do two
loops’worth of work (assuming all instructions are resident in the RS)? (Assume
all functional units are fully pipelined.)

Exercises

3.13 [25] <3.7, 3.8> In this exercise, you will explore performance trade-offs between
three processors that each employ different types of multithreading (MT). Each of
these processors is superscalar, uses in-order pipelines, requires a fixed three-cycle
stall following all loads and branches, and has identical L1 caches. Instructions
from the same thread issued in the same cycle are read in program order and must
not contain any data or control dependences.

■ Processor A is a superscalar simultaneous MT architecture, capable of issuing
up to two instructions per cycle from two threads.

■ Processor B is a fine-grained MT architecture, capable of issuing up to four
instructions per cycle from a single thread and switches threads on any
pipeline stall.
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■ Processor C is a coarse-grained MT architecture, capable of issuing up to eight
instructions per cycle from a single thread and switches threads on an L1
cache miss.

Our application is a list searcher, which scans a region of memory for a specific
value stored in R9 between the address range specified in R16 and R17. It is par-
allelized by evenly dividing the search space into four equal-sized contiguous
blocks and assigning one search thread to each block (yielding four threads). Most
of each thread’s runtime is spent in the following unrolled loop body:

loop: lw x1,0(x16)
lw x2,8(x16)
lw x3,16(x16)
lw x4,24(x16)
lw x5,32(x16)
lw x6,40(x16)
lw x7,48(x16)
lw x8,56(x16)
beq x9,x1,match0
beq x9,x2,match1
beq x9,x3,match2
beq x9,x4,match3
beq x9,x5,match4
beq x9,x6,match5
beq x9,x7,match6
beq x9,x8,match7
DADDIU x16,x16,#64
blt x16,x17,loop

Assume the following:

■ A barrier is used to ensure that all threads begin simultaneously.

■ The first L1 cache miss occurs after two iterations of the loop.

■ None of the BEQAL branches is taken.

■ The BLT is always taken.

■ All three processors schedule threads in a round-robin fashion.
Determine how many cycles are required for each processor to complete the first
two iterations of the loop.

3.14 [25/25/25] <3.2, 3.7> In this exercise, we look at how software techniques can
extract instruction-level parallelism (ILP) in a common vector loop. The following
loop is the so-called DAXPY loop (double-precision aX plus Y) and is the central
operation in Gaussian elimination. The following code implements the DAXPY
operation, Y¼aX+Y, for a vector length 100. Initially, R1 is set to the base address
of array X and R2 is set to the base address of Y:

addi x4,x1,#800 ; x1 = upper bound for X
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foo: fld F2,0(x1) ; (F2) = X(i)
fmul.d F4,F2,F0 ; (F4) = a*X(i)
fld F6,0(x2) ; (F6) = Y(i)
fadd.d F6,F4,F6 ; (F6) = a*X(i) + Y(i)
fsd F6,0(x2) ; Y(i) = a*X(i) + Y(i)
addi x1,x1,#8 ; increment X index
addi x2,x2,#8 ; increment Y index
sltu x3,x1,x4 ; test: continue loop?
bnez x3,foo ; loop if needed

Assume the functional unit latencies as shown in the following table. Assume a
one-cycle delayed branch that resolves in the ID stage. Assume that results are fully
bypassed.

Instruction producing result Instruction using result Latency in clock cycles
FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 4

Integer operations and all loads Any 2

a. [25] <3.2> Assume a single-issue pipeline. Show how the loop would look
both unscheduled by the compiler and after compiler scheduling for both
floating-point operation and branch delays, including any stalls or idle clock
cycles. What is the execution time (in cycles) per element of the result vector,
Y, unscheduled and scheduled? How much faster must the clock be for proces-
sor hardware alone to match the performance improvement achieved by the
scheduling compiler? (Neglect any possible effects of increased clock speed
on memory system performance.)

b. [25] <3.2> Assume a single-issue pipeline. Unroll the loop as many times as
necessary to schedule it without any stalls, collapsing the loop overhead instruc-
tions. How many times must the loop be unrolled? Show the instruction sched-
ule. What is the execution time per element of the result?

c. [25] <3.7> Assume a VLIW processor with instructions that contain five
operations, as shown in Figure 3.20. We will compare two degrees of loop
unrolling. First, unroll the loop 6 times to extract ILP and schedule it without
any stalls (i.e., completely empty issue cycles), collapsing the loop overhead
instructions, and then repeat the process but unroll the loop 10 times. Ignore
the branch delay slot. Show the two schedules. What is the execution time per
element of the result vector for each schedule? What percent of the operation
slots are used in each schedule? How much does the size of the code differ
between the two schedules? What is the total register demand for the two
schedules?
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3.15 [20/20] <3.4, 3.5, 3.7, 3.8> In this exercise, we will look at how variations on
Tomasulo’s algorithm perform when running the loop from Exercise 3.14. The
functional units (FUs) are described in the following table.

FU type Cycles in EX Number of FUs Number of reservation stations
Integer 1 1 5

FP adder 10 1 3

FP multiplier 15 1 2

Assume the following:
■ Functional units are not pipelined.
■ There is no forwarding between functional units; results are communicated by

the common data bus (CDB).
■ The execution stage (EX) does both the effective address calculation and the

memory access for loads and stores. Thus, the pipeline is IF/ID/IS/EX/WB.
■ Loads require one clock cycle.
■ The issue (IS) and write-back (WB) result stages each require one clock cycle.
■ There are five load buffer slots and five store buffer slots.
■ Assume that the Branch on Not Equal to Zero (BNEZ) instruction requires one

clock cycle.
a. [20] <3.4–3.5> For this problem use the single-issue Tomasulo MIPS pipeline

of Figure 3.10 with the pipeline latencies from the preceding table. Show the
number of stall cycles for each instruction and what clock cycle each instruction
begins execution (i.e., enters its first EX cycle) for three iterations of the loop.
How many cycles does each loop iteration take? Report your answer in the form
of a table with the following column headers:
■ Iteration (loop iteration number)
■ Instruction
■ Issues (cycle when instruction issues)
■ Executes (cycle when instruction executes)
■ Memory access (cycle when memory is accessed)
■ Write CDB (cycle when result is written to the CDB)
■ Comment (description of any event on which the instruction is waiting)

Show three iterations of the loop in your table. You may ignore the first
instruction.

b. [20] <3.7, 3.8> Repeat part (a) but this time assume a two-issue Tomasulo
algorithm and a fully pipelined floating-point unit (FPU).

3.16 [10]<3.4>Tomasulo’s algorithm has a disadvantage: only one result can compute
per clock per CDB. Use the hardware configuration and latencies from the previous
question and find a code sequence of no more than 10 instructions where Toma-
sulo’s algorithm must stall due to CDB contention. Indicate where this occurs in
your sequence.
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3.17 [20] <3.3> An (m,n) correlating branch predictor uses the behavior of the most
recent m executed branches to choose from 2m predictors, each of which is an n-
bit predictor. A two-level local predictor works in a similar fashion, but only keeps
track of the past behavior of each individual branch to predict future behavior.

There is a design trade-off involved with such predictors: correlating predictors
require little memory for history, which allows them to maintain 2-bit predictors
for a large number of individual branches (reducing the probability of branch
instructions reusing the same predictor), while local predictors require substan-
tially more memory to keep history and are thus limited to tracking a relatively
small number of branch instructions. For this exercise, consider a (1,2) correlating
predictor that can track four branches (requiring 16 bits) versus a (1,2) local pre-
dictor that can track two branches using the same amount of memory. For the fol-
lowing branch outcomes, provide each prediction, the table entry used to make the
prediction, any updates to the table as a result of the prediction, and the final mis-
prediction rate of each predictor. Assume that all branches up to this point have
been taken. Initialize each predictor to the following:

Correlating predictor

Entry Branch Last outcome Prediction

0 0 T T with one misprediction

1 0 NT NT

2 1 T NT

3 1 NT T

4 2 T T

5 2 NT T

6 3 T NT with one misprediction

7 3 NT NT

Local predictor

Entry Branch Last 2 outcomes (right is most recent) Prediction

0 0 T,T T with one misprediction

1 0 T,NT NT

2 0 NT,T NT

3 0 NT T

4 1 T,T T

5 1 T,NT T with one misprediction

6 1 NT,T NT

7 1 NT,NT NT
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3.18 [10] <3.9> Suppose we have a deeply pipelined processor, for which we imple-
ment a branch-target buffer for the conditional branches only. Assume that the mis-
prediction penalty is always four cycles and the buffer miss penalty is always three
cycles. Assume a 90% hit rate, 90% accuracy, and 15% branch frequency. How
much faster is the processor with the branch-target buffer versus a processor that
has a fixed two-cycle branch penalty? Assume a base clock cycle per instruction
(CPI) without branch stalls of one.

3.19 [10/5] <3.9> Consider a branch-target buffer that has penalties of zero, two, and
two clock cycles for correct conditional branch prediction, incorrect prediction,
and a buffer miss, respectively. Consider a branch-target buffer design that distin-
guishes conditional and unconditional branches, storing the target address for a
conditional branch and the target instruction for an unconditional branch.

a. [10]<3.9>What is the penalty in clock cycles when an unconditional branch is
found in the buffer?

b. [10]<3.9> Determine the improvement from branch folding for unconditional
branches. Assume a 90% hit rate, an unconditional branch frequency of 5%, and
a two-cycle penalty for a buffer miss. How much improvement is gained by this
enhancement? How high must the hit rate be for this enhancement to provide a
performance gain?

Branch PC (word address) Outcome

454 T

543 NT

777 NT

543 NT

777 NT

454 T

777 NT

454 T

543 T
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4
Data-Level Parallelism in
Vector, SIMD, and GPU
Architectures

We call these algorithms data parallel algorithms because their
parallelism comes from simultaneous operations across large sets
of data rather than from multiple threads of control.

W. Daniel Hillis and Guy L. Steele,
“Data parallel algorithms,” Commun. ACM (1986)

If you were plowing a field, which would you rather use: two strong
oxen or 1024 chickens?

Seymour Cray, Father of the Supercomputer
(arguing for two powerful vector processors

versus many simple processors)

Computer Architecture. https://doi.org/10.1016/B978-0-12-811905-1.00004-3
© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811905-1.00004-3


4.1 Introduction

A question for the single instruction multiple data (SIMD) architecture, which
Chapter 1 introduced, has always been just how wide a set of applications has sig-
nificant data-level parallelism (DLP). Five years after the SIMD classification was
proposed (Flynn, 1966), the answer is not only the matrix-oriented computations of
scientific computing but also the media-oriented image and sound processing and
machine learning algorithms, as we will see in Chapter 7. Since a multiple instruc-
tionmultiple data (MIMD) architecture needs to fetch one instruction per data oper-
ation, single instruction multiple data (SIMD) is potentially more energy-efficient
since a single instruction can launchmany data operations. These two answersmake
SIMD attractive for personal mobile devices as well as for servers. Finally, perhaps
the biggest advantage of SIMD versus MIMD is that the programmer continues to
think sequentially yet achieves parallel speedup by having parallel data operations.

This chapter covers three variations of SIMD: vector architectures, multimedia
SIMD instruction set extensions, and graphics processing units (GPUs).1

The first variation, which predates the other two bymore than 30 years, extends
pipelined execution of many data operations. These vector architectures are easier
to understand and to compile to than other SIMD variations, but they were consid-
ered too expensive for microprocessors until recently. Part of that expense was in
transistors, and part was in the cost of sufficient dynamic random access memory
(DRAM) bandwidth, given the widespread reliance on caches to meet memory per-
formance demands on conventional microprocessors.

The second SIMD variation borrows from the SIMD name to mean basically
simultaneous parallel data operations and is now found in most instruction set
architectures that support multimedia applications. For x86 architectures, the
SIMD instruction extensions started with the MMX (multimedia extensions) in
1996, which were followed by several SSE (streaming SIMD extensions) versions
in the next decade, and they continue until this day with AVX (advanced vector
extensions). To get the highest computation rate from an x86 computer, you often
need to use these SIMD instructions, especially for floating-point programs.

The third variation on SIMD comes from the graphics accelerator community,
offering higher potential performance than is found in traditional multicore com-
puters today. Although GPUs share features with vector architectures, they have
their own distinguishing characteristics, in part because of the ecosystem in which
they evolved. This environment has a system processor and system memory in
addition to the GPU and its graphics memory. In fact, to recognize those distinc-
tions, the GPU community refers to this type of architecture as heterogeneous.

1 This chapter is based on material in Appendix F, “Vector Processors,” by Krste Asanovic, and Appendix G, “Hardware
and Software for VLIW and EPIC” from the 5th edition of this book; on material in Appendix A, “Graphics and Computing
GPUs,” by John Nickolls and David Kirk, from the 5th edition ofComputer Organization andDesign; and to a lesser extent
on material in “Embracing and Extending 20th-Century Instruction Set Architectures,” by Joe Gebis and David Patterson,
IEEE Computer, April 2007.
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For problems with lots of data parallelism, all three SIMD variations share the
advantage of being easier on the programmer than classic parallel MIMD
programming.

Thegoal of this chapter is for architects to understandwhyvector ismore general
than multimedia SIMD, as well as the similarities and differences between vector
andGPUarchitectures.Because vector architectures are supersets of themultimedia
SIMD instructions, including a better model for compilation, and because GPUs
share several similaritieswith vector architectures, we startwith vector architectures
to set the foundation for the following two sections. The next section introduces
vector architectures, and Appendix G goes much deeper into the subject.

4.2 Vector Architecture

The most efficient way to execute a vectorizable application is a vector
processor.

Jim Smith,
International Symposium on Computer Architecture (1994)

Vector architectures grab sets of data elements scattered about memory, place them
into large sequential register files, operate on data in those register files, and then
disperse the results back into memory. A single instruction works on vectors of
data, which results in dozens of register-register operations on independent data
elements.

These large register files act as compiler-controlled buffers, both to hide mem-
ory latency and to leverage memory bandwidth. Because vector loads and stores
are deeply pipelined, the program pays the longmemory latency only once per vec-
tor load or store versus once per element, thus amortizing the latency over, say, 32
elements. Indeed, vector programs strive to keep the memory busy.

The power wall leads architects to value architectures that can deliver good
performance without the energy and design complexity costs of highly out-of-
order superscalar processors. Vector instructions are a natural match to this trend
because architects can use them to increase performance of simple in-order scalar
processors without greatly raising energy demands and design complexity. In prac-
tice, developers can express many of the programs that ran well on complex out-of-
order designs more efficiently as data-level parallelism in the form of vector
instructions, as Kozyrakis and Patterson (2002) showed.

RV64V Extension

We begin with a vector processor consisting of the primary components that
Figure 4.1 shows. It is loosely based on the 40-year-old Cray-1, which was one
of the first supercomputers. At the time of the writing of this edition, the RISC-
V vector instruction set extension RVV was still under development. (The vector
extension by itself is called RVV, so RV64V refers to the RISC-V base instructions
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plus the vector extension.) We show a subset of RV64V, trying to capture its
essence in a few pages.

The primary components of the instruction set architecture of RV64V are the
following:

■ Vector registers—Each vector register holds a single vector, and RV64V has
32 of them, each 64 bits wide. The vector register file needs to provide enough
ports to feed all the vector functional units. These ports will allow a high degree
of overlap among vector operations to different vector registers. The read and
write ports, which total at least 16 read ports and 8 write ports, are connected to
the functional unit inputs or outputs by a pair of crossbar switches. One way to

Main memory

Vector
registers

Scalar
registers

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
load/store

Figure 4.1 The basic structure of a vector architecture, RV64V, which includes a
RISC-V scalar architecture. There are also 32 vector registers, and all the functional units
are vector functional units. The vector and scalar registers have a significant number of
read and write ports to allow multiple simultaneous vector operations. A set of crossbar
switches (thick gray lines) connects these ports to the inputs and outputs of the vector
functional units.
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increase the register file bandwidth is to compose it frommultiple banks, which
work well with relatively long vectors.

■ Vector functional units—Each unit is fully pipelined in our implementation,
and it can start a new operation on every clock cycle. A control unit is needed
to detect hazards, both structural hazards for functional units and data hazards
on register accesses. Figure 4.1 shows that we assume an implementation of
RV64V has five functional units. For simplicity, we focus on the floating-point
functional units in this section.

■ Vector load/store unit—The vector memory unit loads or stores a vector to
or from memory. The vector loads and stores are fully pipelined in our
hypothetical RV64V implementation so that words can be moved between
the vector registers and memory with a bandwidth of one word per clock
cycle, after an initial latency. This unit would also normally handle scalar
loads and stores.

■ A set of scalar registers—Scalar registers can likewise provide data as input to
the vector functional units, as well as compute addresses to pass to the vector
load/store unit. These are the normal 31 general-purpose registers and 32
floating-point registers of RV64G. One input of the vector functional units
latches scalar values as they are read out of the scalar register file.

Figure 4.2 lists the RV64V vector instructions we use in this section. The
description in Figure 4.2 assumes that the input operands are all vector registers,
but there are also versions of these instructions where an operand can be a scalar
register (xi or fi). RV64V uses the suffix .vv when both are vectors, .vs
when the second operand is a scalar, and .sv when the first is a scalar register.
Thus these three are all valid RV64V instructions: vsub.vv, vsub.vs, and
vsub.sv. (Add and other commutative operations have only the first two
versions, as vadd.sv and vadd.sv would be redundant.) Because the
operands determine the version of the instruction, we usually let the assembler
supply the appropriate suffix. The vector functional unit gets a copy of the sca-
lar value at instruction issue time.

Although the traditional vector architectures didn’t support narrow data types
efficiently, vectors naturally accommodate varying data sizes (Kozyrakis and
Patterson, 2002). Thus, if a vector register has 32 64-bit elements, then 128�16-
bit elements, and even 256�8-bit elements are equally valid views. Such hardware
multiplicity iswhy a vector architecture can be useful formultimedia applications as
well as for scientific applications.

Note that the RV64V instructions in Figure 4.2 omit the data type and size! An
innovation of RV64V is to associate a data type and data size with each vector
register, rather than the normal approach of the instruction supplying that informa-
tion. Thus, before executing the vector instructions, a program configures the
vector registers being used to specify their data type and widths. Figure 4.3 lists
the options for RV64V.
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Mnemonic Name Description
vadd ADD Add elements of V[rs1] and V[rs2], then put each result in V[rd]

vsub SUBtract Subtract elements of V[rs2] frpm V[rs1], then put each result in V[rd]

vmul MULtiply Multiply elements of V[rs1] and V[rs2], then put each result in V[rd]

vdiv DIVide Divide elements of V[rs1] by V[rs2], then put each result in V[rd]

vrem REMainder Take remainder of elements of V[rs1] by V[rs2], then put each result in V[rd]

vsqrt SQuare RooT Take square root of elements of V[rs1], then put each result in V[rd]

vsll Shift Left Shift elements of V[rs1] left by V[rs2], then put each result in V[rd]

vsrl Shift Right Shift elements of V[rs1] right by V[rs2], then put each result in V[rd]

vsra Shift Right
Arithmetic

Shift elements of V[rs1] right by V[rs2] while extending sign bit, then put each result in
V[rd]

vxor XOR Exclusive OR elements of V[rs1] and V[rs2], then put each result in V[rd]

vor OR Inclusive OR elements of V[rs1] and V[rs2], then put each result in V[rd]

vand AND Logical AND elements of V[rs1] and V[rs2], then put each result in V[rd]

vsgnj SiGN source Replace sign bits of V[rs1] with sign bits of V[rs2], then put each result in V[rd]

vsgnjn Negative SiGN
source

Replace sign bits of V[rs1] with complemented sign bits of V[rs2], then put each result
in V[rd]

vsgnjx Xor SiGN
source

Replace sign bits of V[rs1] with xor of sign bits of V[rs1] and V[rs2], then put each
result in V[rd]

vld Load Load vector register V[rd] from memory starting at address R[rs1]

vlds Strided Load Load V[rd] from address at R[rs1] with stride in R[rs2] (i.e., R[rs1]+ i�R[rs2])

vldx Indexed Load
(Gather)

Load V[rs1] with vector whose elements are at R[rs2]+V[rs2] (i.e., V[rs2] is an index)

vst Store Store vector register V[rd] into memory starting at address R[rs1]

vsts Strided Store Store V[rd] into memory at address R[rs1] with stride in R[rs2] (i.e., R[rs1]+ i�R[rs2])

vstx Indexed Store
(Scatter)

Store V[rs1] into memory vector whose elements are at R[rs2]+V[rs2] ( i.e., V[rs2] is
an index)

vpeq Compare ¼ Compare elements of V[rs1] and V[rs2]. When equal, put a 1 in the corresponding 1-bit
element of p[rd]; otherwise, put 0

vpne Compare !¼ Compare elements of V[rs1] and V[rs2]. When not equal, put a 1 in the corresponding
1-bit element of p[rd]; otherwise, put 0

vplt Compare < Compare elements of V[rs1] and V[rs2]. When less than, put a 1 in the corresponding 1-
bit element of p[rd]; otherwise, put 0

vpxor Predicate XOR Exclusive OR 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd]

vpor Predicate OR Inclusive OR 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd]

vpand Predicate AND Logical AND 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd]

setvl Set Vector
Length

Set vl and the destination register to the smaller of mvl and the source regsiter

Figure 4.2 The RV64V vector instructions. All use the R instruction format. Each vector operation with two operands
is shown with both operands being vector (.vv), but there are also versions where the second operand is a scalar
register (.vs) and, when it makes a difference, where the first operand is a scalar register and the second is a vector
register (.sv). The type and width of the operands are determined by configuring each vector register rather than
being supplied by the instruction. In addition to the vector registers and predicate registers, there are two vector
control and status registers (CSRs), vl and vctype, discussed below. The strided and indexed data transfers are also
explained later. Once completed, RV64 will surely have more instructions, but the ones in this figure will be included.



One reason for dynamic register typing is that many instructions are required
for a conventional vector architecture that supports such variety. Given the com-
binations of data types and sizes in Figure 4.3, if not for dynamic register typing,
Figure 4.2 would be several pages long!

Dynamic typing also lets programs disable unused vector registers. As a conse-
quence, enabled vector registers are allocated all the vectormemory as long vectors.
For example, assume we have 1024 bytes of vector memory, if 4 vector registers
are enabled and they are type 64–bit floats, the processor would give each vector
register 256 bytes or 256/8¼32 elements. This valiue is called the maximum vector
length (mvl), which is set by the processor and cannot be changed by sofware.

One complaint about vector architectures is that their larger state means slower
context switch time. Our implementation of RV64V increases state a factor of 3:
from 2�32�8¼512 bytes to 2�32�1024¼1536 bytes. A pleasant side effect
of dynamic register typing is that the program can configure vector registers as dis-
abledwhen they are not being used, so there is no need to save and restore them on
a context switch.

A third benefit of dynamic register typing is that conversions between different
size operands can be implicit depending on the configuration of the registers rather
than as additional explicit conversion instructions. We’ll see an example of this
benefit in the next section.

The names vld and vst denote vector load and vector store, and they load or
store an entire vectors of data. One operand is the vector register to be loaded or
stored; the other operand, which is a RV64G general-purpose register, is the start-
ing address of the vector in memory. Vector needs more registers beyond the vector
registers themselves. The vector-length register vl is used when the natural vector
length is not equal to mvl, the vector-type register vctype records register types,
and the predicate registers pi are used when loops involve IF statements. We’ll see
them in action in the following example.

With a vector instruction, the system can perform the operations on the vector
data elements inmanyways, including operating onmany elements simultaneously.
This flexibility lets vector designs use slow but wide execution units to achieve
high performance at low power. Furthermore, the independence of elements within
a vector instruction set allows scaling of functional units without performing addi-
tional costly dependency checks, as superscalar processors require.

Integer 8, 16, 32, and 64 bits Floating point 16, 32, and 64 bits

Figure 4.3 Data sizes supported for RV64V assuming it also has the single- and
double-precision floating-point extensions RVS and RVD. Adding RVV to such a
RISC-V design means the scalar unit must also add RVH, which is a scalar instruction
extension to support half-precision (16-bit) IEEE 754 floating point. Because RV32V
would not have doubleword scalar operations, it could drop 64-bit integers from the
vector unit. If a RISC-V implementation didn’t include RVS or RVD, it could omit the vec-
tor floating-point instructions.
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How Vector Processors Work: An Example

We can best understand a vector processor by looking at a vector loop for RV64V.
Let’s take a typical vector problem, which we use throughout this section:

Y = a � X + Y
X and Y are vectors, initially resident in memory, and a is a scalar. This problem is
the SAXPY or DAXPY loop that forms the inner loop of the Linpack benchmark
(Dongarra et al., 2003). (SAXPY stands for single-precision a�X plus Y, and
DAXPY for double precision a�X plus Y.) Linpack is a collection of linear alge-
bra routines, and the Linpack benchmark consists of routines for performing
Gaussian elimination.

For now, let us assume that the number of elements, or length, of a vector reg-
ister (32) matches the length of the vector operation we are interested in. (This
restriction will be lifted shortly.)

Example Show the code for RV64G and RV64V for the DAXPY loop. For this example,
assume that X and Y have 32 elements and the starting addresses of X and Y
are in x5 and x6, respectively. (A subsequent example covers when they do
not have 32 elements.)

Answer Here is the RISC-V code:

fld f0,a # Load scalar a
addi x28,x5,#256 # Last address to load

Loop: fld f1,0(x5) # Load X[i]
fmul.d f1,f1,f0 # a � X[i]
fld f2,0(x6) # Load Y[i]
fadd.d f2,f2,f1 # a � X[i] + Y[i]
fsd f2,0(x6) # Store into Y[i]
addi x5,x5,#8 # Increment index to X
addi x6,x6,#8 # Increment index to Y
bne x28,x5,Loop # Check if done

Here is the RV64V code for DAXPY:

vsetdcfg 4*FP64 # Enable 4 DP FP vregs
fld f0,a # Load scalar a
vld v0,x5 # Load vector X
vmul v1,v0,f0 # Vector-scalar mult
vld v2,x6 # Load vector Y
vadd v3,v1,v2 # Vector-vector add
vst v3,x6 # Store the sum
vdisable # Disable vector regs

Note that the assembler determines which version of the vector operations to gen-
erate. Because the multiply has a scalar operand, it generates vmul.vs, whereas
the add doesn’t, so it generates vadd.vv.
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The initial instruction configures the first four vector registers to hold 64-bit
floating-point data. The last instruction disables all vector registers. If a context
switch happened after the last instruction, there is no additional state to save.

Themost dramatic difference between thepreceding scalar andvector code is that
the vector processor greatly reduces the dynamic instruction bandwidth, executing
only 8 instructions versus 258 for RV64G. This reduction occurs because the vector
operations work on 32 elements and the overhead instructions that constitute nearly
half the loop on RV64G are not present in the RV64V code. When the compiler
produces vector instructions for such a sequence, and the resulting code spends
much of its time running in vector mode, the code is said to be vectorized or vector-
izable. Loops can be vectorized when they do not have dependences between
iterations of a loop, which are called loop-carried dependences (see Section 4.5).

Another important difference between RV64G and RV64V is the frequency of
pipeline interlocks for a simple implementation of RV64G. In the straightforward
RV64G code, every fadd.d must wait for a fmul.d, and every fsd must wait
for the fadd.d. On the vector processor, each vector instruction will stall only
for the first element in each vector, and then subsequent elementswill flow smoothly
down the pipeline. Thus pipeline stalls are required only once per vector instruction,
rather than once per vector element. Vector architects call forwarding of element-
dependent operations chaining, in that the dependent operations are “chained”
together. In this example, the pipeline stall frequency on RV64G will be about
32� higher than it is on RV64V. Software pipelining, loop unrolling (Appendix
H), or out-of-order execution can reduce the pipeline stalls on RV64G; however,
the large difference in instruction bandwidth cannot be reduced substantially.

Let’s show off the dynamic register typing before discussing performance of
the code.

Example A common use of multiply-accumulate operations is to multiply using narrow data
and to accumulate at a wider size to increase the accuracy of a sum of products.
Show how the preceding code would change if X and a were single-precision
instead of a double-precision floating point. Next, show the changes to this code
if we switch X, Y, and a from floating-point type to integers.

Answer The changes are underlined in the following code. Amazingly, the same codeworks
with two small changes: the configuration instruction includes one single-precision
vector, and the scalar load is now single-precision:

vsetdcfg 1*FP32,3*FP64 # 1 32b, 3 64b vregs
flw f0,a # Load scalar a
vld v0,x5 # Load vector X
vmul v1,v0,f0 # Vector-scalar mult
vld v2,x6 # Load vector Y
vadd v3,v1,v2 # Vector-vector add
vst v3,x6 # Store the sum
vdisable # Disable vector regs
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Note that RV64V hardware will implicitly perform a conversion from the narrower
single-precision to the wider double-precision in this setup.

The switch to integers is almost as easy, but we must now use an integer load
instruction and integer register to hold the scalar value:

vsetdcfg 1*X32,3*X64 # 1 32b, 3 64b int reg
lw x7,a # Load scalar a
vld v0,x5 # Load vector X
vmul v1,v0,x7 # Vector-scalar mult
vld v2,x6 # Load vector Y
vadd v3,v1,v2 # Vector-vector add
vst v3,x6 # Store the sum
vdisable # Disable vector regs

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: (1) the length of the operand vectors, (2) structural hazards among the
operations, and (3) the data dependences. Given the vector length and the initiation
rate, which is the rate at which a vector unit consumes new operands and produces
new results, we can compute the time for a single vector instruction.

All modern vector computers have vector functional units with multiple par-
allel pipelines (or lanes) that can produce two or more results per clock cycle,
but they may also have some functional units that are not fully pipelined. For sim-
plicity, our RV64V implementation has one lane with an initiation rate of one ele-
ment per clock cycle for individual operations. Thus the execution time in clock
cycles for a single vector instruction is approximately the vector length.

To simplify the discussion of vector execution and vector performance, we use
the notion of a convoy, which is the set of vector instructions that could potentially
execute together. The instructions in a convoy must not contain any structural haz-
ards; if such hazards were present, the instructions would need to be serialized and
initiated in different convoys. Thus the vld and the following vmul in the pre-
ceding example can be in the same convoy. As we will soon see, you can estimate
performance of a section of code by counting the number of convoys. To keep this
analysis simple, we assume that a convoy of instructions must complete execution
before any other instructions (scalar or vector) can begin execution.

It might seem that in addition to vector instruction sequences with structural
hazards, sequences with read-after-write dependency hazards should also be in
separate convoys. However, chaining allows them to be in the same convoy since
it allows a vector operation to start as soon as the individual elements of its vector
source operand become available: the results from the first functional unit in the
chain are “forwarded” to the second functional unit. In practice, we often imple-
ment chaining by allowing the processor to read and write a particular vector reg-
ister at the same time, albeit to different elements. Early implementations of
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chaining worked just like forwarding in scalar pipelining, but this restricted the
timing of the source and destination instructions in the chain. Recent implementa-
tions use flexible chaining, which allows a vector instruction to chain to essentially
any other active vector instruction, assuming that we don’t generate a structural
hazard. All modern vector architectures support flexible chaining, which we
assume throughout this chapter.

To turn convoys into execution time, we need a metric to estimate the length of
a convoy. It is called a chime, which is simply the unit of time taken to execute one
convoy. Thus a vector sequence that consists of m convoys executes in m chimes;
for a vector length of n, for our simple RV64V implementation, this is approxi-
mately m�n clock cycles.

The chime approximation ignores some processor-specific overheads, many of
which are dependent on vector length. Therefore measuring time in chimes is a
better approximation for long vectors than for short ones. We will use the chime
measurement, rather than clock cycles per result, to indicate explicitly that we are
ignoring certain overheads.

If we know the number of convoys in a vector sequence, we know the execution
time in chimes.One sourceof overhead ignored inmeasuring chimes is any limitation
on initiating multiple vector instructions in a single clock cycle. If only one vector
instruction can be initiated in a clock cycle (the reality in most vector processors),
the chime count will underestimate the actual execution time of a convoy. Because
the length of vectors is typically much greater than the number of instructions in
the convoy, we will simply assume that the convoy executes in one chime.

Example Show how the following code sequence lays out in convoys, assuming a single
copy of each vector functional unit:

vld v0,x5 # Load vector X
vmul v1,v0,f0 # Vector-scalar multiply
vld v2,x6 # Load vector Y
vadd v3,v1,v2 # Vector-vector add
vst v3,x6 # Store the sum

How many chimes will this vector sequence take? How many cycles per
FLOP (floating-point operation) are needed, ignoring vector instruction issue
overhead?

Answer The first convoy starts with the first vld instruction. The vmul is dependent on the
first vld, but chaining allows it to be in the same convoy.

The second vld instruction must be in a separate convoy because there is a
structural hazard on the load/store unit for the prior vld instruction. The vadd
is dependent on the second vld, but it can again be in the same convoy via chain-
ing. Finally, the vst has a structural hazard on the vld in the second convoy, so it
must go in the third convoy. This analysis leads to the following layout of vector
instructions into convoys:
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1. vld vmul

2. vld vadd

3. vst

The sequence requires three convoys. Because the sequence takes three chimes and
there are two floating-point operations per result, the number of cycles per FLOP is
1.5 (ignoring any vector instruction issue overhead). Note that, although we allow
the vld and vmul both to execute in the first convoy, most vector machines will
take 2 clock cycles to initiate the instructions.

This example shows that the chime approximation is reasonably accurate for
long vectors. For example, for 32-element vectors, the time in chimes is 3, so
the sequence would take about 32�3 or 96 clock cycles. The overhead of issuing
convoys in two separate clock cycles would be small.

Another source of overhead is far more significant than the issue limitation. The
most important source of overhead ignored by the chime model is vector start-up
time, which is the latency in clock cycles until the pipeline is full. The start-up time
is principally determined by the pipelining latency of the vector functional unit. For
RV64V, we will use the same pipeline depths as the Cray-1, although latencies in
more modern processors have tended to increase, especially for vector loads. All
functional units are fully pipelined. The pipeline depths are 6 clock cycles for
floating-point add, 7 for floating-point multiply, 20 for floating-point divide,
and 12 for vector load.

Given these vector basics, the next several sections will give optimizations that
either improve the performance or increase the types of programs that can run well
on vector architectures. In particular, they will answer these questions:

■ How can a vector processor execute a single vector faster than one element per
clock cycle? Multiple elements per clock cycle improve performance.

■ How does a vector processor handle programs where the vector lengths are not
the same as the maximum vector length (mvl)? Because most application vec-
tors don’t match the architecture vector length, we need an efficient solution to
this common case.

■ What happens when there is an IF statement inside the code to be vectorized?
More code can vectorize if we can efficiently handle conditional statements.

■ What does a vector processor need from the memory system? Without suffi-
cient memory bandwidth, vector execution can be futile.

■ How does a vector processor handle multiple dimensional matrices? This pop-
ular data structure must vectorize for vector architectures to do well.

■ How does a vector processor handle sparse matrices? This popular data struc-
ture must vectorize also.
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■ How do you program a vector computer? Architectural innovations that are a
mismatch to programming languages and their compilers may not get
widespread use.

The rest of this section introduces each of these optimizations of the vector archi-
tecture, and Appendix G goes into greater depth.

Multiple Lanes: Beyond One Element per Clock Cycle

A critical advantage of a vector instruction set is that it allows software to pass a
large amount of parallel work to hardware using only a single short instruction.
One vector instruction can include scores of independent operations yet be
encoded in the same number of bits as a conventional scalar instruction. The par-
allel semantics of a vector instruction allow an implementation to execute these
elemental operations using a deeply pipelined functional unit, as in the RV64V
implementation we’ve studied so far; an array of parallel functional units; or a com-
bination of parallel and pipelined functional units. Figure 4.4 illustrates how to
improve vector performance by using parallel pipelines to execute a vector add
instruction.

The RV64V instruction set has the property that all vector arithmetic instruc-
tions only allow element N of one vector register to take part in operations with
element N from other vector registers. This dramatically simplifies the design of
a highly parallel vector unit, which can be structured as multiple parallel lanes.
As with a traffic highway, we can increase the peak throughput of a vector unit
by adding more lanes. Figure 4.5 shows the structure of a four-lane vector unit.
Thus going to four lanes from one lane reduces the number of clocks for a chime
from 32 to 8. For multiple lanes to be advantageous, both the applications and the
architecture must support long vectors; otherwise, they will execute so quickly that
you’ll run out of instruction bandwidth, requiring ILP techniques (see Chapter 3) to
supply enough vector instructions.

Each lane contains one portion of the vector register file and one execution
pipeline from each vector functional unit. Each vector functional unit executes
vector instructions at the rate of one element group per cycle using multiple
pipelines, one per lane. The first lane holds the first element (element 0) for all
vector registers, and so the first element in any vector instruction will have its
source and destination operands located in the first lane. This allocation allows
the arithmetic pipeline local to the lane to complete the operation without commu-
nicating with other lanes. Avoiding interlane communication reduces the wiring
cost and register file ports required to build a highly parallel execution unit and
helps explain why vector computers can complete up to 64 operations per clock
cycle (2 arithmetic units and 2 load/store units across 16 lanes).

Adding multiple lanes is a popular technique to improve vector performance as
it requires little increase in control complexity and does not require changes to
existing machine code. It also allows designers to trade off die area, clock rate,
voltage, and energy without sacrificing peak performance. If the clock rate of a
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vector processor is halved, doubling the number of lanes will retain the same peak
performance.

Vector-Length Registers: Handling Loops Not Equal to 32

A vector register processor has a natural vector length determined by the maximum
vector length (mvl). This length, which was 32 in our example above, is unlikely

(A) (B)

Element group

Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction,
C5A+B. The vector processor (A) on the left has a single add pipeline and can complete one addition per clock
cycle. The vector processor (B) on the right has four add pipelines and can complete four additions per clock cycle.
The elements within a single vector add instruction are interleaved across the four pipelines. The set of elements that
move through the pipelines together is termed an element group. Reproduced with permission from Asanovic, K.,
1998. Vector Microprocessors (Ph.D. thesis). Computer Science Division, University of California, Berkeley.
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to match the real vector length in a program. Moreover, in a real program, the
length of a particular vector operation is often unknown at compile time. In fact,
a single piece of code may require different vector lengths. For example, consider
this code:

for (i=0; i <n; i=i+1)
Y[i] = a * X[i] + Y[i];

The size of all the vector operations depends on n, which may not even be known
until run time. The value of n might also be a parameter to a procedure containing
the preceding loop and therefore subject to change during execution.

Lane 1 Lane 2 Lane 3Lane 0

FP add
pipe 0

Vector
registers:
elements

0, 4, 8, . . . 

FP mul.
pipe 0

FP mul.
pipe 1

Vector load-store unit

FP mul.
pipe 2

FP mul.
pipe 3

Vector
registers:
elements

1, 5, 9, . . . 

Vector
registers:
elements

2, 6, 10, . . . 

Vector
registers:
elements

3, 7, 11, . . . 

FP add
pipe 1

FP add
pipe 2

FP add
pipe 3

Figure 4.5 Structure of a vector unit containing four lanes. The vector register mem-
ory is divided across the lanes, with each lane holding every fourth element of each
vector register. The figure shows three vector functional units: an FP add, an FPmultiply,
and a load-store unit. Each of the vector arithmetic units contains four execution pipe-
lines, one per lane, which act in concert to complete a single vector instruction. Note
how each section of the vector register file needs to provide only enough ports for pipe-
lines local to its lane. This figure does not show the path to provide the scalar operand
for vector-scalar instructions, but the scalar processor (or Control Processor) broadcasts
a scalar value to all lanes.
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The solution to these problems is to add a vector-length register (vl). The vl
controls the length of any vector operation, including a vector load or store. The
value in the vl, however, cannot be greater than the maximum vector length (mvl).
This solves our problem as long as the real length is less than or equal to the max-
imum vector length (mvl). This parameter means the length of vector registers can
grow in later computer generations without changing the instruction set. As we will
see in the next section, multimedia SIMD extensions have no equivalent of mvl, so
they expand the instruction set every time they increase their vector length.

What if the value of n is not known at compile time and thus may be greater
than the mvl? To tackle the second problem where the vector is longer than the
maximum length, a technique called strip mining is traditionally used. Strip mining
is the generation of code such that each vector operation is done for a size less than
or equal to the mvl. One loop handles any number of iterations that is a multiple of
the mvl and another loop that handles any remaining iterations and must be less
than the mvl. RISC-V has a better solution than a separate loop for strip mining.
The instruction setvl writes the smaller of the mvl and the loop variable n into
vl (and to another register). If the number of iterations of the loop is larger than n,
then the fastest the loop can compute is mvl values at time, so setvl sets vl to
mvl. If n is smaller than mvl, it should compute only on the last n elements in this
final iteration of the loop, so setvl sets vl to n. setvl also writes another scalar
register to help with later loop bookkeeping. Below is the RV64V code for vector
DAXPY for any value of n.

vsetdcfg 2 DP FP # Enable 2 64b Fl.Pt. registers
fld f0,a # Load scalar a

loop: setvl t0,a0 # vl = t0 = min(mvl,n)
vld v0,x5 # Load vector X
slli t1,t0,3 # t1 = vl * 8 (in bytes)
add x5,x5,t1 # Increment pointer to X by vl*8
vmul v0,v0,f0 # Vector-scalar mult
vld v1,x6 # Load vector Y
vadd v1,v0,v1 # Vector-vector add
sub a0,a0,t0 # n �= vl (t0)
vst v1,x6 # Store the sum into Y
add x6,x6,t1 # Increment pointer to Y by vl*8
bnez a0,loop # Repeat if n != 0
vdisable # Disable vector regs

Predicate Registers: Handling IF Statements in Vector Loops

From Amdahl’s law, we know that the speedup on programs with low to moderate
levels of vectorization will be very limited. The presence of conditionals (IF state-
ments) inside loops and the use of sparse matrices are two main reasons for lower
levels of vectorization. Programs that contain IF statements in loops cannot be run
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in vector mode using the techniques we have discussed up to now because the IF
statements introduce control dependences into a loop. Likewise, we cannot imple-
ment sparse matrices efficiently using any of the capabilities we have seen so far.
We examine strategies for dealing with conditional execution here, leaving the dis-
cussion of sparse matrices for later.

Consider the following loop written in C:

for (i = 0; i < 64; i=i+1)
if (X[i] != 0)
X[i] = X[i] – Y[i];

This loop cannot normally be vectorized because of the conditional execution of
the body; however, if the inner loop could be run for the iterations for which X[i] 6¼
0, then the subtraction could be vectorized.

The common extension for this capability is vector-mask control. In RV64V,
predicate registers hold the mask and essentially provide conditional execution of
each element operation in a vector instruction. These registers use a Boolean vector
to control the execution of a vector instruction, just as conditionally executed
instructions use a Boolean condition to determine whether to execute a scalar
instruction (see Chapter 3). When the predicate register p0 is set, all following vec-
tor instructions operate only on the vector elements whose corresponding entries in
the predicate register are 1. The entries in the destination vector register that cor-
respond to a 0 in the mask register are unaffected by the vector operation. Like
vector registers, predicate registers are configured and can be disabled. Enabling
a predicate register initializes it to all 1 s, meaning that subsequent vector instruc-
tions operate on all vector elements. We can now use the following code for the
previous loop, assuming that the starting addresses of X and Y are in x5 and
x6, respectively:

vsetdcfg 2*FP64 # Enable 2 64b FP vector regs
vsetpcfgi 1 # Enable 1 predicate register
vld v0,x5 # Load vector X into v0
vld v1,x6 # Load vector Y into v1
fmv.d.x f0,x0 # Put (FP) zero into f0

0
..

(m − 1)

m
..

(m − 1)
+ MVL

(m + MVL) 
.. 

(m − 1)
+ 2 × MVL

(m + 2 × MVL) 
.. 

(m − 1)
+ 3 × MVL

. . . (n − MVL)
.. 

(n − 1)

Range of i

Value of j n/MVL1 2 3 . . .0

. . .

. . .

Figure 4.6 A vector of arbitrary length processed with strip mining. All blocks but the
first are of length MVL, utilizing the full power of the vector processor. In this figure, we
use the variable m for the expression (n % MVL). (The C operator % is modulo.)
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vpne p0,v0,f0 # Set p0(i) to 1 if v0(i)!=f0
vsub v0,v0,v1 # Subtract under vector mask
vst v0,x5 # Store the result in X
vdisable # Disable vector registers
vpdisable # Disable predicate registers

Compiler writers use the term IF-conversion to transform an IF statement into a
straight-line code sequence using conditional execution.

Using a vector-mask register does have overhead, however. With scalar archi-
tectures, conditionally executed instructions still require execution time when
the condition is not satisfied. Nonetheless, the elimination of a branch and the asso-
ciated control dependences can make a conditional instruction faster even if it
sometimes does useless work. Similarly, vector instructions executed with a vector
mask still take the same execution time, even for the elements where the mask
is zero. Likewise, despite a significant number of zeros in the mask, using
vector-mask control may still be significantly faster than using scalar mode.

As we will see in Section 4.4, one difference between vector processors and
GPUs is the way they handle conditional statements. Vector processors make the
predicate registers part of the architectural state and rely on compilers tomanipulate
mask registers explicitly. In contrast, GPUs get the same effect using hardware to
manipulate internal mask registers that are invisible to GPU software. In both cases,
the hardware spends the time to execute a vector element whether the corresponding
mask bit is 0 or 1, so the GFLOPS rate drops when masks are used.

Memory Banks: Supplying Bandwidth for Vector
Load/Store Units

The behavior of the load/store vector unit is significantly more complicated than
that of the arithmetic functional units. The start-up time for a load is the time to
get the first word from memory into a register. If the rest of the vector can be sup-
plied without stalling, then the vector initiation rate is equal to the rate at which new
words are fetched or stored. Unlike simpler functional units, the initiation rate may
not necessarily be 1 clock cycle because memory bank stalls can reduce effective
throughput.

Typically, penalties for start-ups on load/store units are higher than
those for arithmetic units—over 100 clock cycles on many processors. For
RV64V, we assume a start-up time of 12 clock cycles, the same as the Cray-
1. (Recent vector computers use caches to bring down latency of vector loads
and stores.)

To maintain an initiation rate of one word fetched or stored per clock cycle,
the memory system must be capable of producing or accepting this much data.
Spreading accesses across multiple independent memory banks usually delivers
the desired rate. As we will soon see, having significant numbers of banks is
useful for dealing with vector loads or stores that access rows or columns
of data.
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Most vector processors use memory banks, which allow several independent
accesses rather than simple memory interleaving for three reasons:

1. Many vector computers support many loads or stores per clock cycle, and the
memory bank cycle time is usually several times larger than the processor cycle
time. To support simultaneous accesses from multiple loads or stores, the mem-
ory system needs multiple banks and needs to be able to control the addresses to
the banks independently.

2. Most vector processors support the ability to load or store data words that are
not sequential. In such cases, independent bank addressing, rather than inter-
leaving, is required.

3. Most vector computers support multiple processors sharing the same memory
system, so each processor will be generating its own separate stream of
addresses.

In combination, these features lead to the desire for a large number of independent
memory banks, as the following example shows.

Example The largest configuration of a Cray T90 (Cray T932) has 32 processors, each capa-
ble of generating 4 loads and 2 stores per clock cycle. The processor clock cycle is
2.167 ns, while the cycle time of the SRAMs used for the memory system is 15 ns.
Calculate the minimum number of memory banks required to allow all processors
to run at the full memory bandwidth.

Answer The maximum number of memory references each cycle is 192: 32 processors
times 6 references per processor. Each SRAM bank is busy for 15/2.167¼6.92
clock cycles, which we round up to 7 processor clock cycles. Therefore we require
a minimum of 192�7¼1344 memory banks!

The Cray T932 actually has 1024 memory banks, so the early models could not
sustain the full bandwidth to all processors simultaneously. A subsequent memory
upgrade replaced the 15 ns asynchronous SRAMs with pipelined synchronous
SRAMs that more than halved the memory cycle time, thereby providing sufficient
bandwidth.

Taking a higher-level perspective, vector load/store units play a similar role to
prefetch units in scalar processors in that both try to deliver data bandwidth by
supplying processors with streams of data.

Stride: Handling Multidimensional Arrays in Vector
Architectures

The position in memory of adjacent elements in a vector may not be sequential.
Consider this straightforward code for matrix multiply in C:
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for (i = 0; i < 100; i=i+1)
for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];
}

We could vectorize the multiplication of each row of B with each column of D and
strip-mine the inner loop with k as the index variable.

To do so, we must consider how to address adjacent elements in B and adjacent
elements in D. When an array is allocated memory, it is linearized and must be laid
out in either row-major order (as in C) or column-major order (as in Fortran). This
linearization means that either the elements in the row or the elements in the col-
umn are not adjacent in memory. For example, the preceding C code allocates in
row-major order, so the elements of D that are accessed by iterations in the inner
loop are separated by the row size times 8 (the number of bytes per entry) for a total
of 800 bytes. In Chapter 2, we saw that blocking could improve locality in cache-
based systems. For vector processors without caches, we need another technique to
fetch elements of a vector that are not adjacent in memory.

This distance separating elements to be gathered into a single vector register is
called the stride. In this example, matrix D has a stride of 100 double words (800
bytes), and matrix B would have a stride of 1 double word (8 bytes). For column-
major order, which is used by Fortran, the strides would be reversed. Matrix D
would have a stride of 1, or 1 double word (8 bytes), separating successive
elements, while matrix B would have a stride of 100, or 100 double words (800
bytes). Thus, without reordering the loops, the compiler can’t hide the long
distances between successive elements for both B and D.

Once a vector is loaded into a vector register, it acts as if it had logically adja-
cent elements. Thus a vector processor can handle strides greater than one, called
nonunit strides, using only vector load and vector store operations with stride
capability. This ability to access nonsequential memory locations and to reshape
them into a dense structure is one of the major advantages of a vector
architecture.

Caches inherently deal with unit-stride data; increasing block size can help
reduce miss rates for large scientific datasets with unit stride, but increasing block
size can even have a negative effect for data that are accessed with nonunit strides.
While blocking techniques can solve some of these problems (see Chapter 2), the
ability to access noncontiguous data efficiently remains an advantage for vector
processors on certain problems, as we will see in Section 4.7.

On RV64V, where the addressable unit is a byte, the stride for our example
would be 800. The value must be computed dynamically because the size of
the matrix may not be known at compile time or—just like vector length—may
change for different executions of the same statement. The vector stride, like
the vector starting address, can be put in a general-purpose register. Then the
RV64V instruction VLDS (load vector with stride) fetches the vector into a vector
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register. Likewise, when storing a nonunit stride vector, use the instruction VSTS
(store vector with stride).

Supporting strides greater than one complicates the memory system. Once we
introduce nonunit strides, it becomes possible to request accesses from the same
bank frequently. When multiple accesses contend for a bank, a memory bank
conflict occurs, thereby stalling one access. A bank conflict and thus a stall will
occur if

Number of banks
Least common multiple Stride, Number of banksð Þ < Bankbusy time

Example Suppose we have 8 memory banks with a bank busy time of 6 clocks and a total
memory latency of 12 cycles. How long will it take to complete a 64-element
vector load with a stride of 1? With a stride of 32?

Answer Because the number of banks is larger than the bank busy time, for a stride of 1, the
load will take 12+64¼76 clock cycles, or 1.2 clock cycles per element. The worst
possible stride is a value that is a multiple of the number of memory banks, as in
this case with a stride of 32 and 8memory banks. Every access to memory (after the
first one) will collide with the previous access and will have to wait for the 6-clock-
cycle bank busy time. The total time will be 12+1+6 * 63¼391 clock cycles, or
6.1 clock cycles per element, slowing it down by a factor of 5!

Gather-Scatter: Handling Sparse Matrices in Vector
Architectures

As previously mentioned, sparse matrices are commonplace, so it is important to
have techniques to allow programs with sparse matrices to execute in vector mode.
In a sparse matrix, the elements of a vector are usually stored in some compacted
form and then accessed indirectly. Assuming a simplified sparse structure, we
might see code that looks like this:

for (i = 0; i < n; i=i+1)
A[K[i]] = A[K[i]] + C[M[i]];

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K andM to designate the nonzero elements of A and C. (A and Cmust have the
same number of nonzero elements—n of them—so K and M are the same size.)

The primary mechanism for supporting sparse matrices is gather-scatter oper-
ations using index vectors. The goal of such operations is to support moving
between a compressed representation (i.e., zeros are not included) and normal
representation (i.e., the zeros are included) of a sparse matrix. A gather operation
takes an index vector and fetches the vector whose elements are at the addresses
given by adding a base address to the offsets given in the index vector. The result is
a dense vector in a vector register. After these elements are operated on in a dense
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form, the sparse vector can be stored in an expanded form by a scatter store, using
the same index vector. Hardware support for such operations is called gather-scat-
ter, and it appears on nearly all modern vector processors. The RV64V instructions
are vldi (load vector indexed or gather) and vsti (store vector indexed or
scatter). For example, if x5, x6, x7, and x28 contain the starting addresses of
the vectors in the previous sequence, we can code the inner loop with vector
instructions such as:

vsetdcfg 4*FP64 # 4 64b FP vector registers
vld v0, x7 # Load K[]
vldx v1, x5, v0) # Load A[K[]]
vld v2, x28 # Load M[]
vldi v3, x6, v2) # Load C[M[]]
vadd v1, v1, v3 # Add them
vstx v1, x5, v0) # Store A[K[]]
vdisable # Disable vector registers

This technique allows code with sparse matrices to run in vector mode. A
simple vectorizing compiler could not automatically vectorize the preceding
source code because the compiler would not know that the elements of K are
distinct values, and thus that no dependences exist. Instead, a programmer directive
would tell the compiler that it was safe to run the loop in vector mode.

Although indexed loads and stores (gather and scatter) can be pipelined, they
typically run muchmore slowly than nonindexed loads or stores, because the mem-
ory banks are not known from the start of the instruction. The register file must also
provide communication between the lanes of a vector unit to support gather and
scatter.

Each element of a gather or scatter has an individual address, so they can’t be
handled in groups, and there can be conflicts at many places throughout the mem-
ory system. Thus each individual access incurs significant latency even on cache-
based systems. However, as Section 4.7 shows, a memory system can deliver better
performance by designing for this case and by using more hardware resources
versus when architects have a laissez-faire attitude toward such unpredictable
accesses.

As we will see in Section 4.4, all loads are gathers and all stores are scatters in
GPUs in that no separate instructions restrict addresses to be sequential. To turn the
potentially slow gathers and scatters into the more efficient unit-stride accesses to
memory, the GPU hardware must recognize the sequential addresses during
execution and the GPU programmer to ensure that all the addresses in a gather
or scatter are to adjacent locations.

Programming Vector Architectures

An advantage of vector architectures is that compilers can tell programmers at
compile time whether a section of code will vectorize or not, often giving hints
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as to why it did not vectorize the code. This straightforward execution model
allows experts in other domains to learn how to improve performance by revising
their code or by giving hints to the compiler when it’s okay to assume indepen-
dence between operations, such as for gather-scatter data transfers. It is this
dialogue between the compiler and the programmer, with each side giving hints
to the other on how to improve performance, that simplifies programming of vector
computers.

Today, the main factor that affects the success with which a program runs in
vector mode is the structure of the program itself: Do the loops have true data
dependences (see Section 4.5), or can they be restructured so as not to have such
dependences? This factor is influenced by the algorithms chosen and, to some
extent, by how they are coded.

As an indication of the level of vectorization achievable in scientific programs,
let’s look at the vectorization levels observed for the Perfect Club benchmarks.
Figure 4.7 shows the percentage of operations executed in vector mode for two
versions of the code running on the Cray Y-MP. The first version is that obtained
with just compiler optimization on the original code, while the second version uses
extensive hints from a team of Cray Research programmers. Several studies of the
performance of applications on vector processors show a wide variation in the level
of compiler vectorization.

Benchmark
name

Operations executed
in vector mode,

compiler-optimized

Operations executed
in vector mode,

with programmer aid

Speedup
from hint

optimization

BDNA 96.1% 97.2% 1.52

MG3D 95.1% 94.5% 1.00

FLO52 91.5% 88.7% N/A

ARC3D 91.1% 92.0% 1.01

SPEC77 90.3% 90.4% 1.07

MDG 87.7% 94.2% 1.49

TRFD 69.8% 73.7% 1.67

DYFESM 68.8% 65.6% N/A

ADM 42.9% 59.6% 3.60

OCEAN 42.8% 91.2% 3.92

TRACK 14.4% 54.6% 2.52

SPICE 11.5% 79.9% 4.06

QCD 4.2% 75.1% 2.15

Figure 4.7 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the Cray Y-MP (Vajapeyam, 1991). The first column shows the vectorization
level obtained with the compiler without hints, and the second column shows the
results after the codes have been improved with hints from a team of Cray Research
programmers.
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The hint-rich versions show significant gains in vectorization level for codes
that the compiler could not vectorize well by itself, with all codes now above 50%
vectorization. The median vectorization improved from about 70% to about 90%.

4.3 SIMD Instruction Set Extensions for Multimedia

SIMDMultimedia Extensions started with the simple observation that many media
applications operate on narrower data types than the 32-bit processors were opti-
mized for. Graphics systems would use 8 bits to represent each of the three primary
colors plus 8 bits for transparency. Depending on the application, audio samples are
usually represented with 8 or 16 bits. By partitioning the carry chains within, say, a
256-bit adder, a processor could perform simultaneous operations on short vectors
of thirty-two 8-bit operands, sixteen 16-bit operands, eight 32-bit operands, or four
64-bit operands. The additional cost of such partitioned adderswas small. Figure 4.8
summarizes typical multimedia SIMD instructions. Like vector instructions, a
SIMD instruction specifies the same operation on vectors of data. Unlike vector
machines with large register files such as the RISC-V RV64V vector registers,
which can hold, say, thirty-two 64-bit elements in each of 32 vector registers, SIMD
instructions tend to specify fewer operands and thus use much smaller register files.

In contrast to vector architectures, which offer an elegant instruction set that is
intended to be the target of a vectorizing compiler, SIMD extensions have three
major omissions: no vector length register, no strided or gather/scatter data transfer
instructions, and no mask registers.

1. Multimedia SIMD extensions fix the number of data operands in the opcode,
which has led to the addition of hundreds of instructions in the MMX, SSE,
and AVX extensions of the x86 architecture. Vector architectures have a
vector-length register that specifies the number of operands for the current oper-
ation. These variable-length vector registers easily accommodate programs that
naturally have shorter vectors than the maximum size the architecture supports.
Moreover, vector architectures have an implicit maximum vector length in the

Instruction category Operands

Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide opera-
tions. Note that the IEEE 754-2008 floating-point standard added half-precision (16-
bit) and quad-precision (128-bit) floating-point operations.
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architecture, which combined with the vector length register avoids the use of
many opcodes.

2. Up until recently, multimedia SIMD did not offer the more sophisticated
addressing modes of vector architectures, namely strided accesses and
gather-scatter accesses. These features increase the number of programs that
a vector compiler can successfully vectorize (see Section 4.7).

3. Although this is changing, multimedia SIMD usually did not offer the mask reg-
isters to support conditional execution of elements as in vector architectures.

Such omissions make it harder for the compiler to generate SIMD code and
increase the difficulty of programming in SIMD assembly language.

For the x86 architecture, the MMX instructions added in 1996 repurposed the
64-bit floating-point registers, so the basic instructions could perform eight 8-bit
operations or four 16-bit operations simultaneously. These were joined by parallel
MAX andMIN operations, a wide variety of masking and conditional instructions,
operations typically found in digital signal processors, and ad hoc instructions that
were believed to be useful in important media libraries. Note that MMX reused the
floating-point data-transfer instructions to access memory.

The Streaming SIMD Extensions (SSE) successor in 1999 added 16 separate
registers (XMM registers) that were 128 bits wide, so now instructions could simul-
taneously perform sixteen 8-bit operations, eight 16-bit operations, or four 32-bit
operations. It also performed parallel single-precision floating-point arithmetic.
Because SSE had separate registers, it needed separate data transfer instructions.
Intel soon added double-precision SIMD floating-point data types via SSE2 in
2001, SSE3 in 2004, and SSE4 in 2007. Instructions with four single-precision
floating-point operations or two parallel double-precision operations increased
the peak floating-point performance of the x86 computers, as long as programmers
placed the operands side by side. With each generation, they also added ad hoc
instructions whose aim was to accelerate specific multimedia functions perceived
to be important.

The Advanced Vector Extensions (AVX), added in 2010, doubled the width of
the registers again to 256 bits (YMM registers) and thereby offered instructions that
double the number of operations on all narrower data types. Figure 4.9 shows AVX
instructions useful for double-precision floating-point computations. AVX2 in
2013 added 30 new instructions such as gather (VGATHER) and vector shifts
(VPSLL, VPSRL, VPSRA). AVX-512 in 2017 doubled the width again to 512 bits
(ZMM registers), doubled the number of the registers again to 32, and added about
250 new instructions including scatter (VPSCATTER) and mask registers
(OPMASK). AVX includes preparations to extend registers to 1024 bits in future
editions of the architecture.

In general, the goal of these extensions has been to accelerate carefully written
libraries rather than for the compiler to generate them (see Appendix H), but recent
x86 compilers are trying to generate such code, particularly for floating-point-
intensive applications. Since the opcode determines the width of the SIMD regis-
ter, every time the width doubles, so must the number of SIMD instructions.
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Given these weaknesses, why are multimedia SIMD extensions so popular?
First, they initially cost little to add to the standard arithmetic unit and they were
easy to implement. Second, they require scant extra processor state compared to
vector architectures, which is always a concern for context switch times. Third,
you need a lot of memory bandwidth to support a vector architecture, which
many computers don’t have. Fourth, SIMD does not have to deal with problems
in virtual memory when a single instruction can generate 32 memory accesses
and any of which can cause a page fault. The original SIMD extensions used
separate data transfers per SIMD group of operands that are aligned in memory,
and so they cannot cross page boundaries. Another advantage of short, fixed-
length “vectors” of SIMD is that it is easy to introduce instructions that can help
with new media standards, such as instructions that perform permutations or
instructions that consume either fewer or more operands than vectors can pro-
duce. Finally, there was concern about how well vector architectures can work
with caches. More recent vector architectures have addressed all of these prob-
lems. The overarching issue, however, is that due the overiding importance of
backwards binary compatability, once an architecture gets started on the SIMD
path it’s very hard to get off it.

Example To get an idea about what multimedia instructions look like, assume we added a
256-bit SIMD multimedia instruction extension to RISC-V, tentatively called
RVP for “packed.” We concentrate on floating-point in this example. We add
the suffix “4D” on instructions that operate on four double-precision operands
at once. Like vector architectures, you can think of a SIMD Processor as having
lanes, four in this case. RV64P expands the F registers to be the full width, in this
case 256 bits. This example shows the RISC-V SIMD code for the DAXPY loop,

AVX instruction Description

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands

VFMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, …

VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

Figure 4.9 AVX instructions for x86 architecture useful in double-precision floating-point programs. Packed-
double for 256-bit AVX means four 64-bit operands executed in SIMD mode. As the width increases with AVX, it
is increasingly important to add data permutation instructions that allow combinations of narrow operands from
different parts of the wide registers. AVX includes instructions that shuffle 32-bit, 64-bit, or 128-bit operands within
a 256-bit register. For example, BROADCAST replicates a 64-bit operand four times in an AVX register. AVX also
includes a large variety of fused multiply-add/subtract instructions; we show just two here.
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with the changes to the RISC-V code for SIMD underlined. We assume that the
starting addresses of X and Y are in x5 and x6, respectively.

Answer Here is the RISC-V SIMD code:

fld f0,a #Load scalar a
splat.4D f0,f0 #Make 4 copies of a
addi x28,x5,#256 #Last address to load

Loop: fld.4D f1,0(x5) #Load X[i] ... X[i+3]
fmul.4D f1,f1,f0 #a�X[i] ... a�X[i+3]
fld.4D f2,0(x6) #Load Y[i] ... Y[i+3]
fadd.4D f2,f2,f1 # a�X[i]+Y[i]...

# a�X[i+3]+Y[i+3]
fsd.4D f2,0(x6) #Store Y[i]... Y[i+3]
addi x5,x5,#32 #Increment index to X
addi x6,x6,#32 #Increment index to Y
bne x28,x5,Loop #Check if done

The changes were replacing every RISC-V double-precision instruction with its 4D
equivalent, increasing the increment from 8 to 32, and adding the splat instruc-
tion that makes 4 copies of a in the 256 bits of f0. While not as dramatic as the
32� reduction of dynamic instruction bandwidth of RV64V, RISC-V SIMD does
get almost a 4� reduction: 67 versus 258 instructions executed for RV64G. This
code knows the number of elements. That number is often determined at run time,
which would require an extra strip-mine loop to handle the case when the number is
not a modulo of 4.

Programming Multimedia SIMD Architectures

Given the ad hoc nature of the SIMDmultimedia extensions, the easiest way to use
these instructions has been through libraries or by writing in assembly language.

Recent extensions have become more regular, giving compilers a more reason-
able target. By borrowing techniques from vectorizing compilers, compilers are
starting to produce SIMD instructions automatically. For example, advanced com-
pilers today can generate SIMD floating-point instructions to deliver much higher
performance for scientific codes. However, programmers must be sure to align all
the data inmemory to thewidth of the SIMDunit onwhich the code is run to prevent
the compiler from generating scalar instructions for otherwise vectorizable code.

The Roofline Visual Performance Model

One visual, intuitive way to compare potential floating-point performance of var-
iations of SIMD architectures is the Roofline model (Williams et al., 2009). The
horizontal and diagonal lines of the graphs it produces give this simple model its
name and indicate its value (see Figure 4.11). It ties together floating-point perfor-
mance, memory performance, and arithmetic intensity in a two-dimensional graph.
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Arithmetic intensity is the ratio of floating-point operations per byte of memory
accessed. It can be calculated by taking the total number of floating-point opera-
tions for a program divided by the total number of data bytes transferred to main
memory during program execution. Figure 4.10 shows the relative arithmetic
intensity of several example kernels.

Peak floating-point performance can be found using the hardware specifica-
tions. Many of the kernels in this case study do not fit in on-chip caches, so peak
memory performance is defined by the memory system behind the caches. Note
that we need the peak memory bandwidth that is available to the processors,
not just at the DRAM pins as in Figure 4.27 on page 328. One way to find the
(delivered) peak memory performance is to run the Stream benchmark.

Figure 4.11 shows the Roofline model for the NEC SX-9 vector processor on
the left and the Intel Core i7 920 multicore computer on the right. The vertical Y-
axis is achievable floating-point performance from 2 to 256 GFLOPS/s. The hor-
izontal X-axis is arithmetic intensity, varying from 1/8 FLOP/DRAM byte
accessed to 16 FLOP/DRAM byte accessed in both graphs. Note that the graph
is a log-log scale, and that Rooflines are done just once for a computer.

For a given kernel, we can find a point on the X-axis based on its arithmetic
intensity. If we drew a vertical line through that point, the performance of the ker-
nel on that computer must lie somewhere along that line. We can plot a horizontal
line showing peak floating-point performance of the computer. Obviously, the
actual floating-point performance can be no higher than the horizontal line because
that is a hardware limit.

How could we plot the peak memory performance? Because the X-axis is
FLOP/byte and the Y-axis is FLOP/s, bytes/s is just a diagonal line at a 45-degree
angle in this figure. Thus we can plot a third line that gives the maximum floating-
point performance that the memory system of that computer can support for a given

Arithmetic intensity 

O(N) O(log(N)) O(1) 

Sparse
matrix
(SpMV)

Structured
grids
(Stencils,
PDEs)

Structured
grids
(Lattice
methods)

Spectral
methods
(FFTs)

Dense
matrix
(BLAS3)

N-body
(Particle
methods)

Figure 4.10 Arithmetic intensity, specified as the number of floating-point opera-
tions to run the program divided by the number of bytes accessed in main memory
(Williams et al., 2009). Some kernels have an arithmetic intensity that scales with prob-
lem size, such as a dense matrix, but there are many kernels with arithmetic intensities
independent of problem size.
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arithmetic intensity. We can express the limits as a formula to plot these lines in the
graphs in Figure 4.11:

Attainable GFLOPs=s ¼ Min Peak Memory BWð
�Arithmetic Intensity, Peak Floating�Point Perf:Þ

The “Roofline” sets an upper bound on performance of a kernel depending on its
arithmetic intensity. If we think of arithmetic intensity as a pole that hits the roof,
either it hits the flat part of the roof, which means performance is computationally
limited, or it hits the slanted part of the roof, which means performance is ulti-
mately limited by memory bandwidth. In Figure 4.11, the vertical dashed line
on the right (arithmetic intensity of 4) is an example of the former and the vertical
dashed line on the left (arithmetic intensity of 1/4) is an example of the latter. Given
a Roofline model of a computer, you can apply it repeatedly, because it doesn’t
vary by kernel.

Note that the “ridge point,” where the diagonal and horizontal roofs meet,
offers an interesting insight into a computer. If it is far to the right, then only kernels
with very high arithmetic intensity can achieve the maximum performance of that
computer. If it is far to the left, then almost any kernel can potentially hit the max-
imum performance. As we will see, this vector processor has both much higher
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Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore
computer with SIMD extensions on the right (Williams et al., 2009). This Roofline is for unit-stride memory accesses
and double-precision floating-point performance. NEC SX-9 is a vector supercomputer announced in 2008 that
cost millions of dollars. It has a peak DP FP performance of 102.4 GFLOP/s and a peak memory bandwidth of
162 GB/s from the Stream benchmark. The Core i7 920 has a peak DP FP performance of 42.66 GFLOP/s and a peak
memory bandwidth of 16.4 GB/s. The dashed vertical lines at an arithmetic intensity of 4 FLOP/byte show that both
processors operate at peak performance. In this case, the SX-9 at 102.4 FLOP/s is 2.4� faster than the Core i7 at
42.66 GFLOP/s. At an arithmetic intensity of 0.25 FLOP/byte, the SX-9 is 10� faster at 40.5 GFLOP/s versus
4.1 GFLOP/s for the Core i7.
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memory bandwidth and a ridge point far to the left as compared to other SIMD
Processors.

Figure 4.11 shows that the peak computational performance of the SX-9 is
2.4� faster than Core i7, but the memory performance is 10� faster. For programs
with an arithmetic intensity of 0.25, the SX-9 is 10� faster (40.5 versus
4.1 GFLOP/s). The higher memory bandwidth moves the ridge point from 2.6
in the Core i7 to 0.6 on the SX-9, which means many more programs can reach
the peak computational performance on the vector processor.

4.4 Graphics Processing Units

People can buy a GPU chip with thousands of parallel floating-point units for a few
hundred dollars and plug it into their desk side PC. Such affordability and conve-
nience makes high performance computing available to many. The interest in
GPU computing blossomedwhen this potential was combined with a programming
language that made GPUs easier to program. Therefore many programmers of sci-
entific and multimedia applications today are pondering whether to use GPUs or
CPUs. For programmers interested in machine learning, which is the subject of
Chapter 7, GPUs are currently the preferred platform.

GPUs and CPUs do not go back in computer architecture genealogy to a com-
mon ancestor; there is no “missing link” that explains both. As Section 4.10
describes, the primary ancestors of GPUs are graphics accelerators, as doing
graphics well is the reason why GPUs exist. While GPUs are moving toward
mainstream computing, they can’t abandon their responsibility to continue to excel
at graphics. Thus the design of GPUs may make more sense when architects ask,
given the hardware invested to do graphics well, how can we supplement it to
improve the performance of a wider range of applications?

Note that this section concentrates on using GPUs for computing. To see how
GPU computing combines with the traditional role of graphics acceleration, see
“Graphics and Computing GPUs,” by John Nickolls and David Kirk (Appendix
A in the 5th edition of Computer Organization and Design by the same authors
as this book).

Because the terminology and some hardware features are quite different
from vector and SIMD architectures, we believe it will be easier if we start with
the simplified programming model for GPUs before we describe the architecture.

Programming the GPU

CUDA is an elegant solution to the problem of representing parallelism
in algorithms, not all algorithms, but enough to matter. It seems to res-
onate in some way with the way we think and code, allowing an easier,
more natural expression of parallelism beyond the task level.

Vincent Natol,
“Kudos for CUDA,” HPC Wire (2010)
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The challenge for the GPU programmer is not simply getting good perfor-
mance on the GPU, but also in coordinating the scheduling of computation
on the system processor and the GPU and the transfer of data between system
memory and GPU memory. Moreover, as we see will see later in this section,
GPUs have virtually every type of parallelism that can be captured by the
programming environment: multithreading, MIMD, SIMD, and even
instruction-level.

NVIDIA decided to develop a C-like language and programming environment
that would improve the productivity of GPU programmers by attacking both the
challenges of heterogeneous computing and of multifaceted parallelism. The name
of their system is CUDA, for Compute Unified Device Architecture. CUDA pro-
duces C/C++ for the system processor (host) and a C and C++ dialect for the GPU
(device, thus the D in CUDA). A similar programming language isOpenCL, which
several companies are developing to offer a vendor-independent language for mul-
tiple platforms.

NVIDIA decided that the unifying theme of all these forms of parallelism
is the CUDA Thread. Using this lowest level of parallelism as the program-
ming primitive, the compiler and the hardware can gang thousands of CUDA
Threads together to utilize the various styles of parallelism within a GPU: mul-
tithreading, MIMD, SIMD, and instruction-level parallelism. Therefore NVI-
DIA classifies the CUDA programming model as single instruction, multiple
thread (SIMT). For reasons we will soon see, these threads are blocked
together and executed in groups of threads, called a Thread Block. We call
the hardware that executes a whole block of threads a multithreaded SIMD
Processor.

We need just a few details before we can give an example of a CUDA
program:

• To distinguish between functions for the GPU (device) and functions for the
system processor (host), CUDA uses __device__ or __global__ for
the former and __host__ for the latter.

• CUDA variables declared with __device__ are allocated to the GPU
Memory (see below), which is accessible by all multithreaded SIMD
Processors.

• The extended function call syntax for the function name that runs on the
GPU is

name < <<dimGrid, dimBlock>> > (… parameter list…)

where dimGrid and dimBlock specify the dimensions of the code (in
Thread Blocks) and the dimensions of a block (in threads).

• In addition to the identifier for blocks (blockIdx) and the identifier for each
thread in a block (threadIdx), CUDA provides a keyword for the number of
threads per block (blockDim), which comes from the dimBlock parameter
in the preceding bullet.
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Before seeing the CUDA code, let’s start with conventional C code for the DAXPY
loop from Section 4.2:

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, double a, double *x, double *y)
{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

Following is the CUDA version.We launch n threads, one per vector element, with
256 CUDA Threads per Thread Block in a multithreaded SIMD Processor. The
GPU function starts by calculating the corresponding element index i based on
the block ID, the number of threads per block, and the thread ID. As long as this
index is within the array (i < n), it performs the multiply and add.

// Invoke DAXPY with 256 threads per Thread Block
__host__
int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);
// DAXPY in CUDA
__global__
void daxpy(int n, double a, double *x, double *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

Comparing the C and CUDA codes, we see a common pattern to parallelizing
data-parallel CUDA code. The C version has a loop where each iteration is inde-
pendent from the others, allowing the loop to be transformed straightforwardly into
a parallel code where each loop iteration becomes a separate thread. (As previously
mentioned and described in detail in Section 4.5, vectorizing compilers also rely on
a lack of dependences between iterations of a loop, which are called loop-carried
dependences.) The programmer determines the parallelism in CUDA explicitly by
specifying the grid dimensions and the number of threads per SIMD Processor. By
assigning a single thread to each element, there is no need to synchronize between
threads when writing results to memory.

The GPU hardware handles parallel execution and thread management; it is not
done by applications or by the operating system. To simplify scheduling by the
hardware, CUDA requires that Thread Blocks be able to execute independently
and in any order. Different Thread Blocks cannot communicate directly, although
they can coordinate using atomic memory operations in global memory.

As we will soon see, many GPU hardware concepts are not obvious in CUDA.
Writing efficient GPU code requires that programmers think in terms of SIMD
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operations, even though the CUDA programming model looks like MIMD. Per-
formance programmers must keep the GPU hardware in mind when writing in
CUDA. That could hurt programmer productivity, but then most programmers
are using GPUs instead of CPUs to get performance. For reasons explained shortly,
they know that they need to keep groups of 32 threads together in control flow to
get the best performance from multithreaded SIMD Processors and to create many
more threads per multithreaded SIMD Processor to hide latency to DRAM. They
also need to keep the data addresses localized in one or a few blocks of memory to
get the expected memory performance.

Like many parallel systems, a compromise between productivity and perfor-
mance is for CUDA to include intrinsics to give programmers explicit control over
the hardware. The struggle between productivity on the one hand versus allowing the
programmer to be able to express anything that the hardware can do on the other
hand happens often in parallel computing. It will be interesting to see how the lan-
guage evolves in this classic productivity-performance battle as well as to see
whether CUDA becomes popular for other GPUs or even other architectural styles.

NVIDIA GPU Computational Structures

The uncommon heritage mentioned above helps explain why GPUs have their own
architectural style and their own terminology independent from CPUs. One obsta-
cle to understanding GPUs has been the jargon, with some terms even having
misleading names. This obstacle has been surprisingly difficult to overcome, as
the many rewrites of this chapter can attest.

To try to bridge the twin goals of making the architecture of GPUs understand-
able and learning the many GPU terms with nontraditional definitions, our
approach is to use the CUDA terminology for software but initially use more
descriptive terms for the hardware, sometimes borrowing terms from OpenCL.
Once we explain the GPU architecture in our terms, we’ll map them into the
official jargon of NVIDIA GPUs.

From left to right, Figure 4.12 lists the descriptive term used in this section, the
closest term from mainstream computing, the official NVIDIA GPU jargon in case
you are interested, and then a short explanation of the term. The rest of this section
explains the microarchitectural features of GPUs using the descriptive terms on the
left in the figure.

We use NVIDIA systems as our example as they are representative of GPU archi-
tectures. Specifically, we follow the terminology of the preceding CUDAparallel pro-
gramming languageanduse theNVIDIAPascalGPUas the example (seeSection4.7).

Like vector architectures, GPUs work well only with data-level parallel
problems. Both styles have gather-scatter data transfers and mask registers, and
GPU processors have even more registers than do vector processors. Sometimes,
GPUs implement certain features in hardware that vector processors would imple-
ment in software. This difference is because vector processors have a scalar
processor that can execute a software function. Unlike most vector architectures,
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Type
Descriptive
name

Closest old term
outside of GPUs

Official
CUDA/NVIDIA
GPU term Short explanation

P
ro
gr
am

ab
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ra
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ns

Vectorizable
Loop

Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made up
of one or more Thread Blocks (bodies of vectorized
loop) that can execute in parallel

Body of
Vectorized
Loop

Body of a (Strip-
Mined)
Vectorized Loop

Thread Block A vectorized loop executed on a multithreaded
SIMD Processor, made up of one or more threads of
SIMD instructions. They can communicate via local
memory

Sequence of
SIMD Lane
Operations

One iteration of a
Scalar Loop

CUDA Thread A vertical cut of a thread of SIMD instructions
corresponding to one element executed by one SIMD
Lane. Result is stored depending on mask and
predicate register

M
ac
hi
ne

ob
je
ct A Thread of

SIMD
Instructions

Thread of Vector
Instructions

Warp A traditional thread, but it only contains SIMD
instructions that are executed on a multithreaded
SIMD Processor. Results stored depending on a per-
element mask

SIMD
Instruction

Vector Instruction PTX
Instruction

A single SIMD instruction executed across SIMD
Lanes

P
ro
ce
ss
in
g
ha
rd
w
ar
e

Multithreaded
SIMD
Processor

(Multithreaded)
Vector Processor

Streaming
Multiprocessor

Amultithreaded SIMD Processor executes threads of
SIMD instructions, independent of other SIMD
Processors

Thread Block
Scheduler

Scalar Processor Giga Thread
Engine

Assigns multiple Thread Blocks (bodies of
vectorized loop) to multithreaded SIMD Processors

SIMD Thread
Scheduler

Thread Scheduler
in a Multithreaded
CPU

Warp
Scheduler

Hardware unit that schedules and issues threads of
SIMD instructions when they are ready to execute;
includes a scoreboard to track SIMD Thread
execution

SIMD Lane Vector Lane Thread
Processor

A SIMD Lane executes the operations in a thread of
SIMD instructions on a single element. Results
stored depending on mask

M
em

or
y
ha
rd
w
ar
e

GPU Memory Main Memory Global
Memory

DRAM memory accessible by all multithreaded
SIMD Processors in a GPU

PrivateMemory Stack or Thread
Local Storage
(OS)

Local Memory Portion of DRAM memory private to each SIMD
Lane

Local Memory Local Memory Shared
Memory

Fast local SRAM for one multithreaded SIMD
Processor, unavailable to other SIMD Processors

SIMD Lane
Registers

Vector Lane
Registers

Thread
Processor
Registers

Registers in a single SIMD Lane allocated across a
full Thread Block (body of vectorized loop)

Figure 4.12 Quick guide to GPU terms used in this chapter. We use the first column for hardware terms. Four
groups cluster these 11 terms. From top to bottom: program abstractions, machine objects, processing hardware,
and memory hardware. Figure 4.21 on page 312 associates vector terms with the closest terms here, and
Figure 4.24 on page 317 and Figure 4.25 on page 318 reveal the official CUDA/NVIDIA and AMD terms and definitions
along with the terms used by OpenCL.
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GPUs also rely on multithreading within a single multithreaded SIMD Processor to
hide memory latency (see Chapters 2 and 3). However, efficient code for both vec-
tor architectures and GPUs requires programmers to think in groups of SIMD
operations.

A Grid is the code that runs on a GPU that consists of a set of Thread Blocks.
Figure 4.12 draws the analogy between a grid and a vectorized loop and between a
Thread Block and the body of that loop (after it has been strip-mined, so that it is a
full computation loop). To give a concrete example, let’s suppose we want to mul-
tiply two vectors together, each 8192 elements long: A = B * C. We’ll return to this
example throughout this section. Figure 4.13 shows the relationship between this
example and these first two GPU terms. The GPU code that works on the whole
8192 element multiply is called a Grid (or vectorized loop). To break it down into
more manageable sizes, a Grid is composed of Thread Blocks (or body of a
vectorized loop), each with up to 512 elements. Note that a SIMD instruction
executes 32 elements at a time. With 8192 elements in the vectors, this example
thus has 16 Thread Blocks because 16¼8192 � 512. The Grid and Thread Block
are programming abstractions implemented in GPU hardware that help program-
mers organize their CUDA code. (The Thread Block is analogous to a strip-mined
vector loop with a vector length of 32.)

A Thread Block is assigned to a processor that executes that code, which we
call a multithreaded SIMD Processor, by the Thread Block Scheduler. The
programmer tells the Thread Block Scheduler, which is implemented in hardware,
how many Thread Blocks to run. In this example, it would send 16 Thread Blocks
to multithreaded SIMD Processors to compute all 8192 elements of this loop

Figure 4.14 shows a simplified block diagram of a multithreaded SIMD
Processor. It is similar to a vector processor, but it has many parallel functional
units instead of a few that are deeply pipelined, as in a vector processor. In the pro-
gramming example in Figure 4.13, each multithreaded SIMD Processor is assigned
512 elements of the vectors to work on. SIMD Processors are full processors with
separate PCs and are programmed using threads (see Chapter 3).

The GPU hardware then contains a collection of multithreaded SIMD Proces-
sors that execute a Grid of Thread Blocks (bodies of vectorized loop); that is, a
GPU is a multiprocessor composed of multithreaded SIMD Processors.

A GPU can have from one to several dozen multithreaded SIMD Processors. For
example, the Pascal P100 system has 56, while the smaller chips may have as few as
one or two. To provide transparent scalability across models of GPUs with a differing
number of multithreaded SIMD Processors, the Thread Block Scheduler assigns
Thread Blocks (bodies of a vectorized loop) to multithreaded SIMD Processors.
Figure 4.15 shows the floor planof theP100 implementation of thePascal architecture.

Dropping down one more level of detail, the machine object that the hardware
creates, manages, schedules, and executes is a thread of SIMD instructions. It is a
traditional thread that contains exclusively SIMD instructions. These threads of
SIMD instructions have their own PCs, and they run on a multithreaded SIMD
Processor. The SIMD Thread Scheduler knows which threads of SIMD instruc-
tions are ready to run and then sends them off to a dispatch unit to be run on
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Figure 4.13 The mapping of a Grid (vectorizable loop), Thread Blocks (SIMD basic blocks), and threads of SIMD
instructions to a vector-vector multiply, with each vector being 8192 elements long. Each thread of SIMD instruc-
tions calculates 32 elements per instruction, and in this example, each Thread Block contains 16 threads of SIMD
instructions and the Grid contains 16 Thread Blocks. The hardware Thread Block Scheduler assigns Thread Blocks
to multithreaded SIMD Processors, and the hardware Thread Scheduler picks which thread of SIMD instructions
to run each clock cycle within a SIMD Processor. Only SIMD Threads in the same Thread Block can communicate
via local memory. (The maximum number of SIMD Threads that can execute simultaneously per Thread Block is
32 for Pascal GPUs.)

316 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures



the multithreaded SIMD Processor. Thus GPU hardware has two levels of hard-
ware schedulers: (1) the Thread Block Scheduler that assigns Thread Blocks (bod-
ies of vectorized loops) to multithreaded SIMD Processors and (2) the SIMD
Thread Scheduler within a SIMD Processor, which schedules when threads of
SIMD instructions should run.

The SIMD instructions of these threads are 32 wide, so each thread of SIMD
instructions in this example would compute 32 of the elements of the computation.
In this example, Thread Blocks would contain 512/32¼16 SIMD Threads (see
Figure 4.13).

Because the thread consists of SIMD instructions, the SIMD Processor must
have parallel functional units to perform the operation. We call them SIMD Lanes,
and they are quite similar to the Vector Lanes in Section 4.2.
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Figure 4.14 Simplified block diagram of a multithreaded SIMD Processor. It has 16 SIMD Lanes. The SIMD Thread
Scheduler has, say, 64 independent threads of SIMD instructions that it schedules with a table of 64 program counters
(PCs). Note that each lane has 1024 32-bit registers.
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With the Pascal GPU, each 32-wide thread of SIMD instructions is mapped
to 16 physical SIMD Lanes, so each SIMD instruction in a thread of SIMD instruc-
tions takes 2 clock cycles to complete. Each thread of SIMD instructions is
executed in lock step and scheduled only at the beginning. Staying with the anal-
ogy of a SIMD Processor as a vector processor, you could say that it has 16 lanes,
the vector length is 32, and the chime is 2 clock cycles. (This wide but shallow
nature is why we use the more accurate term SIMD Processor rather than vector.)

Note that the number of lanes in aGPUSIMDProcessor can be anythingup to the
number of threads in a ThreadBlock, just as the number of lanes in a vector processor
can vary between 1 and the maximum vector length. For example, across GPU gen-
erations, the number of lanes per SIMD Processor has fluctuated between 8 and 32.

Because by definition the threads of SIMD instructions are independent, the
SIMD Thread Scheduler can pick whatever thread of SIMD instructions is ready,
and need not stick with the next SIMD instruction in the sequence within a thread.
The SIMD Thread Scheduler includes a scoreboard (see Chapter 3) to keep track of
up to 64 threads of SIMD instructions to see which SIMD instruction is ready to go.
The latency of memory instructions is variable because of hits and misses in the
caches and the TLB, thus the requirement of a scoreboard to determine when these
instructions are complete. Figure 4.16 shows the SIMD Thread Scheduler picking
threads of SIMD instructions in a different order over time. The assumption
of GPU architects is that GPU applications have so many threads of SIMD instruc-
tions that multithreading can both hide the latency to DRAM and increase utiliza-
tion of multithreaded SIMD Processors.

Figure 4.15 Full-chip block diagram of the Pascal P100 GPU. It has 56multithreaded SIMD Processors, each with an
L1 cache and local memory, 32 L2 units, and amemory-bus width of 4096 data wires. (It has 60 blocks, with four spares
to improve yield.) The P100 has 4 HBM2 ports supporting up to 16 GB of capacity. It contains 15.4 billion transistors.
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Continuing our vector multiply example, each multithreaded SIMD Processor
must load 32 elements of two vectors from memory into registers, perform the
multiply by reading and writing registers, and store the product back from reg-
isters into memory. To hold these memory elements, a SIMD Processor has
between an impressive 32,768–65,536 32-bit registers (1024 per lane in
Figure 4.14), depending on the model of the Pascal GPU. Just like a vector pro-
cessor, these registers are divided logically across the Vector Lanes or, in this
case, SIMD Lanes.

Each SIMD Thread is limited to no more than 256 registers, so you might think
of a SIMD Thread as having up to 256 vector registers, with each vector register
having 32 elements and each element being 32 bits wide. (Because double-
precision floating-point operands use two adjacent 32-bit registers, an alternative
view is that each SIMD Thread has 128 vector registers of 32 elements, each of
which is 64 bits wide.)

There is a trade-off between register use and maximum number of threads;
fewer registers per thread means more threads are possible, and more registers
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Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a ready
thread of SIMD instructions and issues an instruction synchronously to all the SIMD
Lanes executing the SIMD Thread. Because threads of SIMD instructions are indepen-
dent, the scheduler may select a different SIMD Thread each time.
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mean fewer threads. That is, not all SIMD Threads need to have the maximum
number of registers. Pascal architects believe much of this precious silicon area
would be idle if all threads had the maximum number of registers.

To be able to execute many threads of SIMD instructions, each is dynamically
allocated a set of the physical registers on each SIMD Processor when threads of
SIMD instructions are created and freed when the SIMD Thread exits. For example,
a programmer can have a Thread Block that uses 36 registers per thread with, say, 16
SIMD Threads alongside another Thread Block that has 20 registers per thread with
32 SIMD Threads. Subsequent Thread Blocks may show up in any order, and the
registers have to be allocated on demand. While this variability can lead to fragmen-
tation and make some registers unavailable, in practice most Thread Blocks use the
same number of registers for a given vectorizable loop (“grid”). The hardware must
know where the registers for each Thread Block are in the large register file, and this
is recorded on a per Thread-Block basis. This flexibility requires routing, arbitration,
and banking in the hardware because a specific register for a given Thread Block
could end up in any location in the register file.

Note that a CUDAThread is just a vertical cut of a thread of SIMD instructions,
corresponding to one element executed by one SIMD Lane. Beware that CUDA
Threads are very different from POSIX Threads; you can’t make arbitrary system
calls from a CUDA Thread.

We’re now ready to see what GPU instructions look like.

NVIDA GPU Instruction Set Architecture

Unlike most system processors, the instruction set target of the NVIDIA compilers
is an abstraction of the hardware instruction set. PTX (Parallel Thread Execution)
provides a stable instruction set for compilers as well as compatibility across gen-
erations of GPUs. The hardware instruction set is hidden from the programmer.
PTX instructions describe the operations on a single CUDA Thread and usually
map one-to-one with hardware instructions, but one PTX instruction can expand
to many machine instructions, and vice versa. PTX uses an unlimited number of
write-once registers and the compiler must run a register allocation procedure to
map the PTX registers to a fixed number of read-write hardware registers available
on the actual device. The optimizer runs subsequently and can reduce register use
even further. This optimizer also eliminates dead code, folds instructions together,
and calculates places where branches might diverge and places where diverged
paths could converge.

Although there is some similarity between the x86 microarchitecture and PTX,
in that both translate to an internal form (microinstructions for x86), the difference
is that this translation happens in hardware at runtime during execution on the x86
versus in software and load time on a GPU.

The format of a PTX instruction is

opcode.type d, a, b, c;

where d is the destination operand; a, b, and c are source operands; and the
operation type is one of the following:
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Source operands are 32-bit or 64-bit registers or a constant value. Destinations are
registers, except for store instructions.

Figure 4.17 shows the basic PTX instruction set. All instructions can be pred-
icated by 1-bit predicate registers, which can be set by a set predicate instruction
(setp). The control flow instructions are functions call and return, thread
exit, branch, and barrier synchronization for threads within a Thread Block
(bar.sync). Placing a predicate in front of a branch instruction gives us con-
ditional branches. The compiler or PTX programmer declares virtual registers as
32-bit or 64-bit typed or untyped values. For example, R0, R1, ... are for 32-bit
values and RD0, RD1, ... are for 64-bit registers. Recall that the assignment of
virtual registers to physical registers occurs at load time with PTX.

The following sequence of PTX instructions is for one iteration of our DAXPY
loop on page 292:

shl.u32 R8, blockIdx, 8 ; Thread Block ID * Block size
;(256 or 28)

add.u32 R8, R8, threadIdx ; R8 = i = my CUDA Thread ID
shl.u32 R8, R8, 3 ; byte offset
ld.global.f64 RD0, [X+R8]; RD0 = X[i]
ld.global.f64 RD2, [Y+R8]; RD2 = Y[i]
mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4

; (scalar a)
add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0; Y[i] = sum (X[i]*a + Y[i])

As demonstrated above, the CUDA programming model assigns one CUDAThread
to each loop iteration and offers a unique identifier number to each Thread Block
(blockIdx) and one to each CUDA Thread within a block (threadIdx). Thus
it creates 8192 CUDA Threads and uses the unique number to address each element
within the array, so there is no incrementing or branching code. The first three PTX
instructions calculate that unique element byte offset in R8, which is added to the
base of the arrays. The following PTX instructions load two double-precision
floating-point operands, multiply and add them, and store the sum. (We’ll describe
the PTX code corresponding to the CUDA code “if (i < n)” below.)

Note that unlike vector architectures, GPUs don’t have separate instructions for
sequential data transfers, strided data transfers, and gather-scatter data transfers.

Type .type specifier

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64

Floating Point 16, 32, and 64 bits .f16, .f32, .f64
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Group Instruction Example Meaning Comments

Arithmetic

arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64

add.type add.f32 d, a, b d = a + b;

sub.type sub.f32 d, a, b d = a – b;

mul.type mul.f32 d, a, b d = a * b;

mad.type mad.f32 d, a, b, c d = a * b + c; multiply-add

div.type div.f32 d, a, b d = a / b; multiple microinstructions

rem.type rem.u32 d, a, b d = a % b; integer remainder

abs.type abs.f32 d, a d = jaj;
neg.type neg.f32 d, a d = 0 – a;

min.type min.f32 d, a, b d = (a < b)? a:b; floating selects non-NaN

max.type max.f32 d, a, b d = (a > b)? a:b; floating selects non-NaN

setp.cmp.type setp.lt.f32 p, a, b p = (a < b); compare and set predicate

numeric .cmp = eq, ne, lt, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

mov.type mov.b32 d, a d = a; move

selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate

cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype

Special function

special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

Logical

logic.type = .pred,.b32, .b64

and.type and.b32 d, a, b d = a & b;

or.type or.b32 d, a, b d = a j b;
xor.type xor.b32 d, a, b d = a ^b;

not.type not.b32 d, a, b d = �a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right

Memory access

memory.space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .b16, .b32, .b64

ld.space.type ld.global.b32 d, [a+off] d = *(a+off); load from memory space

st.space.type st.shared.b32 [d+off], a *(d+off) = a; store to memory space

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup

atom.spc.op.type atom.global.add.u32 d,[a], b
atom.global.cas.b32 d,[a], b, c

atomic { d = *a;
*a = op(*a, b); }

atomic read-modify-write
operation

atom.op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type = .b32

Control flow

branch @p bra target if (p) goto target; conditional branch

call call (ret), func, (params) ret = func(params); call function

ret ret return; return from function call

bar.sync bar.sync d wait for threads barrier synchronization

exit exit exit; terminate thread execution

Figure 4.17 Basic PTX GPU thread instructions.
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All data transfers are gather-scatter! To regain the efficiency of sequential (unit-
stride) data transfers, GPUs include special Address Coalescing hardware to rec-
ognize when the SIMD Lanes within a thread of SIMD instructions are collectively
issuing sequential addresses. That runtime hardware then notifies the Memory
Interface Unit to request a block transfer of 32 sequential words. To get this impor-
tant performance improvement, the GPU programmer must ensure that adjacent
CUDA Threads access nearby addresses at the same time so that they can be coa-
lesced into one or a few memory or cache blocks, which our example does.

Conditional Branching in GPUs

Just like the case with unit-stride data transfers, there are strong similarities
between how vector architectures and GPUs handle IF statements, with the former
implementing the mechanism largely in software with limited hardware support
and the latter making use of even more hardware. As we will see, in addition to
explicit predicate registers, GPU branch hardware uses internal masks, a branch
synchronization stack, and instruction markers to manage when a branch diverges
into multiple execution paths and when the paths converge.

At the PTX assembler level, control flow of one CUDA Thread is described by
the PTX instructions branch, call, return, and exit, plus individual per-thread-lane
predication of each instruction, specified by the programmer with per-thread-lane
1-bit predicate registers. The PTX assembler analyzes the PTX branch graph and
optimizes it to the fastest GPU hardware instruction sequence. Each can make its
own decision on a branch and does not need to be in lock step.

At the GPU hardware instruction level, control flow includes branch, jump,
jump indexed, call, call indexed, return, exit, and special instructions that manage
the branch synchronization stack. GPU hardware provides each SIMDThread with
its own stack; a stack entry contains an identifier token, a target instruction address,
and a target thread-active mask. There are GPU special instructions that push stack
entries for a SIMD Thread and special instructions and instruction markers that pop
a stack entry or unwind the stack to a specified entry and branch to the target
instruction address with the target thread-active mask. GPU hardware instructions
also have an individual per-lane predication (enable/disable), specified with a 1-bit
predicate register for each lane.

The PTX assembler typically optimizes a simple outer-level IF-THEN-ELSE
statement coded with PTX branch instructions to solely predicated GPU instruc-
tions, without any GPU branch instructions. A more complex control flow often
results in a mixture of predication and GPU branch instructions with special
instructions and markers that use the branch synchronization stack to push a stack
entry when some lanes branch to the target address, while others fall through. NVI-
DIA says a branch diverges when this happens. This mixture is also used when a
SIMD Lane executes a synchronization marker or converges, which pops a stack
entry and branches to the stack-entry address with the stack-entry thread-
active mask.
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The PTX assembler identifies loop branches and generates GPU branch
instructions that branch to the top of the loop, along with special stack instructions
to handle individual lanes breaking out of the loop and converging the SIMDLanes
when all lanes have completed the loop. GPU indexed jump and indexed call
instructions push entries on the stack so that when all lanes complete the switch
statement or function call, the SIMD Thread converges.

A GPU set predicate instruction (setp in Figure 4.17) evaluates the condi-
tional part of the IF statement. The PTX branch instruction then depends on that
predicate. If the PTX assembler generates predicated instructions with no GPU
branch instructions, it uses a per-lane predicate register to enable or disable each
SIMD Lane for each instruction. The SIMD instructions in the threads inside the
THEN part of the IF statement broadcast operations to all the SIMD Lanes. Those
lanes with the predicate set to 1 perform the operation and store the result, and the
other SIMD Lanes don’t perform an operation or store a result. For the ELSE
statement, the instructions use the complement of the predicate (relative to the
THEN statement), so the SIMD Lanes that were idle now perform the operation
and store the result while their formerly active siblings don’t. At the end of
the ELSE statement, the instructions are unpredicated so the original computation
can proceed. Thus, for equal length paths, an IF-THEN-ELSE operates at 50%
efficiency or less.

IF statements can be nested, thus the use of a stack, and the PTX assembler
typically generates a mix of predicated instructions and GPU branch and special
synchronization instructions for complex control flow. Note that deep nesting
can mean that most SIMD Lanes are idle during execution of nested conditional
statements. Thus, doubly nested IF statements with equal-length paths run at
25% efficiency, triply nested at 12.5% efficiency, and so on. The analogous
case would be a vector processor operating where only a few of the mask bits
are ones.

Dropping down a level of detail, the PTX assembler sets a “branch synchro-
nization” marker on appropriate conditional branch instructions that pushes the
current active mask on a stack inside each SIMD Thread. If the conditional branch
diverges (some lanes take the branch but some fall through), it pushes a stack entry
and sets the current internal active mask based on the condition. A branch synchro-
nization marker pops the diverged branch entry and flips the mask bits before the
ELSE portion. At the end of the IF statement, the PTX assembler adds another
branch synchronization marker that pops the prior active mask off the stack into
the current active mask.

If all the mask bits are set to 1, then the branch instruction at the end of the
THEN skips over the instructions in the ELSE part. There is a similar optimization
for the THEN part in case all the mask bits are 0 because the conditional branch
jumps over the THEN instructions. Parallel IF statements and PTX branches often
use branch conditions that are unanimous (all lanes agree to follow the same path)
such that the SIMD Thread does not diverge into a different individual lane control
flow. The PTX assembler optimizes such branches to skip over blocks of instruc-
tions that are not executed by any lane of a SIMD Thread. This optimization is
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useful in conditional error checking, for example, where the test must be made but
is rarely taken.

The code for a conditional statement similar to the one in Section 4.2 is

if (X[i] != 0)
X[i] = X[i] – Y[i];

else X[i] = Z[i];

This IF statement could compile to the following PTX instructions (assuming
that R8 already has the scaled thread ID), with *Push, *Comp, *Pop indicating
the branch synchronization markers inserted by the PTX assembler that push the
old mask, complement the current mask, and pop to restore the old mask:

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
setp.neq.s32 P1, RD0, #0 ;P1 is predicate reg 1
@!P1, bra ELSE1, *Push ; Push old mask, set new

; mask bits if P1 false, go to ELSE1
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RD0, RD0, RD2 ; Difference in RD0
st.global.f64 [X+R8], RD0 ; X[i] = RD0
@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1
ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0
ENDIF1:<next instruction>, *Pop ; pop to restore old mask

Once again, normally all instructions in the IF-THEN-ELSE statement are exe-
cuted by a SIMD Processor. It’s just that only some of the SIMD Lanes are enabled
for the THEN instructions and some lanes for the ELSE instructions. As previously
mentioned, in the surprisingly common case that the individual lanes agree on the
predicated branch—such as branching on a parameter value that is the same for all
lanes so that all active mask bits are 0s or all are 1s—the branch skips the THEN
instructions or the ELSE instructions.

This flexibility makes it appear that an element has its own program counter;
however, in the slowest case, only one SIMD Lane could store its result every 2
clock cycles, with the rest idle. The analogous slowest case for vector architec-
tures is operating with only one mask bit set to 1. This flexibility can lead naive
GPU programmers to poor performance, but it can be helpful in the early stages
of program development. Keep in mind, however, that the only choice for a
SIMD Lane in a clock cycle is to perform the operation specified in the PTX
instruction or be idle; two SIMD Lanes cannot simultaneously execute different
instructions.

This flexibility also helps explain the name CUDA Thread given to each ele-
ment in a thread of SIMD instructions, because it gives the illusion of acting inde-
pendently. A naive programmer may think that this thread abstraction means GPUs
handle conditional branches more gracefully. Some threads go one way, the rest go
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another, which seems true as long as you’re not in a hurry. Each CUDA Thread is
either executing the same instruction as every other thread in the Thread Block or it
is idle. This synchronization makes it easier to handle loops with conditional
branches because the mask capability can turn off SIMD Lanes and it detects
the end of the loop automatically.

The resulting performance sometimes belies that simple abstraction. Writing
programs that operate SIMD Lanes in this highly independent MIMD mode is like
writing programs that use lots of virtual address space on a computer with a smaller
physical memory. Both are correct, but they may run so slowly that the program-
mer will not be pleased with the result.

Conditional execution is a case where GPUs do in runtime hardware what vec-
tor architectures do at compile time. Vector compilers do a double IF-conversion,
generating four different masks. The execution is basically the same as GPUs, but
there are some more overhead instructions executed for vectors. Vector architec-
tures have the advantage of being integrated with a scalar processor, allowing them
to avoid the time for the 0 cases when they dominate a calculation. Although it will
depend on the speed of the scalar processor versus the vector processor, the cross-
over point when it’s better to use scalar might be when less than 20% of the mask
bits are 1s. One optimization available at runtime for GPUs, but not at compile time
for vector architectures, is to skip the THEN or ELSE parts when mask bits are all
0s or all 1s.

Thus the efficiency with which GPUs execute conditional statements comes
down to how frequently the branches will diverge. For example, one calculation
of eigenvalues has deep conditional nesting, but measurements of the code show
that around 82% of clock cycle issues have between 29 and 32 out of the 32 mask
bits set to 1, so GPUs execute this code more efficiently than one might expect.

Note that the same mechanism handles the strip-mining of vector loops—when
the number of elements doesn’t perfectly match the hardware. The example at the
beginning of this section shows that an IF statement checks to see if this SIMD
Lane element number (stored in R8 in the preceding example) is less than the limit
(i < n), and it sets masks appropriately.

NVIDIA GPU Memory Structures

Figure 4.18 shows the memory structures of an NVIDIAGPU. Each SIMD Lane in
a multithreaded SIMD Processor is given a private section of off-chip DRAM,
which we call the private memory. It is used for the stack frame, for spilling
registers, and for private variables that don’t fit in the registers. SIMD Lanes do
not share private memories. GPUs cache this private memory in the L1 and L2
caches to aid register spilling and to speed up function calls.

We call the on-chip memory that is local to each multithreaded SIMD Proces-
sor local memory. It is a small scratchpad memory with low latency (a few dozen
clocks) and high bandwidth (128 bytes/clock) where the programmer can store
data that needs to be reused, either by the same thread or another thread in the same
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Thread Block. Local memory is limited in size, typically to 48 KiB. It carries no
state between Thread Blocks executed on the same processor. It is shared by the
SIMD Lanes within a multithreaded SIMD Processor, but this memory is not
shared between multithreaded SIMD Processors. The multithreaded SIMD
Processor dynamically allocates portions of the local memory to a Thread Block
when it creates the Thread Block, and frees the memory when all the threads of the
Thread Block exit. That portion of local memory is private to that Thread Block.

Finally, we call the off-chip DRAM shared by the whole GPU and all Thread
Blocks GPU Memory. Our vector multiply example used only GPU Memory.

The system processor, called the host, can read or write GPU Memory. Local
memory is unavailable to the host, as it is private to each multithreaded SIMD
Processor. Private memories are unavailable to the host as well.

CUDA thread

Thread block

Per-block
local memory

Grid 0 

. . . 

Grid 1 

. . . 

GPU memory

Sequence

Inter-grid synchronization

Per-CUDA thread private memory

Figure 4.18 GPU memory structures. GPU memory is shared by all Grids (vectorized
loops), local memory is shared by all threads of SIMD instructions within a Thread Block
(body of a vectorized loop), and private memory is private to a single CUDA Thread.
Pascal allows preemption of a Grid, which requires that all local and private memory
be able to be saved in and restored from global memory. For completeness sake,
the GPU can also access CPU memory via the PCIe bus. This path is commonly used
for a final result when its address is in host memory. This option eliminates a final copy
from the GPU memory to the host memory.
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Rather than rely on large caches to contain the whole working sets of an
application,GPUs traditionally use smaller streaming cachesand, because theirwork-
ing sets can be hundreds ofmegabytes, rely on extensive multithreading of threads of
SIMDinstructions to hide the long latency toDRAM.Given the use ofmultithreading
to hide DRAM latency, the chip area used for large L2 and L3 caches in system pro-
cessors is spent insteadoncomputing resources andon the large numberof registers to
hold the state ofmany threads of SIMD instructions. In contrast, asmentioned, vector
loads and stores amortize the latency across many elements because they pay the
latency only once and then pipeline the rest of the accesses.

Although hiding memory latency behind many threads was the original philos-
ophy of GPUs and vector processors, all recent GPUs and vector processors have
caches to reduce latency. The argument follows Little’s Law from queuing theory:
the longer the latency, the more threads need to run during a memory access, which
in turn requires more registers. Thus GPU caches are added to lower average
latency and thereby mask potential shortages of the number of registers.

To improve memory bandwidth and reduce overhead, as mentioned, PTX data
transfer instructions in cooperation with the memory controller coalesce individual
parallel thread requests from the same SIMD Thread together into a single memory
block request when the addresses fall in the same block. These restrictions are
placed on the GPU program, somewhat analogous to the guidelines for system pro-
cessor programs to engage hardware prefetching (see Chapter 2). The GPU mem-
ory controller will also hold requests and send ones together to the same open page
to improve memory bandwidth (see Section 4.6). Chapter 2 describes DRAM in
sufficient detail for readers to understand the potential benefits of grouping related
addresses.

Innovations in the Pascal GPU Architecture

The multithreaded SIMD Processor of Pascal is more complicated than the simpli-
fied version in Figure 4.20. To increase hardware utilization, each SIMD Processor
has two SIMD Thread Schedulers, each with multiple instruction dispatch units
(some GPUs have four thread schedulers). The dual SIMD Thread Scheduler
selects two threads of SIMD instructions and issues one instruction from each
to two sets of 16 SIMD Lanes, 16 load/store units, or 8 special function units. With
multiple execution units available, two threads of SIMD instructions are scheduled
each clock cycle, allowing 64 lanes to be active. Because the threads are indepen-
dent, there is no need to check for data dependences in the instruction stream. This
innovation would be analogous to a multithreaded vector processor that can issue
vector instructions from two independent threads. Figure 4.19 shows the Dual
Scheduler issuing instructions, and Figure 4.20 shows the block diagram of the
multithreaded SIMD Processor of a Pascal GP100 GPU.

Each new generation of GPU typically adds some new features that increase
performance or make it easier for programmers. Here are the four main innovations
of Pascal:
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■ Fast single-precision, double-precision, and half-precision floating-point
arithmetic—Pascal GP100 chip has significant floating-point performance
in three sizes, all part of the IEEE standard for floating-point. The single-
precision floating-point of the GPU runs at a peak of 10 TeraFLOP/s.
Double-precision is roughly half-speed at 5 TeraFLOP/s, and half-precision
is about double-speed at 20 TeraFLOP/s when expressed as 2-element vectors.
The atomic memory operations include floating-point add for all three sizes.
Pascal GP100 is the first GPU with such high performance for half-precision.

■ High-bandwidth memory—The next innovation of the Pascal GP100 GPU is
the use of stacked, high-bandwidth memory (HBM2). This memory has a wide
bus with 4096 data wires running at 0.7 GHz offering a peak bandwidth of 732
GB/s, which is more than twice as fast as previous GPUs.

■ High-speed chip-to-chip interconnect—Given the coprocessor nature of
GPUs, the PCI bus can be a communications bottleneck when trying to use
multiple GPUs with one CPU. Pascal GP100 introduces the NVLink commu-
nications channel that supports data transfers of up to 20 GB/s in each direc-
tion. Each GP100 has 4 NVLink channels, providing a peak aggregate chip-to-
chip bandwidth of 160 GB/s per chip. Systems with 2, 4, and 8 GPUs are
available for multi-GPU applications, where each GPU can perform load, store,
and atomic operations to any GPU connected by NVLink. Additionally, an
NVLink channel can communicate with the CPU in some cases. For example,
the IBM Power9 CPU supports CPU-GPU communication. In this chip,
NVLink provides a coherent view of memory between all GPUs and CPUs
connected together. It also provides cache-to-cache communication instead
of memory-to-memory communication.

SIMD thread scheduler

Instruction dispatch unit

SIMD thread 8 instruction 11

SIMD thread 2 instruction 42

SIMD thread 14 instruction 95

SIMD thread 8 instruction 12
T

im
e

SIMD thread 2 instruction 43

SIMD thread 14 instruction 96

SIMD thread scheduler

Instruction dispatch unit

SIMD thread 9 instruction 11

SIMD thread 3 instruction 33

SIMD thread 15 instruction 95

SIMD thread 9 instruction 12

SIMD thread 15 instruction 96

SIMD thread 3 instruction 34

Figure 4.19 Block diagram of Pascal’s dual SIMD Thread scheduler. Compare this
design to the single SIMD Thread design in Figure 4.16.
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■ Unified virtual memory and paging support—The Pascal GP100 GPU adds
page-fault capabilities within a unified virtual address space. This feature
allows a single virtual address for every data structure that is identical across
all the GPUs and CPUs in a single system. When a thread accesses an address
that is remote, a page of memory is transferred to the local GPU for subsequent
use. Unified memory simplifies the programming model by providing demand
paging instead of explicit memory copying between the CPU and GPU or
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Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Pascal GPU. Each of the 64 SIMD Lanes
(cores) has a pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and oper-
ands to these units, and a queue for holding results. The 64 SIMD Lanes interact with 32 double-precision ALUs (DP
units) that perform 64-bit floating-point arithmetic, 16 load-store units (LD/STs), and 16 special function units (SFUs)
that calculate functions such as square roots, reciprocals, sines, and cosines.
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between GPUs. It also allows allocating far more memory than exists on the
GPU to solve problems with large memory requirements. As with any virtual
memory system, care must be taken to avoid excessive page movement.

Similarities and Differences Between Vector
Architectures and GPUs

As we have seen, there really are many similarities between vector architectures
and GPUs. Along with the quirky jargon of GPUs, these similarities have contrib-
uted to the confusion in architecture circles about how novel GPUs really are. Now
that you’ve seen what is under the covers of vector computers and GPUs, you can
appreciate both the similarities and the differences. Because both architectures are
designed to execute data-level parallel programs, but take different paths, this com-
parison is in depth in order to provide a better understanding of what is needed for
DLP hardware. Figure 4.21 shows the vector term first and then the closest equiv-
alent in a GPU.

A SIMD Processor is like a vector processor. The multiple SIMD Processors
in GPUs act as independent MIMD cores, just as many vector computers have
multiple vector processors. This view will consider the NVIDIA Tesla P100 as
a 56-core machine with hardware support for multithreading, where each core
has 64 lanes. The biggest difference is multithreading, which is fundamental to
GPUs and missing from most vector processors.

Looking at the registers in the two architectures, the RV64V register file in our
implementation holds entire vectors—that is, a contiguous block of elements. In
contrast, a single vector in a GPUwill be distributed across the registers of all SIMD
Lanes. A RV64V processor has 32 vector registers with perhaps 32 elements, or
1024 elements total. AGPU threadof SIMD instructions has up to 256 registerswith
32 elements each, or 8192 elements. These extra GPU registers support
multithreading.

Figure 4.22 is a block diagram of the execution units of a vector processor on
the left and a multithreaded SIMD Processor of a GPU on the right. For pedagogic
purposes, we assume the vector processor has four lanes and the multithreaded
SIMD Processor also has four SIMD Lanes. This figure shows that the four SIMD
Lanes act in concert much like a four-lane vector unit, and that a SIMD Processor
acts much like a vector processor.

In reality, there are many more lanes in GPUs, so GPU “chimes” are shorter.
While a vector processor might have 2 to 8 lanes and a vector length of, say, 32—
making a chime 4 to 16 clock cycles—a multithreaded SIMD Processor might have
8 or 16 lanes. A SIMDThread is 32 elements wide, so a GPU chimewould just be 2
or 4 clock cycles. This difference is why we use “SIMD Processor” as the more
descriptive term because it is closer to a SIMD design than it is to a traditional vec-
tor processor design.
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Grid Concepts are similar, with the GPU using the less descriptive term

Chime — Because a vector instruction (PTX instruction) takes just 2 cycles
on Pascal to complete, a chime is short in GPUs. Pascal has two
execution units that support the most common floating-point
instructions that are used alternately, so the effective issue rate is 1
instruction every clock cycle
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Instruction

PTX Instruction A PTX instruction of a SIMD Thread is broadcast to all SIMD
Lanes, so it is similar to a vector instruction

Gather/
Scatter

Global load/store (ld.
global/st.global)

All GPU loads and stores are gather and scatter, in that each SIMD
Lane sends a unique address. It’s up to the GPU Coalescing Unit to
get unit-stride performance when addresses from the SIMD Lanes
allow it

Mask
Registers

Predicate Registers and
Internal Mask Registers

Vector mask registers are explicitly part of the architectural state,
while GPU mask registers are internal to the hardware. The GPU
conditional hardware adds a new feature beyond predicate registers
to manage masks dynamically
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Vector
Processor

Multithreaded SIMD
Processor

These are similar, but SIMD Processors tend to have many lanes,
taking a few clock cycles per lane to complete a vector, while
vector architectures have few lanes and take many cycles to
complete a vector. They are also multithreaded where vectors
usually are not

Control
Processor

Thread Block Scheduler The closest is the Thread Block Scheduler that assigns Thread
Blocks to a multithreaded SIMD Processor. But GPUs have no
scalar-vector operations and no unit-stride or strided data transfer
instructions, which Control Processors often provide in vector
architectures

Scalar
Processor

System Processor Because of the lack of shared memory and the high latency to
communicate over a PCI bus (1000s of clock cycles), the system
processor in a GPU rarely takes on the same tasks that a scalar
processor does in a vector architecture

Vector Lane SIMD Lane Very similar; both are essentially functional units with registers

Vector
Registers

SIMD Lane Registers The equivalent of a vector register is the same register in all 16
SIMD Lanes of a multithreaded SIMD Processor running a thread
of SIMD instructions. The number of registers per SIMD Thread is
flexible, but the maximum is 256 in Pascal, so the maximum
number of vector registers is 256

Main
Memory

GPU Memory Memory for GPU versus system memory in vector case

Figure 4.21 GPU equivalent to vector terms.
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The closest GPU term to a vectorized loop is Grid, and a PTX instruction is the
closest to a vector instruction because a SIMDThread broadcasts a PTX instruction
to all SIMD Lanes.

With respect to memory access instructions in the two architectures, all GPU
loads are gather instructions and all GPU stores are scatter instructions. If data
addresses of CUDA Threads refer to nearby addresses that fall into the same
cache/memory block at the same time, the Address Coalescing Unit of the GPU
will ensure high memory bandwidth. The explicit unit-stride load and store instruc-
tions of vector architectures versus the implicit unit stride of GPU programming is
why writing efficient GPU code requires that programmers think in terms of SIMD
operations, even though the CUDA programming model looks like MIMD.
Because CUDA Threads can generate their own addresses, strided as well as
gather-scatter, addressing vectors are found in both vector architectures and GPUs.
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Figure 4.22 A vector processor with four lanes on the left and amultithreaded SIMD Processor of a GPUwith four
SIMD Lanes on the right. (GPUs typically have 16 or 32 SIMD Lanes.) The Control Processor supplies scalar operands
for scalar-vector operations, increments addressing for unit and nonunit stride accesses to memory, and performs
other accounting-type operations. Peak memory performance occurs only in a GPU when the Address Coalescing
Unit can discover localized addressing. Similarly, peak computational performance occurs when all internal mask bits
are set identically. Note that the SIMD Processor has one PC per SIMD Thread to help with multithreading.
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As we mentioned several times, the two architectures take very different
approaches to hiding memory latency. Vector architectures amortize it across all
the elements of the vector by having a deeply pipelined access, so you pay the
latency only once per vector load or store. Therefore vector loads and stores are
like a block transfer between memory and the vector registers. In contrast, GPUs
hide memory latency using multithreading. (Some researchers are investigating
adding multithreading to vector architectures to try to capture the best of both
worlds.)

With respect to conditional branch instructions, both architectures implement
them using mask registers. Both conditional branch paths occupy time and/or space
even when they do not store a result. The difference is that the vector compiler
manages mask registers explicitly in software while the GPU hardware and assem-
bler manages them implicitly using branch synchronization markers and an inter-
nal stack to save, complement, and restore masks.

The Control Processor of a vector computer plays an important role in the exe-
cution of vector instructions. It broadcasts operations to all the Vector Lanes and
broadcasts a scalar register value for vector-scalar operations. It also does implicit
calculations that are explicit in GPUs, such as automatically incrementing memory
addresses for unit-stride and nonunit-stride loads and stores. The Control Processor
is missing in the GPU. The closest analogy is the Thread Block Scheduler, which
assigns Thread Blocks (bodies of vector loop) to multithreaded SIMD Processors.
The runtime hardware mechanisms in a GPU that both generate addresses and then
discover if they are adjacent, which is commonplace in many DLP applications, are
likely less power-efficient than using a Control Processor.

The scalar processor in a vector computer executes the scalar instructions of a
vector program; that is, it performs operations that would be too slow to do in the
vector unit. Although the system processor that is associated with a GPU is the
closest analogy to a scalar processor in a vector architecture, the separate address
spaces plus transferring over a PCIe bus means thousands of clock cycles of
overhead to use them together. The scalar processor can be slower than a vector
processor for floating-point computations in a vector computer, but not by the same
ratio as the system processor versus a multithreaded SIMD Processor (given the
overhead).

Therefore each “vector unit” in a GPU must do computations that you would
expect to do using a scalar processor in a vector computer. That is, rather than
calculate on the system processor and communicate the results, it can be faster
to disable all but one SIMD Lane using the predicate registers and built-in masks
and do the scalar work with one SIMD Lane. The relatively simple scalar pro-
cessor in a vector computer is likely to be faster and more power-efficient than
the GPU solution. If system processors and GPUs become more closely tied
together in the future, it will be interesting to see if system processors can play
the same role as scalar processors do for vector and multimedia SIMD
architectures.
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Similarities and Differences Between Multimedia SIMD
Computers and GPUs

At a high level, multicore computers with multimedia SIMD instruction extensions
do share similarities with GPUs. Figure 4.23 summarizes the similarities and
differences.

Both aremultiprocessors whose processors usemultiple SIMDLanes, although
GPUs have more processors and many more lanes. Both use hardware multithread-
ing to improve processor utilization, although GPUs have hardware support for
manymore threads. Both have roughly 2:1 performance ratios between peak perfor-
mance of single-precision and double-precision floating-point arithmetic. Both use
caches, although GPUs use smaller streaming caches, and multicore computers
use large multilevel caches that try to contain whole working sets completely. Both
use a 64-bit address space, although the physical main memory is much smaller in
GPUs. Both support memory protection at the page level as well as demand paging,
which allows them to address far more memory than they have on board.

In addition to the large numerical differences in processors, SIMD Lanes, hard-
ware thread support, and cache sizes, there are many architectural differences. The
scalar processor and multimedia SIMD instructions are tightly integrated in tradi-
tional computers; they are separated by an I/O bus in GPUs, and they even have
separate main memories. The multiple SIMD Processors in a GPU use a single
address space and can support a coherent view of all memory on some systems
given support from CPU vendors (such as the IBM Power9). Unlike GPUs, mul-
timedia SIMD instructions historically did not support gather-scatter memory
accesses, which Section 4.7 shows is a significant omission.

Feature Multicore with SIMD GPU

SIMD Processors 4–8 8–32

SIMD Lanes/Processor 2–4 up to 64

Multithreading hardware support for SIMD Threads 2–4 up to 64

Typical ratio of single-precision to double-precision performance 2:1 2:1

Largest cache size 40 MB 4 MB

Size of memory address 64-bit 64-bit

Size of main memory up to 1024 GB up to 24 GB

Memory protection at level of page Yes Yes

Demand paging Yes Yes

Integrated scalar processor/SIMD Processor Yes No

Cache coherent Yes Yes on some systems

Figure 4.23 Similarities and differences between multicore with multimedia SIMD extensions and recent GPUs.
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Summary

Now that the veil has been lifted, we can see that GPUs are really just multi-
threaded SIMD Processors, although they have more processors, more lanes
per processor, and more multithreading hardware than do traditional multicore
computers. For example, the Pascal P100 GPU has 56 SIMD Processors with
64 lanes per processor and hardware support for 64 SIMD Threads. Pascal
embraces instruction-level parallelism by issuing instructions from two SIMD
Threads to two sets of SIMD Lanes. GPUs also have less cache memory—Pas-
cal’s L2 cache is 4 MiB—and it can be coherent with a cooperative distant scalar
processor or distant GPUs.

The CUDA programming model wraps up all these forms of parallelism
around a single abstraction, the CUDA Thread. Thus the CUDA programmer
can think of programming thousands of threads, although they are really executing
each block of 32 threads on the many lanes of the many SIMD Processors. The
CUDA programmer who wants good performance keeps in mind that these threads
are organized in blocks and executed 32 at a time and that addresses need to be to
adjacent addresses to get good performance from the memory system.

Although we’ve used CUDA and the NVIDIAGPU in this section, rest assured
that the same ideas are found in the OpenCL programming language and in GPUs
from other companies.

Now that you understand better how GPUs work, we reveal the real jargon.
Figures 4.24 and 4.25 match the descriptive terms and definitions of this section
with the official CUDA/NVIDIA and AMD terms and definitions. We also include
the OpenCL terms. We believe the GPU learning curve is steep in part because of
using terms such as “streaming multiprocessor” for the SIMD Processor, “thread
processor” for the SIMD Lane, and “shared memory” for local memory—
especially because local memory is not shared between SIMD Processors! We
hope that this two-step approach gets you up that curve quicker, even if it’s a
bit indirect.

4.5 Detecting and Enhancing Loop-Level Parallelism

Loops in programs are the fountainhead of many of the types of parallelism we
previously discussed here and in Chapter 5. In this section, we discuss compiler
technology used for discovering the amount of parallelism that we can exploit
in a program as well as hardware support for these compiler techniques. We define
precisely when a loop is parallel (or vectorizable), how a dependence can prevent a
loop from being parallel, and techniques for eliminating some types of depen-
dences. Finding and manipulating loop-level parallelism is critical to exploiting
both DLP and TLP, as well as the more aggressive static ILP approaches (e.g.,
VLIW) that we examine in Appendix H.
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Loop-level parallelism is normally investigated at the source level or
close to it, while most analysis of ILP is done once instructions have been
generated by the compiler. Loop-level analysis involves determining what
dependences exist among the operands in a loop across the iterations of that
loop. For now, we will consider only data dependences, which arise when an
operand is written at some point and read at a later point. Name dependences
also exist and may be removed by the renaming techniques discussed in
Chapter 3.

The analysis of loop-level parallelism focuses on determining whether data
accesses in later iterations are dependent on data values produced in earlier itera-
tions; such dependence is called a loop-carried dependence. Most of the examples

Type

More
descriptive
name used in
this book

Official
CUDA/
NVIDIA
term

Short explanation and AMD and
OpenCL terms Official CUDA/NVIDIA definition

P
ro
gr
am

ab
st
ra
ct
io
ns

Vectorizable
loop

Grid A vectorizable loop, executed on the
GPU, made up of one or more “Thread
Blocks” (or bodies of vectorized loop)
that can execute in parallel. OpenCL
name is “index range.” AMD name is
“NDRange”

A Grid is an array of Thread Blocks
that can execute concurrently,
sequentially, or a mixture

Body of
Vectorized
loop

Thread
Block

A vectorized loop executed on a
multithreaded SIMD Processor, made
up of one or more threads of SIMD
instructions. These SIMD Threads can
communicate via local memory. AMD
and OpenCL name is “work group”

A Thread Block is an array of CUDA
Threads that execute concurrently
and can cooperate and communicate
via shared memory and barrier
synchronization. A Thread Block has
a Thread Block ID within its Grid

Sequence of
SIMD Lane
operations

CUDA
Thread

A vertical cut of a thread of SIMD
instructions corresponding to one
element executed by one SIMD Lane.
Result is stored depending on mask.
AMD and OpenCL call a CUDA Thread
a “work item”

A CUDA Thread is a lightweight
thread that executes a sequential
program and that can cooperate with
other CUDA Threads executing in
the same Thread Block. A CUDA
Thread has a thread ID within its
Thread Block

M
ac
hi
ne

ob
je
ct

A thread of
SIMD
instructions

Warp A traditional thread, but it contains just
SIMD instructions that are executed on a
multithreaded SIMD Processor. Results
are stored depending on a per-element
mask. AMD name is “wavefront”

A warp is a set of parallel CUDA
Threads (e.g., 32) that execute the
same instruction together in a
multithreaded SIMT/SIMD
Processor

SIMD
instruction

PTX
instruction

A single SIMD instruction executed
across the SIMD Lanes. AMD name is
“AMDIL” or “FSAIL” instruction

A PTX instruction specifies an
instruction executed by a CUDA
Thread

Figure 4.24 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon.OpenCL names
are given in the book’s definitions.
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Type

More
descriptive
name used in
this book

Official
CUDA/
NVIDIA term

Short explanation and AMD and
OpenCL terms Official CUDA/NVIDIA definition

P
ro
ce
ss
in
g
ha
rd
w
ar
e

Multithreaded
SIMD
processor

Streaming
multiprocessor

Multithreaded SIMD Processor that
executes thread of SIMD
instructions, independent of other
SIMD Processors. Both AMD and
OpenCL call it a “compute unit.”
However, the CUDA programmer
writes program for one lane rather
than for a “vector” of multiple SIMD
Lanes

A streaming multiprocessor (SM) is
a multithreaded SIMT/SIMD
Processor that executes warps of
CUDA Threads. A SIMT program
specifies the execution of one
CUDA Thread, rather than a vector
of multiple SIMD Lanes

Thread Block
Scheduler

Giga Thread
Engine

Assigns multiple bodies of
vectorized loop to multithreaded
SIMD Processors. AMD name is
“Ultra-Threaded Dispatch Engine”

Distributes and schedules Thread
Blocks of a grid to streaming
multiprocessors as resources
become available

SIMD Thread
scheduler

Warp
scheduler

Hardware unit that schedules and
issues threads of SIMD instructions
when they are ready to execute;
includes a scoreboard to track SIMD
Thread execution. AMD name is
“Work Group Scheduler”

A warp scheduler in a streaming
multiprocessor schedules warps for
execution when their next
instruction is ready to execute

SIMD Lane Thread
processor

Hardware SIMD Lane that executes
the operations in a thread of SIMD
instructions on a single element.
Results are stored depending on
mask. OpenCL calls it a “processing
element.”AMD name is also “SIMD
Lane”

A thread processor is a datapath and
register file portion of a streaming
multiprocessor that executes
operations for one or more lanes of a
warp

M
em

or
y
ha
rd
w
ar
e

GPU Memory Global
memory

DRAM memory accessible by all
multithreaded SIMD Processors in a
GPU. OpenCL calls it “global
memory”

Global memory is accessible by all
CUDA Threads in any Thread Block
in any grid; implemented as a region
of DRAM, and may be cached

Private
memory

Local memory Portion of DRAM memory private
to each SIMD Lane. Both AMD and
OpenCL call it “private memory”

Private “thread-local” memory for a
CUDA Thread; implemented as a
cached region of DRAM

Local memory Shared
memory

Fast local SRAM for one
multithreaded SIMD Processor,
unavailable to other SIMD
Processors. OpenCL calls it “local
memory.” AMD calls it “group
memory”

Fast SRAM memory shared by the
CUDA Threads composing a Thread
Block, and private to that Thread
Block. Used for communication
among CUDA Threads in a Thread
Block at barrier synchronization
points

SIMD Lane
registers

Registers Registers in a single SIMD Lane
allocated across body of vectorized
loop. AMD also calls them
“registers”

Private registers for a CUDA
Thread; implemented as
multithreaded register file for certain
lanes of several warps for each
thread processor

Figure 4.25 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. Note that our
descriptive terms “local memory” and “private memory” use the OpenCL terminology. NVIDIA uses SIMT (single-
instruction multiple-thread) rather than SIMD to describe a streaming multiprocessor. SIMT is preferred over SIMD
because the per-thread branching and control flow are unlike any SIMD machine.



we considered in Chapters 2 and 3 had no loop-carried dependences and thus are
loop-level parallel. To see that a loop is parallel, let us first look at the source
representation:

for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

In this loop, the two uses of x[i] are dependent, but this dependence is within a
single iteration and is not loop-carried. There is a loop-carried dependence between
successive uses of i in different iterations, but this dependence involves an induc-
tion variable that can be easily recognized and eliminated. We saw examples of
how to eliminate dependences involving induction variables during loop unrolling
in Section 2.2 of Chapter 2, and we will look at additional examples later in this
section.

Because finding loop-level parallelism involves recognizing structures
such as loops, array references, and induction variable computations, a com-
piler can do this analysis more easily at or near the source level, in contrast to
the machine-code level. Let’s look at a more complex example.

Example Consider a loop like this one:

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

Assume that A, B, and C are distinct, nonoverlapping arrays. (In practice, the arrays
may sometimes be the same or may overlap. Because the arrays may be passed as
parameters to a procedure that includes this loop, determining whether arrays over-
lap or are identical often requires sophisticated, interprocedural analysis of the pro-
gram.) What are the data dependences among the statements S1 and S2 in
the loop?

Answer There are two different dependences:

1. S1 uses a value computed by S1 in an earlier iteration, because iteration i com-
putes A[i+1], which is read in iteration i+1. The same is true of S2 for B[i] and
B[i+1].

2. S2 uses the value A[i+1] computed by S1 in the same iteration.

These two dependences are distinct and have different effects. To see how they
differ, let’s assume that only one of these dependences exists at a time. Because
the dependence of statement S1 is on an earlier iteration of S1, this dependence
is loop-carried. This dependence forces successive iterations of this loop to execute
in series.
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The second dependence (S2 depending on S1) is within an iteration
and is not loop-carried. Thus, if this were the only dependence, multiple iter-
ations of the loop would execute in parallel, as long as each pair of state-
ments in an iteration were kept in order. We saw this type of dependence
in an example in Section 2.2, where unrolling could expose the parallelism.
These intra-loop dependences are common; for example, a sequence of vector
instructions that uses chaining exhibits exactly this sort of dependence.

It is also possible to have a loop-carried dependence that does not prevent
parallelism, as the next example shows.

Example Consider a loop like this one:

for (i=0; i<100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}

What are the dependences between S1 and S2? Is this loop parallel? If not, show
how to make it parallel.

Answer Statement S1 uses the value assigned in the previous iteration by statement S2, so
there is a loop-carried dependence between S2 and S1. Despite this loop-carried
dependence, this loop can be made parallel. Unlike the earlier loop, this depen-
dence is not circular; neither statement depends on itself, and although S1 depends
on S2, S2 does not depend on S1. A loop is parallel if it can be written without a
cycle in the dependences because the absence of a cycle means that the depen-
dences give a partial ordering on the statements.

Although there are no circular dependences in the preceding loop, it must be
transformed to conform to the partial ordering and expose the parallelism. Two
observations are critical to this transformation:

1. There is no dependence from S1 to S2. If there were, then there would be a
cycle in the dependences and the loop would not be parallel. Because this other
dependence is absent, interchanging the two statements will not affect the exe-
cution of S2.

2. On the first iteration of the loop, statement S2 depends on the value of B[0]
computed prior to initiating the loop.

These two observations allow us to replace the preceding loop with the following
code sequence:

A[0] = A[0] + B[0];
for (i=0; i<99; i=i+1) {
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B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];

The dependence between the two statements is no longer loop-carried so that
iterations of the loop may be overlapped, provided the statements in each iteration
are kept in order.

Our analysis needs to begin by finding all loop-carried dependences. This depen-
dence information is inexact, in the sense that it tells us that such dependence may
exist. Consider the following example:

for (i=0;i<100;i=i+1) {
A[i] = B[i] + C[i]
D[i] = A[i] * E[i]

}

The second reference to A in this example need not be translated to a load
instruction because we know that the value is computed and stored by the previous
statement. Thus the second reference to A can simply be a reference to the register
into which A was computed. Performing this optimization requires knowing that
the two references are always to the same memory address and that there is no
intervening access to the same location. Normally, data dependence analysis tells
that only one reference may depend on another; a more complex analysis is
required to determine that two references must be to the exact same address. In
the preceding example, a simple version of this analysis suffices because the
two references are in the same basic block.

Often loop-carried dependences are in the form of a recurrence. A recurrence
occurs when a variable is defined based on the value of that variable in an earlier
iteration, usually the one immediately preceding, as in the following code fragment:

for (i=1;i<100;i=i+1) {
Y[i] = Y[i-1] + Y[i];

}

Detecting a recurrence can be important for two reasons: some architectures
(especially vector computers) have special support for executing recurrences,
and in an ILP context, it may still be possible to exploit a fair amount of parallelism.

Finding Dependences

Clearly, finding the dependences in a program is important both to determine
which loops might contain parallelism and to eliminate name dependences. The
complexity of dependence analysis arises also because of the presence of arrays
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and pointers in languages such as C or C++, or pass-by-reference parameter pass-
ing in Fortran. Because scalar variable references explicitly refer to a name, they
can usually be analyzed quite easily with aliasing because of pointers and reference
parameters causing some complications and uncertainty in the analysis.

How does the compiler detect dependences in general? Nearly all dependence
analysis algorithms work on the assumption that array indices are affine. In sim-
plest terms, a one-dimensional array index is affine if it can be written in the form
a� i+b, where a and b are constants and i is the loop index variable. The index of a
multidimensional array is affine if the index in each dimension is affine. Sparse
array accesses, which typically have the form x[y[i]], are one of the major exam-
ples of nonaffine accesses.

Determining whether there is a dependence between two references to the same
array in a loop is thus equivalent to determining whether two affine functions can
have the identical value for different indices between the bounds of the loop. For
example, suppose we have stored to an array element with index value a� i+b and
loaded from the same array with index value c� i+d, where i is the for-loop index
variable that runs from m to n. A dependence exists if two conditions hold:

1. There are two iteration indices, j and k, that are both within the limits of the for-
loop. That is, m� j� n, m� k� n.

2. The loop stores into an array element indexed by a� j+b and later fetches from
that same array element when it is indexed by c�k+d, that is, a� j+b¼c�k+d.

In general, we cannot determine whether dependence exists at compile time. For
example, the values of a, b, c, and d may not be known (they could be values in
other arrays), making it impossible to tell if a dependence exists. In other cases, the
dependence testing may be very expensive but decidable at compile time; for
example, the accesses may depend on the iteration indices of multiple nested loops.
Many programs, however, contain primarily simple indices where a, b, c, and d are
all constants. For these cases, it is possible to devise reasonable compile time tests
for dependence.

As an example, a simple and sufficient test for the absence of a dependence is
the greatest common divisor (GCD) test. It is based on the observation that if a
loop-carried dependence exists, then GCD (c, a) must divide (d – b). (Recall that
an integer, x, divides another integer, y, if we get an integer quotient when we do
the division y/x and there is no remainder.)

Example Use the GCD test to determine whether dependences exist in the following loop:

for (i=0; i<100; i=i+1) {
X[2*i+3] = X[2*i] * 5.0;

}

Answer Given the values a¼2, b¼3, c¼2, and d¼0, then GCD(a, c)¼2, and d�b¼�3.
Because 2 does not divide �3, no dependence is possible.
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The GCD test is sufficient to guarantee that no dependence exists; however, there
are cases where the GCD test succeeds but no dependence exists. This can arise, for
example, because the GCD test does not consider the loop bounds.

In general, determining whether a dependence actually exists is NP-complete.
In practice, however, many common cases can be analyzed precisely at low cost.
Recently, approaches using a hierarchy of exact tests increasing in generality and
cost have been shown to be both accurate and efficient. (A test is exact if it pre-
cisely determines whether a dependence exists. Although the general case is
NP-complete, there exist exact tests for restricted situations that are much cheaper.)

In addition to detecting the presence of a dependence, a compiler wants to clas-
sify the type of dependence. This classification allows a compiler to recognize
name dependences and eliminate them at compile time by renaming and copying.

Example The following loop has multiple types of dependences. Find all the true depen-
dences, output dependences, and antidependences, and eliminate the output
dependences and antidependences by renaming.

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

Answer The following dependences exist among the four statements:

1. There are true dependences from S1 to S3 and from S1 to S4 because of Y[i].
These are not loop-carried, so they do not prevent the loop from being consid-
ered parallel. These dependences will force S3 and S4 to wait for S1 to
complete.

2. There is an antidependence from S1 to S2, based on X[i].

3. There is an antidependence from S3 to S4 for Y[i].

4. There is an output dependence from S1 to S4, based on Y[i].

The following version of the loop eliminates these false (or pseudo) dependences.

for (i=0; i<100; i=i+1 {
T[i] = X[i] / c; /* Y renamed to T to remove output

dependence */
X1[i] = X[i] + c;/* X renamed to X1 to remove

antidependence */
Z[i] = T[i] + c;/* Y renamed to T to remove

antidependence */
Y[i] = c - T[i];

}
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After the loop, the variable X has been renamed X1. In code that follows the
loop, the compiler can simply replace the name X by X1. In this case, renaming
does not require an actual copy operation, as it can be done by substituting names
or by register allocation. In other cases, however, renaming will require copying.

Dependence analysis is a critical technology for exploiting parallelism, as well as
for the transformation-like blocking that Chapter 2 covers. For detecting loop-level
parallelism, dependence analysis is the basic tool. Effectively compiling programs
for vector computers, SIMD computers, or multiprocessors depends critically on
this analysis. The major drawback of dependence analysis is that it applies only
under a limited set of circumstances, namely, among references within a single
loop nest and using affine index functions. Thus there are many situations where
array-oriented dependence analysis cannot tell us what we want to know; for
example, analyzing accesses done with pointers, rather than with array indices
can be much harder. (This is one reason why Fortran is still preferred over C
and C++ for many scientific applications designed for parallel computers.) Simi-
larly, analyzing references across procedure calls is extremely difficult. Thus,
while analysis of code written in sequential languages remains important, we also
need approaches such as OpenMP and CUDA that write explicitly parallel loops.

Eliminating Dependent Computations

As previously mentioned, one of the most important forms of dependent compu-
tations is a recurrence. A dot product is a perfect example of a recurrence:

for (i=9999; i>=0; i=i-1)
sum = sum + x[i] * y[i];

This loop is not parallel because it has a loop-carried dependence on the var-
iable sum. We can, however, transform it to a set of loops, one of which is
completely parallel and the other partly parallel. The first loop will execute the
completely parallel portion of this loop. It looks like this:

for (i=9999; i>=0; i=i-1)
sum[i] = x[i] * y[i];

Notice that sum has been expanded from a scalar into a vector quantity (a trans-
formation called scalar expansion) and that this transformation makes this new
loop completely parallel. When we are done, however, we need to do the reduce
step, which sums up the elements of the vector. It looks like this:

for (i=9999; i>=0; i=i-1)
finalsum = finalsum + sum[i];

Although this loop is not parallel, it has a very specific structure called a reduc-
tion. Reductions are common in linear algebra, and as we will see in Chapter 6,
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they are also a key part of the primary parallelism primitive MapReduce used in
warehouse-scale computers. In general, any function can be used as a reduction
operator, and common cases include operators such as max and min.

Reductions are sometimes handled by special hardware in a vector and SIMD
architecture that allows the reduce step to be done much faster than it could be done
in scalar mode. These work by implementing a technique similar to what can be
done in a multiprocessor environment. While the general transformation works
with any number of processors, suppose for simplicity we have 10 processors.
In the first step of reducing the sum, each processor executes the following (with
p as the processor number ranging from 0 to 9):

for (i=999; i>=0; i=i-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];

This loop, which sums up 1000 elements on each of the 10 processors, is
completely parallel. A simple scalar loop can then complete the summation of
the last 10 sums. Similar approaches are used in vector processors and SIMD
Processors.

It is important to observe that the preceding transformation relies on associa-
tivity of addition. Although arithmetic with unlimited range and precision is asso-
ciative, computer arithmetic is not associative, for either integer arithmetic,
because of limited range, or floating-point arithmetic, because of both range
and precision. Thus using these restructuring techniques can sometimes lead to
erroneous behavior, although such occurrences are rare. For this reason, most
compilers require that optimizations that rely on associativity be explicitly enabled.

4.6 Cross-Cutting Issues

Energy and DLP: Slow and Wide Versus Fast and Narrow

A fundamental power advantage of data-level parallel architectures comes from the
energy equation inChapter 1.Assuming ample data-level parallelism, the performance
is the same ifwehalve theclock rate anddouble theexecution resources: twice thenum-
ber of lanes for avector computer,wider registers andALUs formultimediaSIMD, and
more SIMD Lanes for GPUs. If we can lower the voltage while dropping the clock
rate,wecanactually reduceenergyaswell as thepower for thecomputationwhilemain-
taining the same peak performance. Thus GPUs tend to have lower clock rates than
system processors, which rely on high clock rates for performance (see Section 4.7).

Compared to out-of-order processors, DLP processors can have simpler control
logic to launch a large number of operations per clock cycle; for example, the con-
trol is identical for all lanes in vector processors, and there is no logic to decide on
multiple instruction issues or speculative execution logic. They also fetch and
decode far fewer instructions. Vector architectures can also make it easier to turn
off unused portions of the chip. Each vector instruction explicitly describes all the
resources it needs for a number of cycles when the instruction issues.
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Banked Memory and Graphics Memory

Section 4.2 noted the importance of substantial memory bandwidth for vector
architectures to support unit stride, nonunit stride, and gather-scatter accesses.

To achieve the highest memory performance, stacked DRAMs are used in the
top-end GPUs from AMD and NVIDIA. Intel also uses stacked DRAM in its Xeon
Phi product. Also known as high bandwidth memory (HBM, HBM2), the memory
chips are stacked and placed in the same package as the processing chip. The exten-
sive width (typically 1024–4096 data wires) provides high bandwidth, while plac-
ing the memory chips in the same package as the processor chip reduces latency
and power consumption. The capacity of stacked DRAM is typically 8–32 GB.

Given all the potential demands on the memory from both the computation
tasks and the graphics acceleration tasks, the memory system could see a large
number of uncorrelated requests. Unfortunately, this diversity hurts memory per-
formance. To cope, the GPU’s memory controller maintains separate queues of
traffic bound for different banks, waiting until there is enough traffic to justify
opening a row and transferring all requested data at once. This delay improves
bandwidth but stretches latency, and the controller must ensure that no processing
units starve while waiting for data, for otherwise neighboring processors could
become idle. Section 4.7 shows that gather-scatter techniques and memory-
bank-aware access techniques can deliver substantial increases in performance
versus conventional cache-based architectures.

Strided Accesses and TLB Misses

One problem with strided accesses is how they interact with the translation looka-
side buffer (TLB) for virtual memory in vector architectures or GPUs. (GPUs also
use TLBs for memory mapping.) Depending on how the TLB is organized and the
size of the array being accessed in memory, it is even possible to get one TLB miss
for every access to an element in the array! The same type of collision can happen
with caches, but the performance impact is probably less.

4.7 Putting It All Together: Embedded Versus Server GPUs
and Tesla Versus Core i7

Given the popularity of graphics applications, GPUs are now found in both mobile
clients and traditional servers and heavy-duty desktop computers. Figure 4.26 lists
the key characteristics of the NVIDIA Tegra Parker system on a chip for embedded
clients, which is popular in automobiles, and the Pascal GPU for servers. GPU
server engineers hope to be able to do live animation within five years after a movie
is released. GPU-embedded engineers in turn want to do what a server or game
console does today on their hardware within five more years.

The NVIDIA Tegra P1 has six ARMv8 cores and a smaller Pascal GPU (capa-
ble of 750 GFLOPS) and 50 GB/s of memory bandwidth. It is the key component
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of the NVIDIA DRIVE PX2 computing platform that is used in cars for autono-
mous driving. The NVIDIA Tegra X1 is the previous generation and is used in
several high-end tablets, such as the Google Pixel C and the NVIDIA Shield
TV. It has a Maxwell-class GPU capable of 512 GFLOPS.

The NVIDIA Tesla P100 is the Pascal GPU discussed extensively in this chap-
ter. (Tesla is Nvidia’s name for products targeting general-purpose computing.)
The clock rate is 1.4 GHz, and it includes 56 SIMD Processors. The path to
HBM2 memory is 4096-bits wide, and it transfers data on both the rising and
falling edge of a 0.715 GHz clock, which means a peak memory bandwidth
of 732 GB/s. It connects to the host system processor and memory via a PCI
Express�16 Gen 3 link, which has a peak bidirectional rate of 32 GB/s.

All physical characteristics of the P100 die are impressively large: it contains
15.3 billion transistors, the die size is 645 mm2 in a 16-nm TSMC process, and the
typical power is 300 W.

Comparison of a GPU and aMIMDWithMultimedia SIMD

A group of Intel researchers published a paper (Lee et al., 2010) comparing a quad-
core Intel i7 with multimedia SIMD extensions to the Tesla GTX 280. Although
the study did not compare the latest versions of CPUs and GPUs, it was the most

NVIDIA Tegra 2 NVIDIA Tesla P100

Market Automotive, Embedded,
Console, Tablet

Desktop, server

System processor Six-Core ARM (2 Denver2
+4 A57)

Not applicable

System interface Not applicable PCI Express�16 Gen 3

System interface
bandwidth

Not applicable 16 GB/s (each direction),
32 GB/s (total)

Clock rate 1.5 GHz 1.4 GHz

SIMD multiprocessors 2 56

SIMD Lanes/SIMD
multiprocessor

128 64

Memory interface 128-bit LP-DDR4 4096-bit HBM2

Memory bandwidth 50 GB/s 732 GB/s

Memory capacity up to 16 GB up to 16 GB

Transistors 7 billion 15.3 billion

Process TSMC 16 nm FinFET TSMC 16 nm FinFET

Die area 147 mm2 645 mm2

Power 20 W 300 W

Figure 4.26 Key features of the GPUs for embedded clients and servers.
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in-depth comparison of the two styles in that it explained the reasons behind the
differences in performance. Moreover, the current versions of these architectures
share many similarities to the ones in the study.

Figure 4.27 lists the characteristics of the two systems. Both products were pur-
chased in the fall of 2009. The Core i7 is in Intel’s 45-nanometer semiconductor
technology, while the GPU is in TSMC’s 65-nanometer technology. Although it
might have been fairer to have a comparison done by a neutral party or by both
interested parties, the purpose of this section is not to determine how much faster
one product is than the other, but to try to understand the relative value of features
of these two contrasting architecture styles.

The rooflines of the Core i7 920 and GTX 280 in Figure 4.28 illustrate the dif-
ferences in the computers. The 920 has a slower clock rate than the 960 (2.66 GHz
vs. 3.2 GHz), but the rest of the system is the same. Not only does the GTX 280
have much higher memory bandwidth and double-precision floating-point perfor-
mance, but also its double-precision ridge point is considerably to the left. As pre-
viously mentioned, it is much easier to hit peak computational performance the
further the ridge point of the roofline is to the left. The double-precision ridge point

Core i7-960 GTX 280 Ratio 280/i7

Number of processing elements (cores or SMs) 4 30 7.5

Clock frequency (GHz) 3.2 1.3 0.41

Die size 263 576 2.2

Technology Intel 45 nm TSMC 65 nm 1.6

Power (chip, not module) 130 130 1.0

Transistors 700 M 1400 M 2.0

Memory bandwidth (GB/s) 32 141 4.4

Single-precision SIMD width 4 8 2.0

Double-precision SIMD width 2 1 0.5

Peak single-precision scalar FLOPS (GFLOP/S) 26 117 4.6

Peak single-precision SIMD FLOPS (GFLOP/S) 102 311–933 3.0–9.1

(SP 1 add or multiply) N.A. (311) (3.0)

(SP 1 instruction fused multiply-adds) N.A. (622) (6.1)

(Rare SP dual issue fused multiply-add and multiply) N.A. (933) (9.1)

Peak double-precision SIMD FLOPS (GFLOP/S) 51 78 1.5

Figure 4.27 Intel Core i7-960 andNVIDIA GTX 280. The rightmost column shows the ratios of GTX 280 to Core i7. For
single-precision SIMD FLOPS on the GTX 280, the higher speed (933) comes from a very rare case of dual issuing of
fused multiply-add and multiply. More reasonable is 622 for single fused multiply-adds. Note that these memory
bandwidths are higher than in Figure 4.28 because these are DRAM pin bandwidths and those in Figure 4.28 are
at the processors as measured by a benchmark program. From Table 2 in Lee, W.V., et al., 2010. Debunking the
100� GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: Proc. 37th Annual Int’l. Sym-
posium on Computer Architecture (ISCA), June 19–23, 2010, Saint-Malo, France.
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Figure 4.28 Roofline model (Williams et al. 2009). These rooflines show double-precision floating-point perfor-
mance in the top row and single-precision performance in the bottom row. (The DP FP performance ceiling is also
in the bottom row to give perspective.) The Core i7 920 on the left has a peak DP FP performance of 42.66 GFLOP/s, a
SP FP peak of 85.33 GFLOP/s, and a peak memory bandwidth of 16.4 GB/s. The NVIDIA GTX 280 has a DP FP peak of
78 GFLOP/s, SP FP peak of 624 GFLOP/s, and 127 GB/s of memory bandwidth. The dashed vertical line on the left
represents an arithmetic intensity of 0.5 FLOP/byte. It is limited by memory bandwidth to no more than
8 DP GFLOP/s or 8 SP GFLOP/s on the Core i7. The dashed vertical line to the right has an arithmetic intensity of
4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/s and 64 SP GFLOP/s on the Core i7 and to 78
DP GFLOP/s and 512 DP GFLOP/s on the GTX 280. To hit the highest computation rate on the Core i7, you need
to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need
to use fused multiply-add instructions on all multithreaded SIMD Processors.
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is 0.6 for the GTX 280 versus 2.6 for the Core i7. For single-precision performance,
the ridge point moves far to the right, as it’s considerably harder to hit the roof of
single-precision performance because it is so much higher. Note that the arithmetic
intensity of the kernel is based on the bytes that go to main memory, not the bytes
that go to cache memory. Thus caching can change the arithmetic intensity of a
kernel on a particular computer, presuming that most references really go to the
cache. The Rooflines help explain the relative performance in this case study. Note
also that this bandwidth is for unit-stride accesses in both architectures. Real
gather-scatter addresses that are not coalesced are slower on the GTX 280 and
on the Core i7, as we will see.

The researchers said that they selected the benchmark programs by analyzing
the computational and memory characteristics of four recently proposed bench-
mark suites and then “formulated the set of throughput computing kernels that cap-
ture these characteristics.” Figure 4.29 describes these 14 kernels, and Figure 4.30
shows the performance results, with larger numbers meaning faster.

Given that the raw performance specifications of the GTX 280 vary from 2.5�
slower (clock rate) to 7.5� faster (cores per chip) while the performance varies
from 2.0� slower (Solv) to 15.2� faster (GJK), the Intel researchers explored
the reasons for the differences:

■ Memory bandwidth. The GPU has 4.4� the memory bandwidth, which helps
explain why LBM and SAXPY run 5.0 and 5.3� faster; their working sets are
hundreds of megabytes and thus don’t fit into the Core i7 cache. (To access
memory intensively, they did not use cache blocking on SAXPY.) Thus the
slope of the rooflines explains their performance. SpMV also has a large work-
ing set, but it only runs 1.9� because the double-precision floating point of the
GTX 280 is just 1.5� faster than the Core i7.

■ Compute bandwidth. Five of the remaining kernels are compute bound:
SGEMM, Conv, FFT, MC, and Bilat. The GTX is faster by 3.9, 2.8, 3.0,
1.8, and 5.7, respectively. The first three of these use single-precision
floating-point arithmetic, and GTX 280 single-precision is 3–6� faster.
(The 9� faster than the Core i7 as shown in Figure 4.27 occurs only in the very
special case when the GTX 280 can issue a fused multiply-add and a multiply
per clock cycle.) MC uses double-precision, which explains why it’s just 1.8�
faster since DP performance is only 1.5� faster. Bilat uses transcendental func-
tions, which the GTX 280 supports directly (see Figure 4.17). The Core i7
spends two-thirds of its time calculating transcendental functions, so the
GTX 280 is 5.7� faster. This observation helps point out the value of hardware
support for operations that occur in your workload: double-precision floating-
point and perhaps even transcendentals.

■ Cache benefits. Ray casting (RC) is only 1.6� faster on the GTX because
cache blocking with the Core i7 caches prevents it from becoming memory
bandwidth bound, as it is on GPUs. Cache blocking can help Search, too. If
the index trees are small so that they fit into the cache, the Core i7 is twice
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as fast. Larger index trees make them memory bandwidth bound. Overall, the
GTX 280 runs Search 1.8� faster. Cache blocking also helps Sort. While most
programmers wouldn’t run Sort on a SIMD Processor, it can be written with a
1-bit Sort primitive called split. However, the split algorithm executes many
more instructions than a scalar sort does. As a result, the GTX 280 runs only
0.8� as fast as the Core i7. Note that caches also help other kernels on the Core
i7 because cache blocking allows SGEMM, FFT, and SpMV to become

Kernel Application SIMD TLP Characteristics

SGEMM (SGEMM) Linear algebra Regular Across 2D
tiles

Compute bound after tiling

Monte Carlo (MC) Computational
finance

Regular Across
paths

Compute bound

Convolution (Conv) Image analysis Regular Across
pixels

Compute bound; BW bound for small filters

FFT (FFT) Signal
processing

Regular Across
smaller
FFTs

Compute bound or BW bound depending
on size

SAXPY (SAXPY) Dot product Regular Across
vector

BW bound for large vectors

LBM (LBM) Time migration Regular Across
cells

BW bound

Constraint solver (Solv) Rigid body
physics

Gather/
Scatter

Across
constraints

Synchronization bound

SpMV (SpMV) Sparse solver Gather Across
nonzero

BW bound for typical large matrices

GJK (GJK) Collision
detection

Gather/
Scatter

Across
objects

Compute bound

Sort (Sort) Database Gather/
Scatter

Across
elements

Compute bound

Ray casting (RC) Volume
rendering

Gather Across
rays

4–8 MB first level working set; over
500 MB last level working set

Search (Search) Database Gather/
Scatter

Across
queries

Compute bound for small tree, BWbound at
bottom of tree for large tree

Histogram (Hist) Image analysis Requires
conflict
detection

Across
pixels

Reduction/synchronization bound

Bilateral (Bilat) Image analysis Regular Across
pixels

Compute bound

Figure 4.29 Throughput computing kernel characteristics. The name in parentheses identifies the benchmark
name in this section. The authors suggest that code for both machines had equal optimization effort. From
Table 1 in Lee, W.V., et al., 2010. Debunking the 100� GPU vs. CPU myth: an evaluation of throughput computing
on CPU and GPU. In: Proc. 37th Annual Int’l. Symposium on Computer Architecture (ISCA), June 19–23, 2010, Saint-
Malo, France.
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compute bound. This observation reemphasizes the importance of cache block-
ing optimizations in Chapter 2.

■ Gather-Scatter. The multimedia SIMD extensions are of little help if the data
are scattered throughout main memory; optimal performance comes only when
data are aligned on 16-byte boundaries. Thus GJK gets little benefit from
SIMD on the Core i7. As previously mentioned, GPUs offer gather-scatter
addressing that is found in a vector architecture but omitted from SIMD exten-
sions. The Address Coalescing Unit helps as well by combining accesses to the
same DRAM line, thereby reducing the number of gathers and scatters. The
memory controller also batches together accesses to the identical DRAM page.
This combination means the GTX 280 runs GJK a startling 15.2� faster than
the Core i7, which is larger than any single physical parameter in Figure 4.27.
This observation reinforces the importance of gather-scatter to vector and GPU
architectures that is missing from SIMD extensions.

■ Synchronization. The performance synchronization of Hist is limited by atomic
updates, which are responsible for 28% of the total runtime on the Core i7
despite its having a hardware fetch-and-increment instruction. Thus Hist is

Kernel Units Core i7-960 GTX 280
GTX 280/
i7-960

SGEMM GFLOP/s 94 364 3.9

MC Billion paths/s 0.8 1.4 1.8

Conv Million pixels/s 1250 3500 2.8

FFT GFLOP/s 71.4 213 3.0

SAXPY GB/s 16.8 88.8 5.3

LBM Million lookups/s 85 426 5.0

Solv Frames/s 103 52 0.5

SpMV GFLOP/s 4.9 9.1 1.9

GJK Frames/s 67 1020 15.2

Sort Million elements/s 250 198 0.8

RC Frames/s 5 8.1 1.6

Search Million queries/s 50 90 1.8

Hist Million pixels/s 1517 2583 1.7

Bilat Million pixels/s 83 475 5.7

Figure 4.30 Raw and relative performance measured for the two platforms. In this
study, SAXPY is used only as a measure of memory bandwidth, so the right unit is
GB/s and not GFLOP/s. Based on Table 3 in Lee, W.V., et al., 2010. Debunking the
100� GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU.
In: Proc. 37th Annual Int’l. Symposium on Computer Architecture (ISCA), June 19–23,
2010, Saint-Malo, France.
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only 1.7� faster on the GTX 280. Solv solves a batch of independent con-
straints in a small amount of computation followed by barrier synchronization.
The Core i7 benefits from the atomic instructions and a memory consistency
model that ensures the right results even if not all previous accesses to memory
hierarchy have completed. Without the memory consistency model, the GTX
280 version launches some batches from the system processor, which leads to
the GTX 280 running 0.5� as fast as the Core i7. This observation points out
how synchronization performance can be important for some data parallel
problems.

It was interesting that the gather-scatter support of vector architectures, which pre-
date the SIMD instructions by decades, was so important to the effective usefulness
of these SIMD extensions, which some had predicted before the comparison (Gebis
and Patterson, 2007). The Intel researchers noted that 6 of the 14 kernels would
exploit SIMD better with more efficient gather-scatter support on the Core i7.

Note that an important feature missing from this comparison was describing the
level of effort to get the results for the two systems. Ideally, future comparisons
would release the code used on both systems so that others could re-create the same
experiments on different hardware platforms and possibly improve on the results.

Comparison Update

In the intervening years, the weaknesses of the Core i7 and Tesla GTX 280 have
been addressed by their successors. Intel’s ACV2 added gather instructions, and
AVX/512 added scatter instructions, both of which are found in the Intel Skylake
series. Nvidia Pascal has double-precision floating-point performance that is one-
half instead of one-eighth the speed of single precision, fast atomic operations, and
caches.

Figure 4.31 lists the characteristics of these two successors, Figure 4.32 com-
pares performance using 3 of the 14 benchmarks in the original paper (those were
the ones for which we could find source code), and Figure 4.33 shows the two new
roofline models. The new GPU chip is 15 to 50 times faster and the new CPU chips
is 50 times faster than their predecessors, and the new GPU is 2–5 times faster than
the new CPU.

4.8 Fallacies and Pitfalls

While data-level parallelism is the easiest form of parallelism after ILP from the
programmer’s perspective, and plausibly the simplest from the architect’s perspec-
tive, it still has many fallacies and pitfalls.

Fallacy GPUs suffer from being coprocessors.

Although the split between main memory and GPU memory has disadvantages,
there are advantages to being at a distance from the CPU.

4.8 Fallacies and Pitfalls ■ 353



For example, PTX exists in part because of the I/O device nature of GPUs. This
level of indirection between the compiler and the hardware gives GPU architects
much more flexibility than system processor architects. It’s often hard to know in
advance whether an architecture innovation will be well supported by compilers
and libraries and be important to applications. Sometimes a new mechanism will
even prove useful for one or two generations and then fade in importance as the
IT world changes. PTX allows GPU architects to try innovations speculatively
and drop them in subsequent generations if they disappoint or fade in impor-
tance, which encourages experimentation. The justification for inclusion is under-
standably considerably higher for system processors—and thus much less

Xeon Platinum 8180 P100 Ratio P100/Xeon

Number of processing elements (cores or SMs) 28 56 2.0

Clock frequency (GHz) 2.5 1.3 0.52

Die size N.A. 610 mm2
–

Technology Intel 14 nm TSMC 16 nm 1.1

Power (chip, not module) 80 W 300 W 3.8

Transistors N.A. 15.3 B –

Memory bandwidth (GB/s) 199 732 3.7

Single-precision SIMD width 16 8 0.5

Double-precision SIMD width 8 4 0.5

Peak single-precision SIMD FLOPS (GFLOP/s) 4480 10,608 2.4

Peak double-precision SIMD FLOPS (GFLOP/s) 2240 5304 2.4

Figure 4.31 Intel Xeon ?? and NVIDIA P100. The rightmost column shows the ratios of P100 to the Xeon. Note that
these memory bandwidths are higher than in Figure 4.28 because these are DRAM pin bandwidths and those in
Figure 4.28 are at the processors as measured by a benchmark program.

Kernel Units Xeon Platinum 8180 P100 P100/Xeon
GTX 280/i7-

960

SGEMM GFLOP/s 3494 6827 2.0 3.9

DGEMM GFLOP/s 1693 3490 2.1 —

FFT-S GFLOP/s 410 1820 4.4 3.0

FFT-D GFLOP/s 190 811 4.2 —

SAXPY GB/s 207 544 2.6 5.3

DAXPY GB/s 212 556 2.6 —

Figure 4.32 Raw and relative performancemeasured for modern versions of the two
platforms as compared to the relative performance of the original platforms. Like
Figure 4.30, SAXPY and DAXPY are used only as a measure of memory bandwidth, so
the proper unit is GB/s and not GFLOP/s.
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experimentation can occur—as distributing binary machine code normally implies
that new features must be supported by all future generations of that architecture.

A demonstration of the value of PTX is that the different generation architec-
ture radically changed the hardware instruction set—from being memory-oriented
like x86 to being register-oriented like RISC-V as well as doubling the address size
to 64 bits—without disrupting the NVIDIA software stack.

Pitfall Concentrating on peak performance in vector architectures and ignoring start-up
overhead.

Early memory-memory vector processors such as the TI ASC and the CDC STAR-
100 had long start-up times. For some vector problems, vectors had to be longer than
100 for the vector code to be faster than the scalar code! On the CYBER 205—
derived from theSTAR-100—the start-upoverhead forDAXPYis158clock cycles,
which substantially increases the break-even point. If the clock rates of the Cray-1
and the CYBER 205 were identical, the Cray-1 would be faster until the vector
length was greater than 64. Because the Cray-1 clock rate was also higher (even
though the 205 was newer), the crossover point was a vector length over 100.
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Figure 4.33 Roofline models of older and newer CPUs versus older and newer GPUs. The higher roofline for each
computer is single-precision floating-point performance, and the lower one is double-precision performance.
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Pitfall Increasing vector performance, without comparable increases in scalar
performance.

This imbalance was a problem on many early vector processors, and a place where
Seymour Cray (the architect of the Cray computers) rewrote the rules. Many of the
early vector processors had comparatively slow scalar units (as well as large start-
up overheads). Even today, a processor with lower vector performance but better
scalar performance can outperform a processor with higher peak vector perfor-
mance. Good scalar performance keeps down overhead costs (strip mining, for
example) and reduces the impact of Amdahl’s law.

An excellent example of this comes from comparing a fast scalar processor and a
vector processor with lower scalar performance. The Livermore Fortran kernels are a
collection of 24 scientific kernels with varying degrees of vectorization. Figure 4.34
shows the performance of two different processors on this benchmark. Despite the
vector processor’s higher peak performance, its low scalar performance makes it
slower than a fast scalar processor as measured by the harmonic mean.

The flip of this danger today is increasing vector performance—say, by
increasing the number of lanes—without increasing scalar performance. Such
myopia is another path to an unbalanced computer.

The next fallacy is closely related.

Fallacy You can get good vector performance without providing memory bandwidth.

As we saw with the DAXPY loop and the Roofline model, memory bandwidth is
quite important to all SIMD architectures. DAXPY requires 1.5 memory references
per floating-point operation, and this ratio is typical of many scientific codes. Even
if the floating-point operations took no time, a Cray-1 could not increase the
performance of the vector sequence used, because it is memory-limited. The
Cray-1 performance on Linpack jumped when the compiler used blocking to
change the computation so that values could be kept in the vector registers. This
approach lowered the number of memory references per FLOP and improved the
performance by nearly a factor of two! Thus the memory bandwidth on the Cray-1
became sufficient for a loop that formerly required more bandwidth.

Processor
Minimum rate for
any loop (MFLOPS)

Maximum rate for
any loop (MFLOPS)

Harmonic mean of all
24 loops (MFLOPS)

MIPS M/
120-5

0.80 3.89 1.85

Stardent-
1500

0.41 10.08 1.72

Figure 4.34 Performance measurements for the Livermore Fortran kernels on two
different processors. Both the MIPS M/120-5 and the Stardent-1500 (formerly the
Ardent Titan-1) use a 16.7 MHz MIPS R2000 chip for the main CPU. The Stardent-
1500 uses its vector unit for scalar FP and has about half the scalar performance (as mea-
sured by the minimum rate) of the MIPS M/120-5, which uses the MIPS R2010 FP chip.
The vector processor is more than a factor of 2.5� faster for a highly vectorizable loop
(maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic
mean on all 24 loops.
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Fallacy On GPUs, just add more threads if you don’t have enough memory performance.

GPUs use many CUDA Threads to hide the latency to main memory. If memory
accesses are scattered or not correlated among CUDA Threads, the memory system
will get progressively slower in responding to each individual request. Eventually,
even many threads will not cover the latency. For the “more CUDA Threads” strat-
egy to work, not only do you need lots of CUDA Threads, but the CUDA Threads
themselves also must be well behaved in terms of locality of memory accesses.

4.9 Concluding Remarks

Data-level parallelism is increasing in importance for personal mobile devices,
given the popularity of applications showing the importance of audio, video,
and games on these devices. When combined with a model that is easier to program
than task-level parallelism and with potentially better energy efficiency, it’s easy to
see why there has been a renaissance for data-level parallelism in this decade.

We are seeing system processors take on more of the characteristics of GPUs,
and vice versa. One of the biggest differences in performance between conven-
tional processors and GPUs has been for gather-scatter addressing. Traditional vec-
tor architectures show how to add such addressing to SIMD instructions, and we
expect to see more ideas added from the well-proven vector architectures to SIMD
extensions over time.

As we said in the opening of Section 4.4, the GPU question is not simply which
architecture is best, but given the hardware investment to do graphics well, how
can it be enhanced to support computation that is more general? Although vector
architectures have many advantages on paper, it remains to be proven whether vec-
tor architectures can be as good a foundation for graphics as GPUs. RISC-V has
embraced vector over SIMD. Thus, like architecture debates of the past, the mar-
ketplace will help determine the importance of the strengths and weaknesses of two
styles of data parallel architectures.

4.10 Historical Perspective and References

Section M.6 (available online) features a discussion on the Illiac IV (a representative
of the early SIMD architectures) and the Cray-1 (a representative of vector architec-
tures). We also look at multimedia SIMD extensions and the history of GPUs.

Case Study and Exercises by Jason D. Bakos

Case Study: Implementing a Vector Kernel on a Vector
Processor and GPU

Concepts illustrated by this case study

■ Programming Vector Processors

■ Programming GPUs

■ Performance Estimation
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MrBayes is a popular computational biology application for inferring the evolu-
tionary histories among a set of input species based on their prealigned DNA
sequence data of length n. MrBayes works by performing an heuristic search over
the space of all binary tree topologies for which the inputs are the leaves. In order to
evaluate a particular tree, the application must compute an n�4 conditional like-
lihood table (named clP) for each interior node. The table is a function of the con-
ditional likelihood tables of the node’s two descendent nodes (clL and clR, single
precision floating point) and the 4�4 transition probability table (tiPL and
tiPR, single precision floating point). One of this application’s kernels is the com-
putation of this conditional likelihood table and is shown as follows:

for (k=0; k <seq_length; k++) {

clP[h++] = (tiPL[AA]*clL[A] + tiPL[AC]*clL[C] +
tiPL[AG]*clL[G] + tiPL[AT]*clL[T])*

(tiPR[AA]*clR[A] + tiPR[AC]*clR[C] +
tiPR[AG]*clR[G] + tiPR[AT]*clR[T]);

clP[h++] = (tiPL[CA]*clL[A] + tiPL[CC]*clL[C] +
tiPL[CG]*clL[G] + tiPL[CT]*clL[T])*

(tiPR[CA]*clR[A] + tiPR[CC]*clR[C] +
tiPR[CG]*clR[G] + tiPR[CT]*clR[T]);

clP[h++] = (tiPL[GA]*clL[A] + tiPL[GC]*clL[C] +
tiPL[GG]*clL[G] + tiPL[GT]*clL[T])*

(tiPR[GA]*clR[A] + tiPR[GC]*clR[C] +
tiPR[GG]*clR[G] + tiPR[GT]*clR[T]);

clP[h++] = (tiPL[TA]*clL[A] + tiPL[TC]*clL[C] +
tiPL[TG]*clL[G] + tiPL[TT]*clL[T])*

(tiPR[TA]*clR[A] + tiPR[TC]*clR[C] +
tiPR[TG]*clR[G] + tiPR[TT]*clR[T]);

clL += 4;

clR += 4;

}

4.1 [25] <4.1, 4.2> Assume the constants shown as follows.

Constants Values

AA,AC,AG,AT 0,1,2,3

CA,CC,CG,CT 4,5,6,7

GA,GC,GG,GT 8,9,10,11

TA,TC,TG,TT 12,13,14,15

A,C,G,T 0,1,2,3
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Write code for RISC-V and RV64V. Assume the starting addresses of tiPL,
tiPR, clL, clR, and clP are in RtiPL, RtiPR, RclL, RclR, and RclP,
respectively. Do not unroll the loop. To facilitate vector addition reductions,
assume that we add the following instructions to RV64V:
Vector Summation Reduction Single Precision:

vsum Fd, Vs

This instruction performs a summation reduction on a vector register Vs, writ-
ing to the sum into scalar register Fd.

4.2 [5]<4.1, 4.2>Assuming seq_length == 500, what is the dynamic instruction
count for both implementations?

4.3 [25] <4.1, 4.2> Assume that the vector reduction instruction is executed on the
vector functional unit, similar to a vector add instruction. Show how the code
sequence lays out in convoys assuming a single instance of each vector functional
unit. How many chimes will the code require? How many cycles per FLOP are
needed, ignoring vector instruction issue overhead?

4.4 [15] <4.1, 4.2> Consider the possibility of unrolling the loop and mapping mul-
tiple iterations to vector operations. Assume that you can use scatter-gather loads
and stores (vldi and vsti). How does this affect the way you can write the
RV64Vcode for this kernel?

4.5 [25] <4.4> Now assume we want to implement the MrBayes kernel on a GPU
using a single thread block. Rewrite the C code of the kernel using CUDA.
Assume that pointers to the conditional likelihood and transition probability
tables are specified as parameters to the kernel. Invoke one thread for each iter-
ation of the loop. Load any reused values into shared memory before performing
operations on it.

4.6 [15] <4.4> With CUDA we can use coarse-grain parallelism at the block level
to compute the conditional likelihood of multiple nodes in parallel. Assume
that we want to compute the conditional likelihood from the bottom of the tree
up. Assume seq_length ¼¼ 500 for all notes and that the group of tables for
each of the 12 leaf nodes is stored in consecutive memory locations in the
order of node number (e.g., the mth element of clP on node n is at clP
[n*4*seq_length+m*4]). Assume that we want to compute the conditional
likelihood for nodes 12–17, as shown in Figure 4.35. Change the method
by which you compute the array indices in your answer from Exercise 4.5
to include the block number.

4.7 [15] <4.4> Convert your code from Exercise 4.6 into PTX code. How many
instructions are needed for the kernel?

4.8 [10] <4.4> How well do you expect this code to perform on a GPU? Explain
your answer.
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Exercises

4.9 [10/20/20/15/15] <4.2> Consider the following code, which multiplies two vec-
tors that contain single-precision complex values:

for (i=0;i <300;i++) {
c_re[i] = a_re[i] * b_re[i] � a_im[i] * b_im[i];
c_im[i] = a_re[i] * b_im[i] + a_im[i] * b_re[i];

}
Assume that the processor runs at 700 MHz and has a maximum vector length

of 64. The load/store unit has a start-up overhead of 15 cycles; the multiply unit,
8 cycles; and the add/subtract unit, 5 cycles.

a. [10]<4.3>What is the arithmetic intensity of this kernel? Justify your answer.

b. [20] <4.2> Convert this loop into RV64V assembly code using strip mining.

c. [20] <4.2> Assuming chaining and a single memory pipeline, how many
chimes are required? How many clock cycles are required per complex result
value, including start-up overhead?

d. [15] <4.2> If the vector sequence is chained, how many clock cycles are
required per complex result value, including overhead?

e. [15] <4.2> Now assume that the processor has three memory pipelines and
chaining. If there are no bank conflicts in the loop’s accesses, how many clock
cycles are required per result?

0 1 2 3 4 5 6 7 8 9 10 11

12 13

18 19

21

22

20

14 15 16 17

Figure 4.35 Sample tree.
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4.10 [30] <4.2,4.3,4.4> In this problem, we will compare the performance of a vector
processor with a hybrid system that contains a scalar processor and a GPU-based
coprocessor. In the hybrid system, the host processor has superior scalar perfor-
mance to the GPU, so in this case all scalar code is executed on the host processor
while all vector code is executed on the GPU.Wewill refer to the first system as the
vector computer and the second system as the hybrid computer. Assume that your
target application contains a vector kernel with an arithmetic intensity of 0.5
FLOPs per DRAM byte accessed; however, the application also has a scalar com-
ponent that must be performed before and after the kernel in order to prepare the
input vectors and output vectors, respectively. For a sample dataset, the scalar por-
tion of the code requires 400 ms of execution time on both the vector processor and
the host processor in the hybrid system. The kernel reads input vectors consisting
of 200 MB of data and has output data consisting of 100 MB of data. The vector
processor has a peak memory bandwidth of 30 GB/s and the GPU has a peak mem-
ory bandwidth of 150 GB/s. The hybrid system has an additional overhead that
requires all input vectors to be transferred between the host memory and GPU local
memory before and after the kernel is invoked. The hybrid system has a direct
memory access (DMA) bandwidth of 10 GB/s and an average latency of 10 ms.
Assume that both the vector processor and GPU are performance bound by mem-
ory bandwidth. Compute the execution time required by both computers for this
application.

4.11 [15/25/25]<4.4, 4.5> Section 4.5 discussed the reduction operation that reduces a
vector down to a scalar by repeated application of an operation. A reduction is a
special type of a loop recurrence. An example is shown as follows:

dot=0.0;
for (i=0;i <64;i++) dot = dot + a[i] * b[i];

A vectorizing compiler might apply a transformation called scalar expansion,
which expands dot into a vector and splits the loop such that the multiply can be
performed with a vector operation, leaving the reduction as a separate scalar
operation:

for (i=0;i <64;i++) dot[i] = a[i] * b[i];
for (i=1;i <64;i++) dot[0] = dot[0] + dot[i];

As mentioned in Section 4.5, if we allow the floating-point addition to be asso-
ciative, there are several techniques available for parallelizing the reduction.

a. [15] <4.4, 4.5> One technique is called recurrence doubling, which adds
sequences of progressively shorter vectors (ie, two 32-element vectors, then
two 16-element vectors, and so on). Show how the C code would look for exe-
cuting the second loop in this way.

b. [25]<4.4, 4.5> In somevector processors, the individual elementswithin the vec-
tor registers are addressable. In this case, the operands to a vector operationmay be
two different parts of the same vector register. This allows another solution for the
reduction calledpartial sums. The idea is to reduce the vector tom sumswherem is
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the total latency through the vector functional unit, including the operand read and
write times.Assume that theVMIPSvector registers are addressable (e.g., you can
initiate avectoroperationwith theoperandV1(16), indicating that the inputoper-
andbeginswith element 16).Also, assume that the total latency for adds, including
the operand read and result write, is eight cycles. Write a VMIPS code sequence
that reduces the contents of V1 to eight partial sums.

c. [25] <4.4, 4.5> When performing a reduction on a GPU, one thread is associ-
ated with each element in the input vector. The first step is for each thread to
write its corresponding value into shared memory. Next, each thread enters a
loop that adds each pair of input values. This reduces the number of elements
by half after each iteration, meaning that the number of active threads also
reduces by half after each iteration. In order to maximize the performance of
the reduction, the number of fully populated warps should be maximized
throughout the course of the loop. In other words, the active threads should
be contiguous. Also, each thread should index the shared array in such a
way as to avoid bank conflicts in the shared memory. The following loop vio-
lates only the first of these guidelines and also uses the modulo operator, which
is very expensive for GPUs:

unsigned int tid = threadIdx.x;
for(unsigned int s=1; s <blockDim.x; s * ¼ 2) {
if ((tid % (2*s)) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}

Rewrite the loop to meet these guidelines and eliminate the use of the modulo
operator. Assume that there are 32 threads per warp and a bank conflict occurs
whenever two or more threads from the same warp reference an index whose
modulo by 32 are equal.

4.12 [10/10/10/10] <4.3> The following kernel performs a portion of the finite-
difference time-domain (FDTD) method for computing Maxwell’s equations in
a three-dimensional space, part of one of the SPEC06fp benchmarks:

for (int x=0; x <NX �1; x++) {
for (int y=0; y <NY �1; y++) {
for (int z=0; z <NZ �1; z++) {
int index = x*NY*NZ + y*NZ + z;
if (y >0 && x >0) {
material = IDx[index];
dH1 = (Hz[index] �Hz[index-incrementY])/dy[y];
dH2 = (Hy[index] �Hy[index-incrementZ])/dz[z];
Ex[index] = Ca[material]*Ex[index]+Cb[material]*
(dH2 �dH1);

}}}}
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Assume that dH1, dH2, Hy, Hz, dy, dz, Ca, Cb, and Ex are all single-
precision floating-point arrays. Assume IDx is an array of unsigned int.

a. [10] <4.3> What is the arithmetic intensity of this kernel?

b. [10] <4.3> Is this kernel amenable to vector or SIMD execution? Why or
why not?

c. [10] <4.3> Assume this kernel is to be executed on a processor that has
30 GB/s of memory bandwidth. Will this kernel be memory bound or
compute bound?

d. [10]<4.3>Develop a roofline model for this processor, assuming it has a peak
computational throughput of 85 GFLOP/s.

4.13 [10/15] <4.4> Assume a GPU architecture that contains 10 SIMD processors.
Each SIMD instruction has a width of 32 and each SIMD processor contains 8 lanes
for single-precision arithmetic and load/store instructions, meaning that each nondi-
verged SIMD instruction can produce 32 results every 4 cycles. Assume a kernel that
has divergent branches that causes, on average, 80% of threads to be active. Assume
that 70% of all SIMD instructions executed are single-precision arithmetic and 20%
are load/store. Because not all memory latencies are covered, assume an average
SIMD instruction issue rate of 0.85. Assume that the GPU has a clock speed of
1.5 GHz.

a. [10] <4.4> Compute the throughput, in GFLOP/s, for this kernel on this GPU.

b. [15] <4.4> Assume that you have the following choices:
(1) Increasing the number of single-precision lanes to 16
(2) Increasing the number of SIMD processors to 15 (assume this change

doesn’t affect any other performance metrics and that the code scales to
the additional processors)

(3) Adding a cache that will effectively reduce memory latency by 40%, which
will increase instruction issue rate to 0.95

What is speedup in throughput for each of these improvements?

4.14 [10/15/15]<4.5> In this exercise, we will examine several loops and analyze their
potential for parallelization.

a. [10] <4.5> Does the following loop have a loop-carried dependency?

for (i=0;i <100;i++) {
A[i] = B[2*i+4];
B[4*i+5] = A[i];

}

b. [15] <4.5> In the following loop, find all the true dependences, output depen-
dences, and antidependences. Eliminate the output dependences and antidepen-
dences by renaming.

for (i=0;i <100;i++) {
A[i] = A[i] * B[i]; /* S1 */
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B[i] = A[i] + c; /* S2 */
A[i] = C[i] * c; /* S3 */
C[i] = D[i] * A[i]; /* S4 */

c. [15] <4.5> Consider the following loop:

for (i=0;i <100;i++) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}
Are there dependences between S1 and S2? Is this loop parallel? If not, show

how to make it parallel.

4.15 [10]<4.4> List and describe at least four factors that influence the performance of
GPU kernels. In other words, which runtime behaviors that are caused by the ker-
nel code cause a reduction in resource utilization during kernel execution?

4.16 [10] <4.4> Assume a hypothetical GPU with the following characteristics:

■ Clock rate 1.5 GHz

■ Contains 16 SIMD processors, each containing 16 single-precision floating-
point units

■ Has 100 GB/s off-chip memory bandwidth

Without considering memory bandwidth, what is the peak single-precision
floating-point throughput for this GPU in GLFOP/s, assuming that all memory
latencies can be hidden? Is this throughput sustainable given the memory band-
width limitation?

4.17 [60] <4.4> For this programming exercise, you will write and characterize the
behavior of a CUDA kernel that contains a high amount of data-level parallelism
but also contains conditional execution behavior. Use the NVIDIA CUDA Toolkit
along with GPU-SIM from the University of British Columbia (http://www.gpgpu-
sim.org/) or the CUDA Profiler to write and compile a CUDA kernel that performs
100 iterations of Conway’s Game of Life for a 256�256 game board and returns
the final state of the game board to the host. Assume that the board is initialized by
the host. Associate one thread with each cell. Make sure you add a barrier after each
game iteration. Use the following game rules:

■ Any live cell with fewer than two live neighbors dies.

■ Any live cell with two or three live neighbors lives on to the next generation.

■ Any live cell with more than three live neighbors dies.

■ Any dead cell with exactly three live neighbors becomes a live cell.

After finishing the kernel answer the following questions:

a. [60] <4.4> Compile your code using the –ptx option and inspect the PTX rep-
resentation of your kernel. How many PTX instructions make up the PTX
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implementation of your kernel? Did the conditional sections of your kernel
include branch instructions or only predicated nonbranch instructions?

b. [60] <4.4> After executing your code in the simulator, what is the dynamic
instruction count? What is the achieved instructions per cycle (IPC) or instruc-
tion issue rate? What is the dynamic instruction breakdown in terms of control
instructions, arithmetic-logical unit (ALU) instructions, and memory instruc-
tions? Are there any shared memory bank conflicts? What is the effective
off-chip memory bandwidth?

c. [60] <4.4> Implement an improved version of your kernel where off-chip
memory references are coalesced and observe the differences in runtime
performance.
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5
Thread-Level Parallelism

The turning away from the conventional organization came in the
middle 1960s, when the law of diminishing returns began to take
effect in the effort to increase the operational speed of a computer.
. . . Electronic circuits are ultimately limited in their speed of
operation by the speed of light . . . and many of the circuits were
already operating in the nanosecond range.

W. Jack Bouknight et al.,
The Illiac IV System (1972)

We are dedicating all of our future product development to
multicore designs. We believe this is a key inflection point for the
industry.

Intel President Paul Otellini,
describing Intel’s future direction at the

Intel Developer Forum in 2005

Since 2004 processor designers have increased core counts to
exploit Moore’s Law scaling, rather than focusing on single-core
performance. The failure of Dennard scaling, to which the shift to
multicore parts is partially a response, may soon limit multicore
scaling just as single-core scaling has been curtailed.

Hadi Esmaeilzadeh, et al.,
Power Limitations and Dark Silicon

Challenge the Future of Multicore (2012)

Computer Architecture. https://doi.org/10.1016/B978-0-12-811905-1.00005-5
© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811905-1.00005-5


5.1 Introduction

As thequotations that open this chapter show, theview that advances inuniprocessor
architecture were nearing an end has been held by some researchers for many years.
Clearly, these views were premature; in fact, during the period of 1986–2003,
uniprocessor performance growth, driven by the microprocessor, was at its highest
rate since the first transistorized computers in the late 1950s and early 1960s.

Nonetheless, the importance of multiprocessors was growing throughout the
1990s as designers sought a way to build servers and supercomputers that achieved
higher performance than a single microprocessor, while exploiting the tremendous
cost-performance advantages of commodity microprocessors. As we discussed
in Chapters 1 and 3, the slowdown in uniprocessor performance arising from
diminishing returns in exploiting instruction-level parallelism (ILP) combined
with growing concern over power has led to a new era in computer architec-
ture—an era where multiprocessors play a major role from the low end to the high
end. The second quotation captures this clear inflection point.

This increased importance of multiprocessing reflects several major factors:

■ The dramatically lower efficiencies in silicon and energy use that were encoun-
tered between 2000 and 2005 as designers attempted to find and exploit more
ILP, which turned out to be inefficient, since power and silicon costs grew
faster than performance. Other than ILP, the only scalable and general-purpose
way we know to increase performance faster than the basic technology allows
(from a switching perspective) is through multiprocessing.

■ A growing interest in high-end servers as cloud computing and software-as-a-
service become more important.

■ A growth in data-intensive applications driven by the availability of massive
amounts of data on the Internet.

■ The insight that increasing performance on the desktop is less important
(outside of graphics, at least), either because current performance is acceptable
or because highly compute- and data-intensive applications are being done on
the cloud.

■ An improved understanding of how to use multiprocessors effectively,
especially in server environments where there is significant inherent parallel-
ism, arising from large datasets (usually in the form of data parallelism),
“natural-world” parallelism (which occurs in scientific and engineering codes),
or parallelism among large numbers of independent requests (request-level
parallelism).

■ The advantages of leveraging a design investment by replication rather than
unique design; all multiprocessor designs provide such leverage.

The third quotation reminds us that multicore may provide only limited possi-
bilities for scaling performance. The combination of Amdahl’s Law effects and the
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end of Dennard scaling mean that the future of multicore may be limited, at least as
a method of scaling up the performance of single applications. We return to this
topic late in the chapter.

In this chapter, we focus on exploiting thread-level parallelism (TLP). TLP
implies the existence of multiple program counters and thus is exploited primarily
throughMIMDs.AlthoughMIMDshave been around for decades, themovement of
thread-level parallelism to the forefront across the range of computing from embed-
ded applications to high-end severs is relatively recent. Likewise, the extensive use
of thread-level parallelism for a wide-range of general-purpose applications, versus
either transaction processing or scientific applications, is relatively new.

Our focus in this chapter is on multiprocessors, which we define as computers
consisting of tightly coupled processors whose coordination and usage are typi-
cally controlled by a single operating system and that share memory through a
shared address space. Such systems exploit thread-level parallelism through two
different software models. The first is the execution of a tightly coupled set of
threads collaborating on a single task, which is typically called parallel processing.
The second is the execution of multiple, relatively independent processes that may
originate from one or more users, which is a form of request-level parallelism,
although at a much smaller scale than what we explore in the next chapter.
Request-level parallelism may be exploited by a single application running on
multiple processors, such as a database responding to queries, or multiple applica-
tions running independently, often called multiprogramming.

The multiprocessors we examine in this chapter typically range in size from a
dual processor to dozens and sometimes hundreds of processors and communicate
and coordinate through the sharing of memory. Although sharing through memory
implies a shared address space, it does not necessarily mean there is a single
physical memory. Such multiprocessors include both single-chip systems with
multiple cores, known as multicore, and computers consisting of multiple chips,
each of which is typically a multicore. Many companies make such multiproces-
sors, including HP, Dell, Cisco, IBM, SGI, Lenovo, Oracle, Fujitsu, and many
others.

In addition to true multiprocessors, we will return to the topic of multithread-
ing, a technique that supports multiple threads executing in an interleaved fashion
on a single multiple-issue processor. Many multicore processors also include
support for multithreading.

In the next chapter, we consider ultrascale computers built from very large
numbers of processors, connected with networking technology (not necessarily
the same networking technology used to connect computers to the Internet) and
often called clusters; these large-scale systems are used for cloud computing
primarily with massive numbers of independent tasks being executed in parallel.
More recently, computationally intensive tasks that can be easily made parallel,
such as Search and certain machine learning algorithms have also made use of
clusters. When these clusters grow to tens of thousands of servers and beyond,
we call them warehouse-scale computers. Amazon, Google, Microsoft, and
Facebook all make warehouse-scale computers.
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In addition to the multiprocessors we study here and the warehouse-scaled
systems of the next chapter, there are a range of special large-scale multiprocessor
systems, sometimes called multicomputers, which are less tightly coupled than the
multiprocessors examined in this chapter but usually more tightly coupled than the
warehouse-scale systems of the next chapter. The primary use for such multicom-
puters is in high-end scientific computation, although they are sometimes used for
commercial applications filling the niche between multiprocessors and warehouse-
scale computers. The Cray X series and IBM BlueGene are typical examples of
these multicomputers.

Many other books, such as Culler et al. (1999), cover such systems in detail.
Because of the large and changing nature of the field of multiprocessing (the just-
mentioned Culler et al. reference is over 1000 pages and discusses only multipro-
cessing!), we have chosen to focus our attention on what we believe is the
most important and general-purpose portions of the computing space. Appendix
I discusses some of the issues that arise in building such computers in the context
of large-scale scientific applications.

Our focus will be on multiprocessors with roughly 4–256 processor cores,
which might occupy anywhere from 4 to 16 separate chips. Such designs vastly
dominate in terms of both units and dollars. In large-scale multiprocessors, the
interconnection networks are a critical part of the design; Appendix F focuses
on that topic.

Multiprocessor Architecture: Issues and Approach

To take advantage of an MIMDmultiprocessor with n processors, we must usually
have at least n threads or processes to execute; with multithreading, which is
present in most multicore chips today, that number is 2–4 times higher. The inde-
pendent threads within a single process are typically identified by the programmer
or created by the operating system (from multiple independent requests). At the
other extreme, a thread may consist of a few tens of iterations of a loop, generated
by a parallel compiler exploiting data parallelism in the loop. Although the amount
of computation assigned to a thread, called the grain size, is important in consid-
ering how to exploit thread-level parallelism efficiently, the important qualitative
distinction from instruction-level parallelism is that thread-level parallelism is
identified at a high level by the software system or programmer and that the threads
consist of hundreds to millions of instructions that may be executed in parallel.

Threads can also be used to exploit data-level parallelism, although the over-
head is usually higher than would be seen with an SIMD processor or with a GPU
(see Chapter 4). This overhead means that grain size must be sufficiently large to
exploit the parallelism efficiently. For example, although a vector processor or
GPUmay be able to efficiently parallelize operations on short vectors, the resulting
grain size when the parallelism is split among many threads may be so small that
the overhead makes the exploitation of the parallelism prohibitively expensive in
an MIMD.
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Existing shared-memory multiprocessors fall into two classes, depending on
the number of processors involved, which in turn dictates a memory organization
and interconnect strategy. We refer to the multiprocessors by their memory orga-
nization because what constitutes a small or large number of processors continues
to change over time.

The first group, which we call symmetric (shared-memory) multiprocessors
(SMPs), or centralized shared-memory multiprocessors, features small to moder-
ate numbers of cores, typically 32 or fewer. For multiprocessors with such small
processor counts, it is possible for the processors to share a single centralized mem-
ory that all processors have equal access to, thus the term symmetric. In multicore
chips, the memory is often shared in a centralized fashion among the cores; most
existing multicores are SMPs, but not all. (Note that some literature mistakenly
appears to use SMP to stand for Shared Memory Processor, but this usage is
erroneous.)

Some multicores have nonuniform access to the outermost cache, a structure
called NUCA for Nonuniform Cache Access, and are thus are not truly SMPs, even
if they have a single main memory. The IBM Power8 has distributed L3 caches
with nonuniform access time to different addresses in L3.

In multiprocessors consisting of multiple multicore chips, there are often sep-
arate memories for each multicore chip. Thus the memory is distributed rather
than centralized. As we will see later in the chapter, many designs with distrib-
uted memory have fast access to a local memory and much slower access to
remote memory; often the differences in access time to various remote memories
are small in comparison to the difference between the access times to the local
memory and to a remote memory. In such designs, the programmer and software
system need to be aware of whether accesses are to local or remote memory, but
may be able to ignore the distribution of accesses among remote memories.
Because an SMP approach becomes less attractive with a growing number of pro-
cessors, most of the very largest multiprocessors use some form of distributed
memory.

SMP architectures are also sometimes called uniform memory access
(UMA) multiprocessors, arising from the fact that all processors have a uniform
latency from memory, even if the memory is organized into multiple banks.
Figure 5.1 shows what these multiprocessors look like. The architecture of
SMPs is the topic of Section 5.2, and we explain the approach in the context
of a multicore.

The alternative design approach consists of multiprocessors with physically
distributed memory, called distributed shared memory (DSM). Figure 5.2
shows what these multiprocessors look like. To support larger processor counts,
memory must be distributed among the processors rather than centralized; oth-
erwise, the memory system would not be able to support the bandwidth
demands of a larger number of processors without incurring excessively long
access latency.

With the rapid increase in processor performance and the associated increase in
a processor’s memory bandwidth requirements, the size of a multiprocessor for
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which distributed memory is preferred continues to shrink. The introduction of
multicore processors has meant that even some 2-chip multiprocessors, which
might have 16–64 processor cores, use distributed memory. The larger number
of processors also raises the need for a high-bandwidth interconnect, of which
we will see examples in Appendix F. Both directed networks (i.e., switches)
and indirect networks (typically multidimensional meshes) are used.

Distributing the memory among the nodes both increases the bandwidth and
reduces the latency to local memory. ADSMmultiprocessor is also called aNUMA
(nonuniform memory access) because the access time depends on the location of a
data word in memory. The key disadvantages for a DSM are that communicating
data among processors becomes somewhat more complex and a DSM requires
more effort in the software to take advantage of the increased memory bandwidth

ProcessorProcessorProcessorProcessor

Main memory I/O system

One or
more levels

of cache

One or
more levels

of cache

One or
more levels

of cache

One or
more levels

of cache

Shared cache

Private
caches

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on
a multicore chip. Multiple processor-cache subsystems share the same physical mem-
ory, typically with one level of shared cache on the multicore, and one or more levels of
private per-core cache. The key architectural property is the uniform access time to all of
the memory from all of the processors. In a multichip design, an interconnection net-
work links the processors and thememory, whichmay be one ormore banks. In a single-
chip multicore, the interconnection network is simply the memory bus.
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afforded by distributed memories. Because most multicore-based multiprocessors
with more than a few processor chips use distributed memory, we will explain the
operation of distributed memory multiprocessors from this viewpoint.

In both SMP and DSM architectures, communication among threads occurs
through a shared address space, meaning that a memory reference can be made
by any processor to any memory location, assuming it has the correct access rights.
The term shared memory associated with both SMP and DSM refers to the fact that
the address space is shared.

In contrast, the clusters and warehouse-scale computers in the next chapter
look like individual computers connected by a network, and thememory of one pro-
cessor cannot be accessed by another processor without the assistance of software
protocols running on both processors. In such designs, message-passing protocols
are used to communicate data among processors.

Challenges of Parallel Processing

The application of multiprocessors ranges from running independent tasks with
essentially no communication to running parallel programs where threads must
communicate to complete the task. Two important hurdles, both explainable with
Amdahl’s Law, make parallel processing challenging. To overcome these hurdles
typically requires a comprehensive approach that addresses the choice of

Memory I/O

Interconnection network

Memory I/O Memory I/O

Multicore
MP

Multicore
MP

Multicore
MP

Multicore
MP

Memory I/O

I/O MemoryMemory I/O Memory I/O Memory I/O

Multicore
MP

Multicore
MP

Multicore
MP

Multicore
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Figure 5.2 The basic architecture of a distributed-memory multiprocessor in 2017 typically consists of a multi-
core multiprocessor chip with memory and possibly I/O attached and an interface to an interconnection network
that connects all the nodes. Each processor core shares the entire memory, although the access time to the local
memory attached to the core’s chip will be much faster than the access time to remote memories.
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algorithm and its implementation, the underlying programming language and sys-
tem, the operating system and its support functions, and the architecture and hard-
ware implementation. Although in many instances, one of these is a key
bottleneck, when scaling to a larger processor counts (approaching 100 or more),
often all aspects of the software and hardware need attention.

The first hurdle has to do with the limited parallelism available in programs,
and the second arises from the relatively high cost of communications. Limitations
in available parallelism make it difficult to achieve good speedups in any parallel
processor, as our first example shows.

Example Suppose you want to achieve a speedup of 80 with 100 processors. What fraction
of the original computation can be sequential?

Answer Recall from Chapter 1 that Amdahl’s Law is

Speedup¼ 1
Fractionenhanced
Speedupenhanced

+ 1�Fractionenhancedð Þ

For simplicity in this example, assume that the program operates in only two
modes: parallel with all processors fully used, which is the enhanced mode, or
serial with only one processor in use. With this simplification, the speedup in
enhanced mode is simply the number of processors, whereas the fraction of
enhanced mode is the time spent in parallel mode. Substituting into the previous
equation:

80¼ 1
Fractionparallel

100
+ 1�Fractionparallel
� �

Simplifying this equation yields:

0:8�Fractionparallel + 80� 1�Fractionparallel
� �¼ 1

80�79:2�Fractionparallel ¼ 1

Fractionparallel ¼ 80�1
79:2

Fractionparallel ¼ 0:9975

Thus, to achieve a speedup of 80 with 100 processors, only 0.25% of the
original computation can be sequential! Of course, to achieve linear speedup
(speedup of n with n processors), the entire program must usually be parallel
with no serial portions. In practice, programs do not just operate in fully
parallel or sequential mode, but often use less than the full complement of
the processors when running in parallel mode. Amdahl’s Law can be used
to analyze applications with varying amounts of speedup, as the next
example shows.

374 ■ Chapter Five Thread-Level Parallelism



Example Suppose we have an application running on a 100-processor multiprocessor,
and assume that application can use 1, 50, or 100 processors. If we assume
that 95% of the time we can use all 100 processors, how much of the remain-
ing 5% of the execution time must employ 50 processors if we want a speedup
of 80?

Answer We use Amdahl’s Law with more terms:

Speedup¼ 1
Fraction100
Speedup100

+
Fraction50
Speedup50

+ 1�Fraction100�Fraction50ð Þ

Substituting in:

80¼ 1
0:95
100

+
Fraction50

50
+ 1�0:95�Fraction80ð Þ

Simplifying:

0:76 + 1:6�Fraction50 + 4:0�80�Fraction50 ¼ 1
4:76�78:4�Fraction50 ¼ 1

Fraction50 ¼ 0:048

If 95% of an application can use 100 processors perfectly, to get a speedup of 80,
4.8% of the remaining time must be spent using 50 processors and only 0.2% can
be serial!

The second major challenge in parallel processing involves the large latency
of remote access in a parallel processor. In existing shared-memory multipro-
cessors, communication of data between separate cores may cost 35–50 clock
cycles and among cores on separate chips anywhere from 100 clock cycles to as
much as 300 or more clock cycles (for large-scale multiprocessors), depending
on the communication mechanism, the type of interconnection network, and the
scale of the multiprocessor. The effect of long communication delays is clearly
substantial. Let’s consider a simple example.

Example Suppose we have an application running on a 32-processor multiprocessor that has
a 100 ns delay to handle a reference to a remote memory. For this application,
assume that all the references except those involving communication hit in the
local memory hierarchy, which is obviously optimistic. Processors are stalled
on a remote request, and the processor clock rate is 4 GHz. If the base CPI (assum-
ing that all references hit in the cache) is 0.5, howmuch faster is the multiprocessor
if there is no communication versus if 0.2% of the instructions involve a remote
communication reference?
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Answer It is simpler to first calculate the clock cycles per instruction. The effective CPI for
the multiprocessor with 0.2% remote references is

CPI¼BaseCPI +Remote request rate�Remote request cost

¼ 0:5 + 0:2%�Remote request cost

The remote request cost is

Remote access cost
Cycle time

¼ 100ns
0:25ns

¼ 400 cycles

Therefore we can compute the CPI:

CPI¼ 0:5 + 0:20%�400

¼ 1:3

The multiprocessor with all local references is 1.3/0.5¼2.6 times faster. In prac-
tice, the performance analysis is much more complex because some fraction of the
noncommunication references will miss in the local hierarchy and the remote
access time does not have a single constant value. For example, the cost of a remote
reference could be worse because contention caused by many references trying to
use the global interconnect can lead to increased delays, or the access timemight be
better if memory were distributed and the access was to the local memory.

This problem could have also been analyzed using Amdahl’s Law, an exercise
we leave to the reader.

These problems—insufficient parallelism and long-latency remote communi-
cation—are the two biggest performance challenges in using multiprocessors.
The problem of inadequate application parallelism must be attacked primarily in
software with new algorithms that offer better parallel performance, as well as
by software systems that maximize the amount of time spent executing with the
full complement of processors. Reducing the impact of long remote latency can
be attacked both by the architecture and by the programmer. For example, we
can reduce the frequency of remote accesses with either hardware mechanisms,
such as caching shared data, or software mechanisms, such as restructuring the data
to make more accesses local. We can try to tolerate the latency by using multi-
threading (discussed later in this chapter) or by using prefetching (a topic we cover
extensively in Chapter 2).

Much of this chapter focuses on techniques for reducing the impact of long
remote communication latency. For example, Sections 5.2 through 5.4 discuss
how caching can be used to reduce remote access frequency, while maintaining
a coherent view of memory. Section 5.5 discusses synchronization, which, because
it inherently involves interprocessor communication and also can limit parallelism,
is a major potential bottleneck. Section 5.6 covers latency-hiding techniques and
memory consistency models for shared memory. In Appendix I, we focus primar-
ily on larger-scale multiprocessors that are used predominantly for scientific work.
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In that appendix, we examine the nature of such applications and the challenges of
achieving speedup with dozens to hundreds of processors.

5.2 Centralized Shared-Memory Architectures

The observation that the use of large, multilevel caches can substantially reduce the
memory bandwidth demands of a processor is the key insight that motivates central-
ized memorymultiprocessors. Originally, these processors were all single-core and
often took an entire board, and memory was located on a shared bus. With more
recent, higher-performance processors, the memory demands have outstripped
the capability of reasonable buses, and recent microprocessors directly connect
memory to a single chip, which is sometimes called a backside or memory bus to
distinguish it from the bus used to connect to I/O. Accessing a chip’s local memory
whether for an I/O operation or for an access from another chip requires going
through the chip that “owns” that memory. Thus access to memory is asymmetric:
faster to the local memory and slower to the remote memory. In a multicore that
memory is shared among all the cores on a single chip, but the asymmetric access
to the memory of one multicore from the memory of another usually remains.

Symmetric shared-memory machines usually support the caching of both
shared and private data. Private data are used by a single processor, while shared
data are used by multiple processors, essentially providing communication among
the processors through reads and writes of the shared data. When a private item is
cached, its location is migrated to the cache, reducing the average access time as
well as the memory bandwidth required. Because no other processor uses the data,
the program behavior is identical to that in a uniprocessor. When shared data are
cached, the shared value may be replicated in multiple caches. In addition to the
reduction in access latency and required memory bandwidth, this replication also
provides a reduction in contention that may exist for shared data items that are
being read by multiple processors simultaneously. Caching of shared data, how-
ever, introduces a new problem: cache coherence.

What Is Multiprocessor Cache Coherence?

Unfortunately, caching shared data introduces a new problem. Because the view of
memory held by two different processors is through their individual caches, the
processors could end up seeing different values for the same memory location,
as Figure 5.3 illustrates. This difficulty is generally referred to as the cache coher-
ence problem. Notice that the coherence problem exists because we have both a
global state, defined primarily by the main memory, and a local state, defined
by the individual caches, which are private to each processor core. Thus, in a multi-
core where some level of cachingmay be shared (e.g., an L3), although some levels
are private (e.g., L1 and L2), the coherence problem still exists and must be solved.

Informally, we could say that a memory system is coherent if any read of a data
item returns the most recently written value of that data item. This definition,
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although intuitively appealing, is vague and simplistic; the reality is much more
complex. This simple definition contains two different aspects of memory system
behavior, both of which are critical to writing correct shared-memory programs.
The first aspect, called coherence, defines what values can be returned by a read.
The second aspect, called consistency, determines when a written value will be
returned by a read. Let’s look at coherence first.

A memory system is coherent if

1. A read by processor P to location X that follows a write by P to X, with no writes
of X by another processor occurring between the write and the read by P, always
returns the value written by P.

2. A read by a processor to location X that follows a write by another processor to
X returns the written value if the read and write are sufficiently separated in time
and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to the same
location by any two processors are seen in the same order by all processors.
For example, if the values 1 and then 2 are written to a location, processors
can never read the value of the location as 2 and then later read it as 1.

The first property simply preserves program order—we expect this property to
be true even in uniprocessors. The second property defines the notion of what it
means to have a coherent view of memory: if a processor could continuously read
an old data value, we would clearly say that memory was incoherent.

The need for write serialization is more subtle, but equally important. Suppose
we did not serialize writes, and processor P1 writes location X followed by P2
writing location X. Serializing the writes ensures that every processor will see
the write done by P2 at some point. If we did not serialize the writes, it might
be the case that some processors could see the write of P2 first and then see the
write of P1, maintaining the value written by P1 indefinitely. The simplest way

Time Event
Cache contents for

processor A
Cache contents for

processor B
Memory contents for

location X

0 1

1 Processor A reads X 1 1

2 Processor B reads X 1 1 1

3 Processor A stores
0 into X

0 1 0

Figure 5.3 The cache coherence problem for a single memory location (X), read and written by two processors (A
and B).We initially assume that neither cache contains the variable and that X has the value 1. We also assume awrite-
through cache; a write-back cache adds some additional but similar complications. After the value of X has been
written by A, A’s cache and the memory both contain the new value, but B’s cache does not, and if B reads the value
of X it will receive 1!
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to avoid such difficulties is to ensure that all writes to the same location are seen in
the same order; this property is called write serialization.

Although the three properties just described are sufficient to ensure coherence,
the question of when a written value will be seen is also important. To see why,
observe that we cannot require that a read of X instantaneously see the value
written for X by some other processor. If, for example, a write of X on one
processor precedes a read of X on another processor by a very small time, it
may be impossible to ensure that the read returns the value of the data written, since
the written data may not even have left the processor at that point. The issue of
exactly when a written value must be seen by a reader is defined by a memory
consistency model—a topic discussed in Section 5.6.

Coherence and consistency are complementary: Coherence defines the behav-
ior of reads and writes to the same memory location, while consistency defines the
behavior of reads and writes with respect to accesses to other memory locations.
For now, make the following two assumptions. First, a write does not complete
(and allow the next write to occur) until all processors have seen the effect of that
write. Second, the processor does not change the order of any write with respect to
any other memory access. These two conditions mean that, if a processor writes
location A followed by location B, any processor that sees the new value of B must
also see the new value of A. These restrictions allow the processor to reorder reads,
but forces the processor to finish a write in program order. We will rely on this
assumption until we reach Section 5.6, where we will see exactly the implications
of this definition, as well as the alternatives.

Basic Schemes for Enforcing Coherence

The coherence problem for multiprocessors and I/O, although similar in origin, has
different characteristics that affect the appropriate solution. Unlike I/O, where
multiple data copies are a rare event—one to be avoided whenever possible—a
program running onmultiple processors will normally have copies of the same data
in several caches. In a coherent multiprocessor, the caches provide both migration
and replication of shared data items.

Coherent caches provide migration because a data item can be moved to a local
cache and used there in a transparent fashion. This migration reduces both the
latency to access a shared data item that is allocated remotely and the bandwidth
demand on the shared memory.

Because the caches make a copy of the data item in the local cache, coherent
caches also provide replication for shared data that are being read simultaneously.
Replication reduces both latency of access and contention for a read shared data
item. Supporting this migration and replication is critical to performance in acces-
sing shared data. Thus, rather than trying to solve the problem by avoiding it in
software, multiprocessors adopt a hardware solution by introducing a protocol
to maintain coherent caches.

The protocols to maintain coherence for multiple processors are called cache
coherence protocols. Key to implementing a cache coherence protocol is tracking
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the state of any sharing of a data block. The state of any cache block is kept using
status bits associated with the block, similar to the valid and dirty bits kept in a
uniprocessor cache. There are two classes of protocols in use, each of which uses
different techniques to track the sharing status:

■ Directory based—The sharing status of a particular block of physical memory
is kept in one location, called the directory. There are two very different types
of directory-based cache coherence. In an SMP, we can use one centralized
directory, associated with the memory or some other single serialization point,
such as the outermost cache in a multicore. In a DSM, it makes no sense to have
a single directory because that would create a single point of contention and
make it difficult to scale to many multicore chips given the memory demands
of multicores with eight or more cores. Distributed directories are more com-
plex than a single directory, and such designs are the subject of Section 5.4.

■ Snooping—Rather than keeping the state of sharing in a single directory, every
cache that has a copy of the data from a block of physical memory could track
the sharing status of the block. In an SMP, the caches are typically all acces-
sible via some broadcast medium (e.g., a bus connects the per-core caches to
the shared cache or memory), and all cache controllers monitor or snoop on the
medium to determine whether they have a copy of a block that is requested on a
bus or switch access. Snooping can also be used as the coherence protocol for a
multichip multiprocessor, and some designs support a snooping protocol on
top of a directory protocol within each multicore.

Snooping protocols became popular with multiprocessors using microproces-
sors (single-core) and caches attached to a single shared memory by a bus. The bus
provided a convenient broadcast medium to implement the snooping protocols.
Multicore architectures changed the picture significantly because all multicores
share some level of cache on the chip. Thus some designs switched to using direc-
tory protocols, since the overhead was small. To allow the reader to become fami-
liar with both types of protocols, we focus on a snooping protocol here and discuss
a directory protocol when we come to DSM architectures.

Snooping Coherence Protocols

There are two ways to maintain the coherence requirement described in the prior
section. One method is to ensure that a processor has exclusive access to a data item
before writing that item. This style of protocol is called a write invalidate protocol
because it invalidates other copies on a write. It is by far the most common pro-
tocol. Exclusive access ensures that no other readable or writable copies of an item
exist when the write occurs: all other cached copies of the item are invalidated.

Figure 5.4 shows an example of an invalidation protocol with write-back
caches in action. To see how this protocol ensures coherence, consider a write
followed by a read by another processor: because the write requires exclusive
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access, any copy held by the reading processor must be invalidated (thus the
protocol name). Therefore when the read occurs, it misses in the cache and is
forced to fetch a new copy of the data. For a write, we require that the writing
processor has exclusive access, preventing any other processor from being able
to write simultaneously. If two processors do attempt to write the same data simul-
taneously, one of them wins the race (we’ll see how we decide who wins shortly),
causing the other processor’s copy to be invalidated. For the other processor to
complete its write, it must obtain a new copy of the data, which must now contain
the updated value. Therefore this protocol enforces write serialization.

The alternative to an invalidate protocol is to update all the cached copies of a
data item when that item is written. This type of protocol is called a write update or
write broadcast protocol. Because a write update protocol must broadcast all
writes to shared cache lines, it consumes considerably more bandwidth. For this
reason, virtually all recent multiprocessors have opted to implement a write
invalidate protocol, and we will focus only on invalidate protocols for the rest
of the chapter.

Processor activity Bus activity
Contents of processor

A’s cache
Contents of processor

B’s cache
Contents of memory

location X

0

Processor A reads X Cache miss
for X

0 0

Processor B reads X Cache miss
for X

0 0 0

Processor A writes a
1 to X

Invalidation
for X

1 0

Processor B reads X Cache miss
for X

1 1 1

Figure 5.4 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The pro-
cessor and memory contents show the value after the processor and bus activity have both completed. A blank indi-
cates no activity or no copy cached. When the second miss by B occurs, processor A responds with the value
canceling the response from memory. In addition, both the contents of B’s cache and the memory contents of X
are updated. This update of memory, which occurs when a block becomes shared, simplifies the protocol, but it
is possible to track the ownership and force the write-back only if the block is replaced. This requires the introduction
of an additional status bit indicating ownership of a block. The ownership bit indicates that a block may be shared for
reads, but only the owning processor can write the block, and that processor is responsible for updating any other
processors and memory when it changes the block or replaces it. If a multicore uses a shared cache (e.g., L3), then all
memory is seen through the shared cache; L3 acts like the memory in this example, and coherency must be handled
for the private L1 and L2 caches for each core. It is this observation that led some designers to opt for a directory
protocol within themulticore. To make this work, the L3 cachemust be inclusive; recall from Chapter 2, that a cache is
inclusive if any location in a higher level cache (L1 and L2 in this case) is also in L3. We return to the topic of inclusion
on page 423.
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Basic Implementation Techniques

The key to implementing an invalidate protocol in a multicore is the use of the bus,
or another broadcast medium, to perform invalidates. In older multiple-chip mul-
tiprocessors, the bus used for coherence is the shared-memory access bus. In a
single-chip multicore, the bus can be the connection between the private caches
(L1 and L2 in the Intel i7) and the shared outer cache (L3 in the i7). To perform
an invalidate, the processor simply acquires bus access and broadcasts the address
to be invalidated on the bus. All processors continuously snoop on the bus, watch-
ing the addresses. The processors check whether the address on the bus is in their
cache. If so, the corresponding data in the cache are invalidated.

When awrite to a block that is shared occurs, thewriting processormust acquire
bus access to broadcast its invalidation. If two processors attempt to write shared
blocks at the same time, their attempts to broadcast an invalidate operation will
be serialized when they arbitrate for the bus. The first processor to obtain bus access
will cause any other copies of the block it is writing to be invalidated. If the proces-
sors were attempting to write the same block, the serialization enforced by the bus
would also serialize their writes. One implication of this scheme is that a write to a
shared data item cannot actually complete until it obtains bus access. All coherence
schemes require somemethod of serializing accesses to the same cache block, either
by serializing access to the communication medium or to another shared structure.

In addition to invalidating outstanding copies of a cache block that is beingwrit-
ten into, we also need to locate a data item when a cache miss occurs. In a write-
through cache, it is easy to find the recent value of a data item because all written
data are always sent to the memory, fromwhich the most recent value of a data item
can always be fetched. (Write buffers can lead to some additional complexities and
must effectively be treated as additional cache entries.)

For a write-back cache, the problem of finding the most recent data value is
harder because the most recent value of a data item can be in a private cache rather
than in the shared cache ormemory. Fortunately,write-back caches can use the same
snooping scheme both for cachemisses and for writes: each processor snoops every
address placed on the shared bus. If a processor finds that it has a dirty copy of the
requested cache block, it provides that cache block in response to the read request
and causes the memory (or L3) access to be aborted. The additional complexity
comes from having to retrieve the cache block from another processor’s private
cache (L1 or L2), which can often take longer than retrieving it from L3. Because
write-back caches generate lower requirements for memory bandwidth, they can
support larger numbers of faster processors. As a result, all multicore processors
use write-back at the outermost levels of the cache, and we will examine the imple-
mentation of coherence with write-back caches.

The normal cache tags can be used to implement the process of snooping, and
the valid bit for each block makes invalidation easy to implement. Read misses,
whether generated by an invalidation or by some other event, are also straightfor-
ward because they simply rely on the snooping capability. For writes, we want to
know whether any other copies of the block are cached because, if there are no
other cached copies, then the write does not need to be placed on the bus in a
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write-back cache. Not sending the write reduces both the time to write and the
required bandwidth.

To track whether or not a cache block is shared, we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a write
must generate an invalidate. When a write to a block in the shared state occurs, the
cache generates an invalidation on the bus and marks the block as exclusive. No
further invalidations will be sent by that core for that block. The core with the sole
copy of a cache block is normally called the owner of the cache block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Because our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor and the state should be made shared.

Every bus transaction must check the cache-address tags, which could poten-
tially interfere with processor cache accesses. One way to reduce this interference
is to duplicate the tags and have snoop accesses directed to the duplicate tags.
Another approach is to use a directory at the shared L3 cache; the directory indicates
whether a given block is shared and possibly which cores have copies. With the
directory information, invalidates can be directed only to those caches with copies
of the cache block. This requires that L3must always have a copy of any data item in
L1 or L2, a property called inclusion, which we will return to in Section 5.7.

An Example Protocol

A snooping coherence protocol is usually implemented by incorporating a finite-
state controller in each core. This controller responds to requests from the proces-
sor in the core and from the bus (or other broadcast medium), changing the state of
the selected cache block, as well as using the bus to access data or to invalidate it.
Logically, you can think of a separate controller as being associated with each
block; that is, snooping operations or cache requests for different blocks can pro-
ceed independently. In actual implementations, a single controller allows multiple
operations to distinct blocks to proceed in interleaved fashion (i.e., one operation
may be initiated before another is completed, even though only one cache access or
one bus access is allowed at a time). Also, remember that, although we refer to a
bus in the following description, any interconnection network that supports a
broadcast to all the coherence controllers and their associated private caches can
be used to implement snooping.

The simple protocol we consider has three states: invalid, shared, andmodified.
The shared state indicates that the block in the private cache is potentially shared,
whereas the modified state indicates that the block has been updated in the private
cache; note that the modified state implies that the block is exclusive. Figure 5.5
shows the requests generated by a core (in the top half of the table) as well as
those coming from the bus (in the bottom half of the table). This protocol is for
a write-back cache but is easily changed to work for a write-through cache by rein-
terpreting the modified state as an exclusive state and updating the cache on writes
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in the normal fashion for a write-through cache. The most common extension
of this basic protocol is the addition of an exclusive state, which describes a block
that is unmodified but held in only one private cache. We describe this and other
extensions on page 388.

Request Source

State of
addressed
cache block

Type of
cache
action Function and explanation

Read hit Processor Shared or
modified

Normal hit Read data in local cache.

Read
miss

Processor Invalid Normal miss Place read miss on bus.

Read
miss

Processor Shared Replacement Address conflict miss: place read miss on bus.

Read
miss

Processor Modified Replacement Address conflict miss: write-back block; then place read
miss on bus.

Write hit Processor Modified Normal hit Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownershipmisses, because they do not fetch the
data but only change the state.

Write
miss

Processor Invalid Normal miss Place write miss on bus.

Write
miss

Processor Shared Replacement Address conflict miss: place write miss on bus.

Write
miss

Processor Modified Replacement Address conflict miss: write-back block; then place write
miss on bus.

Read
miss

Bus Shared No action Allow shared cache or memory to service read miss.

Read
miss

Bus Modified Coherence Attempt to read shared data: place cache block on bus,
write-back block, and change state to shared.

Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Write
miss

Bus Shared Coherence Attempt to write shared block; invalidate the cache block.

Write
miss

Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-
back the cache block and make its state invalid in the local
cache.

Figure 5.5 The cache coherencemechanism receives requests from both the core’s processor and the shared bus
and responds to these based on the type of request, whether it hits or misses in the local cache, and the state of
the local cache block specified in the request. The fourth column describes the type of cache action as normal hit or
miss (the same as a uniprocessor cache would see), replacement (a uniprocessor cache replacement miss), or coher-
ence (required to maintain cache coherence); a normal or replacement action may cause a coherence action depend-
ing on the state of the block in other caches. For read, misses, write misses, or invalidates snooped from the bus, an
action is required only if the read or write addresses match a block in the local cache and the block is valid.
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When an invalidate or a write miss is placed on the bus, any cores whose pri-
vate caches have copies of the cache block invalidate it. For a write miss in a write-
back cache, if the block is exclusive in just one private cache, that cache also writes
back the block; otherwise, the data can be read from the shared cache or memory.

Figure 5.6 shows a finite-state transition diagram for a single private cache
block using a write invalidation protocol and a write-back cache. For simplicity,
the three states of the protocol are duplicated to represent transitions based on
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Figure 5.6 A write invalidate, cache coherence protocol for a private write-back cache showing the states and
state transitions for each block in the cache. The cache states are shown in circles, with any access permitted by the
local processor without a state transition shown in parentheses under the name of the state. The stimulus causing a
state change is shown on the transition arcs in regular type, and any bus actions generated as part of the state tran-
sition are shown on the transition arc in bold. The stimulus actions apply to a block in the private cache, not to a
specific address in the cache. Thus a read miss to a block in the shared state is a miss for that cache block but
for a different address. The left side of the diagram shows state transitions based on actions of the processor asso-
ciated with this cache; the right side shows transitions based on operations on the bus. A readmiss in the exclusive or
shared state and a write miss in the exclusive state occur when the address requested by the processor does not
match the address in the local cache block. Such a miss is a standard cache replacement miss. An attempt to write
a block in the shared state generates an invalidate. Whenever a bus transaction occurs, all private caches that contain
the cache block specified in the bus transaction take the action dictated by the right half of the diagram. The protocol
assumes that memory (or a shared cache) provides data on a read miss for a block that is clean in all local caches. In
actual implementations, these two sets of state diagrams are combined. In practice, there are many subtle variations
on invalidate protocols, including the introduction of the exclusive unmodified state, as to whether a processor or
memory provides data on a miss. In a multicore chip, the shared cache (usually L3, but sometimes L2) acts as the
equivalent of memory, and the bus is the bus between the private caches of each core and the shared cache, which
in turn interfaces to the memory.
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processor requests (on the left, which corresponds to the top half of the table in
Figure 5.5), as opposed to transitions based on bus requests (on the right, which
corresponds to the bottom half of the table in Figure 5.5). Boldface type is used
to distinguish the bus actions, as opposed to the conditions on which a state tran-
sition depends. The state in each node represents the state of the selected private
cache block specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor cache,
where they would correspond to the invalid, valid (and clean), and dirty states.
Most of the state changes indicated by arcs in the left half of Figure 5.6 would
be needed in a write-back uniprocessor cache, with the exception being the inval-
idate on a write hit to a shared block. The state changes represented by the arcs in
the right half of Figure 5.6 are needed only for coherence and would not appear at
all in a uniprocessor cache controller.

As mentioned earlier, there is only one finite-state machine per cache, with
stimuli coming either from the attached processor or from the bus. Figure 5.7
shows how the state transitions in the right half of Figure 5.6 are combined
with those in the left half of the figure to form a single state diagram for each
cache block.

To understand why this protocol works, observe that any valid cache block is
either in the shared state in one or more private caches or in the exclusive state in
exactly one cache. Any transition to the exclusive state (which is required for a
processor to write to the block) requires an invalidate or write miss to be placed
on the bus, causing all local caches to make the block invalid. In addition, if some
other local cache had the block in exclusive state, that local cache generates a write-
back, which supplies the block containing the desired address. Finally, if a read
miss occurs on the bus to a block in the exclusive state, the local cache with the
exclusive copy changes its state to shared.

The actions in gray in Figure 5.7, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other property
that is preserved in this protocol, and in most other protocols, is that any memory
block in the shared state is always up to date in the outer shared cache (L2 or L3, or
memory if there is no shared cache), which simplifies the implementation. In fact, it
does not matter whether the level out from the private caches is a shared cache or
memory; the key is that all accesses from the cores go through that level.

Although our simple cache protocol is correct, it omits a number of complica-
tions that make the implementation much trickier. The most important of these is
that the protocol assumes that operations are atomic—that is, an operation can be
done in such a way that no intervening operation can occur. For example, the
protocol described assumes that write misses can be detected, acquire the
bus, and receive a response as a single atomic action. In reality this is not true.
In fact, even a read miss might not be atomic; after detecting a miss in the L2
of a multicore, the core must arbitrate for access to the bus connecting to the shared
L3. Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. We will explore these
complications later in this section and when we examine DSM designs.
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With multicore processors, the coherence among the processor cores is all
implemented on chip, using either a snooping or simple central directory protocol.
Many multiprocessor chips, including the Intel Xeon and AMD Opteron, support
multichip multiprocessors that could be built by connecting a high-speed interface
already incorporated in the chip. These next-level interconnects are not just exten-
sions of the shared bus, but use a different approach for interconnecting multicores.

A multiprocessor built with multiple multicore chips will usually have a
distributed memory architecture and will need an interchip coherency mechanism
above and beyond the one within the chip. In most cases, some form of directory
scheme is used.
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Figure 5.7 Cache coherence state diagram with the state transitions induced by the
local processor shown in black and by the bus activities shown in gray. As in
Figure 5.6, the activities on a transition are shown in bold.
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Extensions to the Basic Coherence Protocol

The coherence protocol we have just described is a simple three-state protocol and
is often referred to by the first letter of the states, making it a MSI (Modified,
Shared, Invalid) protocol. There are many extensions of this basic protocol, which
we mention in the captions of figures in this section. These extensions are created
by adding additional states and transactions that optimize certain behaviors, pos-
sibly resulting in improved performance. Two of the most common extensions are

1. MESI adds the state Exclusive to the basic MSI protocol, yielding four states
(Modified, Exclusive, Shared, and Invalid). The exclusive state indicates that
a cache block is resident in only a single cache but is clean. If a block is in
the E state, it can be written without generating any invalidates, which optimizes
the case where a block is read by a single cache before being written by that
same cache. Of course, when a read miss to a block in the E state occurs,
the block must be changed to the S state to maintain coherence. Because all
subsequent accesses are snooped, it is possible to maintain the accuracy of this
state. In particular, if another processor issues a read miss, the state is changed
from exclusive to shared. The advantage of adding this state is that a subsequent
write to a block in the exclusive state by the same core need not acquire bus
access or generate an invalidate, since the block is known to be exclusively
in this local cache; the processor merely changes the state to modified. This state
is easily added by using the bit that encodes the coherent state as an exclusive
state and using the dirty bit to indicate that a bock is modified. The Intel i7 uses
a variant of a MESI protocol, called MESIF, which adds a state (Forward) to
designate which sharing processor should respond to a request. It is designed
to enhance performance in distributed memory organizations.

2. MOESI adds the state Owned to the MESI protocol to indicate that the associ-
ated block is owned by that cache and out-of-date in memory. In MSI andMESI
protocols, when there is an attempt to share a block in the Modified state, the
state is changed to Shared (in both the original and newly sharing cache), and
the block must be written back to memory. In a MOESI protocol, the block can
be changed from the Modified to Owned state in the original cache without
writing it to memory. Other caches, which are newly sharing the block, keep
the block in the Shared state; the O state, which only the original cache holds,
indicates that the main memory copy is out of date and that the designated cache
is the owner. The owner of the block must supply it on a miss, since memory
is not up to date and must write the block back to memory if it is replaced.
The AMD Opteron processor family uses the MOESI protocol.

The next section examines the performance of these protocols for our parallel
and multiprogrammed workloads; the value of these extensions to a basic protocol
will be clear when we examine the performance. But, before we do that, let’s take
a brief look at the limitations on the use of a symmetric memory structure and a
snooping coherence scheme.
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Limitations in Symmetric Shared-Memory Multiprocessors and
Snooping Protocols

As the number of processors in a multiprocessor grows, or as the memory demands
of each processor grow, any centralized resource in the system can become a
bottleneck. For multicores, a single shared bus became a bottleneck with only a
few cores. As a result, multicore designs have gone to higher bandwidth intercon-
nection schemes, as well as multiple, independent memories to allow larger num-
bers of cores. The multicore chips we examine in Section 5.8 use three different
approaches:

1. The IBM Power8, which has up to 12 processors in a single multicore, uses
8 parallel buses that connect the distributed L3 caches and up to 8 separate
memory channels.

2. The Xeon E7 uses three rings to connect up to 32 processors, a distributed
L3 cache, and two or four memory channels (depending on the configu-
ration).

3. The Fujitsu SPARC64 X+ uses a crossbar to connect a shared L2 to up to 16
cores and multiple memory channels.

The SPARC64 X+ is a symmetric organization with uniform access time. The
Power8 has nonuniform access time for both L3 and memory. Although the
uncontended access time differences among memory addresses within a single
Power8 multicore are not large, with contention for memory, the access time
differences can become significant even within one chip. The Xeon E7 can
operate as if access times were uniform; in practice, software systems usually
organize memory so that the memory channels are associated with a subset of
the cores.

Snooping bandwidth at the caches can also become a problem because every
cache must examine every miss, and having additional interconnection bandwidth
only pushes the problem to the cache. To understand this problem, consider the
following example.

Example Consider an 8-processor multicore where each processor has its own L1 and L2
caches, and snooping is performed on a shared bus among the L2 caches. Assume
the average L2 request, whether for a coherence miss or other miss, is 15 cycles.
Assume a clock rate of 3.0 GHz, a CPI of 0.7, and a load/store frequency of 40%.
If our goal is that nomore than 50% of the L2 bandwidth is consumed by coherence
traffic, what is the maximum coherence miss rate per processor?

Answer Start with an equation for the number of cache cycles that can be used (where CMR
is the coherence miss rate):
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Cache cycles available¼ Clock rate
Cycles per request�2

¼ 3:0Ghz
30

¼ 0:1�109

Cache cycles available¼Memory references=clock=processor�Clock rate

�processor count�CMR

¼ 0:4
0:7

�3:0GHz�8�CMR¼ 13:7�109�CMR

CMR¼ 0:1
13:7

¼ 0:0073¼ 0:73%

This means that the coherence miss rate must be 0.73% or less. In the next section,
we will see several applications with coherence miss rates in excess of 1%. Alter-
natively, if we assume that CMR can be 1%, then we could support just under 6
processors. Clearly, even small multicores will require a method for scaling snoop
bandwidth.

There are several techniques for increasing the snoop bandwidth:

1. As mentioned earlier, the tags can be duplicated. This doubles the effective
cache-level snoop bandwidth. If we assume that half the coherence requests
do not hit on a snoop request and the cost of the snoop request is only 10 cycles
(versus 15), then we can cut the average cost of a CMR to 12.5 cycles. This
reduction allows the coherence miss rate to be 0.88, or alternatively to support
one additional processor (7 versus 6).

2. If the outermost cache on a multicore (typically L3) is shared, we can distribute
that cache so that each processor has a portion of the memory and handles
snoops for that portion of the address space. This approach, used by the
IBM 12-core Power8, leads to a NUCA design, but effectively scales the snoop
bandwidth at L3 by the number of processors. If there is a snoop hit in L3, then
wemust still broadcast to all L2 caches, which must in turn snoop their contents.
Since L3 is acting as a filter on the snoop requests, L3 must be inclusive.

3. We can place a directory at the level of the outermost shared cache (say, L3).
L3 acts as a filter on snoop requests and must be inclusive. The use of a directory
at L3 means that we need not snoop or broadcast to all the L2 caches, but
only those that the directory indicates may have a copy of the block. Just as L3
may be distributed, the associated directory entries may also be distributed. This
approach is used in the Intel Xeon E7 series, which supports from 8 to 32 cores.

Figure 5.8 shows how a multicore with a distributed cache system, such as that
used in schemes 2 or 3, might look. If additional multicore chips were added to
form a larger multiprocessor, an off-chip network would needed, as well as a
method to extend the coherence mechanisms (as we will see in Section 5.8).

390 ■ Chapter Five Thread-Level Parallelism



The AMD Opteron represents another intermediate point in the spectrum
between a snooping and a directory protocol. Memory is directly connected to each
multicore chip, and up to four multicore chips can be connected. The system is a
NUMA because local memory is somewhat faster. The Opteron implements its
coherence protocol using the point-to-point links to broadcast up to three other
chips. Because the interprocessor links are not shared, the only way a processor
can know when an invalid operation has completed is by an explicit acknowledg-
ment. Thus the coherence protocol uses a broadcast to find potentially shared cop-
ies, like a snooping protocol, but uses the acknowledgments to order operations,
like a directory protocol. Because local memory is only somewhat faster than
remote memory in the Opteron implementation, some software treats the Opteron
multiprocessor as having uniform memory access.

In Section 5.4, we examine directory-based protocols, which eliminate the
need for broadcast to all caches on a miss. Some multicore designs use directories
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Interconnection network

Processor Processor Processor

Memory
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shared
cache

Bank 2
shared
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Bank 1
shared
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of private

cache
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Figure 5.8 A single-chip multicore with a distributed cache. In current designs, the
distributed shared cache is usually L3, and levels L1 and L2 are private. There are typ-
ically multiple memory channels (2–8 in today’s designs). This design is NUCA, since the
access time to L3 portions varies with faster access time for the directly attached core.
Because it is NUCA, it is also NUMA.
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within the multicore (Intel Xeon E7), while others add directories when scaling
beyond a multicore. Distributed directories eliminate the need for a single point
to serialize all accesses (typically a single shared bus in a snooping scheme),
and any scheme that removes the single point of serialization must deal with many
of the same challenges as a distributed directory scheme.

Implementing Snooping Cache Coherence

The devil is in the details.
Classic proverb

When we wrote the first edition of this book in 1990, our final “Putting It All
Together” was a 30-processor, single-bus multiprocessor using snoop-based cohe-
rence; the bus had a capacity of just over 50 MiB/s, which would not be enough bus
bandwidth to support even one core of an Intel i7 in 2017! When we wrote the
second edition of this book in 1995, the first cache coherence multiprocessors with
more than a single bus had recently appeared, and we added an appendix descri-
bing the implementation of snooping in a system with multiple buses. In 2017,
every multicore multiprocessor system that supports 8 or more cores uses an inter-
connect other than a single bus, and designers must face the challenge of imple-
menting snooping (or a directory scheme) without the simplification of a bus to
serialize events.

As we observed on page 386, the major complication in actually implement-
ing the snooping coherence protocol we have described is that write and
upgrade misses are not atomic in any recent multiprocessor. The steps of detect-
ing a write or upgrade miss, communicating with the other processors and
memory, getting the most recent value for a write miss and ensuring that any
invalidates are processed, and updating the cache cannot be done as though they
took a single cycle.

In a multicore with a single bus, these steps can be made effectively atomic by
arbitrating for the bus to the shared cache or memory first (before changing the
cache state) and not releasing the bus until all actions are complete. How can
the processor knowwhen all the invalidates are complete? In early designs, a single
line was used to signal when all necessary invalidates had been received and were
being processed. Following that signal, the processor that generated the miss could
release the bus, knowing that any required actions would be completed before any
activity related to the next miss. By holding the bus exclusively during these steps,
the processor effectively made the individual steps atomic.

In a system without a single, central bus, we must find some other method of
making the steps in a miss atomic. In particular, we must ensure that two processors
that attempt to write the same block at the same time, a situation which is called a
race, are strictly ordered: one write is processed and precedes before the next is
begun. It does not matter which of two writes in a race wins the race, just that there
be only a single winner whose coherence actions are completed first. In a multicore
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using multiple buses, races can be eliminated if each block of memory is associated
with only a single bus, ensuring that two attempts to access the same block must be
serialized by that common bus. This property, together with the ability to restart the
miss handling of the loser in a race, are the keys to implementing snooping cache
coherence without a bus. We explain the details in Appendix I.

It is possible to combine snooping and directories, and several designs use
snooping within a multicore and directories amongmultiple chips or a combination
of directories at one cache level and snooping at another level.

5.3 Performance of Symmetric Shared-Memory
Multiprocessors

In a multicore using a snooping coherence protocol, several different phenomena
combine to determine performance. In particular, the overall cache performance is
a combination of the behavior of uniprocessor cache miss traffic and the traffic
caused by communication, which results in invalidations and subsequent cache
misses. Changing t he processor count, cache size, and block size can affect these
two components of the miss rate in different ways, leading to overall system behav-
ior that is a combination of the two effects.

Appendix B breaks the uniprocessor miss rate into the three C’s classification
(capacity, compulsory, and conflict) and provides insight into both application
behavior and potential improvements to the cache design. Similarly, the misses that
arise from interprocessor communication, which are often called coherence misses,
can be broken into two separate sources.

The first source is the true sharing misses that arise from the communication of
data through the cache coherence mechanism. In an invalidation-based protocol,
the first write by a processor to a shared cache block causes an invalidation to
establish ownership of that block. Additionally, when another processor attempts
to read a modified word in that cache block, a miss occurs and the resultant block is
transferred. Both these misses are classified as true sharing misses because they
directly arise from the sharing of data among processors.

The second effect, called false sharing, arises from the use of an invalidation-
based coherence algorithm with a single valid bit per cache block. False sharing
occurs when a block is invalidated (and a subsequent reference causes a miss)
because some word in the block, other than the one being read, is written into.
If the word written into is actually used by the processor that received the inval-
idate, then the reference was a true sharing reference and would have caused a miss
independent of the block size. If, however, the word being written and the word
read are different and the invalidation does not cause a new value to be commu-
nicated, but only causes an extra cache miss, then it is a false sharingmiss. In a false
sharing miss, the block is shared, but no word in the cache is actually shared, and
the miss would not occur if the block size were a single word. The following exam-
ple makes the sharing patterns clear.

5.3 Performance of Symmetric Shared-Memory Multiprocessors ■ 393



Example Assume that words z1 and z2 are in the same cache block, which is in the shared
state in the caches of both P1 and P2. Assuming the following sequence of events,
identify each miss as a true sharing miss, a false sharing miss, or a hit. Any miss
that would occur if the block size were one word is designated a true sharing miss.

Time P1 P2

1 Write z1

2 Read z2

3 Write z1

4 Write z2

5 Read z2

Answer Here are the classifications by time step:

1. This event is a true sharingmiss, since z1 is in the shared state in P2 and needs to
be invalidated from P2.

2. This event is a false sharing miss, since z2 was invalidated by the write of z1 in
P1, but that value of z1 is not used in P2.

3. This event is a false sharing miss, since the block containing z1 is marked
shared due to the read in P2, but P2 did not read z1. The cache block containing
z1 will be in the shared state after the read by P2; a write miss is required to
obtain exclusive access to the block. In some protocols, this will be handled
as an upgrade request, which generates a bus invalidate, but does not transfer
the cache block.

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was written by P2.

Although we will see the effects of true and false sharing misses in commercial
workloads, the role of coherence misses is more significant for tightly coupled
applications that share significant amounts of user data. We examine their effects
in detail in Appendix I when we consider the performance of a parallel scientific
workload.

A Commercial Workload

In this section, we examine the memory system behavior of a 4-processor shared-
memory multiprocessor when running an online transaction processing workload.
The study we examine was done with a 4-processor Alpha system in 1998, but it
remains the most comprehensive and insightful study of the performance of a mul-
tiprocessor for such workloads.We will focus on understanding the multiprocessor
cache activity, and particularly the behavior in L3, where much of the traffic is
coherence-related.
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The results were collected either on an AlphaServer 4100 or using a configur-
able simulator modeled after the AlphaServer 4100. Each processor in the Alpha-
Server 4100 is an Alpha 21164, which issues up to four instructions per clock and
runs at 300 MHz. Although the clock rate of the Alpha processor in this system is
considerably slower than processors in systems designed in 2017, the basic struc-
ture of the system, consisting of a four-issue processor and a three-level cache hier-
archy, is very similar to the multicore Intel i7 and other processors, as shown in
Figure 5.9. Rather than focus on the performance details, we consider data that
looks at the simulated L3 behavior for L3 caches varying from 2 to 8 MiB per
processor.

Although the original study considered three different workloads, we focus our
attention on the online transaction-processing (OLTP) workload modeled after
TPC-B (which has memory behavior similar to its newer cousin TPC-C, described
in Chapter 1) and using Oracle 7.3.2 as the underlying database. The workload con-
sists of a set of client processes that generate requests and a set of servers that han-
dle them. The server processes consume 85% of the user time, with the remaining
going to the clients. Although the I/O latency is hidden by careful tuning and
enough requests to keep the processor busy, the server processes typically block
for I/O after about 25,000 instructions. Overall, 71% of the execution time is spent
in user mode, 18% in the operating system, and 11% idle, primarily waiting for I/O.
Of the commercial applications studied, the OLTP application stresses the memory
system the hardest and shows significant challenges even when evaluated with
much larger L3 caches. For example, on the AlphaServer, the processors are stalled

Cache level Characteristic Alpha 21164 Intel i7

L1 Size 8 KB I/8 KB D 32 KB I/32 KB D

Associativity Direct-mapped 8-way I/8-way D

Block size 32 B 64 B

Miss penalty 7 10

L2 Size 96 KB 256 KB

Associativity 3-way 8-way

Block size 32 B 64 B

Miss penalty 21 35

L3 Size 2 MiB (total 8 MiB unshared) 2 MiB per core (8 MiB total shared)

Associativity Direct-mapped 16-way

Block size 64 B 64 B

Miss penalty 80 �100

Figure 5.9 The characteristics of the cache hierarchy of the Alpha 21164 used in this study and the Intel i7.
Although the sizes are larger and the associativity is higher on the i7, the miss penalties are also higher, so the behav-
ior may differ only slightly. Both systems have a high penalty (125 cycles or more) for a transfer required from a private
cache. A key difference is that L3 is shared in the i7 versus four separate, unshared caches in the Alpha server.
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for approximately 90% of the cycles with memory accesses occupying almost half
the stall time and L2 misses 25% of the stall time.

We start by examining the effect of varying the size of the L3 cache. In these
studies, the L3 cache is varied from 1 to 8 MiB per processor; at 2 MiB per pro-
cessor, the total size of L3 is equal to that of the Intel i7 6700. In the case of the i7,
however, the cache is shared, which provides both some advantages and disadvan-
tages. It is unlikely that the shared 8 MiB cache will outperform separate L3 caches
with a total size of 16 MiB. Figure 5.10 shows the effect of increasing the cache
size, using two-way set associative caches, which reduces the large number of con-
flict misses. The execution time is improved as the L3 cache grows because of the
reduction in L3 misses. Surprisingly, almost all of the gain occurs in going from 1
to 2 MiB (or 4 to 8 MiB of total cache for the four processors). There is little addi-
tional gain beyond that, despite the fact that cache misses are still a cause of sig-
nificant performance loss with 2 MiB and 4 MiB caches. The question is, Why?

To better understand the answer to this question, we need to determine what
factors contribute to the L3 miss rate and how they change as the L3 cache grows.
Figure 5.11 shows these data, displaying the number of memory access cycles con-
tributed per instruction from five sources. The two largest sources of L3 memory
access cycles with a 1 MiB L3 are instruction and capacity/conflict misses. With a
larger L3, these two sources shrink to be minor contributors. Unfortunately, the
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Figure 5.10 The relative performance of the OLTP workload as the size of the L3
cache, which is set as two-way set associative, grows from 1 to 8 MiB. The idle time
also grows as cache size is increased, reducing some of the performance gains. This
growth occurs because, with fewer memory system stalls, more server processes are
needed to cover the I/O latency. The workload could be retuned to increase the com-
putation/communication balance, holding the idle time in check. The PAL code is a set
of sequences of specialized OS-level instructions executed in privilegedmode; an exam-
ple is the TLB miss handler.

396 ■ Chapter Five Thread-Level Parallelism



compulsory, false sharing, and true sharing misses are unaffected by a larger L3.
Thus, at 4 and 8 MiB, the true sharing misses generate the dominant fraction of the
misses; the lack of change in true sharing misses leads to the limited reductions in
the overall miss rate when increasing the L3 cache size beyond 2 MiB.

Increasing the cache size eliminates most of the uniprocessor misses while
leaving the multiprocessor misses untouched. How does increasing the processor
count affect different types of misses? Figure 5.12 shows these data assuming a
base configuration with a 2 MiB, two-way set associative L3 cache (the same
effective per processor cache size as the i7 but with less associativity). As we might
expect, the increase in the true sharing miss rate, which is not compensated for by
any decrease in the uniprocessor misses, leads to an overall increase in the memory
access cycles per instruction.

The final question we examine is whether increasing the block size—which
should decrease the instruction and cold miss rate and, within limits, also reduce
the capacity/conflict miss rate and possibly the true sharing miss rate—is helpful
for this workload. Figure 5.13 shows the number of misses per 1000 instructions as
the block size is increased from 32 to 256 bytes. Increasing the block size from 32
to 256 bytes affects four of the miss rate components:

■ The true sharing miss rate decreases by more than a factor of 2, indicating some
locality in the true sharing patterns.
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Figure 5.11 The contributing causes of memory access cycle shift as the cache size is
increased. The L3 cache is simulated as two-way set associative.
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■ The compulsory miss rate significantly decreases, as we would expect.

■ The conflict/capacity misses show a small decrease (a factor of 1.26 compared
to a factor of 8 increase in block size), indicating that the spatial locality is not
high in the uniprocessor misses that occur with L3 caches larger than 2 MiB.

■ The false sharing miss rate, although small in absolute terms, nearly doubles.

The lack of a significant effect on the instruction miss rate is startling. If there
were an instruction-only cache with this behavior, we would conclude that the spa-
tial locality is very poor. In the case of mixed L2 and L3 caches, other effects such
as instruction-data conflicts may also contribute to the high instruction cache miss
rate for larger blocks. Other studies have documented the low spatial locality in the
instruction stream of large database and OLTP workloads, which have lots of short
basic blocks and special-purpose code sequences. Based on these data, the miss
penalty for a larger block size L3 to perform as well as the 32-byte block size
L3 can be expressed as a multiplier on the 32-byte block size penalty.

Block size
Miss penalty relative to 32-byte

block miss penalty

64 bytes 1.19

128 bytes 1.36

256 bytes 1.52

With modern DDR SDRAMs that make block access fast, these numbers are
attainable, especially at the 64 byte (the i7 block size) and the 128 byte block size.
Of course, we must also worry about the effects of the increased traffic to memory
and possible contention for the memory with other cores. This latter effect may
easily negate the gains obtained from improving the performance of a single
processor.

A Multiprogramming and OS Workload

Our next study is a multiprogrammed workload consisting of both user activity and
OS activity. The workload used is two independent copies of the compile phases of
the Andrew benchmark, a benchmark that emulates a software development envi-
ronment. The compile phase consists of a parallel version of the UNIX “make”
command executed using eight processors. The workload runs for 5.24 seconds
on eight processors, creating 203 processes and performing 787 disk requests
on three different file systems. The workload is run with 128 MiB of memory,
and no paging activity takes place.

The workload has three distinct phases: compiling the benchmarks, which
involves substantial compute activity; installing the object files in a library; and
removing the object files. The last phase is completely dominated by I/O, and only
two processes are active (one for each of the runs). In the middle phase, I/O also
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plays a major role, and the processor is largely idle. The overall workload is much
more system- and I/O-intensive than the OLTP workload.

For the workload measurements, we assume the following memory and I/O
systems:

■ Level 1 instruction cache—32 KB, two-way set associative with a 64-byte
block, 1 clock cycle hit time.

■ Level 1 data cache—32 KB, two-way set associative with a 32-byte block, 1
clock cycle hit time. Our focus is on examining the behavior in the Level 1 data
cache, in contrast to the OLTP study, which focused on the L3 cache.

■ Level 2 cache—1 MiB unified, two-way set associative with a 128-byte block,
10 clock cycle hit time.

■ Main memory—Single memory on a bus with an access time of 100 clock
cycles.

■ Disk system—Fixed-access latency of 3 ms (less than normal to reduce
idle time).

Figure 5.14 shows how the execution time breaks down for the eight processors
using the parameters just listed. Execution time is broken down into four
components:

1. Idle—Execution in the kernel mode idle loop

2. User—Execution in user code

3. Synchronization—Execution or waiting for synchronization variables

4. Kernel—Execution in the OS that is neither idle nor in synchronization access

This multiprogramming workload has a significant instruction cache perfor-
mance loss, at least for the OS. The instruction cache miss rate in the OS for a
64-byte block size, two-way set associative cache varies from 1.7% for a 32 KB

User
execution

Kernel
execution

Synchronization
wait

Processor idle
(waiting for I/O)

Instructions
executed

27% 3% 1% 69%

Execution
time

27% 7% 2% 64%

Figure 5.14 The distribution of execution time in the multiprogrammed parallel
“make” workload. The high fraction of idle time is due to disk latency when only
one of the eight processors is active. These data and the subsequent measurements
for this workload were collected with the SimOS system (Rosenblum et al., 1995).
The actual runs and data collection were done by M. Rosenblum, S. Herrod, and
E. Bugnion of Stanford University.
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cache to 0.2% for a 256 KB cache. User-level instruction cache misses are roughly
one-sixth of the OS rate, across the variety of cache sizes. This partially accounts
for the fact that, although the user code executes nine times as many instructions as
the kernel, those instructions take only about four times as long as the smaller num-
ber of instructions executed by the kernel.

Performance of the Multiprogramming and OS Workload

In this section, we examine the cache performance of the multiprogrammed work-
load as the cache size and block size are changed. Because of differences between
the behavior of the kernel and that of the user processes, we keep these two com-
ponents separate. Remember, though, that the user processes execute more than
eight times as many instructions, so the overall miss rate is determined primarily
by the miss rate in user code, which as we will see, is often one-fifth of the kernel
miss rate.

Although the user code executes more instructions, the behavior of the oper-
ating system can cause more cache misses than the user processes for two reasons
beyond larger code size and lack of locality. First, the kernel initializes all pages
before allocating them to a user, which significantly increases the compulsory
component of the kernel’s miss rate. Second, the kernel actually shares data and
thus has a nontrivial coherence miss rate. In contrast, user processes cause coher-
ence misses only when the process is scheduled on a different processor, and this
component of the miss rate is small. This is a major difference between a multi-
programmed workload and one like the OLTP workload.

Figure 5.15 shows the data miss rate versus data cache size and versus block
size for the kernel and user components. Increasing the data cache size affects the
user miss rate more than it affects the kernel miss rate. Increasing the block size has
beneficial effects for both miss rates because a larger fraction of the misses arise
from compulsory and capacity, both of which can be potentially improved with
larger block sizes. Because coherence misses are relatively rarer, the negative
effects of increasing block size are small. To understand why the kernel and user
processes behave differently, we can look at how the kernel misses behave.

Figure 5.16 shows the variation in the kernel misses versus increases in cache
size and in block size. The misses are broken into three classes: compulsory misses,
coherence misses (from both true and false sharing), and capacity/conflict misses
(which include misses caused by interference between the OS and the user process
and between multiple user processes). Figure 5.16 confirms that, for the kernel ref-
erences, increasing the cache size reduces only the uniprocessor capacity/conflict
miss rate. In contrast, increasing the block size causes a reduction in the compulsory
miss rate. The absence of large increases in the coherence miss rate as block size is
increased means that false sharing effects are probably insignificant, although such
misses may be offsetting some of the gains from reducing the true sharing misses.

If we examine the number of bytes needed per data reference, as in Figure 5.17,
we see that the kernel has a higher traffic ratio that grows with block size. It is easy
to see why this occurs: when going from a 16-byte block to a 128-byte block, the
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data cache size (on the left) versus increases in the L1 data cache block size (on the right). Increasing the L1 data
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indicates that the kernel miss rate will still be significant in an L2 cache. The miss rate for both user and kernel com-
ponents drops steadily as the L1 block size is increased (while keeping the L1 cache at 32 KB). In contrast to the effects
of increasing the cache size, increasing the block size improves the kernel miss rate more significantly (just under a
factor of 4 for the kernel references when going from 16-byte to 128-byte blocks versus just under a factor of 3 for the
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miss rate drops by about 3.7, but the number of bytes transferred per miss increases
by 8, so the total miss traffic increases by just over a factor of 2. The user program
also more than doubles as the block size goes from 16 to 128 bytes, but it starts out
at a much lower level.

For the multiprogrammed workload, the OS is a much more demanding user of
the memory system. If more OS or OS-like activity is included in the workload, and
the behavior is similar to what was measured for this workload, it will become very
difficult to build a sufficiently capable memory system. One possible route to
improving performance is to make the OS more cache-aware through either better
programming environments or through programmer assistance. For example, the
OS reuses memory for requests that arise from different system calls. Despite the
fact that the reused memory will be completely overwritten, the hardware, not rec-
ognizing this, will attempt to preserve coherency and the possibility that some por-
tion of a cache block may be read, even if it is not. This behavior is analogous to the
reuse of stack locations on procedure invocations. The IBM Power series has sup-
port to allow the compiler to indicate this type of behavior on procedure invoca-
tions, and the newest AMD processors have similar support. It is harder to detect
such behavior by the OS, and doing so may require programmer assistance, but the
payoff is potentially even greater.

OS and commercial workloads pose tough challenges for multiprocessor mem-
ory systems, and unlike scientific applications, which we examine in Appendix I,
they are less amenable to algorithmic or compiler restructuring. As the number of
cores increases, predicting the behavior of such applications is likely to get more
difficult. Emulation or simulation methodologies that allow the simulation of tens
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Figure 5.17 The number of bytes needed per data reference grows as block size is
increased for both the kernel and user components. It is interesting to compare this
chart with the data on scientific programs shown in Appendix I.
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to hundreds of cores with large applications (including operating systems) will be
crucial to maintaining an analytical and quantitative approach to design.

5.4 Distributed Shared-Memory and Directory-Based
Coherence

As we saw in Section 5.2, a snooping protocol requires communication with all
caches on every cache miss, including writes of potentially shared data. The
absence of any centralized data structure that tracks the state of the caches is both
the fundamental advantage of a snooping-based scheme, since it allows it to be
inexpensive, as well as its Achilles’ heel when it comes to scalability.

For example, consider a multiprocessor consisting of four 4-core multicores
capable of sustaining one data reference per clock and a 4 GHz clock. From the
data in Section I.5 in Appendix I, we can see that the applications may require
4–170 GiB/s of memory bus bandwidth. The maximum memory bandwidth sup-
ported by the i7 with two DDR4 memory channels is 34 GiB/s. If several i7 multi-
core processors shared the same memory system, they would easily swamp it. In
the last few years, the development of multicore processors forced all designers to
shift to some form of distributed memory to support the bandwidth demands of the
individual processors.

We can increase the memory bandwidth and interconnection bandwidth by dis-
tributing the memory, as shown in Figure 5.2 on page 373; this immediately sep-
arates local memory traffic from remote memory traffic, reducing the bandwidth
demands on the memory system and on the interconnection network. Unless we
eliminate the need for the coherence protocol to broadcast on every cache miss,
distributing the memory will gain us little.

As we mentioned earlier, the alternative to a snooping-based coherence proto-
col is a directory protocol. A directory keeps the state of every block that may be
cached. Information in the directory includes which caches (or collections of
caches) have copies of the block, whether it is dirty, and so on. Within a multicore
with a shared outermost cache (say, L3), it is easy to implement a directory scheme:
simply keep a bit vector of the size equal to the number of cores for each L3 block.
The bit vector indicates which private L2 caches may have copies of a block in L3,
and invalidations are sent only to those caches. This works perfectly for a single
multicore if L3 is inclusive, and this scheme is the one used in the Intel i7.

The solution of a single directory used in a multicore is not scalable, even
though it avoids broadcast. The directory must be distributed, but the distribution
must be done in a way that the coherence protocol knows where to find the direc-
tory information for any cached block of memory. The obvious solution is to dis-
tribute the directory along with the memory so that different coherence requests
can go to different directories, just as different memory requests go to different
memories. If the information is maintained at an outer cache, like L3, which is mul-
tibanked, the directory information can be distributed with the different cache
banks, effectively increasing the bandwidth.
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A distributed directory retains the characteristic that the sharing status of a
block is always in a single known location. This property, together with the main-
tenance of information that says what other nodes may be caching the block, is
what allows the coherence protocol to avoid broadcast. Figure 5.18 shows how
our distributed-memory multiprocessor looks with the directories added to
each node.

The simplest directory implementations associate an entry in the directory with
each memory block. In such implementations, the amount of information is pro-
portional to the product of the number of memory blocks (where each block is
the same size as the L2 or L3 cache block) times the number of nodes, where a
node is a single multicore processor or a small collection of processors that imple-
ments coherence internally. This overhead is not a problem for multiprocessors
with less than a few hundred processors (each of which might be a multicore)
because the directory overhead with a reasonable block size will be tolerable.
For larger multiprocessors, we need methods to allow the directory structure to
be efficiently scaled, but only supercomputer-sized systems need to worry
about this.
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Figure 5.18 A directory is added to each node to implement cache coherence in a distributed-memory multi-
processor. In this case, a node is shown as a single multicore chip, and the directory information for the associated
memory may reside either on or off the multicore. Each directory is responsible for tracking the caches that share the
memory addresses of the portion of memory in the node. The coherence mechanism will handle both the mainte-
nance of the directory information and any coherence actions needed within the multicore node.
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Directory-Based Cache Coherence Protocols: The Basics

Just as with a snooping protocol, there are two primary operations that a directory
protocol must implement: handling a read miss and handling a write to a shared,
clean cache block. (Handling a write miss to a block that is currently shared is a
simple combination of these two.) To implement these operations, a directory must
track the state of each cache block. In a simple protocol, these states could be the
following:

■ Shared—One or more nodes have the block cached, and the value in memory is
up to date (as well as in all the caches).

■ Uncached—No node has a copy of the cache block.

■ Modified—Exactly one node has a copy of the cache block, and it has written
the block, so the memory copy is out of date. The processor is called the owner
of the block.

In addition to tracking the state of each potentially shared memory block, we
must track which nodes have copies of that block because those copies will need to
be invalidated on a write. The simplest way to do this is to keep a bit vector for each
memory block. When the block is shared, each bit of the vector indicates whether
the corresponding processor chip (which is likely a multicore) has a copy of that
block. We can also use the bit vector to keep track of the owner of the block when
the block is in the exclusive state. For efficiency reasons, we also track the state of
each cache block at the individual caches.

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. The processes of invalidating and locating an exclusive copy
of a data item are different because they both involve communication between
the requesting node and the directory and between the directory and one or more
remote nodes. In a snooping protocol, these two steps are combined through the
use of a broadcast to all the nodes.

Before we see the protocol state diagrams, it is useful to examine a catalog of
the message types that may be sent between the processors and the directories for
the purpose of handling misses and maintaining coherence. Figure 5.19 shows the
types of messages sent among nodes. The local node is the node where a request
originates. The home node is the node where the memory location and the directory
entry of an address reside. The physical address space is statically distributed, so
the node that contains the memory and directory for a given physical address is
known. For example, the high-order bits may provide the node number, whereas
the low-order bits provide the offset within the memory on that node. The local
node may also be the home node. The directory must be accessed when the home
node is the local node because copies may exist in yet a third node, called a remote
node.
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A remote node is the node that has a copy of a cache block, whether exclusive
(in which case it is the only copy) or shared. A remote node may be the same as
either the local node or the home node. In such cases, the basic protocol does not
change, but interprocessor messages may be replaced with intraprocessor
messages.

In this section, we assume a simple model of memory consistency. To mini-
mize the type of messages and the complexity of the protocol, we make an assump-
tion that messages will be received and acted upon in the same order they are sent.
This assumption may not be true in practice and can result in additional compli-
cations, some of which we address in Section 5.6 when we discuss memory con-
sistency models. In this section, we use this assumption to ensure that invalidates
sent by a node are honored before new messages are transmitted, just as we
assumed in the discussion of implementing snooping protocols. As we did in
the snooping case, we omit some details necessary to implement the coherence

Message
type Source Destination

Message
contents Function of this message

Read miss Local cache Home
directory

P, A Node P has a read miss at address A; request data and make P a
read sharer.

Write
miss

Local cache Home
directory

P, A Node P has a write miss at address A; request data and make P
the exclusive owner.

Invalidate Local cache Home
directory

A Request to send invalidates to all remote caches that are
caching the block at address A.

Invalidate Home
directory

Remote
cache

A Invalidate a shared copy of data at address A.

Fetch Home
directory

Remote
cache

A Fetch the block at address A and send it to its home directory;
change the state of A in the remote cache to shared.

Fetch/
invalidate

Home
directory

Remote
cache

A Fetch the block at address A and send it to its home directory;
invalidate the block in the cache.

Data
value
reply

Home
directory

Local cache D Return a data value from the home memory.

Data
write-
back

Remote
cache

Home
directory

A, D Write back a data value for address A.

Figure 5.19 The possible messages sent among nodes to maintain coherence, along with the source and des-
tination node, the contents (where P5 requesting node number, A5 requested address, and D5data contents),
and the function of the message. The first three messages are requests sent by the local node to the home. The
fourth through sixth messages are messages sent to a remote node by the home when the home needs the data
to satisfy a read or write miss request. Data value replies are used to send a value from the home node back to the
requesting node. Data value write-backs occur for two reasons: when a block is replaced in a cache and must be
written back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing
back the data value whenever the block becomes shared simplifies the number of states in the protocol because
any dirty block must be exclusive and any shared block is always available in the home memory.
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protocol. In particular, the serialization of writes and knowing that the invalidates
for a write have completed are not as simple as in the broadcast-based snooping
mechanism. Instead, explicit acknowledgments are required in response to write
misses and invalidate requests. We discuss these issues in more detail in
Appendix I.

An Example Directory Protocol

The basic states of a cache block in a directory-based protocol are exactly like those
in a snooping protocol, and the states in the directory are also analogous to those we
showed earlier. Thus we can start with simple state diagrams that show the state tran-
sitions for an individual cache block and then examine the state diagram for the direc-
tory entry corresponding to each block in memory. As in the snooping case, these
state transition diagrams do not represent all the details of a coherence protocol; how-
ever, the actual controller is highly dependent on a number of details of the multi-
processor (message delivery properties, buffering structures, and so on). In this
section, we present the basic protocol state diagrams. The knotty issues involved
in implementing these state transition diagrams are examined in Appendix I.

Figure 5.20 shows the protocol actions to which an individual cache responds.
We use the same notation as in the last section, with requests coming from outside
the node in gray and actions in bold. The state transitions for an individual cache
are caused by read misses, write misses, invalidates, and data fetch requests;
Figure 5.20 shows these operations. An individual cache also generates read miss,
write miss, and invalidate messages that are sent to the home directory. Read and
write misses require data value replies, and these events wait for replies before
changing state. Knowing when invalidates complete is a separate problem and
is handled separately.

The operation of the state transition diagram for a cache block in Figure 5.20 is
essentially the same as it is for the snooping case: the states are identical, and the
stimulus is almost identical. The write miss operation, which was broadcast on the
bus (or other network) in the snooping scheme, is replaced by the data fetch and
invalidate operations that are selectively sent by the directory controller. Like the
snooping protocol, any cache block must be in the exclusive state when it is writ-
ten, and any shared block must be up to date in memory. In many multicore pro-
cessors, the outermost level in the processor cache is shared among the cores (as is
the L3 in the Intel i7, the AMD Opteron, and the IBM Power7), and hardware at
that level maintains coherence among the private caches of each core on the same
chip, using either an internal directory or snooping. Thus the on-chip multicore
coherence mechanism can be used to extend coherence among a larger set of pro-
cessors simply by interfacing to the outermost shared cache. Because this interface
is at L3, contention between the processor and coherence requests is less of an
issue, and duplicating the tags could be avoided.

In a directory-based protocol, the directory implements the other half of the
coherence protocol. A message sent to a directory causes two different types of
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actions: updating the directory state and sending additional messages to satisfy the
request. The states in the directory represent the three standard states for a block;
unlike in a snooping scheme, however, the directory state indicates the state of all
the cached copies of a memory block, rather than for a single cache block.

The memory block may be uncached by any node, cached in multiple nodes
and readable (shared), or cached exclusively and writable in exactly one node.
In addition to the state of each block, the directory must track the set of nodes that
have a copy of a block; we use a set called Sharers to perform this function. In
multiprocessors with fewer than 64 nodes (each of which may represent four to
eight times as many processors), this set is typically kept as a bit vector. Directory
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Figure 5.20 State transition diagram for an individual cache block in a directory-based system. Requests by the
local processor are shown in black, and those from the home directory are shown in gray. The states are identical to
those in the snooping case, and the transactions are very similar, with explicit invalidate and write-back requests
replacing the write misses that were formerly broadcast on the bus. As we did for the snooping controller, we assume
that an attempt to write a shared cache block is treated as a miss; in practice, such a transaction can be treated as an
ownership request or upgrade request and can deliver ownership without requiring that the cache block be fetched.
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requests need to update the set Sharers and also read the set to perform
invalidations.

Figure 5.21 shows the actions taken at the directory in response to messages
received. The directory receives three different requests: read miss, write miss,
and data write-back. The messages sent in response by the directory are shown
in bold, and the updating of the set Sharers is shown in bold italics. Because all
the stimulus messages are external, all actions are shown in gray. Our simplified
protocol assumes that some actions are atomic, such as requesting a value and
sending it to another node; a realistic implementation cannot use this assumption.

To understand these directory operations, let’s examine the requests received
and actions taken state by state. When a block is in the uncached state, the copy in
memory is the current value, so the only possible requests for that block are

■ Read miss—The requesting node is sent the requested data from memory, and
the requester is made the only sharing node. The state of the block is
made shared.
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Figure 5.21 The state transition diagram for the directory has the same states and structure as the transition
diagram for an individual cache. All actions are in gray because they are all externally caused. Bold indicates the
action taken by the directory in response to the request.
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■ Write miss—The requesting node is sent the value and becomes the sharing
node. The block is made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

When the block is in the shared state, the memory value is up to date, so the same
two requests can occur:

■ Read miss—The requesting node is sent the requested data from memory, and
the requesting node is added to the sharing set.

■ Write miss—The requesting node is sent the value. All nodes in the set Sharers
are sent invalidate messages, and the Sharers set is to contain the identity of the
requesting node. The state of the block is made exclusive.

When the block is in the exclusive state, the current value of the block is held in a
cache on the node identified by the set Sharers (the owner), so there are three pos-
sible directory requests:

■ Read miss—The owner is sent a data fetch message, which causes the state of
the block in the owner’s cache to transition to shared and causes the owner to
send the data to the directory, where it is written to memory and sent back to the
requesting processor. The identity of the requesting node is added to the set
Sharers, which still contains the identity of the processor that was the owner
(since it still has a readable copy).

■ Data write-back—The owner is replacing the block and therefore must write it
back. This write-back makes the memory copy up to date (the home directory
essentially becomes the owner), the block is now uncached, and the Sharers set
is empty.

■ Write miss—The block has a new owner. A message is sent to the old owner,
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting node, which becomes the new owner.
Sharers is set to the identity of the new owner, and the state of the block remains
exclusive.

This state transition diagram in Figure 5.21 is a simplification, just as it was in
the snooping cache case. In the case of a directory, as well as a snooping scheme
implemented with a network other than a bus, our protocols will need to deal with
nonatomic memory transactions. Appendix I explores these issues in depth.

The directory protocols used in real multiprocessors contain additional optimi-
zations. In particular, in this protocol when a read or write miss occurs for a block
that is exclusive, the block is first sent to the directory at the home node. From there
it is stored into the home memory and also sent to the original requesting node.
Many of the protocols in use in commercial multiprocessors forward the data from
the owner node to the requesting node directly (as well as performing the write-
back to the home). Such optimizations often add complexity by increasing the pos-
sibility of deadlock and by increasing the types of messages that must be handled.
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Implementing a directory scheme requires solving most of the same challenges
we discussed for snooping protocols. There are, however, new and additional prob-
lems, which we describe in Appendix I. In Section 5.8, we briefly describe howmod-
ern multicores extend coherence beyond a single chip. The combinations of
multichip coherence and multicore coherence include all four possibilities of snoop-
ing/snooping (AMD Opteron), snooping/directory, directory/snooping, and direc-
tory/directory! Many multiprocessors have chosen some form of snooping within
a single chip, which is attractive if the outermost cache is shared and inclusive,
and directories across multiple chips. Such an approach simplifies implementation
because only the processor chip, rather than an individual core, need be tracked.

5.5 Synchronization: The Basics

Synchronization mechanisms are typically built with user-level software routines
that rely on hardware-supplied synchronization instructions. For smaller multipro-
cessors or low-contention situations, the key hardware capability is an uninterrup-
tible instruction or instruction sequence capable of atomically retrieving and
changing a value. Software synchronization mechanisms are then constructed
using this capability. In this section, we focus on the implementation of lock
and unlock synchronization operations. Lock and unlock can be used straightfor-
wardly to create mutual exclusion, as well as to implement more complex synchro-
nization mechanisms.

In high-contention situations, synchronization can become a performance bot-
tleneck because contention introduces additional delays and because latency is
potentially greater in such a multiprocessor. We discuss how the basic synchroni-
zation mechanisms of this section can be extended for large processor counts in
Appendix I.

Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprocessor is a
set of hardware primitives with the ability to atomically read and modify a memory
location. Without such a capability, the cost of building basic synchronization
primitives will be too high and will increase as the processor count increases. There
are a number of alternative formulations of the basic hardware primitives, all of
which provide the ability to atomically read and modify a location, together with
some way to tell whether the read and write were performed atomically. These
hardware primitives are the basic building blocks that are used to build a wide vari-
ety of user-level synchronization operations, including things such as locks and
barriers. In general, architects do not expect users to employ the basic hardware
primitives, but instead expect that the primitives will be used by system program-
mers to build a synchronization library, a process that is often complex and tricky.
Let’s start with one such hardware primitive and show how it can be used to build
some basic synchronization operations.
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One typical operation for building synchronization operations is the atomic
exchange, which interchanges a value in a register for a value in memory. To see
how to use this to build a basic synchronization operation, assume that we want to
build a simple lock where the value 0 is used to indicate that the lock is free and 1
is used to indicate that the lock isunavailable.Aprocessor tries to set the lockbydoing
an exchange of 1, which is in a register, with the memory address corresponding to
the lock. The value returned from the exchange instruction is 1 if some other
processor had otherwise already claimed access and 0. In the latter case, the value
is also changed to 1, preventing any competing exchange from also retrieving a 0.

For example, consider two processors that each try to do the exchange simul-
taneously: This race is broken because exactly one of the processors will perform
the exchange first, returning 0, and the second processor will return 1 when it does
the exchange. The key to using the exchange (or swap) primitive to implement syn-
chronization is that the operation is atomic: the exchange is indivisible, and two
simultaneous exchanges will be ordered by the write serialization mechanisms.
It is impossible for two processors trying to set the synchronization variable in this
manner to both determine they have simultaneously set the variable.

There are a number of other atomic primitives that can be used to implement
synchronization. They all have the key property that they read and update a memory
value in such a manner that we can tell whether the two operations executed atom-
ically. One operation, present in many older multiprocessors, is test-and-set, which
tests a value and sets it if the value passes the test. For example, we could define an
operation that tested for 0 and set the value to 1, which can be used in a fashion sim-
ilar to how we used atomic exchange. Another atomic synchronization primitive is
fetch-and-increment: it returns the value of a memory location and atomically incre-
ments it. By using the value 0 to indicate that the synchronization variable is
unclaimed, we can use fetch-and-increment, just as we used exchange. There are
other uses of operations like fetch-and-increment, which we will see shortly.

Implementing a single atomic memory operation introduces some challenges
because it requires both a memory read and a write in a single, uninterruptible
instruction. This requirement complicates the implementation of coherence
because the hardware cannot allow any other operations between the read and
the write, and yet must not deadlock.

An alternative is to have a pair of instructions where the second instruction
returns a value from which it can be deduced whether the pair of instructions
was executed as though the instructions were atomic. The pair of instructions is
effectively atomic if it appears as though all other operations executed by any pro-
cessor occurred before or after the pair. Thus, when an instruction pair is effec-
tively atomic, no other processor can change the value between the instruction
pair. This is the approach used in the MIPS processors and in RISC V.

In RISC V, the pair of instructions includes a special load called a load
reserved (also called load linked or load locked) and a special store called a store
conditional. Load reserved loads the contents of memory given by rs1 into rd and
creates a reservation on that memory address. Store conditional stores the value in
rs2 into the memory address given by rs1. If the reservation of the load is broken by
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a write to the same memory location, the store conditional fails and writes a non-
zero to rd; if it succeeds, the store conditional writes 0. If the processor does a con-
text switch between the two instructions, then the store conditional always fails.

These instructions are used in sequence, and because the load reserved returns
the initial value and the store conditional returns 0 only if it succeeds, the following
sequence implements an atomic exchange on the memory location specified by the
contents of x1 with the value in x4:

try: mov x3,x4 ;mov exchange value
lr x2,x1 ;load reserved from
sc x3,0(x1) ;store conditional
bnez x3,try ;branch store fails
mov x4,x2 ;put load value in x4

At the end of this sequence, the contents of x4 and the memory location specified
by x1 have been atomically exchanged. Anytime a processor intervenes and
modifies the value in memory between the lr and sc instructions, the sc returns
0 in x3, causing the code sequence to try again.

An advantage of the load reserved/store conditional mechanism is that it can be
used to build other synchronization primitives. For example, here is an atomic
fetch-and-increment:

try: lr x2,x1 ;load reserved 0(x1)
addi x3,x2,1 ;increment
sc x3,0(x1) ;store conditional
bnez x3,try ;branch store fails

These instructions are typically implemented by keeping track of the address
specified in the lr instruction in a register, often called the reserved register. If
an interrupt occurs, or if the cache block matching the address in the link register
is invalidated (e.g., by another sc), the link register is cleared. The sc instruction
simply checks that its address matches that in the reserved register. If so, the sc suc-
ceeds; otherwise, it fails. Because the store conditional will fail after either another
attempted store to the load reserved address or any exception, care must be taken in
choosing what instructions are inserted between the two instructions. In particular,
only register-register instructions can safely be permitted; otherwise, it is possible to
create deadlock situations where the processor can never complete the sc. In addi-
tion, the number of instructions between the load reserved and the store conditional
should be small to minimize the probability that either an unrelated event or a com-
peting processor causes the store conditional to fail frequently.

Implementing Locks Using Coherence

Once we have an atomic operation, we can use the coherence mechanisms of a
multiprocessor to implement spin locks—locks that a processor continuously tries
to acquire, spinning around a loop until it succeeds. Spin locks are used when pro-
grammers expect the lock to be held for a very short amount of time and when they
want the process of locking to be low latency when the lock is available. Because
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spin locks tie up the processor waiting in a loop for the lock to become free, they are
inappropriate in some circumstances.

The simplest implementation, which we would use if there were no cache
coherence, would be to keep the lock variables in memory. A processor could con-
tinually try to acquire the lock using an atomic operation, say, atomic exchange,
and test whether the exchange returned the lock as free. To release the lock, the
processor simply stores the value 0 to the lock. Here is the code sequence to lock
a spin lock whose address is in x1. It uses EXCH as a macro for the atomic
exchange sequence from page 414:

addi x2,R0,#1
lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,lockit ;already locked?

If our multiprocessor supports cache coherence, we can cache the locks using
the coherence mechanism to maintain the lock value coherently. Caching locks has
two advantages. First, it allows an implementation where the process of “spinning”
(trying to test and acquire the lock in a tight loop) could be done on a local cached
copy rather than requiring a global memory access on each attempt to acquire the
lock. The second advantage comes from the observation that there is often locality
in lock accesses; that is, the processor that used the lock last will use it again in the
near future. In such cases, the lock value may reside in the cache of that processor,
greatly reducing the time to acquire the lock.

Obtaining the first advantage—being able to spin on a local cached copy rather
than generating a memory request for each attempt to acquire the lock—requires a
change in our simple spin procedure. Each attempt to exchange in the preceding
loop requires a write operation. If multiple processors are attempting to get the
lock, each will generate the write. Most of these writes will lead to write misses
because each processor is trying to obtain the lock variable in an exclusive state.

Thus we should modify our spin lock procedure so that it spins by doing reads
on a local copy of the lock until it successfully sees that the lock is available. Then
it attempts to acquire the lock by doing a swap operation. A processor first reads the
lock variable to test its state. A processor keeps reading and testing until the value
of the read indicates that the lock is unlocked. The processor then races against all
other processes that were similarly “spin waiting” to see which can lock the var-
iable first. All processes use a swap instruction that reads the old value and stores a
1 into the lock variable. The single winner will see the 0, and the losers will see a 1
that was placed there by the winner. (The losers will continue to set the variable to
the locked value, but that doesn’t matter.) The winning processor executes the code
after the lock and, when finished, stores a 0 into the lock variable to release the
lock, which starts the race all over again. Here is the code to perform this spin lock
(remember that 0 is unlocked and 1 is locked):

lockit: ld x2,0(x1) ;load of lock
bnez x2,lockit ;not available-spin
addi x2,R0,#1 ;load locked value
EXCH x2,0(x1) ;swap
bnez x2,lockit ;branch if lock wasn’t 0
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Let’s examine how this “spin lock” scheme uses the cache coherence mecha-
nisms. Figure 5.22 shows the processor and bus or directory operations for multiple
processes trying to lock a variable using an atomic swap. Once the processor with
the lock stores a 0 into the lock, all other caches are invalidated and must fetch the
new value to update their copy of the lock. One such cache gets the copy of the
unlocked value (0) first and performs the swap. When the cache miss of other pro-
cessors is satisfied, they find that the variable is already locked, so they must return
to testing and spinning.

This example shows another advantage of the load reserved/store conditional
primitives: the read and write operations are explicitly separated. The load reserved
need not cause any bus traffic. This fact allows the following simple code
sequence, which has the same characteristics as the optimized version using
exchange (x1 has the address of the lock, the lr has replaced the LD, and the
sc has replaced the EXCH):

Step P0 P1 P2

Coherence
state of lock at
end of step Bus/directory activity

1 Has lock Begins spin, testing
if lock¼0

Begins spin,
testing if lock¼0

Shared Cache misses for P1 and P2 satisfied
in either order. Lock state becomes
shared.

2 Set lock
to 0

(Invalidate
received)

(Invalidate
received)

Exclusive (P0) Write invalidate of lock variable
from P0.

3 Cache miss Cache miss Shared Bus/directory services P2 cache
miss; write-back from P0; state
shared.

4 (Waits while bus/
directory busy)

Lock¼0 test
succeeds

Shared Cache miss for P2 satisfied.

5 Lock¼0 Executes swap,
gets cache miss

Shared Cache miss for P1 satisfied.

6 Executes swap,
gets cache miss

Completes swap:
returns 0 and sets
lock¼1

Exclusive (P2) Bus/directory services P2 cache
miss; generates invalidate; lock is
exclusive.

7 Swap completes
and returns 1, and
sets lock¼1

Enter critical
section

Exclusive (P1) Bus/directory services P1 cache
miss; sends invalidate and generates
write-back from P2.

8 Spins, testing if
lock¼0

None

Figure 5.22 Cache coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes write
invalidate coherence. P0 starts with the lock (step 1), and the value of the lock is 1 (i.e., locked); it is initially exclu-
sive and owned by P0 before step 1 begins. P0 exits and unlocks the lock (step 2). P1 and P2 race to see which reads
the unlocked value during the swap (steps 3–5). P2 wins and enters the critical section (steps 6 and 7), while P1’s
attempt fails, so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more than 8 clock
ticks because acquiring the bus and replying to misses take much longer. Once step 8 is reached, the process can
repeat with P2, eventually getting exclusive access and setting the lock to 0.
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lockit: lr x2,0(x1) ;load reserved
bnez x2,lockit ;not available-spin
addi x2,R0,#1 ;locked value
sc x2,0(x1) ;store
bnez x2,lockit ;branch if store fails

The first branch forms the spinning loop; the second branch resolves races when
two processors see the lock available simultaneously.

5.6 Models of Memory Consistency: An Introduction

Cache coherence ensures that multiple processors see a consistent view of mem-
ory. It does not answer the question of how consistent the view of memory must be.
By “how consistent,” we are really asking when a processor must see a value that
has been updated by another processor. Because processors communicate through
shared variables (used both for data values and for synchronization), the question
boils down to this: In what order must a processor observe the data writes of
another processor? Because the only way to “observe the writes of another proces-
sor” is through reads, the question becomes what properties must be enforced
among reads and writes to different locations by different processors?

Although the question of how consistent memory must be seems simple, it is
remarkably complicated, as we can see with a simple example. Here are two code
segments from processes P1 and P2, shown side by side:

P1: A = 0; P2: B = 0;
..... .....
A = 1; B = 1;

L1: if (B == 0)... L2: if (A == 0)...

Assume that the processes are running on different processors, and that locations A
and B are originally cached by both processors with the initial value of 0. If writes
always take immediate effect and are immediately seen by other processors, it will
be impossible for both IF statements (labeled L1 and L2) to evaluate their condi-
tions as true, since reaching the IF statement means that either A or B must have
been assigned the value 1. But suppose the write invalidate is delayed, and the
processor is allowed to continue during this delay. Then it is possible that both
P1 and P2 have not seen the invalidations for B and A (respectively) before they
attempt to read the values. The question now is should this behavior be allowed,
and, if so, under what conditions?

The most straightforward model for memory consistency is called sequential
consistency. Sequential consistency requires that the result of any execution be the
same as though the memory accesses executed by each processor were kept in
order and the accesses among different processors were arbitrarily interleaved.
Sequential consistency eliminates the possibility of some nonobvious execution
in the previous example because the assignments must be completed before the
IF statements are initiated.
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The simplest way to implement sequential consistency is to require a processor
to delay the completion of any memory access until all the invalidations caused by
that access are completed. Of course, it is equally effective to delay the next mem-
ory access until the previous one is completed. Remember that memory consis-
tency involves operations among different variables: the two accesses that must
be ordered are actually to different memory locations. In our example, we must
delay the read of A or B (A == 0 or B == 0) until the previous write has completed
(B = 1 or A = 1). Under sequential consistency, we cannot, for example, simply
place the write in a write buffer and continue with the read.

Although sequential consistency presents a simple programming paradigm, it
reduces potential performance, especially in a multiprocessor with a large number
of processors or long interconnect delays, as we can see in the following example.

Example Suppose we have a processor where a write miss takes 50 cycles to establish own-
ership, 10 cycles to issue each invalidate after ownership is established, and 80
cycles for an invalidate to complete and be acknowledged once it is issued. Assum-
ing that four other processors share a cache block, how long does a write miss stall
the writing processor if the processor is sequentially consistent? Assume that the
invalidates must be explicitly acknowledged before the coherence controller
knows they are completed. Suppose we could continue executing after obtaining
ownership for the write miss without waiting for the invalidates; how long would
the write take?

Answer When we wait for invalidates, each write takes the sum of the ownership time plus
the time to complete the invalidates. Because the invalidates can overlap, we need
only worry about the last one, which starts 10+10+10+10¼40 cycles after own-
ership is established. Therefore the total time for the write is 50+40+80¼170
cycles. In comparison, the ownership time is only 50 cycles.With appropriate write
buffer implementations, it is even possible to continue before ownership is
established.

To provide better performance, researchers and architects have explored two dif-
ferent routes. First, they developed ambitious implementations that preserve
sequential consistency but use latency-hiding techniques to reduce the penalty;
we discuss these in Section 5.7. Second, they developed less restrictive memory
consistency models that allow for faster hardware. Such models can affect how
the programmer sees the multiprocessor, so before we discuss these less restrictive
models, let’s look at what the programmer expects.

The Programmer’s View

Although the sequential consistency model has a performance disadvantage, from
the viewpoint of the programmer, it has the advantage of simplicity. The challenge
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is to develop a programming model that is simple to explain and yet allows a high-
performance implementation.

One such programming model that allows us to have a more efficient imple-
mentation is to assume that programs are synchronized. A program is synchronized
if all accesses to shared data are ordered by synchronization operations. A data ref-
erence is ordered by a synchronization operation if, in every possible execution, a
write of a variable by one processor and an access (either a read or a write) of that
variable by another processor are separated by a pair of synchronization opera-
tions, one executed after the write by the writing processor and one executed before
the access by the second processor. Cases where variables may be updated without
ordering by synchronization are called data races because the execution outcome
depends on the relative speed of the processors, and like races in hardware design,
the outcome is unpredictable, which leads to another name for synchronized pro-
grams: data-race-free.

As a simple example, consider a variable being read and updated by two dif-
ferent processors. Each processor surrounds the read and update with a lock and an
unlock, both to ensure mutual exclusion for the update and to ensure that the read is
consistent. Clearly, every write is now separated from a read by the other processor
by a pair of synchronization operations: one unlock (after the write) and one lock
(before the read). Of course, if two processors are writing a variable with no inter-
vening reads, then the writes must also be separated by synchronization operations.

It is a broadly accepted observation that most programs are synchronized. This
observation is true primarily because, if the accesses were unsynchronized, the
behavior of the program would likely be unpredictable because the speed of exe-
cution would determine which processor won a data race and thus affect the results
of the program. Even with sequential consistency, reasoning about such programs
is very difficult.

Programmers could attempt to guarantee ordering by constructing their own
synchronization mechanisms, but this is extremely tricky, can lead to buggy pro-
grams, and may not be supported architecturally, meaning that they may not work
in future generations of the multiprocessor. Instead, almost all programmers will
choose to use synchronization libraries that are correct and optimized for the mul-
tiprocessor and the type of synchronization.

Finally, the use of standard synchronization primitives ensures that even if the
architecture implements a more relaxed consistency model than sequential consis-
tency, a synchronized program will behave as though the hardware implemented
sequential consistency.

Relaxed Consistency Models: The Basics and
Release Consistency

The key idea in relaxed consistencymodels is to allow reads and writes to complete
out of order, but to use synchronization operations to enforce ordering so that a
synchronized program behaves as though the processor were sequentially
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consistent. There are a variety of relaxed models that are classified according to
what read and write orderings they relax. We specify the orderings by a set of rules
of the form X!Y, meaning that operation X must complete before operation Y is
done. Sequential consistency requires maintaining all four possible orderings:
R!W, R!R,W!R, andW!W. The relaxed models are defined by the subset
of four orderings they relax:

1. Relaxing only theW!R ordering yields a model known as total store ordering
or processor consistency. Because this model retains ordering among writes,
many programs that operate under sequential consistency operate under this
model, without additional synchronization.

2. Relaxing both the W!R ordering and the W!W ordering yields a model
known as partial store order.

3. Relaxing all four orderings yields a variety of models including weak ordering,
the PowerPC consistency model, and release consistency, the RISC V
consistency model.

By relaxing these orderings, the processor may obtain significant performance
advantages, which is the reason that RISC V, ARMv8, as well as the C++ and
C language standards chose release consistency as the model.

Release consistency distinguishes between synchronization operations that
are used to acquire access to a shared variable (denoted SA) and those that
release an object to allow another processor to acquire access (denoted SR).
Release consistency is based on the observation that in synchronized programs,
an acquire operation must precede a use of shared data, and a release operation
must follow any updates to shared data and also precede the time of the next
acquire. This property allows us to slightly relax the ordering by observing that
a read or write that precedes an acquire need not complete before the acquire,
and also that a read or write that follows a release need not wait for the release.
Thus the orderings that are preserved involve only SA and SR, as shown in
Figure 5.23; as the example in Figure 5.24 shows, this model imposes the few-
est orders of the five models.

Release consistency provides one of the least restrictive models that is easily
checkable and ensures that synchronized programs will see a sequentially consis-
tent execution. Although most synchronization operations are either an acquire or a
release (an acquire normally reads a synchronization variable and atomically
updates it, and a release usually just writes it), some operations, such as a barrier,
act as both an acquire and a release and cause the ordering to be equivalent to weak
ordering. Although synchronization operations always ensure that previous writes
have completed, we may want to guarantee that writes are completed without an
identified synchronization operation. In such cases, an explicit instruction, called
FENCE in RISC V, is used to ensure that all previous instructions in that thread
have completed, including completion of all memory writes and associated inval-
idates. For more information about the complexities, implementation issues, and
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C =

    = D

release (S);

E =

F =

TSO (total store
order) or
processor

consistency

    = A

B =

acquire (S);

C =

    = D

release (S);

E =

F =

PSO (partial
store order)

    = A

B =

acquire (S);

C =

    = D

release (S);

E =

F =

Weak ordering Release
consistency

    = A

B =

acquire (S);

C =

    = D

release (S);

E =

F =

Figure 5.24 These examples of the five consistency models discussed in this section show the reduction in the
number of orders imposed as the models become more relaxed. Only the minimum orders are shown with arrows.
Orders implied by transitivity, such as the write of C before the release of S in the sequential consistency model or the
acquire before the release in weak ordering or release consistency, are not shown.

Model Used in
Ordinary
orderings Synchronization orderings

Sequential consistency Most machines as an
optional mode

R!R, R!W,
W!R, W!W

S!W, S!R, R!S, W!S, S!S

Total store order or
processor consistency

IBMS/370, DEC VAX,
SPARC

R!R, R!W,
W!W

S!W, S!R, R!S, W!S, S!S

Partial store order SPARC R!R, R!W S!W, S!R, R!S, W!S, S!S

Weak ordering PowerPC S!W, S!R, R!S, W!S, S!S

Release consistency MIPS, RISC V, Armv8, C,
and C++ specifications

SA!W, SA!R, R!SR, W!SR,
SA!SA, SA!SR, SR!SA, SR!SR

Figure 5.23 The orderings imposed by various consistency models are shown for both ordinary accesses and
synchronization accesses. Themodels grow frommost restrictive (sequential consistency) to least restrictive (release
consistency), allowing increased flexibility in the implementation. The weaker models rely on fences created by syn-
chronization operations, as opposed to an implicit fence at every memory operation. SA and SR stand for acquire and
release operations, respectively, and are needed to define release consistency. If we were to use the notation SA and
SR for each S consistently, each ordering with one S would become two orderings (e.g., S!W becomes SA!W,
SR!W), and each S!S would become the four orderings shown in the last line of the bottom-right table entry.
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performance potential from relaxed models, we highly recommend the excellent
tutorial by Adve and Gharachorloo (1996).

5.7 Cross-Cutting Issues

Because multiprocessors redefine many system characteristics (e.g., performance
assessment, memory latency, and the importance of scalability), they introduce
interesting design problems that cut across the spectrum, affecting both hardware
and software. In this section, we give several examples related to the issue of mem-
ory consistency. We then examine the performance gained when multithreading is
added to multiprocessing.

Compiler Optimization and the Consistency Model

Another reason for defining a model for memory consistency is to specify the range
of legal compiler optimizations that can be performed on shared data. In explicitly
parallel programs, unless the synchronization points are clearly defined and the pro-
grams are synchronized, the compiler cannot interchange a read and a write of two
different shared data items because such transformations might affect the semantics
of the program. This restriction prevents even relatively simple optimizations, such
as register allocation of shared data, because such a process usually interchanges
reads and writes. In implicitly parallelized programs—for example, those written
in High Performance Fortran (HPF)—programs must be synchronized and the
synchronization points are known, so this issue does not arise. Whether compilers
can get significant advantage from more relaxed consistency models remains an
open question, both from a research viewpoint and from a practical viewpoint,
where the lackof uniformmodels is likely to retard progress ondeployingcompilers.

Using Speculation to Hide Latency in Strict
Consistency Models

As we saw in Chapter 3, speculation can be used to hide memory latency. It can
also be used to hide latency arising from a strict consistency model, giving much of
the benefit of a relaxed memory model. The key idea is for the processor to use
dynamic scheduling to reorder memory references, letting them possibly execute
out of order. Executing the memory references out of order may generate violations
of sequential consistency, which might affect the execution of the program. This
possibility is avoided by using the delayed commit feature of a speculative proces-
sor. Assume the coherency protocol is based on invalidation. If the processor
receives an invalidation for a memory reference before the memory reference is
committed, the processor uses speculation recovery to back out of the computation
and restart with the memory reference whose address was invalidated.

If the reordering of memory requests by the processor yields an execution order
that could result in an outcome that differs from what would have been seen under
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sequential consistency, the processor will redo the execution. The key to using this
approach is that the processor need only guarantee that the result would be the same
as if all accesses were completed in order, and it can achieve this by detecting when
the results might differ. The approach is attractive because the speculative restart
will rarely be triggered. It will be triggered only when there are unsynchronized
accesses that actually cause a race (Gharachorloo et al., 1992).

Hill (1998) advocated the combination of sequential or processor consistency
together with speculative execution as the consistency model of choice. His argu-
ment has three parts. First, an aggressive implementation of either sequential con-
sistency or processor consistency will gain most of the advantage of a more relaxed
model. Second, such an implementation adds very little to the implementation cost
of a speculative processor. Third, such an approach allows the programmer to rea-
son using the simpler programming models of either sequential or processor con-
sistency. The MIPS R10000 design team had this insight in the mid-1990s and
used the R10000’s out-of-order capability to support this type of aggressive imple-
mentation of sequential consistency.

One open question is how successful compiler technology will be in optimizing
memory references to shared variables. The state of optimization technology and
the fact that shared data are often accessed via pointers or array indexing have lim-
ited the use of such optimizations. If this technology were to become available and
lead to significant performance advantages, compiler writers would want to be able
to take advantage of a more relaxed programming model. This possibility and the
desire to keep the future as flexible as possible led the RISC V designers to opt for
release consistency, after a long series of debates.

Inclusion and Its Implementation

All multiprocessors use multilevel cache hierarchies to reduce both the demand on
the global interconnect and the latency of cache misses. If the cache also provides
multilevel inclusion—every level of cache hierarchy is a subset of the level farther
away from the processor—then we can use the multilevel structure to reduce the
contention between coherence traffic and processor traffic that occurs when snoops
and processor cache accesses must contend for the cache. Many multiprocessors
with multilevel caches enforce the inclusion property, although recent multiproces-
sors with smaller L1 caches and different block sizes have sometimes chosen not to
enforce inclusion. This restriction is also called the subset property because each
cache is a subset of the cache below it in the hierarchy.

At first glance, preserving the multilevel inclusion property seems trivial. Con-
sider a two-level example: Any miss in L1 either hits in L2 or generates a miss in
L2, causing it to be brought into both L1 and L2. Likewise, any invalidate that hits
in L2 must be sent to L1, where it will cause the block to be invalidated if it exists.

The catch is what happens when the block sizes of L1 and L2 are different.
Choosing different block sizes is quite reasonable, since L2 will be much larger
and have a much longer latency component in its miss penalty, and thus will want
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to use a larger block size. What happens to our “automatic” enforcement of inclu-
sion when the block sizes differ? A block in L2 represents multiple blocks in L1,
and a miss in L2 causes the replacement of data that is equivalent to multiple L1
blocks. For example, if the block size of L2 is four times that of L1, then a miss in
L2 will replace the equivalent of four L1 blocks. Let’s consider a detailed example.

Example Assume that L2 has a block size four times that of L1. Show how a miss for an
address that causes a replacement in L1 and L2 can lead to violation of the inclu-
sion property.

Answer Assume that L1 and L2 are direct-mapped and that the block size of L1 is b bytes
and the block size of L2 is 4b bytes. Suppose L1 contains two blocks with starting
addresses x and x+b and that x mod 4b¼0, meaning that x also is the starting
address of a block in L2; then that single block in L2 contains the L1 blocks x,
x+b, x+2b, and x+3b. Suppose the processor generates a reference to block y that
maps to the block containing x in both caches and thus misses. Because L2 missed,
it fetches 4b bytes and replaces the block containing x, x+b, x+2b, and x+3b,
while L1 takes b bytes and replaces the block containing x. Because L1 still con-
tains x+b, but L2 does not, the inclusion property no longer holds.

To maintain inclusion with multiple block sizes, we must probe the higher
levels of the hierarchy when a replacement is done at the lower level to ensure that
any words replaced in the lower level are invalidated in the higher-level caches;
different levels of associativity create the same sort of problems. Baer and
Wang (1988) described the advantages and challenges of inclusion in detail,
and in 2017 most designers have opted to implement inclusion, often by settling
on one block size for all levels in the cache. For example, the Intel i7 uses inclusion
for L3, meaning that L3 always includes the contents of all of L2 and L1. This
decision allows the i7 to implement a straightforward directory scheme at L3
and to minimize the interference from snooping on L1 and L2 to those circum-
stances where the directory indicates that L1 or L2 have a cached copy. The
AMD Opteron, in contrast, makes L2 inclusive of L1 but has no such restriction
for L3. It uses a snooping protocol, but only needs to snoop at L2 unless there is a
hit, in which case a snoop is sent to L1.

Performance Gains From Multiprocessing and Multithreading

In this section, we briefly look at a study of the effectiveness of using multithread-
ing on a multicore processor, the IBM Power5; we will return to this topic in the
next section, when we examine the performance of the Intel i7. The IBM Power5 is
a dual-core that supports simultaneous multithreading (SMT); its basic architecture
is very similar to the more recent Power8 (which we examine in the next section),
but it has only two cores per processor.
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To examine the performance of multithreading in a multiprocessor, measure-
ments were made on an IBM system with eight Power5 processors, using only one
core on each processor. Figure 5.25 shows the speedup for an 8-processor Power5
multiprocessor, with and without SMT, for the SPECRate2000 benchmarks, as
described in the caption. On average, the SPECintRate is 1.23 times faster, and
the SPECfpRate is 1.16 times faster. Note that a few floating-point benchmarks
experience a slight decrease in performance in SMT mode, with the maximum
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Figure 5.25 A comparison of SMT and single-thread (ST) performance on the 8-processor IBM eServer p5 575
using SPECfpRate (top half) and SPECintRate (bottom half) as benchmarks. Note that the x-axis starts at a speedup
of 0.9, a performance loss. Only one processor in each Power5 core is active, which should slightly improve the results
from SMT by decreasing destructive interference in the memory system. The SMT results are obtained by creating 16
user threads, whereas the ST results use only eight threads; with only one thread per processor, the Power5 is
switched to single-threaded mode by the OS. These results were collected by John McCalpin at IBM. As we can
see from the data, the standard deviation of the results for the SPECfpRate is higher than for SPECintRate (0.13 versus
0.07), indicating that the SMT improvement for FP programs is likely to vary widely.
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reduction in speedup being 0.93. Although one might expect that SMT would do a
better job of hiding the higher miss rates of the SPECFP benchmarks, it appears
that limits in the memory system are encountered when running in SMT mode
on such benchmarks.

5.8 Putting It All Together: Multicore Processors
and Their Performance

For roughly 10 years, multicore has been the primary focus for scaling perfor-
mance, although the implementations vary widely, as does their support for larger
multichip multiprocessors. In this section, we examine the design of three different
multicores, the support they provide for larger multiprocessors, and some perfor-
mance characteristics, before doing a broader evaluation of small to large multi-
processor Xeon systems, and concluding with a detailed evaluation of the
multicore i7 920, a predecessor of the i7 6700.

Performance of Multicore-Based Multiprocessors
on a Multiprogrammed Workload

Figure 5.26 shows the key characteristics of three multicore processors designed
for server applications and available in 2015 through 2017. The Intel Xeon E7 is
based on the same basic design as the i7, but it has more cores, a slightly slower
clock rate (power is the limitation), and a larger L3 cache. The Power8 is the new-
est in the IBM Power series and features more cores and bigger caches. The Fujitsu
SPARC64 X+ is the newest SPARC server chip; unlike the T-series mentioned in
Chapter 3, it uses SMT. Because these processors are configured for multicore and
multiprocessor servers, they are available as a family, varying processor count,
cache size, and so on, as the figure shows.

These three systems show a range of techniques both for connecting the on-
chip cores and for connecting multiple processor chips. First, let’s look at how
the cores are connected within a chip. The SPARC64 X+ is the simplest: it shares
a single L2 cache, which is 24-way set associative, among the 16 cores. There are
four separate DIMM channels to attach memory accessible with a 16�4 switch
between the cores and the channels.

Figure 5.27 shows how the Power8 and Xeon E7 chips are organized. Each
core in the Power8 has an 8 MiB bank of L3 directly connected; other banks
are accessed via the interconnection network, which has 8 separate buses. Thus
the Power8 is a true NUCA (Nonuniform Cache Architecture), because the access
time to the attached bank of L3 will be much faster than accessing another L3. Each
Power8 chip has a set of links that can be used to build a large multiprocessor using
an organization we will see shortly. The memory links are connected to a special
memory controller that includes an L4 and interfaces directly with DIMMs.

Part B of Figure 5.27, shows how the Xeon E7 processor chip is organized
when there are 18 or more cores (20 cores are shown in this figure). Three rings

426 ■ Chapter Five Thread-Level Parallelism



connect the cores and the L3 cache banks, and each core and each bank of L3 is
connected to two rings. Thus any cache bank or any core is accessible from any
other core by choosing the right ring. Therefore, within the chip, the E7 has uni-
form access time. In practice, however, the E7 is normally operated as a NUMA
architecture by logically associating half the cores with each memory channel; this

Feature IBM Power8 Intel Xeon E7 Fujitsu SPARC64 X+

Cores/chip 4, 6, 8, 10, 12 4, 8, 10, 12, 22, 24 16

Multithreading SMT SMT SMT

Threads/core 8 2 2

Clock rate 3.1–3.8 GHz 2.1–3.2 GHz 3.5 GHz

L1 I cache 32 KB per core 32 KB per core 64 KB per core

L1 D cache 64 KB per core 32 KB per core 64 KB per core

L2 cache 512 KB per core 256 KB per core 24 MiB shared

L3 cache L3: 32–96 MiB: 8 MiB per
core (using eDRAM); shared
with nonuniform access time

10–60 MiB @ 2.5 MiB per core;
shared, with larger core counts

None

Inclusion Yes, L3 superset Yes, L3 superset Yes

Multicore
coherence
protocol

Extended MESI with
behavioral and locality hints
(13-states)

MESIF: an extended form of MESI
allowing direct transfers of clean
blocks

MOESI

Multichip
coherence
implementation

Hybrid strategy with
snooping and directory

Hybrid strategy with snooping and
directory

Hybrid strategy with
snooping and directory

Multiprocessor
interconnect
support

Can connect up to 16
processor chips with 1 or 2
hops to reach any processor

Up to 8 processor chips directly via
Quickpath; larger system and
directory support with additional
logic

Crossbar interconnect chip,
supports up to 64 processors;
includes directory support

Processor chip
range

1–16 2–32 1–64

Core count
range

4–192 12–576 8–1024

Figure 5.26 Summary of the characteristics of three recent high-end multicore processors (2015–2017 releases)
designed for servers. The table shows the range of processor counts, clock rates, and cache sizes within each pro-
cessor family. The Power8 L3 is a NUCA (Nonuniform Cache Access) design, and it also supports off-chip L4 of up to
128 MiB using EDRAM. A 32-core Xeon has recently been announced, but no system shipments have occurred. The
Fujitsu SPARC64 is also available as an 8-core design, which is normally configured as a single processor system. The
last row shows the range of configured systems with published performance data (such as SPECintRate) with both
processor chip counts and total core counts. The Xeon systems include multiprocessors that extend the basic inter-
connect with additional logic; for example, using the standard Quickpath interconnect limits the processor count to
8 and the largest system to 8�24¼192 cores, but SGI extends the interconnect (and coherence mechanisms) with
extra logic to offer a 32 processor system using 18-core processor chips for a total size of 576 cores. Newer releases of
these processors increased clock rates (significantly in the Power8 case, less so in others) and core counts (signifi-
cantly in the case of Xeon).
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increases the probability that a desired memory page is open on a given access. The
E7 provides 3 QuickPath Interconnect (QPI) links for connecting multiple E7s.

Multiprocessors consisting of these multicores use a variety of different inter-
connection strategies, as Figure 5.28 shows. The Power8 design provides support
for connecting 16 Power8 chips for a total of 192 cores. The intragroup links pro-
vide higher bandwidth interconnect among a completely connected module of 4
processor chips. The intergroup links are used to connect each processor chip to
the 3 other modules. Thus each processor is two hops from any other, and the mem-
ory access time is determined by whether an address resides in local memory, clus-
ter memory, or intercluster memory (actually the latter can have two different
values, but the difference is swamped by the intercluster time).

The Xeon E7 uses QPI to interconnect multiple multicore chips. In a 4-chip,
multiprocessor, which with the latest announced Xeon could have 128 cores,
the three QPI links on each processor are connected to three neighbors, yielding
a 4-chip fully connected multiprocessor. Because memory is directly connected
to each E7multicore, even this 4-chip arrangement has nonuniformmemory access
time (local versus remote). Figure 5.28 shows how 8 E7 processors can be con-
nected; like the Power8, this leads to a situation where every processor is one
or two hops from every other processor. There are a number of Xeon-based mul-
tiprocessor servers that have more than 8 processor chips. In such designs, the typ-
ical organization is to connect 4 processor chips together in a square, as a module,
with each processor connecting to two neighbors. The third QPI in each chip is
connected to a crossbar switch. Very large systems can be created in this fashion.
Memory accesses can then occur at four locations with different timings: local to
the processor, an immediate neighbor, the neighbor in the cluster that is two hops
away, and through the crossbar. Other organizations are possible and require less
than a full crossbar in return for more hops to get to remote memory.

The SPARC64 X+ also uses a 4-processor module, but each processor has
three connections to its immediate neighbors plus two (or three in the largest con-
figuration) connections to a crossbar. In the largest configuration, 64 processor
chips can be connected to two crossbar switches, for a total of 1024 cores. Memory
access is NUMA (local, within a module, and through the crossbar), and coherency
is directory-based.

Performance of Multicore-Based Multiprocessors
on a Multiprogrammed Workload

First, we compare the performance scalability of these three multicore processors
using SPECintRate, considering configurations up to 64 cores. Figure 5.29 shows
how the performance scales relative to the performance of the smallest configura-
tion, which varies between 4 and 16 cores. In the plot, the smallest configuration is
assumed to have perfect speedup (i.e., 8 for 8 cores, 12 for 12 cores, etc.). This
figure does not show performance among these different processors. Indeed such
performance varies significantly: in the 4-core configuration, the IBM Power8 is
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1.5 times as fast as the SPARC64 X+ on a per core basis! Instead Figure 5.29
shows how the performance scales for each processor family as additional cores
are added.

Two of the three processors show diminishing returns as they scale to 64 cores.
The Xeon systems appear to show the most degradation at 56 and 64 cores. This
may be largely due to having more cores share a smaller L3. For example, the 40-
core system uses 4 chips, each with 60 MiB of L3, yielding 6 MiB of L3 per core.
The 56-core and 64-core systems also use 4 chips but have 35 or 45 MiB of L3 per
chip, or 2.5–2.8 MiB per core. It is likely that the resulting larger L3 miss rates lead
to the reduction in speedup for the 56-core and 64-core systems.

The IBM Power8 results are also unusual, appearing to show significant super-
linear speedup. This effect, however, is due largely to differences in the clock rates,
which are much larger across the Power8 processors than for the other processors
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Figure 5.29 The performance scaling on the SPECintRate benchmarks for four multicore processors as the
number of cores is increased to 64. Performance for each processor is plotted relative to the smallest configuration
and assuming that configuration had perfect speedup. Although this chart shows how a given multiprocessor
scales with additional cores, it does not supply any data about performance among processors. There are differences
in the clock rates, even within a given processor family. These are generally swamped by the core scaling effects,
except for the Power8 that shows a clock range spread of 1.5� from the smallest configuration to the 64 core
configuration.
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in this figure. In particular, the 64-core configuration has the highest clock rate
(4.4 GHz), whereas the 4-core configuration has a 3.0 GHz clock. If we normalize
the relative speedup for the 64-core system based on the clock rate differential with
the 4-core system, the effective speedup is 57 rather than 84. Therefore, while the
Power8 system scales well, and perhaps the best among these processors, it is not
miraculous.

Figure 5.30 shows scaling for these three systems at configurations above 64
processors. Once again, the clock rate differential explains the Power8 results; the
clock-rate equivalent scaled speedup with 192 processors is 167, versus 223, when
not accounting for clock rate differences. Even at 167, the Power8 scaling is some-
what better than that on the SPARC64 X+ or Xeon systems. Surprisingly, although
there are some effects on speedup in going from the smallest system to 64 cores,
they do not seem to get dramatically worse at these larger configurations. The
nature of the workload, which is highly parallel and user-CPU-intensive, and
the overheads paid in going to 64 cores probably lead to this result.
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Figure 5.30 The scaling of relative performance for multiprocessor multicore. As before, performance is shown
relative to the smallest available system. The Xeon result at 80 cores is the same L3 effect that showed up for smaller
configurations. All systems larger than 80 cores have between 2.5 and 3.8 MiB of L3 per core, and the 80-core, or
smaller, systems have 6 MiB per core.

432 ■ Chapter Five Thread-Level Parallelism



Scalability in an Xeon MP With Different Workloads

In this section, we focus on the scalability of the Xeon E7 multiprocessors on three
different workloads: a Java-based commercially oriented workload, a virtual
machine workload, and a scientific parallel processing workload, all from the
SPEC benchmarking organization, as described next.

■ SPECjbb2015: Models a supermarket IT system that handles a mix of
point-of-sale requests, online purchases, and data-mining operations. The
performance metric is throughput-oriented, and we use the maximum per-
formance measurement on the server side running multiple Java virtual
machines.

■ SPECVirt2013: Models a collection of virtual machines running independent
mixes of other SPEC benchmarks, including CPU benchmarks, web servers,
and mail servers. The system must meet a quality of service guarantee for each
virtual machine.

■ SPECOMP2012: A collection of 14 scientific and engineering programs writ-
ten with the OpenMP standard for shared-memory parallel processing. The
codes are written in Fortran, C, and C++ and range from fluid dynamics to
molecular modeling to image manipulation.

As with the previous results, Figure 5.31 shows performance assuming linear
speedup on the smallest configuration, which for these benchmarks varies from 48
cores to 72 cores, and plotting performance relative to the that smallest configu-
ration. The SPECjbb2015 and SPECVirt2013 include significant systems soft-
ware, including the Java VM software and the VM hypervisor. Other than the
system software, the interaction among the processes is very small. In contrast,
SPECOMP2012 is a true parallel code with multiple user processes sharing data
and collaborating in the computation.

Let’s begin by examining SPECjbb2015. It obtains speedup efficiency
(speedup/processor ratio) of between 78% and 95%, showing good speedup, even
in the largest configuration. SPECVirt2013 does even better (for the range of sys-
tem measured), obtaining almost linear speedup at 192 cores. Both SPECjbb2015
and SPECVirt2013 are benchmarks that scale up the application size (as in the TPC
benchmarks discussed in Chapter 1) with larger systems so that the effects of
Amdahl’s Law and interprocess communication are minor.

Finally, let’s turn to SPECOMP2012, the most compute-intensive of these
benchmarks and the one that truly involves parallel processing. The major trend
visible here is a steady loss of efficiency as we scale from 30 to 576 cores so that
by 576 cores, the system exhibits only half the efficiency it showed at 30 cores.
This reduction leads to a relative speedup of 284, assuming that the 30-core
speedup is 30. These are probably Amdahl’s Law effects resulting from limited
parallelism as well as synchronization and communication overheads. Unlike
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the SPECjbb2015 and SPECVirt2013, these benchmarks are not scaled for larger
systems.

Performance and Energy Efficiency of the Intel i7 920
Multicore

In this section, we closely examine the performance of the i7 920, a predecessor of
the 6700, on the same two groups of benchmarks we considered in Chapter 3: the
parallel Java benchmarks and the parallel PARSEC benchmarks (described in detail
in Figure 3.32 on page 247). Although this study uses the older i7 920, it remains, by
far, the most comprehensive study of energy efficiency in multicore processors and
the effects of multicore combined with SMT. The fact that the i7 920 and 6700 are
similar indicates that the basic insights should also apply to the 6700.
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Figure 5.31 Scaling of performance on a range of Xeon E7 systems showing performance relative to the smallest
benchmark configuration, and assuming that configuration gets perfect speedup (e.g., the smallest SPEWCOMP
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First, we look at the multicore performance and scaling versus a single-core
without the use of SMT. Then we combine both the multicore and SMT capabil-
ity. All the data in this section, like that in the earlier i7 SMT evaluation
(Chapter 3) come from Esmaeilzadeh et al. (2011). The dataset is the same as
that used earlier (see Figure 3.32 on page 247), except that the Java benchmarks
tradebeans and pjbb2005 are removed (leaving only the five scalable Java bench-
marks); tradebeans and pjbb2005 never achieve speedup above 1.55 even with
four cores and a total of eight threads, and thus are not appropriate for evaluating
more cores.

Figure 5.32 plots both the speedup and energy efficiency of the Java and
PARSEC benchmarks without the use of SMT. Energy efficiency is computed
by the ratio: energy consumed by the single-core run divided by the energy con-
sumed by the two- or four-core run (i.e., efficiency is the inverse of energy con-
sumed). Higher energy efficiency means that the processor consumes less
energy for the same computation, with a value of 1.0 being the break-even
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Figure 5.32 This chart shows the speedup and energy efficiency for two- and four-core executions of the par-
allel Java and PARSEC workloads without SMT. These data were collected by Esmaeilzadeh et al. (2011) using the
same setup as described in Chapter 3. Turbo Boost is turned off. The speedup and energy efficiency are summarized
using harmonic mean, implying a workload where the total time spent running each benchmark on 2 cores is
equivalent.
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point. The unused cores in all cases were in deep sleep mode, which minimized
their power consumption by essentially turning them off. In comparing the data
for the single-core and multicore benchmarks, it is important to remember that
the full energy cost of the L3 cache and memory interface is paid in the single-
core (as well as the multicore) case. This fact increases the likelihood that
energy consumption will improve for applications that scale reasonably well.
Harmonic mean is used to summarize results with the implication described
in the caption.

As the figure shows, the PARSEC benchmarks get better speedup than the
Java benchmarks, achieving 76% speedup efficiency (i.e., actual speedup
divided by processor count) on four cores, whereas the Java benchmarks
achieve 67% speedup efficiency on four cores. Although this observation is
clear from the data, analyzing why this difference exists is difficult. It is quite
possible that Amdahl’s Law effects have reduced the speedup for the Java
workload, which includes some typically serial parts, such as the garbage
collector. In addition, interaction between the processor architecture and the
application, which affects issues such as the cost of synchronization or commu-
nication, may also play a role. In particular, well-parallelized applications, such
as those in PARSEC, sometimes benefit from an advantageous ratio between
computation and communication, which reduces the dependence on communi-
cations costs (see Appendix I).

These differences in speedup translate to differences in energy efficiency.
For example, the PARSEC benchmarks actually slightly improve energy effi-
ciency over the single-core version; this result may be significantly affected by
the fact that the L3 cache is more effectively used in the multicore runs than in
the single-core case and the energy cost is identical in both cases. Thus, for the
PARSEC benchmarks, the multicore approach achieves what designers hoped
for when they switched from an ILP-focused design to a multicore design; namely,
it scales performance as fast or faster than scaling power, resulting in constant or
even improved energy efficiency. In the Java case, we see that neither the two- nor
four-core runs break even in energy efficiency because of the lower speedup levels
of the Java workload (although Java energy efficiency for the 2p run is the same
as for PARSEC). The energy efficiency in the four-core Java case is reasonably
high (0.94). It is likely that an ILP-centric processor would need even more power
to achieve a comparable speedup on either the PARSEC or Java workload. Thus
the TLP-centric approach is also certainly better than the ILP-centric approach for
improving performance for these applications. As we will see in Section 5.10, there
are reasons to be pessimistic about simple, efficient, long-term scaling of
multicore.

Putting Multicore and SMT Together

Finally, we consider the combination of multicore and multithreading by measur-
ing the two benchmark sets for two to four processors and one to two threads
(a total of four data points and up to eight threads). Figure 5.33 shows the speedup
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and energy efficiency obtained on the Intel i7 when the processor count is two or
four and SMT is or is not employed, using harmonic mean to summarize the two
benchmarks sets. Clearly, SMT can add to performance when there is sufficient
thread-level parallelism available even in the multicore situation. For example,
in the four-core, no-SMT case, the speedup efficiencies were 67% and 76% for
Java and PARSEC, respectively. With SMT on four cores, those ratios are an
astonishing 83% and 97%.

Energy efficiency presents a slightly different picture. In the case of PARSEC,
speedup is essentially linear for the four-core SMT case (eight threads), and power
scales more slowly, resulting in an energy efficiency of 1.1 for that case. The Java
situation is more complex; energy efficiency peaks for the two-core SMT (four-
thread) run at 0.97 and drops to 0.89 in the four-core SMT (eight-thread) run. It
seems highly likely that the Java benchmarks are encountering Amdahl’s Law
effects when more than four threads are deployed. As some architects have
observed, multicore does shift more responsibility for performance (and thus
energy efficiency) to the programmer, and the results for the Java workload
certainly bear this out.
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Figure 5.33 This chart shows the speedup for two- and four-core executions of the
parallel Java and PARSEC workloads both with and without SMT. Remember that the
preceding results vary in the number of threads from two to eight and reflect both archi-
tectural effects and application characteristics. Harmonic mean is used to summarize
results, as discussed in the Figure 5.32 caption.
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5.9 Fallacies and Pitfalls

Given the lack of maturity in our understanding of parallel computing, there are
many hidden pitfalls that will be uncovered either by careful designers or by unfor-
tunate ones. Given the large amount of hype that has surrounded multiprocessors
over the years, common fallacies abound. We have included a selection of them.

Pitfall Measuring performance of multiprocessors by linear speedup versus execution
time.

Graphs like those in Figures 5.32 and 5.33, which plot performance versus number
of processors, showing linear speedup, a plateau, and then a falling off, have long
been used to judge the success of parallel processors. Although speedup is one
facet of a parallel program, it is not a direct measure of performance. The first issue
is the power of the processors being scaled: a program that linearly improves per-
formance to equal 100 Intel Atom processors (the low-end processor used for net-
books) may be slower than the version run on an 8-core Xeon. Be especially careful
of floating-point-intensive programs; processing elements without hardware assist
may scale wonderfully but have poor collective performance.

Comparing execution times is fair only if you are comparing the best algo-
rithms on each computer. Comparing the identical code on two computers may
seem fair, but it is not; the parallel program may be slower on a uniprocessor than
on a sequential version. Developing a parallel program will sometimes lead to
algorithmic improvements, so comparing the previously best-known sequential
program with the parallel code—which seems fair—will not compare equivalent
algorithms. To reflect this issue, the terms relative speedup (same program) and
true speedup (best program) are sometimes used.

Results that suggest superlinear performance, when a program on n processors
is more than n times faster than the equivalent uniprocessor, may indicate that the
comparison is unfair, although there are instances where “real” superlinear
speedups have been encountered. For example, some scientific applications regu-
larly achieve superlinear speedup for small increases in processor count (2 or 4 to
8 or 16). These results usually arise because critical data structures that do not fit
into the aggregate caches of a multiprocessor with 2 or 4 processors fit into the
aggregate cache of a multiprocessor with 8 or 16 processors. As we saw in the pre-
vious section, other differences (such as high clock rate) may appear to yield super-
linear speedups when comparing slightly different systems.

In summary, comparing performance by comparing speedups is at best tricky
and at worst misleading. Comparing the speedups for two different multiproces-
sors does not necessarily tell us anything about the relative performance of the mul-
tiprocessors, as we also saw in the previous section. Even comparing two different
algorithms on the same multiprocessor is tricky because we must use true speedup,
rather than relative speedup, to obtain a valid comparison.

Fallacy Amdahl’s Law doesn’t apply to parallel computers.

In 1987 the head of a research organization claimed that Amdahl’s Law (see
Section 1.9) had been broken by an MIMD multiprocessor. This statement hardly
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meant, however, that the law has been overturned for parallel computers; the
neglected portion of the program will still limit performance. To understand the
basis of the media reports, let’s see what Amdahl (1967) originally said:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the
same magnitude. [p. 483]

One interpretation of the law was that, because portions of every program must be
sequential, there is a limit to the useful economic number of processors—say, 100.
By showing linear speedup with 1000 processors, this interpretation of Amdahl’s
Law was disproved.

The basis for the statement that Amdahl’s Law had been “overcome” was the
use of scaled speedup, also called weak scaling. The researchers scaled the bench-
mark to have a dataset size that was 1000 times larger and compared the unipro-
cessor and parallel execution times of the scaled benchmark. For this particular
algorithm, the sequential portion of the program was constant independent of
the size of the input, and the rest was fully parallel—thus, linear speedup with
1000 processors. Because the running time grew faster than linear, the program
actually ran longer after scaling, even with 1000 processors.

Speedup that assumes scaling of the input is not the same as true speedup, and
reporting it as if it were is misleading. Because parallel benchmarks are often run
on different-sized multiprocessors, it is important to specify what type of applica-
tion scaling is permissible and how that scaling should be done. Although simply
scaling the data size with processor count is rarely appropriate, assuming a fixed
problem size for a much larger processor count (called strong scaling) is often
inappropriate, as well, because it is likely that users given a much larger multipro-
cessor would opt to run a larger or more detailed version of an application. See
Appendix I for more discussion on this important topic.

Fallacy Linear speedups are needed to make multiprocessors cost-effective.

It is widely recognized that one of themajor benefits of parallel computing is to offer
a “shorter time to solution” than the fastest uniprocessor. Many people, however,
also hold the view that parallel processors cannot be as cost-effective as uniproces-
sors unless they can achieveperfect linear speedup.This argument says that, because
the cost of the multiprocessor is a linear function of the number of processors, any-
thing less than linear speedupmeans that the performance/cost ratio decreases,mak-
ing a parallel processor less cost-effective than using a uniprocessor.

The problem with this argument is that cost is not only a function of processor
count but also depends on memory, I/O, and the overhead of the system (box,
power supply, interconnect, etc.). It also makes less sense in the multicore era,
when there are multiple processors per chip.

The effect of including memory in the system cost was pointed out by Wood
and Hill (1995). We use an example based on more recent data using TPC-C and
SPECRate benchmarks, but the argument could also be made with a parallel sci-
entific application workload, which would likely make the case even stronger.
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Figure 5.34 shows the speedup for TPC-C, SPECintRate, and SPECfpRate on
an IBM eServer p5 multiprocessor configured with 4–64 processors. The figure
shows that only TPC-C achieves better than linear speedup. For SPECintRate
and SPECfpRate, speedup is less than linear, but so is the cost, because unlike
TPC-C, the amount of main memory and disk required both scale less than linearly.

As Figure 5.35 shows, larger processor counts can actually be more cost-
effective than the 4-processor configuration. In comparing the cost-performance
of two computers, we must be sure to include accurate assessments of both total
system cost and what performance is achievable. For many applications with larger
memory demands, such a comparison can dramatically increase the attractiveness
of using a multiprocessor.

Pitfall Not developing the software to take advantage of, or optimize for, a multiproces-
sor architecture.

There is a long history of software lagging behind on multiprocessors, probably
because the software problems are much harder. We give one example to show
the subtlety of the issues, but there are many examples we could choose from.

One frequently encountered problem occurs when software designed for a uni-
processor is adapted to a multiprocessor environment. For example, the SGI
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operating system in 2000 originally protected the page table data structure with a
single lock, assuming that page allocation was infrequent. In a uniprocessor, this
does not represent a performance problem. In a multiprocessor, it can become a
major performance bottleneck for some programs.

Consider a program that uses a large number of pages that are initialized at
startup, which UNIX does for statically allocated pages. Suppose the program is
parallelized so that multiple processes allocate the pages. Because page allocation
requires the use of the page table data structure, which is locked whenever it is in
use, even an OS kernel that allows multiple threads in the OS will be serialized if
the processes all try to allocate their pages at once (which is exactly what we might
expect at initialization time).
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particular, the disk configurations go from one drive for the 4-processor version to four drives (140 GB) for the 64-
processor version. Memory is scaled from 8 GiB for the 4-processor system to 20 GiB for the 64-processor system.
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This page table serialization eliminates parallelism in initialization and has sig-
nificant impact on overall parallel performance. This performance bottleneck per-
sists even under multiprogramming. For example, suppose we split the parallel
program apart into separate processes and run them, one process per processor,
so that there is no sharing between the processes. (This is exactly what one user
did, because he reasonably believed that the performance problemwas due to unin-
tended sharing or interference in his application.) Unfortunately, the lock still seri-
alizes all the processes, so even the multiprogramming performance is poor. This
pitfall indicates the kind of subtle but significant performance bugs that can arise
when software runs on multiprocessors. Like many other key software compo-
nents, the OS algorithms and data structures must be rethought in a multiprocessor
context. Placing locks on smaller portions of the page table effectively eliminates
the problem. Similar problems exist in memory structures, which increases the
coherence traffic in cases where no sharing is actually occurring.

As multicore became the dominant theme in everything from desktops to
servers, the lack of an adequate investment in parallel software became apparent.
Given the lack of focus, it will likely be many years before the software systems we
use adequately exploit the growing numbers of cores.

5.10 The Future of Multicore Scaling

For more than 30 years, researchers and designers have predicted the end of uni-
processors and their dominance by multiprocessors. Until the early years of this
century, this prediction was constantly proven wrong. As we saw in Chapter 3,
the costs of trying to find and exploit more ILP became prohibitive in efficiency
(both in silicon area and in power). Of course, multicore does not magically solve
the power problem because it clearly increases both the transistor count and the
active number of transistors switching, which are the two dominant contributions
to power. As we will see in this section, energy issues are likely to limit multicore
scaling more severely than previously thought.

ILP scaling failed because of both limitations in the ILP available and the effi-
ciency of exploiting that ILP. Similarly, a combination of two factors means that
simply scaling performance by adding cores is unlikely to be broadly successful.
This combination arises from the challenges posed by Amdahl’s Law, which
assesses the efficiency of exploiting parallelism, and the end of Dennard’s Scaling,
which dictates the energy required for a multicore processor.

To understand these factors, we take a simple model of both technology scaling
(based on an extensive and highly detailed analysis in Esmaeilzadeh et al. (2012)).
Let’s start by reviewing energy consumption and power in CMOS. Recall from
Chapter 1 that the energy to switch a transistor is given as

Energy/Capacitive load�Voltage2

CMOS scaling is limited primarily by thermal power,which is a combination of static
leakage power and dynamic power, which tends to dominate. Power is given by
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Power¼Energy per Transistor�Frequency�Transistors switched

¼Capacitive load�Voltage2�Frequency�Transistors switched

To understand the implications of how energy and power scale, let’s compare
today’s 22 nm technology with a technology projected to be available in 2021–
24 (depending on the rate at which Moore’s Law continues to slow down).
Figure 5.36 shows this comparison based on technology projections and resulting
effects on energy and power scaling. Notice that power scaling>1.0 means that the
future device consumes more power; in this case, 1.79� as much.

Consider the implications of this for one of the latest Intel Xeon processors, the
E7-8890, which has 24 cores, 7.2 billion transistors (including almost 70 MiB of
cache), operates at 2.2 GHz, has a thermal power rating of 165 watts, and a die size
of 456 mm2. The clock frequency is already limited by power dissipation: a 4-core
version has a clock of 3.2 GHz, and a 10-core version has a 2.8 GHz clock. With
the 11 nm technology, the same size die would accommodate 96 cores with almost
280 MiB of cache and operate at a clock rate (assuming perfect frequency scaling)
of 4.9 GHz. Unfortunately, with all cores operating and no efficiency improve-
ments, it would consume 165�1.79¼295 watts. If we assume the 165-W heat
dissipation limit remains, then only 54 cores can be active. This limit yields a max-
imum performance speedup of 54/24¼2.25 over a 5–6 year period, less than one-
half the performance scaling seen in the late 1990s. Furthermore, we may have
Amdahl’s Law effects, as the next example shows.

Example Suppose we have a 96-core future generation processor, but on average only 54
cores can be busy. Suppose that 90% of the time, we can use all available cores;
9% of the time, we can use 50 cores; and 1% of the time is strictly serial. Howmuch
speedup might we expect? Assume that cores can be turned off when not in use and
draw no power and assume that the use of a different number of cores is distributed
so that we need to worry only about average power consumption. How would the

Device count scaling (since a transistor is 1/4 the size) 4

Frequency scaling (based on projections of device speed) 1.75

Voltage scaling projected 0.81

Capacitance scaling projected 0.39

Energy per switched transistor scaling (CV2) 0.26

Power scaling assuming fraction of transistors switching is the same and chip exhibits full frequency
scaling

1.79

Figure 5.36 A comparison of the 22 nm technology of 2016 with a future 11 nm technology, likely to be available
sometime between 2022 and 2024. The characteristics of the 11 nm technology are based on the International Tech-
nology Roadmap for Semiconductors, which has been recently discontinued because of uncertainty about the con-
tinuation of Moore’s Law and what scaling characteristics will be seen.
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multicore speedup compare to the 24-processor count version that can use all its
processor 99% of the time?

Answer We can find how many cores can be used for the 90% of the time when more than
54 are usable, as follows:

Average Processor Usage¼ 0:09�50 + 0:01�1 + 0:90�Max processor
54¼ 4:51 + 0:90�Max processor

Max processor¼ 55

Now, we can find the speedup:

Speedup¼ 1
Fraction55

55
+
Fraction50

50
+ 1�Fraction55�Fraction50ð Þ

Speedup¼ 1
0:90
55

+
0:09
50

+ 0:01
¼ 35:5

Now compute the speedup on 24 processors:

Speedup¼ 1
Fraction24

24
+ 1�Fraction24ð Þ

Speedup¼ 1
0:99
24

+ 0:01
¼ 19:5

When considering both power constraints and Amdahl’s Law effects, the 96-
processor version achieves less than a factor of 2 speedup over the 24-processor
version. In fact, the speedup from clock rate increase nearly matches the speedup
from the 4� processor count increase. We comment on these issues further in the
concluding remarks.

5.11 Concluding Remarks

As we saw in the previous section, multicore does not magically solve the power
problem because it clearly increases both the transistor count and the active number
of transistors switching, which are the two dominant contributions to power. The
failure of Dennard scaling merely makes it more extreme.

But multicore does alter the game. By allowing idle cores to be placed in
power-saving mode, some improvement in power efficiency can be achieved, as
the results in this chapter have shown. For example, shutting down cores in the
Intel i7 allows other cores to operate in Turbo mode. This capability allows a
trade-off between higher clock rates with fewer processors and more processors
with lower clock rates.

More importantly, multicore shifts the burden for keeping the processor busy
by relying more on TLP, which the application and programmer are responsible for
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identifying, rather than on ILP, for which the hardware is responsible. Multipro-
grammed and highly parallel workloads that avoid Amdahl’s Law effects will ben-
efit more easily.

Although multicore provides some help with the energy efficiency challenge
and shifts much of the burden to the software system, there remain difficult chal-
lenges and unresolved questions. For example, attempts to exploit thread-level ver-
sions of aggressive speculation have so far met the same fate as their ILP
counterparts. That is, the performance gains have been modest and are likely less
than the increase in energy consumption, so ideas such as speculative threads or
hardware run-ahead have not been successfully incorporated in processors. As
in speculation for ILP, unless the speculation is almost always right, the costs
exceed the benefits.

Thus, at the present, it seems unlikely that some form of simple multicore scal-
ing will provide a cost-effective path to growing performance. A fundamental
problem must be overcome: finding and exploiting significant amounts of paral-
lelism in an energy- and silicon-efficient manner. In the previous chapter, we
examined the exploitation of data parallelism via a SIMD approach. In many appli-
cations, data parallelism occurs in large amounts, and SIMD is a more energy-
efficient method for exploiting data parallelism. In the next chapter, we explore
large-scale cloud computing. In such environments, massive amounts of parallel-
ism are available frommillions of independent tasks generated by individual users.
Amdahl’s Law plays little role in limiting the scale of such systems because the
tasks (e.g., millions of Google search requests) are independent. Finally, in
Chapter 7, we explore the rise of domain-specific architectures (DSAs). Most
domain-specific architectures exploit the parallelism of the targeted domain, which
is often data parallelism, and as with GPUs, DSAs can achieve much higher effi-
ciency as measured by energy consumption or silicon utilization.

In the last edition, published in 2012, we raised the question of whether it
would be worthwhile to consider heterogeneous processors. At that time, no such
multicore was delivered or announced, and heterogeneous multiprocessors had
seen only limited success in special-purpose computers or embedded systems.
While the programming models and software systems remain challenging, it
appears inevitable that multiprocessors with heterogeneous processors will play
an important role. Combining domain-specific processors, like those discussed
in Chapters 4 and 7, with general-purpose processors is perhaps the best road for-
ward to achieve increased performance and energy efficiency while maintaining
some of the flexibility that general-purpose processors offer.

5.12 Historical Perspectives and References

Section M.7 (available online) looks at the history of multiprocessors and parallel
processing. Divided by both time period and architecture, the section features dis-
cussions on early experimental multiprocessors and some of the great debates in
parallel processing. Recent advances are also covered. References for further read-
ing are included.
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Case Studies and Exercises by Amr Zaky and
David A. Wood

Case Study 1: Single Chip Multicore Multiprocessor

Concepts illustrated by this case study

■ Snooping Coherence Protocol Transitions

■ Coherence Protocol Performance

■ Coherence Protocol Optimizations

■ Synchronization

A multicore SMT multiprocessor is illustrated in Figure 5.37. Only the cache con-
tents are shown. Each core has a single, private cache with coherence maintained
using the snooping coherence protocol of Figure 5.7. Each cache is direct-mapped,
with four lines, each holding 2 bytes (to simplify diagram). For further simplifica-
tion, the whole line addresses in memory are shown in the address fields in the
caches, where the tag would normally exist. The coherence states are denoted
M, S, and I for Modified, Shared, and Invalid.

5.1. [10/10/10/10/10/10/10] <5.2> For each part of this exercise, the initial cache and
memory state are assumed to initially have the contents shown in Figure 5.37. Each
part of this exercise specifies a sequence of one or more CPU operations of
the form

Line 

number

Coherency

state
Address Data

0 I AC00 0010
1 S AC08 0008
2 M AC10 0030
3 I AC18 0010

Cache

line

Coherency

state
Address Data

0 I AC00 0010
1 M AC28 0068
2 I AC10 0010
3 S AC18 0018

Cache

line

Coherency

state
Address Data

0 S AC20 20
1 S AC08 0008
2 I AC10 0010
3 I AC18 0010

Address Data

… …
AC00 0010
AC08 0008
AC10 0010
AC18 0018
AC20 0020
AC28 0028
AC30 0030

…. …..

Core 0 Core 1 Core3

Memory

Figure 5.37 Multicore (point-to-point) multiprocessor.
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Ccore#: R, <address> for reads

and

Ccore#: W, <address> <-- <value written> for writes.

For example,

C3: R, AC10 & C0: W, AC18 <-- 0018
Read and write operations are for 1 byte at a time. Show the resulting state

(i.e., coherence state, tags, anddata) of the caches andmemoryafter the actionsgiven
below. Show only the cache lines that experience some state change; for example:

C0.L0: (I, AC20, 0001) indicates that line 0 in core 0 assumes an
“invalid” coherence state (I), stores AC20 from the memory, and has data con-
tents 0001. Furthermore, represent any changes to the memory state as M:
<address> <– value.

Different parts (a) through (g) do not depend on one another: assume the
actions in all parts are applied to the initial cache and memory states.

a. [10] <5.2> C0: R, AC20

b. [10] <5.2> C0: W, AC20 <-- 80

c. [10] <5.2> C3: W, AC20 <-- 80

d. [10] <5.2> C1: R, AC10

e. [10] <5.2> C0: W, AC08 <-- 48

f. [10] <5.2> C0: W, AC30 <-- 78

g. [10] <5.2> C3: W, AC30 <-- 78

5.2. [20/20/20/20]<5.3> The performance of a snooping cache-coherentmultiprocessor
depends onmany detailed implementation issues that determine how quickly a cache
responds with data in an exclusive orM state block. In some implementations, a pro-
cessor read miss to a cache block that is exclusive in another processor’s cache is
faster than a miss to a block in memory. This is because caches are smaller, and thus
faster, thanmainmemory. Conversely, in some implementations, misses satisfied by
memory are faster than those satisfied by caches. This is because caches are generally
optimized for “front side” or CPU references, rather than “back side” or snooping
accesses. For the multiprocessor illustrated in Figure 5.37, consider the execution
of a sequence of operations on a single processor core where

■ read and write hits generate no stall cycles;

■ read and write misses generate Nmemory and Ncache stall cycles if satisfied by
memory and cache, respectively;

■ write hits that generate an invalidate incur Ninvalidate stall cycles; and

■ a write-back of a block, either due to a conflict or another processor’s request to
an exclusive block, incurs an additional Nwriteback stall cycles.

Consider two implementations with different performance characteristics summa-
rized in Figure 5.38.
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To observe how these cycle values are used, we illustrate how the following
sequence of operations, assuming the initial caches’ states in Figure 5.37, behave
under implementation 1.

C1: R, AC10
C3: R, AC10

For simplicity, assume that the second operation begins after the first com-
pletes, even though they are on different processor cores.

For Implementation 1,

■ the first read generates 50 stall cycles because the read is satisfied by C0’s
cache: C1 stalls for 40 cycles while it waits for the block, and C0 stalls for 10
cycles while it writes the block back to memory in response to C1’s request; and

■ the second read by C3 generates 100 stall cycles because its miss is satisfied by
memory.

Therefore this sequence generates a total of 150 stall cycles.
For the following sequences of operations, howmany stall cycles are generated

by each implementation?

a. [20] <5.3> C0: R, AC20
C0: R, AC28
C0: R, AC30

b. [20] <5.3> C0: R, AC00
C0: W, AC08 <-- 48
C0: W, AC30 <-- 78

c. [20] <5.3> C1: R, AC20
C1: R, AC28
C1: R, AC30

d. [20] <5.3> C1: R, AC00
C1: W, AC08 <-- 48
C1: W, AC30 <-- 78

5.3. [20]<5.2>Someapplications reada largedataset first and thenmodifymostorallof it.
The base MSI coherence protocol will first fetch all of the cache blocks in the Shared
state and then be forced to perform an invalidate operation to upgrade them to the

Parameter
Implementation 1

Cycles
Implementation 2

Cycles

Nmemory 100 100

Ncache 40 130

Ninvalidate 15 15

Nwriteback 10 10

Figure 5.38 Snooping coherence latencies.
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Modified state. The additional delay has a significant impact on someworkloads. The
MESI addition to the standard protocol (see Section 5.2) provides some relief in these
cases. Draw new protocol diagrams for a MESI protocol that adds the Exclusive state
and transitions to the base MSI protocol’s Modified, Shared, and Invalidate states.

5.4. [20/20/20/20/20]<5.2> Assume the cache contents of Figure 5.37 and the timing
of Implementation 1 in Figure 5.38. What are the total stall cycles for the following
code sequences with both the base protocol and the newMESI protocol in Exercise
5.3? Assume state transitions that require zero interconnect transactions incur no
additional stall cycles.

a. [20] <5.2> C0: R, AC00
C0: W, AC00 <-- 40

b. [20] <5.2> C0: R, AC20
C0: W, AC20 <-- 60

c. [20] <5.2> C0: R, AC00
C0: R, AC20

d. [20] <5.2> C0: R, AC00
C1: W, AC00 <-- 60

e. [20] <5.2> C0: R, AC00
C0: W, AC00 <-- 60
C1: W, AC00 <-- 40

5.5. Code running on a single core and not sharing any variables with other cores can
suffer some performance degradation because of the snooping coherence protocol.
Consider the two following iterative loops are NOT functionally equivalent but they
seem similar in complexity. One could be led to conclude that they would spend a
comparably close number of cycles when executed on the same processor core.

Loop 1 Loop 2

Repeat i: 1 .. n Repeat i:1 .. n

A[i] <-- A[i-1] +B[i]; A[i] <-- A[i] +B[i];

Assume that

■ every cache line can hold exactly one element of A or B;

■ arrays A and B do not interfere in the cache; and

■ all the elements of A or B are in the cache before either loop is executed.

Compare their performance when run on a core whose cache uses the MESI
coherence protocol. Use the stall cycles data for Implementation 1 in Figure 5.38.

Assume that a cache line can hold multiple elements of A and B (A and B go to
separate cache lines). How will this affect the relative performances of Loop1
and Loop2?
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Suggest hardware and/or software mechanisms that would improve the perfor-
mance of Loop1 on a single core.

5.6. [20] <5.2>Many snooping coherence protocols have additional states, state tran-
sitions, or bus transactions to reduce the overhead of maintaining cache coherency.
In Implementation 1 of Exercise 5.2, misses are incurring fewer stall cycles when
they are supplied by cache than when they are supplied by memory. The MOESI
protocol extension (see Section 5.2) addresses this need.

Draw new protocol diagrams with the additional state and transitions.

5.7. [20/20/20/20]<5.2> For the following code sequences and the timing parameters
for the two implementations in Figure 5.36, compute the total stall cycles for the
base MSI protocol and the optimized MESI protocol in Exercise 5.3. Assume state
transitions that do not require bus transactions incur no additional stall cycles.

a. [20] <5.2> C1: R, AC10
C3: R, AC10
C0: R, AC10

b. [20] <5.2> C1: R, AC20
C3: R, AC20
C0: R, AC20

c. [20] <5.2> C0: W, AC20 <-- 80
C3: R, AC20
C0: R, AC20

d. [20] <5.2> C0: W, AC08 <--88
C3: R, AC08
C0: W, AC08 <-- 98

5.8. [20/20/20/20] <5.5> The spin lock is the simplest synchronization mechanism
possible on most commercial shared-memory machines. This spin lock relies on
the exchange primitive to atomically load the old value and store a new value.
The lock routine performs the exchange operation repeatedly until it finds the lock
unlocked (i.e., the returned value is 0).

addi x2, x0, #1
lockit: EXCH x2, 0(x1)

bnez x2, lockit

The lock is released simply by storing a 0 into x2.
As discussed in Section 5.5, the more optimized spin lock employs cache

coherence and uses a load to check the lock, allowing it to spin with a shared var-
iable in the cache.

lockit: ld x2, 0(x1)
bnez x2, lockit
addi x2, x0, #1
EXCH x2,0(x1)
bnez x2, lockit
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Assume that processor cores C0, C1, and C3 are all trying to acquire a lock at
address 0xAC00 (i.e., register R1 holds the value 0xAC00). Assume the cache con-
tents from Figure 5.37 and the timing parameters from Implementation 1 in
Figure 5.38. For simplicity, assume the critical sections are 1000 cycles long.

a. [20] <5.5> Using the simple spin lock, determine approximately how many
memory stall cycles each processor incurs before acquiring the lock.

b. [20]<5.5>Using the optimized spin lock, determine approximately howmany
memory stall cycles each processor incurs before acquiring the lock.

c. [20] <5.5> Using the simple spin lock, approximately how many memory
accesses occur?

d. [20] <5.5> Using the optimized spin lock, approximately how many memory
accesses occur?

Case Study 2: Simple Directory-Based Coherence

Concepts illustrated by this case study

■ Directory Coherence Protocol Transitions

■ Coherence Protocol Performance

■ Coherence Protocol Optimizations

Consider the distributed shared-memory system illustrated in Figure 5.39. It con-
sists of 8 nodes of processor cores organized as three-dimensional hypercube with
point-to-point interconnections, as shown in the figure. For simplification, we
assume the following scaled-down configuration:

■ Every node has a single processor core with a direct-mapped L1 data cache
with its dedicated cache controller.

■ The L1 data cache has a capacity of two cache lines with a line size of B bytes.

■ The L1 cache states are denoted M, S, and I for Modified, Shared, and Invalid.
An example cache entry in some would like

1: S, M3, 0xabcd -->

Cache line 1 is in the “Shared” state; it contains memory block M3 and the data
value of the block is 0xabcd.

■ The system memory comprises 8 memory blocks (i.e., one memory block per
node) and is distributed among the eight nodes, with every node owning a
memory block. Node Ci owns memory block Mi.

■ Each memory block is B-bytes wide and is tracked by a coherency directory
entry stored with the memory block.
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■ The state of each memory directory entry is denoted DM, DS, and DI for Direc-
tory Modified, Directory Shared, and Directory Invalid. Additionally, the
directory entry lists the block sharers using a bit vector with 1 bit for every
node. Here is an example memory block and associated directory entry:

M3: 0XABCD, DS, 00000011 -->

Memory block M3 (in node C3) contains the value 0xABCD and is shared by
nodes 0 and 1 (corresponding to 1s in the bit vector).

Read/Write Notation

To describe read/write transactions, we will use the notation

Ci#: R, <Mi> for reads

and

Ci#: W, <Mi> <-- <value written> for writes.

Node 0
(000)

Node 2
(010)

Node 6
(110)

Node 4
(100)

Node 1
(001)

Node 5
(101)

Node 7
(111)

Node 3
(011)

Figure 5.39 Multicore multiprocessor with DSM.
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For example,

C3: R, M2 describes the core in node 3 issuing a read transaction from an address
at memory block M2 (the address may possibly be cached in C3 already).

C0: W, M3 <-- 0018 describes the core in node 0 issuing a write transaction
(data is 0X0018) to an address at memory block M3 (the address may possibly
be cached in C0 already).

Messages

The directory coherency schemes depend on exchange of command and/or data
messages as described by the directory protocol described in Figure 5.20. An
example of a command message is a read request. An example of a data message
is a read response (with data included).

■ Messages originating an ending in the same node do not cross any inter-
node links.

■ Message with distinct source/destination nodes travel through inter-node links.
These messages may be destined from one cache controller to another, from a
cache controller to a directory controller, or from a directory controller to a
cache controller.

■ Messages traveling from a source node to a distinct destination node are stat-
ically routed.

� The static routing algorithm selects a shorted path between the source and
destination nodes.

� The short path is determined by considering the binary representations of
the source and destination indices (e.g., 001 for node C1 and 100 for node
C4), then by moving from one node to a neighboring node that was not
already crossed by the message.
– For example, to go from node 6 to node 0 (110 --> 000), the path is

110--> 100--> 000.
– Becausemore thanone shorted pathmay exist (110-->010-->000 is

another path for the preceding example), we assume that the path is
selected by inverting first the least significant bit that is different from
the corresponding bit in destination index. For example, to travel from
node 1 to node 6 (001--> 110), the path is 001--> 000-->
010--> 110.

� The longest possible path traveled by any message has 3 links (equal to the
number of bits in the binary representation of a node index).

■ A node can simultaneously process up to three messages from/to distinct
neighboring nodes’ links if no two of them are competing for the same link
resource as clarified by the following examples of messages sent/received
to/from/through node 000.
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Messages: from 001 --> 010; 010 --> 000 (to cache/directory controller);
100 --> 001. OK (distinct destinations).

Message: from 001 --> 010; 000 --> 001 (from cache/directory control-
ler); 100 --> 001.

Not OK as two messages are destined to node 001
In case of destination contention, ties are broken assigning priority to

a. message destined to the node (000 in example) cache or directory
controller; then

b. messages forwarded from one to another (through 000 in example); then

c. messages originating from the node (000 in example) cache or directory
controller.

■ Assume the transmission and service delays in the following table.

Message type Cache controller Directory controller Link

No data 2 cycles 5 cycles 10 cycles

With data (3 + B=4d e) cycles (6 + 10�B) cycles (4 +B)

■ If a message is forwarded through a node, it is first completely received by the
node before being sent to the next node on the path.

■ Assume any cache controller; directory controller has unlimited capacity to
enqueue messages and service them in FCFS order.

5.9. [10/10/10] <5.4> For each part of this exercise, assume that initially all caches
lines are invalid, and the data in memory Mi is the byte i (0X00 <= i <=
0x07) repeated as many times as the block size. Assume that successive requests
are completely serialized. That is, no core will issue a coherency request until the
previous request (by same or different core) is completed.

For each of the following parts,

■ show the final state (i.e., coherence state, sharers/owners, tags, and data) of the
caches and directory controller (including data values) after the given transac-
tion sequence has completed; and

■ show the messages transferred (choose a suitable format for message types).
a. [10] <5.4> C3: R, M4

C3: R, M2
C7: W, M4 <--0xaaaa
C1: W, M4 <--0xbbbb

b. [10] <5.4> C3: R, M0
C3: R, M2
C6: W, M4 <--0xaaaa
C3: W, M4 <--0xbbbb
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c. [10] <5.4> C0: R, M7
C3: R, M4
C6: W, M2 <--0xaaaa
C2: W, M2 <--0xbbbb

5.10. [10/10/10] <5.4> The directory protocol used in 5.9 (based on Figure 5.20)
assumes that the directory controller receives requests, sends invalidates, receives
modified data, sends modified data to requester if block was dirty, and so on.
Assume now that the directory controller will delegate some work to the cores.
For example, it will notify the exclusive owner of a modified block when some
other core needs the block and will have the owner send the block to the new
sharer. Specifically, consider the following optimizations and indicate what their
benefits (if any) are. Also, specify how the messages will be modified (in compar-
ison with Figure 5.20 protocol) to support the new change.

Hint: Benefits might be reduction in number of messages, faster response time, and
so on.

a. [10] <5.4> On a write miss to a shared memory block, the directory controller
sends the data to the requester and instructs the sharers to send their invalidate
acknowledgements directly to the requester.

b. [10]<5.4>On a read miss to a block modified in some other core, the directory
controller instructs the owner of the modified copy to directly forward the data
to the requester.

c. [10]<5.4>On a read miss to a block in shared (S) state in some other cores, the
directory controller instructs one of the sharers (say, the one closest to the
requester) to directly forward the data to the requester.

5.11. [15/15/15] <5.4> In problem 5.9, it was assumed that all transactions on the sys-
tem were serially executed, which is both unrealistic and inefficient in a DSMmul-
ticore. We now relax this condition. We will require only that all transactions
originating in one core are serialized. However, different cores can independently
issue their read/write transactions and even compete for the same memory block.
The transactions of problem 5.9 are represented next to reflect the new, relaxed
constraints. Redo problem 5.9 with the new, relaxed constraints.

a. [15] <5.4>
C1: W, M4 <--0xbbbb C3: R, M4 C7: R, M2

C3: W, M4 <--0xaaaa

b. [15] <5.4>
C3: R, M0 C6: W, M4 <--0xaaaa
C3: R, M2
C3: W, M4 <--0xbbbb

c. [15] <5.4>
C0:R, M7 C2:W, M2 <--0xbbbb C3:R, M4 C6: W, M2 <--0xaaaa

5.12. [10/10] <5.4> Use the routing and delay information described earlier and trace
how the following groups of transactions will progress in the system (assume that
all accesses are misses).
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a. C0:R, M7 C2:W, M2<--0xbbbb C3:R, M4 C6:W, M2<--0xaaaa

b. C0: R, M7 C3: R, M7
C2: W, M7 <--0xbbbb

5.13. [20] <5.4> What extra complexities may arise if the messages can be adaptively
rerouted on the links? For example, a coherency message from core M1 directory
controller to C2 (expressed in binary asM001 --> C010) will be routed either through
the inter-node pathC001--> C000--> C010 or the inter-node pathC001--> C011--
> C010, depending on link availability.

5.14. [20] <5.4> In a read miss, a cache might overwrite a line in the shared (S) state
without notifying the directory that owns the corresponding memory block. Alter-
natively, it will notify the directory so that it deletes this cache from the list of
sharers.

Show how the following transaction groups (performed one at a time in series)
will proceed under both approaches.

C3: R, M4
C3: R, M2
C2: W, M4 <--0xabcd

Case Study 3: Memory Consistency

Concepts Illustrated by This Case Study

■ Legitimate Program Behavior Under Sequential Consistency (SC) Models

■ Hardware Optimization Allowed for SC Models

■ Using Synchronization Primitives to Make a Consistency Model Emulate a
More Restrictive Model

5.15. [10/10] <5.6> Consider the following code segments running on two processors
P1 and P2. Assume A and B are initially 0.

P1:
While (B == 0);
A=1;

P2:
While (A==0);
B = 1;

a. If the processors adhere to sequential consistency (SC) consistency model.
What are the possible values of A and B at the end of the segments? Show
the statement interleaving supporting your answer(s).

b. Repeat (a) if the processors adhere to the total store order (TSO)
consistency model.

5.16. [5] <5.6> Consider the following code segments running on two processors P1
and P2. Assume A, and B, are initially 0. Explain how an optimizing compiler
might make it impossible for B to be ever set to 2 in a sequentially consistent
execution model.
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P1:
A=1;
A=2;
While (B == 0);

P2:
B=1;
While (A <> 1);
B= 2;

5.17. [10] <5.4>. In a processor implementing a SC consistency model, the data cache
is augmented with a data prefetch unit. Will that alter the SC implementation exe-
cution results? Why or why not?

5.18. [10/10]<5.6>Assume that the following code segment is executed on a processor
that implements partial store order (PSO),

A=1;
B=2;
If (C== 3)
D=B;

a. Augment the code with synchronization primitives to make it emulate the
behavior of a total store order (TSO) implementation.

b. Augment the code with synchronization primitives to make it emulate the
behavior of a sequential consistency (SC) implementation.

5.19. [20/20/20] <5.6> Sequential consistency (SC) requires that all reads and writes
appear to have executed in some total order. This may require the processor to stall
in certain cases before committing a read or write instruction. Consider the code
sequence

write A
read B

where the write A results in a cache miss and the read B results in a cache hit.
Under SC, the processor must stall read B until after it can order (and thus per-

form) write A. Simple implementations of SCwill stall the processor until the cache
receives the data and can perform the write.

Release consistency (RC) consistency mode (see Section 5.6) relaxes these
constraints: ordering—when desired—is enforced by judicious use of synchroni-
zation operations. This allows, among other optimizations, processors to imple-
ment write buffers, which hold committed writes that have not yet been ordered
with respect to other processors’ writes. Reads can pass (and potentially bypass)
the write buffer in RC (which they could not do in SC).

Assume that one memory operation can be performed per cycle and that oper-
ations that hit in the cache or that can be satisfied by the write buffer introduce no
stall cycles. Operations that miss incur the latencies listed in Figure 5.38.

How many stall cycles occur prior to each operation for both the SC and RC
consistency models? (Write buffer can hold at most one write.)

a. [20] <5.6> P0: write 110 <-- 80 //assume miss (no other
cache has the line)

P0: read 108 //assume miss (no other
cache has the line)
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b. [20] <5.6> P0: read 110 //assume miss (no other
cache has the line)

P0: write 100 <-- 90 //assume hit

c. [20] <5.6> P0: write 100 <-- 80 //assume miss
P0: write 110 <-- 90 //assume hit

5.20. [20]<5.6> Repeat part (a) of problem 5.19 under an SC model on a processor that
has a read prefetch unit. Assume a read prefetch was triggered 20 cycles in advance
of the write operation.

Exercises

5.21. [15] <5.1> Assume that we have a function for an application of the form F(i, p),
which gives the fraction of time that exactly i processors are usable given that a
total of p processors are available. This means thatXp

i¼1
F i, pð Þ¼ 1

Assume that when i processors are in use, the applications run i times faster.

a. Rewrite Amdahl’s Law so that it gives the speedup as a function of p for some
application.

b. An application A runs on single processor for a time T seconds. Different por-
tions of its running time can improve if a larger number of processors is used.
Figure 5.40 provides the details.

How much speedup will A achieve when on 8 processors?

c. Repeat for 32 processors and an infinite number of processors.

5.22. [15/20/10] <5.1> In this exercise, we examine the effect of the interconnection
network topology on the CPI of programs running on a 64-processor
distributed-memory multiprocessor. The processor clock rate is 2.0 GHz, and
the base CPI of an application with all references hitting in the cache is 0.75.
Assume that 0.2% of the instructions involve a remote communication reference.
The cost of a remote communication reference is (100+10 h) ns, h being the num-
ber of communication network hops that a remote reference has to make to the
remote processor memory and back. Assume all communication links are
bidirectional.

a. [15] <5.1> Calculate the worst-case remote communication cost when the 64
processors are arranged as a ring, as an 8�8 processor grid, or as a hypercube
(hint: longest communication path on a 2n hypercube has n links).

Fraction of T 20% 20% 10% 5% 15% 20% 10%

Processors (P) 1 2 4 6 8 16 128

Figure 5.40 Percentage of application’s A time that can use up to P processors.
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b. [20] <5.1> Compare the base CPI of the application with no remote commu-
nication to the CPI achieved with each of the three topologies in part (a).

5.23. [15] <5.2> Show how the basic snooping protocol of Figure 5.6 can be changed
for a write-through cache. What is the major hardware functionality that is not
needed with a write-through cache compared with a write-back cache?

5.24. [20/20] <5.2> Please answer the following problems:

a. [20] <5.2> Add a clean exclusive state to the basic snooping cache coherence
protocol (Figure 5.6). Show the protocol in the finite state machine format used
in the figure.

b. [20]<5.2> Add an “owned” state to the protocol of part (a) and describe using
the same finite state machine format used in Figure 5.6.

5.25. [15]<5.2>One proposed solution for the problem of false sharing is to add a valid
bit per word. This would allow the protocol to invalidate a word without removing
the entire block, letting a processor keep a portion of a block in its cache while
another processor writes a different portion of the block. What extra complications
are introduced into the basic snooping cache coherence protocol (Figure 5.6) by
this addition? Consider all possible protocol actions.

5.26. [15/20]<5.3> This exercise studies the impact of aggressive techniques to exploit
instruction-level parallelism in the processor when used in the design of shared-
memory multiprocessor systems. Consider two systems identical except for the
processor. System A uses a processor with a simple single-issue, in-order pipeline,
and system B uses a processor with four-way issue, out-of-order execution and a
reorder buffer with 64 entries.

a. [15]<5.3> Following the convention of Figure 5.11, let us divide the execution
time into instruction execution, cache access, memory access, and other stalls.
How would you expect each of these components to differ between system A
and system B?

b. [10] <5.3> Based on the discussion of the behavior of OLTP workload in
Section 5.3, what is the important difference between the OLTP workload
and other benchmarks that limit benefit from a more aggressive processor
design?

5.27. [15]<5.3> How would you change the code of an application to avoid false shar-
ing? What might be done by a compiler and what might require programmer
directives?

5.28. [15] <5.3> An application is calculating the number of occurrences of a certain
word in a very large number of documents. A very large number of processors
divided the work, searching the different documents. They created a huge
array—word_count—of 32-bit integers, every element of which is the number
of times the word occurred in some document. In a second phase, the computation
is moved to a small SMP server with four processors. Each processor sums up
approximately ¼ of the array elements. Later, one processor calculates the
total sum.
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for (int p= 0; p<=3; p++) // Each iteration of is executed on a
separate processor.

{
sum [p] = 0;
for (int i= 0; i< n/4; i++) // n is size of word_count and

is divisible by 4
sum[p] = sum[p] + word_count[p+4*i];

}
total_sum = sum[0] +sum[1]+sum[2]+sum[3] //executed only

on processor.

a. Assuming each processor has a 32-byte L1 data cache. Identify the cache line
sharing (true or false) that the code exhibits.

b. Rewrite the code to reduce the number of misses to elements of the array
word_count.

c. Identify a manual fix you can make to the code to rid it of any false sharing.

5.29. [15] <5.4> Assume a directory-based cache coherence protocol. The directory
currently has information that indicates that processor P1 has the data in “exclu-
sive”mode. If the directory now gets a request for the same cache block from pro-
cessor P1, what could this mean? What should the directory controller do? (Such
cases are called “race conditions” and are the reason why coherence protocols are
so hard to design and verify.)

5.30. [20] <5.4> A directory controller can send invalidates for lines that have been
replaced by the local cache controller. To avoid such messages, and to keep the
directory consistent, replacement hints are used. Such messages tell the controller
that a block has been replaced. Modify the directory coherence protocol of
Section 5.4 to use such replacement hints.

5.31. [20/15/20/15]<5.4> One downside of a straightforward implementation of direc-
tories using fully populated bit vectors is that the total size of the directory infor-
mation scales as the product: processor count�memory blocks. If memory grows
linearly with processor count, the total size of the directory grows quadratically in
the processor count. In practice, because the directory needs only 1 bit per memory
block (which is typically 32–128 bytes), this problem is not serious for small-to-
moderate processor counts. For example, assuming a 128-byte block, and P pro-
cessors, the amount of directory storage compared to main memory is P/(128*8)¼
P/1024, which is 12.5% overhead for P¼128 processors. We can avoid this prob-
lem by observing that we need to keep only an amount of information that is pro-
portional to the cache size of each processor. We explore some solutions in these
exercises.

a. [20] <5.4> One method to obtain a scalable directory protocol is to organize
the multiprocessor as a logical hierarchy with the processors as leaves of the
hierarchy and directories positioned at the root of each subtree. The directory
at each subtree records which descendants cache which memory blocks. It also
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records the memory blocks—with a home in that subtree—that are cached out-
side the subtree. Compute the amount of storage needed to record the proces-
sor information for the directories, assuming that each directory is fully
associative. Your answer should incorporate both the number of nodes at each
level of the hierarchy as well as the total number of nodes.

b. [15] <5.4> Another approach to reducing the directory size is to allow only a
limited number of the directory’s memory blocks to be shared at any given time.
Implement the directory as a four-way set-associative cache storing full bit vec-
tors. If a directory cache miss occurs, choose a directory entry and invalidate the
entry. Describe how this organization will work elaborating what will happen as
a is block read, written replaced and written back to memory. Modify the pro-
tocol in Figure 5.20 to reflect the new transitions required by this directory
organization.

c. [20]<5.4>Rather than reducing the number of directory entries, we can imple-
ment bit vectors that are not dense. For example, we can set every directory
entry to 9 bits. If a block is cached in only one node outside its home, this field
contains the node number. If the block is cached in more than one node outside
its home, this field is a bit vector with each bit indicating a group of eight pro-
cessors, at least one of which caches the block. Illustrate how this scheme would
work for a 64-processor DSM machine that consists of eight 8-processors
groups.

d. [15] An extreme approach to reducing the directory size is to implement an
“empty” directory; that is, the directory in every processor does not store
any memory states. It receives requests and forwards them as appropriate.
What is the benefit of having such a directory over having no directory at all
for a DSM system?

5.32. [10] <5.5> Implement the classical compare-and-swap instruction using the load
linked/store conditional instruction pair.

5.33. [15]<5.5> One performance optimization commonly used is to pad synchroniza-
tion variables so as not to have any other useful data in the same cache line. Con-
struct an example demonstrating that this optimization can be extremely useful in
some situations. Assume a snoopy write invalidate protocol.

5.34. [30]<5.5> One possible implementation of the load linked/store conditional pair
for multicore processors is to constrain these instructions to using uncached mem-
ory operations. A monitor unit intercepts all reads and writes from any core to the
memory. It keeps track of the source of the load linked instructions and whether
any intervening stores occur between the load linked and its corresponding store
conditional instruction. The monitor can prevent any failing store conditional from
writing any data and can use the interconnect signals to inform the processor that
this store failed.

Design such a monitor for a memory system supporting a four-core SMP. Take
into account that, generally, read and write requests can have different data sizes (4/
8/16/32 bytes). Any memory location can be the target of a load linked/store
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conditional pair, and the memory monitor should assume that load linked/store
conditional references to any location can, possibly, be interleaved with regular
accesses to the same location. The monitor complexity should be independent
of the memory size.

5.35. [25] <5.5> Prove that, in a two-level cache hierarchy where L1 is closer to the
processor, inclusion is maintained with no extra action if L2 has at least as much
associativity as L1, both caches use LRU replacement, and both caches have the
same block sizes.

5.36. [Discussion] <5> When trying to perform detailed performance evaluation of a
multiprocessor system, system designers use one of three tools: analytical models,
trace-driven simulation, and execution-driven simulation. Analytical models use
mathematical expressions to model the behavior of programs. Trace-driven simu-
lations run the applications on a real machine and generate a trace, typically of
memory operations. These traces can be replayed through a cache simulator or
a simulator with a simple processor model to predict the performance of the system
when various parameters are changed. Execution-driven simulators simulate the
entire execution maintaining an equivalent structure for the processor state and
so on.

a. What are the accuracy/speed trade-offs between these approaches?

b. CPU traces, if not carefully collected, can exhibit artifacts of the system they are
collected on. Discuss this issue while using branch-prediction and spin-wait
synchronization as examples. (Hint: The program itself is not available to a pure
CPU trace; just the trace is available.)

5.37. [40]<5.7, 5.9>Multiprocessors and clusters usually show performance increases
as you increase the number of the processors, with the ideal being n times speedup
for n processors. The goal of this biased benchmark is to make a program that gets
worse performance as you add processors. For example, this means that one pro-
cessor on the multiprocessor or cluster runs the program fastest, two are slower,
four are slower than two, and so on. What are the key performance characteristics
for each organization that give inverse linear speedup?
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6
Warehouse-Scale Computers
to Exploit Request-Level and
Data-Level Parallelism

The datacenter is the computer.

Luiz Andr�e Barroso,
Google (2007)

A hundred years ago, companies stopped generating their own
power with steam engines and dynamos and plugged into the
newly built electric grid. The cheap power pumped out by electric
utilities didn’t just change how businesses operate. It set off a chain
reaction of economic and social transformations that brought the
modern world into existence. Today, a similar revolution is under
way. Hooked up to the Internet’s global computing grid, massive
information-processing plants have begun pumping data and
software code into our homes and businesses. This time, it’s
computing that’s turning into a utility.

Nicholas Carr,
The Big Switch: Rewiring the World, from

Edison to Google (2008)

Computer Architecture. https://doi.org/10.1016/B978-0-12-811905-1.00006-7
© 2019 Elsevier Inc. All rights reserved.
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6.1 Introduction

Anyone can build a fast CPU. The trick is to build a fast system.
Seymour Cray,

Considered the father of the supercomputer

The warehouse-scale computer (WSC)1 is the foundation of Internet services
billions of people use every day: search, social networking, online maps, video
sharing, online shopping, email services, and so on. The tremendous popularity
of such Internet services necessitated the creation of WSCs that could keep up with
the rapid demands of the public. Although WSCs may appear to be just large data
centers, their architecture and operation are quite different, as we will see. Today’s
WSCs act as one giant machine that costs hundreds of million dollars for the build-
ing, the electrical and cooling infrastructure, the servers, and the networking equip-
ment that connects and houses 50,000–100,000 servers.Moreover, the rapid growth
of commercial cloud computing (seeSection 6.5)makesWSCs accessible to anyone
with a credit card.

Computer architecture extends naturally to designing WSCs. For example,
Luiz Barroso of Google (quoted earlier) did his dissertation research in computer
architecture. He believes that an architect’s skills of designing for scale, designing
for dependability, and a knack for debugging hardware are very helpful in the cre-
ation and operation of WSCs.

At this leading-edge scale, which requires innovation in power distribution,
cooling, monitoring, and operations, the WSC is the modern descendant of the
supercomputer—making Seymour Cray the godfather of today’s WSC architects.
His extreme computers handled computations that could be done nowhere else,
but were so expensive that only a few companies could afford them. This time
the target is providing information technology for the world instead of high-
performance computing (HPC) for scientists and engineers; thus WSCs arguably
play a more important role for society today than Cray’s supercomputers did in
the past.

Unquestionably, WSCs have many orders of magnitude more users than high-
performance computing, and they represent a much greater share of the IT market.
Whether measured by the number of users or revenue, Google is 1000 times larger
than Cray Research ever was.

1This chapter is based on material from the book The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, Second Edition, by Luiz Andr�e Barroso, Jimmy Clidaras, and Urs H€olzle of Google
(2013); the blog Perspectives at mvdirona.com and the talks “Cloud-Computing Economies of Scale” and “Data Center
Networks Are in My Way,” by James Hamilton of Amazon Web Services (2009, 2010); and the paper Above the Clouds:
A View of Cloud Computing, by Michael Armbrust et al. (2010).
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WSC architects share many goals and requirements with server architects:

■ Cost-performance—Work done per dollar is critical in part because of the
scale. Reducing the costs of a collection of WSCs by few percent could save
millions of dollars.

■ Energy efficiency—Except for the photons that leave WSCs, they are essen-
tially closed systems, with almost all the energy consumed turned into heat that
must be removed. Thus, peak power and consumed power drive both the cost
of power distribution and the cost of cooling systems. The majority of the
infrastructure costs of building a WSC goes toward power and cooling.
Moreover, energy efficiency is an important part of environmental steward-
ship. Therefore, work done per joule is critical for both WSCs and its servers
because of the high cost of building the power and mechanical infrastructure
for a warehouse of computers and for the resulting monthly utility bills.

■ Dependability via redundancy—The long-running nature of Internet services
means that the hardware and software in a WSC must collectively provide at
least 99.99% (called “four nines”) of availability; that is, services must be down
less than 1 h per year. Redundancy is the key to dependability for both WSCs
and servers. Although server architects often utilize more hardware at higher
costs to reach high availability, WSC architects rely instead on numerous cost-
effective servers connected by a network and redundancy managed by soft-
ware. In addition to local redundancy inside a WSC, an organization needs
redundant WSCs to mask events that can take out whole WSCs. Indeed,
although every cloud service needs to be available at least 99.99% of the
time, the dependability of a full Internet company like Amazon, Google, or
Microsoft needs to be even higher. If one of these companies was completely
offline for 1 h per year—that is, 99.99% availability—that would be front page
news. Multiple WSCs have the added benefit of reducing latency for services
that are widely deployed (Figures 6.18–6.20).

■ Network I/O—Server architects must provide a good network interface to the
external world, and WSC architects must also. Networking is needed to keep
data consistent between multiple WSCs as well as to interface with the public.

■ Both interactive and batch processing workloads—Although one expects
highly interactive workloads for services like search and social networking
with billions of users, WSCs, like servers, also run massively parallel batch
programs to calculate metadata useful to such services. For example, MapRe-
duce jobs are run to convert the pages returned from crawling the web into
search indices (see Section 6.2).

Not surprisingly, there are also characteristics not shared with server architecture:

■ Ampleparallelism—Aconcern for a server architect iswhether the applications in
the targeted marketplace have enough concurrency to justify the amount of par-
allel hardware and whether the cost is too high for sufficient communication
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hardware to exploit this parallelism. AWSC architect has no such concern. First,
batch applications benefit from the large number of distinct datasets that require
independent processing, suchasbillionsofwebpages fromawebcrawl.This pro-
cessing is data-level parallelism, which we saw in Chapter 4, this time applied to
data in storage instead of data in memory. Second, interactive Internet service
applications, also known as software as a service (SaaS), can benefit from mil-
lions of independent users of interactive Internet services. Reads and writes are
seldom dependent in SaaS, so SaaS rarely needs to synchronize. For example,
search uses a read-only index and email normally reads and writes independent
information. We call this type of easy parallelism request-level parallelism, as
many independent efforts can proceed in parallel naturally with little need for
communication or synchronization; an example is that journal-based updating
can reduce throughput demands. Even read-/write-dependent features are some-
times dropped to offer storage that can scale to the size of modernWSCs. In any
case,WSCapplicationshavenochoicebut to findalgorithms that can scale across
hundreds to thousands of servers, as that iswhat customers expect and that iswhat
the WSC technology provides.

■ Operational costs count—Server architects typically ignore operational costs of a
server, assuming that they pale in comparison to purchase costs.WSCs have lon-
ger lifetimes—the building and electrical and cooling infrastructure are often
amortized 10–15 years—so the operational costs add up: energy, power distribu-
tion, and cooling represent more than 30% of the costs of a WSC over 10 years.

■ Location counts—To build a WSC, the first step is building a warehouse. One
question is where? Real estate agents emphasize location, but the location for a
WSCmeans access to water, inexpensive electricity, proximity to Internet back-
bone optical fibers, people nearby to work in the WSC, and low risk from envi-
ronmental disasters, such as earthquakes, floods, and hurricanes. Amore obvious
concern is just the cost of the land, including enough space to grow theWSC. For
companies with many WSCs, another concern is finding a place geographically
near a current or future population of Internet users, to reduce latency over the
Internet. Other factors include taxes, property costs, social issues (people some-
times want a facility in their country), political issues (some jurisdictions require
local hosting), cost of networking, reliability of networking, cost of power, source
of power (e.g., hydroelectric versus coal), weather (cooler is cheaper, as
Section 6.4 shows), and overall Internet connectivity (Australia is close to Singa-
pore geographically, but the network link bandwidth between them is not great).

■ Computing efficiently at low utilization—Server architects usually design their
systems for peak performance within a cost budget and worry about power only
tomake sure they don’t exceed the cooling capacity of their enclosure.Aswewill
see (Figure 6.3), WSC servers are rarely fully utilized, in part to ensure low
response time and in part to offer the redundancy needed to deliver dependable
computing.Given that operational costs count, such servers need to compute effi-
ciently at all utilization levels.

■ Scale and the opportunities/problems associated with scale—Often extreme
computers are extremely expensive because they require custom hardware,
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and yet the cost of customization cannot be effectively amortized since few
extreme computers are made. However, when purchasing thousands of
servers at a time, there are great volume discounts. WSCs are so massive
internally that there is economy of scale even if there are not many WSCs.
As we will see in Sections 6.5 and 6.10, these economies of scale led to com-
mercial cloud computing because the lower per-unit costs of a WSC meant
that companies could rent servers at a profit below what it costs outsiders
to do so themselves. The flip side of 100,000 servers is failures.
Figure 6.1 shows outages and anomalies for 2400 servers. Even if a server
had a mean time to failure (MTTF) of an amazing 25 years (200,000 h),
the WSC architect would need to design for five server failures a day.
Figure 6.1 lists the annualized disk failure rate as 2%–10%. Given two disks
per server and an annual failure rate of 4%, with 100,000 servers the WSC
architect should expect to see one disk fail per hour. However, software
failures vastly outnumber hardware failures, as Figure 6.1 shows, so the
system design must be resilient to server crashes caused by software bugs,
which would happen even more frequently than disk failures. With the thou-
sands of servers in these very large facilities, WSC operators become very
good at changing disks, so the cost of disk failure is much lower for a
WSC than a small data center. The same applies to DRAMs. Plausibly, WSCs
could use even less reliable components if cheaper ones were available.

Approx. number
events in 1st year Cause Consequence

1 or 2
Power utility
failures

Lose power to whole WSC; doesn’t bring down WSC if UPS and
generators work (generators work about 99% of time).

4
Cluster
upgrades

Planned outage to upgrade infrastructure, many times for evolving
networking needs such as recabling, to switch firmware upgrades, and so
on. There are about nine planned cluster outages for every unplanned
outage.

1000s

Hard-drive
failures 2%–10% annual disk failure rate (Pinheiro et al., 2007)

Slow disks Still operate, but run 10� to 20� more slowly

Bad memories One uncorrectable DRAM error per year (Schroeder et al., 2009)

Misconfigured
machines

Configuration led to �30% of service disruptions (Barroso and H€Olzle,
2009)

Flaky machines 1% of servers reboot more than once a week (Barroso and H€Olzle, 2009)

5000
Individual
server crashes

Machine reboot; typically takes about 5 min (caused by problems in
software or hardware).

Figure 6.1 List of outages and anomalies with the approximate frequencies of occurrences in the first year
of a new cluster of 2400 servers. We label what Google calls a cluster an array; see Figure 6.5. Based on Barroso,
L.A., 2010. Warehouse Scale Computing [keynote address]. In: Proceedings of ACM SIGMOD, June 8–10, 2010,
Indianapolis, IN.
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Example Calculate the availability of a service running on the 2400 servers in Figure 6.1.
Unlike a service in a real WSC, in this example the service cannot tolerate
hardware or software failures. Assume that the time to reboot software is 5 min
and the time to repair hardware is 1 h.

Answer We can estimate service availability by calculating the time of outages because
of failures of each component. We’ll conservatively take the lowest number in each
category in Figure 6.1 and split the 1000 outages evenly between four components.
We ignore slow disks—the fifth component of the 1000 outages—because
they hurt performance but not availability, and power utility failures, because
the uninterruptible power supply (UPS) system hides 99% of them.

Hours Outageservice ¼ 4 + 250 + 250 + 250ð Þ�1 h + 250 + 5000ð Þ�5min

¼ 754 + 438 ¼ 1192h

Since there are 365�24 or 8760 h in a year, availability is

Availabilitysystem ¼ 8760�1192
8760

� �
¼ 7568

8760
¼ 86%

Without software redundancy to mask the many outages, a service on those 2400
servers would be down on average one day a week—zero “nines”—which is far
below the 99.99% of availability is the goal of WSCs.

As Section 6.10 explains, the forerunners of WSCs are computer clusters.
Clusters are collections of independent computers that are connected together using
local area networks (LANs) and switches. For workloads that did not require
intensive communication, clusters offered much more cost-effective computing
than shared-memory multiprocessors. (Shared-memory multiprocessors were the
forerunners of the multicore computers discussed in Chapter 5.) Clusters became
popular in the late 1990s for scientific computing and then later for Internet services.
One view of WSCs is that they are just the logical evolution from clusters of
hundreds of servers to tens of thousands of servers.

A natural question is whether WSCs are similar to modern clusters for high-
performance computing. Although some have similar scale and cost—there
are HPC designs with a million processors that cost hundreds of millions of
dollars—they historically have had more powerful processors and much lower-
latency networks between the nodes than are found in WSCs because the HPC
applications are more interdependent and communicate more frequently (see
Section 6.3). The programming environment also emphasizes thread-level paral-
lelism or data-level parallelism (see Chapters 4 and 5), typically emphasizing
latency to complete a single task in contrast to bandwidth to complete many inde-
pendent tasks via request-level parallelism. The HPC clusters also tend to have
long-running jobs that keep the servers fully utilized, even for weeks at a time,
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whereas the utilization of servers in WSCs ranges between 10% and 50% (see
Figure 6.3 on page 441) and varies every day. Unlike supercomputer environ-
ments, thousands of developers work on theWSC code base and deploy significant
software releases every week (Barroso et al., 2017).

How do WSCs compare to conventional data centers? The operators of a
traditional data center generally collect machines and third-party software from
many parts of an organization and run them centrally for others. Their main focus
tends to be consolidation of the many services onto fewer machines, which are
isolated from each other to protect sensitive information. Thus, virtual machines
are increasingly important in data centers. Virtual machines are important for
WSCs as well, but they play a different role. They are used to offer isolation
between different customers and to slice hardware resources into different-sized
shares to rent at several price points (see Section 6.5). Unlike WSCs, conventional
data centers tend to have a great deal of hardware and software heterogeneity to
serve their varied customers inside an organization. WSC programmers customize
third-party software or build their own, and WSCs have much more homogeneous
hardware; theWSC goal is to make the hardware/software in the warehouse act like
a single computer that typically runs a variety of applications. Often the biggest
cost in a conventional data center is the people to maintain it, whereas, as we will
see in Section 6.4, in a well-designedWSC, the server hardware is the greatest cost,
and people costs shift from the topmost to the bottommost. Conventional data
centers also don’t have the scale of a WSC, so they don’t get the economic benefits
of the scale previously mentioned.

Thus, although a WSC might be considered as an extreme data center in that
computers are housed separately in a space with special electrical and cooling
infrastructure, traditional data centers share little with the challenges and opportu-
nities of a WSC, either architecturally or operationally.

We start the introduction to WSCs with their workload and a programming
model.

6.2 Programming Models and Workloads for
Warehouse-Scale Computers

If a problem has no solution, it may not be a problem, but a fact—not to be
solved, but to be coped with over time.

Shimon Peres

In addition to the public-facing Internet services such as search, video sharing,
and social networking that make them famous, WSCs also run batch applications,
such as converting videos into new formats or creating search indexes from web
crawls.

A popular framework for batch processing in a WSC is MapReduce (Dean and
Ghemawat, 2008) and its open-source twin Hadoop. Figure 6.2 shows the increas-
ing popularity of MapReduce at Google over time. Inspired by the Lisp functions
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of the same name, Map first applies a programmer-supplied function to each
logical input record. Map runs on hundreds of computers to produce an interme-
diate result of key-value pairs. Reduce collects the output of those distributed tasks
and collapses them using another programmer-defined function. Assuming the
Reduce function is commutative and associative, it can run in log N time. With
appropriate software support, both functions are fast yet easy to understand
and use. Within 30 min, a novice programmer can run a MapReduce task on thou-
sands of computers.

Figure 6.2 shows the average job uses hundreds of servers. Other than a few
highly tuned applications from high-performance computing, such MapReduce
jobs are the most parallel applications today, whether measured in total CPU time
or number of servers utilized.

Here is a MapReduce program that calculates the number of occurrences of
every English word in a large collection of documents. Following is a simplified
version of that program, which shows just the inner loop and that assumes
only one occurrence of all English words found in a document (Dean and
Ghemawat, 2008):

Month

Number of
MapReduce
Jobs

Average
completion
time (s)

Average no.
servers per
job

Avg. no.
cores per
server

CPU
core
years

Input
data
(PB)

Intermediate
data (PB)

Output
data
(PB)

Sep-16 95,775,891 331 130 2.4 311,691 11,553 4095 6982

Sep-15 115,375,750 231 120 2.7 272,322 8307 3980 5801

Sep-14 55,913,646 412 142 1.9 200,778 5989 2530 3951

Sep-13 28,328,775 469 137 1.4 81,992 2579 1193 1684

Sep-12 15,662,118 480 142 1.8 60,987 2171 818 874

Sep-11 7,961,481 499 147 2.2 40,993 1162 276 333

Sep-10 5,207,069 714 164 1.6 30,262 573 139 37

Sep-09 4,114,919 515 156 3.2 33,582 548 118 99

Sep-07 2,217,000 395 394 1.0 11,081 394 34 14

Mar-06 171,000 874 268 1.6 2002 51 7 3

Aug-04 29,000 634 157 1.9 217 3.2 0.7 0.2

Figure 6.2 Monthly MapReduce usage at Google from 2004 to 2016.Over 12 years the number of MapReduce jobs
increased by a factor of 3300. Figure 6.17 on page 461 estimates that running the September 2016 workload on Ama-
zon’s cloud computing service EC2 would cost $114 million. Updated from Dean, J., 2009. Designs, lessons and
advice from building large distributed systems [keynote address]. In: Proceedings of 3rd ACM SIGOPS International
Workshop on Large-Scale Distributed Systems and Middleware, Co-located with the 22nd ACM Symposium on Oper-
ating Systems Principles, October 11–14, 2009, Big Sky, Mont.
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map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”); // Produce list of
all words

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v); // get integer from key-
value pair
Emit(AsString(result));

The function EmitIntermediate used in the Map function emits each word in
the document and the value one. Then the Reduce function sums all the values per
word for each document using ParseInt() to get the number of occurrences per
word in all documents. The MapReduce runtime environment schedules map tasks
and reduce tasks to the nodes of a WSC. (The complete version of the program is
found in Dean and Ghemawat (2008).)

MapReduce can be thought of as a generalization of the single instruction
stream, multiple data streams (SIMD) operation (Chapter 4)—except that a func-
tion to be applied is passed to the data—that is followed by a function that is used in
a reduction of the output from the Map task. Because reductions are commonplace
even in SIMD programs, SIMD hardware often offers special operations for the
reductions. For example, Intel’s AVX SIMD instructions include “horizontal”
instructions that add pairs of operands that are adjacent in registers.

To accommodate variability in performance from hundreds of computers, the
MapReduce scheduler assigns new tasks based on how quickly nodes complete
prior tasks. Obviously, a single slow task can hold up completion of a large
MapReduce job. Dean and Barroso (2013) label such a situation tail latency. In
a WSC, the solution to slow tasks is to provide software mechanisms to cope with
such variability that is inherent at this scale. This approach is in sharp contrast to
the solution for a server in a conventional data center, where traditionally slow
tasks mean hardware is broken and needs to be replaced or that server software
needs tuning and rewriting. Performance heterogeneity is the norm for 50,000–
100,000 servers in a WSC. For example, toward the end of a MapReduce program,
the system will start backup executions on other nodes of the tasks that haven’t
completed yet and take the result from whichever finishes first. In return for
increasing resource usage a few percentage points, Dean and Ghemawat (2008)
found that some large tasks completed 30% faster.

Dependability was built into MapReduce from the start. For example, each
node in a MapReduce job is required to report back to the master node periodically
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with a list of completed tasks and with updated status. If a node does not report
back by the deadline, the master node deems the node dead and reassigns the
node’s work to other nodes. Given the amount of equipment in a WSC, it’s not
surprising that failures are commonplace, as the prior example attests. To deliver
on 99.99% availability, systems software must cope with this reality in a WSC. To
reduce operational costs, all WSCs use automated monitoring software allowing
one operator to be responsible for more than 1000 servers.

Programming frameworks such as MapReduce for batch processing and exter-
nally facing SaaS such as Search rely upon internal software services for their
success. For example, MapReduce relies on the Google File System (GFS)
(Ghemawat et al., 2003) or on Colossus (Fikes, 2010) to supply files to any com-
puter, so that MapReduce tasks can be scheduled anywhere.

In addition to GFS and Colossus, examples of these scalable storage systems
include Amazon’s key value storage system Dynamo (DeCandia et al., 2007) and
the Google record storage system BigTable (Chang et al., 2006). Note that such
systems often build upon each other. For example, BigTable stores its logs and
data on GFS or Colossus, much as a relational database may use the file system
provided by the kernel operating system.

These internal services usually make different decisions than similar software
running on single servers. For example, rather than assuming storage is reliable, such
as by using RAID storage servers, these systems often make complete replicas of the
data. Replicas can help with read performance as well as with availability; with
proper placement, replicas can overcome many other system failures, like those
in Figure 6.1. Systems like Colossus use error-correcting codes rather than full rep-
licas to reduce storage costs, but the constant is cross-server redundancy rather than
within-a-server or within-a-storage array redundancy. Thus, failure of the entire
server or storage device doesn’t negatively affect availability of the data.

Another example of the different approach is that WSC storage software often
uses relaxed consistency rather than following all theACID (atomicity, consistency,
isolation, and durability) requirements of conventional database systems. The
insight is that it’s important for multiple replicas of data to agree some time, but,
for most applications, they do not need to be in agreement at all times. For example,
eventual consistency is fine for video sharing. Eventual consistency makes storage
systems much easier to scale, which is an absolute requirement for WSCs.

The workload demands of these public interactive services all vary consider-
ably; even a prominent global service such as Google Search varies by a factor of
two depending on the time of day. When factoring in weekends, holidays, and
popular times of year for some applications—such as photograph-sharing services
after New Year’s Day or online shopping before Christmas—a much greater
variation in server utilization becomes apparent. Figure 6.3 shows average
utilization of 5000 Google servers over a 6-month period. Note that less than
0.5% of servers averaged 100% utilization, and most servers operated between
10% and 50% utilization. Stated alternatively, just 10% of all servers were utilized
more than 50%. Thus, it’s much more important for servers in a WSC to perform
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well while doing little than to perform efficiently only at their peak, as they rarely
operate at their peak.

In summary, WSC hardware and software must cope with variability in
load based on user demand and in performance and dependability because of
the vagaries of hardware at this scale.

Example As a result of measurements like those in Figure 6.3, the SPECpower benchmark
measures power and performance from 0% load to 100% in 10% increments (see
Chapter 1). The overall single metric that summarizes this benchmark is the sum of
all the performance measures (server-side Java operations per second) divided by
the sum of all power measurements in watts. Thus, each level is assumed to be
equally likely. How would the numbers summary metric change if the levels were
weighted by the utilization frequencies in Figure 6.3?
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Figure 6.3 Average CPU utilization of more than 5000 servers during a 6-month
period at Google. Servers are rarely completely idle or fully utilized, instead operat-
ingmost of the time at between 10% and 50% of their maximumutilization. The third
column from the right in Figure 6.4 calculates percentages plus or minus 5% to come up
with the weightings; thus 1.2% for the 90% row means that 1.2% of servers were
between 85% and 95% utilized. From Figure 1 in Barroso, L.A., H€olzle, U., 2007. The case
for energy-proportional computing. IEEE Comput. 40 (12), 33–37.
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Answer Figure 6.4 shows the original weightings and the new weighting that match
Figure 6.3. These weightings reduce the performance summary by 30% from
3210 ssj_ops/watt to 2454.

Given the scale, software must handle failures, which means there is little rea-
son to buy “gold-plated” hardware that reduces the frequency of failures. The pri-
mary impact would be to increase cost. Barroso and H€olzle (2009) found a factor of
20 difference in price-performance between a high-end Hewlett Packard shared-
memory multiprocessor and a commodity Hewlett Packard server when running
the TPC-C database benchmark. Not surprisingly, Google and all other companies
with WSCs use low-end commodity servers. In fact, the Open Compute Project
(http://opencompute.org) is an organization where such companies collaborate
on open designs of servers and racks for data centers.

Such WSC services also tend to develop their own software rather than buy
third-party commercial software, in part to cope with the huge scale and in part
to save money. For example, even on the best price-performance platform for
TPC-C in 2017, adding the cost of the SAP SQL Anywhere database and the
Windows operating system increases the cost of the Dell PowerEdge T620 server
by 40%. In contrast, Google runs BigTable and the Linux operating system on its
servers, for which it pays no licensing fees.

Given this review of the applications and systems software of a WSC, we are
ready to look at the computer architecture of a WSC.

Load Performance Watts
SPEC

weightings
Weighted

performance
Weighted
watts

Figure 6.3
weightings

Weighted
performance

Weighted
watts

100% 2,889,020 662 9.09% 262,638 60 0.80% 22,206 5

90% 2,611,130 617 9.09% 237,375 56 1.20% 31,756 8

80% 2,319,900 576 9.09% 210,900 52 1.50% 35,889 9

70% 2,031,260 533 9.09% 184,660 48 2.10% 42,491 11

60% 1,740,980 490 9.09% 158,271 45 5.10% 88,082 25

50% 1,448,810 451 9.09% 131,710 41 11.50% 166,335 52

40% 1,159,760 416 9.09% 105,433 38 19.10% 221,165 79

30% 869,077 382 9.09% 79,007 35 24.60% 213,929 94

20% 581,126 351 9.09% 52,830 32 15.30% 88,769 54

10% 290,762 308 9.09% 26,433 28 8.00% 23,198 25

0% 0 181 9.09% 0 16 10.90% 0 20

Total 15,941,825 4967 1,449,257 452 933,820 380

ssj_ops/W 3210 ssj_ops/W 2454

Figure 6.4 SPECpower result using the weightings from Figure 6.3 instead of even weightings.
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6.3 Computer Architecture of Warehouse-Scale Computers

Networks are the connective tissue that binds 50,000–100,000 servers together.
Analogous to the memory hierarchy of Chapter 2, WSCs use a hierarchy of
networks. Figure 6.5 shows one example. Ideally, the combined network would
provide nearly the performance of a custom high-end switch for 100,000 servers
at about the cost per port of a commodity switch designed for 50 servers. As wewill
see in Section 6.6, networks for WSCs are an area of active innovation.

The structure that holds the servers is a rack. Although the width of racks varies
per WSC—some are the classic 19-in. wide rack; others are two or three times
wider—the height tends to be no higher than 6–7 ft since people must service them.
Such a rack has roughly 40–80 servers. Because it is often convenient to connect
the network cables at the top of the rack, this switch is commonly called a Top
of Rack (ToR) switch. (Some WSCs have racks with multiple ToR switches.)
Typically, the bandwidth within the rack is much higher than between racks,

Rack
switch

Rack

Array
switch

Figure 6.5 Hierarchy of switches in a WSC. Based on Figure 1.1 in Barroso, L.A.,
Clidaras, J., H€olzle, U., 2013. The datacenter as a computer: an introduction to the design
of warehouse-scale machines. Synth. Lect. Comput. Architect. 8 (3), 1–154.
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so it matters less where the software places the sender and the receiver if they are
within the same rack. This flexibility is ideal from a software perspective.

These switches often offer 4–16 uplinks, which leave the rack to go to the
next higher switch in the network hierarchy. Thus, the bandwidth leaving the rack
is 6–24 times smaller than the bandwidth within the rack. This ratio is called over-
subscription. However, large oversubscription means programmers must be aware
of the performance consequences when placing senders and receivers in different
racks. This increased software-scheduling burden is another argument for network
switches designed specifically for the data center.

The switch that connects an array of racks is considerably more expensive than
the ToR switch. This cost is due in part because of the higher connectivity and in
part because the bandwidth through the switch must be much greater to reduce the
oversubscription problem. Barroso et al. (2013) reported that a switch having 10
times the bisection bandwidth—basically, the worst-case internal bandwidth—of a
rack switch costs about 100 times as much. One reason is that the cost of switch
bandwidth for n ports can grow as n2. Sections 6.6 and 6.7 describe the networking
above the ToR switch in great detail.

Storage

A natural design is to fill a rack with servers, minus whatever space needed for the
switches. This design leaves open the questionofwhere the storage is placed. Froma
hardware construction perspective, the simplest solution would be to include disks
inside the rack and rely on Ethernet connectivity for access to information on the
disks of remote servers. An expensive alternative would be to use network-attached
storage (NAS), perhaps over a storage network like InfiniBand. In the past, WSCs
generally relied on local disks and provided storage software that handled connec-
tivity and dependability. For example, GFS used local disks andmaintained replicas
to overcome dependability problems. This redundancy covered not only local disk
failures but also power failures to racks and to whole clusters. The flexibility of
GFS’s eventual consistency lowers the cost of keeping replicas consistent, which
also reduces the network bandwidth requirements of the storage system.

Today the storage options are considerably more varied. Although some racks
are balanced in terms of servers and disks, as in the past, there may also be racks
deployed without local disks and some racks loaded with disks. System software
today often uses RAID-like error correction codes to lower the storage cost of
dependability.

Be aware that there is confusion about the term cluster when talking about the
architecture of a WSC. Using the definition in Section 6.1, a WSC is just an
extremely large cluster. In contrast, Barroso et al. (2013) used the term cluster
to mean the next-sized grouping of computers, containing many racks. In this chap-
ter, to avoid confusion, we will use the term array to mean a large collection
of racks organized in rows, preserving the original definition of the word cluster
to represent anything from a collection of networked computers within a rack to an
entire warehouse full of networked computers.
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WSC Memory Hierarchy

Figure 6.6 shows the latency, bandwidth, and capacity of memory hierarchy inside
a WSC, and Figure 6.7 shows the same data visually. These figures are based on
the following assumptions (Barroso et al., 2013):

Local Rack Array

DRAM latency (μs) 0.1 300 500

Flash latency (μs) 100 400 600

Disk latency (μs) 10,000 11,000 12,000

DRAM bandwidth (MB/s) 20,000 100 10

Flash bandwidth (MB/s) 1000 100 10

Disk bandwidth (MB/s) 200 100 10

DRAM capacity (GB) 16 1024 31,200

Flash capacity (GB) 128 20,000 600,000

Disk capacity (GB) 2000 160,000 4,800,000

Figure 6.6 Latency, bandwidth, and capacity of the memory hierarchy of a WSC
(Barroso et al., 2013). Figure 6.7 plots this same information.

0.1
Local DRAM Local Disk Rack DRAM Rack Disk Datacenter

DRAM
Datacenter

Disk
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1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

Latency (us) Bandwidth (MB/s) Capacity (GB)

Figure 6.7 Graph of latency, bandwidth, and capacity of the memory hierarchy of a WSC for data in Figure 6.6
(Barroso et al., 2013).
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■ Each server contains 16 GiB of memory with a 100-ns access time and trans-
fers at 20 GB/s, 128 GiB of Flash with 100-μs latency and transfers at 1 GB/s,
and 2 TB of disk that offer a 10-ms access time and transfer at 200 MB/s. There
are two sockets per board, and they share one 1 Gbit/s Ethernet port.

■ In this example, every pair of racks includes one rack switch and holds 80
servers. Networking software plus switch overhead increases the latency to
DRAM to 100 μs and the disk access latency to 11 ms. Thus, the total storage
capacity of a rack is roughly 1 TB of DRAM, 20 TB of Flash, and 160 TB of
disk storage. The 1 Gbit/s Ethernet limits the remote bandwidth to DRAM,
Flash, or disk within the rack to 100 MB/s.

■ The array is 30 racks, so storage capacity of an array goes up by a factor of 30:
30 TB of DRAM, 600 TB of Flash, and 4.8 PB of disk. The array switch hard-
ware and software increases latency to DRAM within an array to 500 μs, to
600 μs for Flash, and disk latency to 12 ms. The bandwidth of the array switch
limits the remote bandwidth to either array DRAM, array Flash, or array disk to
10 MB/s.

Figures 6.6 and 6.7 show that network overhead dramatically increases latency
between local DRAM and Flash, rack DRAM and Flash, or array DRAM and
Flash, but all still have more than 10 times better latency than accessing the local
disk. The network collapses the difference in bandwidth between rack DRAM,
Flash, and disk and between array DRAM, Flash, and disk.

The WSC needs 40 arrays to reach 100,000 servers, so there is one more level
in the networking hierarchy. Figure 6.8 shows the conventional Layer 3 routers to
connect the arrays together and to the Internet.

Most applications fit into a single array within a WSC. Those that need more
than one array use sharding or partitioning, meaning that the dataset is split into
independent pieces and then distributed to different arrays. As an analogy, it’s like
picking up registration packets for a conference with one person handling names A
to M and another doing N to Z. Operations on the whole dataset are sent to the
servers hosting the pieces, and the results are coalesced by the client computer.

Example What is the average memory latency assuming that 90% of accesses are local to the
server, 9% are outside the server but within the rack, and 1% are outside the rack
but within the array?

Answer The average memory access time is

90%�0:1ð Þ + 9%�100ð Þ + 1%�300ð Þ ¼ 0:09 + 27 + 5 ¼ 32:09 μs

or a factor of more than 300 slowdown versus 100% local accesses. Clearly,
locality of access within a server is vital for WSC performance.
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Example How long does it take to transfer 1000 MB between disks within the server,
between servers in the rack, and between servers in different racks in the array?
How much faster is it to transfer 1000 MB between DRAM in the three cases?

Answer A 1000 MB transfer between disks takes

Within server ¼ 1000=200 ¼ 5 s

Within rack ¼ 1000=100 ¼ 10 s

Within array ¼ 1000=10 ¼ 100 s

A memory-to-memory block transfer takes

Within server ¼ 1000=20000 ¼ 0:05 s

Within rack ¼ 1000=100 ¼ 10 s

Within array ¼ 1000=10 ¼ 100 s

Thus, for block transfers outside a single server, it doesn’t even matter whether
the data are in memory or on disk because the rack switch and array switch
are the bottlenecks. These performance limits affect the design of WSC software
and inspire the need for higher-performance switches (see Section 6.6).

Internet

LB LB

CR CR

Internet

SSSS

SS

AR AR ARAR

Key:
 • CR = L3 core router
 • AR = L3 access router
 • S = Array switch
 • LB = Load balancer
 • R = Rack of 80 servers
         with top of rack switchRRRR

.. ..

...

...

RR

Datacenter
Layer 3

Layer 2

Figure 6.8 A Layer 3 network used to link arrays together and to the Internet (Greenberg et al., 2009). A load
balancer monitors how busy a set of servers is and directs traffic to the less loaded ones to try to keep the servers
approximately equally utilized. Another option is to use a separate border router to connect the Internet to the data
center Layer 3 switches. As we will see in Section 6.6, many modern WSCs have abandoned the conventional layered
networking stack of traditional switches.
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Although these examples are educational, note that computers and networking
equipment can be much larger and faster than these examples from 2013 (see
Section 6.7). Servers are being deployed in 2017 with 256–1024 GiB of DRAM,
and recent switches have reduced delays to only 300 ns per hop.

Given the architecture of the IT equipment, we are now ready to see how to
house, power, and cool it and to discuss the cost to build and operate the whole
WSC, as compared to just the IT equipment within it.

6.4 The Efficiency and Cost of Warehouse-Scale Computers

Infrastructure costs for power distribution and cooling are the majority of the
construction costs of a WSC, so we concentrate on them. (Section 6.7 describes
the power and cooling infrastructure of a WSC in detail.)

A computer room air-conditioning (CRAC) unit cools the air in the server room
using chilled water, similar to how a refrigerator removes heat by releasing it out-
side the refrigerator. As a liquid absorbs heat, it evaporates. Conversely, when a
liquid releases heat, it condenses. Air conditioners pump the liquid into coils under
low pressure to evaporate and absorb heat, which is then sent to an external con-
denser where it is released. Thus, in a CRAC unit, fans push warm air past a set of
coils filled with cold water, and a pump moves the warmed water to the chillers to
be cooled down. Figure 6.9 shows the large collection of fans and water pumps that
move air and water throughout the system.

In addition to chillers, some data centers leverage colder outside air or water
temperature to cool the water before it is sent to the chillers. However, depending
on the location, the chillers may still be needed during the warmer times of the year.

Surprisingly, it’s not obvious how to figure out how many servers a WSC can
support after subtracting the overhead for power distribution and cooling. The
nameplate power rating from the server manufacturer is always conservative:
it’s the maximum power a server can draw. The first step then is to measure a single
server under a variety of workloads to be deployed in the WSC. (Networking is
typically about 5% of power consumption, so it can be ignored at first.)

To determine the number of servers for a WSC, the available power for IT
equipment could be divided just by the measured server power; however, this
would again be too conservative according to Fan et al. (2007). They found that
there is a significant gap between what thousands of servers could theoretically
do, in the worst case, and what they will do in practice, since no real workloads
will keep thousands of servers all simultaneously at their peaks. They found that
they could safely oversubscribe the number of servers by as much as 40% based
on the power of a single server. They recommended that WSC architects should do
so to increase the average utilization of power within a WSC; however, they also
suggested using extensive monitoring software along with a safety mechanism that
de-schedules lower priority tasks in case the workload shifts.

Here is the power usage inside the IT equipment for a Google WSC deployed
in 2012 (Barroso et al., 2013):
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■ 42% of power for processors

■ 12% for DRAM

■ 14% for disks

■ 5% for networking

■ 15% for cooling overhead

■ 8% for power overhead

■ 4% miscellaneous

Measuring Efficiency of a WSC

Awidely used, simple metric to evaluate the efficiency of a data center or aWSC is
called power utilization effectiveness (or PUE):

PUE ¼ Total facility powerð Þ= IT equipment powerð Þ
Thus, PUE must be greater than or equal to 1, and the bigger the PUE, the less
efficient the WSC.
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Figure 6.9 Mechanical design for cooling systems. CWS stands for circulating water system. From Hamilton, J.,
2010. Cloud computing economies of scale. In: Paper Presented at the AWS Workshop on Genomics and
Cloud Computing, June 8, 2010, Seattle, WA. http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_
GenomicsCloud20100608.pdf.
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Greenberg et al. (2009) reported on the PUE of 19 data centers and the portion
of the overhead that went into the cooling infrastructure. Figure 6.10 shows what
they found, sorted by PUE from most to least efficient. The median PUE is 1.69,
with the cooling infrastructure using more than half as much power as the
servers—on average, 0.55 of the 1.69 is for cooling. Note that these are average
PUEs, which can vary daily depending on workload and even external air temper-
ature, as we will see (Figure 6.11).

With attention paid to PUE in the past decade, data centers are much more
efficient today. However, as Section 6.8 explains, there is no universally accepted
definition of what is included in PUE: If the batteries to preserve operation during a
power failure are in a separate building, are they included or not? Do you measure
from the output of the power substation, or where power first enters the WSC?
Figure 6.10 shows the improvement in the average PUE of all Google data centers
over time, which Google measures inclusively.

Since performance per dollar is the ultimate metric, we still need to measure
performance. As Figure 6.7 shows, bandwidth drops and latency increases depend-
ing on the distance to the data. In a WSC, the DRAM bandwidth within a server is
200 times greater than within a rack, which in turn is 10 times greater than within
an array. Thus, there is another kind of locality to consider in the placement of data
and programs within a WSC.
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Figure 6.10 Power utilization efficiency of 19 data centers in 2006 (Greenberg et al., 2009). The power for air
conditioning (AC) and other uses (such as power distribution) is normalized to the power for the IT equipment in
calculating the PUE. Thus, power for IT equipment must be 1.0, and AC varies from about 0.30 to 1.40 times the power
of the IT equipment. Power for “other” varies from about 0.05 to 0.60 of the IT equipment.
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Although designers of a WSC often focus on bandwidth, programmers devel-
oping applications on a WSC are also concerned with latency because latency is
visible to users. Users’ satisfaction and productivity are tied to response time of a
service. Several studies from the timesharing days report that user productivity is
inversely proportional to time for an interaction, which was typically broken down
into human entry time, system response time, and time for the person to think about
the response before hitting the next entry (Doherty and Thadhani, 1982). The
results of experiments showed that cutting system response time by 30% shaved
the time of an interaction by 70% (Brady, 1986). This implausible result is
explained by human nature: people need less time to think when given a faster
response, as they are less likely to get distracted and remain “on a roll.”

Figure 6.12 shows the results of a more recent experiment for the Bing search
engine, where delays of 50–2000 ms were inserted at the search server (Schurman
and Brutlag, 2009). As expected from previous studies, time to next click roughly
doubled the delay; that is, a 200 ms delay at the server led to a 500 ms increase in
time to next click. Revenue dropped linearly with increasing delay, as did user sat-
isfaction. A separate study on the Google search engine found that these effects
lingered long after the 4-week experiment ended. Five weeks later, there were
0.1% fewer searchers per day for users who experienced 200 ms delays, and there
were 0.2% fewer searches by users who experienced 400 ms delays. Given the
amount of money made in search, even such small changes are disconcerting.
In fact, the results were so negative that they ended the experiment prematurely.

Because of this extreme concern with satisfaction of all users of an Internet
service, performance goals are typically specified so that a high percentage of
requests are below a latency threshold, rather than just offer a target for the average
latency. Such threshold goals are called service level objectives (SLOs). An SLO
might be that 99% of requests must be below 100 ms. Thus, the designers of
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Trailing twelve-month (TTM) PUE

2011 2012 2014 2015 2016 2017
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Figure 6.11 Average power utilization efficiency (PUE) of the 15 Google WSCs between 2008 and 2017. The
spiking line is the quarterly average PUE, and the straighter line is the trailing 12-month average PUE. For Q4
2016, the averages were 1.11 and 1.12, respectively.
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Amazon’s Dynamo key-value storage system decided that for services to offer
good latency on top of Dynamo, their storage system had to deliver on its latency
goal 99.9% of the time (DeCandia et al., 2007). For example, one improvement of
Dynamo helped the 99.9th percentile much more than the average case, which
reflects their priorities.

Dean and Barroso (2013) proposed the term tail tolerant to describe systems
designed to meet such goals:

Just as fault-tolerant computing aims to create a reliable whole out of less-
reliable parts, large online services need to create a predictably responsive
whole out of less-predictable parts.

The causes of unpredictability include contention for shared resources (processors
networks, etc.), queuing, variable microprocessor performance because of optimi-
zations like Turbo mode or energy-saving techniques like DVFS, software garbage
collection, andmany more. Google concluded that instead of trying to prevent such
variability in a WSC, it made more sense to develop tail-tolerant techniques to
mask or work around temporary latency spikes. For example, fine-grained load
balancing can quickly move small amounts for work between servers to reduce
queuing delays.

Cost of a WSC

Asmentioned in the introduction, unlike most architects, designers ofWSCs worry
about the cost to operate as well as the cost to build theWSC. Accounting labels the
former costs as operational expenditures (OPEX) and the latter costs as capital
expenditures (CAPEX).

To put the cost of energy into perspective, Hamilton (2010) did a case study to
estimate the costs of a WSC. He determined that the CAPEX of an 8-MW facility
was $88million and that the roughly 46,000 servers and corresponding networking
equipment added another $79 million to the CAPEX for the WSC. Figure 6.13
shows the rest of the assumptions for the case study.

Server
delay (ms)

Increased time to
next click (ms)

Queries/
user

Any
clicks/
user

User
satisfaction

Revenue/
user

50 – – – – –

200 500 – �0.3% �0.4% –

500 1200 – �1.0% �0.9% �1.2%

1000 1900 �0.7% �1.9% �1.6% �2.8%

2000 3100 �1.8% �4.4% �3.8% �4.3%

Figure 6.12 Negative impact of delays at the Bing search server on user behavior
(Schurman and Brutlag, 2009).

486 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism



Hamilton’s study works out to $11/watt for the building, power, and cooling.
Barroso et al. (2013) reported consistent results for several cases, with the cost at $9
to $13/watt. Thus, a 16-MW facility costs $144million to $208million, not includ-
ing the computing, storage, and networking equipment.

We can convert CAPEX into OPEX by a cost of capital conversion, assuming
5% borrowing cost, which is a standard convention in US accounting rules. That is,
we can just amortize CAPEX as a fixed amount each month for the effective life of

Size of facility (critical load watts) 8,000,000

Average power usage (%) 80%

Power usage effectiveness 1.45

Cost of power ($/kWh) $0.07

% Power and cooling infrastructure (% of total facility cost) 82%

CAPEX for facility (not including IT equipment) $88,000,000

Number of servers 45,978

Cost/server $1450

CAPEX for servers $66,700,000

Number of rack switches 1150

Cost/rack switch $4800

Number of array switches 22

Cost/array switch $300,000

Number of layer 3 switches 2

Cost/layer 3 switch $500,000

Number of border routers 2

Cost/border router $144,800

CAPEX for networking gear $12,810,000

Total CAPEX for WSC $167,510,000

Server amortization time 3 years

Networking amortization time 4 years

Facilities amortization time 10 years

Annual cost of money 5%

Figure 6.13 Case study for a WSC, rounded to nearest $5000. Internet bandwidth
costs vary by application, so they are not included here. The remaining 18%of the CAPEX
for the facility includes buying the property and the cost of construction of the building.
We added people costs for security and facilitiesmanagement in Figure 6.14, whichwere
not part of the case study. Note that Hamilton’s estimates were done before he joined
Amazon, and they are not based on the WSC of a particular company. Based on
Hamilton, J., 2010. Cloud computing economies of scale. In: Paper Presented at the
AWS Workshop on Genomics and Cloud Computing, June 8, 2010, Seattle, WA. http://
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf.
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the equipment. Figure 6.14 breaks down the monthly OPEX for Hamilton’s case
study. Note that the amortization rates differ significantly for his case study, from
10 years for the facility to 4 years for the networking equipment and 3 years for the
servers. Thus, the WSC facility lasts a decade, but the servers are replaced every
3 years and the networking equipment every 4 years. By amortizing the CAPEX,
Hamilton came up with a monthly OPEX, including accounting for the cost of
borrowing money (5% annually) to pay for the WSC. At $3.8 million, the monthly
OPEX is about 2% of the CAPEX (or 24% annually).

This figure allows us to calculate a handy guideline to keep in mind when
making decisions about which components to use when being concerned about
energy. The fully burdened cost of a watt per year in a WSC, including the cost
of amortizing the power and cooling infrastructure, is

Monthly cost of infrastructure + monthly cost of power
Facility size in watts

�12¼ $765K + $475K
8M

�12¼ $1:86

The cost is roughly $2 per watt-year. Thus, reducing costs by saving energy should
not result in spending more than $2 per watt-year (see Section 6.8).

Note that in Figure 6.14, more than a third of OPEX is related to power, with
that category trending up while server costs are trending down over time. The
networking equipment is significant at 8% of total OPEX and 19% of the server
CAPEX, and networking equipment is not trending down as quickly as servers
are, perhaps because of the continuing demand for higher network bandwidth
(see Figure 6.22 on page 467). This difference is especially true for the switches
in the networking hierarchy above the rack, which represent most of the network-
ing costs (see Section 6.6). People costs for security and facilities management are
just 2% of OPEX. Dividing the OPEX in Figure 6.14 by the number of servers and
hours per month, the cost is about $0.11 per server per hour.

Expense (% total) Category Monthly cost Percent monthly cost

Amortized CAPEX (85%) Servers $2,000,000 53%

Networking equipment $290,000 8%

Power and cooling infrastructure $765,000 20%

Other infrastructure $170,000 4%

OPEX (15%) Monthly power use $475,000 13%

Monthly people salaries and benefits $85,000 2%

Total OPEX $3,800,000 100%

Figure 6.14 Monthly OPEX for Figure 6.13, rounded to the nearest $5000. Note that the 3-year amortization of
servers means purchasing new servers every 3 years, whereas the facility is amortized for 10 years. Thus, the amor-
tized capital costs for servers are about three times more than for the facility. People costs include three security
guard positions continuously for 24 h a day, 365 days a year, at $20 per hour per person, and one facilities person
for 24 h a day, 365 days a year, at $30 per hour. Benefits are 30% of salaries. This calculation does not include the cost
of network bandwidth to the Internet because it varies by application nor vendormaintenance fees because they vary
by equipment and by negotiations.
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Barroso et al. (2013) evaluated CAPEX and OPEX in terms of cost per watt per
month. Thus, if a 12-MWWSC is depreciated over 12 years, the depreciation cost
is $0.08 per watt per month. They assumed the company got the capital for the
WSC by taking out a loan at 8% annually—corporate loans are typically between
7% and 12%—and the interest payments added another $0.05, giving a total of
$0.13 per watt per month. They factored in the cost of servers similarly. A 500 watt
server that cost $4000 was $8 per watt, and the 4-year depreciation was $0.17 per
watt per month. An 8% interest on a loan for the servers added $0.02. They
estimated networking at $0.03 per watt per month. They reported that the typical
OPEX cost for multiple MWWSCs varied from $0.02 to $0.08 per watt per month.
The grand total was $0.37 to $0.43 per watt per month. For an 8-MW WSC, the
monthly cost minus the cost of electricity is about $3.0 million to $3.5 million. If
we subtract the monthly power use from Hamilton’s calculation, his estimate of the
monthly rate will be $3.3 million. Given the different approaches to predicting
costs, these estimates are remarkably consistent.

Example The cost of electricity varies by region in the United States from $0.03 to $0.15 per
kilowatt-hour. What is the impact on hourly server costs of these two
extreme rates?

Answer We multiply the critical load of 8 MW by the average PUE from Figure 6.13 (sec-
ond row) to calculate the average power usage:

8�1:45�80% ¼ 9:28 Megawatts

The monthly cost for power then goes from $475,000 in Figure 6.14 to $205,000 at
$0.03 per kilowatt-hour and to $1,015,000 at $0.15 per kilowatt-hour. These
changes in electricity cost alter the hourly server costs from $0.11 to $0.10 and
$0.13, respectively.

Example What would happen to monthly costs if the amortization times were all made to be
the same—say, 5 years? How would that change the hourly cost per server?

Answer The spreadsheet is available online at http://mvdirona.com/jrh/TalksAndPapers/
PerspectivesDataCenterCostAndPower.xls. Changing the amortization time to
5 years changes the first four rows of Figure 6.14 to

Servers $1,260,000 37%

Networking equipment $242,000 7%

Power and cooling infrastructure $1,115,000 33%

Other infrastructure $245,000 7%

and the total monthlyOPEX is $3,422,000. If we replaced everything every 5 years,
the cost would be $0.103 per server hour, with more of the amortized costs now
being for the facility rather than the servers, as in Figure 6.14.
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The rate of about $0.10 per server per hour can be much less than the cost for
many companies that own and operate their own (smaller) conventional data cen-
ters. The cost advantage of WSCs led large Internet companies to offer computing
as a utility where, like electricity, you pay only for what you use. Today, utility
computing is better known as cloud computing.

6.5 Cloud Computing: The Return of Utility Computing

If computers of the kind I have advocated become the computers of the future,
then computing may someday be organized as a public utility just as the tele-
phone system is a public utility…. The computer utility could become the basis
of a new and important industry.

John McCarthy,
MIT centennial celebration (1961)

Driven by the demand of an increasing number of users, Internet companies such
as Amazon, Google, and Microsoft built increasingly larger warehouse-scale
computers from commodity components, making McCarthy’s prediction eventu-
ally come true, but not as he thought because of the popularity of timesharing.
This demand led to innovations in systems software to support operating at this
scale, including BigTable, Colossus, Dynamo, GFS, and MapReduce. It also
demanded improvement in operational techniques to deliver a service available
at least 99.99% of the time despite component failures and security attacks.
Examples of these techniques include failover, firewalls, virtual machines, and
protection against distributed denial-of-service attacks. With the software and
expertise providing the ability to scale and increasing customer demand that jus-
tified the investment, WSCs with 50,000–100,000 servers have become common-
place in 2017.

With increasing scale came increasing economies of scale. Based on a study in
2006 that compared a WSC with a data center with only 1000 servers, Hamilton
(2010) reported the following advantages:

■ 5.7 times reduction in storage costs—It cost the WSC $4.6 per GB per year for
disk storage versus $26 per GB for the data center.

■ 7.1 times reduction in administrative costs—The ratio of servers per adminis-
trator was over 1000 for the WSC versus just 140 for the data center.

■ 7.3 times reduction in networking costs—Internet bandwidth cost the WSC
$13 per Mbit/s/month versus $95 for the data center. Not surprisingly, one
can negotiate a much better price per Mbit/s by ordering 1000 Mbit/s than
by ordering 10 Mbit/s.

Another economy of scale comes during purchasing. The high level of pur-
chasing leads to volume discount prices on virtually everything in the WSC.
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Economies of scale also apply to operational costs. From the prior section, we
saw that many data centers operate with a PUE of 2.0. Large firms can justify hiring
mechanical and power engineers to develop WSCs with lower PUEs, in the range
of 1.1–1.2 (see Section 6.7).

Internet services need to be distributed to multiple WSCs both for dependabil-
ity and to reduce latency, especially for international markets. All large firms use
multiple WSCs for that reason. It’s much more expensive for individual firms to
create multiple, small data centers around the world than a single data center in
their corporate headquarters.

Finally, for the reasons presented in Section 6.1, servers in data centers tend
to be utilized only 10%–20% of the time. By makingWSCs available to the public,
uncorrelated peaks between different customers can raise average utilization
above 50%.

Thus, economies of scale for a WSC offer factors of 5–7 for several compo-
nents of a WSC plus a few factors of 1.5–2 for the entire WSC.

Since the last edition of this book, the concerns about security have flipped for
the cloud. In 2011 there was skepticism about placing critical data in the cloud
because that could make it easier for hackers to break into than if the data were
kept on premises (“on prem”) locked down in the local data center. In 2017 data
break-ins into such data centers are so routine that they barely make the news.

For example, this insecurity has even led to rapid growth of ransomware—
where criminals break in, encrypt all the data of an organization, and won’t
release the key until paid a ransom—costing firms $1 billion in 2015. In contrast,
WSCs are continuously under attack, their operators respond more quickly to halt
them and thus build better defenses. As a result, ransomware is unheard of inside
WSCs. WSCs are clearly more secure than the vast majority of local data centers
today, so many CIOs now believe that critical data is safer in the cloud than
“on prem.”

Although there are several cloud computing providers, we feature Amazon
Web Services (AWS) since it is one of the oldest and currently the largest commer-
cial cloud provider.

Amazon Web Services

Utility computing goes back to commercial timesharing systems and even batch
processing systems of the 1960s and 1970s, where companies only paid for a
terminal and a phone line and then were billed based on howmuch computing they
used. Many efforts since the end of timesharing have tried to offer such pay-as-
you-go services, but they were often met with failure.

When Amazon started offering utility computing via the Amazon Simple
Storage Service (Amazon S3) and then Amazon Elastic Computer Cloud (Amazon
EC2) in 2006, it made some novel technical and business decisions:

■ Virtual machines. Building the WSC using x86-commodity computers run-
ning the Linux operating system and the Xen virtual machine solved several

6.5 Cloud Computing: The Return of Utility Computing ■ 491



problems. First, it allowed Amazon to protect users from each other. Second, it
simplified software distribution within a WSC, in that customers needed to
install only an image and then AWS automatically distributed it to all the
instances being used. Third, the ability to kill a virtual machine reliably made
it easy for Amazon and customers to control resource usage. Fourth, virtual
machines could limit the rate at which they used the physical processors, disks,
and the network as well as the amount of main memory, which gave AWS
multiple price points: the lowest price option by packing many virtual cores
on a single server, the highest price option of exclusive access to all the
machine resources, as well as several intermediary points. Fifth, virtual
machines hid the identity of hardware, allowing AWS to continue to sell time
on older machines that might otherwise be unattractive to customers if they
knew the age of the machines. Finally, virtual machines allowed AWS to intro-
duce new and faster hardware either by packing even more virtual cores per
server or simply by offering instances that had higher performance per virtual
core; virtualization meant that offered performance need not be an integer
multiple of the performance of the hardware.

■ Very low cost. When AWS announced a rate of $0.10 per hour per instance in
2006, it was a startlingly low amount. An instance is one virtual machine, and
at $0.10 per hour, AWS allocated two instances per core on a multicore server.
Thus, one EC2 computer unit is equivalent to a 1.0–1.2 GHz AMD Opteron or
Intel Xeon of that era.

■ (Initial) reliance on open source software. The availability of good-quality
software that had no licensing problems or costs associated with running on
hundreds or thousands of servers made utility computing much more econom-
ical for both Amazon and its customers. AWS later started offering instances
including commercial third-party software at higher prices.

■ No (initial) guarantee of service. Amazon originally promised only best effort.
The low cost was so attractive that many could live without a service guarantee.
Today AWS provides availability SLOs of up to 99.95% on services such as
Amazon EC2 and Amazon S3. Additionally, Amazon S3 was designed for
durability by saving multiple replicas of each object across multiple locations.
(According to AWS, the chances of permanently losing an object are one
in 100 billion.) AWS also provides a Service Health Dashboard that shows
the current operational status of each of the AWS services in real time so that
AWS uptime and performance are fully transparent.

■ No contract required. In part because the costs are so low, all that is necessary
to start using EC2 is a credit card.

Figures 6.15 and 6.16 show the hourly price of the many types of EC2
instances in 2017. Expanding from the 10 instance types in 2006, there are now
more than 50. The fastest instance is 100 times quicker than the slowest, and
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Instance Per hour
Ratio to
m4.large

Virtual
cores

Compute
units

Memory
(GiB) Storage (GB)

G
en
er
al
-p
ur
po

se

t2.nano $0.006 0.05 1 Variable 0.5 EBS only

t2.micro $0.012 0.11 1 Variable 1.0 EBS only

t2.small $0.023 0.21 1 Variable 2.0 EBS only

t2.medium $0.047 0.4 2 Variable 4.0 EBS only

t2.large $0.094 0.9 2 Variable 8.0 EBS only

t2.xlarge $0.188 1.7 4 Variable 16.0 EBS only

t2.2xlarge $0.376 3.5 8 Variable 32.0 EBS only

m4.large $0.108 1.0 2 6.5 8.0 EBS only

m4.xlarge $0.215 2.0 4 13 16.0 EBS only

m4.2xlarge $0.431 4.0 8 26 32.0 EBS only

m4.4xlarge $0.862 8.0 16 54 64.0 EBS only

m4.10xlarge $2.155 20.0 40 125 160.0 EBS only

m4.16xlarge $3.447 31.9 64 188 256.0 EBS only

m3.medium $0.067 0.6 1 3 3.8 1�4 SSD

m3.large $0.133 1.2 2 6.5 7.5 1�32 SSD

m3.xlarge $0.266 2.5 4 13 15.0 2�40 SSD

m3.2xlarge $0.532 4.9 8 26 30.0 2�80 SSD

C
om

pu
te
-o
pt
im

iz
ed

c4.large $0.100 0.9 2 8 3.8 EBS only

c4.xlarge $0.199 1.8 4 16 7.5 EBS only

c4.2xlarge $0.398 3.7 8 31 15.0 EBS only

c4.4xlarge $0.796 7.4 16 62 30.0 EBS only

c4.8xlarge $1.591 14.7 36 132 60.0 EBS only

c3.large $0.105 1.0 2 7 3.8 2�16 SSD

c3.xlarge $0.210 1.9 4 14 7.5 2�40 SSD

c3.2xlarge $0.420 3.9 8 28 15.0 2�80 SSD

c3.4xlarge $0.840 7.8 16 55 30.0 2�160 SSD

c3.8xlarge $1.680 15.6 32 108 60.0 2�320 SSD

Figure 6.15 Price and characteristics of on-demand general-purpose and compute-optimized EC2 instances in
the Virginia region of the United States in February 2017. When AWS started, one EC2 computer unit was equiv-
alent to a 1.0–1.2 GHz AMD Opteron or Intel Xeon of 2006. Variable instances are the newest and cheapest category.
They offer the full performance of a high-frequency Intel CPU core if your workload utilizes less than 5% of the core on
average over 24 h, such as for serving web pages. AWS also offers Spot Instances at a much lower cost (about 25%).
With Spot Instances, customers set the price they are willing to pay and the number of instances they are willing to
run, and then AWS runs the bids when the spot price drops below their level. AWS also offers Reserved Instances for
cases where customers know they will use most of the instance for a year. They pay a yearly fee per instance and then
an hourly rate that is about 30% of column 1 to use the service. If a Reserved Instance is used 100% for a whole year,
the average cost per hour including amortization of the annual fee will be about 65% of the rate in the first column.
EBS is Elastic Block Storage, which is a raw block-level storage system found elsewhere on the network, rather than in
a local disk or local solid stage disk (SSD) within the same server as the VM.
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the largest offers 2000 times more memory than the smallest. Rent for the cheapest
instance for a whole year is just $50.

In addition to computation, EC2 charges for long-term storage and for Internet
traffic. (There is no cost for network traffic inside AWS regions.) Elastic Block
Storage (EBS) costs $0.10 per GB per month when using SSDs and $0.045 per
GB monthly for hard disk drives. Internet traffic costs $0.01 per GB going to
EC2 and $0.09 per GB coming from EC2.

Instance Per hour
Ratio to
m4.large Virtual cores Compute units Memory (GiB) Storage (GB)

G
P
U

p2.xlarge $0.900 8.3 4 12 61.0 EBS only

p2.8xlarge $7.200 66.7 32 94 488.0 EBS only

p2.16xlarge $14.400 133.3 64 188 732.0 EBS only

g2.2xlarge $0.650 6.0 8 26 15.0 60 SSD

g2.8xlarge $2.600 24.1 32 104 60.0 2�120 SSD

F
P
G
A f1.2xlarge $1.650 15.3 8 (1 FPGA) 26 122.0 1�470 SSD

f1.16xlarge $13.200 122.2 64 (8 FPGA) 188 976.0 4�940 SSD

M
em

or
y-
op

tim
iz
ed

x1.16xlarge $6.669 61.8 64 175 976.0 1�1920 SSD

x1.32xlarge $13.338 123.5 128 349 1,952.0 2�1920 SSD

r3.large $0.166 1.5 2 6.5 15.0 1�32 SSD

r3.xlarge $0.333 3.1 4 13 30.5 1�80 SSD

r3.2xlarge $0.665 6.2 8 26 61.0 1�160 SSD

r3.4xlarge $1.330 12.3 16 52 122.0 1�320 SSD

r3.8xlarge $2.660 24.6 32 104 244.0 2�320 SSD

r4.large $0.133 1.2 2 7 15.3 EBS only

r4.xlarge $0.266 2.5 4 14 30.5 EBS only

r4.2xlarge $0.532 4.9 8 27 61.0 EBS only

r4.4xlarge $1.064 9.9 16 53 122.0 EBS only

r4.8xlarge $2.128 19.7 32 99 244.0 EBS only

r4.16xlarge $4.256 39.4 64 195 488.0 EBS only

S
to
ra
ge
-o
pt
im

iz
ed

i2.xlarge $0.853 7.9 4 14 30.5 1�800 SSD

i2.2xlarge $1.705 15.8 8 27 61.0 2�800 SSD

i2.4xlarge $3.410 31.6 16 53 122.0 4�800 SSD

i2.8xlarge $6.820 63.1 32 104 244.0 8�800 SSD

d2.xlarge $0.690 6.4 4 14 30.5 3�2000 HDD

d2.2xlarge $1.380 12.8 8 28 61.0 6�2000 HDD

d2.4xlarge $2.760 25.6 16 56 122.0 12�2000 HDD

d2.8xlarge $5.520 51.1 36 116 244.0 24�2000 HDD

Figure 6.16 Price and characteristics of on-demand GPUs, FPGAs, memory-optimized, and storage-optimized
EC2 instances in the Virginia region of the United States in February 2017.
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Example Calculate the cost of running the averageMapReduce job in Figure 6.2 on page 438
on EC2 for several months over the years. Assume there are plenty of jobs, so there
is no significant extra cost to round up so as to get an integer number of hours. Next
calculate the cost per month to run all the MapReduce jobs.

Answer The first question is, what is the right size instance to match the typical server at
Google? Let’s assume the closest match in Figure 6.15 is a c4.large with 2 virtual
cores and 3.6 GiB of memory, which costs $0.100 per hour. Figure 6.17 calculates
the average and total cost per year of running the Google MapReduce workload on
EC2. The average September 2016 MapReduce job would cost a little over $1 on
EC2, and the total workload for that month would cost $114 million on AWS.

Example Given the cost of MapReduce jobs, imagine that your boss wants you to investigate
ways to lower costs. How much might you save using AWS Spot Instances?

Answer The MapReduce jobs could be disrupted by being kicked off a spot instance, but
MapReduce is designed to tolerate and restart failed jobs. The AWS Spot price for
c4.large was $0.0242 versus $0.100, which meant a savings of $87 million for Sep-
tember 2016, but there were no guarantees on the response times!

In addition to the low-cost and a pay-for-use model of utility computing,
another strong attractor for cloud computing users is that the cloud-computing pro-
viders take on the risks of over-provisioning or under-provisioning. Because either
mistake could be fatal, risk avoidance is a godsend for startup companies. If too
much of the precious investment is spent on servers before the product is ready
for heavy use, a company could run out of money. If the service suddenly became
popular but there weren’t enough servers to match the demand, a company could

Aug-04 Sep-09 Sep-12 Sep-16

Average completion time (h) 0.15 0.14 0.13 0.11

Average number of servers per job 157 156 142 130

Cost per hour of EC2 c4.large instance $0.100 $0.100 $0.100 $0.100

Average EC2 cost per MapReduce job $2.76 $2.23 $1.89 $1.20

Monthly number of MapReduce jobs 29,000 4,114,919 15,662,118 95,775,891

Total cost of MapReduce jobs on EC2/EBS $80,183 $9,183,128 $29,653,610 $114,478,794

Figure 6.17 Estimated cost to run the Google MapReduce workload for select months between 2004 and 2016
(Figure 6.2) using 2017 prices for AWS EC2. Because we are using 2017 prices, these are underestimates of actual
AWS costs.
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make a very bad impression with the potential new customers it desperately needs
in order to grow.

The poster child for this scenario is FarmVille from Zynga, a social networking
game on Facebook. Before FarmVille was announced, the largest social game was
about five million daily players. FarmVille had one million players 4 days after
launching and 10 million players after 60 days. After 270 days, it had 28 million
daily players and 75 million monthly players. Because FarmVille is deployed on
AWS, it is able to grow seamlessly with the number of users. Moreover, it is able to
shed load based on customer demand and time of day.

FarmVille was so successful that Zynga decided to open its own data centers in
2012. In 2015, Zynga returned to AWS, deciding it was better to let AWS run its
data centers (Hamilton, 2015). When FarmVille dropped from the most popular
Facebook application to 110th in 2016, Zynga was able to downsize gracefully
with AWS, much as it grew with AWS in the beginning.

In 2014, AWS offered a new service that hearkened back to the timesharing
days of the 1960s that John McCarthy was referring to in the opening quote of
this section. Instead of managing virtual machines in the cloud, Lambda lets users
supply a function in source code (such as Python) and lets AWS automatically
manage the resources required by that code to scale with input size and to make
it highly available. Google Cloud Compute Functions and Microsoft Azure Func-
tions are equivalent capabilities from competing cloud providers. As Section 6.10
explains, Google App Engine originally offered a quite similar service in 2008.

This trend is referred to as Serverless Computing, in that users don’t have to
manage servers (but these functions are in fact run on servers). The tasks provided
include operating system maintenance, capacity provisioning and automatic scal-
ing, code and security patch deployment, and code monitoring and logging. It runs
code in response to events, such as an http request or database update. One way to
think of Serverless Computing is as a set of processes running in parallel across the
entire WSC that share data through a disaggregated storage service such as
AWS S3.

There is no cost for Serverless Computing when a program is idle. The AWS
accounting is six orders of magnitude finer than EC2, recording usage per 100 ms
instead of per hour. Cost varies depending on the amount of memory needed, but if
your program used 1 GiB of memory, the cost is $0.000001667 per 100 ms or
about $6 per hour.

Serverless Computing can be thought of as the next evolutionary step toward
realizing the cloud computing ideals of the data center as a computer, as pay-as-
you-go pricing, and as a means for automatic dynamic scaling.

Cloud computing has made the benefits of WSC available to everyone. Cloud
computing offers cost associativity with the illusion of infinite scalability at no
extra cost to the user: 1000 servers for 1 h cost no more than 1 server for
1000 h. It is up to the cloud computing provider to ensure that there are enough
servers, storage, and Internet bandwidth available to meet the demand. The previ-
ously mentioned optimized supply chain, which drops time-to-delivery to a week
for new computers, is a considerable aid in providing that illusion without
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bankrupting the provider. This transfer of risks, cost associativity, pay-as-you-go
pricing, and greater security is a powerful argument for companies of varying sizes
to use cloud computing.

How Big Is the AWS Cloud?

AWS started in 2006 and grew so large that Amazon.com, rather than use a
separate computing infrastructure, became one of AWS’s customers in 2010.
Figure 6.18 shows that AWS had facilities in 16 locations around the world in
2017, with two more on the way. As a point of interest, Figures 6.19 and 6.20 show
similar maps for Google and Microsoft.

Each AWS location consists of two to three nearby facilities (one or two
kilometers apart) called availability zones. They are so named because it should
be safe to have your software running on two of them to ensure dependability
as it is unlikely that both would fail simultaneously because of power outages
or a natural disaster (Hamilton, 2014). These 16 locations contain 42 availability
zones, and each of those zones has one or more WSCs. In 2014 each WSC had at
least 50,000 servers, and some had more than 80,000.
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Figure 6.18 In 2017 AWS had 16 sites (“regions”), with two more opening soon. Most sites have two to three
availability zones, which are located nearby but are unlikely to be affected by the same natural disaster or power
outage, if one were to occur. (The number of availability zones are listed inside each circle on the map.) These 16
sites or regions collectively have 42 availability zones. Each availability zone has one or more WSCs. https://aws.ama
zon.com/about-aws/global-infrastructure/.
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Hamilton (2017) says its best to have at least three WSCs per region. The reason
is simply that when oneWSC fails, the other in the region needs to take on the load of
the failed WSC. If there were only one other WSC, each would have to reserve half
of its capacity for failover. With three, they could be used at two-thirds of capacity
and still handle a quick failover. The more data centers you have, the less reserved
excess capacity; AWS has regions with more than 10 WSCs.

We have found two published estimates of the total number of servers in AWS
in 2014. One estimate was 2 million servers, when AWS had just 11 regions and 28
availability zones (Clark, 2014). Another estimate was between 2.8 and 5.6 million
servers (Morgan 2014). If we extrapolate from 2014 to 2017 based on the increased
number of availability zones, the estimates will grow to 3.0 million servers on the
low end and 8.4 million on the high end. The total number of WSCs (data centers)
is 84–126. Figure 6.21 shows the growth over time, using extrapolations from
these two projections to offer high and low estimates of the number of severs
and WSCs over time.

AWS is understandably mum on the actual number. They said that AWS had
more than 1 million customers in 2014 and that “every day AWS adds enough
physical server capacity equivalent to that needed to support Amazon.com in
2004” when it was a $7 billion annual revenue company (Hamilton, 2014).

One way to check the validity of these estimates is to look at investments.
Amazon spent $24 billion in capital investments in property and equipment

Figure 6.19 In 2017 Google had 15 sites. In the Americas: Berkeley County, South Carolina; Council Bluffs, Iowa;
Douglas County, Georgia; Jackson County, Alabama; Lenoir, North Carolina; Mayes County, Oklahoma; Montgomery
County, Tennessee; Quilicura, Chile; and The Dalles, Oregon. In Asia: Changhua County, Taiwan; Singapore. In Europe:
Dublin, Ireland; Eemshaven, Netherlands; Hamina, Finland; St. Ghislain, Belgium. https://www.google.com/about/
datacenters/inside/locations/.
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Figure 6.20 In 2017 Microsoft had 34 sites, with four more opening soon. https://azure.microsoft.com/en-us/regions/.
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between 2013 and 2015, and one estimate is that two-thirds of that investment was
for AWS (Gonzalez and Day 2016; Morgan 2016). Assume that it takes a year to
construct a new WSC. The estimate in Figure 6.21 for 2014 to 2016 is from 34 to
51 WSCs. The cost per AWS WSC will then be $310 million to $470 million.
Hamilton states that “even a medium sized datacenter (WSC) will likely exceed
$200M.” (Hamilton, 2017). He goes on to say that today cloud providers currently
have “O(102)” WSCs; Figure 6.21 estimate is 84–126 AWS WSCs. Despite the
fuzziness of these estimates, they appear to be surprisingly consistent. He goes
on to predict that to meet the future demands, the largest cloud providers will even-
tually rise to “O(105)” WSCs, or 1000 times more WSCs than today!
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Figure 6.21 Growth of AWS regions and availability zones (right vertical axis) over time.Most regions have two or
three availability zones. Each availability zone can have one or more WSCs, with the largest having more than 10
WSCs. Each WSC has at least 50,000 servers, with the biggest having more than 80,000 servers (Hamilton, 2014).
Based on two published estimates for the number of AWS servers in 2014 (Clark, 2014; Morgan 2014), we project
the number of servers per year (left vertical axis) and WSCs (right vertical access) as a function of the actual number
of availability zones.
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No matter how many servers and WSCs are in the cloud, two cross-cutting
issues that shape the cost-performance of WSCs and thus cloud computing are
the WSC network and the efficiency of the server hardware and software.

6.6 Cross-Cutting Issues

Net gear is the SUV of the datacenter.
James Hamilton (2009)

Preventing the WSC Network From Being a Bottleneck

Figure 6.22 shows the network demands doubling every 12–15months for Google,
resulting in a 50� growth in traffic from the servers in Google’s fleet of WSCs in
just 7 years. Clearly, without great care, the WSC network could easily become a
performance or cost bottleneck.

In the previous edition, we pointed out that a data center switch could cost
almost $1 million, or more than 50 times as much as a Top of Rack switch. Not
only was such a switch expensive, the resulting oversubscription affected the
design of software and the placement of services and data within the WSC. The
WSC network bottlenecks constrained data placement, which in turn complicated
WSC software. Because this software is one of the most valuable assets of a WSC
company, the cost of this added complexity was significant.

The ideal WSC network would be a black box whose topology and band-
width are uninteresting because there are no restrictions: any workload could

Jul ‘08 Jun ‘09 May ‘10 Apr ‘11 Mar ‘12 Feb ‘13 Dec ‘13

Time

A
g

g
re

g
a

te
 t

ra
ff

ic

Nov ‘14

50x

1x

Traffic generated by servers in our datacenters

Time

A
g

g
re

g
a

te
 t

ra
ff

ic
e

g

50x

1x

g y

Figure 6.22 Network traffic from all the servers in Google’s WSCs over 7 years (Singh
et al., 2015).
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be placed anywhere and optimized for server utilization rather than network
traffic locality. Vahdat et al. (2010) proposed borrowing networking technology
from supercomputing to overcome the price and performance problems. The lat-
ter proposed a networking infrastructure that could scale to 100,000 ports and
1 Pbit/s of bisection bandwidth. A major benefit of these novel data center
switches is to simplify the software challenges because of oversubscription.

Since that time, many companies with WSC have designed their own switches
to overcome these challenges (Hamilton, 2014). Singh et al. (2015) reported on
several generations of custom networks used inside Google WSCs, which
Figure 6.23 lists.

To keep costs down, they built their switches from standard commodity switch
chips. They found that the features of traditional data center switches that were used
in part to justify their high costs—such as decentralized network routing and pro-
tocols to manage support of arbitrary deployment scenarios—were unnecessary
in aWSCbecause the network topology could be planned in advance of deployment

Data center
generation
switch

First
deployed

Merchant
silicon

Top of rack
(ToR) switch
config

Edge
aggregation
block

Spine
block

Fabric
speed Host speed

Bisection
BW

Four-Post
CRs

2004 Vendor 48�1 Gbps – – 10 Gbps 1 Gbps 2 Tbps

Firehose 1.0 2005 8�10 Gbps
4�10 Gbps

(ToR)

2�10 Gbps
up

24�1 Gbps
down

2�32�10
Gbps

32�10
Gbps

10 Gbps 1 Gbps 10 Tbps

Firehose 1.1 2006 8�10 Gbps 4�10 Gbps
up

48�1 Gbps
down

64�10 Gbps 32�10
Gbps

10 Gbps 1 Gbps 10 Tbps

Watchtower 2008 16�10 Gbps 4�10 Gbps
up

48�1 Gbps
down

4�128�10
Gbps

128�10
Gbps

10 Gbps n�1 Gbps 82 Tbps

Saturn 2009 24�10 Gbps 24�10 Gbps 4�288�10
Gbps

288�10
Gbps

10 Gbps n�10 Gbps 207 Tbps

Jupiter 2012 16�40 Gbps 16�40 Gbps 8�128�40
Gbps

128�40
Gbps

10/40
Gbps

n�10 Gbps/
n�40 Gbps

1300 Tbps

Figure 6.23 Six generations of network switches deployed at Google WSCs (Singh et al., 2015). The Four-Post CRs
used commercial 512 port, 1 Gbit/s Ethernet switches, and 48-port, 1 Gbit/s Ethernet Top of Rack (ToR) switches,
which allowed 20,000 servers in the array. The goal of Firehose 1.0 was to deliver 1 Gbps of nonblocking bisection
bandwidth to each of 10,000 servers, but it ran into problems with the low connectivity of the ToR switch that caused
problems when links failed. Firehose 1.1 was the first custom-designed switch with better connectivity in the ToR
switch. Watchtower and Saturn followed in the same footsteps, but used new, faster merchant switch chips. Jupiter
uses 40 Gbps links and switches to deliver more than 1 Pbit/s of bisection bandwidth. Section 6.7 describes the Jupi-
ter switch and the Edge Aggregation and Spine Blocks of Clos networks in more detail.
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and the network had only a single operator. Google instead used centralized
control that relied on a common configuration that was copied to all data center
switches. The modular hardware design and robust software control allowed these
switches to be used both for inside the WSC and for wide area networks between
WSCs. Google scaled the bandwidth of its WSCs networks by 100X in a decade,
and offered more than 1 Pbit/s of bisection bandwidth in 2015.

Using Energy Efficiently Inside the Server

Although PUE measures the efficiency of a WSC, it has nothing to say about what
goes on inside the IT equipment. Thus, another source of electrical inefficiency is
the power supply inside the server, which converts input of high voltage to the
voltages that chips and disks use. In 2007 many power supplies were 60%–
80% efficient, which meant there were greater losses inside the server than there
were going through the many steps and voltage changes from the high-voltage
lines at the utility tower to supply the low-voltage lines at the server. One reason
was that the power supply was often oversized in watts for what was on the
motherboard. Moreover, such power supplies were typically at their worst effi-
ciency at 25% load or less, even though, as Figure 6.3 on page 441 shows, many
WSC servers operate in that range. Computer motherboards also have voltage reg-
ulator modules (VRMs), and they can have relatively low efficiency as well.

Barroso and H€olzle (2007) said the goal for the whole server should be energy
proportionality; that is, servers should consume energy in proportion to the amount
of work performed. A decade later, we’ve gotten close but have not hit that ideal
goal. For example, the best-rated SPECpower servers in Chapter 1 still use about
20% of the full power when idle and almost 50% of full power at just 20% load.
That represents huge progress since 2007 when an idle computer used 60% of full
power and 70% at a 20% load, but there is still room to improve.

Systems software is designed to use all of an available resource if it potentially
improves performance, without concern for the energy implications. For example,
operating systems use all of memory for program data or for file caches, although
much of the data will likely never be used. Software architects need to consider
energy as well as performance in future designs (Carter and Rajamani, 2010).

Given the background from these six sections, we are now ready to appreciate
the work of the Google WSC architects.

6.7 Putting It All Together: A Google
Warehouse-Scale Computer

Because many companies with WSCs are competing vigorously in the market-
place, most have been reluctant to share their latest innovations with the public
(and each other). Fortunately, Google has continued its tradition of providing
details on recent WSCs for new editions of this book, once again making this
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edition likely the most up-to-date public description of a Google WSC, which is
representative of the current state-of-the-art.

Power Distribution in a Google WSC

We start with power distribution. Although there are many variations deployed, in
North America electric power typically goes through multiple voltage changes on
the way to the server, starting with the high-voltage lines at the utility tower of over
110,000 V.

For large-scale sites with multiple WSCs, power is delivered to on-site substa-
tions (Figure 6.24). The substations are sized for hundreds of megawatts of power.
The voltage is reduced to between 10,000 and 35,000 V for distribution to WSCs
on the site.

Near the buildings of the WSC, the voltage is further reduced to around 400 V
(Figure 6.25) for distribution to the rows of servers on the data center floor. (480 V
is common in North America, but 400 V in the rest of the world; Google uses
415 V.) To prevent the whole WSC from going offline if power is lost, WSCs have
their version of an uninterruptible power supply (UPS), just as most servers do in
conventional data centers. Diesel generators are connected to the power distribu-
tion system at this level to provide power in the event of an issue with the utility
power. Although most outages are less than a few minutes, WSCs store thousands
of gallons of diesel on site for an extended event. The operators even make pro-
visions with local fuel companies for continuous delivery of diesel should a site
need to operate from generators for days or weeks.

Inside the WSC, power is delivered to the racks via copper bus ducts that run
above each row of racks, as Figure 6.26 shows. The last step splits the three-phase
power into three separate single-phase powers of 240–277 V delivered by power

Figure 6.24 An on-site substation.
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cables to the rack. Near the top of the rack, power converters turn the 240 V AC
current into 48 V DC to bring the voltage down to what boards can use.

In summary, power is distributed in a hierarchy in a WSC, with each level of
the hierarchy corresponding to a distinct failure and maintenance unit: the whole
WSC, arrays, rows, and racks. Software is aware of the hierarchy, and it spreads
work and storage topographically to increase dependability.

WSCs around the world have different distribution voltages and frequencies,
but the overall design is similar. The primary places for improvement in power

Figure 6.25 This image shows transformers, switch gear, and generators in close
proximity to a WSC.

Figure 6.26 Row of servers with the copper bus ducts above that distribute 400 V to
the servers. Although hard to see, they are above the shelf on the right side of the
photo. It also shows a cold aisle that operators use to service the equipment.
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efficiency are in the voltage transformers at each step, but these are highly
optimized components, so there is little opportunity left.

Cooling in a Google WSC

Now that we can deliver power from the utility poles to the floor of the WSC, we
need to remove the heat generated from using it. There are considerably more
opportunities for improvement in the cooling infrastructure.

One of the easiest ways to improve energy efficiency is simply to run the IT
equipment at higher temperatures so that the air does not need to be cooled as
much. Google runs its equipment at 80+°F (27+°C), which is considerably higher
than traditional data centers that are so cold that you need to wear a jacket.

Airflow is carefully planned for the IT equipment, even using Computational
Fluid Dynamics simulation to design the facility. Efficient designs preserve the
temperature of the cool air by reducing the chances of it mixing with hot air.

For example, mostWSCs today have alternating aisles of hot air and cold air by
orienting servers in opposite directions in alternating rows of racks so that hot
exhaust blows in alternating directions. They are referred to as hot aisles and cold
aisles. Figure 6.26 shows a cold aisle that people use to service the servers, and
Figure 6.27 shows the hot aisle. The hot air from the hot aisle rises through ducts
into the ceiling.

Figure 6.27 Hot aisle in a Google data center, which is clearly not designed to accommodate people.
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In conventional data centers, each server relies on internal fans to ensure a suf-
ficient flow of cool air over the hot chips to maintain their temperature. These
mechanical fans are one of the weakest components in servers; for example, the
MTBF of fans is 150,000 h versus 1,200,000 h for disks. In a Google WSC, the
server fans work synergistically with dozens of giant fans in the room to ensure
airflow for the whole room (Figure 6.28). This division of labor means the small
server fans use as little power as possible while delivering maximum performance
at the worst-case power and ambient conditions. The large fans are controlled using
air pressure as the control variable. The fan speeds are adjusted to maintain a min-
imum pressure difference between the hot and cold aisles.

To cool this hot air, they add large-scale fan-coils at either end of the rows of
racks. Hot air from the racks is delivered to the fan-coils above via a horizontal
plenum inside the hot aisle. (Two rows share the pair of cooling coils, as they
are placed above the cold aisle between the two rows.) The cooled air is sent
via a plenum in the ceiling to the wall with the big fans in Figure 6.28, which return
the cooled air to the room containing the racks.

We’ll describe how to remove the heat from the water in the cooling coils
shortly, but let’s reflect on the architecture so far. It separates the racks from
the cooling capacity provided by the fan-coils, which allows for sharing of cooling
across two rows of racks in the WSC. Thus, it efficiently provides more cooling to
high-power racks and less to low-power racks. With thousands of racks in a WSC,
they are unlikely to be identical, so power variability between racks is common,
which this design accommodates.

Cool water is supplied to the individual fan-coils via a network of pipes from a
cooling plant. Heat is transferred into the water via forced convection in the cooling
coils, and warm water returns to a cooling plant.

Figure 6.28 The cool air blows into the room containing the aisles of servers. The hot
air goes through large vents into the ceilings where it is cooled before returning to
these fans.
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To improve the efficiency of WSCs, architects try to use the local environment
to remove the heat whenever possible. Evaporative cooling towers are common in
WSCs to leverage the colder outside air to cool the water instead of it being chilled
mechanically. The temperature that matters is called the wet-bulb temperature,
which is the lowest temperature that can be achieved by evaporating water with
air. It is the temperature a parcel of air would have if it were cooled to saturation
(100% relative humidity) by the evaporation of water into it, with the latent heat
being supplied by the parcel. Wet-bulb temperature is measured by blowing air at
the bulb end of a thermometer that has water on it.

Warm water is sprayed inside in the cooling tower and collected in pools at the
bottom, transferring heat to the outside air via evaporation and thereby cooling the
water. This technique is called water-side economization. Figure 6.29 shows the
steam rising above cooling towers. An alternative is to use cold water instead of
crisp air. Google’s WSC in Finland uses a water-to-water heat exchanger that takes
the frigid water from the Gulf of Finland to chill the warm water from inside
the WSC.

The cooling tower system uses water caused by evaporation in the cooling
towers. For example, an 8-MW facility might need 70,000–200,000 gallons of
water per day, thus the desire for the WSC to be located near ample sources
of water.

Although the cooling plant is designed so that heat can be removed without
artificial cooling most of the time, mechanical chillers aid in rejecting the heat
in some regions when the weather is warm.

Figure 6.29 Steam rising from the cooling towers that transfer heat to the air from the water used to cool
equipment.
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Racks of a Google WSC

We saw how Google gets power to rack and how it cools the hot air that exhausts
from the rack. Now we’re ready to explore the rack itself. Figure 6.30 shows a
typical rack found inside a Google WSC. To put this rack into context, a WSC
consists of multiple arrays (which Google calls clusters). Although arrays vary
in size, some have one to two dozen rows with each row holding two to three
dozen racks.

The 20 slots shown the middle of the rack in Figure 6.30 hold the servers.
Dependingon theirwidth, up to four servers canbeplaced in a single tray. Thepower
converters near the top of the rack turn the 240 V ACcurrent into 48 V DC,which is
run on copper bus bars down the back of the rack to power the servers.

The diesel generators that provide backup power for the whole WSC take tens
of seconds before they can offer power. Instead of populating a large room with

Battery
backup

Power
conversion

Network
switches

Configurable
payload bay

Figure 6.30 A Google rack for its WSC. Its dimensions are about 7 ft high, 4 ft wide,
and 2 ft deep (2 m×1.2 m×0.5 m). The Top of Rack switches are indeed at the top of
this rack. Next comes the power converter that converts from 240 V AC to 48 V DC for
the servers in the rack using a bus bar at the back of the rack. Next is the 20 slots
(depending on the height of the server) that can be configured for the various types
of servers that can be placed in the rack. Up to four servers can be placed per tray.
At the bottom of the rack are high-efficiency distributed modular DC uninterruptible
power supply (UPS) batteries.
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enough batteries to power the whole WSC for several minutes—which was a com-
mon practice in the earlyWSCs—Google puts small batteries at the bottom of each
rack. Because UPS is distributed to each rack, the cost is incurred only as racks are
deployed, instead of paying upfront for the UPS capacity of a full WSC. These
batteries are also better than the traditional batteries because they are on the DC
side after the voltage conversions, and they use an efficient charging scheme. In
addition, replacing the 94%-efficient lead batteries with the 99.99%-efficient local
UPS helps to lower the PUE. It’s a very efficient UPS system.

It is comforting that the top of the rack in Figure 6.30 does indeed contain the
Top of Rack switch, which we describe next.

Networking in a Google WSC

The Google WSC network uses a topology called Clos, which is named after the
telecommunications expert who invented it (Clos, 1953). Figure 6.31 shows the
structure of the Google Clos network. It is a multistage network that uses low
port-count (“low radix”) switches, offers fault tolerance, and increases both the
network scale and its bisection bandwidth. Google increases the scale simply by
adding stages to the multistage network. The fault tolerance is provided by its
inherent redundancy, which means a failure of any link has only a small impact
on the overall network capacity.

As Section 6.6 describes, Google builds customer switches from standard
commodity switch chips and uses centralized control for network routing and man-
agement. Every switch is given a consistent copy of the current topology of the
network, which simplifies the more complex routing of a Clos network.
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Edge Aggregation
Block 1

Edge Aggregation
Block 2

Edge Aggregation
Block N

Spine
Block 2

Spine
Block 3

Spine
Block 4

Spine
Block M

Server
racks
with ToR
switches

Figure 6.31 A Clos network has three logical stages containing crossbar switches: ingress, middle, and egress.
Each input to the ingress stage can go through any of the middle stages to be routed to any output of the egress
stage. In this figure, the middle stages are the M Spine Blocks, and the ingress and egress stages are in the N Edge
Activation Blocks. Figure 6.22 shows the changes in the Spine Blocks and the Edge Aggregation Blocks over many
generations of Clos networks in Google WSCs.
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The latest Google switch is Jupiter, which is the switch’s sixth generation.
Figure 6.32 shows the building blocks of the switch, and Figure 6.33 shows the
wiring of the middle blocks housed in racks. All the cables use bundles of optical
fibers.

The commodity switch chip for Jupiter is a 16�16 crossbar using 40 Gbps
links. The Top of Rack switch has four of these chips, which are configured with 48
40-Gbps links to the servers and 16 40-Gbps links to the network fabric, yielding
an oversubscription of just 3:1, which is better than earlier generations. Moreover,
this generation was the first time that servers were offered with 40-Gbps links.

The middle blocks in Figures 6.32 and 6.33 consist of 16 of the switch chips.
They use two stages, with 256 10-Gbps links for the Top of Rack connectivity and
64 40-Gbps links to connect to the rest of the network fabric through the spine.
Each of the chips in the Top of Rack switch connects to eight middle blocks using
dual redundant 10-Gbps links.

Each aggregation block is connected to the spine block with 512 40-Gbps
links. A spine block uses 24 switch chips to offer 128 40-Gbps ports to the aggre-
gation blocks. At the largest scale, they use 64 aggregation blocks to provide dual
redundant links. At this maximum size, the bisection bandwidth is an impressive
1.3 Pbit (1015) per second.

Note that the whole Internet might have a bisection bandwidth of just
0.2 Pbit/s; one reason is that Jupiter was built for a high bisection bandwidth,
but the Internet was not.
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silicon

Middle block (MB)

Spine block

Centauri

16 × 40G
32 × 40G down

128 × 40G down to 64 aggregation blocks

Aggregation block (512 × 40G to 256 spine blocks)

256 × 10G down

32 × 40G up

64 × 40G up

1 × 40G

1 × 40G

2 × 10G

× 32

MB
1
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2
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3
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4

MB
5
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6
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7
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Figure 6.32 Building blocks of the Jupiter Clos network.
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Servers in a Google WSC

Now that we have seen how to power, cool, and communicate, we are finally ready
to see the computers that do the actual work of the WSC.

The example server in Figure 6.34 has two sockets, each containing an 18-core
Intel Haswell processor running at 2.3 GHz (see Section 5.8). The photo shows
16 DIMMs, and these servers are typically deployed with 256 GB total of
DDR3-1600 DRAM. The Haswell memory hierarchy has two 32 KiB L1 caches,
a 256 KiB L2 cache, and 2.5 MiB of L3 cache per core, resulting in a 45 MiB L3
cache. The local memory bandwidth is 44 GB/s with a latency of 70 ns, and the
intersocket bandwidth is 31 GB/s with a latency of 140 ns to remote memory.
Kanev et al. (2015) highlighted the differences between the SPEC benchmark suite
and a WSC workload. An L3 cache is barely needed for SPEC, but it is useful for a
real WSC workload.

The baseline design has a single network interface card (NIC) for a 10 Gbit/s
Ethernet link, although 40 Gbit/s NICs are available. (Other cloud providers

MiddleMiddle
BlockBlock
Middle
Block

Figure 6.33 Middle blocks of the Jupiter switches housed in racks. Four are packed in
a rack. A rack can hold two spine blocks.
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moved to 25 Gbit/s or multiples thereof.) While the photo in Figure 6.34 shows two
SATA disk drives, each of which can contain up to 8 TB, the server also can
be configured with SSD flash drives with 1 TB of storage. The peak power of
the baseline is about 150 watts. Four of these servers can fit in a slot of the rack
in Figure 6.30.

This baseline node is supplemented to offer a storage (or “diskfull”) node. The
second unit contains 12 SATA disks and is connected to the server over PCIe. Peak
power for a storage node is about 300 watts.

Conclusion

In the previous edition, the Google WSC we described had a PUE of 1.23 in 2011.
As of 2017, the average PUE of the whole Google fleet of 16 sites dropped to 1.12,
with the Belgium WSC leading the way with a 1.09 PUE. The energy-saving
techniques include

■ Operating servers at higher temperatures means that air has to be chilled only to
80+°F (27°C) instead of the traditional 64–71°F (18–22°C).

■ A higher target for cold air temperature helps put the facility more often within
the range that can be sustained by cooling towers, which are more energy-
efficient than traditional chillers.

Figure 6.34 An example server from a Google WSC. The Haswell CPUs (2 sockets�18
cores�2 threads¼72 “virtual cores” per machine) have 2.5 MiB last level cache per core
or 45 MiB using DDR3-1600. They use the Wellsburg Platform Controller Hub and have a
TFP of 150 W.
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■ Deploying WSCs in temperate climates to allow use of evaporative cooling
exclusively for large portions of the year.

■ Adding large fans for entire rooms to work in concert with the small fans of the
servers to reduce energy while satisfying worst-case scenarios.

■ Averaging the cooling per server to whole racks of servers by deploying the
cooling coils per row to accommodate warmer and cooler racks.

■ Deploying extensive monitoring hardware and software to measure actual PUE
versus designed PUE improves operational efficiency.

■ Operating more servers than the worst-case scenario for the power distribution
system would suggest. It is safe since it’s statistically improbable that thou-
sands of servers would all be highly busy simultaneously as long as there is
a monitoring system to off-load work in the unlikely case that they did (Fan
et al., 2007; Ranganathan et al., 2006). PUE improves because the facility is
operating closer to its fully designed capacity, where it is at its most efficient
because the servers and cooling systems are not energy-proportional. Such
increased utilization reduces demand for new servers and new WSCs.

It will be interesting to see what innovations remain to further improve the WSC
efficiency so that we are good guardians of our environment. It is hard to imagine
now how engineers might halve the power and cooling overhead of aWSC prior to
the next edition of this book, as they did between the previous edition and this one.

6.8 Fallacies and Pitfalls

Despite WSC being just 15 years old, WSC architects like those at Google have
already uncovered many pitfalls and fallacies about WSCs, often the hard way.
As we said in the introduction, WSC architects are today’s Seymour Crays.

Fallacy Cloud computing providers are losing money.

When AWS was announced, a popular question about cloud computing was
whether it was profitable at the low prices at the time. Amazon Web Services
has grown so large that it must be recorded separately in Amazon’s quarterly
reports. To the surprise of some, AWS has proved to be the most profitable portion
of the company. AWS had $12.2 billion in revenue for 2016, with an operating
margin of 25%, whereas Amazon’s retail operations had an operating margin of
less than 3%. AWS is consistently responsible for three-fourths of Amazon’s
profits.

Pitfall Focusing on average performance instead of 99th percentile performance.

As Dean and Barroso (2013) observed, developers of WSC services worry about
the tail more than they care about the mean. If some customers get terrible perfor-
mance, that experience can drive them away to a competitor, and they’ll never
return.
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Pitfall Using too wimpy a processor when trying to improve WSC cost-performance.

Amdahl's Law still applies toWSC. There will be some serial work for each request
and that can increase request latency if this work runs on a slow server (H€olzle,
2010; Lim et al., 2008). If the serial work increases latency, then the cost of using
a wimpy processor must include the software development costs to optimize the
code to return it to the lower latency. The larger number of threads of many slow
servers can also be more difficult to schedule and load balance, and thus the var-
iability in thread performance can lead to longer latencies. When required to wait
for the longest task, a 1-in-1000 chance of bad scheduling is probably not an issue
with 10 tasks, but problematic with 1000 tasks.

Many smaller servers can also lead to lower utilization because it’s clearly
easier to schedule fewer things. Finally, even some parallel algorithms get
less efficient when the problem is partitioned too finely. The Google rule of
thumb is to use the low-end range of server class computers (Barroso and
H€olzle, 2009).

As a concrete example, Reddi et al. (2010) compared embedded microproces-
sors (Atom) and server microprocessors (Nehalem Xeon) running the Bing search
engine. They found that the latency of a query was about three times longer on
Atom than on Xeon. Moreover, the Xeon was more robust. As load increases
on Xeon, quality of service degrades gradually and modestly. The Atom design
quickly violates its quality-of-service target as it tries to absorb additional load.
Although the Atom design is more energy-efficient, the response time affects rev-
enue, and the revenue loss is likely much greater than the cost savings of less
energy. Energy-efficient designs that cannot match the response-time goals are
unlikely to be deployed; we’ll see another version of this pitfall lesson in the next
chapter (Section 7.9).

This behavior translates directly into search quality. Given the importance of
latency to the user, as Figure 6.12 suggests, the Bing search engine uses multiple
strategies to refine search results if the query latency has not yet exceeded a cutoff
latency. The lower latency of the larger Xeon nodes means they can spend more
time refining search results. Thus, even when the Atom had almost no load, it gave
worse answers in 1% of the queries than Xeon. At normal loads, 2% of the answers
were worse.

Kanev et al. (2015) has more recent, yet consistent, results.

Pitfall Inconsistent measure of PUE by different companies.

Google’s PUE measurements start from the power before it reaches the substa-
tion. Some measure at the entrance to the WSC, which skips voltage step downs
that represent a 6% loss. There will also be different results depending on the
season of the year if the WSC relies on the atmosphere to help cool the system.
Finally, some report the design goal of the WSC instead of measuring the result-
ing system. The most conservative and best PUE measurement is a running
average of the past 12 months of the measured PUE, starting from the feed
of the utility.
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Fallacy Capital costs of the WSC facility are higher than for the servers that it houses.

Although a quick look at Figure 6.13 on page 453 might lead one to that conclu-
sion, that quick glimpse ignores the length of amortization for each part of the full
WSC. However, the facility lasts 10–15 years, whereas the servers need to be
repurchased every 3 or 4 years. Using the amortization times in Figure 6.13 of
10 years and 3 years, respectively, the capital expenditures over a decade are
$72 million for the facility and 3.3�$67 million, or $221 million, for servers.
Thus, the capital costs for servers in a WSC over a decade are a factor of three
higher than for the WSC facility.

Pitfall Trying to save power with inactive low power modes versus active low
power modes.

Figure 6.3 on page 441 shows that the average utilization of servers is between
10% and 50%. Given the concern about operational costs of a WSC from
Section 6.4, one would think low power modes would be a huge help.

As Chapter 1 mentions, DRAMs or disks cannot be accessed in these inactive
low power modes, so they must be returned to fully active mode to read or write, no
matter how low the rate. The pitfall is that the time and energy required to return to
fully active mode make inactive low power modes less attractive. Figure 6.3 shows
that almost all servers average at least 10% utilization, so long periods of low
activity might be expected, but not long periods of inactivity (Lo et al., 2014).

In contrast, processors still run in lower power modes at a small multiple of
the regular rate, so active low power modes are much easier to use. Note that
the time to move to fully active mode for processors is also measured in microsec-
onds, so active low power modes also address the latency concerns about low
power modes.

Fallacy Given improvements in DRAM dependability and the fault tolerance of WSC
systems software, there is no need to spend extra for ECC memory in a WSC.

BecauseECCadds8bits to every 64bits ofDRAM,potentially a ninth of theDRAM
costs could be saved by eliminating error-correcting code (ECC), especially since
measurements of DRAM have claimed failure rates of 1000–5000 FIT (failures
per billion hours of operation) per megabit (Tezzaron Semiconductor, 2004).

Schroeder et al. (2009) studied measurements of the DRAMs with ECC pro-
tection at the majority of Google’s WSCs, which was surely many hundreds of
thousands of servers, over a 2.5-year period. They found 15–25 times higher
FIT rates than had been published, or 25,000–70,000 failures per megabit. Failures
affected more than 8% of DIMMs, and the average DIMM had 4000 correctable
errors and 0.2 uncorrectable errors per year. Measured at the server, about a third
experienced DRAM errors each year, with an average of 22,000 correctable errors
and 1 uncorrectable error per year. That is, for one-third of the servers, one memory
error was corrected every 2.5 h. Note that these systems used the more powerful
Chipkill codes rather than the simpler SECDED codes. If the easier scheme had
been used, the uncorrectable error rates would have been 4–10 times higher.
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In aWSC that had only parity error protection, the servers would have to reboot
for each memory parity error. If the reboot time were 5 min, one-third of the
machines would spend 20% of their time rebooting! Such behavior would lower
the performance of the expensive facility by about 6%. Moreover, these systems
would suffer many uncorrectable errors without operators being notified that they
occurred.

In the early years, Google used DRAM that did not even have parity protection.
In 2000, during testing before shipping the next release of the search index, it
started suggesting random documents in response to test queries (Barroso and
H€olzle, 2009). The reason was a stuck-at-zero fault in some DRAMs, which cor-
rupted the new index. Google added consistency checks to detect such errors in the
future. As WSC grew in size and as ECC DIMMs became more affordable, ECC
became the standard in Google WSCs. ECC has the added benefit of making it
much easier to find broken DIMMs during repair.

Such data suggest why the Fermi GPU (Chapter 4) adds ECC to its memory
where its predecessors didn’t even have parity protection. Moreover, these FIT
rates cast doubts on efforts to use the Intel Atom processor in a WSC—because
of its improved power efficiency—since the chip set did not support ECC DRAM.

Pitfall Coping effectively with microsecond delays as opposed to nanosecond
or millisecond delays.

Barroso et al. (2017) point out that modern computer systems make it easy for pro-
grammers to mitigate latencies in the nanosecond and millisecond timescales (such
as cache and DRAM accesses at tens of nanoseconds and disk accesses at a few
milliseconds) but that such systems significantly lack support for microsecond-
scale events. Programmers get a synchronous interface to the memory hierarchy,
with hardware doing heroic work so that such accesses appear consistent and
coherent (Chapter 2). Operating systems offer programmers a similar synchronous
interface for a disk read, with many lines of OS code enabling the safe switching to
another process while waiting for the disk and then returning again to the original
process when the data is ready. We need new mechanisms to cope with the micro-
second delays of memory technologies like Flash or the fast network interfaces like
100 Gbit/s Ethernet.

Fallacy Turning off hardware during periods of low activity improves cost-performance
of a WSC.

Figure 6.14 on page 454 shows that the cost of amortizing the power distribution
and cooling infrastructure is 50% higher than the entire monthly power bill. Thus,
although it certainly would save some money to compact workloads and turn off
idle machines, even if half the power were saved, the monthly operational bill
would be reduced only by 7%. There would also be practical problems to overcome
because the extensive WSC monitoring infrastructure depends on being able to
poke equipment and see it respond. Another advantage of energy proportionality
and active low power modes is that they are compatible with the WSC monitoring
infrastructure, which allows a single operator to be responsible for more than 1000
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servers. Note also that preventive maintenance is one of the important tasks that
take place during idle time.

The conventional WSC wisdom is to run other valuable tasks during periods of
little activity to recoup the investment in power distribution and cooling. A prime
example is the batchMapReduce jobs that create indices for search. Another exam-
ple of getting value from meager utilization is spot pricing on AWS, which the
example in Figure 6.17 on page 461 illustrates. AWS users who are flexible about
when their tasks are run can save up to a factor of four for computation by letting
AWS schedule the tasks more flexibly using spot instances, such as when theWSC
would otherwise have low utilization.

6.9 Concluding Remarks

Inheriting the title of building the world’s biggest computers, computer architects
ofWSCs are designing the large part of the future IT that supports the mobile client
and IoT devices. Many of us use WSCs many times a day, and the number of times
per day and the number of people using WSCs will surely increase in the next
decade. Already more than six billion of the seven billion people on the planet have
cell phone subscriptions. As these devices become Internet-ready, many more
people from around the world will be able to benefit from WSCs.

Moreover, the economies of scale uncovered by WSC have realized the long-
dreamed-of goal of computing as a utility. Cloud computing means anyone any-
where with good ideas and business models can tap thousands of servers to deliver
their vision almost instantly. Of course, there are important obstacles that could
limit the growth of cloud computing around standards, privacy, the rate of growth
of Internet bandwidth, and the pitfalls we mention in Section 6.8, but we foresee
them being addressed so that cloud computing can continue to flourish.

Among the many attractive features of cloud computing is that it offers eco-
nomic incentives for conservation. Whereas it is hard to convince cloud computing
providers to turn off unused equipment to save energy given the cost of the infra-
structure investment, it is easy to convince cloud computing users to give up idle
instances since they are paying for them, whether or not they are doing anything
useful. Similarly, charging by use encourages programmers to use computation,
communication, and storage efficiently, which can be difficult to encourage
without an understandable pricing scheme. The explicit pricing also makes it
possible for researchers to evaluate innovations in cost-performance instead of just
performance, because costs are now easily measured and believable. Finally, cloud
computing means that researchers can evaluate their ideas at the scale of thousands
of computers, which in the past only large companies could afford.

We believe that WSCs are changing the goals and principles of server design,
just as the needs of mobile clients and IoT are changing the goals and principles of
microprocessor design. Both are revolutionizing the software industry, as well.
Performance per dollar and performance per joule drive both mobile client
hardware and theWSC hardware, and parallelism and domain-specific accelerators
are key to delivering on those sets of goals. Architects will play a vital role in both
halves of this exciting future world.
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Looking forward, the end of Moore’s Law and Dennard scaling (Chapter 1)
means that the single-thread performance of the newest processors is not that much
faster than their predecessors, which will likely stretch the lifetimes of the servers
in the WSCs. Thus, the money formerly spent replacing older servers will instead
be used to expand to the cloud, which could mean that the cloud will be even more
economically attractive in the next decade than it is today. The Moore’s Law era
combined with innovations in the design and operation of WSCs caused the
performance-cost-energy curve of WSCs to improve continuously. With the end
of that glorious era, plus the removal of the largest causes of inefficiency in WSCs,
the field will likely need to look to for innovations in computer architecture of the
chips that populate the WSC for sustained improvement, which is the topic of the
next chapter.

6.10 Historical Perspectives and References

Section M.8 (available online) covers the development of clusters that were the
foundation of WSC and of utility computing. (Readers interested in learning more
should start with Barroso et al. (2013) and the blog postings of James Hamilton at
http://perspectives.mvdirona.com plus his talks at the annual Amazon Re-Invent
conference.)

Case Studies and Exercises by Parthasarathy
Ranganathan

Case Study 1: Total Cost of Ownership Influencing
Warehouse-Scale Computer Design Decisions

Concepts illustrated by this case study

■ Total Cost of Ownership (TCO)

■ Influence of Server Cost and Power on the Entire WSC

■ Benefits and Drawbacks of Low-Power Servers

Total cost of ownership is an important metric for measuring the effectiveness of a
warehouse-scale computer (WSC). TCO includes both the CAPEX and OPEX
described in Section 6.4, and reflects the ownership cost of the entire datacenter
to achieve a certain level of performance. In considering different servers,
networks, and storage architectures, TCO is often the most important comparison
metric used by datacenter owners to decide which options are best; however, TCO
is a multidimensional computation that takes into account many different factors.
The goal of this case study is to take a detailed look intoWSCs, to see how different
architectures influence TCO, and to understand how TCO drives operator deci-
sions. This case study will use the numbers from Figures 6.13 and 6.14 and Section
6.4, and assumes that the described WSC achieves the operator’s target level of
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performance. TCO is often used to compare different server options that have mul-
tiple dimensions. The exercises in this case study examine how such comparisons
are made in the context of WSCs and the complexity involved in making the
decisions.

6.1 [5/5/10] <6.2, 6.4> In this chapter, data-level parallelism has been discussed as a
way for WSCs to achieve high performance on large problems. Conceivably, even
greater performance can be obtained by using high-end servers; however, higher
performance servers often come with a nonlinear price increase.

a. [5] <6.4>Assuming servers that are 10% faster at the same utilization, but are
20% more expensive, what is the CAPEX for the WSC?

b. [5] <6.4> If those servers also use 15% more power, what is the OPEX of the
warehouse-scale computer?

c. [10] <6.2, 6.4>Given the speed improvement and power increase, what must
the cost of the new servers be to be comparable to the original cluster? (Hint:
Based on this TCO model, you may have to change the critical load of the
facility.)

6.2 [5/10] <6.4, 6.6, 6.8>To achieve a lower OPEX, one appealing alternative is to
use low-power versions of servers to reduce the total electricity required to run the
servers; however, similar to high-end servers, low-power versions of high-end
components also have nonlinear trade-offs.

a. [5]<6.4, 6.6, 6.8> If low-power server options offered 15% lower power at the
same performance but are 20% more expensive, are they a good trade-off?

b. [10] <6.4, 6.6, 6.8>At what cost do the servers become comparable to the
original cluster? What if the price of electricity doubles?

6.3 [5/10/15]<6.4, 6.6>Servers that have different operating modes offer opportuni-
ties for dynamically running different configurations in the cluster to match work-
load usage. Use the data in Figure 6.35 for the power/performance modes for a
given low-power server.

a. [5] <6.4, 6.6> If a server operator decided to save power costs by running all
servers at medium performance, how many servers would be needed to achieve
the same level of performance?

b. [10] <6.4, 6.6>What are the CAPEX and OPEX of such a configuration?

Mode Performance Power

High 100% 100%

Medium 75% 60%

Low 59% 38%

Figure 6.35 Power–performance modes for low-power servers.
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c. [15] <6.4, 6.6> If there was an alternative where you could purchase a server
that is 20% cheaper but x% slower and uses y% less power, find the perfor-
mance–power curve that provides a TCO comparable to the baseline server.

6.4 [Discussion]<6.4>Discuss the trade-offs and benefits of the two options in Exer-
cise 6.3, assuming a constant workload being run on the servers.

6.5 [Discussion] <6.2, 6.4>Unlike high-performance computing (HPC) clusters,
WSCs often experience significant workload fluctuation throughout the day. Dis-
cuss the trade-offs and benefits of the two options in Exercise 6.3, this time assum-
ing a workload that varies.

6.6 [Discussion] <6.4, 6.7>The TCO model presented so far abstracts away a signif-
icant amount of lower level details. Discuss the impact of these abstractions to the
overall accuracy of the TCO model. When are these abstractions safe to make? In
what cases would greater detail provide significantly different answers?

Case Study 2: Resource Allocation in WSCs and TCO

Concepts illustrated by this case study

■ Server and Power Provisioning within a WSC

■ Time Variance of Workloads

■ Effects of Variance on TCO

Some of the key challenges to deploying efficient WSCs are provisioning
resources properly and utilizing them to their fullest capacity. This problem is com-
plex due to the size of WSCs as well as the potential variance of the workloads
being run. The exercises in this case study show how different uses of resources
can affect TCO. Assume data from Figures 6.13 and 6.14 as appropriate.

6.7 [5/5/10] <6.4>One of the challenges in provisioning a WSC is determining the
proper power load, given the facility size. As described in the chapter, nameplate
power is often a peak value that is rarely encountered.

a. [5] <6.4>Estimate how the per-server TCO changes if the nameplate server
power is 200 W and the cost is $3000.

b. [5] <6.4>Also consider a higher power, but cheaper server option whose
power is 300 W and costs $2000.

c. [10] <6.4>How does the per-server TCO change if the actual average power
usage of the servers is only 70% of the nameplate power?

6.8 [15/10] <6.2, 6.4>One assumption in the TCO model is that the critical load of
the facility is fixed, and the amount of servers fits that critical load. In reality, due to
the variations of server power based on load, the critical power used by a facility
can vary at any given time. Operators must initially provision the datacenter based
on its critical power resources and an estimate of how much power is used by the
datacenter components.
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a. [15]<6.2, 6.4>Extend the TCOmodel to initially provision aWSC based on a
server with a nameplate power of 300 W, but also calculate the actual monthly
critical power used and TCO assuming the server averages 40% utilization and
so consumes only 225 W. How much capacity is left unused?

b. [10] <6.2, 6.4>Repeat this exercise with a 500-W server that averages 20%
utilization and consumes only 300 W.

6.9 [10] <6.4, 6.5>WSCs are often used in an interactive manner with end users, as
mentioned in Section 6.5. This interactive usage often leads to time-of-day fluctu-
ations, with peaks correlating to specific time periods. For example, for Netflix
rentals there is a peak during the evening periods of 8–10 p.m.; the entirety of these
time-of-day effects is significant. Compare the per-server TCO of a datacenter with
a capacity to match the utilization at 4 a.m. compared to 9 p.m.

6.10 [Discussion/15] <6.4, 6.5>Discuss some options to better utilize the excess
servers during the off-peak hours or find ways to save costs. Given the interactive
nature of WSCs, what are some of the challenges to aggressively reducing power
usage?

6.11 [Discussion/25] <6.4, 6.6, 6.8>Propose one possible way to improve TCO by
focusing on reducing server power. What are the challenges to evaluating your pro-
posal? Estimate the TCO improvements based on your proposal. What are some
advantages and drawbacks?

Exercises

6.12 [10/10/10] <6.1, 6.2>One of the important enablers of WSC is ample request-
level parallelism, in contrast to instruction- or thread-level parallelism. This ques-
tion explores the implication of different types of parallelism on computer archi-
tecture and system design.

a. [10] <6.1>Discuss scenarios where improving the instruction- or thread-level
parallelism would provide greater benefits than those achievable through
request-level parallelism.

b. [10] <6.1, 6.2>What are the software design implications of increasing
request-level parallelism?

c. [10] <6.1, 6.2>What are potential drawbacks of increasing request-level
parallelism?

6.13 [Discussion/15/15]<6.2, 6.3>When a cloud computing service provider receives
jobs consisting of multiple Virtual Machines (VMs) (e.g., a MapReduce job),
many scheduling options exist. The VMs can be scheduled in a round-robin man-
ner to spread across all available processors and servers, or they can be consoli-
dated to use as few processors as possible. Using these scheduling options, if a
job with 24 VMs was submitted and 30 processors were available in the cloud
(each able to run up to 3 VMs), round-robin would use 24 processors, while con-
solidated scheduling would use 8 processors. The scheduler can also find available
processor cores at different scopes: socket, server, rack, and an array of racks.
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a. [Discussion] <6.2, 6.3>Assuming that the submitted jobs are all compute-
heavy workloads, possibly with different memory bandwidth requirements,
what are the pros and cons of round-robin versus consolidated scheduling in
terms of power and cooling costs, performance, and reliability?

b. [15]<6.2, 6.3>Assuming that the submitted jobs are all I/O-heavy workloads,
what are the pros and cons of round-robin versus consolidated scheduling, at
different scopes?

c. [15] <6.2, 6.3>Assuming that the submitted jobs are network-heavy work-
loads, what are the pros and cons of round-robin versus consolidated schedul-
ing, at different scopes?

6.14 [15/15/10/10] <6.2, 6.3>MapReduce enables large amounts of parallelism by
having data-independent tasks run onmultiple nodes, often using commodity hard-
ware; however, there are limits to the level of parallelism. For example, for redun-
dancy MapReduce will write data blocks to multiple nodes, consuming disk and,
potentially, network bandwidth. Assume a total dataset size of 300 GB, a network
bandwidth of 1 Gb/s, a 10 s/GB map rate, and a 20 s/GB reduce rate. Also assume
that 30% of the data must be read from remote nodes, and each output file is written
to two other nodes for redundancy. Use Figure 6.6 for all other parameters.

a. [15] <6.2, 6.3>Assume that all nodes are in the same rack. What is the
expected runtime with 5 nodes? 10 nodes? 100 nodes? 1000 nodes? Discuss
the bottlenecks at each node size.

b. [15] <6.2, 6.3>Assume that there are 40 nodes per rack and that any remote
read/write has an equal chance of going to any node. What is the expected run-
time at 100 nodes? 1000 nodes?

c. [10] <6.2, 6.3>An important consideration is minimizing data movement as
much as possible. Given the significant slowdown of going from local to rack
to array accesses, software must be strongly optimized to maximize locality.
Assume that there are 40 nodes per rack, and 1000 nodes are used in theMapRe-
duce job.What is the runtime if remote accesses are within the same rack 20% of
the time? 50% of the time? 80% of the time?

d. [10] <6.2, 6.3>Given the simple MapReduce program in Section 6.2, discuss
some possible optimizations to maximize the locality of the workload.

6.15 [20/20/10/20/20/20] <6.2, 6.3>WSC programmers often use data replication to
overcome failures in the software. Hadoop HDFS, for example, employs three-way
replication (one local copy, one remote copy in the rack, and one remote copy in a
separate rack), but it’s worth examining when such replication is needed.

a. [20] <6.2>Let us assume that Hadoop clusters are relatively small, with 10
nodes or less, and with dataset sizes of 10 TB or less. Using the failure fre-
quency data in Figure 6.1, what kind of availability does a 10-node Hadoop
cluster have with one-, two-, and three-way replications?

b. [20] <6.2>Assuming the failure data in Figure 6.1 and a 1000-node Hadoop
cluster, what kind of availability does it have with one-, two-, and three-way
replications? What can you reason about the benefits of replication, at scale?
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c. [10] <6.2, 6.3>The relative overhead of replication varies with the amount of
data written per local compute hour. Calculate the amount of extra I/O traffic
and network traffic (within and across rack) for a 1000-node Hadoop job that
sorts 1 PB of data, where the intermediate results for data shuffling are written
to the HDFS.

d. [20]<6.2, 6.3>Using Figure 6.6, calculate the time overhead for two- and three-
wayreplications.Using the failure rates shown inFigure6.1,compare theexpected
execution times for no replication versus two- and three-way replications.

e. [20] <6.2, 6.3>Now consider a database system applying replication on logs,
assuming each transaction on average accesses the hard disk once and generates
1 KB of log data. Calculate the time overhead for two- and three-way replica-
tions. What if the transaction is executed in-memory and takes 10 μs?

f. [20] <6.2, 6.3>Now consider a database system with ACID consistency that
requires two network round trips for two-phase commitment. What is the time
overhead for maintaining consistency as well as replications?

6.16 [15/15/20/Discussion] <6.1, 6.2, 6.8>Although request-level parallelism allows
many machines to work on a single problem in parallel, thereby achieving greater
overall performance, one of the challenges is how to avoid dividing the problem
too finely. If we look at this problem in the context of service level agreements
(SLAs), using smaller problem sizes through greater partitioning can require
increased effort to achieve the target SLA. Assume an SLA of 95% of queries
respond at 0.5 s or faster, and a parallel architecture similar to MapReduce that
can launch multiple redundant jobs to achieve the same result. For the following
questions, assume the query–response time curve shown in Figure 6.36. The curve
shows the latency of response, based on the number of queries per second, for a
baseline server as well as a “small” server that uses a slower processor model.
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a. [15] <6.1, 6.2, 6.8>How many servers are required to achieve this SLA,
assuming the query-response time curve shown in Figure 6.36 and the WSC
receiving 30,000 queries per second? How many “small” servers are required
to achieve this SLA, given this response-time probability curve? Looking only
at server costs, how much cheaper must the “small” servers be than the normal
servers to achieve a cost advantage for the target SLA?

b. [15]<6.1, 6.2, 6.8>Often, “small” servers are also less reliable due to cheaper
components. Using the numbers from Figure 6.1, assume that the number of
events due to flaky machines and bad memories increases by 30%. How many
“small” servers are required now? How much cheaper must those servers be
than the standard servers?

c. [20]<6.1, 6.2, 6.8>Now assume a batch processing environment. The “small”
servers provide 30% of the overall performance of the regular servers. Still
assuming the reliability numbers from Exercise 6.15 part (b), howmany “small”
nodes are required to provide the same expected throughput of a 2400-node
array of standard servers, assuming perfect linear scaling of performance to
node size and an average task length of 10 min per node? What if the scaling
is 85%? 60%?

d. [Discussion] <6.1, 6.2, 6.8>Often the scaling is not a linear function, but
instead a logarithmic function. A natural response may be instead to purchase
larger nodes that have more computational power per node to minimize the
array size. Discuss some of the trade-offs with this architecture.

6.17 [10/10/15/Discussion] <6.3, 6.8>One trend in high-end servers is toward the
inclusion of nonvolatile flash memory in the memory hierarchy, either through
solid-state disks (SSDs) or PCI Express-attached cards. Typical SSDs have a band-
width of 250 MB/s and latency of 75 μs, whereas PCIe cards have a bandwidth of
600 MB/s and latency of 35 μs.
a. [10] Take Figure 6.7 and include these points in the local server hierarchy.

Assuming that identical performance scaling factors like DRAM are accessed
at different hierarchy levels, how do these flash memory devices compare when
accessed across the rack? Across the array?

b. [10] Discuss some software-based optimizations that can utilize the new level
of the memory hierarchy.

c. [15] As discussed in “Fallacies and Pitfalls” (Section 6.8), replacing all disks
with SSDs is not necessarily a cost-effective strategy. Consider a WSC operator
that uses it to provide cloud services. Discuss some scenarios where using SSDs
or other flash memory would make sense.

d. [Discussion] Recently, some vendors have discussed new memory tech-
nologies that are much faster than flash. As an example, look up the spec-
ifications for Intel 3D X-point memory and discuss how it would factor in
Figure 6.7.
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6.18 [20/20/Discussion] <6.3>Memory Hierarchy: Caching is heavily used in some
WSC designs to reduce latency, and there are multiple caching options to satisfy
varying access patterns and requirements.

a. [20] Let’s consider the design options for streaming rich media from the Web
(e.g., Netflix). First we need to estimate the number of videos, number of encode
formats per video, and concurrent viewing users. Assume a streaming video pro-
vider that has 12,000 titles for online streaming, each title having at least four
encode formats (at 500, 1000, 1600, and 2200 kbps). Let’s also assume that there
are 100,000 concurrent viewers for the entire site, and an average video is 75 min
long (accounting for both 30-min shows and 2-h videos). Estimate the total
storage capacity, I/O and network bandwidths, and video-streaming-related
computation requirements.

b. [20] What are the access patterns and reference locality characteristics per user,
per video, and across all videos? (Hint: Random versus sequential, good versus
poor temporal and spatial locality, relatively small versus large working set
size.)

c. [Discussion] What movie storage options exist by using DRAM, SSD, and hard
drives? Compare them in performance and TCO. Would new memory technol-
ogies like those in Problem 6.17(d) be useful?

6.19 [Discussion/20/Discussion/Discussion]<6.3>Consider a social networking web-
site with 100 million active users posting updates about themselves (in text and
pictures) as well as browsing and interacting with updates in their social networks.
To provide low latency, Facebook and many other websites use memcached as a
caching layer before the backend storage/database tiers. Assume that at any given
time the average user is browsing megabytes of content, and on any given day the
average user uploads megabytes of content.

a. [20] For the social networking website discussed here, how much DRAM is
needed to host its working set? Using servers each having 96 GB DRAM, esti-
mate how many local versus remote memory accesses are needed to generate a
user’s home page?

b. [Discussion] Now consider two candidate memcached server designs, one
using conventional Xeon processors and the other using smaller cores, such
as Atom processors. Given that memcached requires large physical memory
but has low CPU utilization, what are the pros and cons of these two designs?

c. [Discussion] Today’s tight coupling between memory modules and processors
often requires an increase in CPU socket count in order to provide large memory
support. List other designs to provide large physical memory without propor-
tionally increasing the number of sockets in a server. Compare them based
on performance, power, costs, and reliability.

d. [Discussion] The same user’s information can be stored in both the memcached
and storage servers, and such servers can be physically hosted in different ways.
Discuss the pros and cons of the following server layout in the WSC: (1)
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memcached collocated on the same storage server, (2) memcached and storage
servers on separate nodes in the same rack, or (3) memcached servers on the
same racks and storage servers collocated on separate racks.

6.20 [5/5/10/10/Discussion/Discussion/Discussion] <6.3, 6.5, 6.6>Datacenter Net-
working: MapReduce and WSC are a powerful combination to tackle large-scale
data processing. For this problem, we will assume we sort one petabyte (1 PB) of
records in 6 h using 4000 servers and 48,000 hard drives (Google discussed doing
this in 2008).

a. [5]Derivediskbandwidth fromFigure6.6 andassociated text.Howmanyseconds
does it take to read the data into main memory and write the sorted results back?

b. [5] Assuming each server has two 1 Gb/s Ethernet network interface cards
(NICs) and the WSC switch infrastructure is oversubscribed by a factor of 4,
howmany seconds does it take to shuffle the entire dataset across 4000 servers?

c. [10] Assuming network transfer is the performance bottleneck for petabyte sort,
can you estimate what oversubscription ratio Google has in its datacenter?

d. [10] Now let’s examine the benefits of having 10 Gb/s Ethernet without
oversubscription—for example, using a 48-port 10 Gb/s Ethernet (this was used
by the 2010 Indy sort benchmark winner TritonSort). How long does it take to
shuffle 1 PB of data?

e. [Discussion] Compare the two approaches here: (1) the massive scale-out
approach with high network oversubscription ratio, and (2) a relatively small-
scale system with a high-bandwidth network. What are their potential bottle-
necks? What are their advantages and disadvantages, in terms of scalability
and TCO?

f. [Discussion] Sort and many important scientific computing workloads are
communication-heavy, while many other workloads are not. List three example
workloads that do not benefit from high-speed networking.What EC2 instances
would you recommend to use for these two classes of workloads?

g. [Discussion] Look up the various benchmarks in www.sortbenchmark.org and
recent winners in each category. How do these results match the insights from
the discussion in part (e) above? How does the cloud instance used for the most
recent winner of CloudSort compare with your answer in part (f) above?

6.21 [10/25/Discussion] <6.4, 6.6>Because of the massive scale of WSCs, it is very
important to properly allocate network resources based on the workloads that are
expected to be run. Different allocations can have significant impacts on both the
performance and total cost of ownership.

a. [10] Using the numbers in the spreadsheet detailed in Figure 6.13, what is the
oversubscription ratio at each access-layer switch? What is the impact on TCO
if the oversubscription ratio is cut in half? What if it is doubled?

b. [25] Reducing the oversubscription ratio can potentially improve performance
if a workload is network-limited. Assume a MapReduce job that uses 120
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servers and reads 5 TB of data. Assume the same ratio of read/intermediate/out-
put data as in Figure 6.2, Sep-09, and use Figure 6.6 to define the bandwidths of
the memory hierarchy.When reading data, assume that 50% of data is read from
remote disks; of that, 80% is read from within the rack and 20% is read from
within the array. For intermediate data and output data, assume that 30% of the
data uses remote disks; of that, 90% is within the rack and 10% is within the
array. What is the overall performance improvement when reducing the over-
subscription ratio by half? What is the performance if the oversubscription ratio
is doubled? Calculate the TCO in each case.

c. [Discussion] We are seeing the trend to more cores per system. We are also see-
ing the increasing adoption of optical communication (with potentially higher
bandwidth and improved energy efficiency). How do you think these and other
emerging technology trends will affect the design of future WSCs?

6.22 [5/15/15/20/25/Discussion]<6.5>Realizing the Capability of the Cloud: Imagine
you are the site operation and infrastructure manager of an Alexa.com top site and
are considering using Amazon Web Services (AWS). What factors do you need to
consider in determining whether to migrate to AWS? What services and instance
types could you use, and how much cost could you save? You can use Alexa and
site traffic information (e.g., Wikipedia provides page view stats) to estimate the
amount of traffic received by a top site, or you can take concrete examples from the
Web, such as the following example: http://2bits.com/sites/2bits.com/files/drupal-
single-server-2.8-million-page-views-a-day.pdf. The slides describe an Alexa
#3400 site that receives 2.8 million page views per day, using a single server.
The server has two quad-core Xeon 2.5 GHz processors with 8 GB DRAM and
three 15 K RPM SAS hard drives in a RAID1 configuration, and it costs about
$400 per month. The site uses caching heavily, and the CPU utilization ranges
from 50% to 250% (roughly 0.5–2.5 cores busy).

a. [5] Looking at the available EC2 instances (http://aws.amazon.com/ec2/
instance-types/), what instance types match or exceed the current server
configuration?

b. [15] Looking at the EC2 pricing information (http://aws.amazon.com/ec2/
pricing/), select the most cost-efficient EC2 instances (combinations allowed)
to host the site on AWS. What is the monthly cost for EC2?

c. [15] Now add the costs for IP address and network traffic to the equation, and
suppose the site transfers 100 GB/day in and out on the Internet. What is the
monthly cost for the site now?

d. [20] AWS also offers a micro instance for free for 1 year to new customers and
15 GB bandwidth each for traffic going in and out across AWS. Based on your
estimation of peak and average traffic from your department Web server, can
you host it for free on AWS?
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e. [25] Based on the service characteristics, if a much larger site like Netflix.com
migrates its streaming and encoding infrastructure to AWS, what AWS services
could be used by Netflix and for what purposes?

f. [Discussion] Look at similar offerings from other cloud providers (Google,
Microsoft, Alibaba, etc.). How do the answers to parts (a)–(e) change?

g. [Discussion] “Serverless computing” allows you to build and run higher-level
applications and services without thinking about specific servers. Examples
include AWS Lambda, Google Cloud Functions, Microsoft Azure Functions,
etc. Continuing to wear your site operation and infrastructure manager hat,
when would you consider serverless computing?

6.23 [Discussion/Discussion/20/20/Discussion] <6.4, 6.8>Figure 6.12 shows the
impact of user perceived response time on revenue, and motivates the need to
achieve high-throughput while maintaining low latency.

a. [Discussion] Taking Web search as an example, what are the possible ways of
reducing query latency?

b. [Discussion] What monitoring statistics can you collect to help understand
where time is spent? How do you plan to implement such a monitoring tool?

c. [20] Assuming that the number of disk accesses per query follows a normal dis-
tribution, with an average of 2 and standard deviation of 3, what kind of disk
access latency is needed to satisfy a latency SLA of 0.1 s for 95% of the queries?

d. [20] In-memory caching can reduce the frequencies of long-latency events (e.g.,
accessing hard drives). Assuming a steady-state hit rate of 40%, hit latency of
0.05 s, and miss latency of 0.2 s, does caching help meet a latency SLA of 0.1 s
for 95% of the queries?

e. [Discussion] When can cached content become stale or even inconsistent? How
often can this happen? How can you detect and invalidate such content?

6.24 [15/15/20/Discussion] <6.4, 6.6>The efficiency of typical power supply units
(PSUs) varies as the load changes; for example, PSU efficiency can be about
80% at 40% load (e.g., output 40 W from a 100-W PSU), 75% when the load
is between 20% and 40%, and 65% when the load is below 20%.

a. [15] Assume a power-proportional server whose actual power is proportional to
CPU utilization, with a utilization curve as shown in Figure 6.3. What is the
average PSU efficiency?

b. [15] Suppose the server employs 2 N redundancy for PSUs (i.e., doubles the
number of PSUs) to ensure stable power when one PSU fails. What is the aver-
age PSU efficiency?

c. [20] Blade server vendors use a shared pool of PSUs not only to provide redun-
dancy but also to dynamically match the number of PSUs to the server’s actual
power consumption. The HP c7000 enclosure uses up to six PSUs for a total of
16 servers. In this case, what is the average PSU efficiency for the enclosure of
server with the same utilization curve?

Case Studies and Exercises by Parthasarathy Ranganathan ■ 529

http://Netflix.com


d. [Discussion] Consider the impact of the different efficiency numbers in the con-
text of the broader TCO discussions in Figures 6.13 and 6.14: how do the dif-
ferent design impact the total TCO? Given these, how would you optimize
designs for future warehouse-scale computers?

6.25 [5/Discussion/10/15/Discussion/Discussion/Discussion] <6.4, 6.8>Power
stranding is a term used to refer to power capacity that is provisioned but not used
in a datacenter. Consider the data presented in Figure 6.37 [Fan, Weber, and
Barroso, 2007] for different groups of machines. (Note that what this paper calls
a “cluster” is what we have referred to as an “array” in this chapter.)

a. [5] What is the stranded power at (1) the rack level, (2) the power distribution
unit level, and (3) the array (cluster) level? What are the trends with oversub-
scription of power capacity at larger groups of machines?

b. [Discussion] What do you think causes the differences between power
stranding at different groups of machines?

c. [10] Consider an array-level collection of machines where the total machines
never use more than 72% of the aggregate power (this is sometimes also referred
to as the ratio between the peak-of-sum and sum-of-peaks usage). Using the cost
model in the case study, compute the cost savings from comparing a datacenter
provisioned for peak capacity and one provisioned for actual use.

d. [15]Assume that the datacenter designer chose to include additional servers at the
array level to take advantage of the stranded power. Using the example config-
uration and assumptions in part (a), compute howmanymore servers can now be
included in the warehouse-scale computer for the same total power provisioning.

e. [Discussion] What is needed to make the optimization of part (d) work in a real-
world deployment? (Hint: Think about what needs to happen to cap power in
the rare case when all the servers in the array are used at peak power.)
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f. [Discussion] Two kinds of policies can be envisioned to manage power caps
[Ranganathan et al., 2006]: (1) preemptive policies where power budgets are
predetermined (“don’t assume you can use more power; ask before you
do!”) or (2) reactive policies where power budgets are throttled in the event
of a power budget violation (“use as much power as needed until told you
can’t!”). Discuss the trade-offs between these approaches and when you would
use each type.

g. [Discussion] What happens to the total stranded power if systems become more
energy-proportional (assume workloads similar to that of Figure 6.4)?

6.26 [5/20/Discussion] <6.4, 6.7>Section 6.7 discussed the use of per-server battery
sources in the Google design. Let us examine the consequences of this design.

a. [5] Assume that the use of a battery as a mini-server-level UPS is 99.99% effi-
cient and eliminates the need for a facility-wide UPS that is only 92% efficient.
Assume that substation switching is 99.7% efficient and that the efficiency for
the PDU, step-down stages, and other electrical breakers are 98%, 98%, and
99%, respectively. Calculate the overall power infrastructure efficiency
improvements from using a per-server battery backup.

b. [20] Assume that the UPS is 10% of the cost of the IT equipment. Using the rest
of the assumptions from the cost model in the case study, what is the break-even
point for the costs of the battery (as a fraction of the cost of a single server) at
which the total cost of ownership for a battery-based solution is better than that
for a facility-wide UPS?

c. [Discussion] What are the other trade-offs between these two approaches? In
particular, how do you think the manageability and failure model will change
across these two different designs?

6.27 [5/5/Discussion] <6.4>For this exercise, consider a simplified equation for the
total operational power of a WSC as follows:

Total operational power¼ 1 +Cooling inefficiencymultiplierð Þ*IT equipment power:

a. [5] Assume an 8 MW datacenter at 80% power usage, electricity costs of $0.10
per kilowatt-hour, and a cooling-inefficiency multiplier of 0.8. Compare the
cost savings from (1) an optimization that improves cooling efficiency by
20%, and (2) an optimization that improves the energy efficiency of the IT
equipment by 20%.

b. [5] What is the percentage improvement in IT equipment energy efficiency
needed tomatch the cost savings from a 20% improvement in cooling efficiency?

c. [Discussion/10] What conclusions can you draw about the relative importance
of optimizations that focus on server energy efficiency and cooling energy
efficiency?

6.28 [5/5/Discussion] <6.4>As discussed in this chapter, the cooling equipment in
WSCs can themselves consume a lot of energy. Cooling costs can be lowered
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by proactively managing temperature. Temperature-aware workload placement is
one optimization that has been proposed to manage temperature to reduce cooling
costs. The idea is to identify the cooling profile of a given room and map the hotter
systems to the cooler spots, so that at the WSC level the requirements for overall
cooling are reduced.

a. [5] The coefficient of performance (COP) of a computer room air conditioning
unit (CRAC) is a measure of its efficiency, and is defined as the ratio of heat
removed (Q) to the amount of work necessary (W) to remove that heat. The
COP of a CRAC unit increases with the temperature of the air the CRAC unit
pushes into the plenum. If air returns to the CRAC unit at 20°C and we remove
10 KW of heat with a COP of 1.9, howmuch energy do we expend in the CRAC
unit? If it takes a COP of 3.1 to cool the same volume of air, but the air is
returned at 25°C, how much energy do we now expend in the CRAC unit?

b. [5] Assume a workload distribution algorithm is able to match the hot work-
loads well with the cool spots to allow the computer room air-conditioning
(CRAC) unit to be run at a higher temperature to improve cooling efficiencies
like in the exercise above. What is the power savings between the two cases
described above?

c. [Discussion] Given the scale ofWSC systems, power management can be a com-
plex, multifaceted problem. Optimizations to improve energy efficiency can be
implemented in hardware and in software, at the system level, and at the cluster
level for the IT equipment or the cooling equipment, etc. It is important to con-
sider these interactions when designing an overall energy-efficiency solution for
the WSC. Consider a consolidation algorithm that looks at server utilization and
consolidates different workload classes on the same server to increase server uti-
lization (this can potentially have the server operating at a higher energy effi-
ciency if the system is not energy-proportional). How would this optimization
interact with a concurrent algorithm that tried to use different power states (see
ACPI, Advanced Configuration Power Interface, for some examples)? What
other examples can you think of where multiple optimizations can potentially
conflict with one another in a WSC? How would you solve this problem?

6.29 [5/10/15/20] <6.2, 6.6>Energy proportionality (sometimes also referred to as
energy scale-down) is the attribute of the system to consume no power when idle,
but more importantly gradually consume more power in proportion to the activity
level and work done. In this exercise, we will examine the sensitivity of energy
consumption to different energy proportionality models. In the exercises below,
unless otherwise mentioned, use the data in Figure 6.4 as the default.

a. [5] A simple way to reason about energy proportionality is to assume linearity
between activity and power usage. Using just the peak power and idle power
data from Figure 6.4 and a linear interpolation, plot the energy-efficiency trends
across varying utilizations. (Energy efficiency is expressed as performance per
watt.) What happens if idle power (at 0% activity) is half of what is assumed in
Figure 6.4? What happens if idle power is zero?
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b. [10] Plot the energy-efficiency trends across varying activities, but use the data
from column 3 of Figure 6.4 for power variation. Plot the energy efficiency
assuming that the idle power (alone) is half of what is assumed in Figure
6.4. Compare these plots with the linear model in the previous exercise. What
conclusions can you draw about the consequences of focusing purely on idle
power alone?

c. [15] Assume the system utilization mix in column 7 of Figure 6.4. For simplic-
ity, assume a discrete distribution across 1000 servers, with 109 servers at
0% utilization, 80 servers at 10% utilization, etc. Compute the total performance
and total energy for this workload mix using the assumptions in part (a) and part
(b).

d. [20] One could potentially design a system that has a sublinear power versus
load relationship in the region of load levels between 0% and 50%. This would
have an energy-efficiency curve that peaks at lower utilizations (at the expense
of higher utilizations). Create a new version of column 3 from Figure 6.4 that
shows such an energy-efficiency curve. Assume the system utilization mix in
column 7 of Figure 6.4. For simplicity, assume a discrete distribution across
1000 servers, with 109 servers at 0% utilization, 80 servers at 10% utilizations,
etc. Compute the total performance and total energy for this workload mix.

6.30 [15/20/20] <6.2, 6.6>This exercise illustrates the interactions of energy propor-
tionality models with optimizations such as server consolidation and energy-
efficient server designs. Consider the scenarios shown in Figures 6.38 and 6.39.

a. [15] Consider two servers with the power distributions shown in Figure 6.38: case
A (the server considered in Figure 6.4) and case B (a less energy-proportional but
more energy-efficient server than case A). Assume the system utilization mix in
column 7 of Figure 6.4. For simplicity, assume a discrete distribution across 1000
servers, with 109 servers at 0% utilization, 80 servers at 10% utilizations, etc., as

Activity (%) 0 10 20 30 40 50 60 70 80 90 100

Power, case A (W) 181 308 351 382 416 451 490 533 576 617 662

Power, case B (W) 250 275 325 340 395 405 415 425 440 445 450

Figure 6.38 Power distribution for two servers.

Activity (%) 0 10 20 30 40 50 60 70 80 90 100

No. servers, case A and B 109 80 153 246 191 115 51 21 15 12 8

No. servers, case C 504 6 8 11 26 57 95 123 76 40 54

Figure 6.39 Utilization distributions across cluster, without and with consolidation.
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shown in row 1 of Figure 6.39. Assume performance variation based on column 2
of Figure 6.4. Compare the total performance and total energy for this workload
mix for the two server types.

b. [20] Consider a cluster of 1000 servers with data similar to the data shown in
Figure 6.4 (and summarized in the first rows of Figures 6.38 and 6.39).What are
the total performance and total energy for the workload mix with these assump-
tions? Now assume that we were able to consolidate the workloads to model the
distribution shown in case C (second row of Figure 6.39). What are the total
performance and total energy now? How does the total energy compare with
a system that has a linear energy-proportional model with idle power of zero
watts and peak power of 662 W?

c. [20] Repeat part (b), but with the power model of server B, and compare with the
results of part (a).

6.31 [10/Discussion] <6.2, 6.4, 6.6>System-Level Energy Proportionality Trends:
Consider the following breakdowns of the power consumption of a server:

CPU, 50%; memory, 23%; disks, 11%; networking/other, 16%
CPU, 33%; memory, 30%; disks, 10%; networking/other, 27%

a. [10] Assume a dynamic power range of 3.0� for the CPU (i.e., the power con-
sumption of the CPU at idle is one-third that of its power consumption at peak).
Assume that the dynamic range of the memory systems, disks, and the network-
ing/other categories above are, respectively, 2.0�, 1.3�, and 1.2�. What is the
overall dynamic range for the total system for the two cases?

b. [Discussion/10] What can you learn from the results of part (a)? How would we
achieve better energy proportionality at the system level? (Hint: Energy propor-
tionality at a system level cannot be achieved through CPU optimizations alone,
but instead requires improvement across all components.)

6.32 [30] <6.4>Pitt Turner IV et al. [2008] presented a good overview of datacenter
tier classifications. Tier classifications define site infrastructure performance. For
simplicity, consider the key differences as shown in Figure 6.40 (adapted from Pitt
Turner IV et al. [2008]). Using the TCOmodel in the case study as a guiding frame-
work, compare the cost implications of the different tiers shown.

6.33 [Discussion]<6.4>Based on the observations in Figures 6.12 and 6.13, what can
you say qualitatively about the trade-offs between revenue loss from downtime and
costs incurred for uptime?

6.34 [15/Discussion] <6.4>Some recent studies have defined a metric called TPUE,
which stands for “true PUE” or “total PUE.” TPUE is defined as PUE * SPUE.
PUE, the power utilization effectiveness, is defined in Section 6.4 as the ratio of
the total facility power over the total IT equipment power. SPUE, or server PUE,
is a new metric analogous to PUE, but instead applied to computing equipment.
SPUE is defined as the ratio of total server input power to its useful power, where
useful power is defined as the power consumed by the electronic components
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directly involved in the computation: motherboard, disks, CPUs, DRAM, I/O cards,
and so on. In other words, the SPUE metric captures inefficiencies associated with
the power supplies, voltage regulators, and fans housed on a server.

a. [15] <6.4>Consider a design that uses a higher supply temperature for the
computer room air conditioning (CRAC) units. The efficiency of the CRAC
unit is approximately a quadratic function of the temperature, and this design
therefore improves the overall PUE, let’s assume by 7%. (Assume baseline
PUE of 1.7.) However, the higher temperature at the server level triggers the
on-board fan controller to operate the fan at much higher speeds. The fan power
is a cubic function of speed, and the increased fan speed leads to a degradation
of SPUE. Assume a fan power model:

Fan power¼ 284*ns*ns*ns�75*ns*ns,

where ns is the normalized fan speed=fan speed in rpm/18,000 and a baseline
server power of 350 W. Compute the SPUE if the fan speed increases from (1)
10,000–12,500 rpm and (2) 10,000–18,000 rpm. Compare the PUE and TPUE
in both these cases. (For simplicity, ignore the inefficiencies with power deliv-
ery in the SPUE model.)

b. [Discussion]Part (a) illustrates that,while PUE is anexcellentmetric to capture the
overhead of the facility, it does not capture the inefficiencies within the IT equip-
ment itself. Can you identify another design where changes to the TPUE are
potentially lower than the changes to traditional PUE? (Hint: See Exercise 6.26.)

6.35 [Discussion/30/Discussion]<6.2>Two benchmarks provide a good starting point
for energy-efficiency accounting in servers—the SPECpower_ssj2008 benchmark
(available at http://www.spec.org/power_ssj2008/) and the JouleSort metric
(available at http://sortbenchmark.org/ ).

a. [Discussion] <6.2>Look up the descriptions of the two benchmarks. How are
they similar? How are they different? What would you do to improve these
benchmarks to better address the goal of improving WSC energy efficiency?

Tier 1 Single path for power and cooling distributions, without 
redundant components

99.0%

Tier 2 (N + 1) redundancy = two power and cooling distribution 
paths

99.7%

Tier 3 (N + 2) redundancy = three power and cooling distribution 
paths for uptime even during maintenance

99.98%

Tier 4 Two active power and cooling distribution paths, with 
redundant components in each path, to tolerate any single 
equipment failure without impacting the load

99.995%

Figure 6.40 Overview of data center tier classifications. (Adapted from Pitt Turner IV
et al. [2008].).
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b. [30]<6.2> JouleSort measures the total system energy to perform an out-of-core
sort and attempts to derive a metric that enables the comparison of systems rang-
ing from embedded devices to supercomputers. Look up the description of the
JouleSort metric at http://sortbenchmark.org. Download a publicly available
version of the sort algorithm and run it on different classes ofmachines—a laptop,
a PC, a mobile phone, etc.—or with different configurations. What can you learn
from the JouleSort ratings for different setups?

c. [Discussion] <6.2>Consider the system with the best JouleSort rating from
your experiments above. How would you improve the energy efficiency? For
example, try rewriting the sort code to improve the JouleSort rating. What does
running sort in the cloud do to energy efficiency?

6.36 [10/10/15] <6.1, 6.2>Figure 6.1 is a listing of outages in an array of servers.
When dealing with the large scale of WSCs, it is important to balance cluster
design and software architectures to achieve the required uptime without incurring
significant costs. This question explores the implications of achieving availability
through hardware only.

a. [10] <6.1, 6.2>Assuming that an operator wishes to achieve 95% availability
through server hardware improvements alone, how many events of each type
would have to be reduced? For now, assume that individual server crashes
are completely handled through redundant machines.

b. [10]<6.1, 6.2>How does the answer to part (a) change if the individual server
crashes are handled by redundancy 50% of the time? 20% of the time? None of
the time?

c. [15] <6.1, 6.2>Discuss the importance of software redundancy to achieving a
high level of availability. If a WSC operator considered buying machines that
were cheaper but 10% less reliable, what implications would this have on the soft-
ware architecture?What are the challenges associated with software redundancy?

d. [Discussion] <6.1>Discuss the importance of eventual consistency in how
warehouse-scale computers can scale.

6.37 [15] <6.1, 6.8>Look up the current prices of standard DDR4 DRAM versus
DDR4 DRAM that has error-correcting code (ECC). What is the increase in price
per bit for achieving the higher reliability that ECC provides? Using the DRAM
prices alone, and the data provided in Section 6.8, what is the uptime per dollar
of a WSC with non-ECC versus ECC DRAM?

6.38 [5/Discussion] <6.1, 6.8>WSC Reliability and Manageability Concerns:

a. [5] Consider a cluster of servers costing $2000 each. Assuming an annual fail-
ure rate of 5%, an average of an hour of service time per repair, and replacement
parts requiring 10% of the system cost per failure, what is the annual mainte-
nance cost per server? Assume an hourly rate of $100 per hour for a service
technician.
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b. [Discussion] Comment on the differences between this manageability model
versus that in a traditional enterprise datacenter with a large number of small-
or medium-sized applications each running on its own dedicated hardware
infrastructure.

c. [Discussion] Discuss the trade-offs in having heterogeneous machines in a
warehouse-scale computer.

6.39 [Discussion] <6.4, 6.7, 6.8>The OpenCompute project at www.opencompute.
org provides a community to design and share efficient designs for warehouse-
scale computers. Look at some of the recently proposed designs. How do they
compare with the design trade-offs discussed in this chapter? How do the designs
differ from the Google case study discussed in Section 6.7?

6.40 [15/15] <6.3, 6.4, 6.5>Assume that the MapReduce job from Page #438 in Sec-
tion 6.2 is executing a task with 2 4̂0 bytes of input data, 2 3̂7 bytes of intermediate
data, and 2 3̂0 bytes of output data. This job is entirely memory/storage bound, so
its performance can be quantified by the DRAM/Disk bandwidth of Figure 6.6.

a. Howmuch does the job cost to run on m4.16xlarge andm4.large in Figure 6.15?
Which EC2 instance provides better performance? Which EC2 instance pro-
vides better cost?

b. How much would the job cost if an SSD was added to the system, as in m3.
medium? How do the performance and cost of m3.medium compare with
the best instance from part (a) above?

6.41 <6.1, 6.4> [5/5/10/Discussion] Imagine you have created a web service that runs
very well (responds within 100 ms latency) 99% of the time, and has performance
issues 1% of the time (maybe the CPU went into a lower power state and the
response took 1000 ms, etc.).

a. [5] Your service grows popular, and you now have 100 servers and your com-
putation has to touch all these servers to handle the user request. What is the
percentage of time your query is likely to have a slow response time, across
100 servers?

b. [5] Instead of “two nines” (99%) single server latency SLA, how many “nines”
do we need to have for the single server latency SLA so that the cluster latency
SLA has bad latencies only 10% of the time or lower?

c. [10] How do the answers to parts (a) and (b) change if we have 2000 servers?

d. [Discussion] Section 6.4 (page 452) discusses “tail-tolerant” designs. What
kind of design optimizations would you need to make in your web service
(Hint: Look at the “Tail at Scale” paper from Dean and Barroso [2013]).
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7
Domain-Specific Architectures

Moore’s Law can’t continue forever … We have another 10 to
20 years before we reach a fundamental limit

Gordon Moore,
Intel Co-Founder (2005)

Computer Architecture. https://doi.org/10.1016/B978-0-12-811905-1.00007-9
© 2019 Elsevier Inc. All rights reserved.
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7.1 Introduction

Gordon Moore not only predicted the amazing growth of transistors per chip in
1965, but the opening chapter quote shows that he also predicted its demise
50 years later. As evidence, Figure 7.1 shows that even the company he
founded—which for decades proudly used Moore’s Law as a guideline for capital
investment—is slowing its development of new semiconductor processes.

During the semiconductor boom time, architects rode Moore’s Law to create
novel mechanisms that could turn the cornucopia of transistors into higher perfor-
mance. The resources for a five-stage pipeline, 32-bit RISC processor—which
needed as little as 25,000 transistors in the 1980s—grew by a factor of 100,000
to enable features that accelerated general-purpose code on general-purpose
processors, as earlier chapters document:

■ 1st-level, 2nd-level, 3rd-level, and even 4th-level caches

■ 512-bit SIMD floating-point units

■ 15+ stage pipelines

■ Branch prediction

■ Out-of-order execution

■ Speculative prefetching

■ Multithreading

■ Multiprocessing

These sophisticated architectures targeted million-line programs written in effi-
cient languages like C++. Architects treated such code as black boxes, generally
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Figure 7.1 Time before new Intel semiconductor process technology measured
in nm. The y-axis is log scale. Note that the time stretched previously from about
24 months per new process step to about 30 months since 2010.
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without understanding either the internal structure of the programs or even what
they were trying to do. Benchmark programs like those in SPEC2017 were just
artifacts to measure and accelerate. Compiler writers were the people at the
hardware-software interface, which dates back to the RISC revolution in the
1980s, but they have limited understanding of the high-level application behavior;
that’s why compilers cannot even bridge the semantic gap between C or C++ and
the architecture of GPUs.

As Chapter 1 described, Dennard scaling ended much earlier than Moore’s
Law. Thus more transistors switching now means more power. The energy budget
is not increasing, and we’ve already replaced the single inefficient processor with
multiple efficient cores. Hence, we have nothing left up our sleeves to continue
major improvements in cost-performance and energy efficiency for general-
purpose architectures. Because the energy budget is limited (because of electromi-
gration, mechanical and thermal limits of chips), if we want higher performance
(higher operations/second), we need to lower the energy per operation.

Figure 7.2 is another take on the relative energy costs of memory and logic
mentioned in Chapter 1, this time calculated as overhead for an arithmetic instruc-
tion. Given this overhead, minor twists to existing cores may get us 10% improve-
ments, but if we want order-of-magnitude improvements while offering
programmability, we need to increase the number of arithmetic operations per
instruction from one to hundreds. To achieve that level of efficiency, we need a
drastic change in computer architecture from general-purpose cores to domain-
specific architectures (DSAs).

Thus, just as the field switched from uniprocessors to multiprocessors in the
past decade out of necessity, desperation is the reason architects are now working
on DSAs. The new normal is that a computer will consist of standard processors to
run conventional large programs such as operating systems along with domain-
specific processors that do only a narrow range of tasks, but they do them
extremely well. Thus such computers will be much more heterogeneous than
the homogeneous multicore chips of the past.

RISC instruction Overhead 125 pJALU

32-bit addition 7 pJ+

8-bit addition 0.2–0.5 pJ+

SP floating point 15–20 pJ+

D-$Load/Store Overhead 150 pJALU

Figure 7.2 Energy costs in picoJoules for a 90 nm process to fetch instructions or
access a data cache compared to the energy cost of arithmetic operations
(Qadeer et al., 2015).
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Part of the argument is that the preceding architecture innovations from the past
few decades that leveraged Moore’s Law (caches, out-of-order execution, etc.)
may not be a good match to some domains—especially in terms of energy
usage—so their resources can be recycled to make the chip a better match to
the domain. For example, caches are excellent for general-purpose architectures,
but not necessarily for DSAs; for applications with easily predictable memory
access patterns or huge data sets like video that have little data reuse, multilevel
caches are overkill, hording area and energy that could be put to better use. There-
fore the promise of DSAs is both improved silicon efficiency and better energy
efficiency, with the latter typically being the more important attribute today.

Architects probably won’t create a DSA for a large C++ program like a com-
piler as found in the SPEC2017 benchmark. Domain-specific algorithms are
almost always for small compute-intensive kernels of larger systems, such as
for object recognition or speech understanding. DSAs should focus on the subset
and not plan to run the entire program. In addition, changing the code of the bench-
mark is no longer breaking the rules; it is a perfectly valid source of speedup for
DSAs. Consequently, if they are going to make useful contributions, architects
interested in DSA must now shed their blinders and learn application domains
and algorithms.

In addition to needing to expand their areas of expertise, a challenge for
domain-specific architects is to find a target whose demand is large enough to jus-
tify allocating dedicated silicon on an SOC or even a custom chip. The nonrecur-
ring engineering (NRE) costs of a custom chip and supporting software are
amortized over the number of chips manufactured, so it is unlikely to make eco-
nomic sense if you need only 1000 chips.

One way to accommodate smaller volume applications is to use reconfigurable
chips such as FPGAs because they have lower NRE than custom chips and because
several different applications may be able to reuse the same reconfigurable hard-
ware to amortize its costs (see Section 7.5). However, since the hardware is less
efficient than custom chips, the gains from FPGAs are more modest.

Another DSA challenge is how to port software to it. Familiar programming
environments like the C++ programming language and compiler are rarely the
right vehicles for a DSA.

The rest of this chapter provides five guidelines for the design of DSAs and
then a tutorial on our example domain, which is deep neural networks (DNNs).
We chose DNNs because they are revolutionizing many areas of computing today.
Unlike some hardware targets, DNNs are applicable to a wide range of problems,
so we can reuse a DNN-specific architecture for solutions in speech, vision, lan-
guage, translation, search ranking, and many more areas.

We follow with four examples of DSAs: two custom chips for the data center
that accelerate DNNs, an FPGA for the data center that accelerates many domains,
and an image-processing unit designed for personal mobile devices (PMDs). We
then compare the cost-performance of the DSAs along with CPUs and GPUs using
DNN benchmarks, and conclude with a prediction of an upcoming renaissance for
computer architecture.
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7.2 Guidelines for DSAs

Here are five principles that generally guided the designs of the four DSAs we’ll
see in Sections 7.4–7.7. Not only do these five guidelines lead to increased area and
energy efficiency, they also provide two valuable bonus effects. First, they lead to
simpler designs, which reduce the cost of NRE of DSAs (see the fallacy in
Section 7.10). Second, for user-facing applications that are commonplace with
DSAs, accelerators that follow these principles are a better match to the 99th-
percentile response-time deadlines than the time-varying performance optimiza-
tions of traditional processors, as we will see in Section 7.9. Figure 7.3 shows
how the four DSAs followed these guidelines.

1. Use dedicated memories to minimize the distance over which data is moved.
The many levels of caches in general-purpose microprocessors use a great deal
of area and energy trying to move data optimally for a program. For example, a
two-way set associative cache uses 2.5 times as much energy as an equivalent
software-controlled scratchpad memory. By definition, the compiler writers
and programmers of DSAs understand their domain, so there is no need for
the hardware to try to move data for them. Instead, data movement is reduced
with software-controlled memories that are dedicated to and tailored for specific
functions within the domain.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
As Section 7.1 describes, architects turned the bounty from Moore’s Law into
the resource-intensive optimizations for CPUs and GPUs (out-of-order execu-
tion, multithreading, multiprocessing, prefetching, address coalescing, etc.).

Guideline TPU Catapult Crest Pixel Visual Core

Design target Data center ASIC Data center FPGA Data center ASIC PMD ASIC/SOC IP

1. Dedicated
memories

24 MiB Unified Buffer,
4 MiB Accumulators

Varies N.A. Per core: 128 KiB line
buffer, 64 KiB P.E.
memory

2. Larger
arithmetic unit

65,536 Multiply-
accumulators

Varies N.A. Per core: 256 Multiply-
accumulators (512 ALUs)

3. Easy
parallelism

Single-threaded, SIMD,
in-order

SIMD, MISD N.A. MPMD, SIMD, VLIW

4. Smaller data
size

8-Bit, 16-bit integer 8-Bit, 16-bit integer
32-bit Fl. Pt.

21-bit Fl. Pt. 8-bit, 16-bit, 32-bit integer

5. Domain-
specific lang.

TensorFlow Verilog TensorFlow Halide/TensorFlow

Figure 7.3 The four DSAs in this chapter and how closely they followed the five guidelines. Pixel Visual Core typ-
ically has 2–16 cores. The first implementation of Pixel Visual Core does not support 8-bit arithmetic.
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Given the superior understanding of the execution of programs in these nar-
rower domains, these resources are much better spent on more processing units
or larger on-chip memory.

3. Use the easiest form of parallelism that matches the domain.
Target domains forDSAs almost always have inherent parallelism.Thekeydeci-
sions for aDSAare how to take advantage of that parallelismandhow to expose it
to the software. Design theDSA around the natural granularity of the parallelism
of the domain and expose that parallelism simply in the programmingmodel. For
example,with respect to data-level parallelism, if SIMDworks in the domain, it’s
certainly easier for the programmer and the compiler writer than MIMD. Simi-
larly, if VLIW can express the instruction-level parallelism for the domain, the
design can be smaller and more energy-efficient than out-of-order execution.

4. Reduce data size and type to the simplest needed for the domain.
As we will see, applications in many domains are typically memory-bound, so
you can increase the effective memory bandwidth and on-chip memory utiliza-
tion by using narrower data types. Narrower and simpler data also let’s you pack
more arithmetic units into the same chip area.

5. Use a domain-specific programming language to port code to the DSA.
As Section 7.1 mentions, a classic challenge for DSAs is getting applications to
run on your novel architecture. A long-standing fallacy is assuming that your
new computer is so attractive that programmers will rewrite their code just for
your hardware. Fortunately, domain-specific programming languages were
becoming popular even before architects were forced to switch their attention
to DSAs. Examples are Halide for vision processing and TensorFlow for DNNs
(Ragan-Kelley et al., 2013; Abadi et al., 2016). Such languages make porting
applications to your DSAmuch more feasible. As previously mentioned, only a
small, compute-intensive portion of the application needs to run on the DSA in
some domains, which also simplifies porting.

DSAs introduce many new terms, mostly from the new domains but also from
novel architecture mechanisms not seen in conventional processors. As we did
in Chapter 4, Figure 7.4 lists the new acronyms, terms, and short explanations
to aid the reader.

7.3 Example Domain: Deep Neural Networks

Artificial intelligence (AI) is not only the next big wave in computing—it’s the
next major turning point in human history… the Intelligence Revolution will be
driven by data, neural networks and computing power. Intel is committed to
AI [thus]… we’ve added a set of leading-edge accelerants required for the
growth and widespread adoption of AI.

Brian Krzanich,
Intel CEO (2016)
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Area Term Acronym Short explanation

G
en
er
al

Domain-specific
architectures

DSA A special-purpose processor designed for a particular domain. It relies on
other processors to handle processing outside that domain

Intellectual
property block

IP A portable design block that can be integrated into an SOC. They enable a
marketplace where organizations offer IP blocks to others who compose them
into SOCs

System on a chip SOC A chip that integrates all the components of a computer; commonly found in
PMDs

D
ee
p
ne
ur
al

ne
tw
or
ks

Activation — Result of “activating” the artificial neuron; the output of the nonlinear
functions

Batch — A collection of datasets processed together to lower the cost of fetching
weights

Convolutional
neural network

CNN A DNN that takes as inputs a set of nonlinear functions of spatially nearby
regions of outputs from the prior layer, which are multiplied by the weights

Deep neural
network

DNN A sequence of layers that are collections of artificial neurons, which consist of
a nonlinear function applied to products of weights times the outputs of the
prior layer

Inference — The production phase of DNNs; also called prediction

Long short-term
memory

LSTM An RNN well suited to classify, process, and predict time series. It is a
hierarchical design consisting of modules called cells

MultiLayer
perceptron

MLP A DNN that takes as inputs a set of nonlinear functions of all outputs from the
prior layer multiplied by the weights. These layers are called fully connected

Rectified linear
unit

ReLU A nonlinear function that performs f(x)¼max(x,0). Other popular
nonlinear functions are sigmoid and hyperbolic tangent (tanh)

Recurrent neural
network

RNN A DNN whose inputs are from the prior layer and the previous state

Training — The development phase of DNNs; also called learning

Weights — The values learned during training that are applied to inputs; also called
parameters

T
P
U

Accumulators — The 4096 256�32-bit registers (4 MiB) that collect the output of the MMU
and are input to the Activation Unit

Activation unit — Performs the nonlinear functions (ReLU, sigmoid, hyperbolic tangent, max
pool, and average pool). Its input comes from the Accumulators and its output
goes to the Unified Buffer

Matrix multiply
unit

MMU A systolic array of 256�256 8-bit arithmetic units that perform multiply-add.
Its inputs are the Weight Memory and the Unified Buffer, and its output is the
Accumulators

Systolic array — An array of processing units that in lockstep input data from upstream
neighbors, compute partial results, and pass some inputs and results to
downstream neighbors

Unified buffer UB A 24 MiB on-chip memory that holds the activations. It was sized to try to
avoid spilling activations to DRAM when running a DNN

Weight memory — An 8MiB external DRAMchip containing the weights for theMMU.Weights
are transferred to a Weight FIFO before entering the MMU

Figure 7.4 A handy guide to DSA terms used in Sections 7.3–7.6. Figure 7.29 on page 472 has a guide for
Section 7.7.



Artificial intelligence (AI) has made a dramatic comeback since the turn of the cen-
tury. Instead of building artificial intelligence as a large set of logical rules, the
focus switched tomachine learning from example data as the path to artificial intel-
ligence. The amount of data needed to learn was much greater than thought. The
warehouse scale computers (WSCs) of this century, which harvest and store peta-
bytes of information found on the Internet from the billions of users and their
smartphones, supply the ample data. We also underestimated the amount of com-
putation needed to learn from the massive data, but GPUs—which have excellent
single-precision floating-point cost-performance—embedded in the thousands of
servers of WSCs deliver sufficient computing.

One part of machine learning, called DNNs, has been the AI star for the past
five years. Example DNN breakthroughs are in language translation, which DNNs
improved more in a single leap than all the advances from the prior decade (Tung,
2016; Lewis-Kraus, 2016); the switch to DNNs in the past five years reduced the
error rate in an image recognition competition from 26% to 3.5% (Krizhevsky
et al., 2012; Szegedy et al., 2015; He et al., 2016); and in 2016, DNNs enabled
a computer program for the first time to beat a human champion at Go (Silver
et al., 2016). Although many of these run in the cloud, they have also enabled Goo-
gle Translate on smartphones, which we described in Chapter 1. In 2017 new, sig-
nificant DNN results appear nearly every week.

Readers interested in learning more about DNNs than found in this section
should download and try the tutorials in TensorFlow (TensorFlow Tutorials,
2016), or for the less adventurous, consult a free online textbook on DNNs
(Nielsen, 2016).

The Neurons of DNNs

DNNs were inspired by the neuron of the brain. The artificial neuron used for neu-
ral networks simply computes the sum over a set of products of weights or param-
eters and data values that is then put through a nonlinear function to determine its
output. As we will see, each artificial neuron has a large fan-in and a large fan-out.

For an image-processing DNN, the input data would be the pixels of a photo,
with the pixel values multiplied by the weights. Although many nonlinear func-
tions have been tried, a popular one today is simply f(x)¼max(x,0), which
returns 0 if the x is negative or the original value if positive or zero. (This simple
function goes by the complicated name rectified linear unit or ReLU.) The output
of a nonlinear function is called an activation, in that it is the output of the artificial
neuron that has been “activated.”

A cluster of artificial neurons might process different portions of the input, and
the output of that cluster becomes the input to the next layer of artificial neurons. The
layers between the input layer and the output layer are called hidden layers. For
image processing, you can think of each layer as looking for different types of fea-
tures, going from lower-level ones like edges and angles to higher-level ones like
eyes and ears. If the image-processing application was trying to decide if the image
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contained a dog, the output of the last layer could be a probability number between
0 and 1 or perhaps a list of probabilities corresponding to a list of dog breeds.

The number of layers gave DNNs their name. The original lack of data
and computing horsepower kept most neural networks relatively shallow.
Figure 7.5 shows the number of layers for a variety of recent DNNs, the number
of weights, and the number of operations per weight fetched. In 2017 some DNNs
have 150 layers.

Training Versus Inference

The preceding discussion concerns DNNs that are in production. DNN develop-
ment starts by defining the neural network architecture, picking the number and
type of layers, the dimensions of each layer, and the size of the data. Although
experts may develop new neural network architectures, most practitioners will
choose among the many existing designs (e.g., Figure 7.5) that have been shown
to perform well on problems similar to theirs.

Once the neural architecture has been selected, the next step is to learn the
weights associated with each edge in the neural network graph. The weights deter-
mine the behavior of the model. Depending on the choice of neural architecture,
there can be anywhere from thousands to hundreds of millions of weights in a sin-
gle model (see Figure 7.5). Training is the costly process of tuning these weights so
that the DNN approximates the complex function (e.g., mapping from pictures to
the objects in that picture) described by the training data.

This development phase is universally called training or learning, whereas
the production phase has many names: inference, prediction, scoring, implemen-
tation, evaluation, running, or testing. Most DNNs use supervised learning in
that they are given a training set to learn from where the data is preprocessed
in order to have the correct labels. Thus, in the ImageNet DNN competition
(Russakovsky et al., 2015), the training set consists of 1.2 million photos, and
each photo has been labeled as one of 1000 categories. Several of these categories

Name DNN layers Weights Operations/Weight

MLP0 5 20M 200

MLP1 4 5M 168

LSTM0 58 52M 64

LSTM1 56 34M 96

CNN0 16 8M 2888

CNN1 89 100M 1750

Figure 7.5 Six DNN applications that represent 95% of DNN workloads for inference
at Google in 2016, which we use in Section 7.9. The columns are the DNN name, the
number of layers in the DNN, the number of weights, and operations per weight (oper-
ational intensity). Figure 7.41 on page 595 goes into more detail on these DNNs.
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are quite detailed, such as specific breeds of dogs and cats. The winner is deter-
mined by evaluating a separate secret set of 50,000 photos to see which DNN has
the lowest error rate.

Setting the weights is an iterative process that goes backward through the neu-
ral network using the training set. This process is called backpropagation. For
example, because you know the breed of a dog image in the training set, you
see what your DNN says about the image, and then you adjust the weights to
improve the answer. Amazingly, the weights at the start of the training process
should be set to random data, and you just keep iterating until you’re satisfied with
the DNN accuracy using the training set.

For the mathematically inclined, the goal of learning is to find a function that
maps the inputs to the correct outputs over the multilayer neural network architec-
ture. Backpropagation stands for “back propagation of errors.” It calculates a gra-
dient over all the weights as input to an optimization algorithm that tries to
minimize the errors by updating the weights. The most popular optimization
algorithm for DNNs is stochastic gradient descent. It adjusts the weights propor-
tionally to maximize the descent of the gradient obtained from backpropagation.
Readers interested in learning more should see Nielsen (2016) or TensorFlow
Tutorials (2016).

Training can take weeks of computation, as Figure 7.6 shows. The inference
phase is often below 100 ms per data sample, which is a million times less.
Although training takes much longer than a single inference, the total compute time
for inference is a product of the number of customers of the DNN and how
frequently they invoke it.

After training, you deploy your DNN, hoping that your training set is
representative of the real world, and that your DNN will be so popular that
your users will spend much more time employing it than you’ve put into devel-
oping it!

Type of data Problem area

Size of
benchmark’s
training set

DNN
architecture Hardware

Training
time

text [1] Word prediction
(word2vec)

100 billion words
(Wikipedia)

2-layer skip
gram

1 NVIDIA Titan X
GPU

6.2 hours

audio [2] Speech recognition 2000 hours (Fisher
Corpus)

11-layer RNN 1 NVIDIA K1200
GPU

3.5 days

images [3] Image
classification

1 million images
(ImageNet)

22-layer CNN 1 NVIDIA K20
GPU

3 weeks

video [4] activity recognition 1 million videos
(Sports-1M)

8-layer CNN 10 NVIDIA GPUs 1 month

Figure 7.6 Training set sizes and training time for several DNNs (Iandola, 2016).
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There are tasks that don’t have training datasets, such as when trying to predict
the future of some real-world event. Although we won’t cover it here, reinforce-
ment learning (RL) is a popular algorithm for such learning in 2017. Instead of a
training set to learn from, RL acts on the real world and then gets a signal from a
reward function, depending on whether that action made the situation better
or worse.

Although it’s hard to imagine a faster changing field, only three types
of DNNs reign as most popular in 2017: MultiLayer Perceptrons (MLPs),
Convolutional Neural Networks (CNNs), and Recurrent Neural Networks
(RNNs). They are all examples of supervised learning, which rely on
training sets.

Multilayer Perceptron

MLPs were the original DNNs. Each new layer is a set of nonlinear functions F of
weighted sum of all outputs from a prior one yn¼F(W�yn�1). The weighted sum
consists of a vector-matrix multiply of the outputs with the weights (see
Figure 7.7). Such a layer is called fully connected because each output neuron
result depends on all input neurons of the prior layer.

We can calculate the number of neurons, operations, and weights per layer for
each of the DNN types. The easiest is MLP because it is just a vector-matrix

Dim[i]

Dim[i]

Vector matrix multiply

Nonlinear function

Dim[i-1]

D
im

[i-
1]

Layer[i-1] Layer[i]

nlf

VMX Output

Weights

Input

nlf

VMX

Figure 7.7 MLP showing the input Layer[i21] on the left and the output Layer[i] on
the right. ReLU is a popular nonlinear function for MLPs. The dimensions of the input
and output layers are often different. Such a layer is called fully connected because it
depends on all the inputs from the prior layer, even if many of them are zeros. One study
suggested that 44% were zeros, which presumably is in part because ReLU turns neg-
ative numbers into zeros.
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multiply of the input vector times the weights array. Here are the parameters and
the equations to determine weights and operations for inference (we count multiply
and add as two operations):

■ Dim[i]: Dimension of the output vector, which is the number of neurons

■ Dim[i�1]: Dimension of the input vector

■ Number of weights: Dim[i�1]�Dim[i]

■ Operations: 2�Number of weights

■ Operations/Weight: 2

This final term is the operational intensity from the Roofline model discussed in
Chapter 4. We use operations per weight because there can be millions of
weights, which usually don’t fit on the chip. For example, the dimensions of
one stage of an MLP in Section 7.9 has Dim[i�1]¼4096 and Dim[i]¼2048,
so for that layer, the number of neurons is 2048, number of weights is
8,388,608, the number of operations is 16,777,216, and the operational intensity
is 2. As we recall from the Roofline model, low operational intensity makes it
harder to deliver high performance.

Convolutional Neural Network

CNNs are widely used for computer vision applications. As images have a two-
dimensional structure, neighboring pixels are the natural place to look to find rela-
tionships. CNNs take as inputs a set of nonlinear functions from spatially nearby
regions of outputs from the prior layer and then multiplies by the weights, which
reuses the weights many times.

The idea behind CNNs is that each layer raises the level of abstraction of the
image. For example, the first layer might identify only horizontal lines and vertical
lines. The second layer might combine them to identify corners. The next step
might be rectangles and circles. The following layer could use that input to detect
portions of a dog, like eyes or ears. The higher layers would be trying to identify
characteristics of different breeds of dogs.

Each neural layer produces a set of two-dimensional feature maps, where each
cell of the two-dimensional feature map is trying to identify one feature in the cor-
responding area of the input.

Figure 7.8 shows the starting point where a 2�2 stencil computation from the
input image creates the elements of the first feature map. A stencil computation
uses neighboring cells in a fixed pattern to update all the elements of an array.
The number of output feature maps will depend on how many different features
you are trying to capture from the image and the stride used to apply the stencil.

The process is actually more complicated because the image is usually not just
a single, flat two-dimensional layer. Typically, a color image will have three levels
for red, green, and blue. For example, a 2�2 stencil will access 12 elements: 2�2
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of red pixels, 2�2 of green pixels, and 2�2 of blue pixels. In this case, you need
12 weights per output feature map for a 2�2 stencil on three input levels of
an image.

Figure 7.9 shows the general case of an arbitrary number of input and output
feature maps, which occurs after that first layer. The calculation is a three-
dimensional stencil over all the input feature maps with a set of weights to produce
one output feature map.

For the mathematically oriented, if the number of input feature maps and output
feature maps both equal 1 and the stride is 1, then a single layer of a two-dimensional
CNN is the same calculation as a two-dimensional discrete convolution.

As we see in Figure 7.9, CNNs are more complicated than MLPs. Here are the
parameter and the equations to calculate the weights and operations:

■ DimFM[i�1]: Dimension of the (square) input Feature Map

■ DimFM[i]: Dimension of the (square) output Feature Map

■ DimSten[i]: Dimension of the (square) stencil

■ NumFM[i�1]: Number of input Feature Maps

■ NumFM[i]: Number of output Feature Maps

■ Number of neurons: NumFM[i]�DimFM[i]2

Output feature map

Weights

Input image

nlfVMX

Vector matrix multiply

Nonlinear functionnlf

VMX

Figure 7.8 Simplified first step of a CNN. In this example, every group of four pixels of
the input image aremultiplied by the same four weights to create the cells of the output
feature map. The pattern depicted shows a stride of two between the groups of input
pixels, but other strides are possible. To relate this figure to MLP, you can think of each
2�2 convolution as a tiny fully connected operation to produce one point of the output
featuremap. Figure 7.9 shows howmultiple featuremaps turn the points into a vector in
the third dimension.
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■ Number of weights per output Feature Map: NumFM[i�1]�DimSten[i]2

■ Total number of weights per layer: NumFM[i]�Number of weights per output
Feature Map

■ Number of operations per output Feature Map: 2�DimFM[i]2�Number of
weights per output Feature Map

■ Total number of operations per layer: NumFM[i]�Number of operations per
output Feature Map¼2�DimFM[i]2�NumFM[i]�Number of weights per
output Feature Map¼2�DimFM[i]2�Total number of weights per layer

■ Operations/Weight: 2�DimFM[i]2

A CNN in Section 7.9 has a layer with DimFM[i�1]¼28, DimFM[i]¼14, Dim-
Sten[i]¼3, NumFM[i�1]¼64 (number of input feature maps), and NumFM[i]¼
128 (number of output feature maps). That layer has 25,088 neurons, 73,728
weights, does 28,901,376 operations, and has an operational intensity of 392.
As our example indicates, CNN layers generally have fewer weights and greater
operational intensity than the fully connected layers found in MLPs.
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Figure 7.9 CNN general step showing input feature maps of Layer[i21] on the left,
the output feature maps of Layer[i] on the right, and a three-dimensional stencil over
input feature maps to produce a single output feature map. Each output feature map
has its own unique set of weights, and the vector-matrix multiply happens for every one.
The dotted lines show future output feature maps in this figure. As this figure illustrates,
the dimensions and number of the input and output featuremaps are often different. As
with MLPs, ReLU is a popular nonlinear function for CNNs.
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Recurrent Neural Network

The third type of DNN is RNNs, which are popular for speech recognition or lan-
guage translation. RNNs add the ability to explicitly model sequential inputs by
adding state to the DNN model so that RNNs can remember facts. It’s analogous
to the difference in hardware between combinational logic and a state machine. For
example, you might learn the gender of the person, which you would want to pass
along to remember later when translating words. Each layer of an RNN is a col-
lection of weighted sums of inputs from the prior layer and the previous state. The
weights are reused across time steps.

Long short-term memory (LSTM) is by far the most popular RNN today.
LSTMs mitigate a problem that previous RNNs had with their inability to remem-
ber important long-term information.

Unlike the other two DNNs, LSTM is a hierarchical design. LSTM consists of
modules called cells. You can think of cells as templates or macros that are linked
together to create the full DNN model, similar to how layers of an MLP line up to
form a complete DNN model.

Figure 7.10 shows how the LSTM cells are linked together. They are hooked
up from left to right, connecting the output of one cell to the input of the next. They
are also unrolled in time, which runs top down in Figure 7.10. Thus a sentence is
input a word at a time per iteration of the unrolled loop. The long-term and short-
term memory information that gives the LSTM its name is also passed top-down
from one iteration to the next.

Figure 7.11 shows the contents of an LSTM cell. As we would expect from
Figure 7.10, the input is on the left, the output is on the right, the two memory
inputs are at the top, and the two memory outputs are at the bottom.

Each cell does five vector-matrix multiplies using five unique sets of weights.
The matrix multiply on the input is just like theMLP in Figure 7.7. Three others are
called gates in that they gate or limit how much information from one source is
passed along to the standard output or the memory output. The amount of infor-
mation sent per gate is set by their weights. If the weights are mostly zeros or small
values, then little gets through; conversely, if they are mostly large, then the gate
lets most information flow. The three gates are called the input gate, the output
gate, and the forget gate. The first two filter the input and output, and the last
one determines what to forget along the long-term memory path.

The short-term memory output is a vector-matrix multiply using the Short
Term Weights and the output of this cell. The short-term label is applied because
it does not directly use any of the inputs to the cell.

Because the LSTM cell inputs and outputs are all connected together, the size
of the three input-output pairs must be the same. Looking inside the cell, there are
enough dependencies that all of the inputs and outputs are often the same size.
Let’s assume they are all the same size, called Dim.

Even so, the vector-matrix multiplies are not all the same size. The vectors for
the three gate multiplies are 3�Dim, because the LSTM concatenates all three
inputs. The vector for the input multiply is 2�Dim, because the LSTM
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concatenates the input with the short-term memory input as the vector. The vector
for the last multiply is just 1�Dim, because it is just the output.

Now we can finally calculate the weights and operations:

■ Number of weights per cell: 3� (3�Dim�Dim)+(2�Dim�Dim)
+(1�Dim�Dim)¼12�Dim2

■ Number of operations for the 5 vector-matrix multiplies per cell: 2�Number
of weights per cell¼24�Dim2

■ Number of operations for the 3 element-wise multiplies and 1 addition (vectors
are all the size of the output): 4�Dim

■ Total number of operations per cell (5 vector-matrix multiplies and the 4
element-wise operations): 24�Dim2+4�Dim

■ Operations/Weight: �2
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LSTM0 LSTM1 . . . LSTMn“the”T
im

e

LSTM0 LSTM1 . . . LSTMn“time”

LSTM0 LSTM1 . . . LSTMn<end_input>
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<end_output>

Figure 7.10 LSTM cells connected together. The inputs are on the left (English words),
and the outputs are on the right (the translated Spanish words). The cells can be thought
of as being unrolled over time, from top to bottom. Thus the short-term and long-term
memory of LSTM is implemented by passing information top-down between unrolled
cells. They are unrolled enough to translate whole sentences or even paragraphs. Such
sequence-to-sequence translation models delay their output until they get to the end
of the input (Wu et al., 2016). They produce the translation in reverse order, using themost
recent translatedword as input to the next step, so “now is the time” becomes “ahora es el
momento.” (This figure and the next are often shown turned 90 degrees in LSTM litera-
ture, but we’ve rotated them to be consistent with Figures 7.7 and 7.8.)
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Dim is 1024 for one of the six cells of an LSTM in Section 7.9. Its number of
weights is 12,582,912, its number of operations is 25,169,920, and its operational
intensity is 2.0003. Thus LSTMs are like MLPs in that they typically have more
weights and a lower operational intensity than CNNs.
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Figure 7.11 This LSTM cell contains 5 vector-matrix multiplies, 3 element-wise multiplies, 1 element-wise add,
and 6 nonlinear functions. The standard input and short-term memory input are concatenated to form the vector
operand for the input vector-matrix multiply. The standard input, long-term memory input, and short-term memory
input are concatenated to form the vector that is used in three of the other four vector-matrix multiplies. The non-
linear functions for the three gates are Sigmoids f(x)¼1/(1+exp(�x)); the others are hyperbolic tangents. (This figure
and the previous one are often shown turned 90 degrees in LSTM literature, but we’ve rotated them to be consistent
with Figures 7.7 and 7.8.)
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Batches

Because DNNs can have many weights, a performance optimization is to reuse
the weights once they have been fetched from memory across a set of inputs,
thereby increasing effective operational intensity. For example, an image-
processing DNN might work on a set of 32 images at a time to reduce the
effective cost of fetching weights by a factor of 32. Such datasets are called
batches or minibatches. In addition to improving the performance of inference,
backpropagation needs a batch of examples instead of one at a time in order to
train well.

Looking at an MLP in Figure 7.7, a batch can be seen as a sequence of input
row vectors, which you can think of as a matrix with a height dimension that
matches the batch size. A sequence of row vector inputs to the five matrix multi-
plies of LSTMs in Figure 7.11 can also be considered a matrix. In both cases, com-
puting them as matrices instead of sequentially as independent vectors improves
computing efficiency.

Quantization

Numerical precision is less important for DNNs than for many applications. For
example, there is no need for double-precision floating-point arithmetic, which
is the standard bearer of high-performance computing. It’s even unclear that
you need the full accuracy of the IEEE 754 floating-point standard, which aims
to be accurate within one-half of a unit in the last place of the floating-point
significand.

To take advantage of the flexibility in numerical precision, some devel-
opers use fixed point instead of floating point for the inference phase. (Train-
ing is almost always done in floating-point arithmetic.) This conversion is
called quantization, and such a transformed application is said to be quantized
(Vanhoucke et al., 2011). The fixed-point data width is usually 8 or 16 bits,
with the standard multiply-add operation accumulating at twice the width
of the multiplies. This transformation typically occurs after training, and
it can reduce DNN accuracy by a few percentage points (Bhattacharya and
Lane, 2016).

Summary of DNNs

Even this quick overview suggests that DSAs for DNNs will need to perform at
least these matrix-oriented operations well: vector-matrix multiply, matrix-matrix
multiply, and stencil computations. They will also need support for the nonlinear
functions, which include at a minimum ReLU, Sigmoid, and tanh. These modest
requirements still leave open a very large design space, which the next four
sections explore.
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7.4 Google’s Tensor Processing Unit, an Inference Data
Center Accelerator

The Tensor Processing Unit (TPU)1 is Google’s first customASICDSA forWSCs.
Its domain is the inference phase of DNNs, and it is programmed using the Tensor-
Flow framework, which was designed for DNNs. The first TPUwas been deployed
in Google data centers in 2015.

The heart of the TPU is a 65,536 (256�256) 8-bit ALU Matrix Multiply Unit
and a large software-managed on-chip memory. The TPU’s single-threaded, deter-
ministic execution model is a good match to the 99th-percentile response-time
requirement of the typical DNN inference application.

TPU Origin

Starting as far back as 2006, Google engineers had discussions about deploying
GPUs, FPGAs, or custom ASICs in their data centers. They concluded that the
few applications that could run on special hardware could be done virtually for free
using the excess capacity of the large data centers, and it’s hard to improve on free.
The conversation changed in 2013 when it was projected that if people used voice
search for three minutes a day using speech recognition DNNs, it would have
required Google’s data centers to double in order to meet computation demands.
That would be very expensive to satisfy with conventional CPUs. Google then
started a high-priority project to quickly produce a custom ASIC for inference
(and bought off-the-shelf GPUs for training). The goal was to improve cost-
performance by 10� over GPUs. Given this mandate, the TPU was designed, ver-
ified (Steinberg, 2015), built, and deployed in data centers in just 15 months.

TPU Architecture

To reduce the chances of delaying deployment, the TPU was designed to be a
coprocessor on the PCIe I/O bus, which allows it to be plugged into existing
servers. Moreover, to simplify hardware design and debugging, the host server
sends instructions over the PCIe bus directly to the TPU for it to execute, rather
than having the TPU fetch the instructions. Thus the TPU is closer in spirit to
an FPU (floating-point unit) coprocessor than it is to a GPU, which fetches instruc-
tions from its memory.

Figure 7.12 shows the block diagram of the TPU. The host CPU sends TPU
instructions over the PCIe bus into an instruction buffer. The internal blocks are
typically connected together by 256-byte-wide (2048-bits) paths. Starting in the
upper-right corner, the Matrix Multiply Unit is the heart of the TPU. It contains

1This section is based on the paper “In-Datacenter Performance Analysis of a Tensor Processing Unit” Jouppi et al., 2017,
of which one of your book authors was a coauthor.
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256�256 ALUs that can perform 8-bit multiply-and-adds on signed or unsigned
integers. The 16-bit products are collected in the 4 MiB of 32-bit Accumulators
below the matrix unit. When using a mix of 8-bit weights and 16-bit activations
(or vice versa), the Matrix Unit computes at half-speed, and it computes at a
quarter-speed when both are 16 bits. It reads and writes 256 values per clock cycle
and can perform either a matrix multiply or a convolution. The nonlinear functions
are calculated by the Activation hardware.

The weights for the matrix unit are staged through an on-chipWeight FIFO that
reads from an off-chip 8 GiB DRAM called Weight Memory (for inference,
weights are read-only; 8 GiB supports many simultaneously active models).
The intermediate results are held in the 24 MiB on-chip Unified Buffer, which
can serve as inputs to the Matrix Multiply Unit. A programmable DMA controller
transfers data to or from CPU Host memory and the Unified Buffer.
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Figure 7.12 TPU Block Diagram. The PCIe bus is Gen3 �16. The main computation part is the light-shaded Matrix
Multiply Unit in the upper-right corner. Its inputs are the medium-shaded Weight FIFO and the medium-shaded Uni-
fied Buffer and its output is the medium-shaded Accumulators. The light-shaded Activation Unit performs the non-
linear functions on the Accumulators, which go to the Unified Buffer.
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TPU Instruction Set Architecture

As instructions are sent over the relatively slow PCIe bus, TPU instructions follow
the CISC tradition, including a repeat field. The TPU does not have a program
counter, and it has no branch instructions; instructions are sent from the host
CPU. The clock cycles per instruction (CPI) of these CISC instructions are typi-
cally 10–20. It has about a dozen instructions overall, but these five are the key
ones:

1. Read_Host_Memory reads data from the CPU host memory into the
Unified Buffer.

2. Read_Weights reads weights fromWeight Memory into theWeight FIFO as
input to the Matrix Unit.

3. MatrixMultiply/Convolve causes the Matrix Multiply Unit to perform a
matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multi-
ply, an element-wise vector multiply, or a convolution from the Unified Buffer
into the Accumulators. A matrix operation takes a variable-sized B*256 input,
multiplies it by a 256�256 constant input, and produces a B*256 output, taking
B pipelined cycles to complete. For example, if the input were 4 vectors of 256
elements, B would be 4, so it would take 4 clock cycles to complete.

4. Activate performs the nonlinear function of the artificial neuron, with
options for ReLU, Sigmoid, tanh, and so on. Its inputs are the Accumulators,
and its output is the Unified Buffer.

5. Write_Host_Memorywrites data from the Unified Buffer into the CPU host
memory.

The other instructions are alternate host memory read/write, set configuration, two
versions of synchronization, interrupt host, debug-tag, nop, and halt. The CISC
MatrixMultiply instruction is 12 bytes, of which 3 are Unified Buffer address; 2
are accumulator address; 4 are length (sometimes 2 dimensions for convolutions);
and the rest are opcode and flags.

The goal is to run whole inference models in the TPU to reduce interactions
with the host CPU and to be flexible enough to match the DNN needs of 2015
and beyond, instead of just what was required for 2013 DNNs.

TPU Microarchitecture

The microarchitecture philosophy of the TPU is to keep the Matrix Multiply Unit
busy. The plan is to hide the execution of the other instructions by overlapping their
execution with the MatrixMultiply instruction. Thus each of the preceding
four general categories of instructions have separate execution hardware (with read
and write host memory combined into the same unit). To increase instruction par-
allelism further, the Read_Weights instruction follows the decoupled access/
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execute philosophy (Smith, 1982b) in that they can complete after sending their
addresses but before the weights are fetched fromWeightMemory. The matrix unit
has not-ready signals from the Unified Buffer and the Weight FIFO that will cause
the matrix unit to stall if their data are not yet available.

Note that a TPU instruction can execute for many clock cycles, unlike the
traditional RISC pipeline with one clock cycle per stage.

Because reading a large SRAM is much more expensive than arithmetic,
the Matrix Multiply Unit uses systolic execution to save energy by reducing
reads and writes of the Unified Buffer (Kung and Leiserson, 1980;
Ramacher et al., 1991; Ovtcharov et al., 2015b). A systolic array is a two-
dimensional collection of arithmetic units that each independently compute a
partial result as a function of inputs from other arithmetic units that are con-
sidered upstream to each unit. It relies on data from different directions arriv-
ing at cells in an array at regular intervals where they are combined. Because
the data flows through the array as an advancing wave front, it is similar to
blood being pumped through the human circulatory system by the heart, which
is the origin of the systolic name.

Figure 7.13 demonstrates how a systolic array works. The six circles at the bot-
tom are the multiply-accumulate units that are initialized with the weights wi. The
staggered input data xi are shown coming into the array from above. The 10 steps of
the figure represent 10 clock cycles moving down from top to bottom of the page.
The systolic array passes the inputs down and the products and sums to the right.
The desired sum of products emerges as the data completes its path through the
systolic array. Note that in a systolic array, the input data is read only once from
memory, and the output data is written only once to memory.

In the TPU, the systolic array is rotated. Figure 7.14 shows that the weights are
loaded from the top and the input data flows into the array in from the left. A given
256-element multiply-accumulate operation moves through the matrix as a diag-
onal wave front. The weights are preloaded and take effect with the advancing
wave alongside the first data of a new block. Control and data are pipelined to give
the illusion that the 256 inputs are read at once, and after a feed delay, they update
one location of each of 256 accumulator memories. From a correctness perspec-
tive, software is unaware of the systolic nature of the matrix unit, but for perfor-
mance, it does worry about the latency of the unit.

TPU Implementation

The TPU chip was fabricated using the 28-nm process. The clock rate is 700 MHz.
Figure 7.15 shows the floor plan of the TPU. Although the exact die size is not
revealed, it is less than half the size of an Intel Haswell server microprocessor,
which is 662 mm2.

The 24MiB Unified Buffer is almost a third of the die, and the Matrix Multiply
Unit is a quarter, so the datapath is nearly two-thirds of the die. The 24 MiB size
was picked in part to match the pitch of the Matrix Unit on the die and, given the
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Figure 7.13 Example of systolic array in action, from top to bottom on the page. In this example, the six weights
are already inside the multiply-accumulate units, as is the norm for the TPU. The three inputs are staggered in time to
get the desired effect, and in this example are shown coming in from the top. (In the TPU, the data actually comes in
from the left.) The array passes the data down to the next element and the result of the computation to the right to
the next element. At the end of the process, the sum of products is found to the right. Drawings courtesy of Yaz Sato.
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short development schedule, in part to simplify the compiler. Control is just 2%.
Figure 7.16 shows the TPU on its printed circuit card, which inserts into existing
servers in a SATA disk slot.

TPU Software

The TPU software stack had to be compatible with that developed for CPUs and
GPUs so that applications could be ported quickly. The portion of the application
run on the TPU is typically written using TensorFlow and is compiled into an API
that can run on GPUs or TPUs (Larabel, 2016). Figure 7.17 shows TensorFlow
code for a portion of an MLP.

Like GPUs, the TPU stack is split into a User Space Driver and a Kernel
Driver. The Kernel Driver is lightweight and handles only memory management
and interrupts. It is designed for long-term stability. The User Space driver
changes frequently. It sets up and controls TPU execution, reformats data into
TPU order, and translates API calls into TPU instructions and turns them into
an application binary. The User Space driver compiles a model the first time
it is evaluated, caching the program image and writing the weight image into
the TPUWeight Memory; the second and following evaluations run at full speed.
The TPU runs most models completely from inputs to outputs, maximizing the
ratio of TPU compute time to I/O time. Computation is often done one layer at a
time, with overlapped execution allowing the matrix unit to hide most noncritical
path operations.

Figure 7.16 TPU printed circuit board. It can be inserted into the slot for an SATA disk
in a server, but the card uses the PCIe bus.
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Improving the TPU

The TPU architects looked at variations of the microarchitecture to see whether
they could have improved the TPU.

Like an FPU, the TPU coprocessor has a relatively easy microarchitecture
to evaluate, so the TPU architects created a performance model and estimated
performance as the memory bandwidth, the matrix unit size, and the clock rate
and number of accumulators varied. Measurements using TPU hardware coun-
ters found that the modeled performance was on average within 8% of the
hardware.

# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)

# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])

# Create model
def multilayer_perceptron(x, weights, biases):

# Hidden layer with ReLU activation
layer_1 = tf.add(tf.matmul(x, weights[’h1’]), biases[’b1’])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with ReLU activation
layer_2 = tf.add(tf.matmul(layer_1, weights[’h2’]), biases[’b2’])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights[’out’]) + biases[’out’]
return out_layer

# Store layers weight & bias
weights = {

’h1’: tf.Variable(tf.random_normal([n_input, n_hidden_1])),
’h2’: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
’out’: tf.Variable(tf.random_normal([n_hidden_2, n_classes]))

}
biases = {

’b1’: tf.Variable(tf.random_normal([n_hidden_1])),
’b2’: tf.Variable(tf.random_normal([n_hidden_2])),
’out’: tf.Variable(tf.random_normal([n_classes]))

}

Figure 7.17 Portion of the TensorFlow program for the MNIST MLP. It has two hidden 256�256 layers, with each
layer using a ReLU as its nonlinear function.
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Figure 7.18 shows the performance sensitivity of the TPU as these parameters
scale over the range for 0.25� to 4�. (Section 7.9 lists the benchmarks used.) In
addition to evaluating the impact of only raising clock rates (clock in Figure 7.18),
Figure 7.18 also plots a design (clock+) that increases the clock rate and scales the
number of accumulators correspondingly so that the compiler can keep more mem-
ory references in flight. Likewise, Figure 7.18 plots matrix unit expansion if the
number of accumulators increase with the square of the rise in one dimension
(matrix+), because the matrix grows in both dimensions, as well as only increasing
the matrix unit (matrix).

First, increasing memory bandwidth (memory) has the biggest impact: perfor-
mance improves 3� on average when memory bandwidth increases 4�, because it
reduces the time waiting for weight memory. Second, clock rate has little benefit on
average with or without more accumulators. Third, the average performance in
Figure 7.18 slightly degrades when the matrix unit expands from 256�256 to
512�512 for all applications, whether or not they get more accumulators. The
issue is analogous to internal fragmentation of large pages, only worse because
it’s in two dimensions.

Consider the 600�600 matrix used in LSTM1. With a 256�256 matrix unit,
it takes nine steps to tile 600�600, for a total of 18 μs of time. The larger
512�512 unit requires only four steps, but each step takes four times longer,
or 32 μs of time. The TPU’s CISC instructions are long, so decode is insignificant
and does not hide the overhead of loading from the DRAM.
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Figure 7.18 Performance as metrics scale from 0.25× to 4×: memory bandwidth,
clock rate+accumulators, clock rate, matrix unit dimension+accumulators, and
one dimension of the square matrix unit This is the average performance calculated
from six DNN applications in Section 7.9. The CNNs tend to be computation-bound, but
the MLPs and LSTMs are memory-bound. Most applications benefit from a faster mem-
ory, but a faster clock makes little difference, and a bigger matrix unit actually hurts per-
formance. This performancemodel is only for code running inside the TPU and does not
factor in the CPU host overhead.
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Given these insights from the performance model, the TPU architects next
evaluated an alternative and hypothetical TPU that they might have designed
in the same process technology if they’d had more than 15 months to do so. More
aggressive logic synthesis and block design might have increased the clock rate
by 50%. The architects found that designing an interface circuit for GDDR5
memory, as used by the K80, would improve Weight Memory bandwidth by
more than a factor of five. As Figure 7.18 shows, increasing clock rate to
1050 MHz, but not helping memory, made almost no change in performance.
If the clock is left at 700 MHz, but it uses GDDR5 instead for Weight Memory,
performance is increased by 3.2�, even accounting for the host CPU overhead of
invoking the DNN on the revised TPU. Doing both does not improve average
performance further.

Summary: How TPU Follows the Guidelines

Despite living on an I/O bus and having relatively little memory bandwidth that
limits full utilization of the TPU, a small fraction of a big number can, nonetheless,
be relatively large. As we will see in Section 7.9, the TPU delivered on its goal of a
tenfold improvement in cost-performance over the GPU when running DNN infer-
ence applications. Moreover, a redesigned TPU with the only change being a
switch to the same memory technology as in the GPU would be three times faster.

One way to explain the TPU’s success is to see how it followed the guidelines
in Section 7.2.

1. Use dedicated memories to minimize the distance over which data is moved.
The TPU has the 24MiBUnified Buffer that holds the intermediate matrices and
vectors of MLPs and LSTMs and the feature maps of CNNs. It is optimized for
accesses of 256 bytes at a time. It also has the 4MiB Accumulators, each 32-bits
wide, that collect the output of the Matrix Unit and act as input to the hardware
that calculates the nonlinear functions. The 8-bit weights are stored in a separate
off-chipweightmemoryDRAMand are accessed via an on-chipweight FIFO. In
contrast, all these types and sizes of data would exist in redundant copies at sev-
eral levels of the inclusive memory hierarchy of a general-purpose CPU.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
The TPU offers 28 MiB of dedicated memory and 65,536 8-bit ALUs, which
means it has about 60% of the memory and 250 times as many ALUs as a
server-class CPU, despite being half its size and power (see Section 7.9). Com-
pared to a server-class GPU, the TPU has 3.5 times the on-chip memory and 25
times as many ALUs.

3. Use the easiest form of parallelism that matches the domain.
The TPU delivers its performance via a two-dimensional SIMD parallelism
with its 256�256 Matrix Multiply Unit, which is internally pipelined with a
systolic organization, plus a simple overlapped execution pipeline of its
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instructions. GPUs rely instead on multiprocessing, multithreading, and one-
dimensional SIMD, and CPUs rely on multiprocessing, out-of-order execution,
and one-dimensional SIMD.

4. Reduce data size and type to the simplest needed for the domain.
The TPU computes primarily on 8-bit integers, although it supports 16-bit
integers and accumulates in 32-bit integers. CPUs and GPUs also support
64-bit integers and 32-bit and 64-bit floating point.

5. Use a domain-specific programming language to port code to the DSA.
The TPU is programmed using the TensorFlow programming framework,
whereas GPUs rely on CUDA and OpenCL and CPUs must run virtually
everything.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator

At the same time that Google was thinking about deploying a custom ASIC in its
data centers, Microsoft was considering accelerators for theirs. The Microsoft
perspective was that any solution had to follow these guidelines:

■ It had to preserve homogeneity of servers to enable rapid redeployment of
machines and to avoid making maintenance and scheduling even more com-
plicated, even if that notion is a bit at odds with the concept of DSAs.

■ It had to scale to applications that might need more resources than could fit into
a single accelerator without burdening all applications with multiple
accelerators.

■ It needed to be power-efficient.

■ It couldn’t become a dependability problem by being a single point of failure.

■ It had to fit within the available spare space and power in existing servers.

■ It could not hurt data center network performance or reliability.

■ The accelerator had to improve the cost-performance of the server.

The first rule prevented deploying an ASIC that helped only some applications on
some servers, which was the decision that Google made.

Microsoft started a project called Catapult that placed an FPGA on a PCIe bus
board into data center servers. These boards have a dedicated network for appli-
cations that need more than one FPGA. The plan was to use the flexibility of
the FPGA to tailor its use for varying applications both on different servers and
to reprogram the same server to accelerate distinct applications over time. This plan
increased the return on its investment of the accelerator. Another advantage of
FPGAs is that they should have lower NRE than ASICs, which could again
improve return on investment. We discuss two generations of Catapult, showing
how the design evolved to meet the needs of WSCs.
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One interesting upside of FPGAs is that each application—or even each phase
of an application—can be thought of as its own DSA, so in this section, we get to
see many examples of novel architectures in one hardware platform.

Catapult Implementation and Architecture

Figure 7.19 shows a PCIe board that Microsoft designed to fit within its
servers, which limited power and cooling to 25 W. This constraint led to
the selection of the 28-nm Altera Stratix V D5 FPGA for its first implemen-
tation of Catapult. The board also has 32 MiB of flash memory and includes
two banks of DDR3-1600 DRAM with a total capacity of 8 GiB. The FPGA
has 3926 18-bit ALUs, 5 MiB of on-chip memory, and 11 GB/s bandwidth to
DDR3 DRAMs.

Figure 7.19 The Catapult board design. (A) shows the block diagram, and (B) is a pho-
tograph of both sides of the board, which is 10 cm�9 cm�16 mm. The PCIe and inter-
FPGA network are wired to a connector on the bottom of the board that plugs directly
into the motherboard. (C) is a photograph of the server, which is 1U (4.45 cm) high and
half a standard rack wide. Each server has two 12-core Intel Sandy Bridge Xeon CPUs, 64
GiB of DRAM, 2 solid-state drives, 4 hard-disk drives, and a 10-Gbit Ethernet network
card. The highlighted rectangle on the right in (C) shows the location of the Catapult
FPGA board on the server. The cool air is sucked in from the left in (C), and the hot
air exhausts to the right, which passes over the Catapult board. This hot spot and
the amount of the power that the connector could deliver mean that the Catapult board
is limited to 25 watts. Forty-eight servers share an Ethernet switch that connects to the
data center network, and they occupy half of a data center rack.
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Each of the 48 servers in half of a data center rack contains a Catapult board.
Catapult follows the preceding guidelines about supporting applications that need
more than a single FPGA without affecting the performance of the data center net-
work. It adds a separate low-latency 20 Gbit/s network that connects 48 FPGAs.
The network topology is a two-dimensional 6�8 torus network.

To follow the guideline about not being a single point of failure, this network
can be reconfigured to operate even if one of the FPGAs fails. The board also has
SECDED protection on all memories outside the FPGA, which is required for
large-scale deployment in a data center.

Because FPGAs use a great deal of memory on the chip to deliver programma-
bility, they are more vulnerable than ASICs to single-event upsets (SEUs) because
of radiation as the process geometries shrink. The Altera FPGA in Catapult boards
includes mechanisms to detect and correct SEUs inside the FPGA and reduces the
chances of SEUs by periodically scrubbing the FPGA configuration state.

The separate network has an added benefit of reducing the variability of com-
munication performance as compared to a data center network. Network unpredict-
ability increases tail latency—which is especially detrimental for applications that
face end users—so a separate network makes it easier to successfully offload work
from the CPU to the accelerator. This FPGA network can run a much simpler pro-
tocol than in the data center because the error rates are considerably lower and the
network topology is well defined.

Note that resiliency requires care when reconfiguring FPGAs so that they nei-
ther appear as failed nodes nor crash the host server or corrupt their neighbors.
Microsoft developed a high-level protocol for ensuring safety when reconfiguring
one or more FPGAs.

Catapult Software

Possibly the biggest difference between Catapult and the TPU is having to program
in a hardware-description language such as Verilog or VHDL. As the Catapult
authors write (Putnam et al., 2016):

Going forward, the biggest obstacle to widespread adoption of FPGAs in the
datacenter is likely to be programmability. FPGA development still requires
extensive hand-coding in Register Transfer Level and manual tuning.

To reduce the burden of programming Catapult FPGAs, the Register Transfer Level
(RTL) code is divided into the shell and the role, as Figure 7.20 shows. The shell
code is like the system library on an embedded CPU. It contains the RTL code that
will be reused across applications on the same FPGA board, such as datamarshaling,
CPU-to-FPGA communication, FPGA-to-FPGA communication, data movement,
reconfiguration, and health monitoring. The shell RTL code is 23% of the Altera
FPGA. The role code is the application logic, which the Catapult programmer writes
using the remaining 77% of the FPGA resources. Having a shell has the added
benefit of offering a standard API and standard behavior across applications.
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CNNs on Catapult

Microsoft developed a configurable CNN accelerator as an application for
Catapult. Configuration parameters include the number of neural network
layers, the dimension of those layers, and even the numerical precision to be
used. Figure 7.21 shows the block diagram of the CNN accelerator. Its key
features are:

■ Run-time configurable design, without requiring recompilation using the
FPGA tools.

■ To minimize memory accesses, it offers efficient buffering of CNN data struc-
tures (see Figure 7.21).

■ A two-dimensional array of Processing Elements (PEs) that can scale up to
thousands of units.
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Figure 7.20 Components of Catapult shell and role split of the RTL code.
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Images are sent to DRAM and then input into a multibank buffer in the FPGA. The
inputs are sent to multiple PEs to perform the stencil computations that produce the
output feature maps. A controller (upper left in Figure 7.21) orchestrates the flow
of data to each PE. The final results are then recirculated to the input buffers to
compute the next layer of the CNN.

Like the TPU, the PEs are designed to be used as a systolic array. Figure 7.22
shows the details of the PE design.
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Figure 7.21 CNN Accelerator for Catapult. The Input Volume of the left correspond to Layer[i�1] on the left of
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Search Acceleration on Catapult

Theprimary application to test the returnon investmentofCatapultwas a critical func-
tionof theMicrosoftBingsearchenginecalled ranking. It ranks theorder of the results
from a search. The output is a document score, which determines the position of the
document on thewebpage that is presented to theuser.The algorithmhas three stages:

1. Feature Extraction extracts thousands of interesting features from a document
based on the search query, such as the frequency that the query phrase appears
in a document.

2. Free-Form Expressions calculates thousands of combinations of features from
the prior stage.

3. Machine-Learned Scoring uses machine-learning algorithms to evaluate the
features from the first two stages to calculate a floating-point score of a docu-
ment that is returned to the host search software.

The Catapult implementation of ranking produces identical results to equivalent
Bing software, even reproducing known bugs!

Taking advantage of one of the preceding guidelines, the ranking function does
not have to fit within a single FPGA. Here is how the ranking stages are split across
eight FPGAs:

■ One FPGA does Feature Extraction.

■ Two FPGAs do Free-Form Expressions.

■ One FPGA does a compression stage that increases scoring engine efficiency.

■ Three FPGA do Machine-Learned Scoring.

The remaining FPGA is a spare used to tolerate faults. Using multiple FPGAs for
one application works well because of the dedicated FPGA network.

Figure 7.23 shows the Feature Extraction stage organization. It uses 43 feature-
extraction state machines to compute in parallel 4500 features per document-
query pair.

Next is the following Free-Form Expressions stage. Rather than implement the
functions directly in gates or in state machines, Microsoft developed a 60-core pro-
cessor that overcomes long-latency operations with multithreading. Unlike a GPU,
Microsoft’s processor does not require SIMD execution. It has three features that
let it match the latency target:

1. Each core supports four simultaneous threads where one can stall on a long
operation but the others can continue. All functional units are pipelined, so they
can accept a new operation every clock cycle.

2. Threads are statically prioritized using a priority encoder. Expressions with the
longest latency use thread slot 0 on all cores, then the next slowest is in slot 1 on
all cores, and so on.
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3. Expressions that are too large to fit in the time allocated for a single FPGA can
be split across the two FPGAs used for free-form expressions.

One cost of the reprogrammability in an FPGA is a slower clock rate than custom
chips. Machine-Learned Scoring uses two forms of parallelism to try to overcome
that disadvantage. The first is to have a pipeline that matches the available pipeline
parallelism in the application. For ranking, the limit is 8 μs per stage. The second
version of parallelism is the rarely seen multiple instruction streams, single data
stream (MISD) parallelism, where a large number of independent instruction
streams operate in parallel on a single document.

Figure 7.24 shows the performance of the ranking function on Catapult. As we
will see in Section 7.9, user-facing applications often have rigid response times; it
doesn’t matter how high the throughput is if the application misses the deadline.
The x-axis shows the response-time limit, with 1.0 as the cutoff. At this maximum
latency, Catapult is 1.95 times as fast as the host Intel server.

Catapult Version 1 Deployment

Before populating a whole warehouse-scale computer with tens of thousands of
servers, Microsoft did a test deployment of 17 full racks, which contained
17�48�2 or 1632 Intel servers. The Catapult cards and network links were tested
at manufacture and system integration, but at deployment, seven of the 1632 cards
failed (0.43%), and one of the 3264 FPGA network links (0.03%) was defective.
After several months of deployment, nothing else failed.

Feature extraction FSMs

Feature-
gathering
network

Hit vector
preprocessing

FSM

Figure 7.23 The architecture of FPGA implementation of the Feature Extraction
stage. A hit vector, which describes the locations of query words in each document,
is streamed into the hit vector preprocessing state machine and then split into control
and data tokens. These tokens are issued in parallel to the 43 unique feature state
machines. The feature-gathering network collects generated feature and value pairs
and forwards them to the following Free-Form Expressions stage.
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Catapult Version 2

Although the test deployment was successful, Microsoft changed the architecture
for the real deployment to enable both Bing and Azure Networking to use the same
boards and architecture (Caulfield et al., 2016). The main problem with the V1
architecture was that the independent FPGA network did not enable the FPGA
to see and process standard Ethernet/IP packets, which prevented it from being
used to accelerate the data center network infrastructure. In addition, the cabling
was expensive and complicated, it was limited to 48 FPGAs, and the rerouting
of traffic during certain failure patterns reduced performance and could
isolate nodes.

The solution was to place the FPGA logically between the CPU and NIC, so
that all network traffic goes through the FPGA. This “bump-on-a-wire” placement
removes many weaknesses of the FPGA network in Catapult V1. Moreover, it
enables the FPGAs to run their own low-latency network protocol that allows them
to be treated as a global pool of all the FPGAs in the data center and even across
data centers.

Three changes occurred between V1 and V2 to overcome the original concerns
of Catapult applications interfering with data center network traffic. First, the data
center network was upgraded from 10Gbit/s to 40 Gbit/s, increasing the headroom.
Second, Catapult V2 added a rate limiter for FPGA logic, ensuring that an FPGA
application could not overwhelm the network. The final and perhaps most
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Figure 7.24 Performance for the ranking function on Catapult for a given
latency bound. The x-axis shows the response time for the Bing ranking function.
The maximum response time at the 95th percentile for the Bing application on the
x-axis is 1.0, so data points to the right may have a higher throughput but arrive too
late to be useful. The y-axis shows the 95% throughputs on Catapult and pure software
for a given response time. At a normalized response time of 1.0, Catapult has 1.95 the
throughput of Intel server running in pure software mode. Stated alternatively, if Cat-
apult matches the throughput that the Intel server has at 1.0 normalized response time,
Catapult’s response time is 29% less.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator ■ 575



important change was that the networking engineers would now had their own use
cases for the FPGA, given its bump-in-the-wire placement. That placement trans-
formed these former interested bystanders into enthusiastic collaborators.

By deploying Catapult V2 in the majority of its new servers, Microsoft essen-
tially has a second supercomputer composed of distributed FPGAs that shares the
same network wires as the CPU servers and is at the same scale, as there is one
FPGA per server. Figures 7.25 and 7.26 show the block diagram and the board
for Catapult V2.

Catapult V2 follows the same shell and role split of the RTL to simplify pro-
gramming, but at the time of publication, the shell uses almost half of the FPGA
resources (44%) because of the more complicated network protocol that shares the
data center network wires.

Catapult V2 is used for both Ranking acceleration and function network accel-
eration. In Ranking acceleration, rather than perform nearly all of the ranking func-
tion inside the FPGA, Microsoft implemented only the most compute-intensive
portions and left the rest to the host CPU:

■ The feature functional unit (FFU) is a collection of finite state machines that
measure standard features in search, such as counting the frequency of a par-
ticular search term. It is similar in concept to the Feature Extraction stage of
Catapult V1.
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Figure 7.25 The Catapult V2 block diagram. All network traffic is routed through the
FPGA to the NIC. There is also a PCIe connector to the CPUs, which allows the FPGA to be
used as a local compute accelerator, as in Catapult V1.
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■ The dynamic programming feature (DPF) creates a Microsoft proprietary set
of features using dynamic programming and bears some similarity to the Free-
Form Expressions stage of Catapult V1.

Both are designed so that they can use non-local FPGAs for these tasks, which
simplifies scheduling.

Figure 7.27 shows the performance of Catapult V2 compared to software in
a format similar to Figure 7.24. The throughput can now be increased 2.25�
without endangering latency, whereas the speedup was previously 1.95�.
When ranking was deployed and measured in production, Catapult V2 had bet-
ter tail latencies than software; that is, the FPGA latencies never exceeded the
software latencies at any given demand despite being able to absorb twice the
workload.

Summary: How Catapult Follows the Guidelines

Microsoft reported that adding Catapult V1 to the servers in the pilot phase
increased the total cost of ownership (TCO) by less than 30%. Thus, for this appli-
cation, the net gain in cost-performance for Ranking was at least 1.95/1.30, or a
return on investment of about 1.5. Although no comment was made about TCO
concerning Catapult V2, the board has a similar number of the same type of chips,
so we might guess that the TCO is no higher. If so, the cost-performance of Cat-
apult V2 is about 2.25/1.30, or 1.75 for Ranking.

Here is how Catapult followed the guidelines from Section 7.2.

40G QSFP Ports
(NIC and TOR)

Stratix V
D5 FPGA

4GB DDR3

Figure 7.26 The Catapult V2 board uses a PCIe slot. It uses the same FPGA as Catapult
V1 and has a TDP of 32 W. A 256-MB Flash chip holds the golden image for the FPGA that
is loaded at power on, as well as one application image.
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1. Use dedicated memories to minimize the distance over which data is moved.
The Altera V FPGA has 5 MiB of memory on-chip, which an application can
customize for its use. For example, for CNNs, it is used for the input and output
feature maps of Figure 7.21.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
The Altera V FPGA also has 3926 18-bit ALUs that are tailored to the appli-
cation. For CNNs, they are used to create the systolic array that drives the Pro-
cessing Elements in Figure 7.22, and they form the datapaths of the 60-core
multiprocessor used by Free Form Expression stage of ranking.

3. Use the easiest form of parallelism that matches the domain.
Catapult picks the form of parallelism that matches the application. For exam-
ple, Catapult uses two-dimensional SIMD parallelism for the CNN application
and MISD parallelism in the Machine Scoring phase stream Ranking.

4. Reduce data size and type to the simplest needed for the domain.
Catapult can use whatever size and type of data that the application wants, from
an 8-bit integer to a 64-bit floating point.

5. Use a domain-specific programming language to port code to the DSA.
In this case, programming is done in the hardware register-transfer language
(RTL)Verilog, which is an even less productive language than C orC++.Micro-
soft did not (and possibly could not) follow this guideline given its use of FPGAs.

Although this guideline concerns the one-time porting of an application from software
to FPGA, applications are not frozen in time.Almost bydefinition, software evolves to
add features or fix bugs, especially for something as important as web search.
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Figure 7.27 Performance for the ranking function on Catapult V2 in the same format
as Figure 7.24. Note that this version measures 99th percentile while the earlier figure
plots 95th percentile.
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Maintenance of successful programs can be most of software’s development costs.
Moreover,when programming in anRTL, softwaremaintenance is evenmore burden-
some. TheMicrosoft developers, like all others who use FPGAs as accelerators, hope
that future advances in domain-specific languages and systems for hardware-software
co-design will reduce the difficulty of programming FPGAs.

7.6 Intel Crest, a Data Center Accelerator for Training

The quotation by the Intel CEO that opens Section 7.3 came from the press release
announcing that Intel was going to start shipping DSAs (“accelerants”) for DNN. The
first example was Crest, which was announced while we were writing this edition.
Despite the limited details,we include it here because of the significance of a traditional
microprocessor manufacturer like Intel taking this bold step of embracing DSAs.

Crest is aimed at DNN training. The Intel CEO said the goal is to accelerate
DNN training a hundredfold over the next three years. Figure 7.6 shows that train-
ing can take a month. There is likely to be a demand to decrease the DNN training
to just eight hours, which would be 100 times quicker than the CEO predicted.
DNNs will surely become even more complex over the next 3 years, which will
require a much greater training effort. Thus there seems little danger that a
100� improvement in training is overkill.

Crest instructions operate on blocks of 32�32 matrices. Crest uses a number
format called flex point, which is a scaled fixed-point representation: 32�32matri-
ces of 16-bit data share a single 5-bit exponent that is provided as part of the
instruction set.

Figure 7.28 shows the block diagramof the LakeCrest chip. To compute on these
matrices, Crest uses the12 processing clusters of Figure 7.28. Each cluster includes a
large SRAM, a big linear algebra processing unit, and a small amount of logic for on-
and off-chip routing.The four 8GiBHBM2DRAMmodules offer 1TB/s ofmemory
bandwidth, which should lead to an attractive Roofline model for the Crest chip. In
addition to high-bandwidth paths to main memory, Lake Crest supports high band-
width interconnects directly between compute cores inside the processing clusters,
which facilitates quick core-to-core communication without passing through shared
memory. Lake Crest’s goal is a factor of 10 improvement in training over GPUs.

Figure 7.28 shows 12 Inter-Chip Links (ICLs) and 2 Inter-Chip Controllers
(ICCs), so Crest is clearly designed to allow many Crest chips to collaborate, sim-
ilar in spirit to the dedicated network connecting the 48 FPGAs in Catapult. It’s
likely that the 100� improvement in training will require ganging together several
Crest chips.

7.7 Pixel Visual Core, a Personal Mobile Device Image
Processing Unit

Pixel Visual Core is a programmable, scalable DSA intended for image processing
and computer vision from Google, initially for cell phones and tablets running the
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Android operating system, and then potentially for Internet of Things (IoT)
devices. It is a multicore design, supporting between 2 and 16 cores to deliver a
desired cost-performance. It is designed either to be its own chip or to be part
of a system on a chip (SOC). It has a much smaller area and energy budget than
its TPU cousin. Figure 7.29 lists terms and acronyms found in this section.

Pixel Visual Core is an example of a new class of domain specific architectures
for vision processing that we call image processing units (IPUs). IPUs solve the
inverse problem of GPUs: they analyze and modify an input image in contrast
to generating an output image. We call them IPUs to signal that, as a DSA, they
do not need to do everything well because there will also be CPUs (and GPUs) in
the system to perform non-input-vision tasks. IPUs rely on stencil computations
mentioned above for CNNs.

The innovations of Pixel Visual Core include replacing the one-dimensional
SIMD unit of CPUs with a two-dimensional array of processing elements
(PEs). They provide a two-dimensional shifting network for the PEs that is aware
of the two-dimensional spatial relationship between the elements, and a two-
dimensional version of buffers that reduces accesses to off-chip memory. This
novel hardware makes it easy to perform stencil computations that are central to
both vision processing and CNN algorithms.

ISPs, the Hardwired Predecessors of IPUs

Most portable mobile devices (PMDs) have multiple cameras for input, which has
led to hardwired accelerators called image signal processors (ISPs) for enhancing
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Figure 7.28 Block diagram of the Intel Lake Crest processor. Before being acquired by Intel, Crest said that the chip
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input images. The ISP is usually a fixed function ASIC. Virtually every PMD today
includes an ISP.

Figure 7.30 shows a typical organization of an image-processing system,
including the lens, sensor, ISP, CPU, DRAM, and display. The ISP receives
images, removes artifacts in images from the lens and the sensor, interpolates miss-
ing colors, and significantly improves the overall visual quality of the image.
PMDs tend to have small lens and thus tiny noisy pixels, so this step is critical
to producing high-quality photos and videos.

An ISP processes the input image in raster scan order by calculating a series of
cascading algorithms via software configurable hardware building blocks, typi-
cally organized as a pipeline to minimize memory traffic. At each stage of the pipe-
line and for each clock cycle, a few pixels are input, and a few are output.
Computation is typically performed over small neighborhoods of pixels
(stencils). Stages are connected by buffers called line buffers. The line buffers help

Term Acronym Short explanation

Core – A processor. Pixel Visual Core can have 2–16 cores. The first implementation has 8;
also called stencil processor (STP)

Halide – A domain-specific programming language for image processing that separates the
algorithm from its execution schedule

Halo – An extended region around the 16�16 computation array to handle stencil computation
near the borders of the array. It holds values, but doesn’t compute

Image signal
processors

ISP A fixed function ASIC that improves the visual quality of an image; found in virtually
all PMDs with cameras

Image processing
unit

IPU A DSA that solves the inverse problem of a GPU: it analyzes and modifies an input
image in contrast to generating an output image

Line buffer pool LB A line buffer is designed to capture a sufficient number of full lines of an intermediate image
to keep the next stage busy. Pixel Visual Core uses two-dimensional line buffers, each
Change64 to128KiB.TheLineBufferPool contains oneLBper core plus oneLB forDMA

Network on chip NOC The network that connects the cores in Pixel Visual Core

Physical ISA pISA The Pixel Visual Core instruction set architecture (ISA) that is executed by the hardware

Processing
element array

– The 16�16 array of Processing Elements plus the halo that performs the 16-bit
multiply-add operations. Each Processing Element includes a Vector Lane and local
memory. It can shift data en mass to neighbors in any of four directions

Sheet generator SHG Does memory accesses of blocks of 1 � 1 to 31 � 31 pixels, which are called sheets.
The different sizes allow the option of including the space for the halo or not

Scalar lane SCL Same operations as the Vector Lane except it adds instructions that handle jumps,
branches, and interrupts, controls instruction flow to the vector array, and schedules all
the loads and stores for the sheet generator. It also has a small instruction memory. It
plays the same role as the scalar processor in a vector architecture

Vector lane VL Portion of the Processing Element that performs the computer arithmetic

Virtual ISA vISA ThePixelVisualCore ISAgenerated by the compiler. It ismapped to pISAbefore execution

Figure 7.29 A handy guide to Pixel Visual Core terms in Section 7.7. Figure 7.4 on page 437 has a guide for
Sections 7.3–7.6.
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keep the processing stages utilized via spatial locality by capturing just enough full
lines of an intermediate image to facilitate the computation required by the
next stage.

The enhanced image is either sent to a display or to DRAM for storage or for
later processing. The ISP also sends statistics about the image (e.g., color and luma
histograms, sharpness, and so on) to the CPU, which in turn it processes and sends
information to help the system adapt.

Although efficient, ISPs have two major downsides. Given the increasing
demand for improved image quality in handheld devices, the first is the inflexibil-
ity of an ISP, especially as it takes years to design and manufacture a new ISP
within an SOC. The second is that these computing resources can be used only
for the image-enhancing function, no matter what is needed at the time on the
PMD. Current generation ISPs handle workloads at up to 2 Tera-operations per
second on a PMD power budget, so a DSA replacement has to achieve similar per-
formance and efficiency.

Pixel Visual Core Software

Pixel Visual Core generalized the typical hardwired pipeline organization of ker-
nels of an ISP into a directed acyclic graph (DAG) of kernels. Pixel Visual Core
image-processing programs are typically written in Halide, which is a domain-
specific functional programming language for image processing. Figure 7.31 is
a Halide example that blurs an image. Halide has a functional section to express
the function being programmed and a separate schedule section to specify how
to optimize that function to the underlying hardware.
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Figure 7.30 Diagram showing interconnection of the Image Signal Processor (ISP),
CPU, DRAM, lens, and sensor. The ISP sends statistics to the CPU as well as the
improved image either to the display or to DRAM for storage or later processing. The
CPU then processes the image statistics and sends information to let the system adapt:
Auto White Balance (AWB) to the ISP, Auto Exposure (AE) to the sensor, and Auto Focus
(AF) to the lens, known as the 3As.
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Pixel Visual Core Architecture Philosophy

The power budget of PMDs is 6–8 W for bursts of 10–20 seconds, dropping down
to tens of milliwatts when the screen is off. Given the challenging energy goals of a
PMD chip, the Pixel Visual Core architecture was strongly shaped by the relative
energy costs for the primitive operations mentioned in Chapter 1 and made explicit
in Figure 7.32. Strikingly, a single 8-bit DRAM access takes as much energy as
12,500 8-bit additions or 7–100 8-bit SRAM accesses, depending on the organi-
zation of the SRAM. The 22� to 150� higher cost of IEEE 754 floating-point
operations over 8-bit integer operations, plus the die size and energy benefits of
storing narrower data, strongly favor using narrow integers whenever algorithms
can accommodate them.

In addition to the guidelines from Section 7.2, these observations led to other
themes that guided the Pixel Visual Core design:

■ Two-dimensional is better than one-dimensional: Two-dimensional organiza-
tions can be beneficial for processing images as it minimizes communication
distance and because the two- and three-dimensional nature of image data can
utilize such organizations.

■ Closer is better than farther: Moving data is expensive. Moreover, the relative
cost of moving data to an ALU operation is increasing. And of course DRAM
time and energy costs far exceed any local data storage or movement.

A primary goal in going from an ISP to an IPU is to get more reuse of the hardware
via programmability. Here are the three main features of the Pixel Visual Core:

Func buildBlur(Func input) {
// Functional portion (independent of target processor)

Func blur_x("blur_x"), blur_y("blur_y");
blur_x(x,y) = (input(x�1,y) + input(x,y)*2 + input(x+1,y)) / 4;
blur_y(x,y) = (blur_x(x,y�1) + blur_x(x,y)*2 + blur_x(x,y+1)) / 4;

if (has_ipu) {
// Schedule portion (directs how to optimize for target processor)
blur_x.ipu(x,y);
blur_y.ipu(x,y);

}
return blur_y;

}

Figure 7.31 Portion of a Halide example to blur an image. The ipu(x,y) suffix schedules the function to Pixel
Visual Core. A blur has the effect of looking at the image through a translucent screen, which reduces noise and detail.
A Gaussian function is often used to blur the image.
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1. Following the theme that two-dimensional is better than one-dimensional, Pixel
Visual Core uses a two-dimensional SIMD architecture instead of one-
dimensional SIMD architecture. Thus it has a two-dimensional array of indepen-
dent processing elements (PEs), each of which contains 2 16-bit ALUs, 1 16-bit
MAC unit, 10 16-bit registers, and 10 1-bit predicate registers. The 16-bit arith-
metic follows the guideline of providing only the precision needed by the domain.

2. Pixel Visual Core needs temporary storage at each PE. Following the guideline
from Section 7.2 of avoiding caches, this PE memory is a compiler-managed
scratchpad memory. The logical size of each PE memory is 128 entries of
16 bits, or just 256 bytes. Because it would be inefficient to implement a sep-
arate small SRAM in each PE, Pixel Visual Core instead groups the PE memory
of 8 PEs together in a single wide SRAM block. Because the PEs operate in
SIMD fashion, Pixel Visual Core can bind all the individual reads and writes
together to form a “squarer” SRAM, which is more efficient than narrow
and deep or wide and shallow SRAMs. Figure 7.33 shows four PEs.

3. To be able to perform simultaneous stencil computations in all PEs, Pixel Visual
Core needs to collect inputs from nearest neighbors. This communication pat-
tern requires a “NSEW” (North, South, East, West) shift network: it can shift
data en masse between the PEs in any compass direction. So that it doesn’t lose
pixels along the edges as it shifts images, Pixel Visual Core connects the end-
points of the network together to form a torus.

Note that the shift network is in contrast with the systolic array of processing element
arrays in the TPU and Catapult. In this case, software explicitly moves the data in the
desired direction across the array, whereas the systolic approach is a hardware-
controlled, two-dimensional pipeline that moves data as a wavefront that is invisible
to the software.

The Pixel Visual Core Halo

A 3�3, 5�5, or 7�7 stencil is going to get inputs from 1, 2, or 3 external pixels at
the edges of the two-dimensional subset being computed (half of the dimension of
the stencil minus one-half). That leaves two choices. Either Pixel Visual Core

Operation Energy (pJ) Operation Energy (pJ) Operation Energy (pJ)

8b DRAM LPDDR3 125.00 8b SRAM 1.2–17.1 16b SRAM 2.4–34.2

32b Fl. Pt. muladd 2.70 8b int muladd 0.12 16b int muladd 0.43

32b Fl. Pt. add 1.50 8b int add 0.01 16b int add 0.02

Figure 7.32 Relative energy costs per operation in picoJoules assuming TSMC 28-nm HPM process, which was
the process Pixel Visual Core used [17][18][19][20]. The absolute energy cost are less than in Figure 7.2 because of
using 28 nm instead of 90 nm, but the relative energy costs are similarly high.
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under utilizes the hardware in the elements near the border, because they only pass
input values, or Pixel Visual Core slightly extends the two-dimensional PEs with
simplified PEs that leave out the ALUs. Because the difference in size between a
standard PE and a simplified PE is about 2.2�, Pixel Visual Core has an extended
array. This extended region is called the halo. Figure 7.34 shows two rows of a halo
surrounding an 8x8 PE array and illustrates how an example 5�5 stencil compu-
tation in the upper-left corner relies on the halo.

A Processor of the Pixel Visual Core

The collection of 16�16 PEs and 4 halo lanes in each dimension, called the PE
array or vector array, is the main computation unit of the Pixel Visual Core. It also
has a load-store unit called a Sheet Generator (SHG). SHG refers to memory
accesses of blocks of 1 � 1 to 256 � 256 pixels, which are called sheets. This hap-
pens during downsampling, and typical values are 16 � 16 or 20 � 20.

An implementation of Pixel Visual Core can have any even number of 2 or
more cores, depending on the resources available. Thus it needs a network to con-
nect them together, so every core also has an interface to the Network on Chip
(NOC). A typical NOC implementation for Pixel Visual Core will not be an expen-
sive cross switch, however, because those require data to travel a long distance,
which is expensive. Leveraging the pipeline nature of the application, the NOC
typically needs to communicate only to neighboring cores. It is implemented as
a two-dimensional mesh, which allows power gating of pairs of cores under soft-
ware control.
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Figure 7.33 The two-dimensional SIMD includes two-dimensional shifting “N,” “S,” “E,” “W,” show the direction
of the shift (North, South, East, West). Each PE has a software-controlled scratchpad memory.
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Finally, the Pixel Visual Core also includes a scalar processor that is called a
scalar lane (SCL). It is identical to the vector lane, except it adds instructions that
handle jumps, branches, and interrupts, controls instruction flow to the vector
array, and schedules all the loads and stores for the sheet generator. It also has
a small instruction memory. Note that Pixel Visual Core has a single instruction
stream that controls the scalar and vector units, similar to how a CPU core has
a single instruction stream for its scalar and SIMD units.
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Figure 7.34 The two-dimensional array of full processing elements (shown as
unshaded circles) surrounded by two layers of simplified processing elements
(shaded diamonds) called a halo. In this figure, there are 8�8 or 64 full PEs with 80
simplified PEs in the halo. (Pixel Visual Core actually has 16�16 or 256 full PEs and
two layers in its halo and thus 144 simplified PEs.) The edges of the halo are connected
(shown as gray lines) to form a torus. Pixel Visual Core does a series of two-dimensional
shifts across all processing elements tomove the neighbor portions of each stencil com-
putation into the center PE of the stencil. An example 5�5 stencil is shown in the upper-
left corner. Note that 16 of the 25 pieces of data for this 5�5 stencil location come from
halo processing elements.
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In addition to cores, there is also a DMA engine to transfer data between
DRAM and the line buffers while efficiently converting between image memory
layout formats (e.g., packing/unpacking). As well as sequential DRAM accesses,
the DMA engines perform vector-like gather reads of DRAM as well as sequential
and strided reads and writes.

Pixel Visual Core Instruction Set Architecture

Like GPUs, Pixel Visual Core uses a two-step compilation process. The first step is
compiling the programs from the target language (e.g., Halide) into vISA instruc-
tions. The Pixel Visual Core vISA (virtual Instruction Set Architecture) is inspired
in part by the RISC-V instruction set, but it uses an image-specific memory model
and extends the instruction set to handle image processing, and in particular, the
two-dimensional notion of images. In vISA, the two-dimensional array of a core is
infinite, the number of register is unbounded, and memory size is similarly unlim-
ited. vISA instructions contain pure functions that don’t directly access DRAM
(see Figure 7.36), which greatly simplifies mapping them onto the hardware.

The next step is to compile the vISA program into a pISA (physical Instruction
Set Architecture) program. Using vISA as the target of compilers allows the proces-
sor to be software-compatible with past programs and yet accept changes to the pISA
instruction set, so vISA plays the same role that PTX does for GPUs (see Chapter 4).

Lowering from vISA to pISA takes two steps: compilation and mapping with
early-bound parameters, and then patching the code with late-bound parameters.
The parameters that must be bound include STP size, halo size, number of STPs,
mapping of line buffers, mapping of kernels to processors, as well as register and
local memory allocations.

Figure 7.35 shows that pISA is a very long instruction word (VLIW) instruc-
tion set with 119-bit-wide instructions. The first 43-bit field is for the Scalar
Lane, the next 38-bit field specifies the computation by the two-dimensional
PE array, and the third 12-bit field specifies the memory accesses by the two-
dimensional PE array. The last two fields are immediates for computation or
addressing. The operations for all the VLIW fields are what you’d expect: two’s
complement integer arithmetic, saturating integer arithmetic, logical operations,
shifts, data transfers, and a few special ones like divide iteration and count lead-
ing zeros. The Scalar Lane supports a superset of the operations in the two-
dimensional PE array, plus it adds instructions for control-flow and sheet-
generator control. The 1-bit Predicate registers mentioned above enables condi-
tional moves to registers (e.g., A ¼ B if C).

Field Scalar Math Memory Imm MemImm

# Bits 43 38 12 16 10

Figure 7.35 VLIW format of the 119-bit pISA instruction.
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Although the pISA VLIW instruction is very wide, Halide kernels are short,
often just 200–600 instructions. Recall that as an IPU, it only needs to execute
the compute-intensive portion of an application, leaving the rest of the function-
ality to CPUs and GPUs. Thus the instruction memory of a Pixel Visual Core holds
just 2048 pISA instructions (28.5 KiB).

The Scalar Lane issues sheet generator instructions that access line buffers.
Unlike other memory accesses within Pixel Visual Core, the latency can be more
than 1 clock cycle, so they have a DMA-like interface. The lane first sets up the
addresses and transfer size in special registers.

Pixel Visual Core Example

Figure 7.36 shows the vISA code that is output from the Halide compiler for the
blur example in Figure 7.31, with comments added for clarity. It calculates a blur
first in the x direction and then in the y direction using 16-bit arithmetic. The vISA
code matches the functional part of the Halide program. This code can be thought
of as executing across all the pixels of an image.

Pixel Visual Core Processing Element

One of the architectural decisions was how big to build the halo. Pixel Visual Core
uses 16�16 PEs, and it adds a halo of 2 extra elements, so it can support 5�5

// vISA inner loop blur in x dimension
input.b16 t1 <- _input[x*1+(�1)][y*1+0][0]; // t1 = input[x�1,y]
input.b16 t2 <- _input[x*1+0][y*1+0][0]; // t2 = input[x,y]
mov.b16 st3 <- 2;
mul.b16 t4 <- t2, st3; //t4 = input[x,y] * 2
add.b16 t5 <- t1, t4; //t5 = input[x�1,y] + input[x,y]*2
input.b16 t6 <- _input[x*1+1][y*1+0][0]; // t6 = input[x+1,y]
add.b16 t7 <- t5, t6; //t7 = input[x+1,y]+input[x,y]+input[x�1,y]*2
mov.b16 st8 <- 4;
div.b16 t9 <- t7, st8; //t9 = t7/4
output.b16 _blur_x[x*1+0][y*1+0][0] <- t9; // blur_x[x,y] = t7/4
// vISA inner loop blur in y dimension
input.b16 t1 <- _blur_x[x*1+0][y*1+(�1)][0]; // t1 = blur_x[x,y�1]
input.b16 t2 <- _blur_x[x*1+0][y*1+0][0]; // t2 = blur_x[x,y]
mov.b16 st3 <- 2;
mul.b16 t4 <- t2, st3; //t4 = blur_x[x,y] * 2
add.b16 t5 <- t1, t4; //t5 = blur_x[x,y�1] + blur_x[x,y]*2
input.b16 t6 <- _blur_x[x*1+0][y*1+1][0]; // t6 = blur_x[x,y+1]
add.b16 t7 <- t5, t6; //t7 = blurx[x,y+1]+blurx[x,y�1]+blurx[x,y]*2
mov.b16 st8 <- 4;
div.b16 t9 <- t7, st8; //t9 = t7/4
output.b16 _blur_y[x*1+0][y*1+0][0] <- t9; // blur_y[x,y] = t7/4

Figure 7.36 Portion of the vISA instructions compiled from the Halide Blur code in Figure 7.31. This vISA code
corresponds to the functional part of the Halide code.
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stencils directly. Note that the bigger the array of PEs, the less the halo overhead to
support a given stencil size.

For Pixel Visual Core, the smaller size of the halo PEs and the 16�16 arrays
means it only costs 20% more area for the halo. For a 5�5 stencil, Pixel Visual
Core can calculate 1.8 times as many results per clock cycle (162/122), and the ratio
is 1.3 for a 3�3 stencil (162/142).

The design of the arithmetic unit of the PE is driven by multiply-accumulate
(MAC), which is a primitive of stencil computation. Pixel Visual Core native
MACs are 16-bits wide for the multiplies, but they can accumulate at a 32-bit
width. Pipelining MAC would use energy unnecessarily because of the reading
and writing of the added pipeline register. Thus the multiply-add hardware deter-
mines the clock cycle. The other operations, previously mentioned, are the tradi-
tional logical and arithmetic operations along with saturating versions of the
arithmetic operations and a few specialized instructions.

The PE has two 16-bit ALUs that can operate in a variety of ways within a
single clock cycle:

■ Independently, producing two 16-bit results: A op B, C op D.

■ Fused, producing just one 16-bit result: A op (C op D).

■ Joined, producing one 32-bit result: A:C op B:D.

Two-Dimensional Line Buffers and Their Controller

Because DRAM accesses use so much energy (see Figure 7.32), the Pixel Visual
Core memory system was carefully designed to minimize the number of DRAM
accesses. The key innovation is the two-dimensional line buffer.

Kernels are logically running on separate cores, and they are connected in a
DAG with input from the sensor or DRAM and output to DRAM. The line buffers
hold portions of the image being calculated between kernels. Figure 7.37 shows the
logical use of line buffers in Pixel Visual Core.

2D stencil
processor

2D stencil
processor

DRAM

DRAM

Lens

2D stencil
processor

2D stencil
processor

LineBuffer

LineBuffer

LineBuffer

LineBuffer

LineBuffer

LineBuffer

LineBuffer

Figure 7.37 Programmer view of Pixel Visual Core: a directed-acyclic graph of kernels.
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Here are four features that the two-dimensional line buffer must support:

1. It must support two-dimensional stencil computations of various sizes, which
are unknown at design time.

2. Because of the halo, for the 16�16 PE array in Pixel Visual Core, the STPs will
want to read 20�20 blocks of pixels from the line buffer and write 16�16
blocks of pixels to the line buffer. (As previously mentioned, they call these
blocks of pixels sheets.)

3. Because the DAG is programmable, we need line buffers that can be allocated
by software between any two cores.

4. Several cores may need to read data from the same line buffer. Thus a line buffer
should support multiple consumers, although it needs just one producer.

Line buffers in Pixel Visual Core are really a multi-reader, two-dimensional FIFO
abstraction on top of a relatively large amount of SRAM: 128 KiB per instance. It
contains temporary “images” that are used just once, so a small, dedicated local
FIFO is much more efficient than a cache for data in distant memory.

To accommodate the size mismatch between reading 20�20 blocks of pixels
and writing 16�16 blocks, the fundamental unit of allocation in the FIFO is a
group of 4�4 pixels. Per stencil processor, there is one Line Buffer Pool (LBP)
that can have eight logical line buffers (LB), plus one LBP for DMA of I/O.
The LBP has three levels of abstraction:

1. At the top, the LBP controller supports eight LBs as logical instances. Each LB
has one FIFO producer and up to eight FIFO consumers per LB.

2. The controller keeps track of a set of head and tail pointers for each FIFO. Note
that the sizes of the line buffers inside the LBP are flexible and up to the
controller.

3. At the bottom are many physical memory banks to support the bandwidth
requirements. Pixel Visual Core has eight physical memory banks, each having
a 128-bit interface and 16 KiB of capacity.

The controller for the LBP is challenging because it must fulfill the bandwidth
demands of the STPs and I/O DMAs as well as schedule all their reads and writes
to the banks of physical SRAM memory. The LBP controller is one of the most
complicated pieces of Pixel Visual Core.

Pixel Visual Core Implementation

The first implementation of Pixel Visual Core was as a separate chip. Figure 7.38
shows the floorplan of the chip, which has 8 cores. It was fabricated in a TSMC
28 nm technology in 2016. The chip dimensions are 6�7.2 mm, it runs at
426 MHz, it is stacked with 512 MB DRAM as Silicon in Package, and consumes
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(including the DRAM) 187–4500 mW depending on the workload. About 30% of
the power for the chip is for an ARMv7 A53 core for control, the MIPI, the PCIe,
the PCIe, and the LPDDR interfaces, interface is just over half this die at 23 mm2.
Power for Pixel Visual Core running a worst case “power virus” can go as high as
3200 mW. Figure 7.39 shows the floor plan of a core.

Summary: How Pixel Visual Core Follows the Guidelines

Pixel Visual Core is a multicore DSA for image and vision processing intended as a
stand-alone chip or as an IP block for mobile device SOCs. As we will see in
Section7.9, its performanceperwatt forCNNsare factors of 25–100better thanCPUs
and GPUs. Here is how the Pixel Visual core followed the guidelines in Section 7.2.

1. Use dedicated memories to minimize the distance over which data is moved.
Perhaps the most distinguishing architecture feature of Pixel Visual Core is the
software-controlled, two-dimensional line buffers. At 128 KiB per core, they
are a significant fraction of the area. Each core also has 64 KiB of software-
controlled PE memory for temporary storage.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
Two other key features of Pixel Visual Core are a 16�16 two-dimensional
array of processing elements per core and a two-dimensional shifting network
between the processing elements. It offers a halo region that acts as a buffer to
allow full utilization of its 256 arithmetic units.

3 x MIPI-In
2 x MIPI-OutA53

L
P

D
D

R
4

Pixel Visual Core

PCIE
4 x

Gen3

Figure 7.38 Floor plan of the 8-core Pixel Visual Core chip. A53 is an ARMv7 core.
LPDDR4 is a DRAM controller. PCIE and MIPI are I/O buses.
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3. Use the easiest form of parallelism that matches the domain.
Pixel Visual Core relies on two-dimensional SIMD parallelism using its PE
array, VLIW to express instruction-level parallelism, and multiple program
multiple data (MPMD) parallelism to utilize multiple cores.

4. Reduce data size and type to the simplest needed for the domain.
Pixel Visual Core relies primarily on 8-bit and 16-bit integers, but it also works
with 32-bit integers, albeit more slowly.

5. Use a domain-specific programming language to port code to the DSA.
Pixel Visual Core is programmed in the domain-specific language Halide for
image processing and in TensorFlow for CNNs.

7.8 Cross-Cutting Issues

Heterogeneity and System on a Chip (SOC)

The easy way to incorporate DSAs into a system is over the I/O bus, which is the
approach of the data center accelerators in this chapter. To avoid fetching memory
operands over the slow I/O bus, these accelerators have local DRAM.

Figure 7.39 Floor plan of a Pixel Visual Core. From left to right, and top down: the sca-
lar lane (SCL) is 4% of the core area, NOC is 2%, the line buffer pool (LBP) is 15%, the sheet
generator (SHG) is 5%, the halo is 11%, and the processing element array is 62%. The torus
connection of the halo makes each of the four edges of the array logical neighbors. It is
more area-efficient to collapse the halo to just two sides, which preserves the topology.
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Amdahl’s Law reminds us that the performance of an accelerator is limited by
the frequency of shipping data between the host memory and the accelerator mem-
ory. There will surely be applications that would benefit from the host CPU and the
accelerators to be integrated into the same system on a chip (SOC), which is one of
the goals of Pixel Visual Core and eventually the Intel Crest.

Such a design is called an IP block, standing for Intellectual Property, but a
more descriptive name might be portable design block. IP blocks are typically
specified in a hardware description language like Verilog or VHDL to be inte-
grated into the SOC. IP blocks enable a marketplace where many companies
make IP blocks that other companies can buy to build the SOCs for their appli-
cations without having to design everything themselves. Figure 7.40 indicates
the importance of IP blocks by plotting the number of IP blocks across genera-
tions of Apple PMD SOCs; they tripled in just four years. Another indication of
the importance of IP blocks is that the CPU and GPU get only one-third of the
area of the Apple SOCs, with IP blocks occupying the remainder (Shao and
Brooks, 2015).

Designing an SOC is like city planning, where independent groups lobby for
limited resources, and finding that the right compromise is difficult. CPUs, GPUs,
caches, video encoders, and so on have adjustable designs that can shrink or
expand to use more or less area and energy to deliver more or less performance.
Budgets will differ depending on whether the SOC is for tablets or for IoT. Thus an
IP block must be scalable in area, energy, and performance. Moreover, it is espe-
cially important for a new IP block to offer a small resource version because it may
not already have a well-established foothold in the SOC ecosystem; adoption is
much easier if the initial resource request can be modest. The Pixel Visual Core
approach is a multicore design, allowing the SOC engineer to choose between 2
and 16 cores to match the area and power budget and desired performance.
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Figure 7.40 Number of IP blocks in Apple SOCs for the iPhone and iPad between
2010 and 2014 (Shao and Brooks, 2015).
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It will be interesting to see whether the attractiveness of integration leads to
most data center processors coming from traditional CPU companies with IP accel-
erators integrated into the CPU die, or whether systems companies will continue
designing their own accelerators and include IP CPUs in their ASICs.

An Open Instruction Set

One challenge for designers of DSAs is determining how to collaborate with a CPU
to run the rest of the application. If it’s going to be on the same SOC, then a major
decision is which CPU instruction set to choose, because until recently virtually
every instruction set belonged to a single company. Previously, the practical first
step of an SOC was to sign a contract with a company to lock in the instruction set.

The alternative was to design your own custom RISC processor and to port a
compiler and libraries to it. The cost and hassle of licensing IP cores led to a sur-
prisingly large number of do-it-yourself simple RISC processors in SOCs. One
AMD engineer estimated that there were 12 instruction sets in a modern
microprocessor!

RISC-V offers a third choice: a viable free and open instruction set with plenty
of opcode space reserved for adding instructions for domain-specific coprocessors,
which enables the previously mentioned tighter integration between CPUs and
DSAs. SOC designers can now select a standard instruction set that comes with
a large base of support software without having to sign a contract.

They still have to pick the instruction set early in the design, but they don’t have
to pick one company and sign a contract. They can design a RISC-V core them-
selves, they can buy one from the several companies that sell RISC-V IP blocks, or
they can download one of the free open-source RISC-V IP blocks developed by
others. The last case is analogous to open-source software, which offers web
browsers, compilers, operating systems, and so on that volunteers maintain for
users to download and use for free.

As a bonus, the open nature of the instruction set improves the business case for
small companies offering RISC-V technology because customers don’t have to
worry about the long-term viability of a company with its own unique
instruction set.

Another attraction of RISC-V for DSAs is that the instruction set is not as
important as it is for general-purpose processors. If DSAs are programmed at
higher levels using abstractions like DAGs or parallel patterns, as is the case
for Halide and TensorFlow, then there is less to do at the instruction set level.
Moreover, in a world where performance-cost and energy-cost advances come
from adding DSAs, binary compatibility may not play as important a role as
in the past.

At the time of this writing, the future of the open RISC-V instruction set
appears promising. (We wish we could peer into the future and learn the status
of RISC-V from now to the next edition of this book!)
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7.9 Putting It All Together: CPUs Versus GPUs Versus
DNN Accelerators

We now use the DNN domain to compare the cost-performance of the accelerators
in this chapter.2 We start with a thorough comparison of the TPU to standard CPUs
and GPUs and then add brief comparisons to Catapult and Pixel Visual Core.

Figure 7.41 shows the six benchmarks we use in this comparison. They consist
of two examples of each of the three types of DNNs in Section 7.3. These six
benchmarks represent 95% of TPU inference workload in Google data centers
in 2016. Typically written in TensorFlow, they are surprisingly short: just 100–
1500 lines of code. They are small pieces of larger applications that run on the host
server, which can be thousands to millions of lines of C++ code. The applications
are typically user-facing, which leads to rigid response-time limits, as we will see.

Figures 7.42 and 7.43 show the chips and servers being compared. They are
server-class computers deployed in Google data centers at the same time that TPUs
were deployed. To be deployed in Google data centers, they must at least check for
internal memory errors, which excluded some choices, such as the Nvidia Maxwell
GPU. For Google to purchase and deploy them, the machines had to be sensibly
configured, and not awkward artifacts assembled solely to win benchmarks.

The traditional CPU server is represented by an 18-core, dual-socket Haswell
processor from Intel. This platform is also the host server for GPUs or TPUs.

2This section is also largely based upon the paper “In-Datacenter Performance Analysis of a Tensor Processing Unit”
Jouppi et al., 2017, of which one of your book authors was a coauthor.

Name LOC

DNN layers

Weights TPU Ops/Weight
% deployed
TPUs 2016FC Conv Element Pool Total

MLP0 100 5 5 20M 200
61%

MLP1 1000 4 4 5M 168

LSTM0 1000 24 34 58 52M 64
29%

LSTM1 1500 37 19 56 34M 96

CNN0 1000 16 16 8M 2888
5%

CNN1 1000 4 72 13 89 100M 1750

Figure 7.41 Six DNN applications (two per DNN type) that represent 95% of the TPU’s workload. The 10 columns
are the DNN name; the number of lines of code; the types and number of layers in the DNN (FC is fully connected;
Conv is convolution; Element is element-wise operation of LSTM, see Section 7.3; and Pool is pooling, which is a
downsizing stage that replaces a group of elements with its average or maximum); the number of weights; TPU oper-
ational intensity; and TPU application popularity in 2016. The operational intensity varies between TPU, CPU, and GPU
because the batch sizes vary. The TPU can have larger batch sizes while still staying under the response time limit.
One DNN is RankBrain (Clark, 2015), one LSTM is GNM Translate (Wu et al., 2016), and one CNN is DeepMind AlphaGo
(Silver et al., 2016; Jouppi, 2016).
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Haswell is fabricated in an Intel 22-nm process. Both the CPU and GPU are very
large dies: about 600 mm2!

The GPU accelerator is the Nvidia K80. Each K80 card contains two dies and
offers SECDED on internal memory and DRAM. Nvidia states that (Nvidia, 2016)

the K80 Accelerator dramatically lowers datacenter cost by delivering applica-
tion performance with fewer, more powerful servers.

DNN researchers frequently used K80s in 2015, which is when they were deployed
at Google. Note that K80s were also chosen for new cloud-based GPUs byAmazon
Web Services and by Microsoft Azure in late 2016.

Because the number of dies per benchmarked server varies between 2 and 8,
the following figures show results normalized per die, except for Figure 7.50,
which compares the performance/watt of whole servers.

Performance: Rooflines, Response Time, and Throughput

To illustrate the performance of the six benchmarks on the three processors, we
adapt the Roofline performance model in Chapter 4. To use the Roofline model
for the TPU, when DNN applications are quantized, we first replace floating-point
operations with integer multiply-accumulate operations. As weights do not
normally fit in on-chip memory for DNN applications, the second change is to
redefine operational intensity to be integer operations per byte of weights read
(Figure 7.41).

Chip model mm2 nm MHz TDP

Measured TOPS/s

GB/s On-chip memoryIdle Busy 8b FP

Intel Haswell 662 22 2300 145W 41W 145W 2.6 1.3 51 51 MiB

NVIDIA K80 561 28 560 150W 25W 98W – 2.8 160 8 MiB

TPU <331* 28 700 75W 28W 40W 92 – 34 28 MiB

*The TPU die size is less than half of the Haswell die size.

Figure 7.42 The chips used by the benchmarked servers are Haswell CPUs, K80 GPUs, and TPUs. Haswell has 18
cores, and the K80 has 13 SMX processors.

Server Dies/Server DRAM TDP

Measured power

Idle Busy

Intel Haswell 2 256 GiB 504W 159W 455W

NVIDIA K80 (2 dies/card) 8 256 GiB (host)+12 GiB�8 1838W 357W 991W

TPU 4 256 GiB (host)+8 GiB�4 861W 290W 384W

Figure 7.43 Benchmarked servers that use the chips in Figure 7.42. The low-power TPU allows for better rack-level
density than the high-power GPU. The 8 GiB DRAM per TPU is Weight Memory.
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Figure 7.44 shows the Roofline model for a single TPU on log-log scales. The
TPU has a long “slanted” part of its Roofline, where operational intensity means
that performance is limited by memory bandwidth rather than by peak compute.
Five of the six applications are happily bumping their heads against the ceiling:
the MLPs and LSTMs are memory-bound, and the CNNs are computation-bound.
The single DNN that is not bumping its head against the ceiling is CNN1. Despite
CNNs having very high operational intensity, CNN1 is running at only 14.1 Tera
Operations Per Second (TOPS), while CNN0 runs at a satisfying 86 TOPS.

For readers interested into a deep dive into what happened with CNN1,
Figure 7.45 uses performance counters to give partial visibility into the utilization
of the TPU. The TPU spends less than half of its cycles performing matrix oper-
ations for CNN1 (column 7, row 1). On each of those active cycles, only about half
of the 65,536 MACs hold useful weights because some layers in CNN1 have shal-
low feature depths. About 35% of cycles are spent waiting for weights to load from
memory into the matrix unit, which occurs during the four fully connected layers
that run at an operational intensity of just 32. This leaves roughly 19% of cycles not
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Figure 7.44 TPU Roofline. Its ridge point is far to the right at 1350 multiply-
accumulate operations per byte of weight memory. CNN1 is much further below
its Roofline than the other DNNs because it spends about a third of the time waiting
for weights to be loaded into the matrix unit and because the shallow depth of some
layers in the CNN results in only half of the elements within the matrix unit holding use-
ful values ( Jouppi et al., 2017).
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explained by the matrix-related counters. Because of overlapped execution on the
TPU, we do not have exact accounting for those cycles, but we can see that 23% of
cycles have stalls for RAW dependences in the pipeline and that 1% are spent
stalled for input over the PCIe bus.

Figures 7.46 and 7.47 show Rooflines for Haswell and the K80. The six NN
applications are generally further below their ceilings than the TPU in Figure 7.44.
Response-time limits are the reason. Many of these DNN applications are parts of
services that are part of end-user-facing services. Researchers have demonstrated
that small increases in response time cause customers to use a service less (see
Chapter 6). Thus, although training may not have hard response-time deadlines,
inference usually does. That is, inference cares about throughput only while it
is maintaining the latency bound.

Figure 7.48 illustrates the impact of the 99th percentile response-time limit of 7
ms for MLP0 on Haswell and the K80, which was required by the application
developer. (The inferences per second and 7-ms latency include the server host
time as well as the accelerator time.) They can operate at 42% and 37%, respec-
tively, with the highest throughput achievable for MLP0, if the response-time limit
is relaxed. Thus, although CPUs and GPUs have potentially much higher through-
put, it’s wasted if they don’t meet the response-time limit. These bounds affect the
TPU as well, but at 80% in Figure 7.48, it is operating much closer to its highest
MLP0 throughput. As compared with CPUs and GPUs, the single-threaded TPU
has none of the sophisticated microarchitectural features discussed in Section 7.1
that consume transistors and energy to improve the average case but not the 99th-
percentile case.

Application MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1 Mean Row

Array active cycles 12.7% 10.6% 8.2% 10.5% 78.2% 46.2% 28% 1

Useful MACs in 64K matrix (% peak) 12.5% 9.4% 8.2% 6.3% 78.2% 22.5% 23% 2

Unused MACs 0.3% 1.2% 0.0% 4.2% 0.0% 23.7% 5% 3

Weight stall cycles 53.9% 44.2% 58.1% 62.1% 0.0% 28.1% 43% 4

Weight shift cycles 15.9% 13.4% 15.8% 17.1% 0.0% 7.0% 12% 5

Non-matrix cycles 17.5% 31.9% 17.9% 10.3% 21.8% 18.7% 20% 6

RAW stalls 3.3% 8.4% 14.6% 10.6% 3.5% 22.8% 11% 7

Input data stalls 6.1% 8.8% 5.1% 2.4% 3.4% 0.6% 4% 8

TeraOp/s (92 Peak) 12.3 9.7 3.7 2.8 86.0 14.1 21.4 9

Figure 7.45 Factors limiting TPU performance of the NN workload based on hardware performance counters.
Rows 1, 4, 5, and 6 total 100% and are based on measurements of activity of the matrix unit. Rows 2 and 3 further
break down the fraction of 64K weights in the matrix unit that hold useful weights on active cycles. Our counters
cannot exactly explain the time when the matrix unit is idle in row 6; rows 7 and 8 show counters for two possible
reasons, including RAW pipeline hazards and PCIe input stalls. Row 9 (TOPS) is based onmeasurements of production
code while the other rows are based on performance-counter measurements, so they are not perfectly consistent.
Host server overhead is excluded here. The MLPs and LSTMs are memory-bandwidth limited, but CNNs are not. CNN1
results are explained in the text.
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Figure 7.49 gives the bottom line of relative inference performance per die,
including the host server overhead for the two accelerators. Recall that architects
use the geometric mean when they don’t know the actual mix of programs that will
be run. For this comparison, however, we do know the mix (Figure 7.41). The
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Figure 7.46 Intel Haswell CPU Roofline with its ridge point at 13 multiply-accumulate operations/byte, which is
much further to the left than in Figure 7.44.
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Figure 7.47 NVIDIA K80 GPU die Roofline. The much higher memory bandwidth moves the ridge point to 9
multiply-accumulate operations per weight byte, which is even further to the left than in Figure 7.46.
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weighted mean in the last column of Figure 7.49 using the actual mix makes the
GPU up to 1.9 times, and the TPU is 29.2 times as fast as the CPU, so the TPU is
15.3 times as fast as the GPU.

Cost-Performance, TCO, and Performance/Watt

When buying computers by the thousands, cost-performance trumps general per-
formance. The best cost metric in a data center is total cost of ownership (TCO).
The actual price Google pays for thousands of chips depends on negotiations
between the companies involved. For business reasons, Google can’t publish such
price information or data that might let them be deduced. However, power is cor-
related with TCO, and Google can publish watts per server, so we use performance/
watt as our proxy for performance/TCO. In this section, we compare servers
(Figure 7.43) rather than single dies (Figure 7.42).

Figure 7.50 shows the weighted mean performance/watt for the K80 GPU and
TPU relative to the Haswell CPU. We present two different calculations of perfor-
mance/watt. The first (“total”) includes the power consumed by the host CPU
server when calculating performance/watt for the GPU and TPU. The second
(“incremental”) subtracts the host CPU server power from the total for the GPU
and TPU beforehand.

Type Batch 99th% response Inf/s (IPS) % max IPS

CPU 16 7.2 ms 5482 42%

CPU 64 21.3 ms 13,194 100%

GPU 16 6.7 ms 13,461 37%

GPU 64 8.3 ms 36,465 100%

TPU 200 7.0 ms 225,000 80%

TPU 250 10.0 ms 280,000 100%

Figure 7.48 99th% response time and per die throughput (IPS) for MLP0 as batch
size varies. The longest allowable latency is 7 ms. For the GPU and TPU, the maximum
MLP0 throughput is limited by the host server overhead.

Type MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1 Mean

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9

TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2

Ratio 16.7 60.0 8.0 1.0 25.4 26.3 15.3

Figure 7.49 K80 GPU and TPU performance relative to CPU for the DNNworkload. Themean uses the actual mix of
the six applications in Figure 7.41. Relative performance for the GPU and TPU includes host server overhead.
Figure 7.48 corresponds to the second column of this table (MLP0), showing relative IPS that meet the 7-ms latency
threshold.
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For total-performance/watt, the K80 server is 2.1� Haswell. For incremental-
performance/watt, when Haswell power is omitted, the K80 server is 2.9�.

The TPU server has 34 times better total-performance/watt than Haswell,
which makes the TPU server 16 times the performance/watt of the K80 server.
The relative incremental-performance/watt—which was Google’s justification
for a custom ASIC—is 83 for the TPU, which lifts the TPU to 29 times the per-
formance/watt of the GPU.

Evaluating Catapult and Pixel Visual Core

Catapult V1 runs CNNs 2.3� as fast as a 2.1 GHz, 16-core, dual-socket server
(Ovtcharov et al., 2015a). Using the next generation of FPGAs (14-nm Arria
10), performance goes up 7�, and perhaps even 17� with more careful floorplan-
ning and scaling up of the Processing Elements (Ovtcharov et al., 2015b). In both
cases, Catapult increases power by less than 1.2�. Although it’s apples versus
oranges, the TPU runs its CNNs 40� to 70� versus a somewhat faster server
(see Figures 7.42, 7.43, and 7.49).

Because Pixel Visual Core and the TPU are both made by Google, the good
news is that we can directly compare performance for CNN1, which is a common
DNN, although it had to be translated from TensorFlow. It runs with batch size of 1
instead of 32 as in the TPU. The TPU runs CNN1 about 50 times as fast as Pixel
Visual Core, which makes Pixel Visual Core about half as fast as the GPU and a
little faster than Haswell. Incremental performance/watt for CNN1 raises Pixel
Visual Core to about half the TPU, 25 times the GPU, and 100 times the CPU.
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Figure 7.50 Relative performance/watt of GPU and TPU servers to CPU or GPU
servers. Total performance/watt includes host server power, but incremental doesn’t.
It is a widely quoted metric, but we use it as a proxy for performance/TCO in the
data center.
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Because the Intel Crest is designed for training rather than inference, it wouldn’t be
fair to include it in this section, even if it were available to measure.

7.10 Fallacies and Pitfalls

In these early days of both DSAs and DNNs, fallacies abound.

Fallacy It costs $100 million to design a custom chip.

Figure 7.51 shows a graph from an article that debunks the widely quoted $100-
million myth that it was “only” $50 million, with most of the cost being salaries
(Olofsson, 2011). Note that the author’s estimate is for sophisticated processors
that include features that DSAs by definition omit, so even if there were no
improvement to the development process, you would expect the cost of a DSA
design to be less.

Why are we more optimistic six years later, when, if anything, mask costs are
even higher for the smaller process technologies?

First, software is the largest category, at almost a third of the cost. The avail-
ability of applications written in domain-specific languages allows the compilers to
domost of the work of porting the applications to your DSA, as we saw for the TPU
and Pixel Visual Core. The open RISC-V instruction set will also help reduce the
cost of getting system software as well as cut the large IP costs.

Mask and fabrication costs can be saved byhavingmultiple projects share a single
reticle. As long as you have a small chip, amazingly enough, for $30,000 anyone can
get 100 untested parts in 28-nm TSMC technology (Patterson and Nikoli�c, 2015).

SOFTWARE,
$15,750,000

HARDWARE,
$13,500,000

EDA TOOLS,
$9,000,000

FABRICATION,
$5,000,000

IP,
$5,000,000

Sales+
Management,
$4,500,000

Figure 7.51 The breakdown of the $50 million cost of a custom ASIC that came from
surveying others (Olofsson, 2011). The author wrote that his company spent just $2
million for its ASIC.
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Perhaps the biggest change is to hardware engineering, which is more than a
quarter of the cost. Hardware engineers have begun to follow their software col-
leagues to use agile development. The traditional hardware process not only has
separate phases for design requirements, architecture, logical design, layout, ver-
ification, and so on, but also it uses different job titles for the people who perform
each of the phases. This process is heavy on planning, documentation, and sched-
uling in part because of the change in personnel each phase.

Software used to follow this “waterfall”model as well, but projects were so com-
monly late, over budget, and even canceled that it led to a radically different
approach. The Agile Manifesto in 2001 basically said that it was much more likely
that a small team that iterated on an incomplete but working prototype shown reg-
ularly to customers would produce useful software on schedule and on budget more
than the traditional plan-and-document approach of the waterfall process would.

Small hardware teams now do agile iterations (Lee et al., 2016). To ameliorate
the long latency of a chip fabrication, engineers do some iterations using FPGAs
because modern design systems can produce both the EDIF for FPGAs and chip
layout from a single design. FPGA prototypes run 10–20 times slower than chips,
but that is still much faster than simulators. They also do “tape-in” iterations, where
you do all the work of a tape-out for your working but incomplete prototype, but
you don’t pay the costs of fabricating a chip.

In addition to an improved development process, more modern hardware design
languages to support them (Bachrach et al., 2012), and advances in automatic gen-
eration of hardware from high-level domain-specific languages (Canis et al., 2013;
Huang et al., 2016; Prabhakar et al., 2016). Open source cores that you can download
for free and modify should also lower the cost of hardware design.

Pitfall Performance counters added as an afterthought for DSA hardware.

The TPU has 106 performance counters, and the designers wanted even more (see
Figure 7.45). The raison d’être for DSAs is performance, and it is way too early in
their evolution to have a good idea about what is going on.

Fallacy Architects are tackling the right DNN tasks.

The architecture community is paying attention to deep learning: 15% of the papers
at ISCA 2016 were on hardware accelerators for DNNs! Alas, all nine papers
looked at CNNs, and only two mentioned other DNNs. CNNs are more complex
than MLPs and are prominent in DNN competitions (Russakovsky et al., 2015),
which might explain their allure, but they are only about 5% of the Google data
center NNworkload. It seems wise try to accelerate MLPs and LSTMs with at least
as much gusto.

Fallacy For DNN hardware, inferences per second (IPS) is a fair summary performance
metric.

IPS is not appropriate as a single, overall performance summary for DNN hardware
because it’s simply the inverse of the complexity of the typical inference in the
application (e.g., the number, size, and type of NN layers). For example, the
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TPU runs the 4-layer MLP1 at 360,000 IPS but the 89-layer CNN1 at only 4700
IPS; thus TPU IPS varies by 75X! Therefore using IPS as the single-speed sum-
mary is much more misleading for NN accelerators than MIPS or FLOPS is for
traditional processors, so IPS should be even more disparaged. To compare
DNN machines better, we need a benchmark suite written at a high level to port
it to the wide variety of DNN architectures. Fathom is a promising new attempt
at such a benchmark suite (Adolf et al., 2016).

Pitfall Being ignorant of architecture history when designing a DSA.

Ideas that didn’t fly for general-purpose computing may be ideal for DSAs, thus
history-aware architects could have a competitive edge. For the TPU, three impor-
tant architectural features date back to the early 1980s: systolic arrays (Kung and
Leiserson, 1980), decoupled-access/execute (Smith, 1982b), and CISC instruc-
tions (Patterson and Ditzel, 1980). The first reduced the area and power of the large
Matrix Multiply Unit, the second fetched weights concurrently during operation of
the Matrix Multiply Unit, and the third better utilized the limited bandwidth of the
PCIe bus for delivering instructions. We advise mining the historical perspectives
sections at the end of every chapter of this book to discover jewels that could
embellish DSAs that you design.

7.11 Concluding Remarks

In this chapter, we’ve seen several commercial examples of the recent shift from
the traditional goal of improving general-purpose computers so that all programs
benefit to accelerating a subset of programs with DSAs.

Both versions of Catapult preserved data-center homogeneity by designing a
small, low-power FPGA board that could fit inside a server. The hope is that
the flexibility of FPGAs will allow Catapult to be useful to many current applica-
tions and the new ones that appeared after deployment. Catapult runs search rank
and CNNs faster than GPUs, offering a 1.5–1.75 gain in performance/TCO for
ranking over CPUs.

The TPU project actually began with FPGAs but abandoned them when the
designers concluded that the FPGAs of that time were not competitive in perfor-
mance compared to the GPUs. They also believed the TPU would use much less
power than GPUs, while being as fast or faster, potentially making the TPU much
better than FPGAs and GPUs. Finally, the TPU was not the device that broke data
center homogeneity at Google because some servers in its data centers already had
GPUs. The TPU basically followed in the footsteps of the GPU and was just
another type of accelerator.

The nonrecurring engineering costs were likely much higher for the TPU than
for Catapult, but the rewards were also greater: both performance and performance/
watt were much higher for an ASIC than for an FPGA. The risk was that the TPU
was appropriate only for DNN inference, but as we mentioned, DNNs are an attrac-
tive target because they can potentially be used for many applications. In 2013
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Google’s management took a leap of faith by trusting that the DNN requirements in
2015 and beyond would justify investment in the TPU.

The deterministic execution model of both Catapult and the TPU is a better
match to the response-time deadline of user-facing applications than are the
time-varying optimizations of CPUs and GPUs (caches, out-of-order execution,
multithreading, multiprocessing, prefetching, etc.) that help average throughput
more than latency. The lack of such features helps explain why, despite having
myriad ALUs and a big memory, the TPU is relatively small and low powered.
This achievement suggests a “Cornucopia Corollary” to Amdahl’s Law: low uti-
lization of a huge, cheap resource can still deliver high, cost-effective
performance.

In summary, the TPU succeeded for DNNs because of the large matrix unit; the
substantial software-controlled on-chip memory; the ability to run whole inference
models to reduce dependence on host CPU; a single-threaded, deterministic exe-
cution model that proved to be a good match to 99th-percentile response-time
limits; enough flexibility to match the DNNs of 2017 as well as of 2013; the omis-
sion of general-purpose features that enabled a small and low-power die despite the
larger datapath and memory; the use of 8-bit integers by the quantized applications;
and the fact that applications were written using TensorFlow, which made it easy to
port them to the DSA at high-performance rather than having to rewrite them in
order for them to run well on the very different hardware.

Pixel Visual Core demonstrated the constraints of designing a DSA for a PMD
in terms of die size and power. Unlike the TPU, it is a separate processor from the
host that fetches its own instructions. Despite being aimed primarily at computer
vision, Pixel Visual Core can run CNNs one to two orders of magnitude better in
performance/watt than the K80 GPU and the Haswell CPU.

It’s too early to render judgment on the Intel Crest, although its enthusiastic
announcement by the Intel CEO signals a shift in the computing landscape.

An Architecture Renaissance

For at least the past decade, architecture researchers have been publishing innova-
tions based on simulations using limited benchmarks claiming improvements for
general-purpose processors of 10% or less while companies are now reporting
gains for DSA hardware products of 10 times or more.

We think that is a sign that the field is undergoing a transformation, andwe expect
to see a renaissance in architecture innovation in the next decade because of

■ the historic end of both Dennard scaling and Moore’s Law, which means
improving cost-energy-performance will require innovation in computer
architecture;

■ the productivity advances in building hardware from both Agile hardware
development and new hardware design languages that leverage advances in
modern programming languages;
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■ the reduced cost of hardware development because of free and open instruction
sets, open-source IP blocks, and commercial IP blocks (which so far is where
most DSAs are found);

■ the improvements mentioned above in productivity and cost of development
means researchers can afford to demonstrate their ideas by building them in
FPGAs or even in custom chips, instead of trying to convince skeptics with
simulators; and

■ the potential upside of DSAs and their synergy with domain-specific program-
ming languages.

We believe that many architecture researchers will build DSAs that will raise the
bar still higher than those discussed in this chapter. And we can’t wait to see what
the computer architecture world will look like by the next edition of this book!

7.12 Historical Perspectives and References

Section M.9 (available online) covers the development of DSAs.

Case Studies and Exercises by Cliff Young

Case Study: Google’s Tensor Processing Unit and Acceleration
of Deep Neural Networks

Concepts illustrated by this case study

■ Structure of matrix multiplication operations

■ Capacities of memories and rates of computations (“speeds and feeds”) for a
simple neural network model

■ Construction of a special-purpose ISA

■ Inefficiencies in mapping convolutions to TPU hardware

■ Fixed-point arithmetic

■ Function approximation

7.1 [10/20/10/25/25]<7.3,7.4>Matrix multiplication is a key operation supported in
hardware by the TPU. Before going into details of the TPU hardware, it’s worth
analyzing the matrix multiplication calculation itself. One common way to depict
matrix multiplication is with the following triply nested loop:

float a[M][K], b[K][N], c[M][N];
// M, N, and K are constants.
for (int i = 0; i < M; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < K; ++k)

c[i][j] += a[i][k] * b[k][j];
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a. [10] Suppose that M, N, and K are all equal. What is the asymptotic complexity
in time of this algorithm? What is the asymptotic complexity in space of the
arguments? What does this mean for the operational intensity of matrix multi-
plication as M, N, and K grow large?

b. [20] Suppose that M=3, N=4, and K=5, so that each of the dimensions are
relatively prime. Write out the order of accesses to memory locations in each
of the three matrices A, B, and C (youmight start with two-dimensional indices,
then translate those to memory addresses or offsets from the start of each
matrix). For which matrices are the elements accessed sequentially? Which
are not? Assume row-major (C-language) memory ordering.

c. [10] Suppose that you transpose matrix B, swapping its indices so that they are
B[N][K] instead. So, now the innermost statement of the loop looks like:

c[i][j] += a[i][k] * b[j][k];

Now, for which matrices are the elements accessed sequentially?

d. [25] The innermost (k-indexed) loop of our original routine performs a
dot-product operation. Suppose that you are a given a hardware unit that can
perform an 8-element dot-product more efficiently than the raw C code, behav-
ing effectively like this C function:

void hardware_dot(float *accumulator,
const float *a_slice, const float *b_slice) {

float total = 0.;
for (int k = 0; k < 8; ++k) {

total += a_slice[k] * b_slice[k];
}
*accumulator += total;

}

Howwould you rewrite the routine with the transposed Bmatrix from part (c) to
use this function?

e. [25] Suppose that instead, you are given a hardware unit that performs an
8-element “saxpy” operation, which behaves like this C function:

void hardware_saxpy(float *accumulator,
float a, const float *input) {

for (int k = 0; k < 8; ++k) {
accumulator[k] += a * input[k];

}
}

Write another routine that uses the saxpy primitive to deliver equivalent results to
the original loop, without the transposed memory ordering for the B matrix.

7.2 [15/10/10/20/15/15/20/20] <7.3,7.4>Consider the neural network model MLP0
from Figure 7.5. That model has 20 Mweights in five fully connected layers (neural
network researchers count the input layer as if it were a layer in the stack, but it has no
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weights associated with it). For simplicity, let’s assume that those layers are each the
same size, so each layer holds 4 Mweights. Then assume that each layer has identical
geometry, so each group of 4 M weights represents a 2 K*2 K matrix. Because the
TPU typically uses 8-bit numerical values, 20 M weights take up 20 MB.

a. [15] For batch sizes of 128, 256, 512, 1024, and 2048, how big are the input
activations for each layer of the model (which, except for the input layer, are
also the output activations of the previous layer)? Now considering the whole
mode (i.e., there’s just the input to the first layer and the output from the last
layer), for each batch size, what is the transfer time for input and output over
PCIe Gen3 x16, which has a transfer speed of about 100 Gibit/s?

b. [10] Given the memory system speed of 30 GiB/s, give a lower bound for the
time the TPU takes to read the weights of MLP0 frommemory. Howmuch time
does it take for the TPU to read a 256�256 “tile” of weights from memory?

c. [10] Show how to calculate the TPU’s 92 T operations/second, given that we
know that the systolic array matrix multiplier has 256�256 elements, each of
which performs an 8-bit multiply-accumulate operation (MAC) each cycle. In
high-performance-computingmarketing terms, aMACcounts as twooperations.

d. [20] Once a weight tile has been loaded into the matrix unit of the TPU, it can be
reused to multiply a 256-element input vector by the 256�256 weight matrix
represented by the tile to produce a 256-element output vector every cycle.
How many cycles pass during the time it takes to load a weight tile? This is
the “break-even” batch size, where compute and memory-load times are equal,
also known as the “ridge” of the roofline.

e. [15] The compute peak for the Intel Haswell x86 server is about 1 T FLOPS,
while the compute peak for the NVIDIA K80 GPU is about 3 T FLOPS. Sup-
posing that they hit these peak numbers, calculate their best-case compute time
for batch size 128. How do these times compare to the time the TPU takes to
load all 20 M weights from memory?

f. [15] Assuming that the TPU program does not overlap computation with I/O
over PCIe, calculate the time elapsed from when the CPU starts to send the first
byte of data to the TPU until the time that the last byte of output is returned.
What fraction of PCIe bandwidth is used?

g. [20] Suppose that we deployed a configuration where one CPU was connected
to five TPUs across a single PCIe Gen3 x16 bus (with appropriate PCIe
switches). Assume that we parallelize by placing one layer of MLP0 on each
TPU, and that the TPUs can communicate directly with each other over PCIe.
At batch=128, what is the best-case latency for calculating a single inference,
and what throughput, in terms of inferences per second, would such a config-
uration deliver? How does this compare to a single TPU?

h. [20] Suppose that each example in a batch of inferences requires 50 core-micro-
seconds of processing time on the CPU. How many cores on the host CPU will
be required to drive a single-TPU configuration at batch=128?

7.3 [20/25/25/25/Discussion] <7.3,7.4>Consider a pseudo-assembly language for
the TPU, and consider the program that handles a batch of size 2048 for a tiny fully
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connected layer with a 256�256 weight matrix. If there were no constraints on the
sizes or alignments of computations in each instruction, the entire program for that
layer might look like the following:

read_host u#0, 256*2048
read_weights w#0, 256*256
// matmul weights are implicitly read from the FIFO.
activate u#256*2048, a#0, 256*2048
write_host, u#256*2048, 256*2048

In this pseudo-assembly language, a prefix of “u#” refers to a memory address in
the unified buffer; a prefix of “w#” refers to a memory address in the off-chip
weight DRAM, and a prefix of “a#” refers to an accumulator address. The
last argument of each assembly instruction describes the number of bytes to be
operated upon.

Let’s walk through the program instruction by instruction:

■ The read_host instruction reads 512 KB of data from host memory, storing it at
the very beginning of the unified buffer (u#0).

■ The read_weights instruction tells the weight fetching unit to read 64 KB of
weights, loading them into the on-chip weight FIFO. These 64 KB of weights
represent a single, 256�256 matrix of weights, which we will call a “weight
tile.”

■ The matmul instruction reads the 512 KB of input data from address 0 in the
unified buffer, performs a matrix multiplication with the tile of weights, and
stores the resulting 256*2048=524,288, 32-bit activations at accumulator
address 0 (a#0). We have intentionally glossed over the details of the ordering
of weights; the exercise will expand on these details.

■ The activate instruction takes those 524,288 32-bit accumulators at a#0, applies
an activation function to them, and stores the resulting 524,288, 8-bit output
values at the next free location in the unified buffer, u#524288.

■ The write_host instruction writes the 512 KB of output activations, starting at
u#524288, back to the host CPU.

We will progressively add realistic details to the pseudo-assembly language to
explore some aspects of TPU design.

a. [20] While we have written our pseudo-code in terms of bytes and byte
addresses (or in the case of the accumulators, in terms of addresses to 32-bit
values), the TPU operates on a natural vector length of 256. This means that
the unified buffer is typically addressed at 256-byte boundaries, the accumula-
tors are addressed in groups of 256 32-bit values (or at 1 KB boundaries), and
weights are loaded in groups of 65,536 8-bit values. Rewrite the program’s
addresses and transfer sizes to take these vector and weight-tile lengths into
account. How many 256-element vectors of input activations will be read
by the program? How many bytes of accumulated values will be used while
computing the results? How many 256-element vectors of output activations
will be written back to the host?
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b. [25] Suppose that the application requirements change, and instead of a
multiplication by a 256�256 weight matrix, the shape of the weight matrix
now becomes 1024�256. Think of the matmul instruction as putting the
weights as the right argument of the matrix multiplication operator, so 1024
corresponds to K, the dimension in which the matrix multiplication adds up
values. Suppose that there are now two variants of the accumulate instruction,
one of which overwrites the accumulators with its results, and the other of
which adds the matrix multiplication results to the specified accumulator.
How would you change the program to handle this 1024�256 matrix? Do
you need more accumulators? The size of the matrix unit remains the same
at 256�256; how many 256�256 weight tiles does your program need?

c. [25] Now write the program to handle a multiplication by a weight matrix of
size 256�512. Does your program need more accumulators? Can you rewrite
your program so that it uses only 2048, 256-entry accumulators? How many
weight tiles does your program need? In what order should they be stored in
the weight DRAM?

d. [25] Next, write the program to handle a multiplication by a weight matrix of
size 1024�768. How many weight tiles does your program need? Write your
program so that it uses only 2048, 256-entry accumulators. In what order
should the weight tiles be stored in the weight DRAM? For this calculation,
how many times did each input activation get read?

e. [Discussion] What would it take to build an architecture that reads each
256-element set of input activations just once? How many accumulators would
that require? If you did it that way, how big would the accumulator memory
have to be? Contrast this approach with the TPU, which uses 4096 accumula-
tors, so that one set of 2048 accumulators can be written by the matrix unit
while another is being used for activations.

7.4 [15/15/15] <7.3,7.4>Consider the first convolutional layer of AlexNet, which
uses a 7�7 convolutional kernel, with an input feature depth of 3 and an output
feature depth of 48. The original image width is 220�220.

a. [15] Ignore the 7�7 convolutional kernel for the moment, and consider just
the center element of that kernel. A 1�1 convolutional kernel is mathemati-
cally equivalent to a matrix multiplication, using a weight matrix that is
input_depth�output_depth in dimensions.With these depths, and using a stan-
dard matrix multiplication, what fraction of the TPU’s 65,536 ALUs can be
used?

b. [15] For convolutional neural networks, the spatial dimensions are also sources
of weight reuse, since the convolutional kernel gets applied to many different
(x,y) coordinate positions. Suppose that the TPU reaches balanced compute and
memory at a batch size of 1400 (as you might have computed in exercise 1d).
What is the smallest square image size that the TPU can process efficiently at a
batch size of 1?

c. [15] The first convolutional layer of AlexNet implements a kernel stride of 4,
which means that rather than moving by one X or Y pixel at each application,
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the 7�7 kernel moves by 4 pixels at a time. This striding means that we can
permute the input data from 220�220�3 to be 55�55�48 (dividing the X
and Y dimensions by 4 and multiplying the input depth by 16), and simulta-
neously we can restack the 7�7�3�48 convolutional weights to be
2�2�48�48 (just as the input data gets restacked by 4 in X and Y, we do
the same to the 7�7 elements of the convolutional kernel, ending up with
ceiling(7/4)=2 elements in each of the X and Y dimensions). Because the
kernel is now 2�2, we need to perform only four matrix multiplication oper-
ations, using weight matrices of size 48�48. What is the fraction of the 65,536
ALUs that can be used now?

7.5 [15/10/20/20/20/25]<7.3>The TPU uses fixed-point arithmetic (sometimes also
called quantized arithmetic, with overlapping and conflicting definitions), where
integers are used to represent values on the real number line. There are a number of
different schemes for fixed-point arithmetic, but they share the common theme that
there is an affine projection from the integer used by hardware to the real number
that the integer represents. An affine projection has the form r= i*s+b, where i is
the integer, r is the represented real value, and s and b are a scale and bias. You can
of course write the projection in either direction, from integers to reals or vice versa
(although you need to round when converting from reals to integers).

a. [15] The simplest activation function supported by the TPU is “ReLUX,” which
is a rectified linear unit with a maximum of X. For example, ReLU6 is defined by
Relu6(x)={ 0, when x<0; x, when 0<=x<=6; and 6, when x>6 }. So 0.0 and
6.0 on the real number line are the minimum and maximum values that Relu6
might produce. Assume that you use an 8-bit unsigned integer in hardware,
and that you want to make 0 map to 0.0 and 255 map to 6.0. Solve for s and b.

b. [10] How many values on the real number line are exactly representable by
an 8-bit quantized representation of ReLU6 output? What is the real-number
spacing between them?

c. [20] The difference between representable values is sometimes called a “unit in
the least place,” or ulp, when performing numerical analysis. If you map a real
number to its fixed-point representation, then map back, you only rarely get
back the original real number. The difference between the original number
and its representation is called the quantization error. When mapping a
real number in the range [0.0,6.0] to an 8-bit integer, show that the worst-case
quantization error is one-half of an ulp (make sure you round to the nearest rep-
resentable value). You might consider graphing the errors as a function of the
original real number.

d. [20] Keep the real-number range [0.0,6.0] for an 8-bit integer from the last step.
What 8-bit unsigned integer represents 1.0? What is the quantization error for
1.0? Suppose that you ask the TPU to add 1.0 to 1.0. What answer do you get
back, and what is the error in that result?

e. [20] If you pick a random number uniformly in the range [0.0, 6.0], then
quantize it to an 8-bit unsigned integer, what distribution would you expect
to see for the 256 integer values?
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f. [25] The hyperbolic tangent function, tanh, is another commonly used
activation function in deep learning: tanh xð Þ ¼ 1� e�2x

1 + e�2x

Tanh also has a bounded range, mapping the entire real number line to the interval
�1:0,1:0ð Þ. Solve for s and b for this range, using an 8-bit unsigned representation.
Then solve for s and b using an 8-bit two’s complement representation. For both
cases, what real number does the integer 0 represent? Which integer represents the
real number 0.0? Can you imagine any issues that might result from the quantiza-
tion error incurred when representing 0.0?

7.6 [20/25/15/15/30/30/30/40/40/25/20/Discussion] <7.3> In addition to tanh,
another s-shaped smooth function, the logistic sigmoid function y=1 / (1+exp(�x)),

logistic_sigmoid xð Þ¼ 1
1 + e�x

is commonly used as an activation function in neural networks. A common way to
implement them in fixed-point arithmetic uses a piecewise quadratic approxima-
tion, where the most significant bits of the input value select which table entry to
use. Then the least significant bits of the input value are sent to a degree-2 polyno-
mial that describes a parabola that is fit to the subrange of the approximated function.

a. [20] Using a graphing tool (we like www.desmos.com/calculator), draw the
graphs for the logistic sigmoid and tanh functions.

b. [25] Now draw the graph of y=tanh(x/2)/2. Compare that graph with the logis-
tic sigmoid function. How much do they differ by? Build an equation that
shows how to transform one into the other. Prove that your equation is correct.

c. [15] Given this algebraic identity, do you need to use two different sets of coef-
ficients to approximate logistic sigmoid and tanh?

d. [15] Tanh is an odd function, meaning that f(�x)=� f(x). Can you exploit this
fact to save table space?

e. [30] Let’s focus our attention on approximating tanh over the interval
x2 0:0, 6:4½ � on the number line. Using floating-point arithmetic, write a pro-
gram that divides the interval into 64 subintervals (each of length 0.1), and then
approximates the value of tanh over each subinterval using a single constant
floating-point value (so you’ll need to pick 64 different floating-point values,
one for each subinterval). If you spot-check 100 different values (randomly
chosen is fine) within each subinterval, what is the worst-case approximation
error you see over all subintervals? Can you choose your constant to minimize
the approximation error for each subinterval?

f. [30] Now consider building a floating-point linear approximation for each sub-
interval. In this case, you want to pick a pair of floating-point values m and b,
for the traditional line equation y¼mx + b, to approximate each of the 64 sub-
intervals. Come up with a strategy that you think is reasonable to build this lin-
ear interpolation over 64 subintervals for tanh. Measure the worst-case
approximation error over the 64 intervals. Is your approximation monotonic
when it reaches a boundary between subintervals?

612 ■ Chapter Seven Domain-Specific Architectures

http://www.desmos.com/calculator


g. [40] Next, build a quadratic approximation, using the standard formula
y¼ ax2 + bx+ c: Experiment with a number of different ways to fit the formula.
Try fitting the parabola to the endpoints and midpoint of the bucket, or using a
Taylor approximation around a single point in the bucket. What worst-case
error do you get?

h. [40] (extra credit) Let’s combine the numerical approximations of this exercise
with the fixed-point arithmetic of the previous exercise. Suppose that the input
x2 0:0, 6:4½ � is represented by a 15-bit unsigned value, with 0x0000 represent-
ing 0.0 and 0x7FFF representing 6.4. For the output, similarly use a 15-bit
unsigned value, with 0x0000 representing 0.0 and 0x7FFF representing 1.0.
For each of your constant, linear, and quadratic approximations, calculate the
combined effect of approximation and quantization errors. Since there are so
few input values, you can write a program to check them exhaustively.

i. [25] For the quadratic, quantized approximation, is your approximation mono-
tonic within each subinterval?

j. [20] A difference of one ulp in the output scale should correspond to an error of
1.0 / 32767. How many ulps of error are you seeing in each case?

k. [Discussion] By choosing to approximate the interval [0.0, 6.4], we effectively
clipped the “tail” of the hyperbolic tangent function, for values of x> 6:4. It’s
not an unreasonable approximation to set the output value for all of the tail to
1.0. What’s the worst-case error, in terms of both real numbers and ulps, of
treating the tail this way? Is there a better place we might have clipped the tail
to improve our accuracy?

Exercises

7.7 [10/20/10/15] <7.2,7.5>One popular family of FPGAs, the Virtex-7 series, is
built by Xilinx. A Virtex-7 XC7VX690T FPGA contains 3,600 25x18-bit
integer multiply-add “DSP slices.” Consider building a TPU-style design on such
an FPGA.

a. [10] Using one 25�18 integer multiplier per systolic array cell, what’s the larg-
est matrix multiplication unit one could construct? Assume that the matrix mul-
tiplication unit must be square.

b. [20] Suppose that you could build a rectangular, nonsquare matrix multiplica-
tion unit. What implications would such a design have for hardware and soft-
ware? (Hint: think about the vector length that software must handle.)

c. [10] Many FPGA designs are lucky to reach 500 MHz operation. At that speed,
calculate the peak 8-bit operations per second that such a device might achieve.
How does that compare to the 3 T FLOPS of a K80 GPU?

d. [15] Assume that you can make up the difference between 3600 and 4096 DSP
slices using LUTs, but that doing so will reduce your clock rate to 350 MHz. Is
this a worthwhile trade-off to make?
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7.8 [15/15/15] <7.9>Amazon Web Services (AWS) offers a wide variety of “com-
puting instances,” which are machines configured to target different applications
and scales. AWS prices tell us useful data about the Total Cost of Ownership
(TCO) of various computing devices, particularly as computer equipment is often
depreciated1 on a 3-year schedule. As of July 2017, a dedicated, compute-oriented
“c4” computing instance includes two x86 chips with 20 physical cores in total. It
rents on-demand for $1.75/hour, or $17,962 for 3 years. In contrast, a dedicated
“p2” computing instance also has two x86 chips but with 36 cores in total, and adds
16 NVIDIA K80 GPUs. A p2 rents on-demand for $15.84/hour, or $184,780 for
3 years.

a. [15] The c4 instance uses Intel Xeon E5-2666 v3 (Haswell) processors. The p2
instance uses Intel Xeon E5-2686 v4 (Broadwell) processors. Neither part num-
ber is listed officially on Intel’s product website, which suggests that these parts
are specially built for Amazon by Intel. The E5-2660 v3 part has a similar core
count to the E5-2666 v3 and has a street price of around $1500. The E5-2697 v4
part has a similar core count to the E5-2686 v4 and has a street price of around
$3000. Assume that the non-GPU portion of the p2 instance would have a price
proportional to the ratio of street prices. What is the TCO, over 3 years, for a
single K80 GPU?

b. [15] Suppose that you have a compute- and throughput-dominated workload
that runs at rate 1 on the c4 instance and at rate T on the GPU-accelerated
p2 instance. How large must T be for the GPU-based solution to be more
cost-effective? Suppose that each general-purpose CPU core can compute at
a rate of about 30G single-precision FLOPS. Ignoring the CPUs of the p2
instance, what fraction of peak K80 FLOPs would be required to reach the same
rate of computation as the c4 instance?

c. [15] AWS also offers “f1” instances that include 8 Xilinx Ultrascale+VU9P
FPGAs. They rent at $13.20/hour, or $165,758 for 3 years. Each VU9P device
includes 6840 DSP slices, which can perform 27�18-bit integer multiply-
accumulate operations (recall that one multiply-accumulate counts as two
“operations”). At 500 MHz, what is the peak multiply-accumulate opera-
tions/cycle that an f1-based system might achieve, counting all 8 FPGAs
toward the computation total? Assuming that the integer operations on the
FPGAs can substitute for floating-point operations, how does this compare
to the peak single-precision multiply-accumulate operations/cycle of the GPUs
of the p2 instance? How do they compare in terms of cost-effectiveness?

7.9 [20/20/25] <7.7>As shown in Figure 7.34 (but simplified to fewer PEs), each
Pixel Visual Core includes a 16�16 set of full processing elements, surrounded

1Capital expenses are accounted for over the lifetime of an asset, using a “depreciation schedule.” Rather than taking a
one-time charge at the point where an asset is acquired, standard accounting practice spreads out the capital cost over
the lifetime of the asset. So one might account for a $30,000 device that has a useful life of 3 years by assigning
$10,000 in depreciation to each year.
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by an additional two layers of “simplified” processing elements. Simplified
PEs can store and communicate data but omit the computation hardware of
full PEs. Simplified PEs store copies of data that might be the “home data” of a
neighboring core, so there are (16+2+2)2=400 PEs in total, 256 full and 144
simplified.

a. [20] Suppose that you wanted to process a 64�32 grayscale image with a 5�5
stencil using 8 Pixel Visual Cores. For now, assume that the image is laid out in
raster-scan order (pixels that are adjacent in X are adjacent in memory, while
pixels that are adjacent in Y are 64 memory locations apart). For each of the
8 cores, describe the memory region that the core should import to handle
its part of the image. Make sure to include the halo region. Which parts of
the halo region should be zeroed by software to ensure correct operation?
You may find it convenient to refer to subregions of the image using a 2D slice
notation, where for example image[2:5][6:13] refers to the set of pixels whose x
component is 2<=x<5 and whose y component is 6<=y<13 (the slices are
half-open following Python slicing practice).

b. [20] If we change to a 3�3 stencil, how do the regions imported from memory
change? How many halo-simplified PEs go unused?

c. [25] Now consider how to support a 7�7 stencil. In this case, we don’t have as
many hardware-supported simplified PEs as we need to cover the three pixels
worth of halo data that “belong to” neighboring cores. To handle this, we use
the outermost ring of full PEs as if they were simplified PEs. How many pixels
can we handle in a single core using this strategy? How many “tiles” are now
required to handle our 64�32 input image? What is the utilization of our full
PEs over the complete processing time for the 7�7 stencil over the 64�32
image?

7.10 [20/20/20/25/25] <7.7>Consider a case in which each of the eight cores on a
Pixel Visual Core device is connected through a four-port switch to a 2D SRAM,
forming a core+memory unit. The remaining two ports on the switch link these
units in a ring, so that each core is able to access any of the eight SRAMs. However,
this ring-based network-on-chip topology makes some data access patterns more
efficient than others.

Core

Switch

SRAM

Core

Switch

SRAM

Core

Switch

SRAM

Core

Switch

SRAM

···
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a. [20] Suppose that each link in the NOC has the same bandwidth B, and that
each link is full-duplex, so it can simultaneously transfer bandwidth B in each
direction. Links connect the core to the switch, the switch to SRAM, and pairs
of switches in the ring. Assume that each local memory has at least B band-
width, so it can saturate its link. Consider a memory access pattern where each
of the eight PEs access only the closest memory (the one connected via the
switch of the core+memory unit). What is the maximum memory bandwidth
that the core will be able to achieve?

b. [20] Now consider an off-by-one access pattern, where core i accesses memory
i+1, going through three links to reach that memory (core 7 will access mem-
ory 0, because of the ring topology). What is the maximum memory bandwidth
that the core will be able to achieve in this case? To achieve that bandwidth, do
you need to make any assumptions about the capabilities of the 4-port switch?
What if the switch can only move data at rate B?

c. [20] Consider an off-by-two access pattern, where core i access memory i+2.
Once again, what is the maximum memory bandwidth that the core will be able
to achieve in this case? Where are the bottleneck links in the network-on-chip?

d. [25] Consider a uniform random memory access pattern, where each core uses
each of the SRAMs for⅛ of its memory requests. Assuming this traffic pattern,
how much traffic traverses a switch-to-switch link, compared to the amount of
traffic between a core and its associated switch or between an SRAM and its
associated switch?

e. [25] (advanced) Can you conceive of a case (workload) where this network can
deadlock? From the standpoint of software-only solutions, what should the
compiler do to avoid such a scenario? If you can make changes to hardware,
what changes in routing topology (and routing scheme) would guarantee no
deadlocks?

7.11 <7.2>The first Anton molecular dynamics supercomputer typically simulated a
box of water that was 64 Å on a side. The computer itself might be approximated as
a box with 1 m side length. A single simulation step represented 2.5 fs of simula-
tion time, and took about 10 μs of wall-clock time. The physics models used in
molecular dynamics act as if every particle in the system exerts a force on every
other particle in the system on each (“outer”) time step, requiring what amounts to a
global synchronization across the entire computer.

a. Calculate the spatial expansion factor from simulation space to hardware in real
space.

b. Calculate the temporal slowdown factor from simulated time to wall-clock
time.

c. These two numbers come out surprisingly close. Is this just a coincidence, or is
there some other limit that constrains them in some way? (Hint: the speed of
light applies to both the simulated chemical system and the hardware that does
the simulation.)
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d. Given these limits, what would it take to use a warehouse-scale supercomputer
to perform molecular dynamics simulations at Anton rates? That is, what’s the
fastest simulation step time that might be achieved with a machine 102 or 103 m
on a side? What about simulating on a world-spanning Cloud service?

7.12 <7.2>The Anton communication network is a 3D, 8�8�8 torus, where each
node in the system has six links to neighboring nodes. Latency for a packet to tran-
sit single link is about 50 ns. Ignore on-chip switching time between links for this
exercise.

a. What is the diameter (maximum number of hops between a pair of nodes) of the
communication network? Given that diameter, what is the shortest latency
required to broadcast a single value from one node of the machine to all 512
nodes of the machine?

b. Assuming that adding up two values takes zero time, what is the shortest
latency to add up a sum over 512 values to a single node, where each value
starts on a different node of the machine?

c. Once again assume that you want to perform the sum over 512 values, but you
want each of the 512 nodes of the system to end up with a copy of the sum. Of
course you could perform a global reduction followed by a broadcast. Can you
do the combined operation in less time? This pattern is called an all-reduce.
Compare the times of your all-reduce pattern to the time of a broadcast from
a single node or a global sum to a single node. Compare the bandwidth used
by the all-reduce pattern with the other patterns.
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A
Instruction Set Principles

A n Add the number in storage location n into the
accumulator.

E n If the number in the accumulator is greater than or equal
to zero execute next the order which stands in storage
location n; otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick,
Selection from the List of 18 Machine

Instructions for the EDSAC (1949)



A.1 Introduction

In this appendix we concentrate on instruction set architecture—the portion of the
computer visible to the programmer or compiler writer. Most of this material should
be review for readers of this book; we include it here for background. This appendix
introduces the wide variety of design alternatives available to the instruction set
architect. In particular, we focus on four topics. First, we present a taxonomy of
instruction set alternatives and give some qualitative assessment of the advantages
and disadvantages of various approaches. Second, we present and analyze some
instruction set measurements that are largely independent of a specific instruction
set. Third, we address the issue of languages and compilers and their bearing on
instruction set architecture. Finally, the “Putting It All Together” section shows
how these ideas are reflected in the RISC-V instruction set, which is typical of RISC
architectures. We conclude with fallacies and pitfalls of instruction set design.

To illustrate the principles further and to provide a comparison with RISC-V,
Appendix K also gives four examples of other general-purpose RISC architectures
(MIPS, Power ISA, SPARC, and Armv8), four embedded RISC processors (ARM
Thumb2, RISC-V Compressed, microMIPS), and three older architectures (80x86,
IBM 360/370, and VAX). Before we discuss how to classify architectures, we need
to say something about instruction set measurement.

Throughout this appendix, we examine a wide variety of architectural measure-
ments. Clearly, these measurements depend on the programs measured and on the
compilers used in making the measurements. The results should not be interpreted
as absolute, and you might see different data if you did the measurement with a
different compiler or a different set of programs.We believe that the measurements
in this appendix are reasonably indicative of a class of typical applications. Many
of the measurements are presented using a small set of benchmarks, so that the data
can be reasonably displayed and the differences among programs can be seen. An
architect for a new computer would want to analyze a much larger collection of
programs before making architectural decisions. The measurements shown are
usually dynamic—that is, the frequency of a measured event is weighed by the
number of times that event occurs during execution of the measured program.

Before starting with the general principles, let’s review the three application
areas from Chapter 1. Desktop computing emphasizes the performance of pro-
grams with integer and floating-point data types, with little regard for program
size. For example, code size has never been reported in the five generations of
SPEC benchmarks. Servers today are used primarily for database, file server,
andWeb applications, plus some time-sharing applications for many users. Hence,
floating-point performance is much less important for performance than integers
and character strings, yet virtually every server processor still includes floating-
point instructions. Personal mobile devices and embedded applications value cost
and energy, so code size is important because less memory is both cheaper and
lower energy, and some classes of instructions (such as floating point) may be
optional to reduce chip costs, and a compressed version of the instructions set
designed to save memory space may be used.
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Thus, instruction sets for all three applications are very similar. In fact, archi-
tectures similar to RISC-V, which we focus on here, have been used successfully in
desktops, servers, and embedded applications.

One successful architecture very different from RISC is the 80x86 (see Appen-
dix K). Surprisingly, its success does not necessarily belie the advantages of a RISC
instruction set. The commercial importance of binary compatibility with PC soft-
ware combined with the abundance of transistors provided by Moore’s Law led
Intel to use a RISC instruction set internally while supporting an 80x86 instruction
set externally. Recent 80x86microprocessors, including all the Intel Coremicropro-
cessors built in the past decade, use hardware to translate from 80x86 instructions to
RISC-like instructions and then execute the translated operations inside the chip.
They maintain the illusion of 80x86 architecture to the programmer while allowing
the computer designer to implement a RISC-style processor for performance. There
remain, however, serious disadvantages for a complex instruction set like the
80x86, and we discuss these further in the conclusions.

Now that the background is set, we begin by exploring how instruction set
architectures can be classified.

A.2 Classifying Instruction Set Architectures

The type of internal storage in a processor is the most basic differentiation, so in this
section we will focus on the alternatives for this portion of the architecture. The
major choices are a stack, an accumulator, or a set of registers. Operands may be
named explicitly or implicitly: The operands in a stack architecture are implicitly
on the top of the stack, and in an accumulator architecture one operand is implicitly
the accumulator. The general-purpose register architectures have only explicit
operands—either registers or memory locations. Figure A.1 shows a block diagram
of such architectures, and Figure A.2 shows how the code sequence C¼A+Bwould
typically appear in these three classes of instruction sets. The explicit operands may
be accessed directly from memory or may need to be first loaded into temporary
storage, depending on the class of architecture and choice of specific instruction.

As the figures show, there are really two classes of register computers. One
class can access memory as part of any instruction, called register-memory archi-
tecture, and the other can access memory only with load and store instructions,
called load-store architecture. A third class, not found in computers shipping
today, keeps all operands in memory and is called a memory-memory architecture.
Some instruction set architectures have more registers than a single accumulator
but place restrictions on uses of these special registers. Such an architecture is
sometimes called an extended accumulator or special-purpose register computer.

Although most early computers used stack or accumulator-style architectures,
virtually every new architecture designed after 1980 uses a load-store register archi-
tecture. The major reasons for the emergence of general-purpose register (GPR)
computers are twofold. First, registers—like other forms of storage internal to the
processor—are faster than memory. Second, registers are more efficient for a
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Figure A.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the oper-
and is an input or the result of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter shades
indicate inputs, and the dark shade indicates the result. In (A), a top of stack (TOS) register points to the top input
operand, which is combinedwith the operand below. The first operand is removed from the stack, the result takes the
place of the second operand, and TOS is updated to point to the result. All operands are implicit. In (B), the accu-
mulator is both an implicit input operand and a result. In (C), one input operand is a register, one is in memory,
and the result goes to a register. All operands are registers in (D) and, like the stack architecture, can be transferred
to memory only via separate instructions: push or pop for (A) and load or store for (D).

Stack Accumulator
Register
(register-memory)

Register
(load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R3,R1,B Load R2,B

Add Store C Store R3,C Add R3,R1,R2

Pop C Store R3,C

Figure A.2 The code sequence for C5A+B for four classes of instruction sets. Note
that the Add instruction has implicit operands for stack and accumulator architectures
and explicit operands for register architectures. It is assumed that A, B, and C all belong
in memory and that the values of A and B cannot be destroyed. Figure A.1 shows the
Add operation for each class of architecture.
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compiler to use than other forms of internal storage. For example, on a register com-
puter the expression (A * B)+(B * C) – (A * D)may be evaluated by doing the
multiplications in any order, which may be more efficient because of the location of
the operands or because of pipelining concerns (see Chapter 3). Nevertheless, on a
stack computer the hardwaremust evaluate the expression in only one order, because
operands are hidden on the stack, and it may have to load an operandmultiple times.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (because
registers are faster than memory), and the code density improves (because a reg-
ister can be named with fewer bits than can a memory location).

As explained in Section A.8, compiler writers would prefer that all registers be
equivalent and unreserved. Older computers compromise this desire by dedicating
registers to special uses, effectively decreasing the number of general-purpose reg-
isters. If the number of truly general-purpose registers is too small, trying to allo-
cate variables to registers will not be profitable. Instead, the compiler will reserve
all the uncommitted registers for use in expression evaluation.

How many registers are sufficient? The answer, of course, depends on the effec-
tiveness of the compiler. Most compilers reserve some registers for expression eval-
uation, use someforparameter passing, andallow the remainder tobeallocated tohold
variables. Modern compiler technology and its ability to effectively use larger num-
bers of registers has led to an increase in register counts in more recent architectures.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical instruc-
tion (ALU instruction). The first concerns whether an ALU instruction has two or
three operands. In the three-operand format, the instruction contains one result
operand and two source operands. In the two-operand format, one of the operands
is both a source and a result for the operation. The second distinction among GPR
architectures concerns how many of the operands may be memory addresses in
ALU instructions. The number of memory operands supported by a typical
ALU instruction may vary from none to three. Figure A.3 shows combinations
of these two attributes with examples of computers. Although there are seven

Number ofmemory
addresses

Maximum number
of operands
allowed Type of architecture Examples

0 3 Load-store ARM, MIPS, PowerPC, SPARC, RISC-V

1 2 Register-memory IBM 360/370, Intel 80x86, Motorola
68000, TI TMS320C54x

2 2 Memory-memory VAX (also has three-operand formats)

3 3 Memory-memory VAX (also has two-operand formats)

Figure A.3 Typical combinations of memory operands and total operands per typical ALU instruction with
examples of computers. Computers with no memory reference per ALU instruction are called load-store or
register-register computers. Instructions with multiple memory operands per typical ALU instruction are called
register-memory or memory-memory, according to whether they have one or more than one memory operand.
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possible combinations, three serve to classify nearly all existing computers. As we
mentioned earlier, these three are load-store (also called register-register), register-
memory, and memory-memory.

Figure A.4 shows the advantages and disadvantages of each of these alter-
natives. Of course, these advantages and disadvantages are not absolutes: they
are qualitative and their actual impact depends on the compiler and implemen-
tation strategy. A GPR computer with memory-memory operations could eas-
ily be ignored by the compiler and used as a load-store computer. One of the
most pervasive architectural impacts is on instruction encoding and the num-
ber of instructions needed to perform a task. We see the impact of these archi-
tectural alternatives on implementation approaches in Appendix C and
Chapter 3.

Summary: Classifying Instruction Set Architectures

Here and at the end of Sections A.3–A.8 we summarize those characteristics we
would expect to find in a new instruction set architecture, building the foundation
for the RISC-V architecture introduced in Section A.9. From this section we should
clearly expect the use of general-purpose registers. Figure A.4, combined with
Appendix C on pipelining, leads to the expectation of a load-store version of a
general-purpose register architecture.

With the class of architecture covered, the next topic is addressing operands.

Type Advantages Disadvantages

Register-register
(0, 3)

Simple, fixed-length instruction encoding.
Simple code generation model. Instructions
take similar numbers of clocks to execute
(see Appendix C)

Higher instruction count than architectures with
memory references in instructions. More instructions
and lower instruction density lead to larger programs,
which may have some instruction cache effects

Register-memory
(1, 2)

Data can be accessed without a separate load
instruction first. Instruction format tends to
be easy to encode and yields good density

Operands are not equivalent because a source
operand in a binary operation is destroyed. Encoding
a register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction vary by operand location

Memory-
memory (2, 2)
or (3, 3)

Most compact. Doesn’t waste registers for
temporaries

Large variation in instruction size, especially for
three-operand instructions. In addition, large
variation in work per instruction. Memory accesses
create memory bottleneck. (Not used today.)

Figure A.4 Advantages and disadvantages of the three most common types of general-purpose register com-
puters. The notation (m, n) meansmmemory operands and n total operands. In general, computers with fewer alter-
natives simplify the compiler’s task because there are fewer decisions for the compiler to make (see Section A.8).
Computers with a wide variety of flexible instruction formats reduce the number of bits required to encode the pro-
gram. The number of registers also affects the instruction size because you need log2 (number of registers) for each
register specifier in an instruction. Thus, doubling the number of registers takes three extra bits for a register-register
architecture, or about 10% of a 32-bit instruction.
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A.3 Memory Addressing

Independent of whether the architecture is load-store or allows any operand to
be a memory reference, it must define how memory addresses are interpreted
and how they are specified. The measurements presented here are largely,
but not completely, computer independent. In some cases the measurements
are significantly affected by the compiler technology. These measurements
have been made using an optimizing compiler, because compiler technology
plays a critical role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a func-
tion of the address and the length? All the instruction sets discussed in this book
are byte addressed and provide access for bytes (8 bits), half words (16 bits), and
words (32 bits). Most of the computers also provide access for double words
(64 bits).

There are two different conventions for ordering the bytes within a larger
object. Little Endian byte order puts the byte whose address is “x … x000” at
the least-significant position in the double word (the little end). The bytes are
numbered:

7 6 5 4 3 2 1 0

Big Endian byte order puts the byte whose address is “x… x000” at the most-
significant position in the double word (the big end). The bytes are numbered:

0 1 2 3 4 5 6 7

When operating within one computer, the byte order is often unnoticeable—
only programs that access the same locations as both, say, words and bytes, can
notice the difference. Byte order is a problem when exchanging data among com-
puters with different orderings, however. Little Endian ordering also fails to match
the normal ordering of words when strings are compared. Strings appear
“SDRAWKCAB” (backwards) in the registers.

A second memory issue is that in many computers, accesses to objects larger
than a byte must be aligned. An access to an object of size s bytes at byte address A
is aligned if A mod s¼0. Figure A.5 shows the addresses at which an access is
aligned or misaligned.

Why would someone design a computer with alignment restrictions?Misalign-
ment causes hardware complications, because the memory is typically aligned on a
multiple of a word or double-word boundary. A misaligned memory access may,
therefore, take multiple aligned memory references. Thus, even in computers that
allow misaligned access, programs with aligned accesses run faster.
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Even if data are aligned, supporting byte, half-word, and word accesses requires
an alignment network to align bytes, half words, and words in 64-bit registers. For
example, in Figure A.5, suppose we read a byte from an address with its 3 low-order
bitshaving thevalue4.Wewill need to shift right3bytes toalign thebyte to theproper
place ina64-bit register.Dependingon the instruction, the computermayalsoneed to
sign-extend the quantity. Stores are easy: only the addressedbytes inmemorymaybe
altered.On some computers a byte, half-word, andwordoperation does not affect the
upper portion of a register. Although all the computers discussed in this book permit
byte, half-word, and word accesses to memory, only the IBM 360/370, Intel 80x86,
andVAX support ALUoperations on register operands narrower than the full width.

Now that we have discussed alternative interpretations of memory addresses,
we can discuss the ways addresses are specified by instructions, called addressing
modes.

Addressing Modes

Given an address, we now know what bytes to access in memory. In this sub-
section we will look at addressing modes—how architectures specify the address

Value of three low-order bits of byte address

Width of object 0 1 2 3 4 5 6 7

1 byte (byte) Aligned Aligned Aligned Aligned Aligned Aligned Aligned Aligned

2 bytes (half word) Aligned Aligned Aligned Aligned

2 bytes (half word) Misaligned Misaligned Misaligned Misaligned

4 bytes (word) Aligned Aligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

8 bytes (double word) Aligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

Figure A.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memory access, as long as the memory is as wide as the object. The figure
shows thememory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order three bits
of the address.
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of an object they will access. Addressing modes specify constants and registers
in addition to locations in memory. When a memory location is used, the actual
memory address specified by the addressing mode is called the effective address.

Figure A.6 shows all the data addressing modes that have been used in recent
computers. Immediates or literals are usually considered memory addressing
modes (even though the value they access is in the instruction stream), although
registers are often separated because they don’t usually have memory addresses.
We have kept addressing modes that depend on the program counter, called
PC-relative addressing, separate. PC-relative addressing is used primarily for
specifying code addresses in control transfer instructions, discussed in Section A.6.

Addressing
mode Example instruction Meaning When used

Register Add R4,R3 Regs[R4] Regs[R4]
+Regs[R3]

When a value is in a register

Immediate Add R4,3 Regs[R4] Regs[R4]+3 For constants

Displacement Add R4,100(R1) Regs[R4] Regs[R4]
+Mem[100+Regs[R1]]

Accessing local variables
(+ simulates register indirect, direct
addressing modes)

Register
indirect

Add R4,(R1) Regs[R4] Regs[R4]
+Mem[Regs[R1]]

Accessing using a pointer or a
computed address

Indexed Add R3,(R1+R2) Regs[R3] Regs[R3]
+Mem[Regs[R1]+Regs
[R2]]

Sometimes useful in array
addressing: R1¼base of array;
R2¼ index amount

Direct or
absolute

Add R1,(1001) Regs[R1] Regs[R1]
+Mem[1001]

Sometimes useful for accessing
static data; address constant may
need to be large

Memory
indirect

Add R1,@(R3) Regs[R1] Regs[R1]
+Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer p,
then mode yields *p

Autoincrement Add R1,(R2)+ Regs[R1] Regs[R1]
+ Mem[Regs[R2]]

Regs[R2] Regs[R2]+d

Useful for stepping through arrays
within a loop. R2 points to start of
array; each reference increments R2
by size of an element, d

Autodecrement Add R1, –(R2) Regs[R2] Regs[R2] – d
Regs[R1] Regs[R1]

+Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/-increment can also
act as push/pop to implement a
stack.

Scaled Add R1,100(R2)[R3] Regs[R1] Regs[R1]
+Mem[100+Regs[R2]

+Regs[R3] * d]

Used to index arrays. May be
applied to any indexed addressing
mode in some computers

Figure A.6 Selection of addressing modes with examples, meaning, and usage. In autoincrement/-decrement and
scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the instruc-
tion is accessing 1, 2, 4, or 8 bytes). These addressing modes are only useful when the elements being accessed are
adjacent in memory. RISC computers use displacement addressing to simulate register indirect with 0 for the address
and to simulate direct addressing using 0 in the base register. In our measurements, we use the first name shown for
each mode. The extensions to C used as hardware descriptions are defined on page A.38.
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Figure A.6 shows the most common names for the addressingmodes, though the
names differ among architectures. In this figure and throughout the book, wewill use
an extension of the C programming language as a hardware description notation. In
this figure, only one non-C feature is used: the left arrow ( ) is used for assignment.
We also use the array Mem as the name for main memory and the array Regs for
registers. Thus, Mem[Regs[R1]] refers to the contents of the memory location
whose address is given by the contents of register 1 (R1). Later, we will introduce
extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction counts;
they also add to the complexity of building a computer and may increase the aver-
age clock cycles per instruction (CPI) of computers that implement those modes.
Thus, the usage of various addressing modes is quite important in helping the
architect choose what to include.

Figure A.7 shows the results of measuring addressing mode usage patterns
in three programs on the VAX architecture. We use the old VAX architecture
for a few measurements in this appendix because it has the richest set of addressing

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register indirect

Immediate

Displacement

TeX
spice

gcc

TeX
spice

gcc

TeX
spice

gcc

TeX
spice

gcc

1%
6%Memory indirect

TeX
spice

gcc 1%

Frequency of the addressing mode

Figure A.7 Summary of use of memory addressing modes (including immediates).
These major addressing modes account for all but a few percent (0%–3%) of the mem-
ory accesses. Register modes, which are not counted, account for one-half of the oper-
and references, while memory addressing modes (including immediate) account for the
other half. Of course, the compiler affects what addressing modes are used; see
Section A.8. The memory indirect mode on the VAX can use displacement, autoincre-
ment, or autodecrement to form the initial memory address; in these programs, almost
all the memory indirect references use displacement mode as the base. Displacement
mode includes all displacement lengths (8, 16, and 32 bits). The PC-relative addressing
modes, used almost exclusively for branches, are not included. Only the addressing
modes with an average frequency of over 1% are shown.

A-10 ■ Appendix A Instruction Set Principles



modes and the fewest restrictions on memory addressing. For example, Figure A.6
on page A.9 shows all the modes the VAX supports. Most measurements in this
appendix, however, will use the more recent register-register architectures to show
how programs use instruction sets of current computers.

As Figure A.7 shows, displacement and immediate addressing dominate
addressing mode usage. Let’s look at some properties of these two heavily
used modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes, a
decision of what sizes to support can be made. Choosing the displacement field
sizes is important because they directly affect the instruction length. Figure A.8
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Figure A.8 Displacement values are widely distributed. There are both a large num-
ber of small values and a fair number of large values. The wide distribution of displace-
ment values is due tomultiple storage areas for variables and different displacements to
access them (see Section A.8) as well as the overall addressing scheme the compiler
uses. The x-axis is log2 of the displacement, that is, the size of a field needed to represent
the magnitude of the displacement. Zero on the x-axis shows the percentage of dis-
placements of value 0. The graph does not include the sign bit, which is heavily affected
by the storage layout. Most displacements are positive, but a majority of the largest dis-
placements (14+ bits) are negative. Because these data were collected on a computer
with 16-bit displacements, they cannot tell us about longer displacements. These data
were taken on the Alpha architecture with full optimization (see Section A.8) for SPEC
CPU2000, showing the average of integer programs (CINT2000) and the average of
floating-point programs (CFP2000).
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shows the measurements taken on the data access on a load-store architecture using
our benchmark programs. We look at branch offsets in Section A.6—data acces-
sing patterns and branches are different; little is gained by combining them,
although in practice the immediate sizes are made the same for simplicity.

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case
occurs for constants written in the code—which tend to be small—and for address
constants, which tend to be large. For the use of immediates it is important to know
whether they need to be supported for all operations or for only a subset. Figure A.9
shows the frequency of immediates for the general classes of integer and floating-
point operations in an instruction set.

Another important instruction set measurement is the range of values for imme-
diates. Like displacement values, the size of immediate values affects instruction
length. As Figure A.10 shows, small immediate values are most heavily used. Large
immediates are sometimes used, however, most likely in addressing calculations.

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support at
least the following addressing modes: displacement, immediate, and register indi-
rect. Figure A.7 shows that they represent 75%–99% of the addressing modes used

0% 5% 10% 15% 20% 25%

Loads

ALU operations

All instructions
21%

16%

25%
19%

23%
22%

30%

Floating-point average
Integer average

Figure A.9 About one-quarter of data transfers and ALU operations have an imme-
diate operand. The bottom bars show that integer programs use immediates in about
one-fifth of the instructions, while floating-point programs use immediates in about
one-sixth of the instructions. For loads, the load immediate instruction loads 16 bits into
either half of a 32-bit register. Load immediates are not loads in a strict sense because
they do not access memory. Occasionally a pair of load immediates is used to load a 32-
bit constant, but this is rare. (For ALU operations, shifts by a constant amount are
included as operations with immediate operands.) The programs and computer used
to collect these statistics are the same as in Figure A.8.
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in our measurements. Second, we would expect the size of the address for displace-
ment mode to be at least 12–16 bits, because the caption in Figure A.8 suggests
these sizes would capture 75%–99% of the displacements. Third, we would expect
the size of the immediate field to be at least 8–16 bits. This claim is not substan-
tiated by the caption of the figure to which it refers.

Having covered instruction set classes and decided on register-register archi-
tectures, plus the previous recommendations on data addressing modes, we next
cover the sizes and meanings of data.

A.4 Type and Size of Operands

How is the type of an operand designated? Usually, encoding in the opcode
designates the type of an operand—this is the method used most often. Alterna-
tively, the data can be annotated with tags that are interpreted by the hardware.
These tags specify the type of the operand, and the operation is chosen accordingly.
Computers with tagged data, however, can only be found in computer museums.

Let’s start with desktop and server architectures. Usually the type of an oper-
and—integer, single-precision floating point, character, and so on—effectively
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Figure A.10 The distribution of immediate values. The x-axis shows the number of
bits needed to represent the magnitude of an immediate value—0 means the imme-
diate field value was 0. The majority of the immediate values are positive. About 20%
were negative for CINT2000, and about 30%were negative for CFP2000. Thesemeasure-
ments were taken on an Alpha, where the maximum immediate is 16 bits, for the same
programs as in Figure A.8. A similar measurement on the VAX, which supported 32-bit
immediates, showed that about 20%–25% of immediates were longer than 16 bits.
Thus, 16 bits would capture about 80% and 8 bits about 50%.
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gives its size. Common operand types include character (8 bits), half word (16
bits), word (32 bits), single-precision floating point (also 1 word), and double-
precision floating point (2 words). Integers are almost universally represented
as two’s complement binary numbers. Characters are usually in ASCII, but the
16-bit Unicode (used in Java) is gaining popularity with the internationalization
of computers. Until the early 1980s, most computer manufacturers chose their
own floating-point representation. Almost all computers since that time follow
the same standard for floating point, the IEEE standard 754, although this level
of accuracy has recently been abandoned in application-specific processors. The
IEEE floating-point standard is discussed in detail in Appendix J.

Some architectures provide operations on character strings, although such oper-
ations are usually quite limited and treat each byte in the string as a single character.
Typical operations supported on character strings are comparisons and moves.

For business applications, some architectures support a decimal format, usually
called packed decimal or binary-coded decimal—4 bits are used to encode the
values 0–9, and 2 decimal digits are packed into each byte. Numeric character
strings are sometimes called unpacked decimal, and operations—called packing
and unpacking—are usually provided for converting back and forth between them.

One reason to use decimal operands is to get results that exactly match decimal
numbers, as some decimal fractions do not have an exact representation in binary.
For example, 0.1010 is a simple fraction in decimal, but in binary it requires an
infinite set of repeating digits: 0:0001100110011

…2. Thus, calculations that are
exact in decimal can be close but inexact in binary, which can be a problem for
financial transactions. (See Appendix J to learn more about precise arithmetic.)

The SPEC benchmarks use byte or character, half-word (short integer), word
(integer and single precision floating point), double-word (long integer), and
floating-point data types. Figure A.11 shows the dynamic distribution of the sizes
of objects referenced from memory for these programs. The frequency of access to

0% 20% 40% 60% 80%

Byte
(8 bits)

Half word
(16 bits)

Word
(32 bits)

Double word
(64 bits)

10%
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26%
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70%
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Figure A.11 Distribution of data accesses by size for the benchmark programs. The
double-word data type is used for double-precision floating point in floating-point pro-
grams and for addresses, because the computer uses 64-bit addresses. Ona 32-bit address
computer the 64-bit addresses would be replaced by 32-bit addresses, and so almost all
double-word accesses in integer programs would become single-word accesses.
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different data types helps in deciding what types are most important to support effi-
ciently. Should the computer have a 64-bit access path, or would taking two cycles
to access a double word be satisfactory? As we saw earlier, byte accesses require an
alignment network: how important is it to support bytes as primitives? Figure A.11
uses memory references to examine the types of data being accessed.

In some architectures, objects in registers may be accessed as bytes or half
words. However, such access is very infrequent—on the VAX, it accounts for
no more than 12% of register references, or roughly 6% of all operand accesses
in these programs.

A.5 Operations in the Instruction Set

The operators supported by most instruction set architectures can be categorized as
in Figure A.12. One rule of thumb across all architectures is that the most widely
executed instructions are the simple operations of an instruction set. For example,
Figure A.13 shows 10 simple instructions that account for 96% of instructions exe-
cuted for a collection of integer programs running on the popular Intel 80x86.
Hence, the implementor of these instructions should be sure to make these fast,
as they are the common case.

Operator type Examples

Arithmetic and
logical

Integer arithmetic and logical operations: add, subtract, and, or,
multiply, divide

Data transfer Loads-stores (move instructions on computers with memory
addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations: add, multiply, divide, compare

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel and vertex operations, compression/decompression operations

Figure A.12 Categories of instruction operators and examples of each. All computers
generally provide a full set of operations for the first three categories. The support for
system functions in the instruction set varies widely among architectures, but all com-
puters must have some instruction support for basic system functions. The amount of
support in the instruction set for the last four categories may vary from none to an
extensive set of special instructions. Floating-point instructions will be provided in
any computer that is intended for use in an application that makes much use of floating
point. These instructions are sometimes part of an optional instruction set. Decimal and
string instructions are sometimes primitives, as in the VAX or the IBM 360, or may be
synthesized by the compiler from simpler instructions. Graphics instructions typically
operate on many smaller data items in parallel—for example, performing eight 8-bit
additions on two 64-bit operands.
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Asmentioned before, the instructions in FigureA.13 are found in every computer
for every application––desktop, server, embedded––with the variations of operations
in Figure A.12 largely depending on which data types the instruction set includes.

A.6 Instructions for Control Flow

Because the measurements of branch and jump behavior are fairly independent of
othermeasurements andapplications,wenowexamine theuseofcontrol flow instruc-
tions, which have little in common with the operations of the previous sections.

There is no consistent terminology for instructions that change the flow of con-
trol. In the 1950s they were typically called transfers. Beginning in 1960 the name
branch began to be used. Later, computers introduced additional names. Through-
out this book we will use jump when the change in control is unconditional and
branch when the change is conditional.

We can distinguish four different types of control flow change:

■ Conditional branches

■ Jumps

■ Procedure calls

■ Procedure returns

We want to know the relative frequency of these events, as each event is different,
may use different instructions, and may have different behavior. Figure A.14
shows the frequencies of these control flow instructions for a load-store computer
running our benchmarks.

Rank 80x86 instruction
Integer average
% total executed)

1 Load 22%

2 Conditional branch 20%

3 Compare 16%

4 Store 12%

5 Add 8%

6 And 6%

7 Sub 5%

8 Move register-register 4%

9 Call 1%

10 Return 1%

Total 96%

Figure A.13 The top 10 instructions for the 80x86. Simple instructions dominate this
list and are responsible for 96% of the instructions executed. These percentages are the
average of the five SPECint92 programs.
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Addressing Modes for Control Flow Instructions

The destination address of a control flow instruction must always be specified. This
destination is specified explicitly in the instruction in the vast majority of cases—
procedure return being the major exception, because for return the target is not
known at compile time. Themost commonway to specify the destination is to supply
a displacement that is added to the program counter (PC). Control flow instructions
of this sort are called PC-relative. PC-relative branches or jumps are advantageous
because the target is often near the current instruction, and specifying the position
relative to the current PC requires fewer bits. Using PC-relative addressing also per-
mits the code to run independently of where it is loaded. This property, called posi-
tion independence, can eliminate some work when the program is linked and is also
useful in programs linked dynamically during execution.

To implement returns and indirect jumps when the target is not known at com-
pile time, a method other than PC-relative addressing is required. Here, there must
be a way to specify the target dynamically, so that it can change at runtime. This
dynamic address may be as simple as naming a register that contains the target
address; alternatively, the jumpmay permit any addressing mode to be used to sup-
ply the target address.

These register indirect jumps are also useful for four other important
features:

■ Case or switch statements, found in most programming languages (which
select among one of several alternatives).

■ Virtual functions or methods in object-oriented languages like C++ or Java
(which allow different routines to be called depending on the type of the
argument).
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Call/return
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19%
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Integer average

Figure A.14 Breakdown of control flow instructions into three classes: calls or
returns, jumps, and conditional branches. Conditional branches clearly dominate. Each
type is counted in one of three bars. The programs and computer used to collect these
statistics are the same as those in Figure A.8.
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■ High-order functions or function pointers in languages like C or C++ (which
allow functions to be passed as arguments, giving some of the flavor of object-
oriented programming).

■ Dynamically shared libraries (which allow a library to be loaded and linked at
runtime only when it is actually invoked by the program rather than loaded and
linked statically before the program is run).

In all four cases the target address is not known at compile time, and hence is usu-
ally loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, an
important question concerns how far branch targets are from branches. Knowing
the distribution of these displacements will help in choosing what branch offsets to
support, and thus will affect the instruction length and encoding. Figure A.15
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

Conditional Branch Options

Because most changes in control flow are branches, deciding how to specify the
branch condition is important. Figure A.16 shows the three primary techniques in
use today and their advantages and disadvantages.
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Figure A.15 Branch distances in terms of number of instructions between the target and the branch instruction.
The most frequent branches in the integer programs are to targets that can be encoded in 4–8 bits. This result tells us
that short displacement fields often suffice for branches and that the designer can gain some encoding density by
having a shorter instruction with a smaller branch displacement. These measurements were taken on a load-store
computer (Alpha architecture) with all instructions aligned on word boundaries. An architecture that requires fewer
instructions for the same program, such as a VAX, would have shorter branch distances. However, the number of bits
needed for the displacement may increase if the computer has variable-length instructions to be aligned on any byte
boundary. The programs and computer used to collect these statistics are the same as those in Figure A.8.
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One of the most noticeable properties of branches is that a large number of the
comparisons are simple tests, and a large number are comparisons with zero. Thus,
some architectures choose to treat these comparisons as special cases, especially if
a compare and branch instruction is being used. Figure A.17 shows the frequency
of different comparisons used for conditional branching.

Procedure Invocation Options

Procedure calls and returns include control transfer and possibly some state saving;
at a minimum the return address must be saved somewhere, sometimes in a special
link register or just a GPR. Some older architectures provide a mechanism to save
many registers, while newer architectures require the compiler to generate stores
and loads for each register saved and restored.

There are two basic conventions in use to save registers: either at the call site or
inside the procedure being called. Caller saving means that the calling procedure
must save the registers that it wants preserved for access after the call, and thus the
called procedure need not worry about registers. Callee saving is the opposite: the
called procedure must save the registers it wants to use, leaving the caller unre-
strained. There are times when caller save must be used because of access patterns
to globally visible variables in two different procedures. For example, suppose we
have a procedure P1 that calls procedure P2, and both procedures manipulate the

Name Examples How condition is tested Advantages Disadvantages

Condition
code (CC)

80x86, ARM,
PowerPC,
SPARC, SuperH

Tests special bits set by
ALU operations,
possibly under program
control

Sometimes condition
is set for free.

CC is extra state. Condition
codes constrain the ordering of
instructionsbecause they pass
information from one
instruction to a branch

Condition
register/
limited
comparison

Alpha, MIPS Tests arbitrary register
with the result of a simple
comparison (equality or
zero tests)

Simple Limited compare may affect
critical path or require extra
comparison for general
condition

Compare
and branch

PA-RISC, VAX,
RISC-V

Compare is part of the
branch. Fairly general
compares are allowed
(greater then, less then)

One instruction
rather than two for a
branch

May set critical path for branch
instructions

Figure A.16 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on pro-
grams show that this rarely happens. The major implementation problems with condition codes arise when the con-
dition code is set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the
instruction. Computers with compare and branch often limit the set of compares and use a separate operation and
register for more complex compares. Often, different techniques are used for branches based on floating-point com-
parison versus those based on integer comparison. This dichotomy is reasonable because the number of branches that
depend on floating-point comparisons is much smaller than the number depending on integer comparisons.
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global variable x. If P1 had allocated x to a register, it must be sure to save x to a
location known by P2 before the call to P2. A compiler’s ability to discover when a
called procedure may access register-allocated quantities is complicated by the
possibility of separate compilation. Suppose P2 may not touch x but can call
another procedure, P3, that may access x, yet P2 and P3 are compiled separately.
Because of these complications, most compilers will conservatively caller save any
variable that may be accessed during a call.

In the cases where either convention could be used, some programs will be more
optimal with callee save and some will be more optimal with caller save. As a result,
most real systems today use a combination of the two mechanisms. This convention
is specified in an application binary interface (ABI) that sets down the basic rules as
to which registers should be caller saved and which should be callee saved. Later in
this appendix we will examine the mismatch between sophisticated instructions for
automatically saving registers and the needs of the compiler.

Summary: Instructions for Control Flow

Control flow instructions are some of the most frequently executed instructions.
Although there are many options for conditional branches, we would expect

Greater than

Greater than or equal

Equal

Not equal

Less than or equal

 Less than
35%

34%

33%
44%

0%
0%

0%
11%

18%
16%

2%
5%

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

Floating-point average
Integer average

Figure A.17 Frequency of different types of compares in conditional branches. Less
than (or equal) branches dominate this combination of compiler and architecture. These
measurements include both the integer and floating-point compares in branches. The
programs and computer used to collect these statistics are the same as those in
Figure A.8.
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branch addressing in a new architecture to be able to jump to hundreds of instruc-
tions either above or below the branch. This requirement suggests a PC-relative
branch displacement of at least 8 bits. We would also expect to see register indirect
and PC-relative addressing for jump instructions to support returns as well as many
other features of current systems.

We have now completed our instruction architecture tour at the level seen by
an assembly language programmer or compiler writer. We are leaning toward a
load-store architecture with displacement, immediate, and register indirect addres-
sing modes. These data are 8-, 16-, 32-, and 64-bit integers and 32- and 64-bit
floating-point data. The instructions include simple operations, PC-relative condi-
tional branches, jump and link instructions for procedure call, and register indirect
jumps for procedure return (plus a few other uses).

Now we need to select how to represent this architecture in a form that makes it
easy for the hardware to execute.

A.7 Encoding an Instruction Set

Clearly, the choices mentioned herein will affect how the instructions are encoded
into a binary representation for execution by the processor. This representation
affects not only the size of the compiled program but also the implementation
of the processor, which must decode this representation to quickly find the oper-
ation and its operands. The operation is typically specified in one field, called the
opcode. As we shall see, the important decision is how to encode the addressing
modes with the operations.

This decision depends on the range of addressing modes and the degree of
independence between opcodes and modes. Some older computers have one
to five operands with 10 addressing modes for each operand (see Figure A.6).
For such a large number of combinations, typically a separate address
specifier is needed for each operand: the address specifier tells what addres-
sing mode is used to access the operand. At the other extreme are load-store
computers with only one memory operand and only one or two addressing
modes; obviously, in this case, the addressing mode can be encoded as part
of the opcode.

When encoding the instructions, the number of registers and the number of
addressing modes both have a significant impact on the size of instructions, as
the register field and addressing mode field may appear many times in a single
instruction. In fact, for most instructions many more bits are consumed in
encoding addressing modes and register fields than in specifying the opcode.
The architect must balance several competing forces when encoding the
instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the average
instruction size and hence on the average program size.

A.7 Encoding an Instruction Set ■ A-21



3. A desire to have instructions encoded into lengths that will be easy to han-
dle in a pipelined implementation. (The value of easily decoded instructions
is discussed in Appendix C and Chapter 3.) As a minimum, the architect
wants instructions to be in multiples of bytes, rather than an arbitrary bit
length. Many desktop and server architects have chosen to use a fixed-
length instruction to gain implementation benefits while sacrificing average
code size.

Figure A.18 shows three popular choices for encoding the instruction set. The first
we call variable, because it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera-
tions. The second choice we call fixed, because it combines the operation and
the addressing mode into the opcode. Often fixed encoding will have only a single

Operation and
no. of operands

Address
specifier 1

Address
field 1

Address
field 1

Operation Address
field 2

Address
field 3

Address
specifier

Operation Address
field 

Address
specifier 1

Operation Address
specifier 2

Address
field

Address
specifier

Operation Address
field 1

Address
field 2 

Address
specifier n

Address
field n

(A) Variable (e.g., Intel 80x86, VAX)

(B) Fixed (e.g., RISC V, ARM, MIPS, PowerPC, SPARC)

(C) Hybrid (e.g., RISC V Compressed (RV32IC), IBM 360/370, microMIPS, Arm Thumb2)

Figure A.18 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with
each address specifier determining the addressing mode and the length of the spec-
ifier for that operand. It generally enables the smallest code representation, because
unused fields need not be included. The fixed format always has the same number of
operands, with the addressing modes (if options exist) specified as part of the
opcode. It generally results in the largest code size. Although the fields tend not
to vary in their location, they will be used for different purposes by different instruc-
tions. The hybrid approach has multiple formats specified by the opcode, adding one
or two fields to specify the addressing mode and one or two fields to specify the
operand address.

A-22 ■ Appendix A Instruction Set Principles



size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size
of programs versus ease of decoding in the processor. Variable tries to use as
few bits as possible to represent the program, but individual instructions can vary
widely in both size and the amount of work to be performed.

Let’s look at an 80x86 instruction to see an example of the variable encoding:

add EAX,1000(EBX)

The name add means a 32-bit integer add instruction with two operands, and
this opcode takes 1 byte. An 80x86 address specifier is 1 or 2 bytes, specifying the
source/destination register (EAX) and the addressing mode (displacement in
this case) and base register (EBX) for the second operand. This combination takes
1 byte to specify the operands. When in 32-bit mode (see Appendix K), the size of
the address field is either 1 byte or 4 bytes. Because1000 is bigger than 28, the total
length of the instruction is

1 + 1 + 4¼ 6 bytes

The length of 80x86 instructions varies between 1 and 17 bytes. 80x86 programs
are generally smaller than the RISC architectures, which use fixed formats (see
Appendix K).

Given these two poles of instruction set design of variable and fixed, the third
alternative immediately springs to mind: reduce the variability in size and work of
the variable architecture but provide multiple instruction lengths to reduce code
size. This hybrid approach is the third encoding alternative, and we’ll see examples
shortly.

Reduced Code Size in RISCs

As RISC computers started being used in embedded applications, the 32-bit fixed
format became a liability because cost, and hence smaller code, are important. In
response, several manufacturers offered a new hybrid version of their RISC instruc-
tion sets, with both 16-bit and 32-bit instructions. The narrow instructions support
fewer operations, smaller address and immediate fields, fewer registers, and the
two-address format rather than the classic three-address format of RISC computers.
RISC-V offers such an extension, called RV32IC, the C standing for compressed.
Common instruction occurrences, such as intermediates with small values and com-
mon ALU operations with the source and destination register being identical, are
encoded in 16-bit formats. Appendix K gives two other examples, the ARMThumb
and microMIPS, which both claim a code size reduction of up to 40%.

In contrast to these instruction set extensions, IBM simply compresses its stan-
dard instruction set and then adds hardware to decompress instructions as they are
fetched from memory on an instruction cache miss. Thus, the instruction cache
contains full 32-bit instructions, but compressed code is kept in main memory,
ROMs, and the disk. The advantage of a compressed format, such as RV32IC,
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microMIPS and Thumb2 is that instruction caches act as if they are about 25%
larger, while IBM’s CodePack means that compilers need not be changed to handle
different instruction sets and instruction decoding can remain simple.

CodePack starts with run-length encoding compression on any PowerPC pro-
gram and then loads the resulting compression tables in a 2 KB table on chip.
Hence, every program has its own unique encoding. To handle branches, which
are no longer to an aligned word boundary, the PowerPC creates a hash table in
memory that maps between compressed and uncompressed addresses. Like a
TLB (see Chapter 2), it caches the most recently used address maps to reduce
the number of memory accesses. IBM claims an overall performance cost of
10%, resulting in a code size reduction of 35%–40%.

Summary: Encoding an Instruction Set

Decisions made in the components of instruction set design discussed in previous
sections determine whether the architect has the choice between variable and fixed
instruction encodings. Given the choice, the architect more interested in code size
than performance will pick variable encoding, and the one more interested in per-
formance than code size will pick fixed encoding. RISC-V, MIPS, and ARM all
have an instruction set extension that uses 16-bit instruction, as well as 32-bit;
applications with serious code size constraints can opt to use the 16-bit variant
to decrease code size. Appendix E gives 13 examples of the results of architects’
choices. In Appendix C and Chapter 3, the impact of variability on performance of
the processor will be discussed further.

We have almost finished laying the groundwork for the RISC-V instruction set
architecture that will be introduced in Section A.9. Before we do that, however, it
will be helpful to take a brief look at compiler technology and its effect on program
properties.

A.8 Cross-Cutting Issues: The Role of Compilers

Today almost all programming is done in high-level languages for desktop and
server applications. This development means that because most instructions exe-
cuted are the output of a compiler, an instruction set architecture is essentially
a compiler target. In earlier times for these applications, architectural decisions
were often made to ease assembly language programming or for a specific kernel.
Because the compiler will significantly affect the performance of a computer,
understanding compiler technology today is critical to designing and efficiently
implementing an instruction set.

Once it was popular to try to isolate the compiler technology and its effect on
hardware performance from the architecture and its performance, just as it was
popular to try to separate architecture from its implementation. This separation
is essentially impossible with today’s desktop compilers and computers. Architec-
tural choices affect the quality of the code that can be generated for a computer and
the complexity of building a good compiler for it, for better or for worse.
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In this section, we discuss the critical goals in the instruction set primarily from
the compiler viewpoint. It starts with a review of the anatomy of current compilers.
Next we discuss how compiler technology affects the decisions of the architect,
and how the architect can make it hard or easy for the compiler to produce good
code. We conclude with a review of compilers and multimedia operations, which
unfortunately is a bad example of cooperation between compiler writers and
architects.

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. Figure A.19 shows
the structure of recent compilers.

A compiler writer’s first goal is correctness—all valid programs must be
compiled correctly. The second goal is usually speed of the compiled code. Typ-
ically, a whole set of other goals follows these two, including fast compilation,
debugging support, and interoperability among languages. Normally, the passes

Language dependent;
machine independent

Dependencies

Transform language to
common intermediate form

Function

Front end per 
language

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

For example, loop 
transformations and 
procedure inlining
(also called 
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Somewhat language
dependent; largely machine
independent

Small language dependencies;
machine dependencies slight 
(e.g., register counts/types)

Highly machine dependent;
language independent

Figure A.19 Compilers typically consist of two to four passes, with more highly opti-
mizing compilers having more passes. This structure maximizes the probability that a
program compiled at various levels of optimization will produce the same output when
given the same input. The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower-quality code is acceptable. A pass
is simply one phase in which the compiler reads and transforms the entire program.
(The term phase is often used interchangeably with pass.) Because the optimizing passes
are separated, multiple languages can use the same optimizing and code generation
passes. Only a new front end is required for a new language.
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in the compiler transform higher-level, more abstract representations into progres-
sively lower-level representations. Eventually it reaches the instruction set. This
structure helps manage the complexity of the transformations and makes writing
a bug-free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order
and perform some transformations before others. In the diagram of the optimizing
compiler in Figure A.19, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like. Once such a
transformation is made, the compiler can’t afford to go back and revisit all steps,
possibly undoing transformations. Such iteration would be prohibitive, both in
compilation time and in complexity. Thus, compilers make assumptions about
the ability of later steps to deal with certain problems. For example, compilers usu-
ally have to choose which procedure calls to expand inline before they know the
exact size of the procedure being called. Compiler writers call this problem the
phase-ordering problem.

How does this ordering of transformations interact with the instruction set
architecture? A good example occurs with the optimization called global common
subexpression elimination. This optimization finds two instances of an expression
that compute the same value and saves the value of the first computation in a tem-
porary. It then uses the temporary value, eliminating the second computation of the
common expression.

For this optimization to be significant, the temporary must be allocated to a
register. Otherwise, the cost of storing the temporary in memory and later reloading
it may negate the savings gained by not recomputing the expression. There are, in
fact, cases where this optimization actually slows down code when the temporary
is not register allocated. Phase ordering complicates this problem because register
allocation is typically done near the end of the global optimization pass, just before
code generation. Thus, an optimizer that performs this optimization must assume
that the register allocator will allocate the temporary to a register.

Optimizations performed by modern compilers can be classified by the style of
the transformation, as follows:

■ High-level optimizations are often done on the source with output fed to later
optimization passes.

■ Local optimizations optimize code only within a straight-line code fragment
(called a basic block by compiler people).

■ Global optimizations extend the local optimizations across branches and intro-
duce a set of transformations aimed at optimizing loops.

■ Register allocation associates registers with operands.

■ Processor-dependent optimizations attempt to take advantage of specific archi-
tectural knowledge.
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Register Allocation

Because of the central role that register allocation plays, both in speeding up the
code and in making other optimizations useful, it is one of the most important—
if not the most important—of the optimizations. Register allocation algorithms
today are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates
for allocation to a register and then to use the graph to allocate registers.
Roughly speaking, the problem is how to use a limited set of colors so that
no two adjacent nodes in a dependency graph have the same color. The empha-
sis in the approach is to achieve 100% register allocation of active variables.
The problem of coloring a graph in general can take exponential time as a
function of the size of the graph (NP-complete). There are heuristic algorithms,
however, that work well in practice, yielding close allocations that run in near-
linear time.

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables
and additional registers for floating point. Unfortunately, graph coloring does
not work very well when the number of registers is small because the heuristic
algorithms for coloring the graph are likely to fail.

Impact of Optimizations on Performance

It is sometimes difficult to separate some of the simpler optimizations—local and
processor-dependent optimizations—from transformations done in the code gen-
erator. Examples of typical optimizations are given in Figure A.20. The last col-
umn of Figure A.20 indicates the frequency with which the listed optimizing
transforms were applied to the source program.

Figure A.21 shows the effect of various optimizations on instructions executed
for two programs. In this case, optimized programs executed roughly 25%–90%
fewer instructions than unoptimized programs. The figure illustrates the impor-
tance of looking at optimized code before suggesting new instruction set features,
because a compiler might completely remove the instructions the architect was try-
ing to improve.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
how are variables allocated and addressed? Howmany registers are needed to allo-
cate variables appropriately? To address these questions, we must look at the three
separate areas in which current high-level languages allocate their data:
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■ The stack is used to allocate local variables. The stack is grown or shrunk on
procedure call or return, respectively. Objects on the stack are addressed rel-
ative to the stack pointer and are primarily scalars (single variables) rather
than arrays. The stack is used for activation records, not as a stack for eval-
uating expressions. Hence, values are almost never pushed or popped on
the stack.

Optimization name Explanation
Percentage of the total number
of optimizing transforms

High-level At or near the source level; processor-independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression
elimination

Replace two instances of the same computation by
single copy

18%

Constant propagation Replace all instances of a variable that is assigned a
constant with the constant

22%

Stack height reduction Rearrange expression tree to minimize resources
needed for expression evaluation

N.M.

Global Across a branch

Global common
subexpression elimination

Same as local, but this version crosses branches 13%

Copy propagation Replace all instances of a variable A that has been
assigned X (i.e., A¼X) with X

11%

Code motion Remove code from a loop that computes same
value each iteration of the loop

16%

Induction variable
elimination

Simplify/eliminate array addressing calculations
within loops

2%

Processor-dependent Depends on processor knowledge

Strength reduction Many examples, such as replace multiply by a
constant with adds and shifts

N.M.

Pipeline scheduling Reorder instructions to improve pipeline
performance

N.M.

Branch offset
optimization

Choose the shortest branch displacement that
reaches target

N.M.

Figure A.20 Major types of optimizations and examples in each class. These data tell us about the relative fre-
quency of occurrence of various optimizations. The third column lists the static frequency with which some of
the common optimizations are applied in a set of 12 small Fortran and Pascal programs. There are nine local and
global optimizations done by the compiler included in the measurement. Six of these optimizations are covered
in the figure, and the remaining three account for 18% of the total static occurrences. The abbreviation N.M. means
that the number of occurrences of that optimization was not measured. Processor-dependent optimizations are usu-
ally done in a code generator, and none of those was measured in this experiment. The percentage is the portion of
the static optimizations that are of the specified type. Data from Chow, F.C., 1983. A Portable Machine-Independent
Global Optimizer—Design and Measurements (Ph.D. thesis). Stanford University, Palo Alto, CA (collected using the
Stanford UCODE compiler).
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■ The global data area is used to allocate statically declared objects, such as
global variables and constants. A large percentage of these objects are arrays
or other aggregate data structures.

■ The heap is used to allocate dynamic objects that do not adhere to a stack disci-
pline. Objects in the heap are accessedwith pointers and are typically not scalars.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-allocated
objects because they are accessed with pointers. Global variables and some stack
variables are impossible to allocate because they are aliased—there are multiple
ways to refer to the address of a variable, making it illegal to put it into a register.
(Most heap variables are effectively aliased for today’s compiler technology.)

For example, consider the following code sequence, where & returns the
address of a variable and * dereferences a pointer:

p ¼&a – gets address of a in p
a ¼... – assigns to a directly
*p ¼... – uses p to assign to a
...a... – accesses a

The variable a could not be register allocated across the assignment to *pwith-
out generating incorrect code. Aliasing causes a substantial problem because it is
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Figure A.21 Change in instruction count for the programs lucas and mcf from the
SPEC2000 as compiler optimization levels vary. Level 0 is the same as unoptimized
code. Level 1 includes local optimizations, code scheduling, and local register allocation.
Level 2 includes global optimizations, loop transformations (software pipelining), and
global register allocation. Level 3 adds procedure integration. These experiments were
performed on Alpha compilers.
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often difficult or impossible to decide what objects a pointer may refer to. A com-
piler must be conservative; some compilers will not allocate any local variables of a
procedure in a register when there is a pointer that may refer to one of the local
variables.

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple state-
ments like A¼B+C. Most programs are locally simple, and simple translations
work fine. Rather, complexity arises because programs are large and globally com-
plex in their interactions, and because the structure of compilers means decisions
are made one step at a time about which code sequence is best.

Compiler writers often are working under their own corollary of a basic prin-
ciple in architecture:make the frequent cases fast and the rare case correct. That is,
if we know which cases are frequent and which are rare, and if generating code for
both is straightforward, then the quality of the code for the rare case may not be
very important—but it must be correct!

Some instruction set properties help the compiler writer. These properties
should not be thought of as hard-and-fast rules, but rather as guidelines
that will make it easier to write a compiler that will generate efficient and cor-
rect code.

■ Provide regularity—Whenever it makes sense, the three primary components
of an instruction set—the operations, the data types, and the addressing
modes—should be orthogonal. Two aspects of an architecture are said to
be orthogonal if they are independent. For example, the operations and
addressing modes are orthogonal if, for every operation to which one addres-
sing mode can be applied, all addressing modes are applicable. This regular-
ity helps simplify code generation and is particularly important when the
decision about what code to generate is split into two passes in the compiler.
A good counterexample of this property is restricting what registers can be
used for a certain class of instructions. Compilers for special-purpose register
architectures typically get stuck in this dilemma. This restriction can result
in the compiler finding itself with lots of available registers, but none of
the right kind!

■ Provide primitives, not solutions—Special features that “match” a language
construct or a kernel function are often unusable. Attempts to support high-
level languages may work only with one language or do more or less than
is required for a correct and efficient implementation of the language. An
example of how such attempts have failed is given in Section A.10.

■ Simplify trade-offs among alternatives—One of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg-
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but—as we saw in Chapter 1—this is no longer

A-30 ■ Appendix A Instruction Set Principles



true. With caches and pipelining, the trade-offs have become very complex.
Anything the designer can do to help the compiler writer understand the costs
of alternative code sequences would help improve the code. One of the most
difficult instances of complex trade-offs occurs in a register-memory architec-
ture in deciding how many times a variable should be referenced before it is
cheaper to load it into a register. This threshold is hard to compute and, in fact,
may vary among models of the same architecture.

■ Provide instructions that bind the quantities known at compile time as con-
stants—A compiler writer hates the thought of the processor interpreting at
runtime a value that was known at compile time. Good counterexamples of this
principle include instructions that interpret values that were fixed at compile
time. For instance, the VAX procedure call instruction (calls) dynamically
interprets a mask saying what registers to save on a call, but the mask is fixed at
compile time (see Section A.10).

Compiler Support (or Lack Thereof) for Multimedia Instructions

Alas, the designers of the SIMD instructions (see Section 4.3 in Chapter 4) basi-
cally ignored the previous subsection. These instructions tend to be solutions, not
primitives; they are short of registers; and the data types do not match existing pro-
gramming languages. Architects hoped to find an inexpensive solution that would
help some users, but often only a few low-level graphics library routines use them.

The SIMD instructions are really an abbreviated version of an elegant architec-
ture style that has its own compiler technology. As explained in Section 4.2, vector
architectures operate on vectors of data. Invented originally for scientific codes,
multimedia kernels are often vectorizable as well, albeit often with shorter vectors.
As Section 4.3 suggests, we can think of Intel’s MMX and SSE or PowerPC’s Alti-
Vec, or the RISC-V P extension, as simply short vector computers: MMX with
vectors of eight 8-bit elements, four 16-bit elements, or two 32-bit elements,
and AltiVec with vectors twice that length. They are implemented as simply adja-
cent, narrow elements in wide registers.

These microprocessor architectures build the vector register size into the archi-
tecture: the sum of the sizes of the elements is limited to 64 bits for MMX and 128
bits for AltiVec. When Intel decided to expand to 128-bit vectors, it added a whole
new set of instructions, called streaming SIMD extension (SSE).

A major advantage of vector computers is hiding latency of memory access by
loading many elements at once and then overlapping execution with data transfer.
The goal of vector addressing modes is to collect data scattered about memory,
place them in a compact form so that they can be operated on efficiently, and then
place the results back where they belong.

Vector computers include strided addressing and gather/scatter addressing
(see Section 4.2) to increase the number of programs that can be vectorized. Strided
addressing skips a fixed number of words between each access, so sequential
addressing is often called unit stride addressing. Gather and scatter find their

A.8 Cross-Cutting Issues: The Role of Compilers ■ A-31



addresses in another vector register: think of it as register indirect addressing for
vector computers. From a vector perspective, in contrast, these short-vector SIMD
computers support only unit strided accesses: memory accesses load or store all
elements at once from a single wide memory location. Because the data for mul-
timedia applications are often streams that start and end in memory, strided and
gather/scatter addressing modes are essential to successful vectorization (see
Section 4.7).

Example As an example, compare a vector computer with MMX for color representation
conversion of pixels from RGB (red, green, blue) to YUV (luminosity chromi-
nance), with each pixel represented by 3 bytes. The conversion is just three lines
of C code placed in a loop:

Y ¼(9798*R +19235*G +3736*B) / 32768;
U ¼(-4784*R 9437*G +4221*B) / 32768 +128;
V ¼(20218*R 16941*G 3277*B) / 32768 +128;

A 64-bit-wide vector computer can calculate 8 pixels simultaneously. One vec-
tor computer for media with strided addresses takes

■ 3 vector loads (to get RGB)

■ 3 vector multiplies (to convert R)

■ 6 vector multiply adds (to convert G and B)

■ 3 vector shifts (to divide by 32,768)

■ 2 vector adds (to add 128)

■ 3 vector stores (to store YUV)

The total is 20 instructions to perform the 20 operations in the previous C code to
convert 8 pixels (Kozyrakis, 2000). (Because a vector might have 32 64-bit ele-
ments, this code actually converts up to 32�8 or 256 pixels.)

In contrast, Intel’s website shows that a library routine to perform the same
calculation on 8 pixels takes 116 MMX instructions plus 6 80x86 instructions
(Intel, 2001). This six-fold increase in instructions is due to the large number of
instructions to load and unpack RGB pixels and to pack and store YUV pixels,
because there are no strided memory accesses.

Having short, architecture-limited vectors with few registers and simple memory
addressing modes makes it more difficult to use vectorizing compiler technology.
Hence, these SIMD instructions are more likely to be found in hand-coded libraries
than in compiled code.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instruction
set architecture to have at least 16 general-purpose registers—not counting
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separate registers for floating-point numbers—to simplify allocation of registers
using graph coloring. The advice on orthogonality suggests that all supported
addressing modes apply to all instructions that transfer data. Finally, the last three
pieces of advice—provide primitives instead of solutions, simplify trade-offs
between alternatives, don’t bind constants at runtime—all suggest that it is better
to err on the side of simplicity. In other words, understand that less is more in the
design of an instruction set. Alas, SIMD extensions are more an example of good
marketing than of outstanding achievement of hardware–software co-design.

A.9 Putting It All Together: The RISC-V Architecture

In this section we describe the load-store architecture called RISC-V. RISC-V is a
freely licensed open standard, similar to many of the RISC architectures, and based
on observations similar to those covered in the last sections. (In Section M.3 we
discuss how and why these architectures became popular.) RISC-V builds on
30 years of experience with RISC architectures and “cleans up” most of the
short-term inclusions and omissions, leading to an architecture that is easier
and more efficient to implement. RISC-V provides a both a 32-bit and a 64-bit
instruction set, as well as a variety of extensions for features like floating point;
these extensions can be added to either the 32-bit or 64-bit base instruction set.
We discuss a 64-bit version of RISC-V, RV64, which is a superset of the 32-bit
version RV32.

Reviewing our expectations from each section, for desktop and server
applications:

■ Section A.2—Use general-purpose registers with a load-store architecture.

■ Section A.3—Support these addressing modes: displacement (with an address
offset size of 12–16 bits), immediate (size 8–16 bits), and register indirect.

■ Section A.4—Support these data sizes and types: 8-, 16-, 32-, and 64-bit inte-
gers and 64-bit IEEE 754 floating-point numbers.

■ Section A.5—Support these simple instructions, because they will dominate
the number of instructions executed: load, store, add, subtract, move
register-register, and shift.

■ Section A.6—Compare equal, compare not equal, compare less, branch (with a
PC-relative address at least 8 bits long), jump, call, and return.

■ Section A.7—Use fixed instruction encoding if interested in performance,
and use variable instruction encoding if interested in code size. In some
low-end, embedded applications, with small or only one-level caches, larger
code size may have significant performance implications. ISAs that provide
a compressed instruction set extension provide a way of addressing this
difference.

■ Section A.8—Provide at least 16, and preferably 32, general-purpose registers,
be sure all addressing modes apply to all data transfer instructions, and aim for
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a minimalist instruction set. This section didn’t cover floating-point programs,
but they often use separate floating-point registers. The justification is to
increase the total number of registers without raising problems in the instruc-
tion format or in the speed of the general-purpose register file. This compro-
mise, however, is not orthogonal.

We introduce RISC-V by showing how it follows these recommendations. Like its
RISC predecessors, RISC-V emphasizes

■ A simple load-store instruction set.

■ Design for pipelining efficiency (discussed in Appendix C), including a fixed
instruction set encoding.

■ Efficiency as a compiler target.

RISC-V provides a good architectural model for study, not only because of the pop-
ularity of this type of processor, but also because it is an easy architecture to under-
stand. We will use this architecture again in Appendix C and in Chapter 3, and it
forms the basis for a number of exercises and programming projects.

RISC-V Instruction Set Organization

The RISC-V instruction set is organized as three base instruction sets that support
32-bit or 64-bit integers, and a variety of optional extensions tooneof the base instruc-
tion sets. This allows RISC-V to be implemented for a wide range of potential appli-
cations fromasmall embeddedprocessorwithaminimalbudget for logic andmemory
that likely costs $1 or less, to high-end processor configurations with full support for
floating point, vectors, and multiprocessor configurations. Figure A.22 summarizes
the three base instruction sets and the instruction set extensions with their basic func-
tionality. For purposes of this text, we use RV64IMAFD (also known as RV64G, for
short) in examples. RV32G is the 32-bit subset of the 64-bit architecture RV64G.

Registers for RISC-V

RV64G has 32 64-bit general-purpose registers (GPRs), named x0, x1, … , x31.
GPRs are also sometimes known as integer registers. Additionally, with the F and
D extensions for floating point that are part of RV64G, come a set of 32 floating-
point registers (FPRs), named f0, f1, … , f31, which can hold 32 single-precision
(32-bit) values or 32 double-precision (64-bit) values. (When holding one single-
precision number, the other half of the FPR is unused.) Both single- and double-
precision floating-point operations (32-bit and 64-bit) are provided.

The value of x0 is always 0. We shall see later how we can use this register to
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the general-purpose reg-
isters. An example is the floating-point status register, used to hold information
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about the results of floating-point operations. There are also instructions for mov-
ing between an FPR and a GPR.

Data Types for RISC-V

The data types are 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit double-
words for integer data and 32-bit single precision and 64-bit double precision for
floating point. Half words were added because they are found in languages like C

Name of base
or extension Functionality

RV32I Base 32-bit integer instruction set with 32 registers

RV32E Base 32-bit instruction set but with only 16 registers; intended for
very low-end embedded applications

RV64I Base 64-bit instruction set; all registers are 64-bits, and instructions
to move 64-bit from/to the registers (LD and SD) are added

M Adds integer multiply and divide instructions

A Adds atomic instructions needed for concurrent processing; see
Chapter 5

F Adds single precision (32-bit) IEEE floating point, includes 32 32-
bit floating point registers, instructions to load and store those
registers and operate on them

D Extends floating point to double precision, 64-bit, making the
registers 64-bits, adding instructions to load, store, and operate on
the registers

Q Further extends floating point to add support for quad precision,
adding 128-bit operations

L Adds support for 64- and 128-bit decimal floating point for the
IEEE standard

C Defines a compressed version of the instruction set intended for
small-memory-sized embedded applications. Defines 16-bit
versions of common RV32I instructions

V A future extension to support vector operations (see Chapter 4)

B A future extension to support operations on bit fields

T A future extension to support transactional memory

P An extension to support packed SIMD instructions: see Chapter 4

RV128I A future base instruction set providing a 128-bit address space

Figure A.22 RISC-V has three base instructions sets (and a reserved spot for a future
fourth); all the extensions extend one of the base instruction sets. An instruction set is
thus named by the base name followed by the extensions. For example, RISC-V64IMAFD
refers to the base 64-bit instruction set with extensions M, A, F, and D. For consistency of
naming and software, this combination is given the abbreviated name: RV64G, and we
use RV64G through most of this text.
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and are popular in some programs, such as the operating systems, concerned about
size of data structures. They will also become more popular if Unicode becomes
widely used.

The RV64G operations work on 64-bit integers and 32- or 64-bit floating point.
Bytes, half words, and words are loaded into the general-purpose registers with
either zeros or the sign bit replicated to fill the 64 bits of the GPRs. Once loaded,
they are operated on with the 64-bit integer operations.

Addressing Modes for RISC-V Data Transfers

The only data addressing modes are immediate and displacement, both with 12-bit
fields. Register indirect is accomplished simply by placing 0 in the 12-bit displace-
ment field, and limited absolute addressing with a 12-bit field is accomplished by
using register 0 as the base register. Embracing zero gives us four effective modes,
although only two are supported in the architecture.

RV64G memory is byte addressable with a 64-bit address and uses Little End-
ian byte numbering. As it is a load-store architecture, all references between mem-
ory and either GPRs or FPRs are through loads or stores. Supporting the data types
mentioned herein, memory accesses involving GPRs can be to a byte, half word,
word, or double word. The FPRs may be loaded and stored with single-precision or
double-precision numbers. Memory accesses need not be aligned; however, it may
be that unaligned accesses run extremely slow. In practice, programmers and com-
pilers would be stupid to use unaligned accesses.

RISC-V Instruction Format

Because RISC-V has just two addressing modes, these can be encoded into the
opcode. Following the advice on making the processor easy to pipeline and
decode, all instructions are 32 bits with a 7-bit primary opcode. Figure A.23 shows
the instruction layout of the four major instruction types. These formats are simple
while providing 12-bit fields for displacement addressing, immediate constants, or
PC-relative branch addresses.

R-typefunct7
31 25  24 20  19 15  14 12  11 7  6 0

funct3rs2 rs1 rd opcode

I-typefunct3rs1 rd opcode

S-typeimm[11:5]

imm[11:0]

funct3rs2 rs1 imm[4:0] opcode

U-typeimm[31:12] rd opcode

Figure A.23 The RISC-V instruction layout. There are two variations on these formata,
called the SB and UJ formats; they deal with a slightly different treatment for immediate
fields.
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The instruction formats and the use of the instruction fields is described in
Figure A.24. The opcode specifies the general instruction type (ALU instruction,
ALU immediate, load, store, branch, or jump), while the funct fields are used for
specific operations. For example, an ALU instruction is encoded with a single
opcode with the funct field dictating the exact operation: add, subtract, and, etc.
Notice that several formats encode multiple types of instructions, including the
use of the I-format for both ALU immediates and loads, and the use of the S-format
for stores and conditional branches.

RISC-V Operations

RISC-V (or more properly RV64G) supports the list of simple operations
recommended herein plus a few others. There are four broad classes of
instructions: loads and stores, ALU operations, branches and jumps, and
floating-point operations.

Any of the general-purpose or floating-point registers may be loaded or stored,
except that loading x0 has no effect. Figure A.25 gives examples of the load and
store instructions. Single-precision floating-point numbers occupy half a floating-
point register. Conversions between single and double precision must be done
explicitly. The floating-point format is IEEE 754 (see Appendix J). A list of all
the RV64G instructions appears in Figure A.28 (page A.42).

Instruction
format Primary use rd rs1 rs2 Immediate

R-type Register-register
ALU instructions

Destination First source Second source

I-type ALU immediates
Load

Destination First source base
register

Value
displacement

S-type Store
Compare and
branch

Base register first
source

Data source to
store second
source

Displacement
offset

U-type Jump and link
Jump and link
register

Register
destination for
return PC

Target address for
jump and link
register

Target address
for jump and link

Figure A.24 The use of instruction fields for each instruction type. Primary use shows the major instructions that
use the format. A blank indicates that the corresponding field is not present in this instruction type. The I-format is
used for both loads and ALU immediates, with the 12-bit immediate holding either the value for an immediate or the
displacement for a load. Similarly, the S-format encodes both store instructions (where the first source register is the
base register and the second contains the register source for the value to store) and compare and branch instructions
(where the register fields contain the sources to compare and the immediate field specifies the offset of the branch
target). There are actually two other formats: SB and UJ that follow the same basic organization as S and J, but slightly
modify the interpretation of the immediate fields.
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To understand these figures we need to introduce a few additional extensions to
our C description language used initially on page A-9:

■ A subscript is appended to the symbol whenever the length of the datum
being transferred might not be clear. Thus, nmeans transfer an n-bit quantity.
We use x, y z to indicate that z should be transferred to x and y.

■ A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most-significant bit starting at 0. The subscript may be a single digit
(e.g., Regs[x4]0 yields the sign bit of x4) or a subrange (e.g., Regs
[x3]56..63 yields the least-significant byte of x3).

■ The variable Mem, used as an array that stands for main memory, is indexed by
a byte address and may transfer any number of bytes.

■ A superscript is used to replicate a field (e.g., 048 yields a field of zeros of
length 48 bits).

■ The symbol ## is used to concatenate two fields and may appear on either side
of a data transfer, and the symbols≪ and≫ shift the first operand left or right
by the amount of the second operand.

Example instruction Instruction name Meaning

ld x1,80(x2) Load doubleword Regs[x1] Mem[80+Regs[x2]]

lw x1,60(x2) Load word Regs[x1] 64 Mem[60+Regs[x2]]0)
32 ##

Mem[60+Regs[x2]]

lwu x1,60(x2) Load word unsigned Regs[x1] 64 0
32 ## Mem[60+Regs[x2]]

lb x1,40(x3) Load byte Regs[x1] 64 (Mem[40+Regs[x3]]0)
56 ##

Mem[40+Regs[x3]]

lbu x1,40(x3) Load byte unsigned Regs[x1] 64 0
56 ## Mem[40+Regs[x3]]

lh x1,40(x3) Load half word Regs[x1] 64 (Mem[40+Regs[x3]]0)
48 ##

Mem[40+Regs[x3]]

flw f0,50(x3) Load FP single Regs[f0] 64 Mem[50+Regs[x3]] ## 032

fld f0,50(x2) Load FP double Regs[f0] 64 Mem[50+Regs[x2]]

sd x2,400(x3) Store double Mem[400+Regs[x3]] 64 Regs[x2]

sw x3,500(x4) Store word Mem[500+Regs[x4]] 32 Regs[x3]32..63

fsw f0,40(x3) Store FP single Mem[40+Regs[x3]] 32 Regs[f0]0..31

fsd f0,40(x3) Store FP double Mem[40+Regs[x3]] 64 Regs[f0]

sh x3,502(x2) Store half Mem[502+Regs[x2]] 16 Regs[x3]48..63

sb x2,41(x3) Store byte Mem[41+Regs[x3]] 8 Regs[x2]56..63

Figure A.25 The load and store instructions in RISC-V. Loads shorter than 64 bits are available in both sign-
extended and zero-extended forms. All memory references use a single addressing mode. Of course, both loads
and stores are available for all the data types shown. Because RV64G supports double precision floating point, all
single precision floating point loads must be aligned in the FP register, which are 64-bits wide.
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As an example, assuming that x8 and x10 are 32-bit registers:

Regs[x10] 64(Mem[Regs[x8]]0)
32## Mem[Regs[R8]]

means that the word at the memory location addressed by the contents of register
x8 is sign-extended to form a 64-bit quantity that is stored into register x10.

All ALU instructions are register-register instructions. Figure A.26 gives some
examples of the arithmetic/logical instructions. The operations include simple
arithmetic and logical operations: add, subtract, AND, OR, XOR, and shifts. Immediate
forms of all these instructions are provided using a 12-bit sign-extended immedi-
ate. The operation LUI (load upper immediate) loads bits 12–31 of a register, sign-
extends the immediate field to the upper 32-bits, and sets the low-order 12-bits of
the register to 0. LUI allows a 32-bit constant to be built in two instructions, or a
data transfer using any constant 32-bit address in one extra instruction.

As mentioned herein, x0 is used to synthesize popular operations. Loading
a constant is simply an add immediate where the source operand is x0, and a
register-register move is simply an add (or an or) where one of the sources is
x0. (We sometimes use the mnemonic li, standing for load immediate, to represent
the former, and the mnemonic mv for the latter.)

RISC-V Control Flow Instructions

Control is handled through a set of jumps and a set of branches, and Figure A.27
gives some typical branch and jump instructions. The two jump instructions (jump
and link and jump and link register) are unconditional transfers and always store
the “link,” which is the address of the instruction sequentially following the jump
instruction, in the register specified by the rd field. In the event that the link address
is not needed, the rd field can simply be set to x0, which results in a typical uncon-
ditional jump. The two jump instructions are differentiated by whether the address
is computed by adding an immediate field to the PC or by adding the immediate

Example
instrucmtion Instruction name Meaning

add x1,x2,x3 Add Regs[x1] Regs[x2]+Regs[x3]

addi x1,x2,3 Add immediate
unsigned

Regs[x1] Regs[x2]+3

lui x1,42 Load upper
immediate

Regs[x1] 032##42##012

sll x1,x2,5 Shift left logical Regs[x1] Regs[x2]<<5

slt x1,x2,x3 Set less than if (Regs[x2]<Regs[x3])
Regs[x1] 1 else Regs[x1] 0

Figure A.26 The basic ALU instructions in RISC-V are available both with register-
register operands and with one immediate operand. LUI uses the U-format that
employs the rs1 field as part of the immediate, yielding a 20-bit immediate.
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field to the contents of a register. The offset is interpreted as a half word offset for
compatibility with the compressed instruction set, R64C, which includes 16-bit
instructions.

All branches are conditional. The branch condition is specified by the instruc-
tion, and any arithmetic comparison (equal, greater than, less than, and their
inverses) is permitted. The branch-target address is specified with a 12-bit signed
offset that is shifted left one place (to get 16-bit alignment) and then added to the
current program counter. Branches based on the contents of the floating point
registers are implemented by executing a floating point comparison (e.g., feq.d
or fle.d), which sets an integer register to 0 or 1 based on the comparison, and then
executing a beq or bne with x0 as an operand.

The observant reader will have noticed that there are very few 64-bit only
instructions in RV64G. Primarily, these are the 64-bit loads and stores and versions
of 32-bit, 16-bit, and 8-bit loads that do not sign extend (the default is to sign-extend).
To support 32-bit modular arithmetic without additional instructions, there are ver-
sions of the instructions that ignore the upper 32 bits of a 64-bit register, such as add
and subtract word (addw, subw). Amazingly, everything else just works.

RISC-V Floating-Point Operations

Floating-point instructions manipulate the floating-point registers and indicate
whether the operation to be performed is single or double precision. The
floating-point operations are add, subtract, multiply, divide, square root, as well
as fused multiply-add and multiply-subtract. All floating point instructions begin
with the letter f and use the suffix d for double precision and s for single precision
(e.g., fadd.d, fadd.s, fmul.d, fmul.s, fmadd.d fmadd.s). Floating-
point compares set an integer register based on the comparison, similarly to the
integer instruction set-less-than and set-great-than.

In addition to floating-point loads and stores (flw, fsw, fld, fsd), instruc-
tionsareprovidedforconvertingbetweendifferentFPprecisions, formovingbetween
integer and FP registers (fmv), and for converting between floating point and integer
(fcvt, which uses the integer registers for source or destination as appropriate).

Figure A.28 contains a list of nearly all the RV64G instructions and a summary
of their meaning.

Example instruction Instruction name Meaning

jal x1,offset Jump and link Regs[x1] PC+4; PC PC + (offset<<1)

jalr x1,x2,offset Jump and link register Regs[x1] PC+4; PC Regs[x2]+offset

beq x3,x4,offset Branch equal zero if (Regs[x3]==Regs[x4]) PC PC + (offset<<1)

bgt x3,x4,name Branch not equal zero if (Regs[x3]>Regs[x4]) PC PC + (offset<<1)

Figure A.27 Typical control flow instructions in RISC-V. All control instructions, except jumps to an address in a
register, are PC-relative.
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Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP;
only memory address mode is 12-bit displacement+contents of a GPR

lb, lbu, sb Load byte, load byte unsigned, store byte (to/from integer registers)

lh, lhu, sh Load half word, load half word unsigned, store half word (to/from integer
registers)

lw, lwu, sw Load word, store word (to/from integer registers)

ld, sd Load doubleword, store doubleword

Arithmetic/logical Operations on data in GPRs. Word versions ignore upper 32 bits

add, addi, addw, addiw, sub,
subi, subw, subiw

Add and subtract, with both word and immediate versions

slt, sltu, slti, sltiu set-less-than with signed and unsigned, and immediate

and, or, xor, andi, ori, xori and, or, xor, both register-register and register-immediate

lui Load upper immediate: loads bits 31..12 of a register with the immediate
value. Upper 32 bits are set to 0

auipc Sums an immediate and the upper 20-bits of the PC into a register; used for
building a branch to any 32-bit address

sll, srl, sra, slli, srli,
srai, sllw,slliw, srli,
srliw, srai, sraiw

Shifts: logical shift left and right and arithmetic shift right, both immediate
and word versions (word versions leave the upper 32 bit untouched)

mul, mulw, mulh, mulhsu,
mulhu, div,divw, divu, rem,
remu, remw, remuw

Integer multiply, divide, and remainder, signed and unsigned with support for
64-bit products in two instructions. Also word versions

Control Conditional branches and jumps; PC-relative or through register

beq, bne, blt, bge, bltu, bgeu Branch based on compare of two registers, equal, not equal, less than, greater
or equal, signed and unsigned

jal,jalr Jump and link address relative to a register or the PC

Floating point All FP operation appear in double precision (.d) and single (.s)

flw, fld, fsw, fsd Load, store, word (single precision), doubleword (double precision)

fadd, fsub, fmult, fiv, fsqrt,
fmadd, fmsub, fnmadd, fnmsub,
fmin, fmax, fsgn, fsgnj, fsjnx

Add, subtract, multiply, divide, square root, multiply-add, multiply-subtract,
negate multiply-add, negate multiply-subtract, maximum, minimum, and
instructions to replace the sign bit. For single precision, the opcode is
followed by: .s, for double precision: .d. Thus fadd.s, fadd.d

feq, flt, fle Compare two floating point registers; result is 0 or 1 stored into a GPR

fmv.x.*, fmv.*.x Move between the FP register abd GPR, “*” is s or d

fcvt.*.l, fcvt.l.*, fcvt.*.
lu, fcvt.lu.*, fcvt.*.w, fcvt.
w.*, fcvt.*.wu, fcvt.wu.*

Converts between a FP register and integer register, where “*” is S or D for
single or double precision. Signed and unsigned versions and word,
doubleword versions

Figure A.28 A list of the vast majority of instructions in RV64G. This list can also be found on the back inside cover.
This table omits system instructions, synchronization and atomic instructions, configuration instructions, instructions
to reset and access performance counters, about 10 instructions in total.
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RISC-V Instruction Set Usage

To give an idea of which instructions are popular, Figure A.29 shows the frequency
of instructions and instruction classes for the SPECint2006 programs, using
RV32G.

A.10 Fallacies and Pitfalls

Architects have repeatedly tripped on common, but erroneous, beliefs. In this sec-
tion we look at a few of them.

Pitfall Designing a “high-level” instruction set feature specifically oriented to supporting
a high-level language structure.

Attempts to incorporate high-level language features in the instruction set have led
architects to provide powerful instructions with a wide range of flexibility. How-
ever, often these instructions do more work than is required in the frequent case, or
they don’t exactly match the requirements of some languages. Many such efforts
have been aimed at eliminating what in the 1970s was called the semantic gap.
Although the idea is to supplement the instruction set with additions that bring

Program Loads Stores Branches Jumps ALU operations

astar 28% 6% 18% 2% 46%

bzip 20% 7% 11% 1% 54%

gcc 17% 23% 20% 4% 36%

gobmk 21% 12% 14% 2% 50%

h264ref 33% 14% 5% 2% 45%

hmmer 28% 9% 17% 0% 46%

libquantum 16% 6% 29% 0% 48%

mcf 35% 11% 24% 1% 29%

omnetpp 23% 15% 17% 7% 31%

perlbench 25% 14% 15% 7% 39%

sjeng 19% 7% 15% 3% 56%

xalancbmk 30% 8% 27% 3% 31%

Figure A.29 RISC-V dynamic instruction mix for the SPECint2006 programs. Omnetpp includes 7% of the instruc-
tions that are floating point loads, stores, operations, or compares; no other program includes even 1% of other
instruction types. A change in gcc in SPECint2006, creates an anomaly in behavior. Typical integer programs have
load frequencies that are 1/5 to 3x the store frequency. In gcc, the store frequency is actually higher than the load
frequency! This arises because a large fraction of the execution time is spent in a loop that clears memory by storing
x0 (not where a compiler like gcc would usually spend most of its execution time!). A store instruction that stores a
register pair, which some other RISC ISAs have included, would address this issue.
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the hardware up to the level of the language, the additions can generate what Wulf
et al. (1981) have called a semantic clash:

… by giving too much semantic content to the instruction, the computer
designer made it possible to use the instruction only in limited contexts. [p. 43]

More often the instructions are simply overkill—they are too general for the most
frequent case, resulting in unneeded work and a slower instruction. Again, the
VAX CALLS is a good example. CALLS uses a callee save strategy (the registers
to be saved are specified by the callee), but the saving is done by the call instruction
in the caller. The CALLS instruction begins with the arguments pushed on the
stack, and then takes the following steps:

1. Align the stack if needed.

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as men-
tioned in Section A.8). The mask is kept in the called procedure’s code—this
permits the callee to specify the registers to be saved by the caller even with
separate compilation.

4. Push the return address on the stack, and then push the top and base of stack
pointers (for the activation record).

5. Clear the condition codes, which sets the trap enable to a known state.

6. Push a word for status information and a zero word on the stack.

7. Update the two stack pointers.

8. Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of over-
head. Most procedures know their argument counts, and a much faster linkage
convention can be established using registers to pass arguments rather than the
stack in memory. Furthermore, the CALLS instruction forces two registers to
be used for linkage, while many languages require only one linkage register.
Many attempts to support procedure call and activation stack management have
failed to be useful, either because they do not match the language needs or
because they are too general and hence too expensive to use.

The VAX designers provided a simpler instruction, JSB, that is much faster
because it only pushes the return PC on the stack and jumps to the procedure. How-
ever, most VAX compilers use the more costly CALLS instructions. The call
instructions were included in the architecture to standardize the procedure linkage
convention. Other computers have standardized their calling convention by agree-
ment among compiler writers and without requiring the overhead of a complex,
very general procedure call instruction.

Fallacy There is such a thing as a typical program.
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Many people would like to believe that there is a single “typical” program that
could be used to design an optimal instruction set. For example, see the synthetic
benchmarks discussed in Chapter 1. The data in this appendix clearly show that
programs can vary significantly in how they use an instruction set. For example,
Figure A.30 shows the mix of data transfer sizes for four of the SPEC2000 pro-
grams: It would be hard to say what is typical from these four programs. The var-
iations are even larger on an instruction set that supports a class of applications,
such as decimal instructions, that are unused by other applications.

Pitfall Innovating at the instruction set architecture to reduce code size without account-
ing for the compiler.

Figure A.31 shows the relative code sizes for four compilers for theMIPS instruction
set. Whereas architects struggle to reduce code size by 30%–40%, different compiler
strategies can change code size by much larger factors. Similar to performance opti-
mization techniques, the architect should start with the tightest code the compilers
can produce before proposing hardware innovations to save space.

Fallacy An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: the instruction set architecture is one only
its creators could love (see Appendix K). Succeeding generations of Intel engineers
have tried to correct unpopular architectural decisions made in designing the
80x86. For example, the 80x86 supports segmentation, whereas all others picked
paging; it uses extended accumulators for integer data, but other processors use
general-purpose registers; and it uses a stack for floating-point data, when every-
one else abandoned execution stacks long before.

0% 20% 40% 60% 80% 100%

Byte
(8 bits)

Half word
(16 bits)

Word
(32 bits)

Double word
(64 bits)

18%
22%

0%
0%

3%
19%

0%
0%

18%
28%

6%
40%

62%
31%

94%
60%

applu
equake
gzip
perl

Figure A.30 Data reference size of four programs from SPEC2000. Although you can
calculate an average size, it would be hard to claim the average is typical of programs.
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Despite these major difficulties, the 80x86 architecture has been enormously
successful. The reasons are threefold: first, its selection as the microprocessor in
the initial IBM PC makes 80x86 binary compatibility extremely valuable. Second,
Moore’s Law provided sufficient resources for 80x86 microprocessors to translate
to an internal RISC instruction set and then execute RISC-like instructions. This
mix enables binary compatibility with the valuable PC software base and perfor-
mance on par with RISC processors. Third, the very high volumes of PC micro-
processors mean Intel can easily pay for the increased design cost of hardware
translation. In addition, the high volumes allow the manufacturer to go up the
learning curve, which lowers the cost of the product.

The larger die size and increased power for translation may be a liability for
embedded applications, but it makes tremendous economic sense for the desktop.
And its cost-performance in the desktop also makes it attractive for servers, with its
main weakness for servers being 32-bit addresses, which was resolved with a 64-
bit address extension.

Fallacy You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hardware
and software technologies. Over time those technologies are likely to change, and
decisions that may have been correct at the time they were made look like mistakes.
For example, in 1975 the VAX designers overemphasized the importance of code
size efficiency, underestimating how important ease of decoding and pipelining
would be five years later. An example in the RISC camp is delayed branch (see
Appendix K). It was a simple matter to control pipeline hazards with five-stage
pipelines, but a challenge for processors with longer pipelines that issue multiple
instructions per clock cycle. In addition, almost all architectures eventually suc-
cumb to the lack of sufficient address space. This is one reason that RISC-V

Compiler
Apogee software

version 4.1

Green Hills
Multi2000
Version 2.0

Algorithmics
SDE4.0B IDT/c 7.2.1

Architecture MIPS IV MIPS IV MIPS 32 MIPS 32

Processor NEC VR5432 NEC VR5000 IDT 32334 IDT 79RC32364

Autocorrelation kernel 1.0 2.1 1.1 2.7

Convolutional encoder kernel 1.0 1.9 1.2 2.4

Fixed-point bit allocation kernel 1.0 2.0 1.2 2.3

Fixed-point complex FFT kernel 1.0 1.1 2.7 1.8

Viterbi GSM decoder kernel 1.0 1.7 0.8 1.1

Geometric mean of five kernels 1.0 1.7 1.4 2.0

Figure A.31 Code size relative to Apogee Software Version 4.1 C compiler for Telecom application of EEMBC
benchmarks. The instruction set architectures are virtually identical, yet the code sizes vary by factors of 2. These
results were reported February–June 2000.
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has planned for the possibility of 128-bit addresses, although it may be decades
before such capability is needed.

In general, avoiding such flaws in the long run would probably mean
compromising the efficiency of the architecture in the short run, which is danger-
ous, since a new instruction set architecture must struggle to survive its first
few years.

A.11 Concluding Remarks

The earliest architectures were limited in their instruction sets by the hardware
technology of that time. As soon as the hardware technology permitted, computer
architects began looking for ways to support high-level languages. This search led
to three distinct periods of thought about how to support programs efficiently. In
the 1960s, stack architectures became popular. They were viewed as being a good
match for high-level languages—and they probably were, given the compiler tech-
nology of the day. In the 1970s, the main concern of architects was how to reduce
software costs. This concern was met primarily by replacing software with hard-
ware, or by providing high-level architectures that could simplify the task of soft-
ware designers. The result was both the high-level language computer architecture
movement and powerful architectures like the VAX, which has a large number of
addressing modes, multiple data types, and a highly orthogonal architecture. In the
1980s, more sophisticated compiler technology and a renewed emphasis on pro-
cessor performance saw a return to simpler architectures, based mainly on the
load-store style of computer.

The following instruction set architecture changes occurred in the 1990s:

■ Address size doubles—The 32-bit address instruction sets for most desktop and
server processors were extended to 64-bit addresses, expanding the width of
the registers (among other things) to 64 bits. Appendix K gives three examples
of architectures that have gone from 32 bits to 64 bits.

■ Optimization of conditional branches via conditional execution—In Chapter 3,
we see that conditional branches can limit the performance of aggressive com-
puter designs. Hence, there was interest in replacing conditional branches with
conditional completion of operations, such as conditional move (see Appendix
H), which was added to most instruction sets.

■ Optimization of cache performance via prefetch—Chapter 2 explains the
increasing role of memory hierarchy in the performance of computers, with
a cache miss on some computers taking as many instruction times as page faults
took on earlier computers. Hence, prefetch instructions were added to try to
hide the cost of cache misses by prefetching (see Chapter 2).

■ Support for multimedia—Most desktop and embedded instruction sets were
extended with support for multimedia applications.
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■ Faster floating-point operations—Appendix J describes operations added to
enhance floating-point performance, such as operations that perform amultiply
and an add and paired single execution, which are part of RISC-V.

Between1970 and1985many thought the primary job of the computer architectwas
the design of instruction sets. As a result, textbooks of that era emphasize instruction
set design,much as computer architecture textbooks of the 1950s and 1960s empha-
sized computer arithmetic. The educated architectwas expected to have strongopin-
ions about the strengths and especially the weaknesses of the popular computers.
The importance of binary compatibility in quashing innovations in instruction set
design was unappreciated by many researchers and textbook writers, giving the
impression that many architects would get a chance to design an instruction set.

The definition of computer architecture today has been expanded to include
design and evaluation of the full computer system—not just the definition of
the instruction set and not just the processor—and hence there are plenty of topics
for the architect to study. In fact, the material in this appendix was a central point of
the book in its first edition in 1990, but now is included in an appendix primarily as
reference material!

Appendix K may satisfy readers interested in instruction set architecture; it
describes a variety of instruction sets, which are either important in the marketplace
today or historically important, and it compares nine popular load-store computers
with RISC-V.

A.12 Historical Perspective and References

Section M.4 (available online) features a discussion on the evolution of instruction
sets and includes references for further reading and exploration of related topics.

Exercises by Gregory D. Peterson

A.1 [10]<A.9>Compute the effective CPI for an implementation of an embedded
RISC-V CPU using Figure A.29. Assume we have made the following measure-
ments of average CPI for each of the instruction types:

Instruction Clock cycles

All ALU operations 1.0

Loads 5.0

Stores 3.0

Branches

Taken 5.0

Not taken 3.0

Jumps 3.0

Average the instruction frequencies of astar and gcc to obtain the
instruction mix.
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A.2 [10]<A.9>Compute the effective CPI for RISC-V using Figure A.29 and the
table above. Average the instruction frequencies of bzip and hmmer to obtain
the instruction mix. You may assume that all other instructions (for instructions
not accounted for by the types in Table A.29) require 3.0 clock cycles each.

A.3 [10]<A.9>Compute the effective CPI for an implementation of a RISC-V CPU
using Figure A.29. Assume we have made the following measurements of average
CPI for each of the instruction types:

A.4 [10]<A.9>Compute the effective CPI for RISC-V using Figure A.29 and the
table above. Average the instruction frequencies of perlbench and sjeng to obtain
the instruction mix.

A.5 [10]<A.8>Consider this high-level code sequence of three statements:

A =B+C;
B =A+C;
D =A–B;

Use the technique of copy propagation (see Figure A.20) to transform the
code sequence to the point where no operand is a computed value. Note the
instances in which the transformation has reduced the computational work of a
statement and those cases where the work has increased. What does this suggest
about the technical challenge faced in trying to satisfy the desire for optimizing
compilers?

A.6 [30]<A.8>Compiler optimizations may result in improvements to code size
and/or performance. Consider one or more of the benchmark programs from
the SPEC CPU2017 or the EEMBC benchmark suites. Use the RISC-V processor
or a processor available to you along with the GNU C compiler to optimize the
benchmark program(s) using no optimization, –O1, –O2, and –O3. Compare
the performance and size of the resulting programs. Also compare your results
to Figure A.21.

Instruction Clock cycles

All ALU operations 1.0

Loads 3.5

Stores 2.8

Branches

Taken 4.0

Not taken 2.0

Jumps 2.4

Average the instruction frequencies of gobmk and mcf to obtain the
instruction mix. You may assume that all other instructions (for
instructions not accounted for by the types in Table A.29)
require 3.0 clock cycles each.
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A.7 [20/20/20/25/10]<A.2, A.9>Consider the following fragment of C code:

for (i=0; i<100; i++) {
A[i]=B[i]+C;

}

Assume that A and B are arrays of 64-bit integers, and C and i are 64-bit inte-
gers. Assume that all data values and their addresses are kept in memory (at
addresses 1000, 3000, 5000, and 7000 for A, B, C, and i, respectively) except when
they are operated on. Assume that values in registers are lost between iterations of
the loop. Assume all addresses and words are 64 bits.

a. [20]<A.2, A.9>Write the code for RISC-V. How many instructions are
required dynamically? How many memory-data references will be executed?
What is the code size in bytes?

b. [20]<A.2>Write the code for x86. How many instructions are required
dynamically? Howmanymemory-data references will be executed?What is the
code size in bytes?

c. [20]<A.2>Write the code for a stack machine. Assume all operations occur
on top of the stack. Push and pop are the only instructions that access memory;
all others remove their operands from the stack and replace themwith the result.
The implementation uses a hardwired stack for only the top two stack entries,
which keeps the processor circuit very small and low in cost. Additional stack
positions are kept in memory locations, and accesses to these stack positions
require memory references. How many instructions are required dynamically?
How many memory-data references will be executed?

d. [25]<A.2, A.9> Instead of the code fragment above, write a routine for
computing a matrix multiplication for dense, single precision matrices, also
known as SGEMM. For input matrices of size 100�100, how many instruc-
tions are required dynamically? How many memory-data references will be
executed?

e. [10]<A.2, A.9>As the matrix size increases, how does this affect the number
of instructions executed dynamically or the number of memory-data
references?

A.8 [25/25]<A.2, A.8, A.9>Consider the following fragment of C code:

for(p =0; p <8; p++) {
Y[p] =(9798*R[p] +19235*G[p] +3736*B[p])/32768;
U[p] =(-4784*R[p]� 9437*G[p] +4221*B[p])/32768 +128;
V[p] =(20218*R[p]�16941*G[p]�3277*B[p])/32768 +128;

}

Assume that R, G, B, Y, U, and V are arrays of 64-bit integers. Assume that
all data values and their addresses are kept in memory (at addresses 1000, 2000,
3000, 4000, 5000, and 6000 for R, G, B, Y, U, and V, respectively) except when
they are operated on. Assume that values in registers are lost between iterations of
the loop. Assume all addresses and words are 64 bits.
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a. [25]<A.2, A.9>Write the code for RISC-V. How many instructions are
required dynamically? How many memory-data references will be executed?
What is the code size in bytes?

b. [25]<A.2>Write the code for x86. How many instructions are required
dynamically? How many memory-data references will be executed? What is
the code size in bytes? Compare your results to the multimedia instructions
(MMX) and vector implementations discussed in the A.8.

A.9 [10/10/10/10]<A.2, A.7>For the following, we consider instruction encoding for
instruction set architectures.

a. [10]<A.2, A.7>Consider the case of a processor with an instruction length of
14 bits and with 64 general-purpose registers so the size of the address fields is
6 bits. Is it possible to have instruction encodings for the following?
■ 3 two-address instructions
■ 63 one-address instructions
■ 45 zero-address instructions

b. [10]<A.2, A.7>Assuming the same instruction length and address field sizes
as above, determine if it is possible to have
■ 3 two-address instructions
■ 65 one-address instructions
■ 35 zero-address instructions

Explain your answer.

c. [10]<A.2, A.7>Assume the same instruction length and address field sizes as
above. Further assume there are already 3 two-address and 24 zero-address
instructions. What is the maximum number of one-address instructions that
can be encoded for this processor?

d. [10]<A.2, A.7>Assume the same instruction length and address field sizes as
above. Further assume there are already 3 two-address and 65 zero-address
instructions. What is the maximum number of one-address instructions that
can be encoded for this processor?

A.10 [10/15]<A.2>For the following assume that integer values A, B, C, D, E, and F
reside in memory. Also assume that instruction operation codes are represented in
8 bits, memory addresses are 64 bits, and register addresses are 6 bits.

a. [10]<A.2>For each instruction set architecture shown in Figure A.2, how
many addresses, or names, appear in each instruction for the code to compute
C=A+B, and what is the total code size?

b. [15]<A.2>Some of the instruction set architectures in Figure A.2 destroy
operands in the course of computation. This loss of data values from processor
internal storage has performance consequences. For each architecture in Figure
A.2, write the code sequence to compute:

C=A+B
D=A – E
F=C+D
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In your code, mark each operand that is destroyed during execution and mark
each “overhead” instruction that is included just to overcome this loss of data from
processor internal storage. What is the total code size, the number of bytes of
instructions and data moved to or from memory, the number of overhead instruc-
tions, and the number of overhead data bytes for each of your code sequences?

A.11 [15]<A.2, A.7, A.9>The design of RISC-V provides for 32 general-purpose reg-
isters and 32 floating-point registers. If registers are good, are more registers bet-
ter? List and discuss as many trade-offs as you can that should be considered by
instruction set architecture designers examining whether to, and how much to,
increase the number of RISC-V registers.

A.12 [5]<A.3>Consider a C struct that includes the following members:

struct foo {
char a;
bool b;
int c;
double d;
short e;
float f;
double g;
char *cptr;
float *fptr;
int x;

};

Note that for C, the compiler must keep the elements of the struct in the same
order as given in the struct definition. For a 32-bit machine, what is the size of the
foo struct? What is the minimum size required for this struct, assuming you may
arrange theorder of the structmembers as youwish?What about for a 64-bitmachine?

A.13 [30]<A.7>Many computer manufacturers now include tools or simulators that
allow you to measure the instruction set usage of a user program. Among the
methods in use are machine simulation, hardware-supported trapping, and tech-
niques that instrument the object code module by inserting counters in software
or using built-in hardware counters. Pick a processor and tools to instrument user
programs. (The open source RISC-V architecture supports a collection of tools.
Tools such as the Performance API (PAPI) work with x86 processors.) Use the
processor and tools to measure the instruction set mix for one of the SPEC
CPU2017 benchmarks. Compare the results to those shown in this chapter.

A.14 [30]<A.8>Newer processors such as Intel's i7 Kaby Lake include support for
AVX2 vector/multimedia instructions. Write a dense matrix multiply function
using single-precision values and compile it with different compilers and optimi-
zation flags. Linear algebra codes using Basic Linear Algebra Subroutine (BLAS)
routines such as SGEMM include optimized versions of dense matrix multiply.
Compare the code size and performance of your code to that of BLAS SGEMM.
Explore what happens when using double-precision values and DGEMM.
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A.15 [30]<A.8>For the SGEMM code developed above for the i7 processor, include
the use of AVX2 intrinsics to improve the performance. In particular, try to vec-
torize your code to better utilize the AVX hardware. Compare the code size and
performance to the original code. Compare your results to Intel's Math Kernel
Library (MKL) implementation for SGEMM.

A.16 [30]<A.7, A.9>The RISC-V processor is open source and boasts an impressive
collection of implementations, simulators, compilers, and other tools. See riscv.org
for an overview of tools, including spike, a simulator for RISC-V processors. Use
spike or another simulator to measure the instruction set mix for some SPEC
CPU2017 benchmark programs.

A.17 [35/35/35/35]<A.2–A.8>gcc targets most modern instruction set architectures
(see www.gnu.org/software/gcc/). Create a version of gcc for several architectures
that you have access to, such as x86, RISC-V, PowerPC, and ARM.

a. [35]<A.2–A.8>Compile a subset of SPEC CPU2017 integer benchmarks and
create a table of code sizes. Which architecture is best for each program?

b. [35]<A.2–A.8>Compile a subset of SPEC CPU2017 floating-point
benchmarks and create a table of code sizes. Which architecture is best for each
program?

c. [35]<A.2–A.8>Compile a subset of EEMBC AutoBench benchmarks (see
www.eembc.org/home.php) and create a table of code sizes. Which architecture
is best for each program?

d. [35]<A.2–A.8>Compile a subset of EEMBC FPBench floating-point bench-
marks and create a table of code sizes. Which architecture is best for each
program?

A.18 [40]<A.2–A.8>Power efficiency has become very important for modern proces-
sors, particularly for embedded systems. Create a version of gcc for two architec-
tures that you have access to, such as x86, RISC-V, PowerPC, Atom, and ARM.
(Note that the different versions of RISC-V can also be explored and compared.)
Compile a subset of EEMBC benchmarks while using EnergyBench to measure
energy usage during execution. Compare code size, performance, and energy
usage for the processors. Which is best for each program?

A.19 [20/15/15/20] Your task is to compare the memory efficiency of four different
styles of instruction set architectures. The architecture styles are:

■ Accumulator—All operations occur between a single register and a memory
location.

■ Memory-memory—All instruction addresses reference only memory locations.

■ Stack—All operations occur on top of the stack. Push and pop are the only
instructions that access memory; all others remove their operands from the
stack and replace them with the result. The implementation uses a hardwired
stack for only the top two stack entries, which keeps the processor circuit very
small and low in cost. Additional stack positions are kept in memory loca-
tions, and accesses to these stack positions require memory references.
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■ Load-store—All operations occur in registers, and register-to-register instruc-
tions have three register names per instruction.

To measure memory efficiency, make the following assumptions about all four
instruction sets:

■ All instructions are an integral number of bytes in length.

■ The opcode is always one byte (8 bits).

■ Memory accesses use direct, or absolute, addressing.

■ The variables A, B, C, and D are initially in memory.

a. [20]<A.2, A.3> Invent your own assembly language mnemonics (Figure
A.2 provides a useful sample to generalize), and for each architecture write
the best equivalent assembly language code for this high-level language code
sequence:

A =B+C;
B =A+C;
D =A–B;

b. [15]<A.3>Label each instance in your assembly codes for part (a) where a
value is loaded from memory after having been loaded once. Also label each
instance in your code where the result of one instruction is passed to another
instruction as an operand, and further classify these events as involving storage
within the processor or storage in memory.

c. [15]<A.7>Assume that the given code sequence is from a small, embedded
computer application that uses a 16-bit memory address and data operands. If
a load-store architecture is used, assume it has 16 general-purpose registers.
For each architecture answer the following questions:Howmany instruction bytes
are fetched? How many bytes of data are transferred from/to memory? Which
architecture is most efficient as measured by total memory traffic (code+data)?

d. [20]<A.7>Now assume a processor with 64-bit memory addresses and data
operands. For each architecture answer the questions of part (c). How have the
relative merits of the architectures changed for the chosen metrics?

A.20 [30]<A.2, A.3>Use the four different instruction set architecture styles from
above, but assume that the memory operations supported include register indirect
as well as direct addressing. Invent your own assembly language mnemonics (Fig-
ure A.2 provides a useful sample to generalize), and for each architecture, write the
best equivalent assembly language code for this fragment of C code:

for (i =0; i <= 100; i++) {
A[i] =B[i]* C+ D ;

}

Assume that A and B are arrays of 64-bit integers, and C, D, and i are 64-bit
integers.
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A.21 [20/20]<A.3, A.6, A.9>The size of displacement values needed for the displace-
ment addressing mode or for PC-relative addressing can be extracted from com-
piled applications. Use a disassembler with one or more of the SPEC CPU2017
or EEMBC benchmarks compiled for the RISC-V processor.

a. [20]<A.3, A.9>For each instruction using displacement addressing, record
the displacement value used. Create a histogram of displacement values. Com-
pare the results to those shown in this appendix in Figure A.8.

b. [20]<A.6, A.9>For each branch instruction using PC-relative addressing,
record the offset value used. Create a histogram of offset values. Compare
the results to those shown in this chapter in Figure A.15.

A.22 [15/15/10/10/10/10]<A.3>The value represented by the hexadecimal number
5249 5343 5643 5055 is to be stored in an aligned 64-bit double word.

a. [15]<A.3>Using the physical arrangement of the first row in Figure A.5,
write the value to be stored using Big Endian byte order. Next, interpret each
byte as an ASCII character and below each byte write the corresponding char-
acter, forming the character string as it would be stored in Big Endian order.

b. [15]<A.3>Using the same physical arrangement as in part (a), write the value
to be stored using Little Endian byte order, and below each byte write the cor-
responding ASCII character.

c. [10]<A.3>What are the hexadecimal values of all misaligned 2-byte words
that can be read from the given 64-bit double word when stored in Big Endian
byte order?

d. [10]<A.3>What are the hexadecimal values of all misaligned 2-byte words
that can be read from the given 64-bit double word when stored in Big Endian
byte order?

e. [10]<A.3>What are the hexadecimal values of all misaligned 2-byte words
that can be read from the given 64-bit double word when stored in Little Endian
byte order?

f. [10]<A.3>What are the hexadecimal values of all misaligned 4-byte words
that can be read from the given 64-bit double word when stored in Little Endian
byte order?

A.23 [25,25]<A.3,A.9>The relative frequency of different addressingmodes impacts the
choices of addressing modes support for an instruction set architecture. Figure A.7
illustrates the relative frequency of addressing modes for three applications on the
VAX.

a. [25]<A.3>Compile one or more programs from the SPEC CPU2017 or
EEMBC benchmark suites to target the x86 architecture. Using a disassembler,
inspect the instructions and the relative frequency of various addressing modes.
Create a histogram to illustrate the relative frequency of the addressing modes.
How do your results compare to Figure A.7?
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b. [25]<A.3, A.9>Compile one or more programs from the SPEC CPU2017 or
EEMBC benchmark suites to target the RISC-V architecture. Using a disassem-
bler, inspect the instructions and the relative frequency of various addressing
modes. Create a histogram to illustrate the relative frequency of the addressing
modes. How do your results compare to Figure A.7?

A.24 [Discussion]<A.2–A.12>Consider typical applications for desktop, server,
cloud, and embedded computing. How would instruction set architecture be
impacted for machines targeting each of these markets?

Exercises by Gregory D. Peterson ■ A-55



B.1 Introduction B-2

B.2 Cache Performance B-15

B.3 Six Basic Cache Optimizations B-22

B.4 Virtual Memory B-40

B.5 Protection and Examples of Virtual Memory B-49

B.6 Fallacies and Pitfalls B-57

B.7 Concluding Remarks B-59

B.8 Historical Perspective and References B-59

Exercises by Amr Zaky B-60



B
Review of Memory Hierarchy

Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of
the American Language,

Second College Edition (1976)



B.1 Introduction

This appendix is a quick refresher of the memory hierarchy, including the basics of
cache and virtual memory, performance equations, and simple optimizations. This
first section reviews the following 36 terms:

cache fully associative write allocate

virtual memory dirty bit unified cache

memory stall cycles block offset misses per instruction

direct mapped write back block

valid bit data cache locality

block address hit time address trace

write through cache miss set

instruction cache page fault random replacement

average memory access time miss rate index field

cache hit n-way set associative no-write allocate

page least recently used write buffer

miss penalty tag field write stall

If this review goes too quickly, you might want to look at Chapter 7 in Computer
Organization and Design, which we wrote for readers with less experience.

Cache is the name given to the highest or first level of the memory hierarchy
encountered once the address leaves the processor. Because the principle of local-
ity applies at many levels, and taking advantage of locality to improve performance
is popular, the term cache is now applied whenever buffering is employed to reuse
commonly occurring items. Examples include file caches, name caches, and so on.

When the processor finds a requested data item in the cache, it is called a cache
hit. When the processor does not find a data item it needs in the cache, a cache miss
occurs. A fixed-size collection of data containing the requested word, called a
block or line run, is retrieved from the main memory and placed into the cache.
Temporal locality tells us that we are likely to need this word again in the near
future, so it is useful to place it in the cache where it can be accessed quickly.
Because of spatial locality, there is a high probability that the other data in the
block will be needed soon.

The time required for the cache miss depends on both the latency and band-
width of the memory. Latency determines the time to retrieve the first word of
the block, and bandwidth determines the time to retrieve the rest of this block.
A cache miss is handled by hardware and causes processors using in-order execu-
tion to pause, or stall, until the data are available. With out-of-order execution, an
instruction using the result must still wait, but other instructions may proceed dur-
ing the miss.

Similarly, not all objects referenced by a program need to reside in main mem-
ory. Virtual memory means some objects may reside on disk. The address space is
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usually broken into fixed-size blocks, called pages. At any time, each page resides
either in main memory or on disk. When the processor references an item within a
page that is not present in the cache or main memory, a palt occurs, and the entire
page is moved from the disk to main memory. Because page faults take so long,
they are handled in software and the processor is not stalled. The processor usually
switches to some other task while the disk access occurs. From a high-level per-
spective, the reliance on locality of references and the relative relationships in size
and relative cost per bit of cache versus main memory are similar to those of main
memory versus disk.

Figure B.1 shows the range of sizes and access times of each level in the mem-
ory hierarchy for computers ranging from high-end desktops to low-end servers.

Cache Performance Review

Because of locality and the higher speed of smaller memories, a memory hierarchy
can substantially improve performance. One method to evaluate cache perfor-
mance is to expand our processor execution time equation from Chapter 1. We
now account for the number of cycles during which the processor is stalled waiting
for a memory access, which we call the memory stall cycles. The performance is
then the product of the clock cycle time and the sum of the processor cycles and the
memory stall cycles:

CPUexecution time¼ CPUclock cycles +Memory stall cyclesð Þ�Clock cycle time

Level 1 2 3 4

Name Registers Cache Main memory Disk storage

Typical size <4 KiB 32 KiB to 8 MiB <1 TB >1 TB

Implementation technology Custom memory with
multiple ports, CMOS

On-chip CMOS
SRAM

CMOS DRAM Magnetic disk
or FLASH

Access time (ns) 0.1–0.2 0.5–10 30–150 5,000,000

Bandwidth (MiB/sec) 1,000,000–10,000,000 20,000–50,000 10,000–30,000 100–1000

Managed by Compiler Hardware Operating system Operating
system

Backed by Cache Main memory Disk or FLASH Other disks
and DVD

Figure B.1 The typical levels in the hierarchy slow down and get larger as wemove away from the processor for a
large workstation or small server. Embedded computers might have no disk storage and much smaller memories
and caches. Increasingly, FLASH is replacing magnetic disks, at least for first level file storage. The access times
increase as wemove to lower levels of the hierarchy, whichmakes it feasible to manage the transfer less responsively.
The implementation technology shows the typical technology used for these functions. The access time is given in
nanoseconds for typical values in 2017; these times will decrease over time. Bandwidth is given in megabytes per
second between levels in the memory hierarchy. Bandwidth for disk/FLASH storage includes both the media and the
buffered interfaces.
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This equation assumes that the CPU clock cycles include the time to handle a cache
hit and that the processor is stalled during a cache miss. Section B.2 reexamines
this simplifying assumption.

The number of memory stall cycles depends on both the number of misses and
the cost per miss, which is called the miss penalty:

Memory stall cycles¼Number of misses�Miss penalty

¼ IC� Misses
Instruction

�Miss penalty

¼ IC�Memory accesses
Instruction

�Miss rate�Miss penalty

The advantage of the last form is that the components can be easily measured. We
already know how to measure instruction count (IC). (For speculative processors,
we only count instructions that commit.) Measuring the number of memory refer-
ences per instruction can be done in the same fashion; every instruction requires an
instruction access, and it is easy to decide if it also requires a data access.

Note that we calculated miss penalty as an average, but we will use it herein as
if it were a constant. The memory behind the cache may be busy at the time of the
miss because of prior memory requests or memory refresh. The number of clock
cycles also varies at interfaces between different clocks of the processor, bus, and
memory. Thus, please remember that using a single number for miss penalty is a
simplification.

The componentmiss rate is simply the fraction of cache accesses that result in a
miss (i.e., number of accesses that miss divided by number of accesses). Miss rates
can be measured with cache simulators that take an address trace of the instruction
and data references, simulate the cache behavior to determine which references hit
and which miss, and then report the hit and miss totals. Many microprocessors
today provide hardware to count the number of misses and memory references,
which is a much easier and faster way to measure miss rate.

The preceding formula is an approximation because the miss rates and miss
penalties are often different for reads and writes. Memory stall clock cycles could
then be defined in terms of the number of memory accesses per instruction, miss
penalty (in clock cycles) for reads and writes, and miss rate for reads and writes:

Memory stall clock cycles¼ IC�Reads per instruction�Readmiss rate�Readmiss penalty

+ IC�Writes per instruction�Writemiss rate�Writemiss penalty

We usually simplify the complete formula by combining the reads and writes and
finding the average miss rates and miss penalty for reads and writes:

Memory stall clock cycles¼ IC�Memory accesses
Instruction

�Miss rate�Miss penalty

The miss rate is one of the most important measures of cache design, but, as we
will see in later sections, not the only measure.
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Example Assume we have a computer where the cycles per instruction (CPI) is 1.0 when all
memory accesses hit in the cache. The only data accesses are loads and stores, and
these total 50% of the instructions. If the miss penalty is 50 clock cycles and the
miss rate is 1%, how much faster would the computer be if all instructions were
cache hits?

Answer First compute the performance for the computer that always hits:

CPUexecution time¼ CPUclock cycles +Memory stall cyclesð Þ�Clock cycle

¼ IC�CPI + 0ð Þ�Clock cycle

¼ IC�1:0�Clock cycle

Now for the computer with the real cache, first we compute memory stall cycles:

Memory stall cycles¼ IC�Memory accesses
Instruction

�Miss rate�Miss penalty

¼ IC� 1 + 0:5ð Þ�0:01�50

¼ IC�0:75

where the middle term (1+0.5) represents one instruction access and 0.5 data
accesses per instruction. The total performance is thus

CPUexecution timecache ¼ IC�1:0 + IC�0:75ð Þ�Clock cycle

¼ 1:75� IC�Clock cycle

The performance ratio is the inverse of the execution times:

CPUexecution timecache
CPUexecution time

¼ 1:75� IC�Clock cycle
1:0� IC�Clock cycle

¼ 1:75

The computer with no cache misses is 1.75 times faster.

Some designers prefer measuring miss rate asmisses per instruction rather than
misses per memory reference. These two are related:

Misses
Instruction

¼Miss rate �Memory accesses
Instruction count

¼Miss rate�Memory accesses
Instruction

The latter formula is useful when you know the average number of memory
accesses per instruction because it allows you to convert miss rate into misses
per instruction, and vice versa. For example, we can turn the miss rate per memory
reference in the previous example into misses per instruction:

Misses
Instruction

¼Miss rate�Memory accesses
Instruction

¼ 0:02� 1:5ð Þ¼ 0:030
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By the way, misses per instruction are often reported as misses per 1000
instructions to show integers instead of fractions. Thus, the preceding answer could
also be expressed as 30 misses per 1000 instructions.

The advantage of misses per instruction is that it is independent of the hardware
implementation. For example, speculative processors fetch about twice as many
instructions as are actually committed, which can artificially reduce the miss rate
if measured as misses per memory reference rather than per instruction. The draw-
back is that misses per instruction is architecture dependent; for example, the aver-
age number of memory accesses per instruction may be very different for an 80x86
versus RISCV. Thus, misses per instruction are most popular with architects work-
ing with a single computer family, although the similarity of RISC architectures
allows one to give insights into others.

Example To show equivalency between the two miss rate equations, let’s redo the preceding
example, this time assuming a miss rate per 1000 instructions of 30. What is
memory stall time in terms of instruction count?

Answer Recomputing the memory stall cycles:

Memory stall cycles¼Number of misses�Miss penalty

¼ IC� Misses
Instruction

�Miss penalty

¼ IC=1000� Misses
Intruction�1000

�Miss penalty

¼ IC=1000�30�25

¼ IC=1000�750

¼ IC�0:75

We get the same answer as on page B-5, showing equivalence of the two equations.

Four Memory Hierarchy Questions

We continue our introduction to caches by answering the four common questions
for the first level of the memory hierarchy:

Q1: Where can a block be placed in the upper level? (block placement)

Q2: How is a block found if it is in the upper level? (block identification)

Q3: Which block should be replaced on a miss? (block replacement)

Q4: What happens on a write? (write strategy)

The answers to these questions help us understand the different trade-offs of mem-
ories at different levels of a hierarchy; hence, we ask these four questions on every
example.
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Q1: Where Can a Block be Placed in a Cache?

Figure B.2 shows that the restrictions on where a block is placed create three cat-
egories of cache organization:

■ If each block has only one place it can appear in the cache, the cache is said to
be direct mapped. The mapping is usually

(Block address) MOD (Number of blocks in cache)

■ If a block can be placed anywhere in the cache, the cache is said to be fully
associative.

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 MOD 8)

Set associative:
block 12 can go
anywhere in set 0
(12 MOD 4)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Block 
no.

Block 
no.

Block 
no.

Set
0

Set
1

Set
2

Set
3

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block 

Block frame address 

no.

Cache

Memory

Figure B.2 This example cache has eight block frames and memory has 32 blocks.
The three options for caches are shown left to right. In fully associative, block 12 from
the lower level can go into any of the eight block frames of the cache. With direct
mapped, block 12 can only be placed into block frame 4 (12 modulo 8). Set associative,
which has some of both features, allows the block to be placed anywhere in set 0 (12
modulo 4). With two blocks per set, this means block 12 can be placed either in block
0 or in block 1 of the cache. Real caches contain thousands of block frames, and real
memories contain millions of blocks. The set associative organization has four sets with
two blocks per set, called two-way set associative. Assume that there is nothing in the
cache and that the block address in question identifies lower-level block 12.
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■ If a block can be placed in a restricted set of places in the cache, the cache is set
associative. A set is a group of blocks in the cache. A block is first mapped onto
a set, and then the block can be placed anywhere within that set. The set is usu-
ally chosen by bit selection; that is,

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set
associative.

The range of caches from direct mapped to fully associative is really a continuum
of levels of set associativity. Direct mapped is simply one-way set associative, and
a fully associative cache with m blocks could be called “m-way set associative.”
Equivalently, direct mapped can be thought of as having m sets, and fully associa-
tive as having one set.

The vast majority of processor caches today are direct mapped, two-way set
associative, or four-way set associative, for reasons we will see shortly.

Q2: How Is a Block Found If It Is in the Cache?

Caches have an address tag on each block frame that gives the block address. The
tag of every cache block that might contain the desired information is checked to
see if it matches the block address from the processor. As a rule, all possible tags
are searched in parallel because speed is critical.

There must be a way to know that a cache block does not have valid informa-
tion. The most common procedure is to add a valid bit to the tag to say whether or
not this entry contains a valid address. If the bit is not set, there cannot be a match
on this address.

Before proceeding to the next question, let’s explore the relationship of a pro-
cessor address to the cache. Figure B.3 shows how an address is divided. The first
division is between the block address and the block offset. The block frame address
can be further divided into the tag field and the index field. The block offset field
selects the desired data from the block, the index field selects the set, and the tag
field is compared against it for a hit. Although the comparison could be made on
more of the address than the tag, there is no need because of the following:

■ The offset should not be used in the comparison, because the entire block is
present or not, and hence all block offsets result in a match by definition.

Tag Index
Block
offset

Block address

Figure B.3 The three portions of an address in a set associative or direct-
mapped cache. The tag is used to check all the blocks in the set, and the index is used
to select the set. The block offset is the address of the desired data within the block. Fully
associative caches have no index field.
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■ Checking the index is redundant, because it was used to select the set to be
checked. An address stored in set 0, for example, must have 0 in the index field
or it couldn’t be stored in set 0; set 1 must have an index value of 1; and so on.
This optimization saves hardware and power by reducing the width of memory
size for the cache tag.

If the total cache size is kept the same, increasing associativity increases the num-
ber of blocks per set, thereby decreasing the size of the index and increasing the
size of the tag. That is, the tag-index boundary in Figure B.3 moves to the right with
increasing associativity, with the end point of fully associative caches having no
index field.

Q3: Which Block Should be Replaced on a Cache Miss?

When amiss occurs, the cache controller must select a block to be replaced with the
desired data. A benefit of direct-mapped placement is that hardware decisions are
simplified—in fact, so simple that there is no choice: only one block frame is
checked for a hit, and only that block can be replaced. With fully associative or
set associative placement, there are many blocks to choose from on a miss. There
are three primary strategies employed for selecting which block to replace:

■ Random—To spread allocation uniformly, candidate blocks are randomly
selected. Some systems generate pseudorandom block numbers to get repro-
ducible behavior, which is particularly useful when debugging hardware.

■ Least recently used (LRU)—To reduce the chance of throwing out information
that will be needed soon, accesses to blocks are recorded. Relying on the past to
predict the future, the block replaced is the one that has been unused for the
longest time. LRU relies on a corollary of locality: if recently used blocks
are likely to be used again, then a good candidate for disposal is the least
recently used block.

■ First in, first out (FIFO)—Because LRU can be complicated to calculate, this
approximates LRU by determining the oldest block rather than the LRU.

A virtue of random replacement is that it is simple to build in hardware. As the
number of blocks to keep track of increases, LRU becomes increasingly expensive
and is usually only approximated. A common approximation (often called pseudo-
LRU) has a set of bits for each set in the cache with each bit corresponding to a
single way (a way is bank in a set associative cache; there are four ways in
four-way set associative cache) in the cache. When a set is accessed, the bit corre-
sponding to the way containing the desired block is turned on; if all the bits asso-
ciated with a set are turned on, they are reset with the exception of the most recently
turned on bit. When a block must be replaced, the processor chooses a block
from the way whose bit is turned off, often randomly if more than one choice is
available. This approximates LRU, because the block that is replaced will not have
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been accessed since the last time that all the blocks in the set were accessed.
Figure B.4 shows the difference in miss rates between LRU, random, and FIFO
replacement.

Q4: What Happens on a Write?

Reads dominate processor cache accesses. All instruction accesses are reads, and
most instructions don’t write to memory. Figures A.32 and A.33 in Appendix A
suggest a mix of 10% stores and 26% loads for RISC V programs, making writes
10%/(100%+26%+10%) or about 7% of the overall memory traffic. Of the data
cache traffic, writes are 10%/(26%+10%) or about 28%.Making the common case
fast means optimizing caches for reads, especially because processors traditionally
wait for reads to complete but need not wait for writes. Amdahl’s Law (Section 1.9)
reminds us, however, that high-performance designs cannot neglect the speed of
writes.

Fortunately, the common case is also the easy case to make fast. The block can
be read from the cache at the same time that the tag is read and compared, so the
block read begins as soon as the block address is available. If the read is a hit, the
requested part of the block is passed on to the processor immediately. If it is a miss,
there is no benefit—but also no harm except more power in desktop and server
computers; just ignore the value read.

Such optimism is not allowed for writes. Modifying a block cannot begin until
the tag is checked to see if the address is a hit. Because tag checking cannot occur in
parallel, writes usually take longer than reads. Another complexity is that the pro-
cessor also specifies the size of the write, usually between 1 and 8 bytes; only that
portion of a block can be changed. In contrast, reads can access more bytes than
necessary without fear.

The write policies often distinguish cache designs. There are two basic options
when writing to the cache:

Associativity

Two-way Four-way Eight-way

Size LRU Random FIFO LRU Random FIFO LRU Random FIFO

16 KiB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4

64 KiB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3

256 KiB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

Figure B.4 Data cache misses per 1000 instructions comparing least recently used, random, and first in, first out
replacement for several sizes and associativities. There is little difference between LRU and random for the largest
size cache, with LRU outperforming the others for smaller caches. FIFO generally outperforms random in the smaller
cache sizes. These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000
benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mcf, and perl) and five are from SPECfp2000 (applu, art,
equake, lucas, and swim). We will use this computer and these benchmarks in most figures in this appendix.
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■ Write through—The information is written to both the block in the cache and to
the block in the lower-level memory.

■ Write back—The information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced.

To reduce the frequency of writing back blocks on replacement, a feature called
the dirty bit is commonly used. This status bit indicates whether the block is dirty
(modified while in the cache) or clean (not modified). If it is clean, the block is not
written back on a miss, because identical information to the cache is found in lower
levels.

Both write back and write through have their advantages. With write back,
writes occur at the speed of the cache memory, and multiple writes within a block
require only one write to the lower-level memory. Because some writes don’t go to
memory, write back uses less memory bandwidth, making write back attractive in
multiprocessors. Since write back uses the rest of the memory hierarchy and mem-
ory interconnect less than write through, it also saves power, making it attractive
for embedded applications.

Write through is easier to implement than write back. The cache is always
clean, so unlike write back read misses never result in writes to the lower level.
Write through also has the advantage that the next lower level has the most current
copy of the data, which simplifies data coherency. Data coherency is important for
multiprocessors and for I/O, which we examine in Chapter 4 and Appendix D.
Multilevel caches make write through more viable for the upper-level caches, as
the writes need only propagate to the next lower level rather than all the way to
main memory.

As we will see, I/O and multiprocessors are fickle: they want write back for
processor caches to reduce the memory traffic and write through to keep the cache
consistent with lower levels of the memory hierarchy.

When the processor must wait for writes to complete during write through, the
processor is said to write stall. A common optimization to reduce write stalls is a
write buffer, which allows the processor to continue as soon as the data are written
to the buffer, thereby overlapping processor execution with memory updating. As
we will see shortly, write stalls can occur even with write buffers.

Because the data are not needed on a write, there are two options on a write
miss:

■ Write allocate—The block is allocated on a write miss, followed by the pre-
ceding write hit actions. In this natural option, write misses act like read misses.

■ No-write allocate—This apparently unusual alternative is write misses do not
affect the cache. Instead, the block is modified only in the lower-level memory.

Thus, blocks stay out of the cache in no-write allocate until the program tries to
read the blocks, but even blocks that are only written will still be in the cache with
write allocate. Let’s look at an example.

B.1 Introduction ■ B-11



Example Assume a fully associative write-back cache with many cache entries that starts
empty. Following is a sequence of five memory operations (the address is in square
brackets):

Write Mem[100];
Write Mem[100];
Read Mem[200];
Write Mem[200];
Write Mem[100].

What are the number of hits and misses when using no-write allocate versus write
allocate?

Answer For no-write allocate, the address 100 is not in the cache, and there is no allocation
on write, so the first two writes will result in misses. Address 200 is also not in the
cache, so the read is also a miss. The subsequent write to address 200 is a hit. The
last write to 100 is still a miss. The result for no-write allocate is four misses and
one hit.

For write allocate, the first accesses to 100 and 200 are misses, and the rest are
hits because 100 and 200 are both found in the cache. Thus, the result for write
allocate is two misses and three hits.

Either write miss policy could be used with write through or write back.
Usually, write-back caches use write allocate, hoping that subsequent writes to that
block will be captured by the cache. Write-through caches often use no-write allo-
cate. The reasoning is that even if there are subsequent writes to that block, the
writes must still go to the lower-level memory, so what’s to be gained?

An Example: The Opteron Data Cache

To give substance to these ideas, Figure B.5 shows the organization of the data
cache in the AMD Opteron microprocessor. The cache contains 65,536 (64 K)
bytes of data in 64-byte blocks with two-way set associative placement, least-
recently used replacement, write back, and write allocate on a write miss.

Let’s trace a cache hit through the steps of a hit as labeled in Figure B.5. (The
four steps are shown as circled numbers.) As described in Section B.5, the Opteron
presents a 48-bit virtual address to the cache for tag comparison, which is simul-
taneously translated into a 40-bit physical address.

The reason Opteron doesn’t use all 64 bits of virtual address is that its designers
don’t think anyone needs that much virtual address space yet, and the smaller size
simplifies the Opteron virtual address mapping. The designers plan to grow the
virtual address in future microprocessors.

The physical address coming into the cache is divided into two fields: the 34-bit
block address and the 6-bit block offset (64¼26 and 34+6¼40). The block

B-12 ■ Appendix B Review of Memory Hierarchy



address is further divided into an address tag and cache index. Step 1 shows this
division.

The cache index selects the tag to be tested to see if the desired block is in the
cache. The size of the index depends on cache size, block size, and set associativity.
For the Opteron cache the set associativity is set to two, and we calculate the index
as follows:

2Index ¼ Cache size
Block size�Set associativity

¼ 65,536
64�2

¼ 512¼ 29

<25>

Tag

(512
blocks)

(512
blocks)

Index

<9>

Block
offset
<6>

Block address

Valid
<1>

Data
<64>

CPU
address

Victim
buffer

Data
in

Data
out

Tag
<25>

=?

2:1 mux

Lower-level memory

=?

2

2

1

3

3

4

Figure B.5 The organization of the data cache in the Opteron microprocessor. The 64 KiB cache is two-way set
associative with 64-byte blocks. The 9-bit index selects among 512 sets. The four steps of a read hit, shown as circled
numbers in order of occurrence, label this organization. Three bits of the block offset join the index to supply the
RAM address to select the proper 8 bytes. Thus, the cache holds two groups of 4096 64-bit words, with each group
containing half of the 512 sets. Although not exercised in this example, the line from lower-level memory to the
cache is used on a miss to load the cache. The size of address leaving the processor is 40 bits because it is a physical
address and not a virtual address. Figure B.24 on page B-47 explains how the Opteron maps from virtual to physical
for a cache access.
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Hence, the index is 9 bits wide, and the tag is 34�9 or 25 bits wide. Although that
is the index needed to select the proper block, 64 bytes is much more than the pro-
cessor wants to consume at once. Hence, it makes more sense to organize the data
portion of the cache memory 8 bytes wide, which is the natural data word of the 64-
bit Opteron processor. Thus, in addition to 9 bits to index the proper cache block, 3
more bits from the block offset are used to index the proper 8 bytes. Index selection
is step 2 in Figure B.5.

After reading the two tags from the cache, they are compared with the tag por-
tion of the block address from the processor. This comparison is step 3 in the figure.
To be sure the tag contains valid information, the valid bit must be set or else the
results of the comparison are ignored.

Assuming one tag does match, the final step is to signal the processor to
load the proper data from the cache by using the winning input from a 2:1 mul-
tiplexor. The Opteron allows 2 clock cycles for these four steps, so the instruc-
tions in the following 2 clock cycles would wait if they tried to use the result of
the load.

Handling writes is more complicated than handling reads in the Opteron, as it is
in any cache. If the word to be written is in the cache, the first three steps are the
same. Because the Opteron executes out of order, only after it signals that the
instruction has committed and the cache tag comparison indicates a hit are the data
written to the cache.

So far we have assumed the common case of a cache hit. What happens on a
miss? On a read miss, the cache sends a signal to the processor telling it the data
are not yet available, and 64 bytes are read from the next level of the hierarchy.
The latency is 7 clock cycles to the first 8 bytes of the block, and then 2 clock
cycles per 8 bytes for the rest of the block. Because the data cache is set associa-
tive, there is a choice on which block to replace. Opteron uses LRU, which selects
the block that was referenced longest ago, so every access must update the LRU
bit. Replacing a block means updating the data, the address tag, the valid bit, and
the LRU bit.

Because the Opteron uses write back, the old data block could have been mod-
ified, and hence it cannot simply be discarded. The Opteron keeps 1 dirty bit per
block to record if the block was written. If the “victim” was modified, its data and
address are sent to the victim buffer. (This structure is similar to a write buffer in
other computers.) The Opteron has space for eight victim blocks. In parallel with
other cache actions, it writes victim blocks to the next level of the hierarchy. If the
victim buffer is full, the cache must wait.

A write miss is very similar to a read miss, because the Opteron allocates a
block on a read or a write miss.

We have seen how it works, but the data cache cannot supply all the memory
needs of the processor: the processor also needs instructions. Although a single
cache could try to supply both, it can be a bottleneck. For example, when a load
or store instruction is executed, the pipelined processor will simultaneously request
both a data word and an instruction word. Hence, a single cache would present a
structural hazard for loads and stores, leading to stalls. One simple way to conquer
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this problem is to divide it: one cache is dedicated to instructions and another to
data. Separate caches are found in most recent processors, including the Opteron.
Hence, it has a 64 KiB instruction cache as well as the 64 KiB data cache.

The processor knows whether it is issuing an instruction address or a data
address, so there can be separate ports for both, thereby doubling the bandwidth
between the memory hierarchy and the processor. Separate caches also offer the
opportunity of optimizing each cache separately: different capacities, block sizes,
and associativities may lead to better performance. (In contrast to the instruction
caches and data caches of the Opteron, the terms unified or mixed are applied to
caches that can contain either instructions or data.)

Figure B.6 shows that instruction caches have lower miss rates than data
caches. Separating instructions and data removes misses due to conflicts between
instruction blocks and data blocks, but the split also fixes the cache space devoted
to each type. Which is more important to miss rates? A fair comparison of separate
instruction and data caches to unified caches requires the total cache size to be the
same. For example, a separate 16 KiB instruction cache and 16 KiB data cache
should be compared with a 32 KiB unified cache. Calculating the average miss rate
with separate instruction and data caches necessitates knowing the percentage of
memory references to each cache. From the data in Appendix A we find the split is
100%/(100%+26%+10%) or about 74% instruction references to (26%+10%)/
(100%+26%+10%) or about 26% data references. Splitting affects performance
beyond what is indicated by the change in miss rates, as we will see shortly.

B.2 Cache Performance

Because instruction count is independent of the hardware, it is tempting to evaluate
processor performance using that number. Such indirect performance measures
have waylaid many a computer designer. The corresponding temptation for eval-
uating memory hierarchy performance is to concentrate on miss rate because it,

Size (KiB)
Instruction

cache Data cache
Unified
cache

8 8.16 44.0 63.0

16 3.82 40.9 51.0

32 1.36 38.4 43.3

64 0.61 36.9 39.4

128 0.30 35.3 36.2

256 0.02 32.6 32.9

Figure B.6 Miss per 1000 instructions for instruction, data, and unified caches of
different sizes. The percentage of instruction references is about 74%. The data are
for two-way associative caches with 64-byte blocks for the same computer and bench-
marks as Figure B.4.

B.2 Cache Performance ■ B-15



too, is independent of the speed of the hardware. As we will see, miss rate can be
just as misleading as instruction count. A better measure of memory hierarchy per-
formance is the average memory access time:

Averagememory access time¼Hit time +Miss rate�Miss penalty

where hit time is the time to hit in the cache; we have seen the other two terms
before. The components of average access time can be measured either in absolute
time—say, 0.25–1.0 ns on a hit—or in the number of clock cycles that the proces-
sor waits for the memory—such as a miss penalty of 150–200 clock cycles.
Remember that average memory access time is still an indirect measure of perfor-
mance; although it is a better measure than miss rate, it is not a substitute for
execution time.

This formula can help us decide between split caches and a unified cache.

Example Which has the lower miss rate: a 16 KiB instruction cache with a 16 KiB data cache
or a 32 KiB unified cache? Use the miss rates in Figure B.6 to help calculate the
correct answer, assuming 36% of the instructions are data transfer instructions.
Assume a hit takes 1 clock cycle and the miss penalty is 100 clock cycles. A load
or store hit takes 1 extra clock cycle on a unified cache if there is only one cache
port to satisfy two simultaneous requests. Using the pipelining terminology of
Chapter 3, the unified cache leads to a structural hazard. What is the average mem-
ory access time in each case? Assume write-through caches with a write buffer and
ignore stalls due to the write buffer.

Answer First let’s convert misses per 1000 instructions into miss rates. Solving the preced-
ing general formula, the miss rate is

Miss rate¼
Misses

1000 Instructions
=1000

Memory accesses
Instruction

Because every instruction access has exactly one memory access to fetch the
instruction, the instruction miss rate is

Miss rate16KB instruction ¼ 3:82=1000
1:00

¼ 0:004

Because 36% of the instructions are data transfers, the data miss rate is

Miss rate16KB data ¼ 40:9=1000
0:36

¼ 0:114

The unified miss rate needs to account for instruction and data accesses:

Miss rate32KB unified ¼ 43:3=1000
1:00 + 0:36

¼ 0:0318
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As stated herein, about 74% of the memory accesses are instruction references.
Thus, the overall miss rate for the split caches is

74%�0:004ð Þ+ 26%�0:114ð Þ¼ 0:0326

Thus, a 32 KiB unified cache has a slightly lower effective miss rate than two
16 KiB caches.

The average memory access time formula can be divided into instruction and
data accesses:

Averagememory access time

¼% instructions� Hit time + Instructionmiss rate�Miss penaltyð Þ
+% data� Hit time +Datamiss rate�Miss penaltyð Þ

Therefore, the time for each organization is

Averagememory access timesplit

¼ 74%� 1 + 0:004�200ð Þ+ 26%� 1 + 0:114�200ð Þ
¼ 74%�1:80ð Þ + 26%�23:80ð Þ¼ 1:332 + 6:188¼ 7:52

Averagememory access timeunified

¼ 74%� 1 + 0:0318�200ð Þ+ 26%� 1 + 1 + 0:0318�200ð Þ
¼ 74%�7:36ð Þ + 26%�8:36ð Þ¼ 5:446 + 2:174¼ 7:62

Hence, the split caches in this example—which offer two memory ports per clock
cycle, thereby avoiding the structural hazard—have a better average memory
access time than the single-ported unified cache despite having a worse effective
miss rate.

Average Memory Access Time and Processor Performance

An obvious question is whether average memory access time due to cache misses
predicts processor performance.

First, there are other reasons for stalls, such as contention due to I/O devices
using memory. Designers often assume that all memory stalls are due to cache mis-
ses, because the memory hierarchy typically dominates other reasons for stalls. We
use this simplifying assumption here, but be sure to account for all memory stalls
when calculating final performance.

Second, the answer also depends on the processor. If we have an in-order exe-
cution processor (see Chapter 3), then the answer is basically yes. The processor
stalls during misses, and the memory stall time is strongly correlated to average
memory access time. Let’s make that assumption for now, but we’ll return to
out-of-order processors in the next subsection.
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As stated in the previous section, we can model CPU time as:

CPU time¼ CPUexecution clock cycles +Memory stall clock cyclesð Þ�Clock cycle time

This formula raises the question of whether the clock cycles for a cache hit should
be considered part of CPU execution clock cycles or part of memory stall clock
cycles. Although either convention is defensible, the most widely accepted is to
include hit clock cycles in CPU execution clock cycles.

We can now explore the impact of caches on performance.

Example Let’s use an in-order execution computer for the first example. Assume that the
cache miss penalty is 200 clock cycles, and all instructions usually take 1.0 clock
cycles (ignoring memory stalls). Assume that the average miss rate is 2%, there is
an average of 1.5 memory references per instruction, and the average number of
cache misses per 1000 instructions is 30. What is the impact on performance when
behavior of the cache is included? Calculate the impact using both misses per
instruction and miss rate.

Answer CPU time¼ IC� CPIexecution +
Memory stall clock cycles

Instruction

� �
�Clock cycle time

The performance, including cache misses, is

CPU timewith cache ¼ IC� 1:0 + 30=1000�200ð Þ½ ��Clock cycle time

¼ IC�7:00�Clock cycle time

Now calculating performance using miss rate:

CPU time¼ IC� CPIexecution +Miss rate�Memory accesses
Instruction

�Miss penalty

� �
�Clock cycle time

CPU timewith cache ¼ IC� 1:0 + 1:5�2%�200ð Þ½ ��Clock cycle time

¼ IC�7:00�Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache. Thus, CPU time increases sevenfold, with CPI from 1.00 for a “perfect
cache” to 7.00 with a cache that can miss. Without any memory hierarchy at all
the CPI would increase again to 1.0+200�1.5 or 301—a factor of more than
40 times longer than a system with a cache!

As this example illustrates, cache behavior can have enormous impact on per-
formance. Furthermore, cache misses have a double-barreled impact on a proces-
sor with a low CPI and a fast clock:

1. The lower the CPIexecution, the higher the relative impact of a fixed number of
cache miss clock cycles.

2. When calculating CPI, the cache miss penalty is measured in processor clock
cycles for a miss. Therefore, even if memory hierarchies for two computers are
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identical, the processor with the higher clock rate has a larger number of clock
cycles per miss and hence a higher memory portion of CPI.

The importance of the cache for processors with low CPI and high clock rates is
thus greater, and, consequently, greater is the danger of neglecting cache behavior
in assessing performance of such computers. Amdahl’s Law strikes again!

Although minimizing average memory access time is a reasonable goal—and
we will use it in much of this appendix—keep in mind that the final goal is to
reduce processor execution time. The next example shows how these two can
differ.

Example What is the impact of two different cache organizations on the performance of a
processor? Assume that the CPI with a perfect cache is 1.0, the clock cycle time
is 0.35 ns, there are 1.4 memory references per instruction, the size of both caches
is 128 KiB, and both have a block size of 64 bytes. One cache is direct mapped and
the other is two-way set associative. Figure B.5 shows that for set associative
caches we must add a multiplexor to select between the blocks in the set depending
on the tag match. Because the speed of the processor can be tied directly to the
speed of a cache hit, assume the processor clock cycle time must be stretched
1.35 times to accommodate the selection multiplexor of the set associative cache.
To the first approximation, the cache miss penalty is 65 ns for either cache orga-
nization. (In practice, it is normally rounded up or down to an integer number of
clock cycles.) First, calculate the average memory access time and then processor
performance. Assume the hit time is 1 clock cycle, the miss rate of a direct-mapped
128 KiB cache is 2.1%, and the miss rate for a two-way set associative cache of the
same size is 1.9%.

Answer Average memory access time is

Averagememory access time¼Hit time +Miss rate�Miss penalty

Thus, the time for each organization is

Averagememory access time1-way ¼ 0:35 + :021�65ð Þ¼ 1:72ns

Averagememory access time2-way ¼ 0:35�1:35 + :019�65ð Þ¼ 1:71ns

The average memory access time is better for the two-way set-associative cache.
The processor performance is

CPU time¼ IC� CPIexecution +
Misses

Instruction
�Miss penalty

� �
�Clock cycle time

¼ IC� CPIexecution�Clock cycle timeð Þ½

+ Miss rate�Memory accesses
Instruction

�Miss penalty�Clock cycle time

� ��
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Substituting 65 ns for (Miss penalty�Clock cycle time), the performance of each
cache organization is

CPU time1-way ¼ IC� 1:0�0:35 + 0:021�1:4�65ð Þ½ � ¼ 2:26� IC

CPU time2-way ¼ IC� 1:0�0:35�1:35 + 0:019�1:4�65ð Þ½ � ¼ 2:20� IC

and relative performance is

CPU time2-way
CPU time1-way

¼ 2:26� Instruction count
2:20� Instruction count

¼ 1:03

In contrast to the results of average memory access time comparison, the direct-
mapped cache leads to slightly better average performance because the clock cycle
is stretched for all instructions for the two-way set associative case, even if there
are fewer misses. Because CPU time is our bottom-line evaluation and because
direct mapped is simpler to build, the preferred cache is direct mapped in this
example.

Miss Penalty and Out-of-Order Execution Processors

For an out-of-order execution processor, how do you define “miss penalty”? Is it
the full latency of the miss to memory, or is it just the “exposed” or nonoverlapped
latency when the processor must stall? This question does not arise in processors
that stall until the data miss completes.

Let’s redefine memory stalls to lead to a new definition of miss penalty as non-
overlapped latency:

Memory stall cycles
Instruction

¼ Misses
Instruction

� Totalmiss latency�Overlappedmiss latencyð Þ

Similarly, as some out-of-order processors stretch the hit time, that portion of the
performance equation could be divided by total hit latency less overlapped hit
latency. This equation could be further expanded to account for contention for
memory resources in an out-of-order processor by dividing total miss latency into
latency without contention and latency due to contention. Let’s just concentrate on
miss latency.

We now have to decide the following:

■ Length of memory latency—What to consider as the start and the end of a mem-
ory operation in an out-of-order processor.

■ Length of latency overlap—What is the start of overlap with the processor
(or, equivalently, when do we say a memory operation is stalling the
processor)?
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Given the complexity of out-of-order execution processors, there is no single cor-
rect definition.

Because only committed operations are seen at the retirement pipeline stage,
we say a processor is stalled in a clock cycle if it does not retire the maximum pos-
sible number of instructions in that cycle. We attribute that stall to the first instruc-
tion that could not be retired. This definition is by no means foolproof. For
example, applying an optimization to improve a certain stall time may not always
improve execution time because another type of stall—hidden behind the targeted
stall—may now be exposed.

For latency, we could start measuring from the time the memory instruction is
queued in the instruction window, or when the address is generated, or when the
instruction is actually sent to the memory system. Any option works as long as it is
used in a consistent fashion.

Example Let’s redo the preceding example, but this time we assume the processor with the
longer clock cycle time supports out-of-order execution yet still has a direct-
mapped cache. Assume 30% of the 65 ns miss penalty can be overlapped; that
is, the average CPU memory stall time is now 45.5 ns.

Answer Average memory access time for the out-of-order (OOO) computer is

Averagememory access time1-way,OOO ¼ 0:35�1:35 + 0:021�45:5ð Þ¼ 1:43ns

The performance of the OOO cache is

CUP time1-way,OOO ¼ IC� 1:6�0:35�1:35 + 0:021�1:4�45:5ð Þ½ � ¼ 2:09� IC

Hence, despite a much slower clock cycle time and the higher miss rate of a direct-
mapped cache, the out-of-order computer can be slightly faster if it can hide 30% of
the miss penalty.

In summary, although the state of the art in defining and measuring memory stalls
for out-of-order processors is complex, be aware of the issues because they signif-
icantly affect performance. The complexity arises because out-of-order processors
tolerate some latency due to cache misses without hurting performance. Conse-
quently, designers usually use simulators of the out-of-order processor and mem-
ory when evaluating trade-offs in the memory hierarchy to be sure that an
improvement that helps the average memory latency actually helps program
performance.

To help summarize this section and to act as a handy reference, Figure B.7 lists
the cache equations in this appendix.
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B.3 Six Basic Cache Optimizations

The average memory access time formula gave us a framework to present cache
optimizations for improving cache performance:

Averagememory access time¼Hit time +Miss rate�Miss penalty

Hence, we organize six cache optimizations into three categories:

■ Reducing the miss rate—larger block size, larger cache size, and higher
associativity

■ Reducing the miss penalty—multilevel caches and giving reads priority over
writes

■ Reducing the time to hit in the cache—avoiding address translation when
indexing the cache

Figure B.18 on page B-40 concludes this section with a summary of the implemen-
tation complexity and the performance benefits of these six techniques.

2index ¼ Cache size
Block size�Set associativity

CPUexecution time¼ CPUclock cycles +Memory stall cyclesð Þ�Clock cycle time

Memory stall cycles¼Number of misses�Miss penalty

Memory stall cycles¼ IC� Misses
Instruction

�Miss penalty

Misses
Instruction

¼Miss rate�Memory accesses
Instruction

Averagememory access time¼Hit time +Miss rate�Miss penalty

CPUexecution time¼ IC� CPIexecution +
Memory stall clock cycles

Instruction

� �
�Clock cycle time

CPUexecution time¼ IC� CPIexecution +
Misses

Instruction
�Miss penalty

� �
�Clock cycle time

CPUexecution time¼ IC� CPIexecution +Miss rate�Memory accesses
Instruction

�Miss penalty

� �
�Clock cycle time

Memory stall cycles
Instruction

¼ Misses
Instruction

� Totalmiss latency�Overlappedmiss latencyð Þ
Averagememory access time ¼ Hit timeL1 +Miss rateL1� Hit timeL2 +Miss rateL2�Miss penaltyL2ð Þ

Memory stall cycles
Instruction

¼ MissesL1
Instruction

�Hit timeL2 +
MissesL2
Instruction

�Miss penaltyL2

Figure B.7 Summary of performance equations in this appendix. The first equation calculates the cache index size,
and the rest help evaluate performance. The final two equations deal with multilevel caches, which are explained
early in the next section. They are included here to help make the figure a useful reference.

B-22 ■ Appendix B Review of Memory Hierarchy



The classical approach to improving cache behavior is to reduce miss rates, and
we present three techniques to do so. To gain better insights into the causes of mis-
ses, we first start with a model that sorts all misses into three simple categories:

■ Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. These are also called cold-start misses
or first-reference misses.

■ Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.

■ Conflict—If the block placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur
because a block may be discarded and later retrieved if too many blocks
map to its set. These misses are also called collision misses. The idea is that
hits in a fully associative cache that become misses in an n-way set-associative
cache are due to more than n requests on some popular sets.

(Chapter 5 adds a fourth C, for coherencymisses due to cache flushes to keep mul-
tiple caches coherent in a multiprocessor; we won’t consider those here.)

Figure B.8 shows the relative frequency of cache misses, broken down by the
three C’s. Compulsory misses are those that occur in an infinite cache. Capacity
misses are those that occur in a fully associative cache. Conflict misses are those
that occur going from fully associative to eight-way associative, four-way associa-
tive, and so on. Figure B.9 presents the same data graphically. The top graph shows
absolute miss rates; the bottom graph plots the percentage of all the misses by type
of miss as a function of cache size.

To show the benefit of associativity, conflict misses are divided into misses
caused by each decrease in associativity. Here are the four divisions of conflict
misses and how they are calculated:

■ Eight-way—Conflict misses due to going from fully associative (no conflicts)
to eight-way associative

■ Four-way—Conflict misses due to going from eight-way associative to four-
way associative

■ Two-way—Conflict misses due to going from four-way associative to two-way
associative

■ One-way—Conflict misses due to going from two-way associative to one-way
associative (direct mapped)

As we can see from the figures, the compulsory miss rate of the SPEC2000
programs is very small, as it is for many long-running programs.

Having identified the three C’s, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoids all
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Cache size (KiB)
Degree

associative
Total miss

rate

Miss rate components (relative percent)
(sum5100% of total miss rate)

Compulsory Capacity Conflict

4 1-way 0.098 0.0001 0.1% 0.070 72% 0.027 28%

4 2-way 0.076 0.0001 0.1% 0.070 93% 0.005 7%

4 4-way 0.071 0.0001 0.1% 0.070 99% 0.001 1%

4 8-way 0.071 0.0001 0.1% 0.070 100% 0.000 0%

8 1-way 0.068 0.0001 0.1% 0.044 65% 0.024 35%

8 2-way 0.049 0.0001 0.1% 0.044 90% 0.005 10%

8 4-way 0.044 0.0001 0.1% 0.044 99% 0.000 1%

8 8-way 0.044 0.0001 0.1% 0.044 100% 0.000 0%

16 1-way 0.049 0.0001 0.1% 0.040 82% 0.009 17%

16 2-way 0.041 0.0001 0.2% 0.040 98% 0.001 2%

16 4-way 0.041 0.0001 0.2% 0.040 99% 0.000 0%

16 8-way 0.041 0.0001 0.2% 0.040 100% 0.000 0%

32 1-way 0.042 0.0001 0.2% 0.037 89% 0.005 11%

32 2-way 0.038 0.0001 0.2% 0.037 99% 0.000 0%

32 4-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%

32 8-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%

64 1-way 0.037 0.0001 0.2% 0.028 77% 0.008 23%

64 2-way 0.031 0.0001 0.2% 0.028 91% 0.003 9%

64 4-way 0.030 0.0001 0.2% 0.028 95% 0.001 4%

64 8-way 0.029 0.0001 0.2% 0.028 97% 0.001 2%

128 1-way 0.021 0.0001 0.3% 0.019 91% 0.002 8%

128 2-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

128 4-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

128 8-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

256 1-way 0.013 0.0001 0.5% 0.012 94% 0.001 6%

256 2-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

256 4-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

256 8-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

512 1-way 0.008 0.0001 0.8% 0.005 66% 0.003 33%

512 2-way 0.007 0.0001 0.9% 0.005 71% 0.002 28%

512 4-way 0.006 0.0001 1.1% 0.005 91% 0.000 8%

512 8-way 0.006 0.0001 1.1% 0.005 95% 0.000 4%

Figure B.8 Total miss rate for each size cache and percentage of each according to the three C’s. Compulsory
misses are independent of cache size, while capacity misses decrease as capacity increases, and conflict misses
decrease as associativity increases. Figure B.9 shows the same information graphically. Note that a direct-mapped
cache of size N has about the samemiss rate as a two-way set-associative cache of size N/2 up through 128 K. Caches
larger than 128 KiB do not prove that rule. Note that the Capacity column is also the fully associative miss rate. Data
were collected as in Figure B.4 using LRU replacement.
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conflict misses. Full associativity is expensive in hardware, however, and may
slow the processor clock rate (see the example on page B-29), leading to lower
overall performance.

There is little to be done about capacity except to enlarge the cache. If the
upper-level memory is much smaller than what is needed for a program, and a sig-
nificant percentage of the time is spent moving data between two levels in the
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Figure B.9 Total miss rate (top) and distribution of miss rate (bottom) for each size
cache according to the three C’s for the data in Figure B.8. The top diagram shows the
actual data cache miss rates, while the bottom diagram shows the percentage in each
category. (Space allows the graphs to show one extra cache size than can fit in
Figure B.8.)
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hierarchy, the memory hierarchy is said to thrash. Because so many replacements
are required, thrashing means the computer runs close to the speed of the lower-
level memory, or maybe even slower because of the miss overhead.

Another approach to improving the three C’s is to make blocks larger to reduce
the number of compulsory misses, but, as we will see shortly, large blocks can
increase other kinds of misses.

The three C’s give insight into the cause of misses, but this simple model has its
limits; it gives you insight into average behavior but may not explain an individual
miss. For example, changing cache size changes conflict misses as well as capacity
misses, because a larger cache spreads out references to more blocks. Thus, a miss
might move from a capacity miss to a conflict miss as cache size changes. Simi-
larly, changing the block size can sometimes reduce capacity misses (in addition to
the expected reduction in compusolory misses), as Gupta et al. (2013) show.

Note also that the three C’s also ignore replacement policy, because it is dif-
ficult to model and because, in general, it is less significant. In specific circum-
stances the replacement policy can actually lead to anomalous behavior, such as
poorer miss rates for larger associativity, which contradicts the three C’s model.
(Some have proposed using an address trace to determine optimal placement in
memory to avoid placement misses from the three C’s model; we’ve not followed
that advice here.)

Alas, many of the techniques that reduce miss rates also increase hit time or
miss penalty. The desirability of reducing miss rates using the three optimizations
must be balanced against the goal of making the whole system fast. This first exam-
ple shows the importance of a balanced perspective.

First Optimization: Larger Block Size to Reduce Miss Rate

The simplest way to reduce miss rate is to increase the block size. Figure B.10
shows the trade-off of block size versus miss rate for a set of programs and cache
sizes. Larger block sizes will reduce also compulsory misses. This reduction occurs
because the principle of locality has two components: temporal locality and spatial
locality. Larger blocks take advantage of spatial locality.

At the same time, larger blocks increase the miss penalty. Because they reduce
the number of blocks in the cache, larger blocks may increase conflict misses and
even capacity misses if the cache is small. Clearly, there is little reason to increase
the block size to such a size that it increases the miss rate. There is also no benefit to
reducing miss rate if it increases the average memory access time. The increase in
miss penalty may outweigh the decrease in miss rate.

Example Figure B.11 shows the actual miss rates plotted in Figure B.10. Assume the mem-
ory system takes 80 clock cycles of overhead and then delivers 16 bytes every 2
clock cycles. Thus, it can supply 16 bytes in 82 clock cycles, 32 bytes in 84 clock
cycles, and so on. Which block size has the smallest average memory access time
for each cache size in Figure B.11?
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Answer Average memory access time is

Averagememory access time¼Hit time +Miss rate�Miss penalty

If we assume the hit time is 1 clock cycle independent of block size, then the access
time for a 16-byte block in a 4 KiB cache is

Averagememory access time¼ 1 + 8:57%�82ð Þ¼ 8:027 clock cycles

and for a 256-byte block in a 256 KiB cache the average memory access time is

Averagememory access time¼ 1 + 0:49%�112ð Þ¼ 1:549 clock cycles

Block size
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Figure B.10 Miss rate versus block size for five different-sized caches. Note that miss
rate actually goes up if the block size is too large relative to the cache size. Each line
represents a cache of different size. Figure B.11 shows the data used to plot these lines.
Unfortunately, SPEC2000 traces would take too long if block size were included, so these
data are based on SPEC92 on a DECstation 5000 (Gee et al. 1993).

Cache size

Block size 4K 16K 64K 256K

16 8.57% 3.94% 2.04% 1.09%

32 7.24% 2.87% 1.35% 0.70%

64 7.00% 2.64% 1.06% 0.51%

128 7.78% 2.77% 1.02% 0.49%

256 9.51% 3.29% 1.15% 0.49%

Figure B.11 Actual miss rate versus block size for the five different-sized caches in
Figure B.10.Note that for a 4 KiB cache, 256-byte blocks have a highermiss rate than 32-
byte blocks. In this example, the cache would have to be 256 KiB in order for a 256-byte
block to decrease misses.
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Figure B.12 shows the average memory access time for all block and cache sizes
between those two extremes. The boldfaced entries show the fastest block size for a
given cache size: 32 bytes for 4 KiB and 64 bytes for the larger caches. These sizes
are, in fact, popular block sizes for processor caches today.

As in all of these techniques, the cache designer is trying to minimize both the
miss rate and the miss penalty. The selection of block size depends on both the
latency and bandwidth of the lower-levelmemory.High latency and high bandwidth
encourage large block size because the cache gets many more bytes per miss for a
small increase in miss penalty. Conversely, low latency and low bandwidth encour-
age smaller block sizes because there is little time saved from a larger block. For
example, twice the miss penalty of a small block may be close to the penalty of a
block twice the size. The larger number of small blocksmay also reduce conflictmis-
ses. Note that Figures B.10 and B.12 show the difference between selecting a block
size based onminimizingmiss rate versus minimizing averagememory access time.

After seeing the positive and negative impact of larger block size on compul-
sory and capacity misses, the next two subsections look at the potential of higher
capacity and higher associativity.

Second Optimization: Larger Caches to Reduce Miss Rate

The obvious way to reduce capacity misses in Figures B.8 and B.9 is to increase
capacity of the cache. Theobvious drawback is potentially longer hit time andhigher
cost and power. This technique has been especially popular in off-chip caches.

Third Optimization: Higher Associativity to Reduce Miss Rate

Figures B.8 and B.9 show how miss rates improve with higher associativity. There
are two general rules of thumb that can be gleaned from these figures. The first is

Cache size

Block size Miss penalty 4K 16K 64K 256K

16 82 8.027 4.231 2.673 1.894

32 84 7.082 3.411 2.134 1.588

64 88 7.160 3.323 1.933 1.449

128 96 8.469 3.659 1.979 1.470

256 112 11.651 4.685 2.288 1.549

Figure B.12 Average memory access time versus block size for five different-sized
caches in Figure B.10. Block sizes of 32 and 64 bytes dominate. The smallest average
time per cache size is boldfaced.
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that eight-way set associative is for practical purposes as effective in reducing mis-
ses for these sized caches as fully associative. You can see the difference by com-
paring the eight-way entries to the capacity miss column in Figure B.8, because
capacity misses are calculated using fully associative caches.

The second observation, called the 2:1 cache rule of thumb, is that a direct-
mapped cache of size N has about the same miss rate as a two-way set associative
cache of size N/2. This held in three C’s figures for cache sizes less than 128 KiB.

Like many of these examples, improving one aspect of the average memory
access time comes at the expense of another. Increasing block size reduces miss
rate while increasing miss penalty, and greater associativity can come at the cost
of increased hit time. Hence, the pressure of a fast processor clock cycle encour-
ages simple cache designs, but the increasing miss penalty rewards associativity, as
the following example suggests.

Example Assume that higher associativity would increase the clock cycle time as listed as
follows:

Clock cycle time2-way ¼ 1:36�Clock cycle time1-way
Clock cycle time4-way ¼ 1:44�Clock cycle time1-way
Clock cycle time8-way ¼ 1:52�Clock cycle time1-way

Assume that the hit time is 1 clock cycle, that the miss penalty for the direct-
mapped case is 25 clock cycles to a level 2 cache (see next subsection) that never
misses, and that the miss penalty need not be rounded to an integral number of
clock cycles. Using Figure B.8 for miss rates, for which cache sizes are each of
these three statements true?

Averagememory access time8-way <Averagememory access time4-way
Averagememory access time4-way <Averagememory access time2-way
Averagememory access time2-way <Averagememory access time1-way

Answer Average memory access time for each associativity is

Averagememory access time8-way ¼Hit time8-way +Miss rate8-way�Miss penalty8-way

¼ 1:52 +Miss rate8-way�25

Averagememory access time4-way ¼ 1:44 +Miss rate4-way�25

Averagememory access time2-way ¼ 1:36 +Miss rate2-way�25

Averagememory access time1-way ¼ 1:00 +Miss rate1-way�25

The miss penalty is the same time in each case, so we leave it as 25 clock cycles.
For example, the average memory access time for a 4 KiB direct-mapped cache is

Averagememory access time1-way ¼ 1:00 + 0:098�25ð Þ¼ 3:44

and the time for a 512 KiB, eight-way set associative cache is

Averagememory access time8-way ¼ 1:52 + 0:006�25ð Þ¼ 1:66

Using these formulas and the miss rates from Figure B.8, Figure B.13 shows the
average memory access time for each cache and associativity. The figure shows
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that the formulas in this example hold for caches less than or equal to 8 KiB for up
to four-way associativity. Starting with 16 KiB, the greater hit time of larger asso-
ciativity outweighs the time saved due to the reduction in misses.

Note that we did not account for the slower clock rate on the rest of the program
in this example, thereby understating the advantage of direct-mapped cache.

Fourth Optimization: Multilevel Caches to Reduce
Miss Penalty

Reducing cache misses had been the traditional focus of cache research, but the
cache performance formula assures us that improvements in miss penalty can
be just as beneficial as improvements in miss rate. Moreover, Figure 2.2 on page 80
shows that technology trends have improved the speed of processors faster than
DRAMs, making the relative cost of miss penalties increase over time.

This performance gap between processors and memory leads the architect to
this question: Should I make the cache faster to keep pace with the speed of pro-
cessors, or make the cache larger to overcome the widening gap between the pro-
cessor and main memory?

One answer is, do both. Adding another level of cache between the original
cache and memory simplifies the decision. The first-level cache can be small
enough to match the clock cycle time of the fast processor. Yet, the second-level
cache can be large enough to capture many accesses that would go to main mem-
ory, thereby lessening the effective miss penalty.

Although the concept of adding another level in the hierarchy is straightfor-
ward, it complicates performance analysis. Definitions for a second level of cache
are not always straightforward. Let’s start with the definition of average memory
access time for a two-level cache. Using the subscripts L1 and L2 to refer, respec-
tively, to a first-level and a second-level cache, the original formula is

Associativity

Cache size (KiB) 1-way 2-way 4-way 8-way

4 3.44 3.25 3.22 3.28

8 2.69 2.58 2.55 2.62

16 2.23 2.40 2.46 2.53

32 2.06 2.30 2.37 2.45

64 1.92 2.14 2.18 2.25

128 1.52 1.84 1.92 2.00

256 1.32 1.66 1.74 1.82

512 1.20 1.55 1.59 1.66

Figure B.13 Average memory access time using miss rates in Figure B.8 for param-
eters in the example. Boldface type means that this time is higher than the number to
the left, that is, higher associativity increases average memory access time.
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Averagememory access time¼Hit timeL1 +Miss rateL1�Miss penaltyL1

and

Miss penaltyL1 ¼Hit timeL2 +Miss rateL2�Miss penaltyL2

so

Averagememory access time¼Hit timeL1 +Miss rateL1
� Hit timeL2 +Miss rateL2�Miss penaltyL2ð Þ

In this formula, the second-level miss rate is measured on the leftovers from the
first-level cache. To avoid ambiguity, these terms are adopted here for a two-level
cache system:

■ Local miss rate—This rate is simply the number of misses in a cache divided
by the total number of memory accesses to this cache. As you would expect, for
the first-level cache it is equal toMiss rateL1, and for the second-level cache it is
Miss rateL2.

■ Global miss rate—The number of misses in the cache divided by the total num-
ber of memory accesses generated by the processor. Using the terms above, the
global miss rate for the first-level cache is still just Miss rateL1, but for the
second-level cache it is Miss rateL1�Miss rateL2.

This local miss rate is large for second-level caches because the first-level
cache skims the cream of the memory accesses. This is why the global miss rate
is the more useful measure: It indicates what fraction of the memory accesses that
leave the processor go all the way to memory.

Here is a place where the misses per instruction metric shines. Instead of con-
fusion about local or global miss rates, we just expand memory stalls per instruc-
tion to add the impact of a second-level cache.

Averagememory stalls per instruction¼Misses per instructionL1�Hit timeL2
+Misses per instructionL2�Miss penaltyL2

Example Suppose that in 1000 memory references there are 40 misses in the first-level cache
and 20 misses in the second-level cache. What are the various miss rates? Assume
the miss penalty from the L2 cache to memory is 200 clock cycles, the hit time of
the L2 cache is 10 clock cycles, the hit time of L1 is 1 clock cycle, and there are 1.5
memory references per instruction. What is the average memory access time and
average stall cycles per instruction? Ignore the impact of writes.

Answer The miss rate (either local or global) for the first-level cache is 40/1000 or 4%. The
local miss rate for the second-level cache is 20/40 or 50%. The global miss rate of
the second-level cache is 20/1000 or 2%. Then

Averagememory access time¼Hit timeL1 +Miss rateL1� Hit timeL2 +Miss rateL2�Miss penaltyL2ð Þ
¼ 1 + 4%� 10 + 50%�200ð Þ¼ 1 + 4%�110¼ 5:4 clock cycles
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To see how many misses we get per instruction, we divide 1000 memory refer-
ences by 1.5 memory references per instruction, which yields 667 instructions.
Thus, we need to multiply the misses by 1.5 to get the number of misses per
1000 instructions. We have 40�1.5 or 60 L1 misses, and 20�1.5 or 30 L2 mis-
ses, per 1000 instructions. For average memory stalls per instruction, assuming the
misses are distributed uniformly between instructions and data:

Averagememory stalls per instruction¼Misses per instructionL1�Hit timeL2 +Misses per instructionL2
�Miss penaltyL2

¼ 60=1000ð Þ�10 + 30=1000ð Þ�200

¼ 0:060�10 + 0:030�200¼ 6:6 clock cycles

If we subtract the L1 hit time from the average memory access time (AMAT) and
then multiply by the average number of memory references per instruction, we get
the same average memory stalls per instruction:

5:4�1:0ð Þ�1:5¼ 4:4�1:5¼ 6:6 clock cycles

As this example shows, there may be less confusion with multilevel caches when
calculating using misses per instruction versus miss rates.

Note that these formulas are for combined reads and writes, assuming a write-
back first-level cache. Obviously, a write-through first-level cache will send all
writes to the second level, not just the misses, and a write buffer might be used.

Figures B.14 and B.15 show howmiss rates and relative execution time change
with the size of a second-level cache for one design. From these figures we can gain
two insights. The first is that the global cache miss rate is very similar to the single
cache miss rate of the second-level cache, provided that the second-level cache is
much larger than the first-level cache. Hence, our intuition and knowledge about
the first-level caches apply. The second insight is that the local cache miss rate is
not a good measure of secondary caches; it is a function of the miss rate of the first-
level cache, and hence can vary by changing the first-level cache. Thus, the global
cache miss rate should be used when evaluating second-level caches.

With these definitions in place, we can consider the parameters of second-level
caches. The foremost difference between the two levels is that the speed of the first-
level cache affects the clock rate of the processor, while the speed of the second-
level cache only affects the miss penalty of the first-level cache. Thus, we can con-
sider many alternatives in the second-level cache that would be ill chosen for the
first-level cache. There are two major questions for the design of the second-level
cache: Will it lower the average memory access time portion of the CPI, and how
much does it cost?

The initial decision is the size of a second-level cache. Since everything in the
first-level cache is likely to be in the second-level cache, the second-level cache
should be much bigger than the first. If second-level caches are just a little bigger,
the local miss rate will be high. This observation inspires the design of huge
second-level caches—the size of main memory in older computers!
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One question is whether set associativity makes more sense for second-level
caches.

Example Given the following data, what is the impact of second-level cache associativity on
its miss penalty?

■ Hit timeL2 for direct mapped¼10 clock cycles.

■ Two-way set associativity increases hit time by 0.1 clock cycle to 10.1 clock
cycles.

■ Local miss rateL2 for direct mapped¼25%.

■ Local miss rateL2 for two-way set associative¼20%.

■ Miss penaltyL2¼200 clock cycles.

Answer For a direct-mapped second-level cache, the first-level cache miss penalty is

Miss penalty1-way L2 ¼ 10 + 25%�200¼ 60:0 clock cycles
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Figure B.14 Miss rates versus cache size for multilevel caches. Second-level caches
smaller than the sum of the two 64 KiB first-level caches make little sense, as reflected
in the high miss rates. After 256 KiB the single cache is within 10% of the global miss
rates. The miss rate of a single-level cache versus size is plotted against the local miss
rate and global miss rate of a second-level cache using a 32 KiB first-level cache. The L2
caches (unified) were two-way set associative with replacement. Each had split L1
instruction and data caches that were 64 KiB two-way set associative with LRU replace-
ment. The block size for both L1 and L2 caches was 64 bytes. Data were collected as in
Figure B.4.
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Adding the cost of associativity increases the hit cost only 0.1 clock cycle, making
the new first-level cache miss penalty:

Miss penalty2-way L2 ¼ 10:1 + 20%�200¼ 50:1 clock cycles

In reality, second-level caches are almost always synchronized with the first-level
cache and processor. Accordingly, the second-level hit time must be an integral
number of clock cycles. If we are lucky, we shave the second-level hit time to
10 cycles; if not, we round up to 11 cycles. Either choice is an improvement over
the direct-mapped second-level cache:

Miss penalty2-way L2 ¼ 10 + 20%�200¼ 50:0 clock cycles
Miss penalty2-way L2 ¼ 11 + 20%�200¼ 51:0 clock cycles

Now we can reduce the miss penalty by reducing the miss rate of the second-level
caches.

Another consideration concerns whether data in the first-level cache are in the
second-level cache. Multilevel inclusion is the natural policy for memory hierar-
chies: L1 data are always present in L2. Inclusion is desirable because consistency
between I/O and caches (or among caches in a multiprocessor) can be determined
just by checking the second-level cache.
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Figure B.15 Relative execution time by second-level cache size. The two bars are for
different clock cycles for an L2 cache hit. The reference execution time of 1.00 is for an
8192 KiB second-level cache with a 1-clock-cycle latency on a second-level hit. These
data were collected the same way as in Figure B.14, using a simulator to imitate the
Alpha 21264.
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One drawback to inclusion is that measurements can suggest smaller blocks for
the smaller first-level cache and larger blocks for the larger second-level cache. For
example, the Pentium 4 has 64-byte blocks in its L1 caches and 128-byte blocks in
its L2 cache. Inclusion can still be maintained with more work on a second-level
miss. The second-level cache must invalidate all first-level blocks that map onto
the second-level block to be replaced, causing a slightly higher first-level miss rate.
To avoid such problems, many cache designers keep the block size the same in all
levels of caches.

However, what if the designer can only afford an L2 cache that is slightly big-
ger than the L1 cache? Should a significant portion of its space be used as a redun-
dant copy of the L1 cache? In such cases a sensible opposite policy is multilevel
exclusion: L1 data are never found in an L2 cache. Typically, with exclusion a
cache miss in L1 results in a swap of blocks between L1 and L2 instead of a
replacement of an L1 block with an L2 block. This policy prevents wasting space
in the L2 cache. For example, the AMDOpteron chip obeys the exclusion property
using two 64 KiB L1 caches and 1 MiB L2 cache.

As these issues illustrate, although a novice might design the first- and second-
level caches independently, the designer of the first-level cache has a simpler job
given a compatible second-level cache. It is less of a gamble to use a write through,
for example, if there is a write-back cache at the next level to act as a backstop for
repeated writes and it uses multilevel inclusion.

The essence of all cache designs is balancing fast hits and few misses. For
second-level caches, there are far fewer hits than in the first-level cache, so the
emphasis shifts to fewer misses. This insight leads to much larger caches and tech-
niques to lower the miss rate, such as higher associativity and larger blocks.

Fifth Optimization: Giving Priority to ReadMisses overWrites to
Reduce Miss Penalty

This optimization serves reads before writes have been completed. We start with
looking at the complexities of a write buffer.

With a write-through cache the most important improvement is a write buffer
of the proper size. Write buffers, however, do complicate memory accesses
because they might hold the updated value of a location needed on a read miss.

Example Look at this code sequence:

sd x3, 512(x0);M[512] ¬ R3 (cache index 0)
ld x1, 1024(x0);x1 ¬ M[1024](cache index 0)
ld x2, 512(x0);x2 ¬ M[512] (cache index 0)

Assume a direct-mapped, write-through cache that maps 512 and 1024 to the same
block, and a four-word write buffer that is not checked on a read miss. Will the
value in x2 always be equal to the value in x3?
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Answer Using the terminology from Chapter 2, this is a read-after-write data hazard in
memory. Let’s follow a cache access to see the danger. The data in x3 are placed
into the write buffer after the store. The following load uses the same cache index
and is therefore a miss. The second load instruction tries to put the value in location
512 into register x2; this also results in a miss. If the write buffer hasn’t completed
writing to location 512 in memory, the read of location 512 will put the old, wrong
value into the cache block, and then into x2. Without proper precautions, x3x1
would not be equal to x2!

The simplest way out of this dilemma is for the read miss to wait until the write
buffer is empty. The alternative is to check the contents of the write buffer on a read
miss, and if there are no conflicts and the memory system is available, let the read
miss continue. Virtually all desktop and server processors use the latter approach,
giving reads priority over writes.

The cost of writes by the processor in a write-back cache can also be reduced.
Suppose a read miss will replace a dirty memory block. Instead of writing the dirty
block to memory, and then reading memory, we could copy the dirty block to a
buffer, then read memory, and then write memory. This way the processor read,
for which the processor is probably waiting, will finish sooner. Similar to the pre-
vious situation, if a read miss occurs, the processor can either stall until the buffer is
empty or check the addresses of the words in the buffer for conflicts.

Now that we have five optimizations that reduce cache miss penalties or miss
rates, it is time to look at reducing the final component of average memory access
time. Hit time is critical because it can affect the clock rate of the processor; in
many processors today the cache access time limits the clock cycle rate, even
for processors that take multiple clock cycles to access the cache. Hence, a fast
hit time is multiplied in importance beyond the average memory access time for-
mula because it helps everything.

Sixth Optimization: Avoiding Address Translation During
Indexing of the Cache to Reduce Hit Time

Even a small and simple cache must cope with the translation of a virtual address
from the processor to a physical address to access memory. As described in
Section B.4, processors treat main memory as just another level of the memory
hierarchy, and thus the address of the virtual memory that exists on disk must
be mapped onto the main memory.

The guideline of making the common case fast suggests that we use virtual
addresses for the cache, because hits are much more common than misses. Such
caches are termed virtual caches, with physical cache used to identify the tradi-
tional cache that uses physical addresses. As we will shortly see, it is important
to distinguish two tasks: indexing the cache and comparing addresses. Thus, the
issues are whether a virtual or physical address is used to index the cache and
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whether a virtual or physical address is used in the tag comparison. Full virtual
addressing for both indices and tags eliminates address translation time from a
cache hit. Then why doesn’t everyone build virtually addressed caches?

One reason is protection. Page-level protection is checked as part of the virtual
to physical address translation, and it must be enforced no matter what. One solu-
tion is to copy the protection information from the TLB on a miss, add a field to
hold it, and check it on every access to the virtually addressed cache.

Another reason is that every time a process is switched, the virtual addresses
refer to different physical addresses, requiring the cache to be flushed. Figure B.16
shows the impact on miss rates of this flushing. One solution is to increase the
width of the cache address tag with a process-identifier tag (PID). If the operating
system assigns these tags to processes, it only need flush the cache when a PID is
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because changing size changes the mapping of memory blocks onto cache blocks,
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B.3 Six Basic Cache Optimizations ■ B-37



recycled; that is, the PID distinguishes whether or not the data in the cache are for
this program. Figure B.16 shows the improvement in miss rates by using PIDs to
avoid cache flushes.

A third reason why virtual caches are not more popular is that operating sys-
tems and user programs may use two different virtual addresses for the same phys-
ical address. These duplicate addresses, called synonyms or aliases, could result in
two copies of the same data in a virtual cache; if one is modified, the other will have
the wrong value. With a physical cache this wouldn’t happen, because the accesses
would first be translated to the same physical cache block.

Hardware solutions to the synonym problem, called antialiasing, guarantee
every cache block a unique physical address. For example, the AMDOpteron uses
a 64 KiB instruction cache with a 4 KiB page and two-way set associativity; hence,
the hardware must handle aliases involved with the three virtual address bits in
the set index. It avoids aliases by simply checking all eight possible locations
on a miss—two blocks in each of four sets—to be sure that none matches the phys-
ical address of the data being fetched. If one is found, it is invalidated, so when
the new data are loaded into the cache their physical address is guaranteed to be
unique.

Software can make this problem much easier by forcing aliases to share some
address bits. An older version of UNIX from Sun Microsystems, for example,
required all aliases to be identical in the last 18 bits of their addresses; this restric-
tion is called page coloring. Note that page coloring is simply set associative map-
ping applied to virtual memory: the 4 KiB (212) pages are mapped using 64 (26)
sets to ensure that the physical and virtual addresses match in the last 18 bits. This
restriction means a direct-mapped cache that is 218 (256 K) bytes or smaller can
never have duplicate physical addresses for blocks. From the perspective of the
cache, page coloring effectively increases the page offset, as software guarantees
that the last few bits of the virtual and physical page address are identical.

The final area of concern with virtual addresses is I/O. I/O typically uses phys-
ical addresses and thus would require mapping to virtual addresses to interact with
a virtual cache. (The impact of I/O on caches is further discussed in Appendix D.)

One alternative to get the best of both virtual and physical caches is to use part
of the page offset—the part that is identical in both virtual and physical
addresses—to index the cache. At the same time as the cache is being read using
that index, the virtual part of the address is translated, and the tag match uses phys-
ical addresses.

This alternative allows the cache read to begin immediately, and yet the tag
comparison is still with physical addresses. The limitation of this virtually indexed,
physically tagged alternative is that a direct-mapped cache can be no bigger than
the page size. For example, in the data cache in Figure B.5 on page B-13, the index
is 9 bits and the cache block offset is 6 bits. To use this trick, the virtual page size
would have to be at least 2(9+6) bytes or 32 KiB. If not, a portion of the index must
be translated from virtual to physical address. Figure B.17 shows the organization
of the caches, translation lookaside buffers (TLBs), and virtual memory when this
technique is used.
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Associativity can keep the index in the physical part of the address and yet still
support a large cache. Recall that the size of the index is controlled by this formula:

2Index ¼ Cache size
Block size�Set associativity

For example, doubling associativity and doubling the cache size does not change
the size of the index. The IBM 3033 cache, as an extreme example, is 16-way set
associative, even though studies show there is little benefit to miss rates above
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Figure B.17 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache
access. The page size is 16 KiB. The TLB is two-way set associative with 256 entries. The L1 cache is a direct-mapped
16 KiB, and the L2 cache is a four-way set associative with a total of 4 MiB. Both use 64-byte blocks. The virtual address
is 64 bits and the physical address is 40 bits.
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8-way set associativity. This high associativity allows a 64 KiB cache to be
addressed with a physical index, despite the handicap of 4 KiB pages in the
IBM architecture.

Summary of Basic Cache Optimization

The techniques in this section to improve miss rate, miss penalty, and hit time gen-
erally impact the other components of the average memory access equation as well
as the complexity of the memory hierarchy. Figure B.18 summarizes these tech-
niques and estimates the impact on complexity, with + meaning that the technique
improves the factor, – meaning it hurts that factor, and blank meaning it has no
impact. No optimization in this figure helps more than one category.

B.4 Virtual Memory

… a system has been devised to make the core drum combination appear to
the programmer as a single level store, the requisite transfers taking place
automatically.

Kilburn et al. (1962)

At any instant in time computers are running multiple processes, each with its own
address space. (Processes are described in the next section.) It would be too expen-
sive to dedicate a full address space worth of memory for each process, especially
because many processes use only a small part of their address space. Hence, there
must be a means of sharing a smaller amount of physical memory among many
processes.

Technique
Hit
time

Miss
penalty

Miss
rate

Hardware
complexity Comment

Larger block size – + 0 Trivial; Pentium 4L2 uses 128 bytes

Larger cache size – + 1 Widely used, especially for L2
caches

Higher associativity – + 1 Widely used

Multilevel caches + 2 Costly hardware; harder if L1 block
size 6¼L2 block size; widely used

Read priority over writes + 1 Widely used

Avoiding address translation during
cache indexing

+ 1 Widely used

Figure B.18 Summary of basic cache optimizations showing impact on cache performance and complexity for
the techniques in this appendix. Generally a technique helps only one factor. + means that the technique improves
the factor, –means it hurts that factor, and blank means it has no impact. The complexity measure is subjective, with
0 being the easiest and 3 being a challenge.
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One way to do this, virtual memory, divides physical memory into blocks and
allocates them to different processes. Inherent in such an approach must be a pro-
tection scheme that restricts a process to the blocks belonging only to that process.
Most forms of virtual memory also reduce the time to start a program, because not
all code and data need be in physical memory before a program can begin.

Although protection provided by virtual memory is essential for current com-
puters, sharing is not the reason that virtual memory was invented. If a program
became too large for physical memory, it was the programmer’s job to make it
fit. Programmers divided programs into pieces, then identified the pieces that were
mutually exclusive, and loaded or unloaded these overlays under user program
control during execution. The programmer ensured that the program never tried
to access more physical main memory than was in the computer, and that the
proper overlay was loaded at the proper time. As you can well imagine, this respon-
sibility eroded programmer productivity.

Virtual memory was invented to relieve programmers of this burden; it auto-
matically manages the two levels of the memory hierarchy represented by main
memory and secondary storage. Figure B.19 shows the mapping of virtual memory
to physical memory for a program with four pages.

In addition to sharing protected memory space and automatically managing the
memory hierarchy, virtual memory also simplifies loading the program for execu-
tion. Called relocation, this mechanism allows the same program to run in any
location in physical memory. The program in Figure B.19 can be placed anywhere
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Figure B.19 The logical program in its contiguous virtual address space is shown on
the left. It consists of four pages, A, B, C, and D. The actual location of three of the blocks
is in physical main memory and the other is located on the disk.
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in physical memory or disk just by changing the mapping between them. (Prior to
the popularity of virtual memory, processors would include a relocation register
just for that purpose.) An alternative to a hardware solution would be software that
changed all addresses in a program each time it was run.

Several general memory hierarchy ideas from Chapter 1 about caches are anal-
ogous to virtual memory, although many of the terms are different. Page or seg-
ment is used for block, and page fault or address fault is used for miss. With virtual
memory, the processor produces virtual addresses that are translated by a combi-
nation of hardware and software to physical addresses, which access main mem-
ory. This process is calledmemory mapping or address translation. Today, the two
memory hierarchy levels controlled by virtual memory are DRAMs and magnetic
disks. Figure B.20 shows a typical range of memory hierarchy parameters for vir-
tual memory.

There are further differences between caches and virtual memory beyond those
quantitative ones mentioned in Figure B.20:

■ Replacement on cache misses is primarily controlled by hardware, while vir-
tual memory replacement is primarily controlled by the operating system. The
longer miss penalty means it’s more important to make a good decision, so
the operating system can be involved and take time deciding what to replace.

■ The size of the processor address determines the size of virtual memory, but the
cache size is independent of the processor address size.

■ In addition to acting as the lower-level backing store for main memory in
the hierarchy, secondary storage is also used for the file system. In fact, the
file system occupies most of secondary storage. It is not usually in the
address space.

Parameter First-level cache Virtual memory

Block (page) size 16–128 bytes 4096–65,536 bytes

Hit time 1–3 clock cycles 100–200 clock cycles

Miss penalty 8–200 clock cycles 1,000,000–10,000,000 clock cycles

(access time) (6–160 clock cycles) (800,000–8,000,000 clock cycles)

(transfer time) (2–40 clock cycles) (200,000–2,000,000 clock cycles)

Miss rate 0.1%–10% 0.00001%–0.001%

Address mapping 25–45-bit physical address
to 14–20-bit cache address

32–64-bit virtual address to 25–45-bit
physical address

Figure B.20 Typical ranges of parameters for caches and virtual memory. Virtual
memory parameters represent increases of 10–1,000,000 times over cache parame-
ters. Usually, first-level caches contain at most 1 MiB of data, whereas physical memory
contains 256 MiB to 1 TB.
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Virtual memory also encompasses several related techniques. Virtual memory
systems can be categorized into two classes: those with fixed-size blocks, called
pages, and those with variable-size blocks, called segments. Pages are typically
fixed at 4096–8192 bytes, while segment size varies. The largest segment sup-
ported on any processor ranges from 216 bytes up to 232 bytes; the smallest segment
is 1 byte. Figure B.21 shows how the two approaches might divide code and data.

The decision to use paged virtual memory versus segmented virtual memory
affects the processor. Paged addressing has a single fixed-size address divided
into page number and offset within a page, analogous to cache addressing. A single
address does not work for segmented addresses; the variable size of segments
requires 1 word for a segment number and 1 word for an offset within a segment,
for a total of 2 words. An unsegmented address space is simpler for the compiler.

The pros and cons of these two approaches have been well documented in oper-
ating systems textbooks; Figure B.22 summarizes the arguments. Because of the

ataDedoC

Paging

Segmentation

Figure B.21 Example of how paging and segmentation divide a program.

Page Segment

Words per address One Two (segment and offset)

Programmer visible? Invisible to application
programmer

May be visible to application
programmer

Replacing a block Trivial (all blocks are the
same size)

Difficult (must find contiguous,
variable-size, unused portion of
main memory)

Memory use
inefficiency

Internal fragmentation
(unused portion of page)

External fragmentation (unused
pieces of main memory)

Efficient disk traffic Yes (adjust page size to
balance access time and
transfer time)

Not always (small segments may
transfer just a few bytes)

Figure B.22 Paging versus segmentation. Both can waste memory, depending on the
block size and how well the segments fit together in main memory. Programming lan-
guages with unrestricted pointers require both the segment and the address to be
passed. A hybrid approach, called paged segments, shoots for the best of both worlds:
segments are composed of pages, so replacing a block is easy, yet a segment may be
treated as a logical unit.
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replacement problem (the third line of the figure), few computers today use pure
segmentation. Some computers use a hybrid approach, called paged segments, in
which a segment is an integral number of pages. This simplifies replacement
because memory need not be contiguous, and the full segments need not be in main
memory. A more recent hybrid is for a computer to offer multiple page sizes,
with the larger sizes being powers of 2 times the smallest page size. The IBM
405CR embedded processor, for example, allows 1 KiB, 4 KiB (22�1 KiB),
16 KiB (24�1 KiB), 64 KiB (26�1 KiB), 256 KiB (28�1 KiB), 1024 KiB
(210�1 KiB), and 4096 KiB (212�1 KiB) to act as a single page.

Four Memory Hierarchy Questions Revisited

We are now ready to answer the four memory hierarchy questions for virtual
memory.

Q1: Where Can a Block be Placed in Main Memory?

The miss penalty for virtual memory involves access to a rotating magnetic storage
device and is therefore quite high. Given the choice of lower miss rates or a simpler
placement algorithm, operating systems designers usually pick lower miss rates
because of the exorbitant miss penalty. Thus, operating systems allow blocks to
be placed anywhere in main memory. According to the terminology in
Figure B.2 on page B-8, this strategy would be labeled fully associative.

Q2: How Is a Block Found If It Is in Main Memory?

Both paging and segmentation rely on a data structure that is indexed by the page or
segment number. This data structure contains the physical address of the block. For
segmentation, the offset is added to the segment’s physical address to obtain the
final physical address. For paging, the offset is simply concatenated to this physical
page address (see Figure B.23).

This data structure, containing the physical page addresses, usually takes the
form of a page table. Indexed by the virtual page number, the size of the table
is the number of pages in the virtual address space. Given a 32-bit virtual address,
4 KiB pages, and 4 bytes per page table entry (PTE), the size of the page table
would be (232/212)�22¼222 or 4 MiB.

To reduce the size of this data structure, some computers apply a hashing func-
tion to the virtual address. The hash allows the data structure to be the length of the
number of physical pages in main memory. This number could be much smaller
than the number of virtual pages. Such a structure is called an inverted page table.
Using the previous example, a 512 MiB physical memory would only need 1 MiB
(8�512 MiB/4 KiB) for an inverted page table; the extra 4 bytes per page table
entry are for the virtual address. The HP/Intel IA-64 covers both bases by offering
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both traditional pages tables and inverted page tables, leaving the choice of mech-
anism to the operating system programmer.

To reduce address translation time, computers use a cache dedicated to these
address translations, called a translation lookaside buffer, or simply translation
buffer, described in more detail shortly.

Q3: Which Block Should be Replaced on a Virtual Memory Miss?

As mentioned earlier, the overriding operating system guideline is minimizing
page faults. Consistent with this guideline, almost all operating systems try to
replace the least recently used (LRU) block because if the past predicts the future,
that is the one less likely to be needed.

To help the operating system estimate LRU, many processors provide a use bit
or reference bit, which is logically set whenever a page is accessed. (To reduce
work, it is actually set only on a translation buffer miss, which is described shortly.)
The operating system periodically clears the use bits and later records them so it
can determine which pages were touched during a particular time period. By keep-
ing track in this way, the operating system can select a page that is among the least
recently referenced.

Q4: What Happens on a Write?

The level below main memory contains rotating magnetic disks that take millions
of clock cycles to access. Because of the great discrepancy in access time, no one
has yet built a virtual memory operating system that writes through main memory
to disk on every store by the processor. (This remark should not be interpreted as an
opportunity to become famous by being the first to build one!) Thus, the write strat-
egy is always write-back.

Main 
memory

Page
table

Virtual address

Virtual page number Page offset

Physical address

Figure B.23 The mapping of a virtual address to a physical address via a page table.
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Because the cost of an unnecessary access to the next-lower level is so high,
virtual memory systems usually include a dirty bit. It allows blocks to be written to
disk only if they have been altered since being read from the disk.

Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory and are some-
times paged themselves. Paging means that every memory access logically takes at
least twice as long, with one memory access to obtain the physical address and a
second access to get the data. As mentioned in Chapter 2, we use locality to avoid
the extra memory access. By keeping address translations in a special cache, a
memory access rarely requires a second access to translate the data. This special
address translation cache is referred to as a translation look aside buffer (TLB),
also called a translation buffer (TB).

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page frame number, protection field,
valid bit, and usually a use bit and dirty bit. To change the physical page frame
number or protection of an entry in the page table, the operating system must make
sure the old entry is not in the TLB; otherwise, the system won’t behave properly.
Note that this dirty bit means the corresponding page is dirty, not that the address
translation in the TLB is dirty nor that a particular block in the data cache is dirty.
The operating system resets these bits by changing the value in the page table and
then invalidates the corresponding TLB entry. When the entry is reloaded from the
page table, the TLB gets an accurate copy of the bits.

Figure B.24 shows the Opteron data TLB organization, with each step of the
translation labeled. This TLB uses fully associative placement; thus, the translation
begins (steps 1 and 2) by sending the virtual address to all tags. Of course, the tag
must be marked valid to allow a match. At the same time, the type of memory
access is checked for a violation (also in step 2) against protection information
in the TLB.

For reasons similar to those in the cache case, there is no need to include the 12
bits of the page offset in the TLB. The matching tag sends the corresponding phys-
ical address through effectively a 40:1 multiplexor (step 3). The page offset is then
combined with the physical page frame to form a full physical address (step 4). The
address size is 40 bits.

Address translation can easily be on the critical path determining the clock
cycle of the processor, so the Opteron uses virtually addressed, physically tagged
L1 caches.

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the page is a
question of balancing forces that favor a larger page size versus those favoring a
smaller size. The following favor a larger size:
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■ The size of the page table is inversely proportional to the page size; memory (or
other resources used for the memory map) can therefore be saved by making
the pages bigger.

■ As mentioned in Section B.3, a larger page size can allow larger caches with
fast cache hit times.

■ Transferring larger pages to or from secondary storage, possibly over a net-
work, is more efficient than transferring smaller pages.

■ The number of TLB entries is restricted, so a larger page size means that more
memory can be mapped efficiently, thereby reducing the number of TLB
misses.

It is for this final reason that recent microprocessors have decided to support mul-
tiple page sizes; for some programs, TLBmisses can be as significant on CPI as the
cache misses.

The main motivation for a smaller page size is conserving storage. A small
page size will result in less wasted storage when a contiguous region of virtual
memory is not equal in size to a multiple of the page size. The term for this unused
memory in a page is internal fragmentation. Assuming that each process has three
primary segments (text, heap, and stack), the average wasted storage per process
will be 1.5 times the page size. This amount is negligible for computers with hun-
dreds of megabytes of memory and page sizes of 4–8 KiB. Of course, when the
page sizes become very large (more than 32 KiB), storage (both main and second-
ary) could be wasted, as well as I/O bandwidth. A final concern is process start-up
time; many processes are small, so a large page size would lengthen the time to
invoke a process.

<28>

Virtual page
number
<36>

Page
offset
<12>

<1>
V

<1>
D

<1>
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<36>
Tag

<28>
Physical address

(Low-order 12 bits
of address)

(High-order 28 bits of address)

40-bit
physical
address

R/W U/S

40:1 mux

21

4
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3

Figure B.24 Operation of the Opteron data TLB during address translation. The four
steps of a TLB hit are shown as circled numbers. This TLB has 40 entries. Section B.5
describes the various protection and access fields of an Opteron page table entry.

B.4 Virtual Memory ■ B-47



Summary of Virtual Memory and Caches

With virtual memory, TLBs, first-level caches, and second-level caches all map-
ping portions of the virtual and physical address space, it can get confusing what
bits go where. Figure B.25 gives a hypothetical example going from a 64-bit virtual
address to a 41-bit physical address with two levels of cache. This L1 cache is vir-
tually indexed, and physically tagged because both the cache size and the page size
are 8 KiB. The L2 cache is 4 MiB. The block size for both is 64 bytes.

L1 tag compare address <28>

L2 cache tag <19> L2 data <512>

=? =?

=?

TLB tag compare address <43> TLB index <8>

Virtual address <64>

Physical address <41>

Virtual page number <51>

L2 tag compare address <19> L2 cache index <16> Block offset  <6>

Page offset  <13>

L1 cache tag <43> L1 data <512>TLB tag <43> TLB data <28>

To CPU

To CPU

To CPU

To L1 cache or CPU

L1 cache index <7> Block offset  <6>

Figure B.25 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache
access. The page size is 8 KiB. The TLB is direct mapped with 256 entries. The L1 cache is a direct-mapped 8 KiB,
and theL2cache is adirect-mapped4 MiB. Bothuse64-byteblocks. Thevirtual address is 64bits and thephysical address
is 41 bits. The primary difference between this simple figure and a real cache is replication of pieces of this figure.
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First, the 64-bit virtual address is logically divided into a virtual page number
and page offset. The former is sent to the TLB to be translated into a physical
address, and the high bit of the latter is sent to the L1 cache to act as an index.
If the TLB match is a hit, then the physical page number is sent to the L1 cache
tag to check for a match. If it matches, it’s an L1 cache hit. The block offset then
selects the word for the processor.

If the L1 cache check results in a miss, the physical address is then used to try
the L2 cache. The middle portion of the physical address is used as an index to the 4
MiB L2 cache. The resulting L2 cache tag is compared with the upper part of the
physical address to check for a match. If it matches, we have an L2 cache hit, and
the data are sent to the processor, which uses the block offset to select the desired
word. On an L2 miss, the physical address is then used to get the block from
memory.

Although this is a simple example, the major difference between this drawing
and a real cache is replication. First, there is only one L1 cache. When there are
two L1 caches, the top half of the diagram is duplicated. Note that this would
lead to two TLBs, which is typical. Hence, one cache and TLB is for instructions,
driven from the PC, and one cache and TLB is for data, driven from the effective
address.

The second simplification is that all the caches and TLBs are direct mapped. If
any were n-way set associative, then we would replicate each set of tag memory,
comparators, and data memory n times and connect data memories with an n:1
multiplexor to select a hit. Of course, if the total cache size remained the same,
the cache index would also shrink by log 2n bits according to the formula in
Figure B.7 on page B-22.

B.5 Protection and Examples of Virtual Memory

The invention of multiprogramming, where a computer would be shared by
several programs running concurrently, led to new demands for protection and
sharing among programs. These demands are closely tied to virtual memory in
computers today, and so we cover the topic here along with two examples of virtual
memory.

Multiprogramming leads to the concept of a process. Metaphorically, a process
is a program’s breathing air and living space—that is, a running program plus any
state needed to continue running it. Time-sharing is a variation of multiprogram-
ming that shares the processor and memory with several interactive users at the
same time, giving the illusion that all users have their own computers. Thus, at
any instant it must be possible to switch from one process to another. This
exchange is called a process switch or context switch.

A process must operate correctly whether it executes continuously from start to
finish, or it is interrupted repeatedly and switched with other processes. The
responsibility for maintaining correct process behavior is shared by designers of
the computer and the operating system. The computer designer must ensure that
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the processor portion of the process state can be saved and restored. The operating
system designer must guarantee that processes do not interfere with each others’
computations.

The safest way to protect the state of one process from another would be to
copy the current information to disk. However, a process switch would then take
seconds—far too long for a time-sharing environment.

This problem is solved by operating systems partitioning main memory so that
several different processes have their state in memory at the same time. This divi-
sion means that the operating system designer needs help from the computer
designer to provide protection so that one process cannot modify another. Besides
protection, the computers also provide for sharing of code and data between pro-
cesses, to allow communication between processes or to save memory by reducing
the number of copies of identical information.

Protecting Processes

Processes can be protected from one another by having their own page tables, each
pointing to distinct pages of memory. Obviously, user programs must be prevented
from modifying their page tables or protection would be circumvented.

Protection can be escalated, depending on the apprehension of the computer
designer or the purchaser. Rings added to the processor protection structure expand
memory access protection from two levels (user and kernel) to many more. Like a
military classification system of top secret, secret, confidential, and unclassified,
concentric rings of security levels allow the most trusted to access anything, the
second most trusted to access everything except the innermost level, and so on.
The “civilian” programs are the least trusted and, hence, have the most limited
range of accesses. There may also be restrictions on what pieces of memory can
contain code—execute protection—and even on the entrance point between the
levels. The Intel 80x86 protection structure, which uses rings, is described later
in this section. It is not clear whether rings are an improvement in practice over
the simple system of user and kernel modes.

As the designer’s apprehension escalates to trepidation, these simple rings may
not suffice. Restricting the freedom given a program in the inner sanctum requires a
new classification system. Instead of a military model, the analogy of this system is
to keys and locks: a program can’t unlock access to the data unless it has the key.
For these keys, or capabilities, to be useful, the hardware and operating system
must be able to explicitly pass them from one program to another without allowing
a program itself to forge them. Such checking requires a great deal of hardware
support if time for checking keys is to be kept low.

The 80x86 architecture has tried several of these alternatives over the years.
Because backward compatibility is one of the guidelines of this architecture, the
most recent versions of the architecture include all of its experiments in virtual
memory. We’ll go over two of the options here: first the older segmented address
space and then the newer flat, 64-bit address space.
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A Segmented Virtual Memory Example: Protection
in the Intel Pentium

The second system is the most dangerous system a man ever designs… . The
general tendency is to over-design the second system, using all the ideas and
frills that were cautiously sidetracked on the first one.

F. P. Brooks, Jr.
The Mythical Man-Month (1975)

The original 8086 used segments for addressing, yet it provided nothing for virtual
memory or for protection. Segments had base registers but no bound registers and
no access checks, and before a segment register could be loaded the corresponding
segment had to be in physical memory. Intel’s dedication to virtual memory and
protection is evident in the successors to the 8086, with a few fields extended to
support larger addresses. This protection scheme is elaborate, with many details
carefully designed to try to avoid security loopholes. We’ll refer to it as IA-32.
The next few pages highlight a few of the Intel safeguards; if you find the reading
difficult, imagine the difficulty of implementing them!

The first enhancement is to double the traditional two-level protection model:
the IA-32 has four levels of protection. The innermost level (0) corresponds to the
traditional kernel mode, and the outermost level (3) is the least privileged mode.
The IA-32 has separate stacks for each level to avoid security breaches between the
levels. There are also data structures analogous to traditional page tables that con-
tain the physical addresses for segments, as well as a list of checks to be made on
translated addresses.

The Intel designers did not stop there. The IA-32 divides the address space,
allowing both the operating system and the user access to the full space. The
IA-32 user can call an operating system routine in this space and even pass param-
eters to it while retaining full protection. This safe call is not a trivial action,
because the stack for the operating system is different from the user’s stack. More-
over, the IA-32 allows the operating system to maintain the protection level of the
called routine for the parameters that are passed to it. This potential loophole in
protection is prevented by not allowing the user process to ask the operating system
to access something indirectly that it would not have been able to access itself.
(Such security loopholes are called Trojan horses.)

The Intel designers were guided by the principle of trusting the operating
system as little as possible, while supporting sharing and protection. As an exam-
ple of the use of such protected sharing, suppose a payroll program writes checks
and also updates the year-to-date information on total salary and benefits pay-
ments. Thus, we want to give the program the ability to read the salary and
year-to-date information and modify the year-to-date information but not the sal-
ary. We will see the mechanism to support such features shortly. In the rest of
this subsection, we will look at the big picture of the IA-32 protection and exam-
ine its motivation.
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Adding Bounds Checking and Memory Mapping

The first step in enhancing the Intel processor was getting the segmented addres-
sing to check bounds as well as supply a base. Rather than a base address, the seg-
ment registers in the IA-32 contain an index to a virtual memory data structure
called a descriptor table. Descriptor tables play the role of traditional page tables.
On the IA-32 the equivalent of a page table entry is a segment descriptor. It con-
tains fields found in PTEs:

■ Present bit—Equivalent to the PTE valid bit, used to indicate this is a valid
translation

■ Base field—Equivalent to a page frame address, containing the physical
address of the first byte of the segment

■ Access bit—Like the reference bit or use bit in some architectures that is helpful
for replacement algorithms

■ Attributes field—Specifies the valid operations and protection levels for oper-
ations that use this segment

There is also a limit field, not found in paged systems, which establishes the upper
bound of valid offsets for this segment. Figure B.26 shows examples of IA-32 seg-
ment descriptors.

IA-32 provides an optional paging system in addition to this segmented addres-
sing. The upper portion of the 32-bit address selects the segment descriptor, and the
middle portion is an index into the page table selected by the descriptor. The fol-
lowing section describes the protection system that does not rely on paging.

Adding Sharing and Protection

To provide for protected sharing, half of the address space is shared by all processes
and half is unique to each process, called global address space and local address
space, respectively. Each half is given a descriptor table with the appropriate name.
A descriptor pointing to a shared segment is placed in the global descriptor table,
while a descriptor for a private segment is placed in the local descriptor table.

A program loads an IA-32 segment register with an index to the table and a bit
saying which table it desires. The operation is checked according to the attributes in
the descriptor, the physical address being formed by adding the offset in the pro-
cessor to the base in the descriptor, provided the offset is less than the limit field.
Every segment descriptor has a separate 2-bit field to give the legal access level of
this segment. A violation occurs only if the program tries to use a segment with a
lower protection level in the segment descriptor.

We can now show how to invoke the payroll program mentioned herein to
update the year-to-date information without allowing it to update salaries. The pro-
gram could be given a descriptor to the information that has the writable field clear,
meaning it can read but not write the data. A trusted program can then be supplied
that will only write the year-to-date information. It is given a descriptor with the
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writable field set (Figure B.26). The payroll program invokes the trusted code
using a code segment descriptor with the conforming field set. This setting means
the called program takes on the privilege level of the code being called rather than
the privilege level of the caller. Hence, the payroll program can read the salaries
and call a trusted program to update the year-to-date totals, yet the payroll program
cannot modify the salaries. If a Trojan horse exists in this system, to be effective it
must be located in the trusted code whose only job is to update the year-to-date
information. The argument for this style of protection is that limiting the scope
of the vulnerability enhances security.

Attributes Base Limit

stib 42stib 23stib 4stib 8

Present

Code segment

DPL 11 Conforming Readable Accessed

Present

Data segment

DPL 10 Expand down Writable Accessed

Attributes Destination selector Destination offset

stib 61stib 61stib 8

Word
count

8 bits

Present

Call gate

DPL 0 00100

GD

Figure B.26 The IA-32 segment descriptors are distinguished by bits in the
attributes field. Base, limit, present, readable, andwritable are all self-explanatory. D gives
the default addressing size of the instructions: 16 bits or 32 bits. G gives the granularity of
the segment limit: 0means in bytes and 1means in 4 KiB pages. G is set to 1whenpaging
is turned on to set the size of the page tables. DPLmeans descriptor privilege level—this is
checked against the code privilege level to see if the access will be allowed. Conforming
says the code takes on the privilege level of the code being called rather than the priv-
ilege level of the caller; it is used for library routines. The expand-down field flips the check
to let the base field be the high-water mark and the limit field be the low-water mark. As
you might expect, this is used for stack segments that grow down. Word count controls
the number of words copied from the current stack to the new stack on a call gate. The
other two fields of the call gate descriptor, destination selector and destination offset,
select the descriptor of the destination of the call and the offset into it, respectively. There
are many more than these three segment descriptors in the IA-32 protection model.
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Adding Safe Calls from User to OS Gates and Inheriting Protection
Level for Parameters

Allowing the user to jump into the operating system is a bold step. How, then, can
a hardware designer increase the chances of a safe system without trusting the
operating system or any other piece of code? The IA-32 approach is to restrict
where the user can enter a piece of code, to safely place parameters on the proper
stack, and to make sure the user parameters don’t get the protection level of the
called code.

To restrict entry into others’ code, the IA-32 provides a special segment
descriptor, or call gate, identified by a bit in the attributes field. Unlike other
descriptors, call gates are full physical addresses of an object in memory; the offset
supplied by the processor is ignored. As stated previously, their purpose is to pre-
vent the user from randomly jumping anywhere into a protected or more privileged
code segment. In our programming example, this means the only place the payroll
program can invoke the trusted code is at the proper boundary. This restriction is
needed to make conforming segments work as intended.

What happens if caller and callee are “mutually suspicious,” so that neither trusts
the other? The solution is found in the word count field in the bottom descriptor in
FigureB.26.Whena call instruction invokes a call gate descriptor, the descriptor cop-
ies the number of words specified in the descriptor from the local stack onto the stack
corresponding to the level of this segment. This copying allows the user to pass
parameters by first pushing themonto the local stack. The hardware then safely trans-
fers them onto the correct stack. A return from a call gate will pop the parameters off
both stacks and copy any return values to the proper stack. Note that this model is
incompatible with the current practice of passing parameters in registers.

This scheme still leaves open the potential loophole of having the operating
system use the user’s address, passed as parameters, with the operating system’s
security level, instead of with the user’s level. The IA-32 solves this problem by
dedicating 2 bits in every processor segment register to the requested protection
level. When an operating system routine is invoked, it can execute an instruction
that sets this 2-bit field in all address parameters with the protection level of the
user that called the routine. Thus, when these address parameters are loaded into
the segment registers, they will set the requested protection level to the proper
value. The IA-32 hardware then uses the requested protection level to prevent
any foolishness: no segment can be accessed from the system routine using those
parameters if it has a more privileged protection level than requested.

A Paged Virtual Memory Example: The 64-Bit
Opteron Memory Management

AMD engineers found few uses of the elaborate protection model described in the
previous section. The popular model is a flat, 32-bit address space, introduced by
the 80386, which sets all the base values of the segment registers to zero. Hence,
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AMD dispensed with the multiple segments in the 64-bit mode. It assumes that the
segment base is zero and ignores the limit field. The page sizes are 4 KiB, 2 MiB,
and 4 MiB.

The 64-bit virtual address of the AMD64 architecture is mapped onto 52-bit
physical addresses, although implementations can implement fewer bits to sim-
plify hardware. The Opteron, for example, uses 48-bit virtual addresses and 40-
bit physical addresses. AMD64 requires that the upper 16 bits of the virtual address
be just the sign extension of the lower 48 bits, which it calls canonical form.

The size of page tables for the 64-bit address space is alarming. Hence, AMD64
uses a multilevel hierarchical page table to map the address space to keep the size
reasonable. The number of levels depends on the size of the virtual address space.
Figure B.27 shows the four-level translation of the 48-bit virtual addresses of the
Opteron.

The offsets for each of these page tables come from four 9-bit fields. Address
translation starts with adding the first offset to the page-map level 4 base register
and then reading memory from this location to get the base of the next-level page
table. The next address offset is in turn added to this newly fetched address, and

63 48 47 39 38 30 29 21 20 12 11 0

000 . . . 0 or
111 . . . 1

Page-map L4 Page-dir-ptr Page-directory Page-table Page offset

Page-map L4
base addr (CR3)

Physical page frame number Page offset

Page-mp entry

Page-map L4 table

+

+

Page-dir-ptr entry

Page-directory
pointer table

+

Page-dir entry

Page-directory
table

+

Page-table entry

Page table

Physical address

Main memory

Figure B.27 The mapping of an Opteron virtual address. The Opteron virtual memory implementation with four
page table levels supports an effective physical address size of 40 bits. Each page table has 512 entries, so each level
field is 9 bits wide. The AMD64 architecture document allows the virtual address size to grow from the current 48 bits
to 64 bits, and the physical address size to grow from the current 40 bits to 52 bits.
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memory is accessed again to determine the base of the third page table. It happens
again in the same fashion. The last address field is added to this final base address,
and memory is read using this sum to (finally) get the physical address of the page
being referenced. This address is concatenated with the 12-bit page offset to get the
full physical address. Note that the page table in the Opteron architecture fits within
a single 4 KiB page.

The Opteron uses a 64-bit entry in each of these page tables. The first 12 bits are
reserved for future use, the next 52 bits contain the physical page frame number,
and the last 12 bits give the protection and use information. Although the fields
vary some between the page table levels, here are the basic ones:

■ Presence—Says that page is present in memory.

■ Read/write—Says whether page is read-only or read-write.

■ User/supervisor—Says whether a user can access the page or if it is limited to
the upper three privilege levels.

■ Dirty—Says if page has been modified.

■ Accessed—Says if page has been read or written since the bit was last cleared.

■ Page size—Says whether the last level is for 4 KiB pages or 4 MiB pages; if it’s
the latter, then the Opteron only uses three instead of four levels of pages.

■ No execute—Not found in the 80386 protection scheme, this bit was added to
prevent code from executing in some pages.

■ Page level cache disable—Says whether the page can be cached or not.

■ Page level write through—Says whether the page allows write back or write
through for data caches.

Because the Opteron usually goes through four levels of tables on a TLB
miss, there are three potential places to check protection restrictions. The Opteron
obeys only the bottom-level PTE, checking the others only to be sure the valid bit
is set.

As the entry is 8 bytes long, each page table has 512 entries, and the Opteron
has 4 KiB pages, the page tables are exactly one page long. Each of the four level
fields are 9 bits long, and the page offset is 12 bits. This derivation leaves
64� (4�9+12) or 16 bits to be sign extended to ensure canonical addresses.

Although we have explained translation of legal addresses, what prevents the
user from creating illegal address translations and getting into mischief? The page
tables themselves are protected from being written by user programs. Thus, the
user can try any virtual address, but by controlling the page table entries the oper-
ating system controls what physical memory is accessed. Sharing of memory
between processes is accomplished by having a page table entry in each address
space point to the same physical memory page.

The Opteron employs four TLBs to reduce address translation time, two for
instruction accesses and two for data accesses. Like multilevel caches, the Opteron
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reduces TLB misses by having two larger L2 TLBs: one for instructions and one
for data. Figure B.28 describes the data TLB.

Summary: Protection on the 32-Bit Intel Pentium Versus
the 64-Bit AMD Opteron

Memory management in the Opteron is typical of most desktop or server com-
puters today, relying on page-level address translation and correct operation of
the operating system to provide safety to multiple processes sharing the computer.
Although presented as alternatives, Intel has followed AMD’s lead and embraced
the AMD64 architecture. Hence, both AMD and Intel support the 64-bit extension
of 80x86; yet, for compatibility reasons, both support the elaborate segmented pro-
tection scheme.

If the segmented protection model looks harder to build than the AMD64
model, that’s because it is. This effort must be especially frustrating for the engi-
neers, because few customers use the elaborate protection mechanism. In addition,
the fact that the protection model is a mismatch to the simple paging protection of
UNIX-like systems means it will be used only by someone writing an operating
system especially for this computer, which hasn’t happened yet.

B.6 Fallacies and Pitfalls

Even a review of memory hierarchy has fallacies and pitfalls!

Pitfall Too small an address space.

Just five years after DEC and Carnegie Mellon University collaborated to design
the new PDP-11 computer family, it was apparent that their creation had a fatal

Parameter Description

Block size 1 PTE (8 bytes)

L1 hit time 1 clock cycle

L2 hit time 7 clock cycles

L1 TLB size Same for instruction and data TLBs: 40 PTEs per TLBs, with
32 4 KiB pages and 8 for 2 MiB or 4 MiB pages

L2 TLB size Same for instruction and data TLBs: 512 PTEs of 4 KiB pages

Block selection LRU

Write strategy (Not applicable)

L1 block placement Fully associative

L2 block placement 4-way set associative

Figure B.28 Memory hierarchy parameters of the Opteron L1 and L2 instruction and
data TLBs.
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flaw. An architecture announced by IBM six years before the PDP-11 was still
thriving, with minor modifications, 25 years later. And the DEC VAX, criticized
for including unnecessary functions, sold millions of units after the PDP-11 went
out of production. Why?

The fatal flaw of the PDP-11 was the size of its addresses (16 bits) as compared
with the address sizes of the IBM 360 (24–31 bits) and the VAX (32 bits). Address
size limits the program length, because the size of a program and the amount of
data needed by the program must be less than 2Address size. The reason the address
size is so hard to change is that it determines the minimum width of anything that
can contain an address: PC, register, memory word, and effective-address arith-
metic. If there is no plan to expand the address from the start, then the chances
of successfully changing address size are so slim that it usually means the end
of that computer family. Bell and Strecker (1976) put it like this:

There is only one mistake that can be made in computer design that is difficult
to recover from—not having enough address bits for memory addressing and
memory management. The PDP-11 followed the unbroken tradition of nearly
every known computer. [p. 2]

A partial list of successful computers that eventually starved to death for lack of
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel
80186, Intel 80286, Motorola 6800, AMI 6502, Zilog Z80, CRAY-1, and CRAY
X-MP.

The venerable 80x86 line bears the distinction of having been extended twice,
first to 32 bits with the Intel 80386 in 1985 and recently to 64 bits with the AMD
Opteron.

Pitfall Ignoring the impact of the operating system on the performance of the memory
hierarchy.

Figure B.29 shows the memory stall time due to the operating system spent on
three large workloads. About 25% of the stall time is either spent in misses in
the operating system or results from misses in the application programs because
of interference with the operating system.

Pitfall Relying on the operating systems to change the page size over time.

The Alpha architects had an elaborate plan to grow the architecture over time by
growing its page size, even building it into the size of its virtual address. When it
came time to grow page sizes with later Alphas, the operating system designers
balked and the virtual memory system was revised to grow the address space while
maintaining the 8 KiB page.

Architects of other computers noticed very high TLB miss rates, and so added
multiple, larger page sizes to the TLB. The hope was that operating systems pro-
grammers would allocate an object to the largest page that made sense, thereby
preserving TLB entries. After a decade of trying, most operating systems use these
“superpages” only for handpicked functions: mapping the display memory or other
I/O devices, or using very large pages for the database code.
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B.7 Concluding Remarks

The difficulty of building a memory system to keep pace with faster processors is
underscored by the fact that the raw material for main memory is the same as that
found in the cheapest computer. It is the principle of locality that helps us here—its
soundness is demonstrated at all levels of the memory hierarchy in current com-
puters, from disks to TLBs.

However, the increasing relative latency to memory, taking hundreds of clock
cycles in 2016, means that programmers and compiler writers must be aware of the
parameters of the caches and TLBs if they want their programs to perform well.

B.8 Historical Perspective and References

In Section M.3 (available online) we examine the history of caches, virtual mem-
ory, and virtual machines. (The historical section covers both this appendix and
Chapter 3.) IBM plays a prominent role in the history of all three. References
for further reading are included.

Additional reference: Gupta, S. Xiang, P., Yang, Y., Zhou, H., Locality prin-
ciple revisited: a probability-based quantitative approach. J. Parallel Distrib. Com-
put. 73 (7), 1011–1027.
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Pmake 47% 53% 14.1% 4.8% 10.9% 1.0% 6.2% 2.9% 25.8%

Multipgm 53% 47% 21.6% 3.4% 9.2% 4.2% 4.7% 3.4% 24.9%

Oracle 73% 27% 25.7% 10.2% 10.6% 2.6% 0.6% 2.8% 26.8%

Figure B.29 Misses and time spent in misses for applications and operating system. The operating system adds
about 25% to the execution time of the application. Each processor has a 64 KiB instruction cache and a two-level
data cache with 64 KiB in the first level and 256 KiB in the second level; all caches are direct mapped with 16-byte
blocks. Collected on Silicon Graphics POWER station 4D/340, a multiprocessor with four 33 MHz R3000 processors
running three application workloads under a UNIX System V—Pmake, a parallel compile of 56 files; Multipgm,
the parallel numeric program MP3D running concurrently with Pmake and a five-screen edit session; and Oracle,
running a restricted version of the TP-1 benchmark using the Oracle database. Data from Torrellas, J., Gupta, A., Hen-
nessy, J., 1992. Characterizing the caching and synchronization performance of amultiprocessor operating system. In:
Proceedings of the Fifth International Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), October 12–15, 1992, Boston (SIGPLAN Notices 27:9 (September)), pp. 162–174.

B.8 Historical Perspective and References ■ B-59



Exercises by Amr Zaky

B.1 [10/10/10/15] <B.1> You are trying to appreciate how important the principle of
locality is in justifying the use of a cache memory, so you experiment with a com-
puter having an L1 data cache and a main memory (you exclusively focus on data
accesses). The latencies (in CPU cycles) of the different kinds of accesses are as
follows: cache hit, 1 cycle; cache miss, 110 cycles; main memory access with cache
disabled, 105 cycles.

a. [10] <B.1> When you run a program with an overall miss rate of 3%, what
will the average memory access time (in CPU cycles) be?

b. [10] <B.1> Next, you run a program specifically designed to produce
completely random data addresses with no locality. Toward that end, you use an
array of size 1 GB (all of which fits in the main memory). Accesses to random
elements of this array are continuously made (using a uniform random number
generator to generate the elements indices). If your data cache size is 64 KB,
what will the average memory access time be?

c. [10] <B.1> If you compare the result obtained in part (b) with the main
memory access time when the cache is disabled, what can you conclude about
the role of the principle of locality in justifying the use of cache memory?

d. [15] <B.1> You observed that a cache hit produces a gain of 104 cycles
(1 cycle vs. 105), but it produces a loss of 5 cycles in the case of a
miss (110 cycles vs. 105). In the general case, we can express these two
quantities as G (gain) and L (loss). Using these two quantities (G and L),
identify the highest miss rate after which the cache use would be disadvanta-
geous.

B.2 [15/15] <B.1> For the purpose of this exercise, we assume that we have a 512-
byte cache with 64-byte blocks.Wewill also assume that the main memory is 2 KB
large. We can regard the memory as an array of 64-byte blocks: M0, M1,…, M31.
Figure B.30 sketches the memory blocks that can reside in different cache blocks if
the cache was direct-mapped.

a. [15] <B.1> Show the contents of the table if the cache is organized as a fully-
associative cache.

b. [15] <B.1> Repeat part (a) with the cache organized as a four-way set
associative cache.

B.3 [10/10/10/10/15/10/15/20] <B.1> Cache organization is often influenced by the
desire to reduce the cache's power consumption. For that purpose we assume that
the cache is physically distributed into a data array (holding the data), a tag array
(holding the tags), and replacement array (holding information needed by replace-
ment policy). Furthermore, every one of these arrays is physically distributed into
multiple subarrays (one per way) that can be individually accessed; for example, a
four-way set associative least recently used (LRU) cache would have four data sub-
arrays, four tag subarrays, and four replacement subarrays. We assume that the
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replacement subarrays are accessed once per access when the LRU replacement
policy is used, and once per miss if the first-in, first-out (FIFO) replacement policy
is used. It is not needed when a random replacement policy is used. For a specific
cache, it was determined that the accesses to the different arrays have the following
power consumption weights (Figure B.31):

a. [10] <B.1> A cache read hit. All arrays are read simultaneously.

b. [10] <B.1> Repeat part (a) for a cache read miss.

c. [10] <B.1> Repeat part (a) assuming that the cache access is split across two
cycles. In the first cycle, all the tag subarrays are accessed. In the second cycle,
only the subarray whose tag matched will be accessed.

d. [10]<B.1> Repeat part (c) for a cache read miss (no data array accesses in the
second cycle).

e. [15] <B.1> Repeat part (c) assuming that logic is added to predict the cache
way to be accessed. Only the tag subarray for the predicted way is accessed in
cycle one. A way hit (address match in predicted way) implies a cache hit. A
way miss dictates examining all the tag subarrays in the second cycle. In case of
a way hit, only one data subarray (the one whose tag matched) is accessed in
cycle two. Assume the way predictor hits.

Cache block Set Way Possible memory blocks

0 0 0 M0, M8, M16, M24

1 1 0 M1, M9, M17, M25

2 2 0 M2, M10, M18, M26

3 3 0 ….

4 4 0 ….

5 5 0 ….

6 6 0 ….

7 7 0 M7, M15, M23, M31

Figure B.30 Memory blocks distributed to direct-mapped cache.

Array
Power consumption weight
(per way accessed)

Data array 20 units

Tag Array 5 units

Miscellaneous array 1 unit

Memory access 200 units

Figure B.31 Power consumption costs of different operations.

Exercises by Amr Zaky ■ B-61



f. [10]<B.1> Repeat part (e) assuming that the way predictor misses (the way it
choses is wrong). When it fails, the way predictor adds an extra cycle in which it
accesses all the tag subarrays. Assume the way predictor miss is followed by a
cache read hit.

g. [15] <B.1> Repeat part (f) assuming a cache read miss.

h. [20] <B.1> Use parts (e), (f), and (g) for the general case where the workload
has the following statistics: way predictor miss rate=5% and cache miss
rate=3%. (Consider different replacement policies.)

Estimate the memory system (cache+memory) power usage (in power units) for
the following configurations. We assume the cache is four-way set associative.
Provide answers for the LRU, FIFO, and random replacement policies.

B.4 [10/10/15/15/15/20] <B.1> We compare the write bandwidth requirements of
write-through versus write-back caches using a concrete example. Let us assume
that we have a 64 KB cache with a line size of 32 bytes. The cache will allocate a
line on a write miss. If configured as a write-back cache, it will write back all of the
dirty line if it needs to be replaced. We will also assume that the cache is connected
to the lower level in the hierarchy through a 64-bit-wide (8-byte-wide) bus. The
number of CPU cycles for a B-bytes write access on this bus is

10 + 5 B
8�1
� �

, where the square brackets represent the “ceiling” function. For
example, an 8-byte write would take

10 + 5 8
8�1
� �¼ 10 cycles, whereas using the same formula a 12-byte write

would take 15 cycles.
Answer the following questions while referring to the C code snippet below:

... #define PORTION 1
...
base = 8*i;
for (unsigned int j = base; j < base + PORTION; j++)

//assume j is stored in a register
{

data[j] = j;
}

a. [10] <B.1> For a write-through cache, how many CPU cycles are spent on
write transfers to the memory for all the combined iterations of the j loop?

b. [10] <B.1> If the cache is configured as a write-back cache, how many CPU
cycles are spent on writing back a cache line?

c. [15] <B.1> Change PORTION to 8 and repeat part (a).

d. [15] <B.1>What is the minimum number of array updates to the same cache
line (before replacing it) that would render the write-back cache superior?

e. [15] <B.1> Think of a scenario where all the words of the cache line will be
written (not necessarily using the above code) and a write-through cache will
require fewer total CPU cycles than the write-back cache.
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B.5 [10/10/10/10/]<B.2>You are building a system around a processor with in-order
execution that runs at 1.1 GHz and has a CPI of 1.35 excluding memory accesses.
The only instructions that read or write data from memory are loads (20% of all
instructions) and stores (10% of all instructions). The memory system for this com-
puter is composed of a split L1 cache that imposes no penalty on hits. Both the I-
cache and D-cache are direct-mapped and hold 32 KB each. The I-cache has a 2%
miss rate and 32-byte blocks, and the D-cache is write-through with a 5%miss rate
and 16-byte blocks. There is a write buffer on the D-cache that eliminates stalls for
95% of all writes. The 512 KBwrite-back, unified L2 cache has 64-byte blocks and
an access time of 15 ns. It is connected to the L1 cache by a 128-bit data bus that
runs at 266 MHz and can transfer one 128-bit word per bus cycle. Of all memory
references sent to the L2 cache in this system, 80% are satisfied without going to
main memory. Also, 50% of all blocks replaced are dirty. The 128-bit-wide main
memory has an access latency of 60 ns, after which any number of bus words may
be transferred at the rate of one per cycle on the 128-bit-wide 133 MHzmain mem-
ory bus.

a. [10] <B.2>What is the average memory access time for instruction accesses?

b. [10] <B.2> What is the average memory access time for data reads?

c. [10] <B.2> What is the average memory access time for data writes?

d. [10] <B.2> What is the overall CPI, including memory accesses?

B.6 [10/15/15] <B.2> Converting miss rate (misses per reference) into misses per
instruction relies upon two factors: references per instruction fetched and the frac-
tion of fetched instructions that actually commits.

a. [10]<B.2> The formula for misses per instruction on page B-5 is written first
in terms of three factors: miss rate, memory accesses, and instruction count.
Each of these factors represents actual events. What is different about writing
misses per instruction as miss rate times the factor memory accesses per
instruction?

b. [15] <B.2> Speculative processors will fetch instructions that do not commit.
The formula for misses per instruction on page B-5 refers to misses per instruc-
tion on the execution path; that is, only the instructions that must actually be
executed to carry out the program. Convert the formula for misses per instruc-
tion on page B-5 into one that uses only miss rate, references per instruction
fetched, and fraction of fetched instructions that commit. Why rely upon these
factors rather than those in the formula on page B-5?

c. [15] <B.2> The conversion in part (b) could yield an incorrect value to the
extent that the value of the factor references per instruction fetched is not equal
to the number of references for any particular instruction. Rewrite the formula
of part (b) to correct this deficiency.

B.7 [20]<B.1, B.3> In systems with a write-through L1 cache backed by a write-back
L2 cache instead of main memory, a merging write buffer can be simplified.
Explain how this can be done. Are there situations where having a full write buffer
(instead of the simple version you have just proposed) could be helpful?
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B.8 [5/5/5] <B.3> We want to observe the following calculation

di ¼ ai + bi ∗ ci , i : 0 : 511ð Þ
Arrays a, b, c, and dmemory layout is displayed below (each has 512 4-byte-wide
integer elements).

The above calculation employs a for loop that runs through 512 iterations.
Assume a 32 Kbyte 4-way set associative cache with a single cycle access time.

The miss penalty is 100 CPU cycles/access, and so is the cost of a write-back. The
cache is a write-back on hits write-allocate on misses cache (Figure B.32).

a. [5]<B3>How many cycles will an iteration take if all three loads and single
store miss in the data cache?

b. [5]<B3> If the cache line size is 16 bytes, what is the average number of
cycles an average iteration will take? (Hint: Spatial locality!)

c. [5]<B3> If the cache line size is 64 bytes, what is the average number of
cycles an average iteration will take?

d. If the cache is direct-mapped and its size is reduced to 2048 bytes, what is the
average number of cycles an average iteration will take?

B.9 [20]<B.3> Increasing a cache's associativity (with all other parameters kept con-
stant) statistically reduces the miss rate. However, there can be pathological cases
where increasing a cache's associativity would increase the miss rate for a partic-
ular workload.

Consider the case of direct-mapped compared to a two-way set associative
cache of equal size. Assume that the set associative cache uses the LRU replace-
ment policy. To simplify, assume that the block size is one word. Now, construct a
trace of word accesses that would produce more misses in the two-way associative
cache.

(Hint: Focus on constructing a trace of accesses that are exclusively directed to
a single set of the two-way set associative cache, such that the same trace would
exclusively access two blocks in the direct-mapped cache.)

B.10 [10/10/15] <B.3> Consider a two-level memory hierarchy made of L1 and L2
data caches. Assume that both caches use write-back policy on write hit and both
have the same block size. List the actions taken in response to the following events:

a. [10] <B.3> An L1 cache miss when the caches are organized in an inclusive
hierarchy.

Mem. address in bytes Contents

0–2047 Array a

2048–4095 Array b

4096–6143 Array c

6144–8191 Array d

Figure B.32 Arrays layout in memory.
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b. [10] <B.3> An L1 cache miss when the caches are organized in an exclusive
hierarchy.

c. [15] <B.3> In both parts (a) and (b), consider the possibility that the evicted
line might be clean or dirty.

B.11 [15/20] <B.2, B.3> excluding some instructions from entering the cache can
reduce conflict misses.

a. [15] <B.3> Sketch a program hierarchy where parts of the program would be
better excluded from entering the instruction cache. (Hint: Consider a program
with code blocks that are placed in deeper loop nests than other blocks.)

b. [20] <B.2, B.3> Suggest software or hardware techniques to enforce exclu-
sion of certain blocks from the instruction cache.

B.12 [5/15]<B.3>Whereas larger caches have lower miss rates, they also tend to have
longer hit times.

Assume a direct-mapped 8 KB cache has 0.22 ns hit time and miss rate m1; also
assume a 4-way associative 64 KB cache has 0.52 ns hit time and a miss rate m2.

a. [5]<B.3> If the miss penalty is 100 ns, when would it be advantageous to use
the smaller cache to reduce the overall memory access time?

b. [15]<B.3>Repeat part (a) for miss penalties of 10 and 1000 cycles. Conclude
when it might be advantageous to use a smaller cache.

B.13 [15] <B.4> A program is running on a computer with a four-entry fully associa-
tive (micro) translation lookaside buffer (TLB) (Figure B.33):

The following is a trace of virtual page numbers accessed by a program. For
each access indicate whether it produces a TLB hit/miss and, if it accesses the page
table, whether it produces a page hit or fault. Put an X under the page table column
if it is not accessed (Figures B.34 and B.35).

B.14 [15/15/15/15/] <B.4> Some memory systems handle TLB misses in software (as
an exception), while others use hardware for TLB misses.

a. [15] <B.4> What are the trade-offs between these two methods for handling
TLB misses?

b. [15] <B.4> Will TLB miss handling in software always be slower than TLB
miss handling in hardware? Explain.

VP# PP# Entry valid

5 30 1

7 1 0

10 10 1

15 25 1

Figure B.33 TLB contents (problem B.12).
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c. [15]<B.4> Are there page table structures that would be difficult to handle in
hardware but possible in software? Are there any such structures that would be
difficult for software to handle but easy for hardware to manage?

d. [15] <B.4> Why are TLB miss rates for floating-point programs generally
higher than those for integer programs?

Virtual page index Physical page # Present

0 3 Y

1 7 N

2 6 N

3 5 Y

4 14 Y

5 30 Y

6 26 Y

7 11 Y

8 13 N

9 18 N

10 10 Y

11 56 Y

12 110 Y

13 33 Y

14 12 N

15 25 Y

Figure B.34 Page table contents.

Virtual page accessed TLB (hit or miss) Page table (hit or fault)

1

5

9

14

10

6

15

12

7

2

Figure B.35 Page access trace.
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B.15 [20/20] <B.5> It is possible to provide more flexible protection than that in the
Intel Pentium architecture by using a protection scheme similar to that used in the
Hewlett-Packard Precision Architecture (HP/PA). In such a scheme, each page
table entry contains a “protection ID” (key) along with access rights for the page.
On each reference, the CPU compares the protection ID in the page table entry with
those stored in each of four protection ID registers (access to these registers
requires that the CPU be in supervisor mode). If there is no match for the protection
ID in the page table entry or if the access is not a permitted access (writing to a read-
only page, for example), an exception is generated.

a. [20]<B.5> Explain how this model could be used to facilitate the construction
of operating systems from relatively small pieces of code that cannot overwrite
each other (microkernels). What advantages might such an operating system
have over a monolithic operating system in which any code in the OS can write
to any memory location?

b. [20]<B.5>A simple design change to this system would allow two protection
IDs for each page table entry, one for read access and the other for either write or
execute access (the field is unused if neither the writable nor executable bit is
set). What advantages might there be from having different protection IDs for
read and write capabilities? (Hint: Could this make it easier to share data and
code between processes?)
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C
Pipelining: Basic and
Intermediate Concepts

It is quite a three-pipe problem.

Sir Arthur Conan Doyle,
The Adventures of Sherlock Holmes



C.1 Introduction

Many readers of this text will have covered the basics of pipelining in another text
(such as our more basic text Computer Organization and Design) or in another
course. Because Chapter 3 builds heavily on this material, readers should ensure
that they are familiar with the concepts discussed in this appendix before proceed-
ing. As you read Chapter 3, you may find it helpful to turn to this material for a
quick review.

We begin the appendix with the basics of pipelining, including discussing the
data path implications, introducing hazards, and examining the performance of
pipelines. This section describes the basic five-stage RISC pipeline that is the basis
for the rest of the appendix. Section C.2 describes the issue of hazards, why they
cause performance problems, and how they can be dealt with. Section C.3 dis-
cusses how the simple five-stage pipeline is actually implemented, focusing on
control and how hazards are dealt with.

Section C.4 discusses the interaction between pipelining and various aspects of
instruction set design, including discussing the important topic of exceptions and
their interaction with pipelining. Readers unfamiliar with the concepts of precise
and imprecise interrupts and resumption after exceptions will find this material
useful, because they are key to understanding the more advanced approaches in
Chapter 3.

Section C.5 discusses how the five-stage pipeline can be extended to handle
longer-running floating-point instructions. Section C.6 puts these concepts
together in a case study of a deeply pipelined processor, the MIPS R4000/4400,
including both the eight-stage integer pipeline and the floating-point pipeline.
The MIPS R40000 is similar to a single-issue embedded processor, such as the
ARM Cortex-A5, which became available in 2010, and was used in several smart
phones and tablets.

Section C.7 introduces the concept of dynamic scheduling and the use of
scoreboards to implement dynamic scheduling. It is introduced as a cross-cutting
issue, because it can be used to serve as an introduction to the core concepts in
Chapter 3, which focused on dynamically scheduled approaches. Section C.7 is
also a gentle introduction to the more complex Tomasulo’s algorithm covered
in Chapter 3. Although Tomasulo’s algorithm can be covered and understood with-
out introducing scoreboarding, the scoreboarding approach is simpler and easier to
comprehend.

What Is Pipelining?

Pipelining is an implementation technique whereby multiple instructions are over-
lapped in execution; it takes advantage of parallelism that exists among the actions
needed to execute an instruction. Today, pipelining is the key implementation tech-
nique used to make fast processors, and even processors that cost less than a dollar
are pipelined.
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A pipeline is like an assembly line. In an automobile assembly line, there are
many steps, each contributing something to the construction of the car. Each step
operates in parallel with the other steps, although on a different car. In a computer
pipeline, each step in the pipeline completes a part of an instruction. Like the
assembly line, different steps are completing different parts of different instruc-
tions in parallel. Each of these steps is called a pipe stage or a pipe segment.
The stages are connected one to the next to form a pipe—instructions enter at
one end, progress through the stages, and exit at the other end, just as cars would
in an assembly line.

In an automobile assembly line, throughput is defined as the number of cars per
hour and is determined by how often a completed car exits the assembly line. Like-
wise, the throughput of an instruction pipeline is determined by how often an
instruction exits the pipeline. Because the pipe stages are hooked together, all
the stages must be ready to proceed at the same time, just as we would require
in an assembly line. The time required between moving an instruction one step
down the pipeline is a processor cycle. Because all stages proceed at the same time,
the length of a processor cycle is determined by the time required for the slowest
pipe stage, just as in an auto assembly line the longest step would determine the
time between advancing cars in the line. In a computer, this processor cycle is
almost always 1 clock cycle.

The pipeline designer’s goal is to balance the length of each pipeline stage, just
as the designer of the assembly line tries to balance the time for each step in the
process. If the stages are perfectly balanced, then the time per instruction on the
pipelined processor—assuming ideal conditions—is equal to

Time per instruction on unpipelined machine
Number of pipe stages

Under these conditions, the speedup from pipelining equals the number of pipe
stages, just as an assembly line with n stages can ideally produce cars n times
as fast. Usually, however, the stages will not be perfectly balanced; furthermore,
pipelining does involve some overhead. Thus, the time per instruction on the pipe-
lined processor will not have its minimum possible value, yet it can be close.

Pipelining yields a reduction in the average execution time per instruction. If
the starting point is a processor that takes multiple clock cycles per instruction, then
pipelining reduces the CPI. This is the primary view we will take.

Pipelining is an implementation technique that exploits parallelism among
the instructions in a sequential instruction stream. It has the substantial advantage
that, unlike some speedup techniques (see Chapter 4), it is not visible to the
programmer.

The Basics of the RISC V Instruction Set

Throughout this book we use RISC V, a load-store architecture, to illustrate the
basic concepts. Nearly all the ideas we introduce in this book are applicable to other
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processors, but the implementation may be much more complicated with complex
instructions. In this section, we make use of the core of the RISC V architecture;
see Chapter 1 for a full description. Although we use RISC V, the concepts are
significantly similar in that they will apply to any RISC, including the core archi-
tectures of ARM and MIPS. All RISC architectures are characterized by a few key
properties:

■ All operations on data apply to data in registers and typically change the entire
register (32 or 64 bits per register).

■ The only operations that affect memory are load and store operations that move
data from memory to a register or to memory from a register, respectively.
Load and store operations that load or store less than a full register (e.g., a byte,
16 bits, or 32 bits) are often available.

■ The instruction formats are few in number, with all instructions typically being
one size. In RISC V, the register specifiers: rs1, rs2, and rd are always in the
same place simplifying the control.

These simple properties lead to dramatic simplifications in the implementation of
pipelining, which is why these instruction sets were designed this way. Chapter 1
contains a full description of the RISC V ISA, and we assume the reader has read
Chapter 1.

A Simple Implementation of a RISC Instruction Set

To understand how a RISC instruction set can be implemented in a pipelined
fashion, we need to understand how it is implemented without pipelining. This
section shows a simple implementation where every instruction takes at most 5
clock cycles. We will extend this basic implementation to a pipelined version,
resulting in a much lower CPI. Our unpipelined implementation is not the most eco-
nomical or the highest-performance implementation without pipelining. Instead, it
is designed to lead naturally to a pipelined implementation. Implementing the
instruction set requires the introduction of several temporary registers that are
not part of the architecture; these are introduced in this section to simplify pipelin-
ing. Our implementation will focus only on a pipeline for an integer subset of a
RISC architecture that consists of load-store word, branch, and integer ALU
operations.

Every instruction in this RISC subset can be implemented in, at most, 5 clock
cycles. The 5 clock cycles are as follows.

1. Instruction fetch cycle (IF):

Send the program counter (PC) to memory and fetch the current instruction from
memory. Update the PC to the next sequential instruction by adding 4 (because
each instruction is 4 bytes) to the PC.
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2. Instruction decode/register fetch cycle (ID):

Decode the instruction and read the registers corresponding to register source
specifiers from the register file. Do the equality test on the registers as they
are read, for a possible branch. Sign-extend the offset field of the instruction
in case it is needed. Compute the possible branch target address by adding
the sign-extended offset to the incremented PC.

Decoding is done in parallel with reading registers, which is possible because
the register specifiers are at a fixed location in a RISC architecture. This tech-
nique is known as fixed-field decoding. Note that wemay read a register we don’t
use, which doesn’t help but also doesn’t hurt performance. (It does waste energy
to read an unneeded register, and power-sensitive designs might avoid this.) For
loads and ALU immediate operations, the immediate field is always in the same
place, so we can easily sign extend it. (For a more complete implementation of
RISC V, we would need to compute two different sign-extended values, because
the immediate field for store is in a different location.)

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing one
of three functions, depending on the instruction type.

■ Memory reference—The ALU adds the base register and the offset to form
the effective address.

■ Register-Register ALU instruction—The ALU performs the operation spec-
ified by the ALU opcode on the values read from the register file.

■ Register-Immediate ALU instruction—The ALU performs the operation
specified by the ALU opcode on the first value read from the register file
and the sign-extended immediate.

■ Conditional branch—Determine whether the condition is true.

In a load-store architecture the effective address and execution cycles can be
combined into a single clock cycle, because no instruction needs to simulta-
neously calculate a data address and perform an operation on the data.

4. Memory access (MEM):

If the instruction is a load, the memory does a read using the effective address
computed in the previous cycle. If it is a store, then the memory writes the data
from the second register read from the register file using the effective address.

5. Write-back cycle (WB):

■ Register-Register ALU instruction or load instruction:

Write the result into the register file, whether it comes from the memory system
(for a load) or from the ALU (for an ALU instruction).

In this implementation, branch instructions require three cycles, store instruc-
tions require four cycles, and all other instructions require five cycles. Assuming a
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branch frequency of 12% and a store frequency of 10%, a typical instruction dis-
tribution leads to an overall CPI of 4.66. This implementation, however, is not opti-
mal either in achieving the best performance or in using the minimal amount of
hardware given the performance level; we leave the improvement of this design
as an exercise for you and instead focus on pipelining this version.

The Classic Five-Stage Pipeline for a RISC Processor

We can pipeline the execution described in the previous section with almost no
changes by simply starting a new instruction on each clock cycle. (See why we
chose this design?) Each of the clock cycles from the previous section becomes
a pipe stage—a cycle in the pipeline. This results in the execution pattern shown
in Figure C.1, which is the typical way a pipeline structure is drawn. Although each
instruction takes 5 clock cycles to complete, during each clock cycle the hardware
will initiate a new instruction and will be executing some part of the five different
instructions.

You may find it hard to believe that pipelining is as simple as this; it’s not. In
this and the following sections, we will make our RISC pipeline “real” by dealing
with problems that pipelining introduces.

To start with, we have to determine what happens on every clock cycle of the
processor and make sure we don’t try to perform two different operations with the
same data path resource on the same clock cycle. For example, a single ALU can-
not be asked to compute an effective address and perform a subtract operation at
the same time. Thus, we must ensure that the overlap of instructions in the pipeline
cannot cause such a conflict. Fortunately, the simplicity of a RISC instruction set
makes resource evaluation relatively easy. Figure C.2 shows a simplified version
of a RISC data path drawn in pipeline fashion. As you can see, the major functional
units are used in different cycles, and hence overlapping the execution of multiple

Instruction number

Clock number

1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Figure C.1 Simple RISC pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle
execution. If an instruction is started every clock cycle, the performance will be up to five times that of a processor
that is not pipelined. The names for the stages in the pipeline are the same as those used for the cycles in the unpi-
pelined implementation: IF¼ instruction fetch, ID¼ instruction decode, EX¼execution, MEM¼memory access, and
WB¼write-back.
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instructions introduces relatively few conflicts. There are three observations on
which this fact rests.

First, we use separate instruction and data memories, which we would typically
implement with separate instruction and data caches (discussed in Chapter 2). The
use of separate caches eliminates a conflict for a single memory that would arise
between instruction fetch and data memory access. Notice that if our pipelined pro-
cessor has a clock cycle that is equal to that of the unpipelined version, the memory
systemmust deliver five times the bandwidth. This increased demand is one cost of
higher performance.

Second, the register file is used in the two stages: one for reading in ID and one
for writing in WB. These uses are distinct, so we simply show the register file in
two places. Hence, we need to perform two reads and one write every clock cycle.
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Figure C.2 The pipeline can be thought of as a series of data paths shifted in time. This figure shows the overlap
among the parts of the data path, with clock cycle 5 (CC 5) showing the steady-state situation. Because the reg-
ister file is used as a source in the ID stage and as a destination in the WB stage, it appears twice. We show that it
is read in one part of the stage and written in another by using a solid line, on the right or left, respectively, and a
dashed line on the other side. The abbreviation IM is used for instruction memory, DM for data memory, and CC
for clock cycle.
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To handle reads and a write to the same register (and for another reason, which will
become obvious shortly), we perform the register write in the first half of the clock
cycle and the read in the second half.

Third, Figure C.2 does not deal with the PC. To start a new instruction every
clock, we must increment and store the PC every clock, and this must be done dur-
ing the IF stage in preparation for the next instruction. Furthermore, we must also
have an adder to compute the potential branch target address during ID. One further
problem is that we need the ALU in the ALU stage to evaluate the branch condi-
tion. Actually, we don’t really need a full ALU to evaluate the comparison between
two registers, but we need enough of the function that it has to occur in this
pipestage.

Although it is critical to ensure that instructions in the pipeline do not attempt to
use the hardware resources at the same time, we must also ensure that instructions
in different stages of the pipeline do not interfere with one another. This separation
is done by introducing pipeline registers between successive stages of the pipeline,
so that at the end of a clock cycle all the results from a given stage are stored into a
register that is used as the input to the next stage on the next clock cycle. Figure C.3
shows the pipeline drawn with these pipeline registers.

Althoughmany figures will omit such registers for simplicity, they are required
to make the pipeline operate properly and must be present. Of course, similar reg-
isters would be needed even in a multicycle data path that had no pipelining
(because only values in registers are preserved across clock boundaries). In the case
of a pipelined processor, the pipeline registers also play the key role of carrying
intermediate results from one stage to another where the source and destination
may not be directly adjacent. For example, the register value to be stored during
a store instruction is read during ID, but not actually used until MEM; it is passed
through two pipeline registers to reach the data memory during the MEM stage.
Likewise, the result of an ALU instruction is computed during EX, but not actually
stored until WB; it arrives there by passing through two pipeline registers. It is
sometimes useful to name the pipeline registers, and we follow the convention
of naming them by the pipeline stages they connect, so the registers are called
IF/ID, ID/EX, EX/MEM, and MEM/WB.

Basic Performance Issues in Pipelining

Pipelining increases the processor instruction throughput—the number of instruc-
tions completed per unit of time—but it does not reduce the execution time of an
individual instruction. In fact, it usually slightly increases the execution time
of each instruction due to overhead in the control of the pipeline. The increase
in instruction throughput means that a program runs faster and has lower total exe-
cution time, even though no single instruction runs faster!

The fact that the execution time of each instruction does not decrease puts
limits on the practical depth of a pipeline, as we will see in the next section. In
addition to limitations arising from pipeline latency, limits arise from imbalance
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among the pipe stages and from pipelining overhead. Imbalance among the pipe
stages reduces performance because the clock can run no faster than the time
needed for the slowest pipeline stage. Pipeline overhead arises from the combina-
tion of pipeline register delay and clock skew. The pipeline registers add setup
time, which is the time that a register input must be stable before the clock signal
that triggers a write occurs, plus propagation delay to the clock cycle. Clock skew,
which is the maximum delay between when the clock arrives at any two registers,

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

DMIM
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DMIM
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DMIM
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Reg

Reg

Reg
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Figure C.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the registers
prevent interference between two different instructions in adjacent stages in the pipeline. The registers also play the
critical role of carrying data for a given instruction from one stage to the other. The edge-triggered property of reg-
isters—that is, that the values change instantaneously on a clock edge—is critical. Otherwise, the data from one
instruction could interfere with the execution of another!
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also contributes to the lower limit on the clock cycle. Once the clock cycle is as
small as the sum of the clock skew and latch overhead, no further pipelining is
useful, because there is no time left in the cycle for useful work. The interested
reader should see Kunkel and Smith (1986).

Example Consider the unpipelined processor in the previous section. Assume that it has a
4 GHz clock (or a 0.5 ns clock cycle) and that it uses four cycles for ALU oper-
ations and branches and five cycles for memory operations. Assume that the rel-
ative frequencies of these operations are 40%, 20%, and 40%, respectively.
Suppose that due to clock skew and setup, pipelining the processor adds 0.1 ns
of overhead to the clock. Ignoring any latency impact, how much speedup in
the instruction execution rate will we gain from a pipeline?

Answer The average instruction execution time on the unpipelined processor is

Average instruction execution time ¼ Clock cycle�Average CPI

¼ 0:5 ns� 40% + 20%ð Þ�4 + 40%�5½ �
¼ 0:5 ns�4:4

¼ 2:2 ns

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be 0.5+0.1 or 0.6 ns; this is the average instruction
execution time. Thus, the speedup from pipelining is

Speedup from pipelining ¼ Average instruction time unpipelined
Average instruction time pipelined

¼ 2:2 ns
0:6 ns

¼ 3:7 times

The 0.1 ns overhead essentially establishes a limit on the effectiveness of pipelin-
ing. If the overhead is not affected by changes in the clock cycle, Amdahl’s Law
tells us that the overhead limits the speedup.

This simple RISC pipeline would function just fine for integer instructions if
every instruction were independent of every other instruction in the pipeline. In
reality, instructions in the pipeline can depend on one another; this is the topic
of the next section.

C.2 The Major Hurdle of Pipelining—Pipeline Hazards

There are situations, called hazards, that prevent the next instruction in the instruc-
tion stream from executing during its designated clock cycle. Hazards reduce the
performance from the ideal speedup gained by pipelining. There are three classes
of hazards:
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1. Structural hazards arise from resource conflicts when the hardware cannot sup-
port all possible combinations of instructions simultaneously in overlapped exe-
cution. In modern processors, structural hazards occur primarily in special
purpose functional units that are less frequently used (such as floating point
divide or other complex long running instructions). They are not a major per-
formance factor, assuming programmers and compiler writers are aware of the
lower throughput of these instructions. Instead of spending more time on this
infrequent case, we focus on the two other hazards that are much more frequent.

2. Data hazards arise when an instruction depends on the results of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline.

3. Control hazards arise from the pipelining of branches and other instructions
that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline. Avoiding a haz-
ard often requires that some instructions in the pipeline be allowed to proceed while
others are delayed. For the pipelines we discuss in this appendix, when an instruction
is stalled, all instructions issued later than the stalled instruction—and hence not as
far along in the pipeline—are also stalled. Instructions issued earlier than the stalled
instruction—and hence farther along in the pipeline—must continue, because oth-
erwise the hazard will never clear. As a result, no new instructions are fetched during
the stall.Wewill see several examples of how pipeline stalls operate in this section—
don’t worry, they aren’t as complex as they might sound!

Performance of Pipelines With Stalls

A stall causes the pipeline performance to degrade from the ideal performance.
Let’s look at a simple equation for finding the actual speedup from pipelining,
starting with the formula from the previous section:

Speedup from pipelining ¼ Average instruction time unpipelined
Average instruction time pipelined

¼CPI unpipelined�Clock cycle unpipelined
CPI pipelined�Clock cycle pipelined

¼CPI unpipelined�Clock cycle unpipelined
CPI pipelined�Clock cycle pipelined

Pipelining can be thought of as decreasing the CPI or the clock cycle time. Because
it is traditional to use the CPI to compare pipelines, let’s start with that assumption.
The ideal CPI on a pipelined processor is almost always 1. Hence, we can compute
the pipelined CPI:

CPI pipelined¼ Ideal CPI + Pipeline stall clock cycles per instruction

¼ 1 + Pipelines stall clock cycles per instruction
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If we ignore the cycle time overhead of pipelining and assume that the stages
are perfectly balanced, then the cycle time of the two processors can be equal,
leading to

Speedup¼ CPI unpiplined
1 + Pipeline stall cycles per instruction

One important simple case is where all instructions take the same number of cycles,
which must also equal the number of pipeline stages (also called the depth of the
pipeline). In this case, the unpipelined CPI is equal to the depth of the pipeline,
leading to

Speedup¼ Pipeline depth
1 + Pipeline stall cycles per instruction

If there are no pipeline stalls, this leads to the intuitive result that pipelining can
improve performance by the depth of the pipeline.

Data Hazards

Amajor effect of pipelining is to change the relative timing of instructions by over-
lapping their execution. This overlap introduces data and control hazards. Data
hazards occur when the pipeline changes the order of read/write accesses to
operands so that the order differs from the order seen by sequentially executing
instructions on an unpipelined processor. Assume instruction i occurs in program
order before instruction j and both instructions use register x, then there are three
different types of hazards that can occur between i and j:

1. Read After Write (RAW) hazard: the most common, these occur when a
read of register x by instruction j occurs before the write of register x by instruc-
tion i. If this hazard were not prevented instruction j would use the wrong value
of x.

2. Write After Read (WAR) hazard: this hazard occurs when read of register x by
instruction i occurs after a write of register x by instruction j. In this case,
instruction i would use the wrong value of x. WAR hazards are impossible
in the simple five stage, integrer pipeline, but they occur when instructions
are reordered, as we will see when we discuss dynamically scheduled pipelines
beginning on page C.65.

3. Write AfterWrite (WAW) hazard: this hazard occurs when write of register x by
instruction i occurs after a write of register x by instruction j. When this occurs,
register x will have the wrong value going forward. WAR hazards are also
impossible in the simple five stage, integrer pipeline, but they occur when
instructions are reordered or when running times vary, as we will see later.

Chapter 3 explores the issues of data dependence and hazards in much more detail.
For now, we focus only on RAW hazards.
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Consider the pipelined execution of these instructions:

add x1,x2,x3
sub x4,x1,x5
and x6,x1,x7
or x8,x1,x9
xor x10,x1,x11

All the instructions after the add use the result of the add instruction. As shown in
Figure C.4, the add instruction writes the value of x1 in theWB pipe stage, but the
sub instruction reads the value during its ID stage, which results in a RAW hazard.
Unless precautions are taken to prevent it, the sub instruction will read the wrong
value and try to use it. In fact, the value used by the sub instruction is not even
deterministic: though we might think it logical to assume that sub would always
use the value of x1 that was assigned by an instruction prior to add, this is not

Figure C.4 The use of the result of the add instruction in the next three instructions causes a hazard, because the
register is not written until after those instructions read it.
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always the case. If an interrupt should occur between the add and sub
instructions, the WB stage of the add will complete, and the value of x1 at that
point will be the result of the add. This unpredictable behavior is obviously
unacceptable.

The and instruction also creates a possible RAW hazard. As we can see from
Figure C.4, the write of x1 does not complete until the end of clock cycle 5. Thus,
the and instruction that reads the registers during clock cycle 4 will receive the
wrong results.

The xor instruction operates properly because its register read occurs in
clock cycle 6, after the register write. The or instruction also operates without
incurring a hazard because we perform the register file reads in the second half
of the cycle and the writes in the first half. Note that the xor instruction still
depends on the add, but it no longer creates a hazard; a topic we explore in more
detail in Chapter 3.

The next subsection discusses a technique to eliminate the stalls for the hazard
involving the sub and and instructions.

Minimizing Data Hazard Stalls by Forwarding

The problem posed in Figure C.4 can be solved with a simple hardware technique
called forwarding (also called bypassing and sometimes short-circuiting). The key
insight in forwarding is that the result is not really needed by the sub until after the
add actually produces it. If the result can be moved from the pipeline register
where the add stores it to where the sub needs it, then the need for a stall can
be avoided. Using this observation, forwarding works as follows:

1. The ALU result from both the EX/MEM and MEM/WB pipeline registers is
always fed back to the ALU inputs.

2. If the forwarding hardware detects that the previous ALU operation has written
the register corresponding to a source for the current ALU operation, control
logic selects the forwarded result as the ALU input rather than the value read
from the register file.

Notice that with forwarding, if the sub is stalled, the add will be completed and
the bypass will not be activated. This relationship is also true for the case of an
interrupt between the two instructions.

As the example in Figure C.4 shows, we need to forward results not only from
the immediately previous instruction but also possibly from an instruction that
started two cycles earlier. Figure C.5 shows our example with the bypass paths
in place and highlighting the timing of the register read and writes. This code
sequence can be executed without stalls.

Forwarding can be generalized to include passing a result directly to the func-
tional unit that requires it: a result is forwarded from the pipeline register corre-
sponding to the output of one unit to the input of another, rather than just from
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the result of a unit to the input of the same unit. Take, for example, the following
sequence:

add x1,x2,x3
ld x4,0(x1)
sd x4,12(x1)

To prevent a stall in this sequence, we would need to forward the values of
the ALU output and memory unit output from the pipeline registers to the
ALU and data memory inputs. Figure C.6 shows all the forwarding paths for this
example.

Figure C.5 A set of instructions that depends on the add result uses forwarding paths to avoid the data hazard.
The inputs for the sub and and instructions forward from the pipeline registers to the first ALU input. The or
receives its result by forwarding through the register file, which is easily accomplished by reading the registers
in the second half of the cycle and writing in the first half, as the dashed lines on the registers indicate. Notice
that the forwarded result can go to either ALU input; in fact, both ALU inputs could use forwarded inputs from
either the same pipeline register or from different pipeline registers. This would occur, for example, if the and
instruction was and x6,x1,x4.
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Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypassing. Con-
sider the following sequence of instructions:

ld x1,0(x2)
sub x4,x1,x5
and x6,x1,x7
or x8,x1,x9

The pipelined data path with the bypass paths for this example is shown in
Figure C.7. This case is different from the situation with back-to-back ALU oper-
ations. The ld instruction does not have the data until the end of clock cycle 4 (its
MEM cycle), while the sub instruction needs to have the data by the beginning of
that clock cycle. Thus, the data hazard from using the result of a load instruction
cannot be completely eliminated with simple hardware. As Figure C.7 shows, such
a forwarding path would have to operate backward in time—a capability not yet
available to computer designers! We can forward the result immediately to the
ALU from the pipeline registers for use in the and operation, which begins 2 clock
cycles after the load. Likewise, the or instruction has no problem, because it
receives the value through the register file. For the sub instruction, the forwarded

Figure C.6 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the
memory output to the memory input to be stored. In addition, the ALU output is forwarded to the ALU input for the
address calculation of both the load and the store (this is no different than forwarding to another ALU operation). If
the store depended on an immediately preceding ALU operation (not shown herein), the result would need to be
forwarded to prevent a stall.
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result arrives too late—at the end of a clock cycle, when it is needed at the
beginning.

The load instruction has a delay or latency that cannot be eliminated by for-
warding alone. Instead, we need to add hardware, called a pipeline interlock, to
preserve the correct execution pattern. In general, a pipeline interlock detects a haz-
ard and stalls the pipeline until the hazard is cleared. In this case, the interlock stalls
the pipeline, beginning with the instruction that wants to use the data until the
source instruction produces it. This pipeline interlock introduces a stall or bubble,
just as it did for the structural hazard. The CPI for the stalled instruction increases
by the length of the stall (1 clock cycle in this case).

Figure C.8 shows the pipeline before and after the stall using the names of the
pipeline stages. Because the stall causes the instructions starting with the sub to
move one cycle later in time, the forwarding to the and instruction now goes
through the register file, and no forwarding at all is needed for the or instruction.
The insertion of the bubble causes the number of cycles to complete this sequence
to grow by one. No instruction is started during clock cycle 4 (and none finishes
during cycle 6).

Figure C.7 The load instruction can bypass its results to the and and or instructions, but not to the sub, because
that would mean forwarding the result in “negative time.”
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Branch Hazards

Control hazards can cause a greater performance loss for our RISC V pipeline than
do data hazards. When a branch is executed, it may or may not change the PC
to something other than its current value plus 4. Recall that if a branch changes
the PC to its target address, it is a taken branch; if it falls through, it is not
taken, or untaken. If instruction i is a taken branch, then the PC is usually not chan-
ged until the end of ID, after the completion of the address calculation and
comparison.

Figure C.9 shows that the simplest method of dealing with branches is to redo
the fetch of the instruction following a branch, once we detect the branch during ID
(when instructions are decoded). The first IF cycle is essentially a stall, because it
never performs useful work. You may have noticed that if the branch is untaken,
then the repetition of the IF stage is unnecessary because the correct instruction was
indeed fetched. We will develop several schemes to take advantage of this fact
shortly.

One stall cycle for every branch will yield a performance loss of 10% to 30%
depending on the branch frequency, so we will examine some techniques to deal
with this loss.

ld x1,0(x2) IF ID EX MEM WB

sub x4,x1,x5 IF ID EX MEM WB

and x6,x1,x7 IF ID EX MEM WB

or x8,x1,x9 IF ID EX MEM WB

ld x1,0(x2) IF ID EX MEM WB

sub x4,x1,x5 IF ID Stall EX MEM WB

and x6,x1,x7 IF Stall ID EX MEM WB

or x8,x1,x9 Stall IF ID EX MEM WB

Figure C.8 In the top half, we can see why a stall is needed: the MEM cycle of the load produces a value that is
needed in the EX cycle of the sub, which occurs at the same time. This problem is solved by inserting a stall, as
shown in the bottom half.

Branch instruction IF ID EX MEM WB

Branch successor IF IF ID EX MEM WB

Branch successor+1 IF ID EX MEM

Branch successor+2 IF ID EX

Figure C.9 Abranch causes a one-cycle stall in the five-stage pipeline. The instruction
after the branch is fetched, but the instruction is ignored, and the fetch is restarted once
the branch target is known. It is probably obvious that if the branch is not taken, the
second IF for branch successor is redundant. This will be addressed shortly.
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Reducing Pipeline Branch Penalties

There are many methods for dealing with the pipeline stalls caused by branch delay;
we discuss four simple compile time schemes in this subsection. In these four
schemes the actions for a branch are static—they are fixed for each branch during
the entire execution. The software can try to minimize the branch penalty using
knowledge of the hardware scheme and of branch behavior. We will then look at
hardware-based schemes that dynamically predict branch behavior, and Chapter 3
looks at more powerful hardware techniques for dynamic branch prediction.

The simplest scheme to handle branches is to freeze or flush the pipeline, holding
or deleting any instructions after the branch until the branch destination is known.
The attractiveness of this solution lies primarily in its simplicity both for hardware
and software. It is the solution used earlier in the pipeline shown in FigureC.9. In this
case, the branch penalty is fixed and cannot be reduced by software.

A higher-performance, and only slightly more complex, scheme is to treat
every branch as not taken, simply allowing the hardware to continue as if the
branch were not executed. Here, care must be taken not to change the processor
state until the branch outcome is definitely known. The complexity of this scheme
arises from having to know when the state might be changed by an instruction and
how to “back out” such a change.

In the simple five-stage pipeline, this predicted-not-taken or predicted-untaken
scheme is implemented by continuing to fetch instructions as if the branch were a
normal instruction. The pipeline looks as if nothing out of the ordinary is happen-
ing. If the branch is taken, however, we need to turn the fetched instruction into a
no-op and restart the fetch at the target address. Figure C.10 shows both situations.

An alternative scheme is to treat every branch as taken. As soon as the branch is
decoded and the target address is computed, we assume the branch to be taken and

Untaken branch instruction IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Instruction i+1 IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target+1 IF ID EX MEM WB

Branch target+2 IF ID EX MEM WB

Figure C.10 The predicted-not-taken scheme and the pipeline sequence when the branch is untaken (top) and
taken (bottom).When the branch is untaken, determined during ID, we fetch the fall-through and just continue. If the
branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following the branch to
stall 1 clock cycle.
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begin fetching and executing at the target. This buys us a one-cycle improvement
when the branch is actually taken, because we know the target address at the end
of ID, one cycle before we know whether the branch condition is satisfied in the
ALU stage. In either a predicted-taken or predicted-not-taken scheme, the compiler
can improve performance by organizing the code so that the most frequent path
matches the hardware’s choice.

A fourth scheme, which was heavily used in early RISC processors is called
delayed branch. In a delayed branch, the execution cycle with a branch delay
of one is

branch instruction
sequential successor1

branch target if taken

The sequential successor is in the branch delay slot. This instruction is executed
whether or not the branch is taken. The pipeline behavior of the five-stage pipeline
with a branch delay is shown in Figure C.11. Although it is possible to have a
branch delay longer than one, in practice almost all processors with delayed branch
have a single instruction delay; other techniques are used if the pipeline has a lon-
ger potential branch penalty.The job of the compiler is to make the successor
instructions valid and useful.

Although the delayed branch was useful for short simple pipelines at a time
when hardware prediction was too expensive, the technique complicates imple-
mentation when there is dynamic branch prediction. For this reason, RISC V
appropriately omitted delayed branches.

Untaken branch instruction IF ID EX MEM WB

Branch delay instruction (i+1) IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Branch delay instruction (i+1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target+1 IF ID EX MEM WB

Branch target+2 IF ID EX MEM WB

Figure C.11 The behavior of a delayed branch is the same whether or not the branch is taken. The instructions in
the delay slot (there was only one delay slot for most RISC architectures that incorporated them) are executed. If the
branch is untaken, execution continues with the instruction after the branch delay instruction; if the branch is taken,
execution continues at the branch target. When the instruction in the branch delay slot is also a branch, the meaning
is unclear: if the branch is not taken, what should happen to the branch in the branch delay slot? Because of this
confusion, architectures with delay branches often disallow putting a branch in the delay slot.
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Performance of Branch Schemes

What is the effective performance of each of these schemes? The effective pipeline
speedup with branch penalties, assuming an ideal CPI of 1, is

Pipeline speedup¼ Pipeline depth
1 + Pipeline stall cycles from branches

Because of the following:

Pipeline stall cycles from branches¼Branch frequency�Branch penalty

we obtain:

Pipeline speedup¼ Pipeline depth
1 +Branch frequency�Branch penalty

The branch frequency and branch penalty can have a component from both uncon-
ditional and conditional branches. However, the latter dominate because they are
more frequent.

Example For a deeper pipeline, such as that in a MIPS R4000 and later RISC processors, it
takes at least three pipeline stages before the branch-target address is known
and an additional cycle before the branch condition is evaluated, assuming no
stalls on the registers in the conditional comparison. A three-stage delay leads
to the branch penalties for the three simplest prediction schemes listed in
Figure C.12.

Find the effective addition to the CPI arising from branches for this pipeline,
assuming the following frequencies:

Unconditional branch 4%

Conditional branch, untaken 6%

Conditional branch, taken 10%

Answer We find the CPIs by multiplying the relative frequency of unconditional, condi-
tional untaken, and conditional taken branches by the respective penalties. The
results are shown in Figure C.13.

Branch scheme Penalty unconditional Penalty untaken Penalty taken

Flush pipeline 2 3 3

Predicted taken 2 3 2

Predicted untaken 2 0 3

Figure C.12 Branch penalties for the three simplest prediction schemes for a deeper pipeline.
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The differences among the schemes are substantially increased with this longer
delay. If the base CPI were 1 and branches were the only source of stalls, the ideal
pipeline would be 1.56 times faster than a pipeline that used the stall-pipeline
scheme. The predicted-untaken scheme would be 1.13 times better than the
stall-pipeline scheme under the same assumptions.

Reducing the Cost of Branches Through Prediction

As pipelines get deeper and the potential penalty of branches increases, using
delayed branches and similar schemes becomes insufficient. Instead, we need to
turn to more aggressive means for predicting branches. Such schemes fall into
two classes: low-cost static schemes that rely on information available at compile
time and strategies that predict branches dynamically based on program behavior.
We discuss both approaches here.

Static Branch Prediction

A key way to improve compile-time branch prediction is to use profile information
collected from earlier runs. The key observation that makes this worthwhile is that
the behavior of branches is often bimodally distributed; that is, an individual
branch is often highly biased toward taken or untaken. Figure C.14 shows the suc-
cess of branch prediction using this strategy. The same input data were used for
runs and for collecting the profile; other studies have shown that changing the input
so that the profile is for a different run leads to only a small change in the accuracy
of profile-based prediction.

The effectiveness of any branch prediction scheme depends both on the accu-
racy of the scheme and the frequency of conditional branches, which vary in SPEC
from 3% to 24%. The fact that the misprediction rate for the integer programs is
higher and such programs typically have a higher branch frequency is a major lim-
itation for static branch prediction. In the next section, we consider dynamic branch
predictors, which most recent processors have employed.

Additions to the CPI from branch costs

Branch scheme
Unconditional

branches
Untaken conditional

branches
Taken conditional

branches
All

branches

Frequency of
event

4% 6% 10% 20%

Stall pipeline 0.08 0.18 0.30 0.56

Predicted taken 0.08 0.18 0.20 0.46

Predicted untaken 0.08 0.00 0.30 0.38

Figure C.13 CPI penalties for three branch-prediction schemes and a deeper pipeline.
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Dynamic Branch Prediction and Branch-Prediction Buffers

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or
branch history table. A branch-prediction buffer is a small memory indexed by the
lower portion of the address of the branch instruction. The memory contains a bit
that says whether the branch was recently taken or not. This scheme is the simplest
sort of buffer; it has no tags and is useful only to reduce the branch delay when it is
longer than the time to compute the possible target PCs.

With such a buffer, we don’t know, in fact, if the prediction is correct—it may
have been put there by another branch that has the same low-order address bits. But
this doesn’t matter. The prediction is a hint that is assumed to be correct, and fetch-
ing begins in the predicted direction. If the hint turns out to be wrong, the predic-
tion bit is inverted and stored back.

This buffer is effectively a cache where every access is a hit, and, as we will see,
the performance of the buffer depends on both how often the prediction is for the
branch of interest and how accurate the prediction is when it matches. Before we
analyze the performance, it is useful to make a small, but important, improvement
in the accuracy of the branch-prediction scheme.
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Figure C.14 Misprediction rate on SPEC92 for a profile-based predictor varies widely
but is generally better for the floating-point programs, which have an average mis-
prediction rate of 9%with a standard deviation of 4%, than for the integer programs,
which have an average misprediction rate of 15% with a standard deviation of 5%.
The actual performance depends on both the prediction accuracy and the branch fre-
quency, which vary from 3% to 24%.
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This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we will likely predict incorrectly twice, rather than
once, when it is not taken, because the misprediction causes the prediction bit to be
flipped.

To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit
scheme, a prediction must miss twice before it is changed. Figure C.15 shows
the finite-state processor for a 2-bit prediction scheme.

A branch-prediction buffer can be implemented as a small, special “cache”
accessed with the instruction address during the IF pipe stage, or as a pair of bits
attached to each block in the instruction cache and fetched with the instruction. If
the instruction is decoded as a branch and if the branch is predicted as taken, fetch-
ing begins from the target as soon as the PC is known. Otherwise, sequential fetch-
ing and executing continue. As Figure C.15 shows, if the prediction turns out to be
wrong, the prediction bits are changed.

What kind of accuracy can be expected from a branch-prediction buffer using 2
bits per entry on real applications? Figure C.16 shows that for the SPEC89 bench-
marks a branch-prediction buffer with 4096 entries results in a prediction accuracy

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken

Predict taken
11

Predict taken
10

Predict not taken
01

Predict not taken
00

Figure C.15 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a
branch that strongly favors taken or not taken—as many branches do—will be mispre-
dicted less often thanwith a 1-bit predictor. The 2 bits are used to encode the four states
in the system. The 2-bit scheme is actually a specialization of a more general scheme
that has an n-bit saturating counter for each entry in the prediction buffer. With an
n-bit counter, the counter can take on values between 0 and 2n�1: when the counter
is greater than or equal to one-half of its maximum value (2n�1), the branch is pre-
dicted as taken; otherwise, it is predicted as untaken. Studies of n-bit predictors have
shown that the 2-bit predictors do almost as well, thusmost systems rely on 2-bit branch
predictors rather than the more general n-bit predictors.
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ranging from over 99% to 82%, or a misprediction rate of 1%–18%. A 4K entry
buffer, like that used for these results, is considered small in 2017, and a larger
buffer could produce somewhat better results.

As we try to exploit more ILP, the accuracy of our branch prediction becomes
critical. As we can see in Figure C.16, the accuracy of the predictors for integer
programs, which typically also have higher branch frequencies, is lower than
for the loop-intensive scientific programs.We can attack this problem in two ways:
by increasing the size of the buffer and by increasing the accuracy of the scheme we
use for each prediction. A buffer with 4K entries, however, as Figure C.17 shows,
performs quite comparably to an infinite buffer, at least for benchmarks like those
in SPEC. The data in Figure C.17 make it clear that the hit rate of the buffer is not
the major limiting factor. As we mentioned, simply increasing the number of bits
per predictor without changing the predictor structure also has little impact.
Instead, we need to look at how we might increase the accuracy of each predictor,
as we will in Chapter 3.

18%

tomcatv

spice

S
P

E
C

89
 b

en
ch

m
ar

ks
gcc

li

2% 4% 6% 8% 10% 12% 14% 16%

0%

1%

5%

9%

9%

12%

5%

10%

18%

nasa7

matrix300

doduc

fpppp

espresso

eqntott

1%

0%

Frequency of mispredictions

Figure C.16 Prediction accuracy of a 4096-entry 2-bit prediction buffer for the
SPEC89 benchmarks. The misprediction rate for the integer benchmarks (gcc, espresso,
eqntott, and li) is substantially higher (average of 11%) than that for the floating-point
programs (average of 4%). Omitting the floating-point kernels (nasa7, matrix300, and
tomcatv) still yields a higher accuracy for the FP benchmarks than for the integer bench-
marks. These data, as well as the rest of the data in this section, are taken from a branch-
prediction study done using the IBM Power architecture and optimized code for that
system. See Pan et al. (1992). Although these data are for an older version of a subset
of the SPEC benchmarks, the newer benchmarks are larger and would show slightly
worse behavior, especially for the integer benchmarks.
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C.3 How Is Pipelining Implemented?

Before we proceed to basic pipelining, we need to review a simple implementation
of an unpipelined version of RISC V.

A Simple Implementation of RISC V

In this section we follow the style of Section C.1, showing first a simple unpipe-
lined implementation and then the pipelined implementation. This time, however,
our example is specific to the RISC V architecture.
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Figure C.17 Prediction accuracy of a 4096-entry 2-bit prediction buffer versus an
infinite buffer for the SPEC89 benchmarks. Although these data are for an older
version of a subset of the SPEC benchmarks, the results would be comparable for
newerversionswithperhapsasmanyas8Kentriesneededtomatchaninfinite2-bitpredictor.
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In this subsection,we focus on a pipeline for an integer subset ofRISCV that con-
sists of load-store word, branch equal, and integer ALU operations. Later in this
appendixwewill incorporate thebasic floating-point operations.Althoughwediscuss
only a subset of RISCV, the basic principles can be extended to handle all the instruc-
tions; for example, adding store involves someadditional computingof the immediate
field. We initially used a less aggressive implementation of a branch instruction. We
show how to implement the more aggressive version at the end of this section.

Every RISCV instruction can be implemented in, at most, 5 clock cycles. The 5
clock cycles are as follows:

1. Instruction fetch cycle (IF):

IR Mem[PC];
NPC PC + 4;

Operation—Send out the PC and fetch the instruction from memory into the
instruction register (IR); increment the PC by 4 to address the next sequential
instruction. The IR is used to hold the instruction thatwill be neededon subsequent
clock cycles; likewise, the register NPC is used to hold the next sequential PC.

2. Instruction decode/register fetch cycle (ID):

A Regs[rs1];
B Regs[rs2];
Imm sign-extended immediate field of IR;

Operation—Decode the instruction and access the register file to read the reg-
isters (rs1 and rs2 are the register specifiers). The outputs of the general-purpose
registers are read into two temporary registers (A and B) for use in later clock
cycles. The lower 16 bits of the IR are also sign extended and stored into the
temporary register Imm, for use in the next cycle.

Decoding is done in parallel with reading registers, which is possible
because these fields are at a fixed location in the RISC V instruction format.
Because the immediate portion of a load and an ALU immediate is located
in an identical place in every RISC V instruction, the sign-extended immediate
is also calculated during this cycle in case it is needed in the next cycle. For
stores, a separate sign-extension is needed, because the immediate field is split
in two pieces.

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing one
of four functions depending on the RISC V instruction type:

■ Memory reference:

ALUOutput A + Imm;

Operation—The ALU adds the operands to form the effective address and
places the result into the register ALUOutput.
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■ Register-register ALU instruction:

ALUOutput A func B;

Operation—The ALU performs the operation specified by the function code
(a combination of the func3 and func7 fields) on the value in register A
and on the value in register B. The result is placed in the temporary register
ALUOutput.

■ Register-Immediate ALU instruction:

ALUOutput A op Imm;

Operation—The ALU performs the operation specified by the opcode on the
value in register A and on the value in register Imm. The result is placed in
the temporary register ALUOutput.

■ Branch:

ALUOutput NPC + (Imm << 2);
Cond (A == B)

Operation—The ALU adds the NPC to the sign-extended immediate value in
Imm, which is shifted left by 2 bits to create a word offset, to compute the
address of the branch target. Register A, which has been read in the prior cycle,
is checked to determine whether the branch is taken, by comparison with Reg-
ister B, because we consider only branch equal.

The load-store architecture of RISC V means that effective address and
execution cycles can be combined into a single clock cycle, because no instruc-
tion needs to simultaneously calculate a data address, calculate an instruction
target address, and perform an operation on the data. The other integer instruc-
tions not included herein are jumps of various forms, which are similar to
branches.

4. Memory access/branch completion cycle (MEM):

The PC is updated for all instructions: PC NPC;

■ Memory reference:

LMD Mem[ALUOutput] or
Mem[ALUOutput] B;

Operation—Access memory if needed. If the instruction is a load, data return
from memory and are placed in the LMD (load memory data) register; if it is a
store, then the data from the B register are written into memory. In either case,
the address used is the one computed during the prior cycle and stored in the
register ALUOutput.
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■ Branch:

if (cond) PC ALUOutput

Operation—If the instruction branches, the PC is replaced with the branch des-
tination address in the register ALUOutput.

5. Write-back cycle (WB):

■ Register-register or Register-immediate ALU instruction:

Regs[rd] ALUOutput;

■ Load instruction:

Regs[rd] LMD;

Operation—Write the result into the register file, whether it comes from the
memory system (which is in LMD) or from the ALU (which is in ALUOutput)
with rd designating the register.

Figure C.18 shows how an instruction flows through the data path. At the end
of each clock cycle, every value computed during that clock cycle and required on
a later clock cycle (whether for this instruction or the next) is written into a storage
device, which may be memory, a general-purpose register, the PC, or a temporary
register (i.e., LMD, Imm, A, B, IR, NPC, ALUOutput, or Cond). The temporary
registers hold values between clock cycles for one instruction, while the other stor-
age elements are visible parts of the state and hold values between successive
instructions.

Although all processors today are pipelined, this multicycle implementation is a
reasonable approximation of howmost processorswould have been implemented in
earlier times. A simple finite-state machine could be used to implement the control
following the five-cycle structure shown herein. For a much more complex proces-
sor,microcode control couldbeused. In either event, an instruction sequence like the
one described in this section would determine the structure of the control.

There are some hardware redundancies that could be eliminated in this multi-
cycle implementation. For example, there are two ALUs: one to increment the PC
and one used for effective address and ALU computation. Because they are not
needed on the same clock cycle, we could merge them by adding additional mul-
tiplexers and sharing the same ALU. Likewise, instructions and data could be
stored in the same memory, because the data and instruction accesses happen
on different clock cycles.

Rather than optimize this simple implementation, we will leave the design as it
is in Figure C.18, because this provides us with a better base for the pipelined
implementation.
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A Basic Pipeline for RISC V

As before, we can pipeline the data path of Figure C.18 with almost no changes by
starting a new instruction on each clock cycle. Because every pipe stage is active
on every clock cycle, all operations in a pipe stage must complete in 1 clock cycle
and any combination of operations must be able to occur at once. Furthermore,
pipelining the data path requires that values passed from one pipe stage to the next
must be placed in registers. Figure C.19 shows the RISC V pipeline with the appro-
priate registers, called pipeline registers or pipeline latches, between each pipeline
stage. The registers are labeled with the names of the stages they connect.
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Figure C.18 The implementation of the RISC V data path allows every instruction to be executed in 4 or 5 clock
cycles. Although the PC is shown in the portion of the data path that is used in instruction fetch and the registers are
shown in the portion of the data path that is used in instruction decode/register fetch, both of these functional units
are read as well as written by an instruction. Although we show these functional units in the cycle corresponding to
where they are read, the PC is written during the memory access clock cycle and the registers are written during the
write-back clock cycle. In both cases, the writes in later pipe stages are indicated by the multiplexer output (in mem-
ory access or write-back), which carries a value back to the PC or registers. These backward-flowing signals introduce
much of the complexity of pipelining, because they indicate the possibility of hazards.
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Figure C.19 is drawn so that connections through the pipeline registers from one
stage to another are clear.

All of the registers needed to hold values temporarily between clock cycles
within one instruction are subsumed into these pipeline registers. The fields of
the instruction register (IR), which is part of the IF/ID register, are labeled when
they are used to supply register names. The pipeline registers carry both data and
control from one pipeline stage to the next. Any value needed on a later pipeline
stage must be placed in such a register and copied from one pipeline register to
the next, until it is no longer needed. If we tried to just use the temporary registers
we had in our earlier unpipelined data path, values could be overwritten before all
uses were completed. For example, the field of a register operand used for a write
on a load or ALU operation is supplied from the MEM/WB pipeline register rather
than from the IF/ID register. This is because we want a load or ALU operation to
write the register designated by that operation, not the register field of the
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Figure C.19 The data path is pipelined by adding a set of registers, one between each pair of pipe stages. The
registers serve to convey values and control information from one stage to the next. We can also think of the PC as a
pipeline register, which sits before the IF stage of the pipeline, leading to one pipeline register for each pipe stage.
Recall that the PC is an edge-triggered register written at the end of the clock cycle; hence, there is no race condition
in writing the PC. The selection multiplexer for the PC has been moved so that the PC is written in exactly one stage
(IF). If we didn’t move it, there would be a conflict when a branch occurred, because two instructions would try to
write different values into the PC. Most of the data paths flow from left to right, which is from earlier in time to later.
The paths flowing from right to left (which carry the register write-back information and PC information on a branch)
introduce complications into our pipeline.
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instruction currently transitioning from IF to ID! This destination register field is
simply copied from one pipeline register to the next, until it is needed during the
WB stage.

Any instruction is active in exactly one stage of the pipeline at a time; therefore,
any actions taken on behalf of an instruction occur between a pair of pipeline reg-
isters. Thus, we can also look at the activities of the pipeline by examining what has
to happen on any pipeline stage depending on the instruction type. Figure C.20
shows this view. Fields of the pipeline registers are named so as to show the flow

Stage Any instruction

IF IF/ID.IR Mem[PC]
IF/ID.NPC,PC (if ((EX/MEM.opcode == branch) & EX/MEM.cond){EX/MEM.
ALUOutput} else {PC+4});

ID ID/EX.A Regs[IF/ID.IR[rs1]]; ID/EX.B Regs[IF/ID.IR[rs2]];
ID/EX.NPC IF/ID.NPC; ID/EX.IR IF/ID.IR;
ID/EX.Imm sign-extend(IF/ID.IR[immediate field]);

ALU instruction Load instruction Branch instruction

EX EX/MEM.IR ID/EX.IR;
EX/MEM.ALUOutput 
ID/EX.A func ID/EX.B;
or
EX/MEM.ALUOutput 
ID/EX.A op ID/EX.Imm;

EX/MEM.IR to ID/EX.IR
EX/MEM.ALUOutput 
ID/EX.A+ID/EX.Imm;

EX/MEM.B ID/EX.B;

EX/MEM.ALUOutput 
ID/EX.NPC +
(ID/EX.Imm<< 2);

EX/MEM.cond 
(ID/EX.A == ID/EX.B);

MEM MEM/WB.IR EX/MEM.IR;
MEM/WB.ALUOutput 
EX/MEM.ALUOutput;

MEM/WB.IR EX/MEM.IR;
MEM/WB.LMD 
Mem[EX/MEM.ALUOutput];
or
Mem[EX/MEM.ALUOutput] 
EX/MEM.B;

WB Regs[MEM/WB.IR[rd]] 
MEM/WB.ALUOutput;

For load only:
Regs[MEM/WB.IR[rd]] 
MEM/WB.LMD;

Figure C.20 Events on every pipe stage of the RISC V pipeline. Let’s review the actions in the stages that are specific
to the pipeline organization. In IF, in addition to fetching the instruction and computing the new PC, we store the
incremented PC both into the PC and into a pipeline register (NPC) for later use in computing the branch-target
address. This structure is the same as the organization in Figure C.19, where the PC is updated in IF from one of
two sources. In ID, we fetch the registers, extend the sign of the 12 bits of the IR (the immediate field), and pass along
the IR and NPC. During EX, we perform an ALU operation or an address calculation; we pass along the IR and the B
register (if the instruction is a store). We also set the value of cond to 1 if the instruction is a taken branch. During the
MEM phase, we cycle the memory, write the PC if needed, and pass along values needed in the final pipe stage.
Finally, during WB, we update the register field from either the ALU output or the loaded value. For simplicity we
always pass the entire IR from one stage to the next, although as an instruction proceeds down the pipeline, less
and less of the IR is needed.
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of data from one stage to the next. Notice that the actions in the first two stages are
independent of the current instruction type; they must be independent because the
instruction is not decoded until the end of the ID stage. The IF activity depends on
whether the instruction in EX/MEM is a taken branch. If so, then the branch-target
address of the branch instruction in EX/MEM is written into the PC at the end of IF;
otherwise, the incremented PC will be written back. (As we said earlier, this effect
of branches leads to complications in the pipeline that we deal with in the next few
sections.) The fixed-position encoding of the register source operands is critical to
allowing the registers to be fetched during ID.

To control this simple pipeline we need only determine how to set the con-
trol for the four multiplexers in the data path of Figure C.19. The two multi-
plexers in the ALU stage are set depending on the instruction type, which is
dictated by the IR field of the ID/EX register. The top ALU input multiplexer
is set by whether the instruction is a branch or not, and the bottom multiplexer is
set by whether the instruction is a register-register ALU operation or any other
type of operation. The multiplexer in the IF stage chooses whether to use the
value of the incremented PC or the value of the EX/MEM.ALUOutput (the
branch target) to write into the PC. This multiplexer is controlled by the field
EX/MEM.cond. The fourth multiplexer is controlled by whether the instruction
in the WB stage is a load or an ALU operation. In addition to these four mul-
tiplexers, there is one additional multiplexer needed that is not drawn in
Figure C.19, but whose existence is clear from looking at the WB stage of
an ALU operation. The destination register field is in one of two different places
depending on the instruction type (register-register ALU versus either ALU
immediate or load). Thus, we will need a multiplexer to choose the correct por-
tion of the IR in the MEM/WB register to specify the register destination field,
assuming the instruction writes a register.

Implementing the Control for the RISC V Pipeline

The process of letting an instruction move from the instruction decode stage (ID)
into the execution stage (EX) of this pipeline is usually called instruction issue; an
instruction that has made this step is said to have issued. For the RISC V integer
pipeline, all the data hazards can be checked during the ID phase of the pipeline. If
a data hazard exists, the instruction is stalled before it is issued. Likewise, we can
determine what forwarding will be needed during ID and set the appropriate con-
trols then. Detecting interlocks early in the pipeline reduces the hardware complex-
ity because the hardware never has to suspend an instruction that has updated the
state of the processor, unless the entire processor is stalled. Alternatively, we can
detect the hazard or forwarding at the beginning of a clock cycle that uses an oper-
and (EX and MEM for this pipeline). To show the differences in these two
approaches, we will show how the interlock for a read after write (RAW) hazard
with the source coming from a load instruction (called a load interlock) can be
implemented by a check in ID, while the implementation of forwarding paths to
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the ALU inputs can be done during EX. Figure C.21 lists the variety of circum-
stances that we must handle.

Let’s start with implementing the load interlock. If there is a RAW hazard with
the source instruction being a load, the load instruction will be in the EX stage
when an instruction that needs the load data will be in the ID stage. Thus, we
can describe all the possible hazard situations with a small table, which can be
directly translated to an implementation. Figure C.22 shows a table that detects
all load interlocks when the instruction using the load result is in the ID stage.

Once a hazard has been detected, the control unit must insert the pipeline stall
and prevent the instructions in the IF and ID stages from advancing. As we said
earlier, all the control information is carried in the pipeline registers. (Carrying
the instruction along is enough, because all control is derived from it.) Thus, when
we detect a hazard we need only change the control portion of the ID/EX pipeline
register to all 0s, which happens to be a no-op (an instruction that does nothing,
such as add x0,x0,x0). In addition, we simply recirculate the contents of the
IF/ID registers to hold the stalled instruction. In a pipeline with more complex haz-
ards, the same ideas would apply: we can detect the hazard by comparing some set
of pipeline registers and shift in no-ops to prevent erroneous execution.

Situation
Example code
sequence Action

No dependence ld x1,45(x2)
add x5,x6,x7
sub x8,x6,x7
or x9,x6,x7

No hazard possible because no dependence
exists on x1 in the immediately following
three instructions

Dependence
requiring stall

ld x1,45(x2)
add x5,x1,x7
sub x8,x6,x7
or x9,x6,x7

Comparators detect the use of x1 in the add
and stall the add (and sub and or) before
the add begins EX

Dependence
overcome by
forwarding

ld x1,45(x2)
add x5,x6,x7
sub x8,x1,x7
or x9,x6,x7

Comparators detect use of x1 in sub and
forward result of load to ALU in time for
sub to begin EX

Dependence with
accesses in order

ld x1,45(x2)
add x5,x6,x7
sub x8,x6,x7
or x9,x1,x7

No action required because the read of x1 by
or occurs in the second half of the ID phase,
while the write of the loaded data occurred in
the first half

Figure C.21 Situations that the pipeline hazard detection hardware can see by com-
paring the destination and sources of adjacent instructions. This table indicates that
the only comparison needed is between the destination and the sources on the two
instructions following the instruction that wrote the destination. In the case of a stall,
the pipeline dependences will look like the third case once execution continues (depen-
dence overcome by forwarding). Of course, hazards that involve x0 can be ignored
because the register always contains 0, and the preceding test could be extended to
do this.
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Implementing the forwarding logic is similar, although there are more cases to
consider. The key observation needed to implement the forwarding logic is that
the pipeline registers contain both the data to be forwarded as well as the source
and destination register fields. All forwarding logically happens from the ALU or
data memory output to the ALU input, the data memory input, or the zero detec-
tion unit. Thus, we can implement the forwarding by a comparison of the desti-
nation registers of the IR contained in the EX/MEM and MEM/WB stages against
the source registers of the IR contained in the ID/EX and EX/MEM registers.
Figure C.23 shows the comparisons and possible forwarding operations where
the destination of the forwarded result is an ALU input for the instruction cur-
rently in EX.

In addition to the comparators and combinational logic that we must determine
when a forwarding path needs to be enabled, we also must enlarge the multiplexers
at the ALU inputs and add the connections from the pipeline registers that are used
to forward the results. Figure C.24 shows the relevant segments of the pipelined
data path with the additional multiplexers and connections in place.

For RISC V, the hazard detection and forwarding hardware is reasonably sim-
ple; we will see that things become somewhat more complicated when we extend
this pipeline to deal with floating point. Before we do that, we need to handle
branches.

Dealing With Branches in the Pipeline

In RISC V, conditional branches depend on comparing two register values, which
we assume occurs during the EX cycle, and uses the ALU for this function.We will
need to also compute the branch target address. Because testing the branch condi-
tion and determining the next PC will determine what the branch penalty is, we
would like to compute both the possible PCs and choose the correct PC before
the end of the EX cycle. We can do this by adding a separate adder that computes
the branch target address during ID. Because the instruction is not yet decoded, we
will be computing a possible target as if every instruction were a branch. This is

Opcode field of ID/EX
(ID/EX.IR0..5)

Opcode field of IF/ID
(IF/ID.IR0..6) Matching operand fields

Load Register-register ALU, load,
store,
ALU immediate, or branch

ID/EX.IR[rd] ¼¼ IF/
ID.IR[rs1]

Load Register-register ALU, or
branch

ID/EX.IR[rd] ¼¼ IF/
ID.IR[rs2]

Figure C.22 The logic to detect the need for load interlocks during the ID stage of an
instruction requires two comparisons, one for each possible source. Remember that
the IF/ID register holds the state of the instruction in ID, which potentially uses the load
result, while ID/EX holds the state of the instruction in EX, which is the load instruction.

C.3 How Is Pipelining Implemented? ■ C-35



likely faster than computing the target and evaluating the condition both in EX, but
does use slightly more energy.

Figure C.25 shows a pipelined data path assuming the adder in ID and the eval-
uation of the branch condition in EX, a minor change of the pipeline structure. This
pipeline will incur a two-cycle penalty on branches. In some early RISC proces-
sors, such as MIPS, the condition test on branches was restricted to allow the test to
occur in ID, reducing the branch delay to one cycle. Of course, that meant that an
ALU operation to a register followed by a conditional branch based on that register
incurred a data hazard, which does not occur if the branch condition is evaluated
in EX.

As pipeline depths increased, the branch delay increased, which made dynamic
branch prediction necessary. For example, a processor with separate decode and

Pipeline
register of
source
instruction

Opcode of
source
instruction

Pipeline
register of
destination
instruction

Opcode of
destination
instruction

Destination
of the
forwarded
result

Comparison (if
equal then
forward)

EX/MEM Register-
register ALU,
ALU immediate

ID/EX Register-register
ALU, ALU
immediate, load, store,
branch

Top ALU
input

EX/MEM.IR[rd] ==
ID/EX.IR[rs1]

EX/MEM Register-
register ALU,
ALU immediate

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR[rd] ==
ID/EX.IR[rs2]

MEM/WB Register-
register ALU,
ALU
immediate,
Load

ID/EX Register-register
ALU, ALU
immediate, load, store,
branch

Top ALU
input

MEM/WB.IR[rd] ==
ID/EX.IR[rs1]

MEM/WB Register-
register ALU,
ALU
immediate,
Load

ID/EX Register-register ALU Bottom ALU
input

MEM/WB.IR[rd] ==
ID/EX.IR[rs2]

Figure C.23 Forwarding of data to the two ALU inputs (for the instruction in EX) can occur from the ALU result (in
EX/MEM or in MEM/WB) or from the load result in MEM/WB. There are 10 separate comparisons needed to tell
whether a forwarding operation should occur. The top and bottom ALU inputs refer to the inputs corresponding
to the first and second ALU source operands, respectively, and are shown explicitly in Figure C.18 on page C.30
and in Figure C.24 on page C.36. Remember that the pipeline latch for destination instruction in EX is ID/EX, while
the source values come from the ALUOutput portion of EX/MEM or MEM/WB or the LMD portion of MEM/WB. There is
one complication not addressed by this logic: dealing with multiple instructions that write the same register. For
example, during the code sequence add x1, x2, x3; addi x1, x1, 2; sub x4, x3, x1, the logic must ensure
that the sub instruction uses the result of the addi instruction rather than the result of the add instruction. The logic
shown here can be extended to handle this case by simply testing that forwarding from MEM/WB is enabled only
when forwarding from EX/MEM is not enabled for the same input. Because the addi result will be in EX/MEM, it will
be forwarded, rather than the add result in MEM/WB.
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register fetch stages will probably have a branch delay that is at least 1 clock cycle
longer. The branch delay, unless it is dealt with, turns into a branch penalty. Many
older processors that implement more complex instruction sets have branch delays
of 4 clock cycles or more, and large, deeply pipelined processors often have branch
penalties of 6 or 7. Aggressive high-end superscalars, such as the Intel i7 discussed
in Chapter 3, may have branch penalties of 10–15 cycles! In general, the deeper the
pipeline, the worse the branch penalty in clock cycles, and the more critical that
branches be accurately predicted.

C.4 What Makes Pipelining Hard to Implement?

Now that we understand how to detect and resolve hazards, we can deal with some
complications that we have avoided so far. The first part of this section considers
the challenges of exceptional situations where the instruction execution order is
changed in unexpected ways. In the second part of this section, we discuss some
of the challenges raised by different instruction sets.
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ID/EX EX/MEM MEM/WB
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Figure C.24 Forwarding of results to the ALU requires the addition of three extra
inputs on each ALU multiplexer and the addition of three paths to the new inputs.
The paths correspond to a bypass of: (1) the ALU output at the end of the EX, (2) the ALU
output at the end of the MEM stage, and (3) the memory output at the end of the
MEM stage.
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Dealing With Exceptions

Exceptional situations are harder to handle in a pipelined processor because the over-
lapping of instructions makes it more difficult to know whether an instruction can
safely change the state of the processor. In a pipelined processor, an instruction is
executed piece by piece and is not completed for several clock cycles. Unfortunately,
other instructions in the pipeline can raise exceptions that may force the processor to
abort the instructions in the pipeline before they complete. Before we discuss these
problems and their solutions in detail, we need to understandwhat types of situations
can arise and what architectural requirements exist for supporting them.

Types of Exceptions and Requirements

The terminology used to describe exceptional situations where the normal execu-
tion order of instruction is changed varies among processors. The terms interrupt,
fault, and exception are used, although not in a consistent fashion. We use the term
exception to cover all these mechanisms, including the following:

■ I/O device request

■ Invoking an operating system service from a user program
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Figure C.25 To minimize the impact of deciding whether a conditional branch is taken, we compute the branch
target address in ID while doing the conditional test and final selection of next PC in EX. As mentioned in
Figure C.19, the PC can be thought of as a pipeline register (e.g., as part of ID/IF), which is written with the address
of the next instruction at the end of each IF cycle.
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■ Tracing instruction execution

■ Breakpoint (programmer-requested interrupt)

■ Integer arithmetic overflow

■ FP arithmetic anomaly

■ Page fault (not in main memory)

■ Misaligned memory accesses (if alignment is required)

■ Memory protection violation

■ Using an undefined or unimplemented instruction

■ Hardware malfunctions

■ Power failure

When we wish to refer to some particular class of such exceptions, we will use a
longer name, such as I/O interrupt, floating-point exception, or page fault.

Although we use the term exception to cover all of these events, individual
events have important characteristics that determine what action is needed in the
hardware. The requirements on exceptions can be characterized on five semi-
independent axes:

1. Synchronous versus asynchronous—If the event occurs at the same place every
time the program is executed with the same data and memory allocation, the
event is synchronous. With the exception of hardware malfunctions, asynchro-
nous events are caused by devices external to the processor and memory. Asyn-
chronous events usually can be handled after the completion of the current
instruction, which makes them easier to handle.

2. User requested versus coerced—If the user task directly asks for it, it is a user-
requested event. In some sense, user-requested exceptions are not really excep-
tions, because they are predictable. They are treated as exceptions, however,
because the same mechanisms that are used to save and restore the state are used
for these user-requested events. Because the only function of an instruction that
triggers this exception is to cause the exception, user-requested exceptions can
always be handled after the instruction has completed. Coerced exceptions are
caused by some hardware event that is not under the control of the user program.
Coerced exceptions are harder to implement because they are not predictable.

3. User maskable versus user nonmaskable—If an event can be masked or dis-
abled by a user task, it is user maskable. This mask simply controls whether
the hardware responds to the exception or not.

4. Within versus between instructions—This classification depends on whether
the event prevents instruction completion by occurring in the middle of execu-
tion—no matter how short—or whether it is recognized between instructions.
Exceptions that occur within instructions are usually synchronous, because
the instruction triggers the exception. It’s harder to implement exceptions that
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occur within instructions than those between instructions, because the instruc-
tion must be stopped and restarted. Asynchronous exceptions that occur within
instructions arise from catastrophic situations (e.g., hardware malfunction) and
always cause program termination.

5. Resume versus terminate—If the program’s execution always stops after the
interrupt, it is a terminating event. If the program’s execution continues after
the interrupt, it is a resuming event. It is easier to implement exceptions that
terminate execution, because the processor need not be able to restart execution
of the same program after handling the exception.

Figure C.26 classifies the preceding examples according to these five categories.
The difficult task is implementing interrupts occurring within instructions where
the instruction must be resumed. Implementing such exceptions requires that
another program must be invoked to save the state of the executing program, cor-
rect the cause of the exception, and then restore the state of the program before the

Exception type
Synchronous vs.
asynchronous

User request
vs. coerced

User
maskable vs.
nonmaskable

Within vs.
between
instructions

Resume vs.
terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction
execution

Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic
overflow

Synchronous Coerced User maskable Within Resume

Floating-point arithmetic
overflow or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory
accesses

Synchronous Coerced User maskable Within Resume

Memory protection
violations

Synchronous Coerced Nonmaskable Within Resume

Using undefined
instructions

Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

Figure C.26 Five categories are used to define what actions are needed for the different exception types. Excep-
tions that must allow resumption are marked as resume, although the software may often choose to terminate the
program. Synchronous, coerced exceptions occurring within instructions that can be resumed are the most difficult
to implement. We might expect that memory protection access violations would always result in termination; how-
ever, modern operating systems use memory protection to detect events such as the first attempt to use a page or
the first write to a page. Thus, processors should be able to resume after such exceptions.
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instruction that caused the exception can be tried again. This process must be effec-
tively invisible to the executing program. If a pipeline provides the ability for the
processor to handle the exception, save the state, and restart without affecting the
execution of the program, the pipeline or processor is said to be restartable. While
early supercomputers and microprocessors often lacked this property, almost all
processors today support it, at least for the integer pipeline, because it is needed
to implement virtual memory (see Chapter 2).

Stopping and Restarting Execution

As in unpipelined implementations, the most difficult exceptions have two prop-
erties: (1) they occur within instructions (that is, in the middle of the instruction
execution corresponding to EX or MEM pipe stages), and (2) they must be restart-
able. In our RISC V pipeline, for example, a virtual memory page fault resulting
from a data fetch cannot occur until sometime in the MEM stage of the instruction.
By the time that fault is seen, several other instructions will be in execution. A page
fault must be restartable and requires the intervention of another process, such as
the operating system. Thus, the pipeline must be safely shut down and the state
saved so that the instruction can be restarted in the correct state. Restarting is usu-
ally implemented by saving the PC of the instruction at which to restart. If the
restarted instruction is not a branch, then we will continue to fetch the sequential
successors and begin their execution in the normal fashion. If the restarted instruc-
tion is a branch, then we will reevaluate the branch condition and begin fetching
from either the target or the fall-through. When an exception occurs, the pipeline
control can take the following steps to save the pipeline state safely:

1. Force a trap instruction into the pipeline on the next IF.

2. Until the trap is taken, turn off all writes for the faulting instruction and for all
instructions that follow in the pipeline; this can be done by placing zeros into the
pipeline latches of all instructions in the pipeline, starting with the instruction
that generates the exception, but not those that precede that instruction. This
prevents any state changes for instructions that will not be completed before
the exception is handled.

3. After the exception-handling routine in the operating system receives control, it
immediately saves the PC of the faulting instruction. This value will be used to
return from the exception later.

After the exception has been handled, special instructions return the processor from
the exception by reloading the PCs and restarting the instruction stream (using the
exception return in RISC V). If the pipeline can be stopped so that the instructions
just before the faulting instruction are completed and those after it can be restarted
from scratch, the pipeline is said to have precise exceptions. Ideally, the faulting
instruction would not have changed the state, and correctly handling some excep-
tions requires that the faulting instruction have no effects. For other exceptions,
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such as floating-point exceptions, the faulting instruction on some processors
writes its result before the exception can be handled. In such cases, the hardware
must be prepared to retrieve the source operands, even if the destination is identical
to one of the source operands. Because floating-point operations may run for many
cycles, it is highly likely that some other instruction may have written the source
operands (as we will see in the next section, floating-point operations often com-
plete out of order). To overcome this, many recent high-performance processors
have introduced two modes of operation. One mode has precise exceptions and
the other (fast or performance mode) does not. Of course, the precise exception
mode is slower, since it allows less overlap among floating-point instructions.

Supporting precise exceptions is a requirement in many systems, while in
others it is “just” valuable because it simplifies the operating system interface.
At a minimum, any processor with demand paging or IEEE arithmetic trap han-
dlers must make its exceptions precise, either in the hardware or with some soft-
ware support. For integer pipelines, the task of creating precise exceptions is easier,
and accommodating virtual memory strongly motivates the support of precise
exceptions for memory references. In practice, these reasons have led designers
and architects to always provide precise exceptions for the integer pipeline. In this
section we describe how to implement precise exceptions for the RISC V integer
pipeline. We will describe techniques for handling the more complex challenges
arising in the floating-point pipeline in Section C.5.

Exceptions in RISC V

Figure C.27 shows the RISC V pipeline stages and which problem exceptions
might occur in each stage. With pipelining, multiple exceptions may occur in
the same clock cycle because there are multiple instructions in execution. For
example, consider this instruction sequence:

ld IF ID EX MEM WB

add IF ID EX MEM WB

Pipeline stage Problem exceptions occurring

IF Page fault on instruction fetch; misaligned memory access; memory
protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory access; memory
protection violation

WB None

Figure C.27 Exceptions that may occur in the RISC V pipeline. Exceptions raised from
instruction or data memory access account for six out of eight cases.

C-42 ■ Appendix C Pipelining: Basic and Intermediate Concepts



This pair of instructions can cause a data page fault and an arithmetic exception at
the same time, because the ld is in the MEM stage while the add is in the EX
stage. This case can be handled by dealing with only the data page fault and then
restarting the execution. The second exception will reoccur (but not the first, if
the software is correct), and when the second exception occurs it can be handled
independently.

In reality, the situation is not as straightforward as this simple example. Excep-
tions may occur out of order; that is, an instruction may cause an exception before
an earlier instruction causes one. Consider again the preceding sequence of instruc-
tions, ld followed by add. The ld can get a data page fault, seen when the instruc-
tion is in MEM, and the add can get an instruction page fault, seen when the add
instruction is in IF. The instruction page fault will actually occur first, even though
it is caused by a later instruction!

Because we are implementing precise exceptions, the pipeline is required to
handle the exception caused by the ld instruction first. To explain how this works,
let’s call the instruction in the position of the ld instruction i, and the instruction in
the position of the add instruction i+1. The pipeline cannot simply handle an
exception when it occurs in time, because that will lead to exceptions occurring
out of the unpipelined order. Instead, the hardware posts all exceptions caused
by a given instruction in a status vector associated with that instruction. The excep-
tion status vector is carried along as the instruction goes down the pipeline. Once an
exception indication is set in the exception status vector, any control signal that may
cause a data value to be written is turned off (this includes both register writes and
memory writes). Because a store can cause an exception duringMEM, the hardware
must be prepared to prevent the store from completing if it raises an exception.

When an instruction enters WB (or is about to leave MEM), the exception sta-
tus vector is checked. If any exceptions are posted, they are handled in the order in
which they would occur in time on an unpipelined processor—the exception cor-
responding to the earliest instruction (and usually the earliest pipe stage for that
instruction) is handled first. This guarantees that all exceptions will be seen on
instruction i before any are seen on i+1. Of course, any action taken in earlier pipe
stages on behalf of instruction i may be invalid, but because writes to the register
file and memory were disabled, no state could have been changed. As we will see
in Section C.5, maintaining this precise model for FP operations is much harder.

In the next subsection we describe problems that arise in implementing excep-
tions in the pipelines of processors withmore powerful, longer-running instructions.

Instruction Set Complications

NoRISCV instruction hasmore than one result, and our RISCV pipeline writes that
result only at the end of an instruction’s execution. When an instruction is guaran-
teed to complete, it is called committed. In the RISC V integer pipeline, all instruc-
tions are committed when they reach the end of the MEM stage (or beginning of
WB) and no instruction updates the state before that stage. Thus, precise exceptions
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are straightforward. Some processors have instructions that change the state in the
middle of the instruction execution, before the instruction and its predecessors are
guaranteed to complete. For example, autoincrement addressing modes in the IA-32
architecture cause the update of registers in themiddle of an instruction execution. In
such a case, if the instruction is aborted because of an exception, it will leave the
processor state altered. Although we know which instruction caused the exception,
without additional hardware support the exception will be imprecise because the
instruction will be half finished. Restarting the instruction stream after such an
imprecise exception is difficult. Alternatively, we could avoid updating the state
before the instruction commits, but this may be difficult or costly, because there
may be dependences on the updated state: consider a VAX instruction that autoin-
crements the same register multiple times. Thus, to maintain a precise exception
model, most processors with such instructions have the ability to back out any state
changes made before the instruction is committed. If an exception occurs, the pro-
cessor uses this ability to reset the state of the processor to its value before the inter-
rupted instruction started. In the next section, we will see that a more powerful RISC
V floating-point pipeline can introduce similar problems, and Section C.7 introduces
techniques that substantially complicate exception handling.

A related source of difficulties arises from instructions that update memory
state during execution, such as the string copy operations on the Intel architecture
or IBM 360 (see Appendix K). To make it possible to interrupt and restart these
instructions, the instructions are defined to use the general-purpose registers as
working registers. Thus, the state of the partially completed instruction is always
in the registers, which are saved on an exception and restored after the exception,
allowing the instruction to continue.

A different set of difficulties arises from odd bits of state that may create addi-
tional pipeline hazards or may require extra hardware to save and restore. Condition
codes are a good example of this. Many processors set the condition codes implic-
itly as part of the instruction. This approach has advantages, because condition
codes decouple the evaluation of the condition from the actual branch. However,
implicitly set condition codes can cause difficulties in scheduling any pipeline
delays between setting the condition code and the branch, because most instructions
set the condition code and cannot be used in the delay slots between the condition
evaluation and the branch.

Additionally, in processors with condition codes, the processor must decide
when the branch condition is fixed. This involves finding out when the condition
code has been set for the last time before the branch. In most processors with
implicitly set condition codes, this is done by delaying the branch condition eval-
uation until all previous instructions have had a chance to set the condition code.

Of course, architectures with explicitly set condition codes allow the delay
between condition test and the branch to be scheduled; however, pipeline control
must still track the last instruction that sets the condition code to know when the
branch condition is decided. In effect, the condition code must be treated as an
operand that requires hazard detection for RAW hazards with branches, just as
RISC V must do on the registers.
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A final thorny area in pipelining is multicycle operations. Imagine trying to
pipeline a sequence of x86 instructions such as this:

mov BX, AX ; moves between registers
add 42(BX+SI),BX;adds memory contents and register

; to same memory location
sub BX,AX ;subtracts registers
rep movsb ;moves a character string of

; length given by register CX

Although none of these instructions is particularly long (an x86 instruction
can be up to 15 bytes), they do differ radically in the number of clock cycles they
will require, from as low as one up to hundreds of clock cycles. These instructions
also require different numbers of data memory accesses, from zero to possibly
hundreds. The data hazards are very complex and occur both between and within
instructions (nothing prevents the movsb from having an overlapping source and
destination!). The simple solution of making all instructions execute for the
same number of clock cycles is unacceptable because it introduces an enormous
number of hazards and bypass conditions and makes an immensely long pipeline.
Pipelining the x86 at the instruction level is difficult, but a clever solution
was found, similar to one used for the VAX. They pipeline the microinstruction
execution; a microinstruction is a simple instruction used in sequences to imple-
ment a more complex instruction set. Because the microinstructions are simple
(they look a lot like RISC V), the pipeline control is much easier. Since 1995,
all Intel IA-32 microprocessors have used this strategy of converting the IA-32
instructions into microoperations, and then pipelining the microoperations. In
fact, this approach is even used for some of the more complex instructions in
the ARM architecture.

In comparison, load-store processors have simple operations with similar
amounts of work and pipeline more easily. If architects realize the relationship
between instruction set design and pipelining, they can design architectures for
more efficient pipelining. In the next section, we will see how the RISC V pipeline
deals with long-running instructions, specifically floating-point operations.

For many years, the interaction between instruction sets and implementations
was believed to be small, and implementation issues were not a major focus in
designing instruction sets. In the 1980s, it became clear that the difficulty and inef-
ficiency of pipelining could both be increased by instruction set complications. In
the 1990s, all companies moved to simpler instructions sets with the goal of reduc-
ing the complexity of aggressive implementations.

C.5 Extending the RISC V Integer Pipeline to Handle
Multicycle Operations

We now want to explore how our RISC V pipeline can be extended to handle
floating-point operations. This section concentrates on the basic approach and
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the design alternatives, closing with some performance measurements of a RISC V
floating-point pipeline.

It is impractical to require that all RISC V FP operations complete in 1 clock
cycle, or even in 2. Doing so would mean accepting a slow clock or using enor-
mous amounts of logic in the FP units, or both. Instead, the FP pipeline will allow
for a longer latency for operations. This is easier to grasp if we imagine the FP
instructions as having the same pipeline as the integer instructions, with two impor-
tant changes. First, the EX cycle may be repeated as many times as needed to com-
plete the operation—the number of repetitions can vary for different operations.
Second, there may be multiple FP functional units. A stall will occur if the instruc-
tion to be issued will cause either a structural hazard for the functional unit it uses
or a data hazard.

For this section, let’s assume that there are four separate functional units in our
RISC V implementation:

1. The main integer unit that handles loads and stores, integer ALU operations,
and branches

2. FP and integer multiplier

3. FP adder that handles FP add, subtract, and conversion

4. FP and integer divider

If we also assume that the execution stages of these functional units are not pipe-
lined, then Figure C.28 shows the resulting pipeline structure. Because EX is not
pipelined, no other instruction using that functional unit may issue until the previ-
ous instruction leaves EX. Moreover, if an instruction cannot proceed to the EX
stage, the entire pipeline behind that instruction will be stalled.

In reality, the intermediate results are probably not cycled around the EX unit
as Figure C.28 suggests; instead, the EX pipeline stage has some number of clock
delays larger than 1. We can generalize the structure of the FP pipeline shown in
Figure C.28 to allow pipelining of some stages and multiple ongoing operations.
To describe such a pipeline, we must define both the latency of the functional units
and also the initiation interval or repeat interval. We define latency the same way
we defined it earlier: the number of intervening cycles between an instruction that
produces a result and an instruction that uses the result. The initiation or repeat
interval is the number of cycles that must elapse between issuing two operations
of a given type. For example, we will use the latencies and initiation intervals
shown in Figure C.29.

With this definition of latency, integer ALU operations have a latency of 0,
because the results can be used on the next clock cycle, and loads have a latency
of 1, because their results can be used after one intervening cycle. Because most
operations consume their operands at the beginning of EX, the latency is usually
the number of stages after EX that an instruction produces a result—for example,
zero stages for ALU operations and one stage for loads. The primary exception is
stores, which consume the value being stored one cycle later. Hence, the latency to
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a store for the value being stored, but not for the base address register, will be one
cycle less. Pipeline latency is essentially equal to one cycle less than the depth of
the execution pipeline, which is the number of stages from the EX stage to the stage
that produces the result. Thus, for the preceding example pipeline, the number
of stages in an FP add is four, while the number of stages in an FP multiply is
seven. To achieve a higher clock rate, designers need to put fewer logic levels

EX

FP/integer
multiply

EX

Integer unit

EX

FP adder

EX

FP/integer
divider

BWMEMDIFI

Figure C.28 The RISC V pipeline with three additional unpipelined, floating-point,
functional units. Because only one instruction issues on every clock cycle, all instruc-
tions go through the standard pipeline for integer operations. The FP operations simply
loop when they reach the EX stage. After they have finished the EX stage, they proceed
to MEM and WB to complete execution.

Functional unit Latency Initiation interval

Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

Figure C.29 Latencies and initiation intervals for functional units.
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in each pipe stage, which makes the number of pipe stages required for more
complex operations larger. The penalty for the faster clock rate is thus longer
latency for operations.

The example pipeline structure in Figure C.29 allows up to four outstanding FP
adds, seven outstanding FP/integer multiplies, and one FP divide. Figure C.30
shows how this pipeline can be drawn by extending Figure C.28. The repeat inter-
val is implemented in Figure C.30 by adding additional pipeline stages, which will
be separated by additional pipeline registers. Because the units are independent, we
name the stages differently. The pipeline stages that take multiple clock cycles,
such as the divide unit, are further subdivided to show the latency of those stages.
Because they are not complete stages, only one operation may be active. The pipe-
line structure can also be shown using the familiar diagrams from earlier in the
appendix, as Figure C.31 shows for a set of independent FP operations and FP
loads and stores. Naturally, the longer latency of the FP operations increases the
frequency of RAW hazards and resultant stalls, as we will see later in this section.

The structure of the pipeline in Figure C.30 requires the introduction of the
additional pipeline registers (e.g.,A1/A2, A2/A3, A3/A4) and the modification
of the connections to those registers. The ID/EX register must be expanded to

EX

M1

FP/integer multiply

Integer unit

FP adder

FP/integer divider

IF ID MEM WB

M2 M3 M4 M5 M6

A1 A2 A3 A4

M7

DIV

Figure C.30 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully
pipelined and have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires
24 clock cycles to complete. The latency in instructions between the issue of an FP operation and the use of the result
of that operation without incurring a RAW stall is determined by the number of cycles spent in the execution stages.
For example, the fourth instruction after an FP add can use the result of the FP add. For integer ALU operations, the
depth of the execution pipeline is always one and the next instruction can use the results.
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connect ID to EX, DIV, M1, and A1; we can refer to the portion of the register
associated with one of the next stages with the notation ID/EX, ID/DIV, ID/
M1, or ID/A1. The pipeline register between ID and all the other stages may be
thought of as logically separate registers and may, in fact, be implemented as sep-
arate registers. Because only one operation can be in a pipe stage at a time, the
control information can be associated with the register at the head of the stage.

Hazards and Forwarding in Longer Latency Pipelines

There are a number of different aspects to the hazard detection and forwarding for a
pipeline like that shown in Figure C.30.

1. Because the divide unit is not fully pipelined, structural hazards can occur.
These will need to be detected and issuing instructions will need to be stalled.

2. Because the instructions have varying running times, the number of register
writes required in a cycle can be larger than 1.

3. Write after write (WAW) hazards are possible, because instructions no longer
reach WB in order. Note that write after read (WAR) hazards are not possible,
because the register reads always occur in ID.

4. Instructions can complete in a different order than they were issued, causing
problems with exceptions; we deal with this in the next subsection.

5. Because of longer latency of operations, stalls for RAW hazards will be more
frequent.

The increase in stalls arising from longer operation latencies is fundamentally the
same as that for the integer pipeline. Before describing the new problems that arise
in this FP pipeline and looking at solutions, let’s examine the potential impact of
RAW hazards. Figure C.32 shows a typical FP code sequence and the resultant
stalls. At the end of this section, we’ll examine the performance of this FP pipeline
for our SPEC subset.

Now look at the problems arising from writes, described as (2) and (3) in the
earlier list. If we assume that the FP register file has one write port, sequences of FP
operations, as well as an FP load together with FP operations, can cause conflicts

fmul.d IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

fadd.d IF ID A1 A2 A3 A4 MEM WB

fadd.d IF ID EX MEM WB

fsd IF ID EX MEM WB

Figure C.31 The pipeline timing of a set of independent FP operations. The stages in italics show where data are
needed, while the stages in bold show where a result is available. FP loads and stores use a 64-bit path to memory so
that the pipelining timing is just like an integer load or store.
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for the register write port. Consider the pipeline sequence shown in Figure C.33. In
clock cycle 11, all three instructions will reach WB and want to write the register
file. With only a single register file write port, the processor must serialize the
instruction completion. This single register port represents a structural hazard.
We could increase the number of write ports to solve this, but that solution may
be unattractive because the additional write ports would be used only rarely. This
is because the maximum steady-state number of write ports needed is 1. Instead,
we choose to detect and enforce access to the write port as a structural hazard.

There are two different ways to implement this interlock. The first is to track the
use of the write port in the ID stage and to stall an instruction before it issues, just as
we would for any other structural hazard. Tracking the use of the write port can be
done with a shift register that indicates when already-issued instructions will use
the register file. If the instruction in ID needs to use the register file at the same time

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

fld f4,0(x2) IF ID EX MEM WB

fmul.d f0,f4,f6 IF ID Stall M1 M2 M3 M4 M5 M6 M7 MEM WB

fadd.d f2,f0,f8 IF Stall ID Stall Stall Stall Stall Stall Stall A1 A2 A3 A4 MEM WB

fsd f2,0(x2) IF Stall Stall Stall Stall Stall Stall ID EX Stall Stall Stall MEM

Figure C.32 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is
dependent on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypassing
and forwarding. The fsd must be stalled an extra cycle so that its MEM does not conflict with the fadd.d. Extra
hardware could easily handle this case.

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

fmul.d f0,f4,f6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

fadd.d f2,f4,f6 IF ID A1 A2 A3 A4 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

fld f2,0(x2) IF ID EX MEM WB

Figure C.33 Three instructions want to perform a write-back to the FP register file simultaneously, as shown in
clock cycle 11. This is not the worst case, because an earlier divide in the FP unit could also finish on the same clock.
Note that although the fmul.d, fadd.d, and fld are in the MEM stage in clock cycle 10, only the fld actually uses
the memory, so no structural hazard exists for MEM.
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as an instruction already issued, the instruction in ID is stalled for a cycle. On each
clock the reservation register is shifted 1 bit. This implementation has an advan-
tage: It maintains the property that all interlock detection and stall insertion occurs
in the ID stage. The cost is the addition of the shift register and write conflict logic.
We will assume this scheme throughout this section.

An alternative scheme is to stall a conflicting instruction when it tries to enter
either the MEM or WB stage. If we wait to stall the conflicting instructions until
they want to enter the MEM or WB stage, we can choose to stall either instruction.
A simple, though sometimes suboptimal, heuristic is to give priority to the unit
with the longest latency, because that is the one most likely to have caused another
instruction to be stalled for a RAW hazard. The advantage of this scheme is that it
does not require us to detect the conflict until the entrance of the MEM or WB
stage, where it is easy to see. The disadvantage is that it complicates pipeline con-
trol, as stalls can now arise from two places. Notice that stalling before entering
MEMwill cause the EX, A4, or M7 stage to be occupied, possibly forcing the stall
to trickle back in the pipeline. Likewise, stalling before WB would cause MEM to
back up.

Our other problem is the possibility of WAW hazards. To see that these exist,
consider the example in Figure C.33. If the fadd.d instruction were issued one
cycle earlier and had a destination of f2, then it would create a WAW hazard,
because it would write f2 one cycle earlier than the fadd.d. Note that this hazard
only occurs when the result of the fadd.d is overwritten without any instruction
ever using it! If there were a use of f2 between the fadd.d and the fadd.d, the
pipeline would need to be stalled for a RAW hazard, and the fadd.d would not
issue until the fadd.d was completed. We could argue that, for our pipeline,
WAW hazards only occur when a useless instruction is executed, but we must still
detect them and make sure that the result of the fadd.d appears in f2 when we
are done. (As we will see in Section C.8, such sequences sometimes do occur in
reasonable code.)

There are two possible ways to handle this WAW hazard. The first approach is
to delay the issue of the load instruction until the fadd.d enters MEM. The sec-
ond approach is to stamp out the result of the fadd.d by detecting the hazard and
changing the control so that the fadd.d does not write its result. Then the
fadd.d can issue right away. Because this hazard is rare, either scheme will
work fine—you can pick whatever is simpler to implement. In either case, the
hazard can be detected during ID when the fadd.d is issuing, and stalling
the fadd.d or making the fadd.d a no-op is easy. The difficult situation is
to detect that the fadd.d might finish before the fadd.d, because that requires
knowing the length of the pipeline and the current position of the fadd.d. Luck-
ily, this code sequence (two writes with no intervening read) will be very rare, so
we can use a simple solution: if an instruction in ID wants to write the same reg-
ister as an instruction already issued, do not issue the instruction to EX. In
Section C.7, we will see how additional hardware can eliminate stalls for such
hazards. First, let’s put together the pieces for implementing the hazard and issue
logic in our FP pipeline.
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In detecting the possible hazards, we must consider hazards among FP instruc-
tions, as well as hazards between an FP instruction and an integer instruction.
Except for FP loads-stores and FP-integer register moves, the FP and integer
registers are distinct. All integer instructions operate on the integer registers, while
the FP operations operate only on their own registers. Thus, we need only consider
FP loads-stores and FP register moves in detecting hazards between FP and integer
instructions. This simplification of pipeline control is an additional advantage of
having separate register files for integer and floating-point data. (The main advan-
tages are a doubling of the number of registers, without making either set larger,
and an increase in bandwidth without adding more ports to either set. The main
disadvantage, beyond the need for an extra register file, is the small cost of occa-
sional moves needed between the two register sets.) Assuming that the pipeline
does all hazard detection in ID, there are three checks that must be performed
before an instruction can issue:

1. Check for structural hazards—Wait until the required functional unit is not
busy (this is only needed for divides in this pipeline) and make sure the register
write port is available when it will be needed.

2. Check for a RAW data hazard—Wait until the source registers are not listed as
pending destinations in a pipeline register that will not be available when this
instruction needs the result. A number of checks must be made here, depending
on both the source instruction, which determines when the result will be avail-
able, and the destination instruction, which determines when the value is
needed. For example, if the instruction in ID is an FP operation with source reg-
ister f2, then f2 cannot be listed as a destination in ID/A1, A1/A2, or A2/A3,
which correspond to FP add instructions that will not be finished when the
instruction in ID needs a result. (ID/A1 is the portion of the output register
of ID that is sent to A1.) Divide is somewhat more tricky, if we want to allow
the last few cycles of a divide to be overlapped, because we need to handle the
case when a divide is close to finishing as special. In practice, designers might
ignore this optimization in favor of a simpler issue test.

3. Check for a WAW data hazard—Determine if any instruction in A1,… , A4, D,
M1,… , M7 has the same register destination as this instruction. If so, stall the
issue of the instruction in ID.

Although the hazard detection is more complex with the multicycle FP operations,
the concepts are the same as for the RISC V integer pipeline. The same is true for
the forwarding logic. The forwarding can be implemented by checking if the
destination register in any of the EX/MEM, A4/MEM, M7/MEM, D/MEM, or
MEM/WB registers is one of the source registers of a floating-point instruction.
If so, the appropriate input multiplexer will have to be enabled so as to choose
the forwarded data. In the exercises, you will have the opportunity to specify
the logic for the RAW and WAW hazard detection as well as for forwarding.

Multicycle FP operations also introduce problems for our exception mecha-
nisms, which we deal with next.
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Maintaining Precise Exceptions

Another problem caused by these long-running instructions can be illustrated with
the following sequence of code:

fdiv.d f0,f2,f4
fadd.d f10,f10,f8
fsub.d f12,f12,f14

This code sequence looks straightforward; there are no dependences. A problem
arises, however, because an instruction issued early may complete after an instruc-
tion issued later. In this example, we can expect fadd.d and fsub.d to complete
before the fdiv.d completes. This is called out-of-order completion and is com-
mon in pipelines with long-running operations (see Section C.7). Because hazard
detection will prevent any dependence among instructions from being violated,
why is out-of-order completion a problem? Suppose that the fsub.d causes a
floating-point arithmetic exception at a point where the fadd.d has completed
but the fdiv.d has not. The result will be an imprecise exception, something
we are trying to avoid. It may appear that this could be handled by letting the
floating-point pipeline drain, as we do for the integer pipeline. But the exception
may be in a position where this is not possible. For example, if the fdiv.d decided to
take a floating-point-arithmetic exception after the add completed, we could not
have a precise exception at the hardware level. In fact, because the fadd.d destroys
one of its operands, we could not restore the state to what it was before the fdiv.d,
even with software help.

This problem arises because instructions are completing in a different order
than they were issued. There are four possible approaches to dealing with out-
of-order completion. The first is to ignore the problem and settle for imprecise
exceptions. This approach was used in the 1960s and early 1970s. It was still used
in some supercomputers in thepast fifteen years, where certain classes of excep-
tions were not allowed or were handled by the hardware without stopping the pipe-
line. It is difficult to use this approach in most processors built today because of
features such as virtual memory and the IEEE floating-point standard that essen-
tially require precise exceptions through a combination of hardware and software.
As mentioned earlier, some recent processors have solved this problem by intro-
ducing two modes of execution: a fast, but possibly imprecise mode and a slower,
precise mode. The slower precise mode is implemented either with a mode switch
or by insertion of explicit instructions that test for FP exceptions. In either case, the
amount of overlap and reordering permitted in the FP pipeline is significantly
restricted so that effectively only one FP instruction is active at a time. This solu-
tion was used in the DECAlpha 21064 and 21164, in the IBMPower1 and Power2,
and in the MIPS R8000.

A second approach is to buffer the results of an operation until all the operations
that were issued earlier are complete. Some processors actually use this solution,
but it becomes expensive when the difference in running times among operations
is large, because the number of results to buffer can become large. Furthermore,
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results from the queuemust be bypassed to continue issuing instructions while wait-
ing for the longer instruction. This requires a large number of comparators and a
very large multiplexer.

There are two viable variations on this basic approach. The first is a history file,
used in the CYBER 180/990. The history file keeps track of the original values of
registers. When an exception occurs and the state must be rolled back earlier than
some instruction that completed out of order, the original value of the register can
be restored from the history file. A similar technique is used for autoincrement and
autodecrement addressing on processors such as VAXes. Another approach, the
future file, proposed by Smith and Pleszkun (1988), keeps the newer value of a
register; when all earlier instructions have completed, the main register file is
updated from the future file. On an exception, the main register file has the precise
values for the interrupted state. In Chapter 3, we will see another approach that is
needed to support speculation, a method of executing instructions before we know
the outcome of previous branches.

A third technique in use is to allow the exceptions to become somewhat impre-
cise, but to keep enough information so that the trap-handling routines can create a
precise sequence for the exception. This means knowing what operations were in
the pipeline and their PCs. Then, after handling the exception, the software finishes
any instructions that precede the latest instruction completed, and the sequence can
restart. Consider the following worst-case code sequence:

Instruction1—A long-running instruction that eventually interrupts execution.

Instruction2,… , Instructionn�1—A series of instructions that are not completed.

Instructionn—An instruction that is finished.

Given the PCs of all the instructions in the pipeline and the exception return PC, the
software can find the state of instruction1 and instructionn. Because instructionn has
completed, we will want to restart execution at instructionn+1. After handling the
exception, the software must simulate the execution of instruction1, … ,
instructionn�1. Then we can return from the exception and restart at instructionn+1.
The complexity of executing these instructions properly by the handler is the major
difficulty of this scheme.

There is an important simplification for simple RISC V-like pipelines:
If instruction2, … , instructionn are all integer instructions, we know that if
instructionn has completed then all of instruction2, … , instructionn�1 have also
completed. Thus, only FP operations need to be handled. To make this scheme
tractable, the number of floating-point instructions that can be overlapped in
execution can be limited. For example, if we only overlap two instructions,
then only the interrupting instruction need be completed by software. This
restriction may reduce the potential throughput if the FP pipelines are deep or
if there are a significant number of FP functional units. This approach is used
in some SPARC implementations to allow overlap of floating-point and integer
operations.
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The final technique is a hybrid scheme that allows the instruction issue to con-
tinue only if it is certain that all the instructions before the issuing instruction will
complete without causing an exception. This guarantees that when an exception
occurs, no instructions after the interrupting one will be completed and all of
the instructions before the interrupting one can be completed. This sometimes
means stalling the processor to maintain precise exceptions. To make this scheme
work, the floating-point functional units must determine if an exception is possible
early in the EX stage (in the first 3 clock cycles in the RISC V pipeline), so as
to prevent further instructions from completing. This scheme is used in the
MIPS R2000/3000, the R4000, and the Intel Pentium. It is discussed further in
Appendix J.

Performance of a Simple RISC V FP Pipeline

The RISC V FP pipeline of Figure C.30 on page C.48 can generate both structural
stalls for the divide unit and stalls for RAW hazards (it also can have WAW haz-
ards, but this rarely occurs in practice). Figure C.34 shows the number of stall
cycles for each type of floating-point operation on a per-instance basis (i.e., the
first bar for each FP benchmark shows the number of FP result stalls for each
FP add, subtract, or convert). As we might expect, the stall cycles per operation
track the latency of the FP operations, varying from 46% to 59% of the latency
of the functional unit.

Figure C.35 gives the complete breakdown of integer and FP stalls for five
SPECfp benchmarks. There are four classes of stalls shown: FP result stalls, FP
compare stalls, load and branch delays, and FP structural delays. Branch delay
stalls, which would be small with a one cycle delay and even a modest branch
predictor, are not included. The total number of stalls per instruction varies from
0.65 to 1.21.

C.6 Putting It All Together: The MIPS R4000 Pipeline

In this section, we look at the pipeline structure and performance of the MIPS
R4000 processor family, which includes the 4400. The MIPS architecture and
RISC V are very similar, differing only in a few instructions, including a delayed
branch in the MIPS ISA. The R4000 implements MIPS64 but uses a deeper pipe-
line than that of our five-stage design both for integer and FP programs. This dee-
per pipeline allows it to achieve higher clock rates by decomposing the five-stage
integer pipeline into eight stages. Because cache access is particularly time critical,
the extra pipeline stages come from decomposing the memory access. This type of
deeper pipelining is sometimes called superpipelining.

Figure C.36 shows the eight-stage pipeline structure using an abstracted version
of the data path. Figure C.37 shows the overlap of successive instructions in the
pipeline. Notice that, although the instruction and data memory occupy multiple
cycles, they are fully pipelined, so that a new instruction can start on every clock.
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In fact, the pipeline uses the data before the cache hit detection is complete; Chapter 3
discusses how this can be done in more detail.

The function of each stage is as follows:

■ IF—First half of instruction fetch; PC selection actually happens here, together
with initiation of instruction cache access.

■ IS—Second half of instruction fetch, complete instruction cache access.

■ RF—Instruction decode and register fetch, hazard checking, and instruction
cache hit detection.
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Figure C.34 Stalls per FP operation for each major type of FP operation for the
SPEC89 FP benchmarks. Except for the divide structural hazards, these data do not
depend on the frequency of an operation, only on its latency and the number of cycles
before the result is used. The number of stalls from RAW hazards roughly tracks the
latency of the FP unit. For example, the average number of stalls per FP add, subtract,
or convert is 1.7 cycles, or 56% of the latency (three cycles). Likewise, the average num-
ber of stalls for multiplies and divides are 2.8 and 14.2, respectively, or 46% and 59% of
the corresponding latency. Structural hazards for divides are rare, because the divide
frequency is low.
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Figure C.35 The stalls occurring for the a simple RISC V FP pipeline for five of the
SPEC89 FP benchmarks. The total number of stalls per instruction ranges from 0.65
for su2cor to 1.21 for doduc, with an average of 0.87. FP result stalls dominate in all
cases, with an average of 0.71 stalls per instruction, or 82% of the stalled cycles. Com-
pares generate an average of 0.1 stalls per instruction and are the second largest source.
The divide structural hazard is only significant for doduc. Branch stalls are not accounted
for, but would be small.

IF IS

Instruction memory Reg A
LU Data memory Reg

RF EX DF DS TC WB

Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined instruction and data caches. The pipe
stages are labeled and their detailed function is described in the text. The vertical dashed lines represent the stage
boundaries as well as the location of pipeline latches. The instruction is actually available at the end of IS, but the tag
check is done in RF, while the registers are fetched. Thus, we show the instruction memory as operating through RF.
The TC stage is needed for data memory access, because we cannot write the data into the register until we know
whether the cache access was a hit or not.
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■ EX—Execution, which includes effective address calculation, ALU operation,
and branch-target computation and condition evaluation.

■ DF—Data fetch, first half of data cache access.

■ DS—Second half of data fetch, completion of data cache access.

■ TC—Tag check, to determine whether the data cache access hit.

■ WB—Write-back for loads and register-register operations.

In addition to substantially increasing the amount of forwarding required, this
longer-latency pipeline increases both the load and branch delays. Figure C.37
shows that load delays are two cycles, because the data value is available at the
end of DS. Figure C.38 shows the shorthand pipeline schedule when a use imme-
diately follows a load. It shows that forwarding is required for the result of a load
instruction to a destination that is three or four cycles later.

Figure C.39 shows that the basic branch delay is three cycles, because the
branch condition is computed during EX. TheMIPS architecture has a single-cycle
delayed branch. The R4000 uses a predicted-not-taken strategy for the remaining
two cycles of the branch delay. As Figure C.40 shows, untaken branches are simply
one-cycle delayed branches, while taken branches have a one-cycle delay slot fol-
lowed by two idle cycles. The instruction set provides a branch-likely instruction,
which we described earlier and which helps in filling the branch delay slot.

CC 1

Time (in clock cycles)

CC 2

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory

Instruction 1

Instruction 2

Reg A
LU Data memory Reg

CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10 CC 11

Figure C.37 The structure of the R4000 integer pipeline leads to a x1 load delay. A x1 delay is possible because the
data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the pipeline is
backed up a cycle, when the correct data are available.
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Pipeline interlocks enforce both the x1 branch stall penalty on a taken branch and
any data hazard stall that arises from use of a load result. After the R4000, all
implementations of MIPS processor made use of dynamic branch prediction.

In addition to the increase in stalls for loads and branches, the deeper pipeline
increases the number of levels of forwarding for ALU operations. In our RISC V
five-stage pipeline, forwarding between two register-register ALU instructions
could happen from the ALU/MEM or the MEM/WB registers. In the R4000 pipe-
line, there are four possible sources for an ALU bypass: EX/DF, DF/DS, DS/TC,
and TC/WB.

Clock number

Instruction number 1 2 3 4 5 6 7 8 9

ld x1,... IF IS RF EX DF DS TC WB

add x2,x1,... IF IS RF Stall Stall EX DF DS

sub x3,x1,... IF IS Stall Stall RF EX DF

or x4,x1,... IF Stall Stall IS RF EX

Figure C.38 A load instruction followed by an immediate use results in a x1 stall. Normal forwarding paths can be
used after two cycles, so the add and sub get the value by forwarding after the stall. The or instruction gets the value
from the register file. Because the two instructions after the load could be independent and hence not stall, the
bypass can be to instructions that are three or four cycles after the load.
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Figure C.39 The basic branch delay is three cycles, because the condition evaluation is performed during EX.
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The Floating-Point Pipeline

The R4000 floating-point unit consists of three functional units: a floating-point
divider, a floating-point multiplier, and a floating-point adder. The adder logic
is used on the final step of a multiply or divide. Double-precision FP operations
can take from 2 cycles (for a negate) up to 112 cycles (for a square root). In addi-
tion, the various units have different initiation rates. The FP functional unit can be
thought of as having eight different stages, listed in Figure C.41; these stages are
combined in different orders to execute various FP operations.

There is a single copy of each of these stages, and various instructions may use a
stagezeroormore timesand indifferentorders.FigureC.42showsthe latency, initiation
rate, and pipeline stages used by the most common double-precision FP operations.

Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Stall Stall Stall Stall Stall Stall Stall Stall

Stall Stall Stall Stall Stall Stall Stall

Branch target IF IS RF EX DF

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Branch instruction+2 IF IS RF EX DF DS TC

Branch instruction+3 IF IS RF EX DF DS

Figure C.40 A taken branch, shown in the top portion of the figure, has a one-cycle delay slot followed by a x1
stall, while an untaken branch, shown in the bottom portion, has simply a one-cycle delay slot. The branch instruc-
tion can be an ordinary delayed branch or a branch-likely, which cancels the effect of the instruction in the delay slot if
the branch is untaken.

Stage Functional unit Description

A FP adder Mantissa add stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier

R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

Figure C.41 The eight stages used in the R4000 floating-point pipelines.
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From the information in Figure C.42, we can determine whether a sequence of
different, independent FP operations can issue without stalling. If the timing of the
sequence is such that a conflict occurs for a shared pipeline stage, then a stall will
be needed. Figures C.43–C.46 show four common possible two-instruction
sequences: a multiply followed by an add, an add followed by a multiply, a divide
followed by an add, and an add followed by a divide. The figures show all the inter-
esting starting positions for the second instruction and whether that second instruc-
tion will issue or stall for each position. Of course, there could be three instructions
active, in which case the possibilities for stalls are much higher and the figures
more complex.

Performance of the R4000 Pipeline

In this section, we examine the stalls that occur for the SPEC92 benchmarks when
running on the R4000 pipeline structure. There are four major causes of pipeline
stalls or losses:

1. Load stalls—Delays arising from the use of a load result one or two cycles after
the load

2. Branch stalls—Two-cycle stalls on every taken branch plus unfilled or canceled
branch delay slots. The version of the MIPS instruction set implemented in the
R4000 supports instructions that predict a branch at compile time and cause the
instruction in the branch delay slot to be canceled when the branch behavior
differs from the prediction. This makes it easier to fill branch delay slots.

3. FP result stalls—Stalls because of RAW hazards for an FP operand

4. FP structural stalls—Delays because of issue restrictions arising from conflicts
for functional units in the FP pipeline

FP instruction Latency Initiation interval Pipe stages

Add, subtract 4 3 U, S+A, A+R, R+S

Multiply 8 4 U, E+M, M, M, M, N, N+A, R

Divide 36 35 U, A, R, D28, D+A, D+R, D+A, D+R, A, R

Square root 112 111 U, E, (A+R)108, A, R

Negate 2 1 U, S

Absolute value 2 1 U, S

FP compare 3 2 U, A, R

Figure C.42 The latencies and initiation intervals for the FP operations initiation intervals for the FP operations
both depend on the FP unit stages that a given operationmust use. The latency values assume that the destination
instruction is an FP operation; the latencies are one cycle less when the destination is a store. The pipe stages are
shown in the order in which they are used for any operation. The notation S+A indicates a clock cycle in which both
the S and A stages are used. The notation D28 indicates that the D stage is used 28 times in a row.
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Figure C.47 shows the pipeline CPI breakdown for the R4000 pipeline for the 10
SPEC92 benchmarks. Figure C.48 shows the same data but in tabular form.

From the data in Figures C.47 and C.48, we can see the penalty of the deeper
pipelining. The R4000’s pipeline has much longer branch delays than the classic
five-stage pipeline. The longer branch delay substantially increases the cycles
spent on branches, especially for the integer programs with a higher branch
frequency. This is the reason that almost all subsequent processors with moderate
to deep pipelines (8–16 stages are typical today) employ dynamic branch
predictors.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12

Multiply Issue U E+M M M M N N+A R

Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Figure C.43 An FP multiply issued at clock 0 is followed by a single FP add issued between clocks 1 and 7. The
second column indicates whether an instruction of the specified type stalls when it is issued n cycles later, where n is
the clock cycle number in which the U stage of the second instruction occurs. The stage or stages that cause a stall are
in bold. Note that this table deals with only the interaction between themultiply and one add issued between clocks 1
and 7. In this case, the add will stall if it is issued four or five cycles after the multiply; otherwise, it issues without
stalling. Notice that the add will be stalled for two cycles if it issues in cycle 4 because on the next clock cycle it will
still conflict with the multiply; if, however, the add issues in cycle 5, it will stall for only 1 clock cycle, because that will
eliminate the conflicts.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12

Add Issue U S+A A+R R+S

Multiply Issue U E+M M M M N N+A R

Issue U M M M M N N+A R

Figure C.44 A multiply issuing after an add can always proceed without stalling, because the shorter instruction
clears the shared pipeline stages before the longer instruction reaches them.
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An interesting effect observed in the FP programs is that the latency of the FP
functional units leads to more result stalls than the structural hazards, which arise
both from the initiation interval limitations and from conflicts for functional units
from different FP instructions. Thus, reducing the latency of FP operations should
be the first target, rather than more pipelining or replication of the functional units.
Of course, reducing the latency would probably increase the structural stalls,
because many potential structural stalls are hidden behind data hazards.

Clock cycle

Operation Issue/stall 25 26 27 28 29 30 31 32 33 34 35 36

Divide Issued in
cycle 0…

D D D D D D+A D+R D+A D+R A R

Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Issue U S+A A+R

Issue U S+A

Issue U

Figure C.45 An FP divide can cause a stall for an add that starts near the end of the divide. The divide starts at cycle
0 and completes at cycle 35; the last 10 cycles of the divide are shown. Because the divide makes heavy use of the
rounding hardware needed by the add, it stalls an add that starts in any of cycles 28–33. Notice that the add starting in
cycle 28 will be stalled until cycle 36. If the add started right after the divide, it would not conflict, because the add
could complete before the divide needed the shared stages, just as we saw in Figure C.44 for a multiply and add. As in
the earlier figure, this example assumes exactly one add that reaches the U stage between clock cycles 26 and 35.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12

Add Issue U S+A A+R R+S

Divide Stall U A R D D D D D D D D D

Issue U A R D D D D D D D D

Issue U A R D D D D D D D

Figure C.46 A double-precision add is followed by a double-precision divide. If the divide starts one cycle after the
add, the divide stalls, but after that there is no conflict.
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Figure C.47 The pipeline CPI for 10 of the SPEC92 benchmarks, assuming a
perfect cache. The pipeline CPI varies from 1.2 to 2.8. The left-most five programs
are integer programs, and branch delays are the major CPI contributor for these. The
right-most five programs are FP, and FP result stalls are the major contributor for these.
Figure C.48 shows the numbers used to construct this plot.

Benchmark Pipeline CPI Load stalls Branch stalls FP result stalls FP structural stalls

Compress 1.20 0.14 0.06 0.00 0.00

Eqntott 1.88 0.27 0.61 0.00 0.00

Espresso 1.42 0.07 0.35 0.00 0.00

Gcc 1.56 0.13 0.43 0.00 0.00

Li 1.64 0.18 0.46 0.00 0.00

Integer average 1.54 0.16 0.38 0.00 0.00

Doduc 2.84 0.01 0.22 1.39 0.22

Mdljdp2 2.66 0.01 0.31 1.20 0.15

Ear 2.17 0.00 0.46 0.59 0.12

Hydro2d 2.53 0.00 0.62 0.75 0.17

Su2cor 2.18 0.02 0.07 0.84 0.26

FP average 2.48 0.01 0.33 0.95 0.18

Overall average 2.00 0.10 0.36 0.46 0.09

Figure C.48 The total pipeline CPI and the contributions of the four major sources of stalls are shown. The major
contributors are FP result stalls (both for branches and for FP inputs) and branch stalls, with loads and FP structural
stalls adding less.
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C.7 Cross-Cutting Issues

RISC Instruction Sets and Efficiency of Pipelining

We have already discussed the advantages of instruction set simplicity in building
pipelines. Simple instruction sets offer another advantage: they make it easier to
schedule code to achieve efficiency of execution in a pipeline. To see this, con-
sider a simple example: suppose we need to add two values in memory and store
the result back to memory. In some sophisticated instruction sets this will take
only a single instruction; in others, it will take two or three. A typical RISC archi-
tecture would require four instructions (two loads, an add, and a store). These
instructions cannot be scheduled sequentially in most pipelines without interven-
ing stalls.

With a RISC instruction set, the individual operations are separate instructions
and may be individually scheduled either by the compiler (using the techniques we
discussed earlier and more powerful techniques discussed in Chapter 3) or using
dynamic hardware scheduling techniques (which we discuss next and in further
detail in Chapter 3). These efficiency advantages, coupled with the greater ease
of implementation, appear to be so significant that almost all recent pipelined
implementations of complex instruction sets actually translate their complex
instructions into simple RISC-like operations, and then schedule and pipeline those
operations. All recent Intel processors use this approach, and it is also used in ARM
processors for some of the more complex instructions.

Dynamically Scheduled Pipelines

Simple pipelines fetch an instruction and issue it, unless there is a data dependence
between an instruction already in the pipeline and the fetched instruction that can-
not be hidden with bypassing or forwarding. Forwarding logic reduces the effec-
tive pipeline latency so that certain dependences do not result in hazards. If there is
an unavoidable hazard, then the hazard detection hardware stalls the pipeline (start-
ing with the instruction that uses the result). No new instructions are fetched or
issued until the dependence is cleared. To overcome these performance losses,
the compiler can attempt to schedule instructions to avoid the hazard; this approach
is called compiler or static scheduling.

Several early processors used another approach, called dynamic scheduling,
whereby the hardware rearranges the instruction execution to reduce the stalls. This
section offers a simpler introduction to dynamic scheduling by explaining the scor-
eboarding technique of the CDC 6600. Some readers will find it easier to read this
material before plunging into the more complicated Tomasulo scheme, and the
speculation approaches that extend it, both of which are covered in Chapter 3.

All the techniques discussed in this appendix so far use in-order instruction
issue, which means that if an instruction is stalled in the pipeline, no later instruc-
tions can proceed. With in-order issue, if two instructions have a hazard between
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them, the pipeline will stall, even if there are later instructions that are independent
and would not stall.

In the RISC V pipeline developed earlier, both structural and data hazards were
checked during instruction decode (ID): when an instruction could execute properly,
it was issued from ID. To allow an instruction to begin execution as soon as its oper-
ands are available, even if a predecessor is stalled,wemust separate the issue process
into two parts: checking the structural hazards and waiting for the absence of a data
hazard.Wedecode and issue instructions in order; however,wewant the instructions
to begin execution as soon as their data operands are available. Thus, the pipelinewill
do out-of-order execution, which implies out-of-order completion. To implement
out-of-order execution, we must split the ID pipe stage into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

The IF stage proceeds the issue stage, and the EX stage follows the read oper-
ands stage, just as in the RISCV pipeline. As in the RISCV floating-point pipeline,
execution may take multiple cycles, depending on the operation. Thus, we may
need to distinguish when an instruction begins execution and when it completes
execution; between the two times, the instruction is in execution. This allows mul-
tiple instructions to be in execution at the same time. In addition to these changes to
the pipeline structure, we will also change the functional unit design by varying the
number of units, the latency of operations, and the functional unit pipelining so as
to better explore these more advanced pipelining techniques.

Dynamic Scheduling With a Scoreboard

In a dynamically scheduled pipeline, all instructions pass through the issue stage in
order (in-order issue); however, they can be stalled or bypass each other in the sec-
ond stage (read operands) and thus enter execution out of order. Scoreboarding is a
technique for allowing instructions to execute out of order when there are sufficient
resources and no data dependences; it is named after the CDC 6600 scoreboard,
which developed this capability.

Before we see how scoreboarding could be used in the RISC V pipeline, it
is important to observe that WAR hazards, which did not exist in the RISC V
floating-point or integer pipelines, may arise when instructions execute out of
order. For example, consider the following code sequence:

fdiv.d f0,f2,f4
fadd.d f10,f0,f8
fsub.d f8,f8,f14

There is an potential WAR hazard between the fadd.d and the fsub.d: If
the pipeline executes the fsub.d before the fadd.d, it will violate yield incor-
rect execution. Likewise, the pipeline must avoid WAW hazards (e.g.,as would
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occur if the destination of the fsub.d were f10). As we will see, both these haz-
ards are avoided in a scoreboard by stalling the later instruction involved in
the hazard.

The goal of a scoreboard is to maintain an execution rate of one instruction per
clock cycle (when there are no structural hazards) by executing an instruction as
early as possible. Thus, when the next instruction to execute is stalled, other
instructions can be issued and executed if they do not depend on any active or
stalled instruction. The scoreboard takes full responsibility for instruction issue
and execution, including all hazard detection. Taking advantage of out-of-order
execution requires multiple instructions to be in their EX stage simultaneously.
This can be achieved with multiple functional units, with pipelined functional
units, or with both. Because these two capabilities—pipelined functional units
and multiple functional units—are essentially equivalent for the purposes of pipe-
line control, we will assume the processor has multiple functional units.

TheCDC6600 had 16 separate functional units, including 4 floating-point units,
5 units for memory references, and 7 units for integer operations. On a processor for
theRISCVarchitecture, scoreboardsmake sense primarily on the floating-point unit
because the latency of the other functional units is very small. Let’s assume that there
are twomultipliers, one adder, one divide unit, and a single integer unit for all mem-
ory references, branches, and integer operations. Although this example is simpler
than the CDC 6600, it is sufficiently powerful to demonstrate the principles without
having amass of detail or needing very long examples. Because bothRISCVand the
CDC6600are load-store architectures, the techniques are nearly identical for the two
processors. Figure C.49 shows what the processor looks like.

Every instruction goes through the scoreboard, where a record of the data
dependences is constructed; this step corresponds to instruction issue and replaces
part of the ID step in the RISC V pipeline. The scoreboard then determines when
the instruction can read its operands and begin execution. If the scoreboard decides
the instruction cannot execute immediately, it monitors every change in the hard-
ware and decides when the instruction can execute. The scoreboard also controls
when an instruction can write its result into the destination register. Thus, all hazard
detection and resolution are centralized in the scoreboard. We will see a picture of
the scoreboard later (Figure C.49 on page C.68), but first we need to understand the
steps in the issue and execution segment of the pipeline.

Each instruction undergoes four steps in executing. (Because we are concen-
trating on the FP operations, we will not consider a step for memory access.) Let’s
first examine the steps informally and then look in detail at how the scoreboard
keeps the necessary information that determines when to progress from one step
to the next. The four steps, which replace the ID, EX, andWB steps in the standard
RISC V pipeline, are as follows:

1. Issue—If a functional unit for the instruction is free and no other active instruc-
tion has the same destination register, the scoreboard issues the instruction to
the functional unit and updates its internal data structure. This step replaces a
portion of the ID step in the RISC V pipeline. By ensuring that no other active
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functional unit wants to write its result into the destination register, we guaran-
tee that WAW hazards cannot be present. If a structural or WAW hazard exists,
then the instruction issue stalls, and no further instructions will issue until these
hazards are cleared. When the issue stage stalls, it causes the buffer between
instruction fetch and issue to fill; if the buffer is a single entry, instruction fetch
stalls immediately. If the buffer is a queue with multiple instructions, it stalls
when the queue fills.

2. Read operands—The scoreboard monitors the availability of the source oper-
ands. A source operand is available if no earlier issued active instruction is
going to write it. When the source operands are available, the scoreboard tells

Control/ 
status

Scoreboard
Control/
status 

Integer unit

FP add

FP divide

FP mult

FP mult

Data busesRegisters

Figure C.49 The basic structure of a RISC V processor with a scoreboard. The score-
board’s function is to control instruction execution (vertical control lines). All of the data
flow between the register file and the functional units over the buses (the horizontal
lines, called trunks in the CDC 6600). There are two FP multipliers, an FP divider, an
FP adder, and an integer unit. One set of buses (two inputs and one output) serves a
group of functional units. We will explore scoreboarding and its extensions in more
detail in Chapter 3.
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the functional unit to proceed to read the operands from the registers and begin
execution. The scoreboard resolves RAW hazards dynamically in this step, and
instructions may be sent into execution out of order. This step, together with
issue, completes the function of the ID step in the simple RISC V pipeline.

3. Execution—The functional unit begins execution upon receiving operands.
When the result is ready, it notifies the scoreboard that it has completed execu-
tion. This step replaces the EX step in the RISC V pipeline and takes multiple
cycles in the RISC V FP pipeline.

4. Write result—Once the scoreboard is aware that the functional unit has
completed execution, the scoreboard checks for WAR hazards and stalls the
completing instruction, if necessary.

A WAR hazard exists if there is a code sequence like our earlier example with
fadd.d and fsub.d that both use f8. In that example, we had the code

fdiv.d f0,f2,f4
fadd.d f10,f0,f8
fsub.d f8,f8,f14

fadd.d has a source operand f8, which is the same register as the destination of
fsub.d. But fadd.d actually depends on an earlier instruction. The scoreboard
will still stall the fsub.d in its write result stage until fadd.d reads its operands.
In general, then, a completing instruction cannot be allowed to write its results
when:

■ There is an instruction that has not read its operands that precedes (i.e., in order
of issue) the completing instruction, and

■ One of the operands is the same register as the result of the completing
instruction.

If this WAR hazard does not exist, or when it clears, the scoreboard tells the func-
tional unit to store its result to the destination register. This step replaces the WB
step in the simple RISC V pipeline.

At first glance, it might appear that the scoreboard will have difficulty separat-
ing RAW and WAR hazards.

Because the operands for an instruction are read only when both operands are
available in the register file, this scoreboard does not take advantage of forwarding.
Instead, registers are only read when they are both available. This is not as large a
penalty as you might initially think. Unlike our simple pipeline of earlier, instruc-
tions will write their result into the register file as soon as they complete execution
(assuming no WAR hazards), rather than wait for a statically assigned write slot
that may be several cycles away. The effect reduces the pipeline latency and the
benefits of forwarding. There is still one additional cycle of latency that arises
because the write result and read operand stages cannot overlap. We would need
additional buffering to eliminate this overhead.
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Based on its own data structure, the scoreboard controls the instruction pro-
gression from one step to the next by communicating with the functional units.
There is a small complication, however. There are only a limited number of
source operand buses and result buses to the register file, which represents
a structural hazard. The scoreboard must guarantee that the number of func-
tional units allowed to proceed into steps 2 and 4 does not exceed the number
of buses available. We will not go into further detail on this, other than to men-
tion that the CDC 6600 solved this problem by grouping the 16 functional
units together into four groups and supplying a set of buses, called data trunks,
for each group. Only one unit in a group could read its operands or write its
result during a clock.

C.8 Fallacies and Pitfalls

Pitfall Unexpected execution sequences may cause unexpected hazards.

At first glance,WAW hazards look like they should never occur in a code sequence
because no compiler would ever generate twowrites to the same register without an
intervening read, but they can occur when the sequence is unexpected. For exam-
ple, consider a long running floating point divide that causes a trap. If the trap rou-
tine writes the same register as the divide early on, it may cause a WAW hazard, if
it writes the register before the divide completes. Hardware or software must avoid
this possibility.

Pitfall Extensive pipelining can impact other aspects of a design, leading to overall worse
cost-performance.

The best example of this phenomenon comes from two implementations of the
VAX, the 8600 and the 8700. When the 8600 was initially delivered, it had a cycle
time of 80 ns. Subsequently, a redesigned version, called the 8650, with a 55 ns
clock was introduced. The 8700 has a much simpler pipeline that operates at
the microinstruction level, yielding a smaller processor with a faster clock cycle
of 45 ns. The overall outcome is that the 8650 has a CPI advantage of about
20%, but the 8700 has a clock rate that is about 20% faster. Thus, the 8700
achieved the same performance with much less hardware.

Pitfall Evaluating dynamic or static scheduling on the basis of unoptimized code.

Unoptimized code—containing redundant loads, stores, and other operations that
might be eliminated by an optimizer—is much easier to schedule than “tight”
optimized code. This holds for scheduling both control delays (with delayed
branches) and delays arising from RAW hazards. In gcc running on an
R3000, which has a pipeline almost identical to that of Section C.1, the fre-
quency of idle clock cycles increases by 18% from the unoptimized and sched-
uled code to the optimized and scheduled code. Of course, the optimized
program is much faster, because it has fewer instructions. To fairly evaluate a
compile-time scheduler or runtime dynamic scheduling, you must use optimized
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code, because in the real system you will derive good performance from other
optimizations in addition to scheduling.

C.9 Concluding Remarks

At the beginning of the 1980s, pipelining was a technique reserved primarily for
supercomputers and large multimillion-dollar mainframes. By the mid-1980s, the
first pipelined microprocessors appeared and helped transform the world of com-
puting, allowing microprocessors to bypass minicomputers in performance and
eventually to take on and outperform mainframes. By the early 1990s, high-end
embedded microprocessors embraced pipelining, and desktops were headed
toward the use of the sophisticated dynamically scheduled, multiple-issue
approaches discussed in Chapter 3. The material in this appendix, which was con-
sidered reasonably advanced for graduate students when this text first appeared in
1990, is now considered basic undergraduate material and can be found in proces-
sors that cost less than $1!

C.10 Historical Perspective and References

Section M.5 (available online) features a discussion on the development of
pipelining and instruction-level parallelism covering both this appendix and the
material in Chapter 3. We provide numerous references for further reading and
exploration of these topics.

Updated Exercises by Diana Franklin

C.1 [15/15/15/15/25/10/15]<A.2>Use the following code fragment:

Loop: ld x1,0(x2) ;load x1 from address 0+x2
addi x1,x1,1 ;x1=x1+1
sd x1,0,(x2) ;store x1 at address 0+x2
addi x2,x2,4 ;x2=x2+4
sub x4,x3,x2 ;x4=x3-x2
bnez x4,Loop ;branch to Loop if x4!= 0

Assume that the initial value of x3 is x2+396.

a. [15]<C.2>Data hazards are caused by data dependences in the code. Whether
a dependency causes a hazard depends on the machine implementation (i.e.,
number of pipeline stages). List all of the data dependences in the code above.
Record the register, source instruction, and destination instruction; for example,
there is a data dependency for register x1 from the ld to the addi.

b. [15]<C.2>Show the timing of this instruction sequence for the 5-stage RISC
pipeline without any forwarding or bypassing hardware but assuming that a reg-
ister read and a write in the same clock cycle “forwards” through the register
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file, as between the add and or shown in Figure C.5. Use a pipeline timing
chart like that in Figure C.8. Assume that the branch is handled by flushing
the pipeline. If all memory references take 1 cycle, how many cycles does this
loop take to execute?

c. [15]<C.2>Show the timing of this instruction sequence for the 5-stage RISC
pipeline with full forwarding and bypassing hardware. Use a pipeline timing
chart like that shown in Figure C.8. Assume that the branch is handled by pre-
dicting it as not taken. If all memory references take 1 cycle, how many cycles
does this loop take to execute?

d. [15]<C.2>Show the timing of this instruction sequence for the 5-stage RISC
pipeline with full forwarding and bypassing hardware, as shown in Figure C.6.
Use a pipeline timing chart like that shown in Figure C.8. Assume that the
branch is handled by predicting it as taken. If all memory references take 1
cycle, how many cycles does this loop take to execute?

e. [25]<C.2>High-performance processors have very deep pipelines—more
than 15 stages. Imagine that you have a 10-stage pipeline in which every stage
of the 5-stage pipeline has been split in two. The only catch is that, for data for-
warding, data are forwarded from the end of a pair of stages to the beginning of
the two stages where they are needed. For example, data are forwarded from the
output of the second execute stage to the input of the first execute stage, still
causing a 1-cycle delay. Show the timing of this instruction sequence for the
10-stage RISC pipeline with full forwarding and bypassing hardware. Use a
pipeline timing chart like that shown in Figure C.8 (but with stages labeled
IF1, IF2, ID1, etc.). Assume that the branch is handled by predicting it as taken.
If all memory references take 1 cycle, how many cycles does this loop take to
execute?

f. [10]<C.2>Assume that in the 5-stage pipeline, the longest stage requires
0.8 ns, and the pipeline register delay is 0.1 ns. What is the clock cycle time
of the 5-stage pipeline? If the 10-stage pipeline splits all stages in half, what
is the cycle time of the 10-stage machine?

g. [15]<C.2>Using your answers from parts (d) and (e), determine the cycles per
instruction (CPI) for the loop on a 5-stage pipeline and a 10-stage pipeline.
Make sure you count only from when the first instruction reaches the write-back
stage to the end. Do not count the start-up of the first instruction. Using the clock
cycle time calculated in part (f), calculate the average instruction execute time
for each machine.

C.2 [15/15]<C.2>Suppose the branch frequencies (as percentages of all instructions)
are as follows:

Conditional branches 15%

Jumps and calls 1%

Taken conditional branches 60% are taken
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a. [15]<C.2>We are examining a four-stage pipeline where the branch is
resolved at the end of the second cycle for unconditional branches and at the
end of the third cycle for conditional branches. Assuming that only the first pipe
stage can always be completed independent of whether the branch is taken and
ignoring other pipeline stalls, how much faster would the machine be without
any branch hazards?

b. [15]<C.2>Now assume a high-performance processor in which we have a 15-
deep pipeline where the branch is resolved at the end of the fifth cycle for
unconditional branches and at the end of the tenth cycle for conditional
branches. Assuming that only the first pipe stage can always be completed inde-
pendent of whether the branch is taken and ignoring other pipeline stalls, how
much faster would the machine be without any branch hazards?

C.3 [5/15/10/10]<C.2>We begin with a computer implemented in single-cycle
implementation. When the stages are split by functionality, the stages do not
require exactly the same amount of time. The original machine had a clock
cycle time of 7 ns. After the stages were split, the measured times were IF,
1 ns; ID, 1.5 ns; EX, 1 ns; MEM, 2 ns; and WB, 1.5 ns. The pipeline register delay
is 0.1 ns.

a. [5]<C.2>What is the clock cycle time of the 5-stage pipelined machine?

b. [15]<C.2> If there is a stall every four instructions, what is the CPI of the new
machine?

c. [10]<C.2>What is the speedup of the pipelined machine over the single-cycle
machine?

d. [10]<C.2> If the pipelined machine had an infinite number of stages, what
would its speedup be over the single-cycle machine?

C.4 [15]<C.1, C.2>A reduced hardware implementation of the classic five-stage
RISC pipeline might use the EX stage hardware to perform a branch instruction
comparison and then not actually deliver the branch target PC to the IF stage until
the clock cycle in which the branch instruction reaches the MEM stage. Control
hazard stalls can be reduced by resolving branch instructions in ID, but improving
performance in one respect may reduce performance in other circumstances. Write
a small snippet of code in which calculating the branch in the ID stage causes a data
hazard, even with data forwarding.

C.5 [12/13/20/20/15/15]<C.2, C.3>For these problems, we will explore a pipeline
for a register-memory architecture. The architecture has two instruction formats:
a register-register format and a register-memory format. There is a single-memory
addressing mode (offset+base register). There is a set of ALU operations with the
format:

ALUop Rdest, Rsrc1, Rsrc2

or

ALUop Rdest, Rsrc1, MEM
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where the ALUop is one of the following: add, subtract, AND, OR, load (Rsrc1
ignored), or store. Rsrc or Rdest are registers. MEM is a base register and offset
pair. Branches use a full compare of two registers and are PC relative. Assume that
this machine is pipelined so that a new instruction is started every clock cycle. The
pipeline structure, similar to that used in the VAX 8700 micropipeline (Clark,
1987), is

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

The first ALU stage is used for effective address calculation for memory references
and branches. The second ALU cycle is used for operations and branch compa-
rison. RF is both a decode and register-fetch cycle. Assume that when a register
read and a register write of the same register occur in the same clock, the write data
are forwarded.

a. [12]<C.2>Find the number of adders needed, counting any adder or incre-
menter; show a combination of instructions and pipe stages that justify this
answer. You need only give one combination that maximizes the adder count.

b. [13]<C.2>Find the number of register read and write ports and memory read
and write ports required. Show that your answer is correct by showing a com-
bination of instructions and pipeline stage indicating the instruction and the
number of read ports and write ports required for that instruction.

c. [20]<C.3>Determine any data forwarding for any ALUs that will be needed.
Assume that there are separate ALUs for the ALU1 and ALU2 pipe stages. Put
in all forwarding among ALUs necessary to avoid or reduce stalls. Show the
relationship between the two instructions involved in forwarding using the for-
mat of the table in Figure C.23 but ignoring the last two columns. Be careful to
consider forwarding across an intervening instruction—for example,

add x1, ...
any instruction
add ..., x1, ...

d. [20]<C.3>Show all of the data forwarding requirements necessary to avoid or
reduce stalls when either the source or destination unit is not an ALU. Use the
same format as in Figure C.23, again ignoring the last two columns. Remember
to forward to and from memory references.
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e. [15]<C.3>Show all the remaining hazards that involve at least one unit other
than an ALU as the source or destination unit. Use a table like that shown in
Figure C.25, but replace the last column with the lengths of the hazards.

f. [15]<C.2>Show all control hazards by example and state the length of the
stall. Use a format like that shown in Figure C.11, labeling each example.

C.6 [12/13/13/15/15]<C.1, C.2, C.3>We will now add support for register-memory
ALU operations to the classic five-stage RISC pipeline. To offset this increase in
complexity, all memory addressing will be restricted to register indirect (i.e., all
addresses are simply a value held in a register; no offset or displacement may
be added to the register value). For example, the register-memory instruction
add x4, x5, (x1) means add the contents of register x5 to the contents of
the memory location with address equal to the value in register x1 and put the
sum in register x4. Register-register ALU operations are unchanged. The following
items apply to the integer RISC pipeline:

a. [12]<C.1>List a rearranged order of the five traditional stages of the RISC
pipeline that will support register-memory operations implemented exclusively
by register indirect addressing.

b. [13]<C.2, C.3>Describe what new forwarding paths are needed for the rear-
ranged pipeline by stating the source, destination, and information transferred
on each needed new path.

c. [13]<C.2, C.3>For the reordered stages of the RISC pipeline, what new data
hazards are created by this addressing mode? Give an instruction sequence illus-
trating each new hazard.

d. [15]<C.3>List all of the ways that the RISC pipeline with register-memory
ALU operations can have a different instruction count for a given program than
the original RISC pipeline. Give a pair of specific instruction sequences, one for
the original pipeline and one for the rearranged pipeline, to illustrate each way.

e. [15]<C.3>Assume that all instructions take 1 clock cycle per stage. List all of
the ways that the register-memory RISC V can have a different CPI for a given
program as compared to the original RISC V pipeline.

C.7 [10/10]<C.3> In this problem, we will explore how deepening the pipeline
affects performance in two ways: faster clock cycle and increased stalls due to data
and control hazards. Assume that the original machine is a 5-stage pipeline with a
1 ns clock cycle. The second machine is a 12-stage pipeline with a 0.6 ns clock
cycle. The 5-stage pipeline experiences a stall due to a data hazard every five
instructions, whereas the 12-stage pipeline experiences three stalls every eight
instructions. In addition, branches constitute 20% of the instructions, and the mis-
prediction rate for both machines is 5%.

a. [10]<C.3>What is the speedup of the 12-stage pipeline over the 5-stage pipe-
line, taking into account only data hazards?
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b. [10]<C.3> If the branch mispredict penalty for the first machine is 2 cycles but
the second machine is 5 cycles, what are the CPIs of each, taking into account
the stalls due to branch mispredictions?

C.8 [15]<C.5>Construct a table like that shown in Figure C.21 to check for WAW
stalls in the RISC V FP pipeline of Figure C.30. Do not consider FP divides.

C.9 [20/22/22]<C.4, C.6> In this exercise, we will look at how a common vector
loop runs on statically and dynamically scheduled versions of the RISC V pipe-
line. The loop is the so-called DAXPY loop (discussed extensively in Appendix
G) and the central operation in Gaussian elimination. The loop implements the
vector operation Y=a*X+Y for a vector of length 100. Here is the MIPS code
for the loop:

foo: fld f2, 0(x1) ; load X(i)
fmul.d f4, f2, f0 ; multiply a*X(i)
fld f6, 0(x2) ; load Y(i)
fadd.d f6, f4, f6 ; add a*X(i) + Y(i)
fsd 0(x2), f6 ; store Y(i)
addi x1, x1, 8 ; increment X index
addi x2, x2, 8 ; increment Y index
sltiu x3, x1, done ; test if done
bnez x3, foo ; loop if not done

For parts (a) to (c), assume that integer operations issue and complete in 1 clock
cycle (including loads) and that their results are fully bypassed. You will use the FP
latencies (only) shown in Figure C.29, but assume that the FP unit is fully pipe-
lined. For scoreboards below, assume that an instruction waiting for a result from
another function unit can pass through read operands at the same time the result is
written. Also assume that an instruction in WB completing will allow a currently
active instruction that is waiting on the same functional unit to issue in the same
clock cycle in which the first instruction completes WB.

a. [20]<C.5>For this problem, use the RISC V pipeline of Section C.5 with the
pipeline latencies from Figure C.29, but a fully pipelined FP unit, so the initi-
ation interval is 1. Draw a timing diagram, similar to Figure C.32, showing the
timing of each instruction's execution. How many clock cycles does each loop
iteration take, counting from when the first instruction enters the WB stage to
when the last instruction enters the WB stage?

b. [20]<C.8>Perform static instruction reordering to reorder the instructions to
minimize the stalls for this loop, renaming registers where necessary. Use all the
same assumptions as in (a). Draw a timing diagram, similar to Figure C.32,
showing the timing of each instruction's execution. How many clock cycles
does each loop iteration take, counting from when the first instruction enters
the WB stage to when the last instruction enters the WB stage?
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c. [20]<C.8>Using the original code above, consider how the instructions
would have executed using scoreboarding, a form of dynamic scheduling.
Draw a timing diagram, similar to Figure C.32, showing the timing of
the instructions through stages IF, IS (issue), RO (read operands), EX (exe-
cution), and WR (write result). How many clock cycles does each loop iter-
ation take, counting from when the first instruction enters the WB stage to
when the last instruction enters the WB stage?

C.10 [25]<C.8> It is critical that the scoreboard be able to distinguish RAW andWAR
hazards, because a WAR hazard requires stalling the instruction doing the writing
until the instruction reading an operand initiates execution, but a RAW hazard
requires delaying the reading instruction until the writing instruction finishes—just
the opposite. For example, consider the sequence:

fmul.d f0,f6,f4
fsub.d f8,f0,f2
fadd.d f2,f10,f2

The fsub.d depends on the fmul.d (a RAW hazard), thus the fmul.dmust be
allowed to complete before the fsub.d. If the fmul.d were stalled for the
fsub.d due to the inability to distinguish between RAW and WAR hazards,
the processor will deadlock. This sequence contains a WAR hazard between the
fadd.d and the fsub.d, and the fadd.d cannot be allowed to complete until
the fsub.d begins execution. The difficulty lies in distinguishing the RAW haz-
ard between fmul.d and fsub.d, and the WAR hazard between the fsub.d and
fadd.d. To see just why the three-instruction scenario is important, trace the han-
dling of each instruction stage by stage through issue, read operands, execute, and
write result. Assume that each scoreboard stage other than execute takes 1 clock
cycle. Assume that the fmul.d instruction requires 3 clock cycles to execute and
that the fsub.d and fadd.d instructions each take 1 cycle to execute. Finally,
assume that the processor has two multiply function units and two add function
units. Present the trace as follows.

1. Make a table with the column headings Instruction, Issue, Read Operands, Exe-
cute, Write Result, and Comment. In the first column, list the instructions in
program order (be generous with space between instructions; larger table cells
will better hold the results of your analysis). Start the table by writing a 1 in the
Issue column of the fmul.d instruction row to show that fmul.d completes
the issue stage in clock cycle 1. Now, fill in the stage columns of the table
through the cycle at which the scoreboard first stalls an instruction.

2. For a stalled instruction write the words “waiting at clock cycle X,” where X is
the number of the current clock cycle, in the appropriate table column to show
that the scoreboard is resolving an RAW or WAR hazard by stalling that stage.
In the Comment column, state what type of hazard and what dependent instruc-
tion is causing the wait.
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3. Adding the words “completes with clock cycle Y” to a “waiting” table entry, fill
in the rest of the table through the time when all instructions are complete. For
an instruction that stalled, add a description in the Comments column telling
why the wait ended when it did and how deadlock was avoided (Hint: Think
about how WAW hazards are prevented and what this implies about active
instruction sequences.). Note the completion order of the three instructions
as compared to their program order.

C.11 [10/10/10]<C.5>For this problem, you will create a series of small snippets that
illustrate the issues that arise when using functional units with different latencies.
For each one, draw a timing diagram similar to Figure C.32 that illustrates each
concept, and clearly indicate the problem.

a. [10]<C.5>Demonstrate, using code different from that used in Figure C.32,
the structural hazard of having the hardware for only one MEM and WB stage.

b. [10]<C.5>Demonstrate a WAW hazard requiring a stall.
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D
Storage Systems

I think Silicon Valley was misnamed. If you look back at the dollars
shipped in products in the last decade, there has been more revenue
frommagneticdisks than fromsilicon. Theyought to renametheplace
Iron Oxide Valley.

Al Hoagland
A pioneer of magnetic disks (1982)

Combiningbandwidthandstorage…enables swift and reliableaccess
to the ever expanding troves of content on the proliferating disks and
… repositories of the Internet… the capacity of storage arrays of all
kinds is rocketing ahead of the advance of computer performance.

George Gilder
“The End Is Drawing Nigh,”
Forbes ASAP (April 4, 2000)



D.1 Introduction

The popularity of Internet services such as search engines and auctions has
enhanced the importance of I/O for computers, since no one would want a desktop
computer that couldn’t access the Internet. This rise in importance of I/O is
reflected by the names of our times. The 1960s to 1980s were called the Computing
Revolution; the period since 1990 has been called the Information Age, with
concerns focused on advances in information technology versus raw computa-
tional power. Internet services depend upon massive storage, which is the focus
of this chapter, and networking, which is the focus of Appendix F.

This shift in focus from computation to communication and storage of infor-
mation emphasizes reliability and scalability as well as cost-performance.
Although it is frustrating when a program crashes, people become hysterical if they
lose their data; hence, storage systems are typically held to a higher standard of
dependability than the rest of the computer. Dependability is the bedrock of
storage, yet it also has its own rich performance theory—queuing theory—that
balances throughput versus response time. The software that determines which
processor features get used is the compiler, but the operating system usurps that
role for storage.

Thus, storage has a different, multifaceted culture from processors, yet it is still
found within the architecture tent. We start our exploration with advances in mag-
netic disks, as they are the dominant storage device today in desktop and server
computers. We assume that readers are already familiar with the basics of storage
devices, some of which were covered in Chapter 1.

D.2 Advanced Topics in Disk Storage

The disk industry historically has concentrated on improving the capacity of disks.
Improvement in capacity is customarily expressed as improvement in areal
density, measured in bits per square inch:

Areal density¼Tracks
Inch

on a disk surface� Bits
Inch

on a track

Through about 1988, the rate of improvement of areal density was 29% per
year, thus doubling density every 3 years. Between then and about 1996, the
rate improved to 60% per year, quadrupling density every 3 years and matching
the traditional rate of DRAMs. From 1997 to about 2003, the rate increased to
100%, doubling every year. After the innovations that allowed this renaissances
had largely played out, the rate has dropped recently to about 30% per year. In
2011, the highest density in commercial products is 400 billion bits per square
inch. Cost per gigabyte has dropped at least as fast as areal density has
increased, with smaller diameter drives playing the larger role in this improve-
ment. Costs per gigabyte improved by almost a factor of 1,000,000 between
1983 and 2011.
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Magnetic disks have been challenged many times for supremacy of secondary
storage. Figure D.1 shows one reason: the fabled access time gap between disks
and DRAM. DRAM latency is about 100,000 times less than disk, and that per-
formance advantage costs 30 to 150 times more per gigabyte for DRAM.

The bandwidth gap is more complex. For example, a fast disk in 2011 transfers
at 200 MB/sec from the disk media with 600 GB of storage and costs about $400.
A 4 GB DRAM module costing about $200 in 2011 could transfer at 16,000 MB/
sec (see Chapter 2), giving the DRAM module about 80 times higher bandwidth
than the disk. However, the bandwidth per GB is 6000 times higher for DRAM,
and the bandwidth per dollar is 160 times higher.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to fill that gap, but thus far all have failed. Challengers have never had a prod-
uct to market at the right time. By the time a new product ships, DRAMs and disks
have made advances as predicted earlier, costs have dropped accordingly, and the
challenging product is immediately obsolete.

The closest challenger is Flash memory. This semiconductor memory is non-
volatile like disks, and it has about the same bandwidth as disks, but latency is 100
to 1000 times faster than disk. In 2011, the price per gigabyte of Flash was 15 to 20
times cheaper than DRAM. Flash is popular in cell phones because it comes in
much smaller capacities and it is more power efficient than disks, despite the cost
per gigabyte being 15 to 25 times higher than disks. Unlike disks and DRAM,
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Figure D.1 Cost versus access time for DRAM and magnetic disk in 1980, 1985, 1990, 1995, 2000, and 2005. The
two-order-of-magnitude gap in cost and five-order-of-magnitude gap in access times between semiconductor mem-
ory and rotating magnetic disks have inspired a host of competing technologies to try to fill them. So far, such
attempts have been made obsolete before production by improvements in magnetic disks, DRAMs, or both. Note
that between 1990 and 2005 the cost per gigabyte DRAM chips made less improvement, while disk cost made dra-
matic improvement.
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Flash memory bits wear out—typically limited to 1 million writes—and so they are
not popular in desktop and server computers.

While disks will remain viable for the foreseeable future, the conventional
sector-track-cylinder model did not. The assumptions of the model are that nearby
blocks are on the same track, blocks in the same cylinder take less time to access
since there is no seek time, and some tracks are closer than others.

First, disks started offering higher-level intelligent interfaces, like ATA and
SCSI, when they included a microprocessor inside a disk. To speed up sequential
transfers, these higher-level interfaces organize disks more like tapes than like ran-
dom access devices. The logical blocks are ordered in serpentine fashion across a
single surface, trying to capture all the sectors that are recorded at the same bit den-
sity. (Disks vary the recording density since it is hard for the electronics to keep up
with the blocks spinning much faster on the outer tracks, and lowering linear den-
sity simplifies the task.) Hence, sequential blocks may be on different tracks. We
will see later in Figure D.22 on page D-45 an illustration of the fallacy of assuming
the conventional sector-track model when working with modern disks.

Second, shortly after the microprocessors appeared inside disks, the disks
included buffers to hold the data until the computer was ready to accept it, and later
caches to avoid read accesses. They were joined by a command queue that allowed
the disk to decide in what order to perform the commands to maximize perfor-
mance while maintaining correct behavior. Figure D.2 shows how a queue depth
of 50 can double the number of I/Os per second of random I/Os due to better sched-
uling of accesses. Although it’s unlikely that a system would really have 256 com-
mands in a queue, it would triple the number of I/Os per second. Given buffers,
caches, and out-of-order accesses, an accurate performance model of a real disk
is much more complicated than sector-track-cylinder.
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Figure D.2 Throughput versus command queue depth using random 512-
byte reads. The disk performs 170 reads per second starting at no command queue
and doubles performance at 50 and triples at 256 [Anderson 2003].
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Finally, the number of platters shrank from 12 in the past to 4 or even 1 today,
so the cylinder has less importance than before because the percentage of data in a
cylinder is much less.

Disk Power

Power is an increasing concern for disks as well as for processors. A typical ATA
disk in 2011 might use 9 watts when idle, 11 watts when reading or writing, and 13
watts when seeking. Because it is more efficient to spin smaller mass, smaller-
diameter disks can save power. One formula that indicates the importance of rota-
tion speed and the size of the platters for the power consumed by the disk motor is
the following [Gurumurthi et al. 2005]:

Power�Diameter4:6�RPM2:8�Number of platters

Thus, smaller platters, slower rotation, and fewer platters all help reduce disk motor
power, and most of the power is in the motor.

Figure D.3 shows the specifications of two 3.5-inch disks in 2011. The Serial
ATA (SATA) disks shoot for high capacity and the best cost per gigabyte, so the
2000 GB drives cost less than $0.05 per gigabyte. They use the widest platters that
fit the form factor and use four or five of them, but they spin at 5900 RPM and seek
relatively slowly to allow a higher areal density and to lower power. The corre-
sponding Serial Attach SCSI (SAS) drive aims at performance, so it spins at
15,000 RPM and seeks much faster. It uses a lower areal density to spin at that
high rate. To reduce power, the platter is much narrower than the form factor. This
combination reduces capacity of the SAS drive to 600 GB.

The cost per gigabyte is about a factor of five better for the SATA drives, and,
conversely, the cost per I/O per second or MB transferred per second is about a
factor of five better for the SAS drives. Despite using smaller platters and many
fewer of them, the SAS disks use twice the power of the SATA drives, due to
the much faster RPM and seeks.
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Figure D.3 Serial ATA (SATA) versus Serial Attach SCSI (SAS) drives in 3.5-inch form factor in 2011. The I/Os per
second were calculated using the average seek plus the time for one-half rotation plus the time to transfer one sector
of 512 KB.
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Advanced Topics in Disk Arrays

An innovation that improves both dependability and performance of storage
systems is disk arrays. One argument for arrays is that potential throughput can
be increased by having many disk drives and, hence, many disk arms, rather than
fewer large drives. Simply spreading data over multiple disks, called striping, auto-
matically forces accesses to several disks if the data files are large. (Although
arrays improve throughput, latency is not necessarily improved.) As we saw in
Chapter 1, the drawback is that with more devices, dependability decreases: N
devices generally have 1/N the reliability of a single device.

Although a disk array would have more faults than a smaller number of larger
disks when each disk has the same reliability, dependability is improved by adding
redundant disks to the array to tolerate faults. That is, if a single disk fails, the lost
information is reconstructed from redundant information. The only danger is in
having another disk fail during the mean time to repair (MTTR). Since the mean
time to failure (MTTF) of disks is tens of years, and the MTTR is measured in
hours, redundancy can make the measured reliability of many disks much higher
than that of a single disk.

Such redundant disk arrays have become known by the acronym RAID, which
originally stood for redundant array of inexpensive disks, although some prefer
the word independent for I in the acronym. The ability to recover from failures plus
the higher throughput, measured as either megabytes per second or I/Os per second,
makeRAIDattractive.Whencombinedwith the advantagesof smaller size and lower
power of small-diameter drives, RAIDs now dominate large-scale storage systems.

Figure D.4 summarizes the five standard RAID levels, showing how eight
disks of user data must be supplemented by redundant or check disks at each RAID
level, and it lists the pros and cons of each level. The standard RAID levels are well
documented, so we will just do a quick review here and discuss advanced levels in
more depth.

■ RAID 0—It has no redundancy and is sometimes nicknamed JBOD, for just a
bunch of disks, although the data may be striped across the disks in the array.
This level is generally included to act as a measuring stick for the other RAID
levels in terms of cost, performance, and dependability.

■ RAID 1—Also called mirroring or shadowing, there are two copies of every
piece of data. It is the simplest and oldest disk redundancy scheme, but it also
has the highest cost. Some array controllers will optimize read performance by
allowing the mirrored disks to act independently for reads, but this optimiza-
tion means it may take longer for the mirrored writes to complete.

■ RAID 2—This organization was inspired by applying memory-style error-
correcting codes (ECCs) to disks. It was included because there was such a disk
array product at the time of the original RAID paper, but none since then as
other RAID organizations are more attractive.

■ RAID 3—Since the higher-level disk interfaces understand the health of a disk,
it’s easy to figure out which disk failed. Designers realized that if one extra disk
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contains the parity of the information in the data disks, a single disk allows
recovery from a disk failure. The data are organized in stripes, with N data
blocks and one parity block. When a failure occurs, we just “subtract” the good
data from the good blocks, and what remains is the missing data. (This works
whether the failed disk is a data disk or the parity disk.) RAID 3 assumes that
the data are spread across all disks on reads and writes, which is attractive when
reading or writing large amounts of data.

■ RAID 4—Many applications are dominated by small accesses. Since sectors
have their own error checking, you can safely increase the number of reads
per second by allowing each disk to perform independent reads. It would seem
that writes would still be slow, if you have to read every disk to calculate parity.
To increase the number of writes per second, an alternative approach involves
only two disks. First, the array reads the old data that are about to be overwrit-
ten, and then calculates what bits would change before it writes the new data. It
then reads the old value of the parity on the check disks, updates parity accord-
ing to the list of changes, and then writes the new value of parity to the check

RAID level

Disk failures tolerated,
check space overhead

for 8 data disks Pros Cons
Company
products

0 Nonredundant
striped

0 failures, 0 check disks No space overhead No protection Widely
used

1 Mirrored 1 failure, 8 check disks No parity calculation; fast
recovery; small writes faster
than higher RAIDs; fast reads

Highest check
storage overhead

EMC, HP
(Tandem),

IBM

2 Memory-style
ECC

1 failure, 4 check disks Doesn’t rely on failed disk to
self-diagnose

� Log 2 check
storage overhead

Not used

3 Bit-interleaved
parity

1 failure, 1 check disk Low check overhead; high
bandwidth for large reads or

writes

No support for
small, random
reads or writes

Storage
Concepts

4 Block-
interleaved
parity

1 failure, 1 check disk Low check overhead; more
bandwidth for small reads

Parity disk is small
write bottleneck

Network
Appliance

5 Block-
interleaved
distributed
parity

1 failure, 1 check disk Low check overhead; more
bandwidth for small reads and

writes

Small writes!4
disk accesses

Widely
used

6 Row-diagonal
parity, EVEN-
ODD

2 failures, 2 check disks Protects against 2 disk failures Small writes!6
disk accesses; 2�
check overhead

Network
Appliance

Figure D.4 RAID levels, their fault tolerance, and their overhead in redundant disks. Thepaper that introduced the
term RAID [Patterson, Gibson, and Katz 1987] used a numerical classification that has become popular. In fact, the non-
redundant disk array is often called RAID 0, indicating that the data are striped across several disks but without redun-
dancy. Note that mirroring (RAID 1) in this instance can survive up to eight disk failures provided only one disk of each
mirrored pair fails; worst case is both disks in amirroredpair fail. In 2011, theremaybeno commercial implementations
of RAID 2; the rest are found in a wide range of products. RAID 0+1, 1+0, 01, 10, and 6 are discussed in the text.
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disk. Hence, these so-called “small writes” are still slower than small reads—
they involve four disks accesses—but they are faster than if you had to read all
disks on every write. RAID 4 has the same low check disk overhead as RAID 3,
and it can still do large reads and writes as fast as RAID 3 in addition to small
reads and writes, but control is more complex.

■ RAID 5—Note that a performance flaw for small writes in RAID 4 is that they
all must read and write the same check disk, so it is a performance bottleneck.
RAID 5 simply distributes the parity information across all disks in the array,
thereby removing the bottleneck. The parity block in each stripe is rotated so
that parity is spread evenly across all disks. The disk array controller must now
calculate which disk has the parity for when it wants to write a given block, but
that can be a simple calculation. RAID 5 has the same low check disk overhead
as RAID 3 and 4, and it can do the large reads and writes of RAID 3 and the
small reads of RAID 4, but it has higher small write bandwidth than RAID 4.
Nevertheless, RAID 5 requires the most sophisticated controller of the classic
RAID levels.

Having completed our quick review of the classic RAID levels, we can now look at
two levels that have become popular since RAID was introduced.

RAID 10 versus 01 (or 1+0 versus RAID 0+1)

One topic not always described in the RAID literature involves how mirroring in
RAID 1 interacts with striping. Suppose you had, say, four disks’ worth of data to
store and eight physical disks to use. Would you create four pairs of disks—each
organized as RAID 1—and then stripe data across the four RAID 1 pairs? Alter-
natively, would you create two sets of four disks—each organized as RAID 0—and
then mirror writes to both RAID 0 sets? The RAID terminology has evolved to call
the former RAID 1+0 or RAID 10 (“striped mirrors”) and the latter RAID 0+1 or
RAID 01 (“mirrored stripes”).

RAID 6: Beyond a Single Disk Failure

The parity-based schemes of the RAID 1 to 5 protect against a single self-
identifying failure; however, if an operator accidentally replaces the wrong disk
during a failure, then the disk array will experience two failures, and data will
be lost. Another concern is that since disk bandwidth is growing more slowly than
disk capacity, the MTTR of a disk in a RAID system is increasing, which in turn
increases the chances of a second failure. For example, a 500 GB SATA disk could
take about 3 hours to read sequentially assuming no interference. Given that the
damaged RAID is likely to continue to serve data, reconstruction could be
stretched considerably, thereby increasing MTTR. Besides increasing reconstruc-
tion time, another concern is that reading much more data during reconstruction
means increasing the chance of an uncorrectable media failure, which would result
in data loss. Other arguments for concern about simultaneous multiple failures are

D-8 ■ Appendix D Storage Systems



the increasing number of disks in arrays and the use of ATA disks, which are
slower and larger than SCSI disks.

Hence, over the years, there has been growing interest in protecting against
more than one failure. Network Appliance (NetApp), for example, started by build-
ing RAID 4 file servers. As double failures were becoming a danger to customers,
they created a more robust scheme to protect data, called row-diagonal parity or
RAID-DP [Corbett et al. 2004]. Like the standard RAID schemes, row-diagonal
parity uses redundant space based on a parity calculation on a per-stripe basis.
Since it is protecting against a double failure, it adds two check blocks per stripe
of data. Let’s assume there are p+1 disks total, so p�1 disks have data. Figure D.5
shows the case when p is 5.

The row parity disk is just like in RAID 4; it contains the even parity across the
other four data blocks in its stripe. Each block of the diagonal parity disk contains
the even parity of the blocks in the same diagonal. Note that each diagonal does not
cover one disk; for example, diagonal 0 does not cover disk 1. Hence, we need just
p�1 diagonals to protect the p disks, so the disk only has diagonals 0 to 3 in
Figure D.5.

Let’s see how row-diagonal parity works by assuming that data disks 1 and 3
fail in Figure D.5. We can’t perform the standard RAID recovery using the first
row using row parity, since it is missing two data blocks from disks 1 and 3. How-
ever, we can perform recovery on diagonal 0, since it is only missing the data block
associated with disk 3. Thus, row-diagonal parity starts by recovering one of the
four blocks on the failed disk in this example using diagonal parity. Since each
diagonal misses one disk, and all diagonals miss a different disk, two diagonals
are only missing one block. They are diagonals 0 and 2 in this example, so we next
restore the block from diagonal 2 from failed disk 1.When the data for those blocks
have been recovered, then the standard RAID recovery scheme can be used to
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Figure D.5 Row diagonal parity for p55, which protects four data disks from double
failures [Corbett et al. 2004]. This figure shows the diagonal groups for which parity is
calculated and stored in the diagonal parity disk. Although this shows all the check data
in separate disks for row parity and diagonal parity as in RAID 4, there is a rotated version
of row-diagonal parity that is analogous to RAID 5. Parameter p must be prime and
greater than 2; however, you canmake p larger than the number of data disks by assum-
ing that the missing disks have all zeros and the scheme still works. This trick makes it
easy to add disks to an existing system. NetApp picks p to be 257, which allows the sys-
tem to grow to up to 256 data disks.
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recover two more blocks in the standard RAID 4 stripes 0 and 2, which in turn
allows us to recover more diagonals. This process continues until two failed disks
are completely restored.

The EVEN-ODD scheme developed earlier by researchers at IBM is similar to
row diagonal parity, but it has a bit more computation during operation and
recovery [Blaum 1995]. Papers that are more recent show how to expand
EVEN-ODD to protect against three failures [Blaum, Bruck, and Vardy 1996;
Blaum et al. 2001].

D.3 Definition and Examples of Real Faults and Failures

Although people may be willing to live with a computer that occasionally crashes
and forces all programs to be restarted, they insist that their information is never
lost. The prime directive for storage is then to remember information, no matter
what happens.

Chapter 1 covered the basics of dependability, and this section expands that
information to give the standard definitions and examples of failures.

The first step is to clarify confusion over terms. The terms fault, error, and fail-
ure are often used interchangeably, but they have different meanings in the depend-
ability literature. For example, is a programming mistake a fault, error, or failure?
Does it matter whether we are talking about when it was designed or when the pro-
gram is run? If the running program doesn’t exercise the mistake, is it still a fault/
error/failure? Try another one. Suppose an alpha particle hits a DRAM memory
cell. Is it a fault/error/failure if it doesn’t change the value? Is it a fault/error/failure
if the memory doesn’t access the changed bit? Did a fault/error/failure still occur if
the memory had error correction and delivered the corrected value to the CPU?
You get the drift of the difficulties. Clearly, we need precise definitions to discuss
such events intelligently.

To avoid such imprecision, this subsection is based on the terminology used by
Laprie [1985] and Gray and Siewiorek [1991], endorsed by IFIP Working Group
10.4 and the IEEE Computer Society Technical Committee on Fault Tolerance.
We talk about a system as a single module, but the terminology applies to submo-
dules recursively. Let’s start with a definition of dependability:

Computer system dependability is the quality of delivered service such that reli-
ance can justifiably be placed on this service. The service delivered by a system is
its observed actual behavior as perceived by other system(s) interacting with this
system’s users. Each module also has an ideal specified behavior, where a service
specification is an agreed description of the expected behavior. A system failure
occurs when the actual behavior deviates from the specified behavior. The failure
occurred because of an error, a defect in that module. The cause of an error is a
fault.
When a fault occurs, it creates a latent error, which becomes effectivewhen it is

activated; when the error actually affects the delivered service, a failure occurs. The
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time between the occurrence of an error and the resulting failure is the error
latency. Thus, an error is the manifestation in the system of a fault, and a failure
is the manifestation on the service of an error. [p. 3]

Let’s go back to our motivating examples above. A programmingmistake is a fault.
The consequence is an error (or latent error) in the software. Upon activation, the
error becomes effective. When this effective error produces erroneous data that
affect the delivered service, a failure occurs.

An alpha particle hitting a DRAM can be considered a fault. If it changes the
memory, it creates an error. The error will remain latent until the affected memory
word is read. If the effective word error affects the delivered service, a failure
occurs. If ECC corrected the error, a failure would not occur.

A mistake by a human operator is a fault. The resulting altered data is an error.
It is latent until activated, and so on as before.

To clarify, the relationship among faults, errors, and failures is as follows:

■ A fault creates one or more latent errors.

■ The properties of errors are (1) a latent error becomes effective once activated;
(2) an error may cycle between its latent and effective states; and (3) an effective
error often propagates from one component to another, thereby creating new
errors. Thus, either an effective error is a formerly latent error in that component
or it has propagated from another error in that component or from elsewhere.

■ A component failure occurs when the error affects the delivered service.

■ These properties are recursive and apply to any component in the system.

Gray and Siewiorek classified faults into four categories according to their cause:

1. Hardware faults—Devices that fail, such as perhaps due to an alpha particle
hitting a memory cell

2. Design faults—Faults in software (usually) and hardware design (occasionally)

3. Operation faults—Mistakes by operations and maintenance personnel

4. Environmental faults—Fire, flood, earthquake, power failure, and sabotage

Faults are also classified by their duration into transient, intermittent, and perma-
nent [Nelson 1990]. Transient faults exist for a limited time and are not recurring.
Intermittent faults cause a system to oscillate between faulty and fault-free oper-
ation. Permanent faults do not correct themselves with the passing of time.

Now that we have defined the difference between faults, errors, and failures,
we are ready to see some real-world examples. Publications of real error rates
are rare for two reasons. First, academics rarely have access to significant hardware
resources to measure. Second, industrial researchers are rarely allowed to publish
failure information for fear that it would be used against their companies in the
marketplace. A few exceptions follow.
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Berkeley’s Tertiary Disk

The Tertiary Disk project at the University of California created an art image server
for the Fine Arts Museums of San Francisco in 2000. This database consisted of
high-quality images of over 70,000 artworks [Talagala et al., 2000]. The database
was stored on a cluster, which consisted of 20 PCs connected by a switched
Ethernet and containing 368 disks. It occupied seven 7-foot-high racks.

Figure D.6 shows the failure rates of the various components of Tertiary Disk.
In advance of building the system, the designers assumed that SCSI data disks
would be the least reliable part of the system, as they are both mechanical and plen-
tiful. Next would be the IDE disks since there were fewer of them, then the power
supplies, followed by integrated circuits. They assumed that passive devices such
as cables would scarcely ever fail.

Figure D.6 shatters some of those assumptions. Since the designers followed
the manufacturer’s advice of making sure the disk enclosures had reduced vibra-
tion and good cooling, the data disks were very reliable. In contrast, the PC chassis
containing the IDE/ATA disks did not afford the same environmental controls.
(The IDE/ATA disks did not store data but helped the application and operating

Component Total in system Total failed Percentage failed

SCSI controller 44 1 2.3%

SCSI cable 39 1 2.6%

SCSI disk 368 7 1.9%

IDE/ATA disk 24 6 25.0%

Disk enclosure—backplane 46 13 28.3%

Disk enclosure—power supply 92 3 3.3%

Ethernet controller 20 1 5.0%

Ethernet switch 2 1 50.0%

Ethernet cable 42 1 2.3%

CPU/motherboard 20 0 0%

Figure D.6 Failures of components in Tertiary Disk over 18 months of operation. For
each type of component, the table shows the total number in the system, the number
that failed, and the percentage failure rate. Disk enclosures have two entries in the table
because they had two types of problems: backplane integrity failures and power supply
failures. Since each enclosure had two power supplies, a power supply failure did not
affect availability. This cluster of 20 PCs, contained in seven 7-foot-high, 19-inch-wide
racks, hosted 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks. The PCs were P6-200 MHz with
96 MB of DRAM each. They ran FreeBSD 3.0, and the hosts were connected via switched
100 Mbit/sec Ethernet. All SCSI disks were connected to two PCs via double-ended SCSI
chains to support RAID 1. The primary application was called the Zoom Project, which in
1998 was the world’s largest art image database, with 72,000 images. See Talagala et al.
[2000b].
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system to boot the PCs.) Figure D.6 shows that the SCSI backplane, cables, and
Ethernet cables were no more reliable than the data disks themselves!

As Tertiary Disk was a large system with many redundant components, it could
survive this wide range of failures. Components were connected and mirrored
images were placed so that no single failure could make any image unavailable.
This strategy, which initially appeared to be overkill, proved to be vital.

This experience also demonstrated the difference between transient faults and
hard faults. Virtually all the failures in Figure D.6 appeared first as transient faults.
It was up to the operator to decide if the behavior was so poor that they needed to be
replaced or if they could continue. In fact, the word “failure”was not used; instead,
the group borrowed terms normally used for dealing with problem employees, with
the operator deciding whether a problem component should or should not be
“fired.”

Tandem

The next example comes from industry. Gray [1990] collected data on faults for
Tandem Computers, which was one of the pioneering companies in fault-tolerant
computing and used primarily for databases. Figure D.7 graphs the faults that
caused system failures between 1985 and 1989 in absolute faults per system
and in percentage of faults encountered. The data show a clear improvement in
the reliability of hardware and maintenance. Disks in 1985 required yearly service
by Tandem, but they were replaced by disks that required no scheduled mainte-
nance. Shrinking numbers of chips and connectors per system plus software’s abil-
ity to tolerate hardware faults reduced hardware’s contribution to only 7% of
failures by 1989. Moreover, when hardware was at fault, software embedded in
the hardware device (firmware) was often the culprit. The data indicate that soft-
ware in 1989 was the major source of reported outages (62%), followed by system
operations (15%).

The problem with any such statistics is that the data only refer to what is
reported; for example, environmental failures due to power outages were not
reported to Tandem because they were seen as a local problem. Data on operation
faults are very difficult to collect because operators must report personal mistakes,
which may affect the opinion of their managers, which in turn can affect job secu-
rity and pay raises. Gray suggested that both environmental faults and operator
faults are underreported. His study concluded that achieving higher availability
requires improvement in software quality and software fault tolerance, simpler
operations, and tolerance of operational faults.

Other Studies of the Role of Operators in Dependability

While Tertiary Disk and Tandem are storage-oriented dependability studies, we
need to look outside storage to find better measurements on the role of humans
in failures. Murphy and Gent [1995] tried to improve the accuracy of data on
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operator faults by having the system automatically prompt the operator on each
boot for the reason for that reboot. They classified consecutive crashes to the same
fault as operator fault and included operator actions that directly resulted in
crashes, such as giving parameters bad values, bad configurations, and bad appli-
cation installation. Although they believed that operator error is under-reported,
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Figure D.7 Faults in Tandem between 1985 and 1989. Gray [1990] collected these
data for fault-tolerant Tandem Computers based on reports of component failures
by customers.
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they did get more accurate information than did Gray, who relied on a form that the
operator filled out and then sent up the management chain. The hardware/operating
system went from causing 70% of the failures in VAX systems in 1985 to 28% in
1993, and failures due to operators rose from 15% to 52% in that same period.Mur-
phy and Gent expected managing systems to be the primary dependability chal-
lenge in the future.

The final set of data comes from the government. The Federal Communications
Commission (FCC) requires that all telephone companies submit explanations
when they experience an outage that affects at least 30,000 people or lasts
30 minutes. These detailed disruption reports do not suffer from the self-reporting
problem of earlier figures, as investigators determine the cause of the outage rather
than operators of the equipment. Kuhn [1997] studied the causes of outages
between 1992 and 1994, and Enriquez [2001] did a follow-up study for the first
half of 2001. Although there was a significant improvement in failures due to over-
loading of the network over the years, failures due to humans increased, from about
one-third to two-thirds of the customer-outage minutes.

These four examples and others suggest that the primary cause of failures in
large systems today is faults by human operators. Hardware faults have declined
due to a decreasing number of chips in systems and fewer connectors. Hardware
dependability has improved through fault tolerance techniques such as memory
ECC and RAID. At least some operating systems are considering reliability impli-
cations before adding new features, so in 2011 the failures largely occurred
elsewhere.

Although failures may be initiated due to faults by operators, it is a poor reflec-
tion on the state of the art of systems that the processes of maintenance and upgrad-
ing are so error prone. Most storage vendors claim today that customers spend
much more on managing storage over its lifetime than they do on purchasing
the storage. Thus, the challenge for dependable storage systems of the future is
either to tolerate faults by operators or to avoid faults by simplifying the tasks
of system administration. Note that RAID 6 allows the storage system to survive
even if the operator mistakenly replaces a good disk.

We have now covered the bedrock issue of dependability, giving definitions,
case studies, and techniques to improve it. The next step in the storage tour is
performance.

D.4 I/O Performance, Reliability Measures, and Benchmarks

I/O performance has measures that have no counterparts in design. One of these is
diversity: Which I/O devices can connect to the computer system? Another is
capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of performance
(namely, response time and throughput) also apply to I/O. (I/O throughput is some-
times called I/O bandwidth and response time is sometimes called latency.) The
next two figures offer insight into how response time and throughput trade off
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against each other. Figure D.8 shows the simple producer-server model. The pro-
ducer creates tasks to be performed and places them in a buffer; the server takes
tasks from the first in, first out buffer and performs them.

Response time is defined as the time a task takes from themoment it is placed in
the buffer until the server finishes the task. Throughput is simply the average num-
ber of tasks completed by the server over a time period. To get the highest possible
throughput, the server should never be idle, thus the buffer should never be empty.
Response time, on the other hand, counts time spent in the buffer, so an empty
buffer shrinks it.

Another measure of I/O performance is the interference of I/O with processor
execution. Transferring data may interfere with the execution of another process.
There is also overhead due to handling I/O interrupts. Our concern here is how
much longer a process will take because of I/O for another process.

Throughput versus Response Time

Figure D.9 shows throughput versus response time (or latency) for a typical I/O
system. The knee of the curve is the area where a little more throughput results
in much longer response time or, conversely, a little shorter response time results
in much lower throughput.

How does the architect balance these conflicting demands? If the computer is
interacting with human beings, Figure D.10 suggests an answer. An interaction, or
transaction, with a computer is divided into three parts:

1. Entry time—The time for the user to enter the command.

2. System response time—The time between when the user enters the command
and the complete response is displayed.

3. Think time—The time from the reception of the response until the user begins to
enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction time. The results in
Figure D.10 show that cutting system response time by 0.7 seconds saves 4.9
seconds (34%) from the conventional transaction and 2.0 seconds (70%) from

revreSrecudorP

Queue

Figure D.8 The traditional producer-server model of response time and throughput.
Response time begins when a task is placed in the buffer and ends when it is completed
by the server. Throughput is the number of tasks completed by the server in unit time.
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Figure D.10 A user transaction with an interactive computer divided into entry time,
system response time, and user think time for a conventional system and graphics
system. The entry times are the same, independent of system response time. The entry
time was 4 seconds for the conventional system and 0.25 seconds for the graphics sys-
tem. Reduction in response time actually decreases transaction time by more than just
the response time reduction. (From Brady [1986].)
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the graphics transaction. This implausible result is explained by human nature:
People need less time to think when given a faster response. Although this study
is 20 years old, response times are often still much slower than 1 second, even if
processors are 1000 times faster. Examples of long delays include starting an appli-
cation on a desktop PC due to many disk I/Os, or network delays when clicking on
Web links.

To reflect the importance of response time to user productivity, I/O bench-
marks also address the response time versus throughput trade-off. Figure D.11
shows the response time bounds for three I/O benchmarks. They report maximum
throughput given either that 90% of response times must be less than a limit or that
the average response time must be less than a limit.

Let’s next look at these benchmarks in more detail.

Transaction-Processing Benchmarks

Transaction processing (TP, or OLTP for online transaction processing) is chiefly
concerned with I/O rate (the number of disk accesses per second), as opposed to
data rate (measured as bytes of data per second). TP generally involves changes to
a large body of shared information from many terminals, with the TP system
guaranteeing proper behavior on a failure. Suppose, for example, that a bank’s
computer fails when a customer tries to withdraw money from an ATM. The
TP system would guarantee that the account is debited if the customer received
the money and that the account is unchanged if the money was not received. Air-
line reservations systems as well as banks are traditional customers for TP.

As mentioned in Chapter 1, two dozen members of the TP community con-
spired to form a benchmark for the industry and, to avoid the wrath of their legal
departments, published the report anonymously [Anon. et al. 1985]. This report led
to the Transaction Processing Council, which in turn has led to eight benchmarks
since its founding. Figure D.12 summarizes these benchmarks.

Let’s describe TPC-C to give a flavor of these benchmarks. TPC-C uses a data-
base to simulate an order-entry environment of a wholesale supplier, including

I/O benchmark Response time restriction
Throughput
metric

TPC-C: Complex
Query OLTP

�90% of transaction must meet response time
limit; 5 seconds for most types of transactions

New order
transactions per
minute

TPC-W:
Transactional Web
benchmark

�90% of Web interactions must meet
response time limit; 3 seconds for most types
of Web interactions

Web interactions
per second

SPECsfs97 Average response time �40 ms NFS operations
per second

Figure D.11 Response time restrictions for three I/O benchmarks.
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entering and delivering orders, recording payments, checking the status of orders,
and monitoring the level of stock at the warehouses. It runs five concurrent trans-
actions of varying complexity, and the database includes nine tables with a scalable
range of records and customers. TPC-C is measured in transactions per minute
(tpmC) and in price of system, including hardware, software, and three years of
maintenance support. Figure 1.17 on page 42 in Chapter 1 describes the top sys-
tems in performance and cost-performance for TPC-C.

These TPC benchmarks were the first—and in some cases still the only ones—
that have these unusual characteristics:

■ Price is included with the benchmark results. The cost of hardware, software,
and maintenance agreements is included in a submission, which enables eval-
uations based on price-performance as well as high performance.

■ The dataset generally must scale in size as the throughput increases. The
benchmarks are trying to model real systems, in which the demand on the sys-
tem and the size of the data stored in it increase together. It makes no sense, for
example, to have thousands of people per minute access hundreds of bank
accounts.

■ The benchmark results are audited. Before results can be submitted, they must
be approved by a certified TPC auditor, who enforces the TPC rules that try to
make sure that only fair results are submitted. Results can be challenged and
disputes resolved by going before the TPC.

■ Throughput is the performance metric, but response times are limited. For
example, with TPC-C, 90% of the new order transaction response times must
be less than 5 seconds.

Benchmark Data size (GB) Performance metric
Date of first
results

A: debit credit (retired) 0.1–10 Transactions per second July 1990

B: batch debit credit (retired) 0.1–10 Transactions per second July 1991

C: complex query OLTP 100–3000 (minimum
0.07*TPM)

New order transactions per
minute (TPM)

September
1992

D: decision support (retired) 100, 300, 1000 Queries per hour December
1995

H: ad hoc decision support 100, 300, 1000 Queries per hour October 1999

R: business reporting decision support
(retired)

1000 Queries per hour August 1999

W: transactional Web benchmark �50, 500 Web interactions per second July 2000

App: application server and Web
services benchmark

�2500 Web service interactions per
second (SIPS)

June 2005

Figure D.12 Transaction Processing Council benchmarks. The summary results include both the performance met-
ric and the price-performance of that metric. TPC-A, TPC-B, TPC-D, and TPC-R were retired.
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■ An independent organization maintains the benchmarks. Dues collected by
TPC pay for an administrative structure including a chief operating office. This
organization settles disputes, conducts mail ballots on approval of changes to
benchmarks, holds board meetings, and so on.

SPEC System-Level File Server, Mail, and Web Benchmarks

The SPEC benchmarking effort is best known for its characterization of processor
performance, but it has created benchmarks for file servers, mail servers, and Web
servers.

Seven companies agreed on a synthetic benchmark, called SFS, to evaluate
systems running the Sun Microsystems network file service (NFS). This bench-
mark was upgraded to SFS 3.0 (also called SPEC SFS97_R1) to include support
for NFS version 3, using TCP in addition to UDP as the transport protocol, and
making the mix of operations more realistic. Measurements on NFS systems led
to a synthetic mix of reads, writes, and file operations. SFS supplies default param-
eters for comparative performance. For example, half of all writes are done in 8 KB
blocks and half are done in partial blocks of 1, 2, or 4 KB. For reads, the mix is 85%
full blocks and 15% partial blocks.

Like TPC-C, SFS scales the amount of data stored according to the reported
throughput: For every 100 NFS operations per second, the capacity must increase
by 1 GB. It also limits the average response time, in this case to 40 ms. Figure D.13
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Figure D.13 SPEC SFS97_R1 performance for the NetApp FAS3050c NFS servers in
two configurations. Two processors reached 34,089 operations per second and four
processors did 47,927. Reported in May 2005, these systems used the Data ONTAP
7.0.1R1 operating system, 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM per
processor, 1 GB of nonvolatile memory per system, and 168 15 K RPM, 72 GB, Fibre
Channel disks. These disks were connected using two or four QLogic ISP-2322 FC disk
controllers.
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shows average response time versus throughput for two NetApp systems. Unfor-
tunately, unlike the TPC benchmarks, SFS does not normalize for different price
configurations.

SPECMail is a benchmark to help evaluate performance of mail servers at an
Internet service provider. SPECMail2001 is based on the standard Internet proto-
cols SMTP and POP3, and it measures throughput and user response time while
scaling the number of users from 10,000 to 1,000,000.

SPECWeb is a benchmark for evaluating the performance of World Wide Web
servers, measuring number of simultaneous user sessions. The SPECWeb2005
workload simulates accesses to a Web service provider, where the server supports
home pages for several organizations. It has three workloads: Banking (HTTPS),
E-commerce (HTTP and HTTPS), and Support (HTTP).

Examples of Benchmarks of Dependability

The TPC-C benchmark does in fact have a dependability requirement. The bench-
marked system must be able to handle a single disk failure, which means in
practice that all submitters are running some RAID organization in their storage
system.

Efforts that are more recent have focused on the effectiveness of fault tolerance
in systems. Brown and Patterson [2000] proposed that availability be measured by
examining the variations in system quality-of-service metrics over time as faults
are injected into the system. For aWeb server, the obvious metrics are performance
(measured as requests satisfied per second) and degree of fault tolerance (measured
as the number of faults that can be tolerated by the storage subsystem, network
connection topology, and so forth).

The initial experiment injected a single fault—such as a write error in disk sec-
tor—and recorded the system’s behavior as reflected in the quality-of-service met-
rics. The example compared software RAID implementations provided by Linux,
Solaris, and Windows 2000 Server. SPECWeb99 was used to provide a workload
and to measure performance. To inject faults, one of the SCSI disks in the software
RAID volume was replaced with an emulated disk. It was a PC running software
using a SCSI controller that appears to other devices on the SCSI bus as a disk. The
disk emulator allowed the injection of faults. The faults injected included a variety
of transient disk faults, such as correctable read errors, and permanent faults, such
as disk media failures on writes.

Figure D.14 shows the behavior of each system under different faults. The two
top graphs show Linux (on the left) and Solaris (on the right). As RAID systems
can lose data if a second disk fails before reconstruction completes, the longer the
reconstruction (MTTR), the lower the availability. Faster reconstruction implies
decreased application performance, however, as reconstruction steals I/O
resources from running applications. Thus, there is a policy choice between taking
a performance hit during reconstruction or lengthening the window of vulnerability
and thus lowering the predicted MTTF.
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Although none of the tested systems documented their reconstruction policies
outside of the source code, even a single fault injection was able to give insight into
those policies. The experiments revealed that both Linux and Solaris initiate auto-
matic reconstruction of the RAID volume onto a hot spare when an active disk is
taken out of service due to a failure. Although Windows supports RAID
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Figure D.14 Availability benchmark for software RAID systems on the same computer running Red Hat 6.0 Linux,
Solaris 7, and Windows 2000 operating systems. Note the difference in philosophy on speed of reconstruction of
Linux versus Windows and Solaris. The y-axis is behavior in hits per second running SPECWeb99. The arrow indicates
time of fault insertion. The lines at the top give the 99% confidence interval of performance before the fault is
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this value would appear.
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reconstruction, the reconstruction must be initiated manually. Thus, without
human intervention, a Windows system that did not rebuild after a first failure
remains susceptible to a second failure, which increases the window of vulnerabil-
ity. It does repair quickly once told to do so.

The fault injection experiments also provided insight into other availability
policies of Linux, Solaris, and Windows 2000 concerning automatic spare utiliza-
tion, reconstruction rates, transient errors, and so on. Again, no system documented
their policies.

In terms of managing transient faults, the fault injection experiments revealed
that Linux’s software RAID implementation takes an opposite approach than do
the RAID implementations in Solaris and Windows. The Linux implementation
is paranoid—it would rather shut down a disk in a controlled manner at the first
error, rather than wait to see if the error is transient. In contrast, Solaris and Win-
dows are more forgiving—they ignore most transient faults with the expectation
that they will not recur. Thus, these systems are substantially more robust to tran-
sients than the Linux system. Note that both Windows and Solaris do log the tran-
sient faults, ensuring that the errors are reported even if not acted upon. When
faults were permanent, the systems behaved similarly.

D.5 A Little Queuing Theory

In processor design, we have simple back-of-the-envelope calculations of perfor-
mance associated with the CPI formula in Chapter 1, or we can use full-scale sim-
ulation for greater accuracy at greater cost. In I/O systems, we also have a bestcase
analysis as a back-of-the-envelope calculation. Full-scale simulation is also much
more accurate and much more work to calculate expected performance.

With I/O systems, however, we also have a mathematical tool to guide I/O
design that is a little more work and much more accurate than best-case analysis,
but much less work than full-scale simulation. Because of the probabilistic nature
of I/O events and because of sharing of I/O resources, we can give a set of simple
theorems that will help calculate response time and throughput of an entire I/O sys-
tem. This helpful field is called queuing theory. Since there are many books and
courses on the subject, this section serves only as a first introduction to the topic.
However, even this small amount can lead to better design of I/O systems.

Let’s start with a black-box approach to I/O systems, as shown in Figure D.15.
In our example, the processor is making I/O requests that arrive at the I/O device,
and the requests “depart” when the I/O device fulfills them.

We are usually interested in the long term, or steady state, of a system rather
than in the initial start-up conditions. Suppose we weren’t. Although there is a
mathematics that helps (Markov chains), except for a few cases, the only way
to solve the resulting equations is simulation. Since the purpose of this section
is to show something a little harder than back-of-the-envelope calculations but less
than simulation, we won’t cover such analyses here. (See the references in Appen-
dix M for more details.)
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Hence, in this section we make the simplifying assumption that we are evalu-
ating systems with multiple independent requests for I/O service that are in equi-
librium: The input rate must be equal to the output rate. We also assume there is a
steady supply of tasks independent for how long they wait for service. In many real
systems, such as TPC-C, the task consumption rate is determined by other system
characteristics, such as memory capacity.

This leads us to Little’s law, which relates the average number of tasks in the
system, the average arrival rate of new tasks, and the average time to perform a
task:

Mean number of tasks in system¼Arrival rate�Mean response time

Little’s law applies to any system in equilibrium, as long as nothing inside the
black box is creating new tasks or destroying them. Note that the arrival rate
and the response time must use the same time unit; inconsistency in time units
is a common cause of errors.

Let’s try to derive Little’s law. Assume we observe a system for Timeobserve
minutes. During that observation, we record how long it took each task to
be serviced, and then sum those times. The number of tasks completed during
Timeobserve is Numbertask, and the sum of the times each task spends in the system
is Timeaccumulated. Note that the tasks can overlap in time, so Timeaccumulated�
Timeobserved. Then,

Mean number of tasks in system¼Timeaccumulated

Timeobserve

Mean response time¼Timeaccumulated

Numbertasks

Arrival rate¼Numbertasks
Timeobserve

Algebra lets us split the first formula:

Timeaccumulated

Timeobserve
¼Timeaccumulated

Numbertasks
∞

Numbertasks
Timeobserve

Arrivals Departures

Figure D.15 Treating the I/O system as a black box. This leads to a simple but impor-
tant observation: If the system is in steady state, then the number of tasks entering the
system must equal the number of tasks leaving the system. This flow-balanced state is
necessary but not sufficient for steady state. If the system has been observed or mea-
sured for a sufficiently long time and mean waiting times stabilize, then we say that the
system has reached steady state.
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If we substitute the three definitions above into this formula, and swap the resulting
two terms on the right-hand side, we get Little’s law:

Mean number of tasks in system¼Arrival rate�Mean response time

This simple equation is surprisingly powerful, as we shall see.
If we open the black box, we see Figure D.16. The area where the tasks accu-

mulate, waiting to be serviced, is called the queue, or waiting line. The device per-
forming the requested service is called the server. Until we get to the last two pages
of this section, we assume a single server.

Little’s law and a series of definitions lead to several useful equations:

■ Timeserver—Average time to service a task; average service rate is 1/Timeserver,
traditionally represented by the symbol μ in many queuing texts.

■ Timequeue—Average time per task in the queue.

■ Timesystem—Average time/task in the system, or the response time, which is
the sum of Timequeue and Timeserver.

■ Arrival rate—Average number of arriving tasks/second, traditionally
represented by the symbol λ in many queuing texts.

■ Lengthserver—Average number of tasks in service.

■ Lengthqueue—Average length of queue.

■ Lengthsystem—Average number of tasks in system, which is the sum of
Lengthqueue and Lengthserver.

One common misunderstanding can be made clearer by these definitions: whether
the question is how long a task must wait in the queue before service starts (Time-
queue) or how long a task takes until it is completed (Timesystem). The latter term is
what we mean by response time, and the relationship between the terms is
Timesystem¼Timequeue+Timeserver.

The mean number of tasks in service (Lengthserver) is simply Arrival rate�
Timeserver, which is Little’s law. Server utilization is simply the mean number
of tasks being serviced divided by the service rate. For a single server, the service
rate is 1/Timeserver. Hence, server utilization (and, in this case, the mean number of
tasks per server) is simply:

Server utilization¼Arrival rate�Timeserver

Arrivals

Queue Server

I/O controller
and device

Figure D.16 The single-server model for this section. In this situation, an I/O request
“departs” by being completed by the server.
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Service utilization must be between 0 and 1; otherwise, there would be more tasks
arriving than could be serviced, violating our assumption that the system is in equi-
librium. Note that this formula is just a restatement of Little’s law. Utilization is also
called traffic intensityand is representedby thesymbolρ inmanyqueuing theory texts.

Example Suppose an I/O system with a single disk gets on average 50 I/O requests per
second. Assume the average time for a disk to service an I/O request is 10 ms.What
is the utilization of the I/O system?

Answer Using the equation above, with 10 ms represented as 0.01 seconds, we get: 50

Server utilization¼Arrival rate�Timeserver ¼ 50
sec

�0:01sec ¼ 0:50

Therefore, the I/O system utilization is 0.5.

How the queue delivers tasks to the server is called the queue discipline. The sim-
plest and most common discipline is first in, first out (FIFO). If we assume FIFO,
we can relate time waiting in the queue to the mean number of tasks in the queue:

Timequeue ¼Lengthqueue�Timeserver +Mean time to complete service of task when
new task arrives if server is busy

That is, the time in the queue is the number of tasks in the queue times the mean
service time plus the time it takes the server to complete whatever task is being
serviced when a new task arrives. (There is one more restriction about the arrival
of tasks, which we reveal on page D-28.)

The last component of the equation is not as simple as it first appears. A new
task can arrive at any instant, so we have no basis to know how long the existing
task has been in the server. Although such requests are random events, if we know
something about the distribution of events, we can predict performance.

Poisson Distribution of Random Variables

To estimate the last component of the formula we need to know a little about dis-
tributions of random variables. A variable is random if it takes one of a specified
set of values with a specified probability; that is, you cannot know exactly what its
next value will be, but you may know the probability of all possible values.

Requests for service from an I/O system can be modeled by a random variable
because the operating system is normally switching between several processes that
generate independent I/O requests. We also model I/O service times by a random
variable given the probabilistic nature of disks in terms of seek and rotational delays.

One way to characterize the distribution of values of a random variable with
discrete values is a histogram, which divides the range between the minimum
and maximum values into subranges called buckets. Histograms then plot the
number in each bucket as columns.
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Histograms work well for distributions that are discrete values—for example,
the number of I/O requests. For distributions that are not discrete values, such as
time waiting for an I/O request, we have two choices. Either we need a curve to plot
the values over the full range, so that we can estimate accurately the value, or we
need a very fine time unit so that we get a very large number of buckets to estimate
time accurately. For example, a histogram can be built of disk service times mea-
sured in intervals of 10 μs although disk service times are truly continuous.

Hence, to be able to solve the last part of the previous equation we need to char-
acterize the distribution of this random variable. The mean time and some measure
of the variance are sufficient for that characterization.

For the first term, we use the weighted arithmetic mean time. Let’s first assume
that after measuring the number of occurrences, say, ni, of tasks, you could
compute frequency of occurrence of task i:

fi ¼ niXn
i¼1

ni

 !

Then weighted arithmetic mean is

Weighted arithmetic mean time¼ f1�T1 + f2�T2 +…+ fn�Tn

where Ti is the time for task i and fi is the frequency of occurrence of task i.
To characterize variability about the mean, many people use the standard devi-

ation. Let’s use the variance instead, which is simply the square of the standard
deviation, as it will help us with characterizing the probability distribution. Given
the weighted arithmetic mean, the variance can be calculated as

Variance¼ f1�T2
1 + f2�T2

2 +…+ fn�T2
n

� ��Weighted arithmetic mean time2

It is important to remember the units when computing variance. Let’s assume the
distribution is of time. If time is about 100 milliseconds, then squaring it yields
10,000 square milliseconds. This unit is certainly unusual. It would be more
convenient if we had a unitless measure.

To avoid this unit problem, we use the squared coefficient of variance,
traditionally called C2:

C2 ¼ Variance

Weighted arithmetic mean time2

We can solve for C, the coefficient of variance, as

C¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p

Weighted arithmetic mean time
¼ Standard deviation
Weighted arithmetic mean time

Weare trying to characterize randomevents, but to be able to predict performance
we need a distribution of randomeventswhere themathematics is tractable. Themost
popular such distribution is the exponential distribution, which has a C value of 1.

Note that we are using a constant to characterize variability about the mean. The
invariance of C over time reflects the property that the history of events has no impact
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on the probability of an event occurring now. This forgetful property is called mem-
oryless, and this property is an important assumption used to predict behavior using
these models. (Suppose this memoryless property did not exist; then, we would have
to worry about the exact arrival times of requests relative to each other, which would
make the mathematics considerably less tractable!)

One of the most widely used exponential distributions is called a Poisson dis-
tribution, named after the mathematician Sim�eon Poisson. It is used to characterize
random events in a given time interval and has several desirable mathematical
properties. The Poisson distribution is described by the following equation (called
the probability mass function):

Probability kð Þ¼ e�a�ak

k!

where a¼Rate of events�Elapsed time. If interarrival times are exponentially dis-
tributed and we use the arrival rate from above for rate of events, the number of
arrivals in a time interval t is a Poisson process, which has the Poisson distribution
with a¼Arrival rate� t. As mentioned on page D-26, the equation for Timeserver
has another restriction on task arrival: It holds only for Poisson processes.

Finally, we can answer the question about the length of time a new task must
wait for the server to complete a task, called the average residual service time,
which again assumes Poisson arrivals:

Average residual service time¼ 1=2�Arithemtic mean� 1 +C2
� �

Although we won’t derive this formula, we can appeal to intuition. When the dis-
tribution is not random and all possible values are equal to the average, the standard
deviation is 0 and so C is 0. The average residual service time is then just half the
average service time, as we would expect. If the distribution is random and it is
Poisson, then C is 1 and the average residual service time equals the weighted arith-
metic mean time.

Example Using the definitions and formulas above, derive the average time waiting in the
queue (Timequeue) in terms of the average service time (Timeserver) and server
utilization.

Answer All tasks in the queue (Lengthqueue) ahead of the new task must be completed
before the task can be serviced; each takes on average Timeserver. If a task is at
the server, it takes average residual service time to complete. The chance the server
is busy is server utilization; hence, the expected time for service is Server utiliza-
tion�Average residual service time. This leads to our initial formula:

Timequeue ¼Lengthqueue�Timeserver

+ Server utilization�Average residual service time

Replacing the average residual service time by its definition and Lengthqueue by
Arrival rate�Timequeue yields
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Timequeue ¼Server utilization� 1=2�Timeserver� 1 +C2
� �� �

+ Arrival rate�Timequeue
� ��Timeserver

Since this section is concerned with exponential distributions, C2 is 1. Thus

Timequeue ¼ Server utilization�Timeserver + Arrival rate�Timequeue
� ��Timeserver

Rearranging the last term, let us replace Arrival rate�Timeserver by Server
utilization:

Timequeue ¼ Server utilization�Timeserver + Arrival rate�Timeserverð Þ�Timequeue

¼ Server utilization�Timeserver + Server utilization�Timequeue

Rearranging terms and simplifying gives us the desired equation:

Timequeue ¼ Server utilization�Timeserver + Server utilization�Timequeue

Timequeue�Server utilization�Timequeue ¼ Server utilization�Timeserver

Timequeue� 1�Server utilizationð Þ¼ Server utilization�Timeserver

Timequeue ¼Timeserver� Server utilization
1�Server utilizationð Þ

Little’s law can be applied to the components of the black box as well, since they
must also be in equilibrium:

Lengthqueue ¼Arrival rate�Timequeue

If we substitute for Timequeue from above, we get:

Lengthqueue ¼Arrival rate�Timeserver� Server utilization
1�Server utilizationð Þ

Since Arrival rate�Timeserver¼Server utilization, we can simplify further:

Lengthqueue ¼ Server utilization� Server utilization
1�Server utilizationð Þ¼

Server utilization2

1�Server utilizationð Þ
This relates number of items in queue to service utilization.

Example For the system in the example on page D-26, which has a server utilization of 0.5,
what is the mean number of I/O requests in the queue?

Answer Using the equation above,

Lengthqueue ¼
Server uti1ization2

1�Server uti1izationð Þ¼
0:52

1�0:5ð Þ¼
0:25
0:50

¼ 0:5

Therefore, there are 0.5 requests on average in the queue.

As mentioned earlier, these equations and this section are based on an area of
applied mathematics called queuing theory, which offers equations to predict
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behavior of such random variables. Real systems are too complex for queuing
theory to provide exact analysis, hence queuing theory works best when only
approximate answers are needed.

Queuing theory makes a sharp distinction between past events, which can be
characterized by measurements using simple arithmetic, and future events, which
are predictions requiring more sophisticated mathematics. In computer systems,
we commonly predict the future from the past; one example is least recently used
block replacement (see Chapter 2). Hence, the distinction between measurements
and predicted distributions is often blurred; we use measurements to verify the type
of distribution and then rely on the distribution thereafter.

Let’s review the assumptions about the queuing model:

■ The system is in equilibrium.

■ The times between two successive requests arriving, called the interarrival times,
are exponentially distributed, which characterizes the arrival rate mentioned
earlier.

■ The number of sources of requests is unlimited. (This is called an infinite
population model in queuing theory; finite population models are used when
arrival rates vary with the number of jobs already in the system.)

■ The server can start on the next job immediately after finishing the prior one.

■ There is no limit to the length of the queue, and it follows the first in, first out
order discipline, so all tasks in line must be completed.

■ There is one server.

Such a queue is called M/M/1:

M5exponentially random request arrival (C2¼1), with M standing for A. A.
Markov, the mathematician who defined and analyzed the memoryless
processes mentioned earlier

M5exponentially random service time (C2¼1), with M again for Markov

1¼ single server

The M/M/1 model is a simple and widely used model.
The assumption of exponential distribution is commonly used in queuing exam-

ples for three reasons—one good, one fair, and one bad. The good reason is that a
superpositionofmanyarbitrarydistributionsactsasanexponentialdistribution.Many
times in computer systems, a particular behavior is the result of many components
interacting, so an exponential distribution of interarrival times is the right model.
The fair reason is that when variability is unclear, an exponential distribution with
intermediate variability (C¼1) is a safer guess than low variability (C�0) or high
variability (large C). The bad reason is that the math is simpler if you assume expo-
nential distributions.
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Let’s put queuing theory to work in a few examples.

Example Suppose a processor sends 40 disk I/Os per second, these requests are exponen-
tially distributed, and the average service time of an older disk is 20 ms. Answer
the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3. What is the average response time for a disk request, including the queuing
time and disk service time?

Answer Let’s restate these facts:

Average number of arriving tasks/second is 40.

Average disk time to service a task is 20 ms (0.02 sec).

The server utilization is then

Server utilization¼Arrival rate�Timeserver ¼ 40�0:02¼ 0:8

Since the service times are exponentially distributed, we can use the simplified for-
mula for the average time spent waiting in line:

Timequeue ¼ Timeserver� Server utilization
1�Server utilizationð Þ

¼ 20 ms� 0:8
1�0:8

¼ 20�0:8
0:2

¼ 20�4¼ 80 ms

The average response time is

Time system¼Timequeue + Timeserver ¼ 80 + 20 ms¼ 100 ms

Thus, on average we spend 80% of our time waiting in the queue!

Example Suppose we get a new, faster disk. Recalculate the answers to the questions above,
assuming the disk service time is 10 ms.

Answer The disk utilization is then

Server utilization¼Arrival rate�Timeserver ¼ 40�0:01¼ 0:4

The formula for the average time spent waiting in line:

Timequeue ¼ Timeserver� Server utilization
1�Server utilizationð Þ

¼ 10 ms� 0:4
1�0:4

¼ 10�0:4
0:6

¼ 10�2
3
¼ 6:7 ms

The average response time is 10+6.7 ms or 16.7 ms, 6.0 times faster than the old
response time even though the new service time is only 2.0 times faster.
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Thus far, we have been assuming a single server, such as a single disk. Many real
systems have multiple disks and hence could use multiple servers, as in
Figure D.17. Such a system is called an M/M/m model in queuing theory.

Let’s give the same formulas for the M/M/m queue, using Nservers to represent
the number of servers. The first two formulas are easy:

Utilization ¼ Arrival rate�Timeserver
Nservers

Lengthqueue ¼ Arrival rate�Timequeue

The time waiting in the queue is

Timequeue ¼Timeserver� Ptasks�Nservers

Nservers� 1�Utilizationð Þ
This formula is related to the one for M/M/1, except we replace utilization of
a single server with the probability that a task will be queued as opposed to being
immediately serviced, and divide the time in queue by the number of servers.
Alas, calculating the probability of jobs being in the queue is much more compli-
cated when there are Nservers. First, the probability that there are no tasks in the
system is

Prob0 tasks ¼ 1 +
Nservers�Utilizationð ÞNservers

Nservers!� 1�Utilizationð Þ +
XNservers�1

n¼1

Nservers�Utilizationð Þn
n!

" #�1

Then the probability there are as many or more tasks than we have servers is

Probtasks�Nservers ¼
Nservers�UtilizationNservers

Nservers!� 1�Utilizationð Þ�Prob0 tasks

Arrivals

Queue
Server

I/O controller
and device

Server

I/O controller
and device

Server

I/O controller
and device

Figure D.17 The M/M/m multiple-server model.
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Note that if Nservers is 1, Probtask�Nservers simplifies back to Utilization, and we get the
same formula as for M/M/1. Let’s try an example.

Example Suppose instead of a new, faster disk, we add a second slow disk and duplicate the
data so that reads can be serviced by either disk. Let’s assume that the requests are
all reads. Recalculate the answers to the earlier questions, this time using an M/M/
m queue.

Answer The average utilization of the two disks is then

Server utilization¼Arrival rate�Timeserver
Nservers

¼ 40�0:02
2

¼ 0:4

We first calculate the probability of no tasks in the queue:

Prob0 tasks ¼ 1 +
2�Utilizationð Þ2

2!� 1�Utilizationð Þ +
X1
n¼1

2�Utilizationð Þn
n!

" #�1

¼ 1 +
2�0:4ð Þ2

2� 1�0:4ð Þ + 2�0:4ð Þ
" #�1

¼ 1 +
0:640
1:2

+ 0:800

� ��1

¼ 1 + 0:533 + 0:800½ ��1 ¼ 2:333�1

We use this result to calculate the probability of tasks in the queue:

Probtasks�Nservers ¼
2�Utilization2

2!� 1�Utilizationð Þ�Prob0 tasks

¼ 2�0:4ð Þ2
2� 1�0:4ð Þ�2:333�1 ¼ 0:640

1:2
�2:333�1

¼ 0:533=2:333¼ 0:229

Finally, the time waiting in the queue:

Timequeue ¼ Timeserver� Probtasks�Nservers

Nservers� 1�Utilizationð Þ

¼ 0:020� 0:229
2� 1�0:4ð Þ¼ 0:020�0:229

1:2

¼ 0:020�0:190¼ 0:0038

The average response time is 20+3.8 ms or 23.8 ms. For this workload, two disks
cut the queue waiting time by a factor of 21 over a single slow disk and a factor of
1.75 versus a single fast disk. The mean service time of a system with a single fast
disk, however, is still 1.4 times faster than one with two disks since the disk service
time is 2.0 times faster.
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It would be wonderful if we could generalize the M/M/mmodel to multiple queues
andmultiple servers, as this step is muchmore realistic. Alas, these models are very
hard to solve and to use, and so we won’t cover them here.

D.6 Crosscutting Issues

Point-to-Point Links and Switches Replacing Buses

Point-to-point links and switches are increasing in popularity as Moore’s law con-
tinues to reduce the cost of components. Combined with the higher I/O bandwidth
demands from faster processors, faster disks, and faster local area networks, the
decreasing cost advantage of buses means the days of buses in desktop and server
computers are numbered. This trend started in high-performance computers in the
last edition of the book, and by 2011 has spread itself throughout storage.
Figure D.18 shows the old bus-based standards and their replacements.

The number of bits and bandwidth for the new generation is per direction, so
they double for both directions. Since these new designs use many fewer wires, a
commonway to increase bandwidth is to offer versions with several times the num-
ber of wires and bandwidth.

Block Servers versus Filers

Thus far, we have largely ignored the role of the operating system in storage. In a
manner analogous to the way compilers use an instruction set, operating systems
determine what I/O techniques implemented by the hardware will actually be used.
The operating system typically provides the file abstraction on top of blocks stored
on the disk. The terms logical units, logical volumes, and physical volumes are
related terms used in Microsoft and UNIX systems to refer to subset collections
of disk blocks.

Standard
Width
(bits)

Length
(meters) Clock rate MB/sec

Max I/O
devices

(Parallel) ATA 8 0.5 133 MHz 133 2
Serial ATA 2 2 3 GHz 300 ?

SCSI 16 12 80 MHz 320 15
Serial Attach SCSI 1 10 (DDR) 375 16,256

PCI 32/64 0.5 33/66 MHz 533 ?
PCI Express 2 0.5 3 GHz 250 ?

Figure D.18 Parallel I/O buses and their point-to-point replacements. Note the
bandwidth and wires are per direction, so bandwidth doubles when sending both
directions.
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A logical unit is the element of storage exported from a disk array, usually con-
structed from a subset of the array’s disks. A logical unit appears to the server as a
single virtual “disk.” In a RAID disk array, the logical unit is configured as a par-
ticular RAID layout, such as RAID 5. A physical volume is the device file used by
the file system to access a logical unit. A logical volume provides a level of vir-
tualization that enables the file system to split the physical volume across multiple
pieces or to stripe data across multiple physical volumes. A logical unit is an
abstraction of a disk array that presents a virtual disk to the operating system, while
physical and logical volumes are abstractions used by the operating system to
divide these virtual disks into smaller, independent file systems.

Having covered some of the terms for collections of blocks, we must now ask:
Where should the file illusion be maintained: in the server or at the other end of the
storage area network?

The traditional answer is the server. It accesses storage as disk blocks and
maintains the metadata. Most file systems use a file cache, so the server must main-
tain consistency of file accesses. The disks may be direct attached—found inside a
server connected to an I/O bus—or attached over a storage area network, but the
server transmits data blocks to the storage subsystem.

The alternative answer is that the disk subsystem itself maintains the file
abstraction, and the server uses a file system protocol to communicate with
storage. Example protocols are Network File System (NFS) for UNIX systems
and Common Internet File System (CIFS) for Windows systems. Such devices
are called network attached storage (NAS) devices since it makes no sense for
storage to be directly attached to the server. The name is something of a misnomer
because a storage area network like FC-AL can also be used to connect to
block servers. The term filer is often used for NAS devices that only provide file
service and file storage. Network Appliance was one of the first companies to make
filers.

The driving force behind placing storage on the network is to make it easier for
many computers to share information and for operators to maintain the shared
system.

Asynchronous I/O and Operating Systems

Disks typically spend much more time in mechanical delays than in transferring
data. Thus, a natural path to higher I/O performance is parallelism, trying to get
many disks to simultaneously access data for a program.

The straightforward approach to I/O is to request data and then start using it.
The operating system then switches to another process until the desired data arrive,
and then the operating system switches back to the requesting process. Such a style
is called synchronous I/O—the process waits until the data have been read
from disk.

The alternative model is for the process to continue after making a request, and
it is not blocked until it tries to read the requested data. Such asynchronous I/O
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allows the process to continue making requests so that many I/O requests can be
operating simultaneously. Asynchronous I/O shares the same philosophy as caches
in out-of-order CPUs, which achieve greater bandwidth by having multiple out-
standing events.

D.7 Designing and Evaluating an I/O System—
The Internet Archive Cluster

The art of I/O system design is to find a design that meets goals for cost, depend-
ability, and variety of devices while avoiding bottlenecks in I/O performance
and dependability. Avoiding bottlenecks means that components must be bal-
anced between main memory and the I/O device, because performance and
dependability—and hence effective cost-performance or cost-dependability—
can only be as good as the weakest link in the I/O chain. The architect must also
plan for expansion so that customers can tailor the I/O to their applications. This
expansibility, both in numbers and types of I/O devices, has its costs in longer I/O
buses and networks, larger power supplies to support I/O devices, and larger
cabinets.

In designing an I/O system, we analyze performance, cost, capacity, and avail-
ability using varying I/O connection schemes and different numbers of I/O devices
of each type. Here is one series of steps to follow in designing an I/O system. The
answers for each step may be dictated by market requirements or simply by cost,
performance, and availability goals.

1. List the different types of I/O devices to be connected to the machine, or list the
standard buses and networks that the machine will support.

2. List the physical requirements for each I/O device. Requirements include size,
power, connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any controller
needed for this device.

4. List the reliability of each I/O device.

5. Record the processor resource demands of each I/O device. This list should
include:

■ Clock cycles for instructions used to initiate an I/O, to support operation of
an I/O device (such as handling interrupts), and to complete I/O

■ Processor clock stalls due to waiting for I/O to finish using the memory, bus,
or cache

■ Processor clock cycles to recover from an I/O activity, such as a cache flush

6. List the memory and I/O bus resource demands of each I/O device. Even when
the processor is not using memory, the bandwidth of main memory and the I/O
connection is limited.
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7. The final step is assessing the performance and availability of the different ways
to organize these I/O devices. When you can afford it, try to avoid single points
of failure. Performance can only be properly evaluated with simulation,
although it may be estimated using queuing theory. Reliability can be calculated
assuming I/O devices fail independently and that the times to failure are expo-
nentially distributed. Availability can be computed from reliability by estimat-
ing MTTF for the devices, taking into account the time from failure to repair.

Given your cost, performance, and availability goals, you then select the best
organization.

Cost-performance goals affect the selection of the I/O scheme and physical
design. Performance can be measured either as megabytes per second or I/Os
per second, depending on the needs of the application. For high performance,
the only limits should be speed of I/O devices, number of I/O devices, and speed
of memory and processor. For low cost, most of the cost should be the I/O devices
themselves. Availability goals depend in part on the cost of unavailability to an
organization.

Rather than create a paper design, let’s evaluate a real system.

The Internet Archive Cluster

To make these ideas clearer, we’ll estimate the cost, performance, and availability
of a large storage-oriented cluster at the Internet Archive. The Internet Archive
began in 1996 with the goal of making a historical record of the Internet as it chan-
ged over time. You can use theWayback Machine interface to the Internet Archive
to perform time travel to see what the Web site at a URL looked like sometime in
the past. It contains over a petabyte (1015 bytes) and is growing by 20 terabytes
(1012 bytes) of new data per month, so expansible storage is a requirement. In addi-
tion to storing the historical record, the same hardware is used to crawl the Web
every few months to get snapshots of the Internet.

Clusters of computers connected by local area networks have become a very
economical computation engine that works well for some applications. Clusters
also play an important role in Internet services such the Google search engine,
where the focus is more on storage than it is on computation, as is the case here.

Although it has used a variety of hardware over the years, the Internet Archive
is moving to a new cluster to become more efficient in power and in floor space.
The basic building block is a 1U storage node called the PetaBox GB2000 from
Capricorn Technologies. In 2006, it used four 500 GB Parallel ATA (PATA) disk
drives, 512 MB of DDR266 DRAM, one 10/100/1000 Ethernet interface, and a
1 GHz C3 processor from VIA, which executes the 80x86 instruction set. This
node dissipates about 80 watts in typical configurations.

Figure D.19 shows the cluster in a standard VME rack. Forty of the GB2000s
fit in a standard VME rack, which gives the rack 80 TB of raw capacity. The 40
nodes are connected together with a 48-port 10/100 or 10/100/1000 switch, and it
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dissipates about 3 KW. The limit is usually 10 KW per rack in computer facilities,
so it is well within the guidelines.

A petabyte needs 12 of these racks, connected by a higher-level switch that
connects the Gbit links coming from the switches in each of the racks.

Estimating Performance, Dependability, and Cost of the
Internet Archive Cluster

To illustrate how to evaluate an I/O system, we’ll make some guesses about the
cost, performance, and reliability of the components of this cluster. We make
the following assumptions about cost and performance:

■ The VIA processor, 512 MB of DDR266 DRAM, ATA disk controller, power
supply, fans, and enclosure cost $500.

■ Each of the four 7200 RPM Parallel ATA drives holds 500 GB, has an average
time seek of 8.5 ms, transfers at 50 MB/sec from the disk, and costs $375. The
PATA link speed is 133 MB/sec.

Figure D.19 The TB-80 VME rack from Capricorn Systems used by the Internet
Archive. All cables, switches, and displays are accessible from the front side, and the
back side is used only for airflow. This allows two racks to be placed back-to-back, which
reduces the floor space demands in machine rooms.
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■ The 48-port 10/100/1000 Ethernet switch and all cables for a rack cost $3000.

■ The performance of the VIA processor is 1000 MIPS.

■ The ATA controller adds 0.1 ms of overhead to perform a disk I/O.

■ The operating system uses 50,000 CPU instructions for a disk I/O.

■ The network protocol stacks use 100,000 CPU instructions to transmit a data
block between the cluster and the external world.

■ The average I/O size is 16 KB for accesses to the historical record via theWay-
back interface, and 50 KB when collecting a new snapshot.

Example Evaluate the cost per I/O per second (IOPS) of the 80 TB rack. Assume that every
disk I/O requires an average seek and average rotational delay. Assume that the
workload is evenly divided among all disks and that all devices can be used at
100% of capacity; that is, the system is limited only by the weakest link, and it
can operate that link at 100% utilization. Calculate for both average I/O sizes.

Answer I/O performance is limited by the weakest link in the chain, so we evaluate the max-
imum performance of each link in the I/O chain for each organization to determine
the maximum performance of that organization.

Let’s start by calculating the maximum number of IOPS for the CPU, main
memory, and I/O bus of one GB2000. The CPU I/O performance is determined
by the speed of the CPU and the number of instructions to perform a disk I/O
and to send it over the network:

Maximum IOPS for CPU ¼ 1000 MIPS
50,000 instructions per I=O+ 100,000 instructions per message

¼ 6667 IOPS

The maximum performance of the memory system is determined by the memory
bandwidth and the size of the I/O transfers:

Maximum IOPS for main memory¼ 266�8
16 KB per I=O

� 133,000 IOPS

Maximum IOPS for main memory¼ 266�8
50 KB per I=O

� 42,500 IOPS

The Parallel ATA link performance is limited by the bandwidth and the size of the
I/O:

Maximum IOPS for the I=O bus ¼ 133 MB=sec
16 KB per I=O

� 8300 IOPS

Maximum IOPS for the I=O bus ¼ 133 MB=sec
50 KB per I=O

� 2700 IOPS

Since the box has two buses, the I/O bus limits the maximum performance to no
more than 18,600 IOPS for 16 KB blocks and 5400 IOPS for 50 KB blocks.
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Now it’s time to look at the performance of the next link in the I/O chain, the
ATA controllers. The time to transfer a block over the PATA channel is

Parallel ATA transfer time¼ 16 KB
133 MB=sec

� 0:1 ms

Parallel ATA transfer time¼ 50 KB
133 MB=sec

� 0:4 ms

Adding the 0.1 ms ATA controller overhead means 0.2 ms to 0.5 ms per I/O, mak-
ing the maximum rate per controller

Maximum IOPS per ATA controller ¼ 1
0:2 ms

¼ 5000 IOPS

Maximum IOPS per ATA controller ¼ 1
0:5 ms

¼ 2000 IOPS

The next link in the chain is the disks themselves. The time for an average
disk I/O is

I=O time¼ 8:5 ms +
0:5

7200 RPM
+

16 KB
50 MB=sec

¼ 8:5 + 4:2 + 0:3¼ 13:0 ms

I=O time¼ 8:5 ms +
0:5

7200 RPM
+

50 KB
50 MB=sec

¼ 8:5 + 4:2 + 1:0¼ 13:7 ms

Therefore, disk performance is

Maximum IOPS using average seeksð Þ per disk¼ 1
13:0 ms

� 77 IOPS

Maximum IOPS using average seeksð Þ per disk¼ 1
13:7 ms

� 73 IOPS

or 292 to 308 IOPS for the four disks.
The final link in the chain is the network that connects the computers to the out-

side world. The link speed determines the limit:

Maximum IOPS per 1000 Mbit Ethernet link¼ 1000 Mbit
16 K�8

¼ 7812 IOPS

Maximum IOPS per 1000 Mbit Ethernet link¼ 1000 Mbit
50 K�8

¼ 2500 IOPS

Clearly, the performance bottleneck of the GB2000 is the disks. The IOPS for the
whole rack is 40�308 or 12,320 IOPS to 40�292 or 11,680 IOPS. The network
switch would be the bottleneck if it couldn’t support 12,320�16 K�8 or 1.6
Gbits/sec for 16 KB blocks and 11,680�50 K�8 or 4.7 Gbits/sec for 50 KB
blocks. We assume that the extra 8 Gbit ports of the 48-port switch connects
the rack to the rest of the world, so it could support the full IOPS of the collective
160 disks in the rack.

Using these assumptions, the cost is 40� ($500+4�$375)+$3000+$1500 or
$84,500 for an 80 TB rack. The disks themselves are almost 60% of the cost. The
cost per terabyte is almost $1000, which is about a factor of 10 to 15 better than
storage cluster from the prior edition in 2001. The cost per IOPS is about $7.
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Calculating MTTF of the TB-80 Cluster

Internet services such as Google rely on many copies of the data at the application
level to provide dependability, often at different geographic sites to protect against
environmental faults as well as hardware faults. Hence, the Internet Archive has
two copies of the data in each site and has sites in San Francisco, Amsterdam,
and Alexandria, Egypt. Each site maintains a duplicate copy of the high-value con-
tent—music, books, film, and video—and a single copy of the historical Web
crawls. To keep costs low, there is no redundancy in the 80 TB rack.

Example Let’s look at the resulting mean time to fail of the rack. Rather than use the man-
ufacturer’s quoted MTTF of 600,000 hours, we’ll use data from a recent survey of
disk drives [Gray and van Ingen 2005]. As mentioned in Chapter 1, about 3% to
7% of ATA drives fail per year, for an MTTF of about 125,000 to 300,000 hours.
Make the following assumptions, again assuming exponential lifetimes:

■ CPU/memory/enclosure MTTF is 1,000,000 hours.

■ PATA Disk MTTF is 125,000 hours.

■ PATA controller MTTF is 500,000 hours.

■ Ethernet Switch MTTF is 500,000 hours.

■ Power supply MTTF is 200,000 hours.

■ Fan MTTF is 200,000 hours.

■ PATA cable MTTF is 1,000,000 hours.

Answer Collecting these together, we compute these failure rates:

Failure rate¼ 40
1,000,000

+
160

125,000
+

40
500,000

+
1

500,000
+

40
200,000

+
40

200,000
+

80
1,000,000

¼ 40 + 1280 + 80 + 2 + 200 + 200 + 80
1,000,000 hours

¼ 1882
1,000,000 hours

The MTTF for the system is just the inverse of the failure rate:

MTTF¼ 1
Failure rate

¼ 1,000,000 hours
1882

¼ 531 hours

That is, given these assumptions about the MTTF of components, something in a
rack fails on average every 3 weeks. About 70% of the failures would be the disks,
and about 20% would be fans or power supplies.

D.8 Putting It All Together: NetApp FAS6000 Filer

Network Appliance entered the storage market in 1992 with a goal of providing an
easy-to-operate file server running NSF using their own log-structured file system
and a RAID 4 disk array. The company later added support for the Windows CIFS
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file system and a RAID 6 scheme called row-diagonal parity or RAID-DP (see
page D-8). To support applications that want access to raw data blocks without
the overhead of a file system, such as database systems, NetApp filers can serve
data blocks over a standard Fibre Channel interface. NetApp also supports iSCSI,
which allows SCSI commands to run over a TCP/IP network, thereby allowing the
use of standard networking gear to connect servers to storage, such as Ethernet, and
hence at a greater distance.

The latest hardware product is the FAS6000. It is a multiprocessor based on
the AMD Opteron microprocessor connected using its HyperTransport links.
The microprocessors run the NetApp software stack, including NSF, CIFS,
RAID-DP, SCSI, and so on. The FAS6000 comes as either a dual processor
(FAS6030) or a quad processor (FAS6070). As mentioned in Chapter 5, DRAM
is distributed to each microprocessor in the Opteron. The FAS6000 connects 8 GB
of DDR2700 to each Opteron, yielding 16 GB for the FAS6030 and 32 GB for the
FAS6070. As mentioned in Chapter 4, the DRAM bus is 128 bits wide, plus extra
bits for SEC/DED memory. Both models dedicate four HyperTransport links
to I/O.

As a filer, the FAS6000 needs a lot of I/O to connect to the disks and to connect
to the servers. The integrated I/O consists of:

■ 8 Fibre Channel (FC) controllers and ports

■ 6 Gigabit Ethernet links

■ 6 slots for x8 (2 GB/sec) PCI Express cards

■ 3 slots for PCI-X 133 MHz, 64-bit cards

■ Standard I/O options such as IDE, USB, and 32-bit PCI

The 8 Fibre Channel controllers can each be attached to 6 shelves containing 14
3.5-inch FC disks. Thus, the maximum number of drives for the integrated I/O is
8�6�14 or 672 disks. Additional FC controllers can be added to the option slots
to connect up to 1008 drives, to reduce the number of drives per FC network so as
to reduce contention, and so on. At 500 GB per FC drive, if we assume the RAID
RDP group is 14 data disks and 2 check disks, the available data capacity is 294 TB
for 672 disks and 441 TB for 1008 disks.

It can also connect to Serial ATA disks via a Fibre Channel to SATA bridge
controller, which, as its name suggests, allows FC and SATA to communicate.

The six 1-gigabit Ethernet links connect to servers to make the FAS6000 look
like a file server if running NTFS or CIFS or like a block server if running iSCSI.

For greater dependability, FAS6000 filers can be paired so that if one fails, the
other can take over. Clustered failover requires that both filers have access to all
disks in the pair of filers using the FC interconnect. This interconnect also allows
each filer to have a copy of the log data in the NVRAMof the other filer and to keep
the clocks of the pair synchronized. The health of the filers is constantly monitored,
and failover happens automatically. The healthy filer maintains its own network
identity and its own primary functions, but it also assumes the network identity
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of the failed filer and handles all its data requests via a virtual filer until an admin-
istrator restores the data service to the original state.

D.9 Fallacies and Pitfalls

Fallacy Components fail fast

A good deal of the fault-tolerant literature is based on the simplifying assumption
that a component operates perfectly until a latent error becomes effective, and then
a failure occurs that stops the component.

The Tertiary Disk project had the opposite experience. Many components
started acting strangely long before they failed, and it was generally up to the sys-
tem operator to determine whether to declare a component as failed. The compo-
nent would generally be willing to continue to act in violation of the service
agreement until an operator “terminated” that component.

Figure D.20 shows the history of four drives that were terminated, and the num-
ber of hours they started acting strangely before they were replaced.

Fallacy Computers systems achieve 99.999% availability (“five nines”), as advertised

Marketing departments of companies making servers started bragging about the
availability of their computer hardware; in terms of Figure D.21, they claim avail-
ability of 99.999%, nicknamed five nines. Even the marketing departments of oper-
ating system companies tried to give this impression.

Five minutes of unavailability per year is certainly impressive, but given the
failure data collected in surveys, it’s hard to believe. For example, Hewlett-Packard
claims that the HP-9000 server hardware and HP-UX operating system can deliver

Messages in system log for failed disk
Number of log

messages
Duration
(hours)

Hardware Failure (Peripheral device write fault [for]
Field Replaceable Unit)

1763 186

Not Ready (Diagnostic failure: ASCQ¼Component ID
[of] Field Replaceable Unit)

1460 90

Recovered Error (Failure Prediction Threshold Exceeded
[for] Field Replaceable Unit)

1313 5

Recovered Error (Failure Prediction Threshold Exceeded
[for] Field Replaceable Unit)

431 17

Figure D.20 Record in system log for 4 of the 368 disks in Tertiary Disk that were
replaced over 18 months. See Talagala and Patterson [1999]. These messages, match-
ing the SCSI specification, were placed into the system log by device drivers. Messages
started occurring as much as a week before one drive was replaced by the operator. The
third and fourth messages indicate that the drive’s failure prediction mechanism
detected and predicted imminent failure, yet it was still hours before the drives were
replaced by the operator.
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a 99.999% availability guarantee “in certain pre-defined, pre-tested customer envi-
ronments” (see Hewlett-Packard [1998]). This guarantee does not include failures
due to operator faults, application faults, or environmental faults, which are likely
the dominant fault categories today. Nor does it include scheduled downtime. It is
also unclear what the financial penalty is to a company if a system does not match
its guarantee.

Microsoft also promulgated a five nines marketing campaign. In January 2001,
www.microsoft.com was unavailable for 22 hours. For its Web site to achieve
99.999% availability, it will require a clean slate for 250 years.

In contrast to marketing suggestions, well-managed servers typically achieve
99% to 99.9% availability.

Pitfall Where a function is implemented affects its reliability

In theory, it is fine to move the RAID function into software. In practice, it is very
difficult to make it work reliably.

The software culture is generally based on eventual correctness via a series of
releases and patches. It is also difficult to isolate from other layers of software. For
example, proper software behavior is often based on having the proper version and
patch release of the operating system. Thus, many customers have lost data due to
software bugs or incompatibilities in environment in software RAID systems.

Obviously, hardware systems are not immune to bugs, but the hardware culture
tends to place a greater emphasis on testing correctness in the initial release. In
addition, the hardware is more likely to be independent of the version of the oper-
ating system.

Fallacy Operating systems are the best place to schedule disk accesses

Higher-level interfaces such as ATA and SCSI offer logical block addresses to the
host operating system. Given this high-level abstraction, the best an OS can do is to
try to sort the logical block addresses into increasing order. Since only the disk
knows the mapping of the logical addresses onto the physical geometry of sectors,
tracks, and surfaces, it can reduce the rotational and seek latencies.

Unavailability
(minutes per year)

Availability
(percent)

Availability class
(“number of nines”)

50,000 90% 1

5000 99% 2

500 99.9% 3

50 99.99% 4

5 99.999% 5

0.5 99.9999% 6

0.05 99.99999% 7

Figure D.21 Minutes unavailable per year to achieve availability class. (From Gray
and Siewiorek [1991].) Note that five nines mean unavailable five minutes per year.
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For example, suppose the workload is four reads [Anderson 2003]:

Operation Starting LBA Length
Read 724 8

Read 100 16

Read 9987 1

Read 26 128

The host might reorder the four reads into logical block order:

Read 26 128

Read 100 16

Read 724 8

Read 9987 1

Depending on the relative location of the data on the disk, reordering could make it
worse, as Figure D.22 shows. The disk-scheduled reads complete in three-quarters
of a disk revolution, but the OS-scheduled reads take three revolutions.

Fallacy The time of an average seek of a disk in a computer system is the time for a seek of
one-third the number of cylinders

This fallacy comes from confusing the way manufacturers market disks with the
expected performance, and from the false assumption that seek times are linear in dis-
tance. The one-third-distance rule of thumb comes from calculating the distance of a
seek from one random location to another random location, not including the current
track and assuming there is a large number of tracks. In the past, manufacturers listed
the seek of this distance to offer a consistent basis for comparison. (Today, they

724

100

26

9987

Host-ordered queue
Drive-ordered queue

Figure D.22 Example showing OS versus disk schedule accesses, labeled host-
ordered versus drive-ordered. The former takes 3 revolutions to complete the 4 reads,
while the latter completes them in just 3/4 of a revolution. (From Anderson [2003].)
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calculate the “average” by timing all seeks and dividing by the number.) Assuming
(incorrectly) that seek time is linear in distance, and using themanufacturer’s reported
minimum and “average” seek times, a common technique to predict seek time is

Timeseek ¼Timeminimum +
Distance

Distanceaverage
� Timeaverage�Timeminimum
� �

The fallacy concerning seek time is twofold. First, seek time is not linear with
distance; the armmust accelerate to overcome inertia, reach its maximum traveling
speed, decelerate as it reaches the requested position, and then wait to allow the
arm to stop vibrating (settle time). Moreover, sometimes the arm must pause to
control vibrations. For disks with more than 200 cylinders, Chen and Lee
[1995] modeled the seek distance as:

Seek time Distanceð Þ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Distance�1

p
+ b� Distance�1ð Þ+ c

where a, b, and c are selected for a particular disk so that this formula will match the
quoted times for Distance¼1, Distance¼max, and Distance¼1/3 max.
Figure D.23 plots this equation versus the fallacy equation. Unlike the first equa-
tion, the square root of the distance reflects acceleration and deceleration.

The second problem is that the average in the product specification would only
be true if there were no locality to disk activity. Fortunately, there is both temporal
and spatial locality (see page B-2 in Appendix B). For example, Figure D.24 shows
sample measurements of seek distances for two workloads: a UNIX time-sharing
workload and a business-processing workload. Notice the high percentage of disk
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a =
3 × Number of cylinders

– 10 × Time
min

+ 15 × Time
avg

– 5 × Time
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b =
3 × Number of cylinders

7 × Time
min

– 15 × Time
avg

+ 8 × Time
max

c = Time
min

Figure D.23 Seek time versus seek distance for sophisticated model versus
naive model. Chen and Lee [1995] found that the equations shown above for param-
eters a, b, and c worked well for several disks.
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accesses to the same cylinder, labeled distance 0 in the graphs, in both workloads.
Thus, this fallacy couldn’t be more misleading.

D.10 Concluding Remarks

Storage is one of those technologies that we tend to take for granted. And yet, if
we look at the true status of things today, storage is king. One can even argue that
servers, which have become commodities, are now becoming peripheral to
storage devices. Driving that point home are some estimates from IBM, which
expects storage sales to surpass server sales in the next two years.

Michael Vizard
Editor-in-chief, Infoworld (August 11, 2001)

As their value is becoming increasingly evident, storage systems have become the
target of innovation and investment.

The challenges for storage systems today are dependability and maintainabil-
ity. Not only do users want to be sure their data are never lost (reliability),

0% 10%

Percentage of seeks (UNIX time-sharing workload)

23%

8%
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20% 40%30% 50% 60% 70%

24%
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Figure D.24 Sample measurements of seek distances for two systems. The measurements on the left were taken
on a UNIX time-sharing system. Themeasurements on the right were taken from a business-processing application in
which the disk seek activity was scheduled to improve throughput. Seek distance of 0 means the access was made to
the same cylinder. The rest of the numbers show the collective percentage for distances between numbers on the y-
axis. For example, 11% for the bar labeled 16 in the business graph means that the percentage of seeks between 1
and 16 cylinders was 11%. The UNIXmeasurements stopped at 200 of the 1000 cylinders, but this captured 85% of the
accesses. The business measurements tracked all 816 cylinders of the disks. The only seek distances with 1% or
greater of the seeks that are not in the graph are 224 with 4%, and 304, 336, 512, and 624, each having 1%. This
total is 94%, with the difference being small but nonzero distances in other categories. Measurements courtesy
of Dave Anderson of Seagate.
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applications today increasingly demand that the data are always available to access
(availability). Despite improvements in hardware and software reliability and fault
tolerance, the awkwardness of maintaining such systems is a problem both for cost
and for availability. A widely mentioned statistic is that customers spend $6 to
$8 operating a storage system for every $1 of purchase price. When dependability
is attacked by having many redundant copies at a higher level of the system—such
as for search—then very large systems can be sensitive to the price-performance of
the storage components.

Today, challenges in storage dependability and maintainability dominate the
challenges of I/O.

D.11 Historical Perspective and References

SectionM.9 (available online) covers the development of storage devices and tech-
niques, including who invented disks, the story behind RAID, and the history of
operating systems and databases. References for further reading are included.

Case Studies with Exercises by Andrea C. Arpaci-Dusseau
and Remzi H. Arpaci-Dusseau

Case Study 1: Deconstructing a Disk

Concepts illustrated by this case study

■ Performance Characteristics

■ Microbenchmarks

The internals of a storage system tend to be hidden behind a simple interface, that
of a linear array of blocks. There are many advantages to having a common inter-
face for all storage systems: An operating system can use any storage system with-
out modification, and yet the storage system is free to innovate behind this
interface. For example, a single disk can map its internal< sector, track, surfa-
ce>geometry to the linear array in whatever way achieves the best performance;
similarly, a multidisk RAID system can map the blocks on any number of disks to
this same linear array. However, this fixed interface has a number of disadvantages,
as well; in particular, the operating system is not able to perform some perfor-
mance, reliability, and security optimizations without knowing the precise layout
of its blocks inside the underlying storage system.

In this case study, we will explore how software can be used to uncover the
internal structure of a storage system hidden behind a block-based interface.
The basic idea is to fingerprint the storage system: by running a well-defined work-
load on top of the storage system and measuring the amount of time required for
different requests, one is able to infer a surprising amount of detail about the under-
lying system.
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The Skippy algorithm, from work by Nisha Talagala and colleagues at the Uni-
versity of California–Berkeley, uncovers the parameters of a single disk. The key is
to factor out disk rotational effects by making consecutive seeks to individual sec-
tors with addresses that differ by a linearly increasing amount (increasing by 1, 2, 3,
and so forth). Thus, the basic algorithm skips through the disk, increasing the dis-
tance of the seek by one sector before every write, and outputs the distance and
time for each write. The raw device interface is used to avoid file system optimi-
zations. The SECTOR SIZE is set equal to the minimum amount of data that can be
read at once from the disk (e.g., 512 bytes). (Skippy is described in more detail in
Talagala and Patterson [1999].)

fd = open("raw disk device");
for (i = 0; i < measurements; i++) {

begin_time = gettime();
lseek(fd, i*SECTOR_SIZE, SEEK_CUR);
write(fd, buffer, SECTOR_SIZE);
interval_time = gettime() -begin_time;

printf("Stride: %d Time: %d\n", i, interval_time);
}
close(fd);

By graphing the time required for each write as a function of the seek distance,
one can infer the minimal transfer time (with no seek or rotational latency), head
switch time, cylinder switch time, rotational latency, and the number of heads in
the disk. A typical graph will have four distinct lines, each with the same slope, but
with different offsets. The highest and lowest lines correspond to requests that
incur different amounts of rotational delay, but no cylinder or head switch costs;
the difference between these two lines reveals the rotational latency of the disk. The
second lowest line corresponds to requests that incur a head switch (in addition to
increasing amounts of rotational delay). Finally, the third line corresponds to
requests that incur a cylinder switch (in addition to rotational delay).

D.1 [10/10/10/10/10]<D.2>The results of running Skippy are shown for a mock disk
(Disk Alpha) in Figure D.25.

a. [10]<D.2>What is the minimal transfer time?

b. [10]<D.2>What is the rotational latency?

c. [10]<D.2>What is the head switch time?

d. [10]<D.2>What is the cylinder switch time?

e. [10]<D.2>What is the number of disk heads?

D.2 [25]<D.2>Draw an approximation of the graph that would result from running
Skippy on Disk Beta, a disk with the following parameters:

■ Minimal transfer time, 2.0 ms

■ Rotational latency, 6.0 ms
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■ Head switch time, 1.0 ms

■ Cylinder switch time, 1.5 ms

■ Number of disk heads, 4

■ Sectors per track, 100

D.3 [10/10/10/10/10/10/10]<D.2> Implement and run the Skippy algorithm on a disk
drive of your choosing.

a. [10]<D.2>Graph the results of running Skippy. Report the manufacturer and
model of your disk.

b. [10]<D.2>What is the minimal transfer time?

c. [10]<D.2>What is the rotational latency?

d. [10]<D.2>What is the head switch time?

e. [10]<D.2>What is the cylinder switch time?

f. [10]<D.2>What is the number of disk heads?

g. [10]<D.2>Do the results of running Skippy on a real disk differ in any qual-
itative way from that of the mock disk?
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Figure D.25 Results from running Skippy on Disk Alpha.
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Case Study 2: Deconstructing a Disk Array

Concepts illustrated by this case study

■ Performance Characteristics

■ Microbenchmarks

The Shear algorithm, from work by Timothy Denehy and colleagues at the Uni-
versity of Wisconsin [Denehy et al. 2004], uncovers the parameters of a RAID sys-
tem. The basic idea is to generate a workload of requests to the RAID array and
time those requests; by observing which sets of requests take longer, one can infer
which blocks are allocated to the same disk.

We define RAID properties as follows. Data are allocated to disks in the RAID
at the block level, where a block is the minimal unit of data that the file system reads
or writes from the storage system; thus, block size is known by the file system and
the fingerprinting software. A chunk is a set of blocks that is allocated contiguously
within a disk. A stripe is a set of chunks across each of D data disks. Finally, a
pattern is the minimum sequence of data blocks such that block offset i within
the pattern is always located on disk j.

D.4 [20/20]<D.2>One can uncover the pattern size with the following code. The
code accesses the raw device to avoid file system optimizations. The key to all
of the Shear algorithms is to use random requests to avoid triggering any of the
prefetch or caching mechanisms within the RAID or within individual disks.
The basic idea of this code sequence is to accessN random blocks at a fixed interval
p within the RAID array and to measure the completion time of each interval.

for (p = BLOCKSIZE; p <= testsize; p += BLOCKSIZE) {
for (i = 0; i < N; i++) {

request[i] = random()*p;
}
begin_time = gettime();

issues all request[N] to raw device in parallel;

wait for all request[N] to complete;
interval_time = gettime() - begin_time;
printf("PatternSize: %d Time: %d\n", p,

interval_time);
}

If you run this code on a RAID array and plot the measured time for the N
requests as a function of p, then you will see that the time is highest when all N
requests fall on the same disk; thus, the value of p with the highest time corre-
sponds to the pattern size of the RAID.

a. [20]<D.2>Figure D.26 shows the results of running the pattern size algorithm
on an unknown RAID system.
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■ What is the pattern size of this storage system?

■ What do the measured times of 0.4, 0.8, and 1.6 seconds correspond to in
this storage system?

■ If this is a RAID 0 array, then how many disks are present?

■ If this is a RAID 0 array, then what is the chunk size?

b. [20]<D.2>Draw the graph that would result from running this Shear code on
a storage system with the following characteristics:

■ Number of requests, N¼1000

■ Time for a random read on disk, 5 ms

■ RAID level, RAID 0

■ Number of disks, 4

■ Chunk size, 8 KB

D.5 [20/20]<D.2>One can uncover the chunk size with the following code. The basic
idea is to perform reads from N patterns chosen at random but always at controlled
offsets, c and c�1, within the pattern.

for (c = 0; c < patternsize; c += BLOCKSIZE) {
for (i = 0; i < N; i++) {

requestA[i] = random()*patternsize + c;
requestB[i] = random()*patternsize +

(c-1)%patternsize;
}

begin_time = gettime();

issue all requestA[N] and requestB[N] to raw device
in parallel;

wait for requestA[N] and requestB[N] to complete;

interval_time = gettime() - begin_time;
printf("ChunkSize: %d Time: %d\n", c,

interval_time);
}
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Figure D.26 Results from running the pattern size algorithm of Shear on a mock storage system.

D-52 ■ Appendix D Storage Systems



If you run this code and plot the measured time as a function of c, then you will
see that the measured time is lowest when the requestA and requestB reads fall on
two different disks. Thus, the values of c with low times correspond to the chunk
boundaries between disks of the RAID.

a. [20]<D.2>Figure D.27 shows the results of running the chunk size algorithm
on an unknown RAID system.

■ What is the chunk size of this storage system?

■ What do the measured times of 0.75 and 1.5 seconds correspond to in this
storage system?

b. [20]<D.2>Draw the graph that would result from running this Shear code on
a storage system with the following characteristics:

■ Number of requests, N¼1000

■ Time for a random read on disk, 5 ms

■ RAID level, RAID 0

■ Number of disks, 8

■ Chunk size, 12 KB

D.6 [10/10/10/10]<D.2>Finally, one can determine the layout of chunks to disks with
the following code. The basic idea is to selectN random patterns and to exhaustively
read together all pairwise combinations of the chunks within the pattern.

for (a = 0; a < numchunks; a += chunksize) {

for (b = a; b < numchunks; b += chunksize) {

for (i = 0; i < N; i++) {
requestA[i] = random()*patternsize + a;
requestB[i] = random()*patternsize + b;

}
begin_time = gettime();
issue all requestA[N] and requestB[N] to raw device

in parallel;
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Figure D.27 Results from running the chunk size algorithm of Shear on a mock stor-
age system.
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wait for all requestA[N] and requestB[N] to
complete;

interval_time = gettime() - begin_time;
printf("A: %d B: %d Time: %d\n", a, b,

interval_time);
}

}

After running this code, you can report the measured time as a function of a and b.
The simplest way to graph this is to create a two-dimensional table with a and b as
the parameters and the time scaled to a shaded value; we use darker shadings for
faster times and lighter shadings for slower times. Thus, a light shading indicates
that the two offsets of a and b within the pattern fall on the same disk.

Figure D.28 shows the results of running the layout algorithm on a storage system
that is known to have a pattern size of 384 KB and a chunk size of 32 KB.

a. [20]<D.2>How many chunks are in a pattern?

b. [20]<D.2>Which chunks of each pattern appear to be allocated on the
same disks?

c. [20]<D.2>How many disks appear to be in this storage system?

d. [20]<D.2>Draw the likely layout of blocks across the disks.

D.7 [20]<D.2>Draw the graph that would result from running the layout algorithm
on the storage system shown in Figure D.29. This storage system has four disks and
a chunk size of four 4 KB blocks (16 KB) and is using a RAID 5 Left-Asymmetric
layout.
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Figure D.28 Results from running the layout algorithm of Shear on a mock storage
system.
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Case Study 3: RAID Reconstruction

Concepts illustrated by this case study

■ RAID Systems

■ RAID Reconstruction

■ Mean Time to Failure (MTTF)

■ Mean Time until Data Loss (MTDL)

■ Performability

■ Double Failures

A RAID system ensures that data are not lost when a disk fails. Thus, one of the key
responsibilities of a RAID is to reconstruct the data that were on a disk when it
failed; this process is called reconstruction and is what you will explore in this case
study. You will consider both a RAID system that can tolerate one disk failure and
a RAID-DP, which can tolerate two disk failures.

Reconstruction is commonly performed in two different ways. In offline recon-
struction, the RAID devotes all of its resources to performing reconstruction and
does not service any requests from the workload. In online reconstruction, the
RAID continues to service workload requests while performing the reconstruction;
the reconstruction process is often limited to use some fraction of the total band-
width of the RAID system.

How reconstruction is performed impacts both the reliability and the perform-
ability of the system. In a RAID 5, data are lost if a second disk fails before the data
from the first disk can be recovered; therefore, the longer the reconstruction time
(MTTR), the lower the reliability or the mean time until data loss (MTDL). Per-
formability is a metric meant to combine both the performance of a system and its

00 01 02 03 04 05 06 07 08 09 10 11 P P P P

12 13 14 15 16 17 18 19 P P P P 20 21 22 23

24 25 26 27 P P P P 28 29 30 31 32 33 34 35

P P P P 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 P P P P

60 61 62 63 64 65 66 67 P P P P 68 69 70 71

72 73 74 75 P P P P 76 77 78 79 80 81 82 83

P P P P 84 85 86 87 88 89 90 91 92 93 94 95

Parity: RAID 5 Left-Asymmetric, stripe = 16, pattern = 48

Figure D.29 A storage system with four disks, a chunk size of four 4 KB blocks, and
using a RAID 5 Left-Asymmetric layout. Two repetitions of the pattern are shown.
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availability; it is defined as the performance of the system in a given state multi-
plied by the probability of that state. For a RAID array, possible states include nor-
mal operation with no disk failures, reconstruction with one disk failure, and
shutdown due to multiple disk failures.

For these exercises, assume that you have built a RAID system with six disks,
plus a sufficient number of hot spares. Assume that each disk is the 37 GB SCSI
disk shown in Figure D.3 and that each disk can sequentially read data at a peak of
142 MB/sec and sequentially write data at a peak of 85 MB/sec. Assume that the
disks are connected to an Ultra320 SCSI bus that can transfer a total of 320 MB/
sec. You can assume that each disk failure is independent and ignore other potential
failures in the system. For the reconstruction process, you can assume that the over-
head for any XOR computation or memory copying is negligible. During online
reconstruction, assume that the reconstruction process is limited to use a total band-
width of 10 MB/sec from the RAID system.

D.8 [10]<D.2>Assume that you have a RAID 4 system with six disks. Draw a simple
diagram showing the layout of blocks across disks for this RAID system.

D.9 [10]<D.2, D.4>When a single disk fails, the RAID 4 system will perform recon-
struction. What is the expected time until a reconstruction is needed?

D.10 [10/10/10]<D.2, D.4>Assume that reconstruction of the RAID 4 array begins at
time t.

a. [10]<D.2, D.4>What read and write operations are required to perform the
reconstruction?

b. [10]<D.2, D.4>For offline reconstruction, when will the reconstruction pro-
cess be complete?

c. [10]<D.2, D.4>For online reconstruction, when will the reconstruction pro-
cess be complete?

D.11 [10/10/10/10]<D.2, D.4> In this exercise, we will investigate the mean time until
data loss (MTDL). In RAID 4, data are lost only if a second disk fails before the
first failed disk is repaired.

a. [10]<D.2, D.4>What is the likelihood of having a second failure during off-
line reconstruction?

b. [10]<D.2, D.4>Given this likelihood of a second failure during reconstruc-
tion, what is the MTDL for offline reconstruction?

c. [10]<D.2, D.4>What is the likelihood of having a second failure during
online reconstruction?

d. [10]<D.2, D.4>Given this likelihood of a second failure during reconstruc-
tion, what is the MTDL for online reconstruction?

D.12 [10]<D.2, D.4>What is performability for the RAID 4 array for offline recon-
struction? Calculate the performability using IOPS, assuming a random readonly
workload that is evenly distributed across the disks of the RAID 4 array.
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D.13 [10]<D.2, D.4>What is the performability for the RAID 4 array for online recon-
struction? During online repair, you can assume that the IOPS drop to 70% of their
peak rate. Does offline or online reconstruction lead to better performability?

D.14 [10]<D.2, D.4>RAID 6 is used to tolerate up to two simultaneous disk failures.
Assume that you have a RAID 6 system based on row-diagonal parity, or RAID-
DP; your six-disk RAID-DP system is based on RAID 4, with p¼5, as shown in
Figure D.5. If data disk 0 and data disk 3 fail, how can those disks be recon-
structed? Show the sequence of steps that are required to compute the missing
blocks in the first four stripes.

Case Study 4: Performance Prediction for RAIDs

Concepts illustrated by this case study

■ RAID Levels

■ Queuing Theory

■ Impact of Workloads

■ Impact of Disk Layout

In this case study, you will explore how simple queuing theory can be used to pre-
dict the performance of the I/O system. You will investigate how both storage sys-
tem configuration and the workload influence service time, disk utilization, and
average response time.

The configuration of the storage system has a large impact on performance. Dif-
ferent RAID levels can be modeled using queuing theory in different ways. For
example, a RAID 0 array containing N disks can be modeled as N separate systems
of M/M/1 queues, assuming that requests are appropriately distributed across the N
disks. The behavior of a RAID 1 array depends upon the workload: A read operation
can be sent to either mirror, whereas a write operation must be sent to both disks.
Therefore, for a read-only workload, a two-disk RAID 1 array can be modeled as
an M/M/2 queue, whereas for a write-only workload, it can be modeled as an M/
M/1 queue. The behavior of a RAID 4 array containing N disks also depends upon
the workload: A read will be sent to a particular data disk, whereas writes must all
update the parity disk, which becomes the bottleneck of the system. Therefore, for a
read-only workload, RAID 4 can be modeled asN�1 separate systems, whereas for
a write-only workload, it can be modeled as one M/M/1 queue.

The layout of blocks within the storage system can have a significant impact on
performance. Consider a single disk with a 40 GB capacity. If the workload ran-
domly accesses 40 GB of data, then the layout of those blocks to the disk does not
have much of an impact on performance. However, if the workload randomly
accesses only half of the disk’s capacity (i.e., 20 GB of data on that disk), then
layout does matter: To reduce seek time, the 20 GB of data can be compacted
within 20 GB of consecutive tracks instead of allocated uniformly distributed over
the entire 40 GB capacity.
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For this problem, we will use a rather simplistic model to estimate the service
time of a disk. In this basic model, the average positioning and transfer time for a
small random request is a linear function of the seek distance. For the 40 GB disk in
this problem, assume that the service time is 5 ms * space utilization. Thus, if the
entire 40 GB disk is used, then the average positioning and transfer time for a ran-
dom request is 5 ms; if only the first 20 GB of the disk is used, then the average
positioning and transfer time is 2.5 ms.

Throughout this case study, you can assume that the processor sends 167 small
random disk requests per second and that these requests are exponentially
distributed. You can assume that the size of the requests is equal to the block size
of 8 KB. Each disk in the system has a capacity of 40 GB. Regardless of the storage
system configuration, the workload accesses a total of 40 GB of data; you should
allocate the 40 GB of data across the disks in the system in the most efficient
manner.

D.15 [10/10/10/10/10]<D.5>Begin by assuming that the storage system consists of a
single 40 GB disk.

a. [10]<D.5>Given this workload and storage system, what is the average
service time?

b. [10]<D.5>On average, what is the utilization of the disk?

c. [10]<D.5>On average, how much time does each request spend waiting for
the disk?

d. [10]<D.5>What is the mean number of requests in the queue?

e. [10]<D.5>Finally, what is the average response time for the disk requests?

D.16 [10/10/10/10/10/10]<D.2, D.5> Imagine that the storage system is now config-
ured to contain two 40 GB disks in a RAID 0 array; that is, the data are striped in
blocks of 8 KB equally across the two disks with no redundancy.

a. [10]<D.2, D.5>How will the 40 GB of data be allocated across the disks?
Given a random request workload over a total of 40 GB, what is the expected
service time of each request?

b. [10]<D.2, D.5>How can queuing theory be used to model this storage
system?

c. [10]<D.2, D.5>What is the average utilization of each disk?

d. [10]<D.2, D.5>On average, how much time does each request spend waiting
for the disk?

e. [10]<D.2, D.5>What is the mean number of requests in each queue?

f. [10]<D.2, D.5>Finally, what is the average response time for the disk
requests?

D.17 [20/20/20/20/20]<D.2, D.5> Instead imagine that the storage system is config-
ured to contain two 40 GB disks in a RAID 1 array; that is, the data are mirrored
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across the two disks. Use queuing theory to model this system for a read-only
workload.

a. [20]<D.2, D.5>How will the 40 GB of data be allocated across the disks?
Given a random request workload over a total of 40 GB, what is the expected
service time of each request?

b. [20]<D.2, D.5>How can queuing theory be used to model this storage
system?

c. [20]<D.2, D.5>What is the average utilization of each disk?

d. [20]<D.2, D.5>On average, how much time does each request spend waiting
for the disk?

e. [20]<D.2, D.5>Finally, what is the average response time for the disk
requests?

D.18 [10/10]<D.2, D.5> Imagine that instead of a read-only workload, you now have a
write-only workload on a RAID 1 array.

a. [10]<D.2, D.5>Describe how you can use queuing theory to model this sys-
tem and workload.

b. [10]<D.2, D.5>Given this system and workload, what are the average utili-
zation, average waiting time, and average response time?

Case Study 5: I/O Subsystem Design

Concepts illustrated by this case study

■ RAID Systems

■ Mean Time to Failure (MTTF)

■ Performance and Reliability Trade-Offs

In this case study, you will design an I/O subsystem, given a monetary budget.
Your system will have a minimum required capacity and you will optimize for per-
formance, reliability, or both. You are free to use as many disks and controllers as
fit within your budget.

Here are your building blocks:

■ A 10,000 MIPS CPU costing $1000. Its MTTF is 1,000,000 hours.

■ A 1000 MB/sec I/O bus with room for 20 Ultra320 SCSI buses and controllers.

■ Ultra320 SCSI buses that can transfer 320 MB/sec and support up to 15 disks
per bus (these are also called SCSI strings). The SCSI cable MTTF is
1,000,000 hours.

■ An Ultra320 SCSI controller that is capable of 50,000 IOPS, costs $250, and
has an MTTF of 500,000 hours.
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■ A $2000 enclosure supplying power and cooling to up to eight disks. The
enclosure MTTF is 1,000,000 hours, the fan MTTF is 200,000 hours, and
the power supply MTTF is 200,000 hours.

■ The SCSI disks described in Figure D.3.

■ Replacing any failed component requires 24 hours.

You may make the following assumptions about your workload:

■ The operating system requires 70,000 CPU instructions for each disk I/O.

■ The workload consists of many concurrent, random I/Os, with an average size
of 16 KB.

All of your constructed systems must have the following properties:

■ You have a monetary budget of $28,000.

■ You must provide at least 1 TB of capacity.

D.19 [10]<D.2>You will begin by designing an I/O subsystem that is optimized only
for capacity and performance (and not reliability), specifically IOPS. Discuss the
RAID level and block size that will deliver the best performance.

D.20 [20/20/20/20]<D.2, D.4, D.7>What configuration of SCSI disks, controllers,
and enclosures results in the best performance given your monetary and capacity
constraints?

a. [20]<D.2, D.4, D.7>How many IOPS do you expect to deliver with your
system?

b. [20]<D.2, D.4, D.7>How much does your system cost?

c. [20]<D.2, D.4, D.7>What is the capacity of your system?

d. [20]<D.2, D.4, D.7>What is the MTTF of your system?

D.21 [10]<D.2, D.4, D.7>You will now redesign your system to optimize for reliabil-
ity, by creating a RAID 10 or RAID 01 array. Your storage system should be robust
not only to disk failures but also to controller, cable, power supply, and fan failures
as well; specifically, a single component failure should not prohibit accessing both
replicas of a pair. Draw a diagram illustrating how blocks are allocated across disks
in the RAID 10 and RAID 01 configurations. Is RAID 10 or RAID 01 more appro-
priate in this environment?

D.22 [20/20/20/20/20]<D.2, D.4, D.7>Optimizing your RAID 10 or RAID 01 array
only for reliability (but staying within your capacity and monetary constraints),
what is your RAID configuration?

a. [20]<D.2, D.4, D.7>What is the overall MTTF of the components in your
system?
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b. [20]<D.2, D.4, D.7>What is the MTDL of your system?

c. [20]<D.2, D.4, D.7>What is the usable capacity of this system?

d. [20]<D.2, D.4, D.7>How much does your system cost?

e. [20]<D.2, D.4, D.7>Assuming a write-only workload, how many IOPS can
you expect to deliver?

D.23 [10]<D.2, D.4, D.7>Assume that you now have access to a disk that has twice
the capacity, for the same price. If you continue to design only for reliability, how
would you change the configuration of your storage system? Why?

Case Study 6: Dirty Rotten Bits

Concepts illustrated by this case study

■ Partial Disk Failure

■ Failure Analysis

■ Performance Analysis

■ Parity Protection

■ Checksumming

You are put in charge of avoiding the problem of “bit rot”—bits or blocks in a file
going bad over time. This problem is particularly important in archival scenarios,
where data are written once and perhaps accessed many years later; without taking
extra measures to protect the data, the bits or blocks of a file may slowly change or
become unavailable due to media errors or other I/O faults.

Dealing with bit rot requires two specific components: detection and recovery.
To detect bit rot efficiently, one can use checksums over each block of the file in
question; a checksum is just a function of some kind that takes a (potentially long)
string of data as input and outputs a fixed-size string (the checksum) of the data as
output. The property you will exploit is that if the data changes then the computed
checksum is very likely to change as well.

Once detected, recovering from bit rot requires some form of redundancy.
Examples include mirroring (keeping multiple copies of each block) and parity
(some extra redundant information, usually more space efficient than mirroring).

In this case study, you will analyze how effective these techniques are given
various scenarios. You will also write code to implement data integrity protection
over a set of files.

D.24 [20/20/20]<D.2>Assume that you will use simple parity protection in Exercises
D.24 through D.27. Specifically, assume that you will be computing one parity
block for each file in the file system. Further, assume that you will also use a
20-byte MD5 checksum per 4 KB block of each file.
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We first tackle the problem of space overhead. According to studies by Douceur and
Bolosky [1999], these file size distributions are what is found in modern PCs:

�1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB �1 MB

26.6% 11.0% 11.2% 10.9% 9.5% 8.5% 7.1% 5.1% 3.7% 2.4% 4.0%

The study also finds that file systems are usually about half full. Assume that you
have a 37 GB disk volume that is roughly half full and follows that same distribu-
tion, and answer the following questions:

a. [20]<D.2>Howmuch extra information (both in bytes and as a percent of the vol-
ume) must you keep on disk to be able to detect a single error with checksums?

b. [20]<D.2>How much extra information (both in bytes and as a percent of the
volume) would you need to be able to both detect a single error with checksums
as well as correct it?

c. [20]<D.2>Given this file distribution, is the block size you are using to com-
pute checksums too big, too little, or just right?

D.25 [10/10]<D.2, D.3>One big problem that arises in data protection is error detec-
tion. One approach is to perform error detection lazily—that is, wait until a file is
accessed, and at that point, check it and make sure the correct data are there. The
problem with this approach is that files that are not accessed frequently may slowly
rot away and when finally accessed have too many errors to be corrected. Hence, an
eager approach is to perform what is sometimes called disk scrubbing—
periodically go through all data and find errors proactively.

a. [10]<D.2, D.3>Assume that bit flips occur independently, at a rate of 1 flip
per GB of data per month. Assuming the same 20 GB volume that is half full,
and assuming that you are using the SCSI disk as specified in Figure D.3 (4 ms
seek, roughly 100 MB/sec transfer), how often should you scan through files to
check and repair their integrity?

b. [10]<D.2, D.3>At what bit flip rate does it become impossible to maintain
data integrity? Again assume the 20 GB volume and the SCSI disk.

D.26 [10/10/10/10]<D.2, D.4>Another potential cost of added data protection is
found in performance overhead. We now study the performance overhead of this
data protection approach.

a. [10]<D.2, D.4>Assume we write a 40 MB file to the SCSI disk sequentially,
and then write out the extra information to implement our data protection
scheme to disk once. How much write traffic (both in total volume of bytes
and as a percentage of total traffic) does our scheme generate?

b. [10]<D.2, D.4>Assume we now are updating the file randomly, similar to a
database table. That is, assume we perform a series of 4 KB random writes to
the file, and each time we perform a single write, we must update the on-disk
protection information. Assuming that we perform 10,000 random writes, how

D-62 ■ Appendix D Storage Systems



much I/O traffic (both in total volume of bytes and as a percentage of total traf-
fic) does our scheme generate?

c. [10]<D.2, D.4>Now assume that the data protection information is always
kept in a separate portion of the disk, away from the file it is guarding (that
is, assume for each file A, there is another file Achecksums that holds all the
check-sums for A). Hence, one potential overhead we must incur arises upon
reads—that is, upon each read, we will use the checksum to detect data
corruption.

Assume you read 10,000 blocks of 4 KB each sequentially from disk. Assuming
a 4 ms average seek cost and a 100 MB/sec transfer rate (like the SCSI disk in
Figure D.3), how long will it take to read the file (and corresponding check-
sums) from disk? What is the time penalty due to adding checksums?

d. [10]<D.2, D.4>Again assuming that the data protection information is kept
separate as in part (c), now assume you have to read 10,000 random blocks of
4 KB each from a very large file (much bigger than 10,000 blocks, that is). For
each read, you must again use the checksum to ensure data integrity. How long
will it take to read the 10,000 blocks from disk, again assuming the same disk
characteristics? What is the time penalty due to adding checksums?

D.27 [40]<D.2, D.3, D.4>Finally, we put theory into practice by developing a user-
level tool to guard against file corruption. Assume you are to write a simple set of
tools to detect and repair data integrity. The first tool is used for checksums and
parity. It should be called build and used like this:

build <filename>

The build program should then store the needed checksum and redundancy
information for the file filename in a file in the same directory called .file
name.cp (so it is easy to find later).

A second program is then used to check and potentially repair damaged files.
It should be called repair and used like this:

repair <filename>

The repair program should consult the .cp file for the filename in question and
verify that all the stored checksums match the computed checksums for the data. If
the checksums don’t match for a single block, repair should use the redundant
information to reconstruct the correct data and fix the file. However, if two or more
blocks are bad, repair should simply report that the file has been corrupted
beyond repair. To test your system, we will provide a tool to corrupt files called
corrupt. It works as follows:

corrupt <filename> <blocknumber>

All corrupt does is fill the specified block number of the file with random noise.
For checksums you will be using MD5. MD5 takes an input string and gives you a
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128-bit “fingerprint” or checksum as an output. A great and simple implementation
of MD5 is available here:

http://sourceforge.net/project/showfiles.php?group_
id=42360

Parity is computed with the XOR operator. In C code, you can compute the
parity of two blocks, each of size BLOCKSIZE, as follows:

unsigned char block1[BLOCKSIZE];
unsigned char block2[BLOCKSIZE];

unsigned char parity[BLOCKSIZE];

// first, clear parity block
for (int i = 0; i < BLOCKSIZE; i++)

parity[i] = 0;

// then compute parity; carat symbol does XOR in C
for (int i = 0; i < BLOCKSIZE; i++) {

parity[i] = block1[i] ^block2[i];
}

Case Study 7: Sorting Things Out

Concepts illustrated by this case study

■ Benchmarking

■ Performance Analysis

■ Cost/Performance Analysis

■ Amortization of Overhead

■ Balanced Systems

The database field has a long history of using benchmarks to compare systems. In
this question, you will explore one of the benchmarks introduced by Anon. et al.
[1985] (see Chapter 1): external, or disk-to-disk, sorting.

Sorting is an exciting benchmark for a number of reasons. First, sorting exercises
a computer system across all its components, including disk, memory, and proces-
sors. Second, sorting at the highest possible performance requires a great deal of
expertise about how the CPU caches, operating systems, and I/O subsystems work.
Third, it is simple enough to be implemented by a student (see below!).

Depending on how much data you have, sorting can be done in one or multiple
passes. Simply put, if you have enough memory to hold the entire dataset in mem-
ory, you can read the entire dataset into memory, sort it, and then write it out; this is
called a “one-pass” sort.

If you do not have enough memory, you must sort the data in multiple passes.
There are many different approaches possible. One simple approach is to sort each
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chunk of the input file and write it to disk; this leaves (input file size)/(memory
size) sorted files on disk. Then, you have to merge each sorted temporary file into
a final sorted output. This is called a “two-pass” sort. More passes are needed in the
unlikely case that you cannot merge all the streams in the second pass.

In this case study, you will analyze various aspects of sorting, determining its
effectiveness and cost-effectiveness in different scenarios. You will also write your
own version of an external sort, measuring its performance on real hardware.

D.28 [20/20/20]<D.4>We will start by configuring a system to complete a sort in the
least possible time, with no limits on how much we can spend. To get peak band-
width from the sort, we have to make sure all the paths through the system have
sufficient bandwidth.

Assume for simplicity that the time to perform the in-memory sort of keys is lin-
early proportional to the CPU rate and memory bandwidth of the given machine
(e.g., sorting 1 MB of records on a machine with 1 MB/sec of memory bandwidth
and a 1MIPS processor will take 1 second). Assume further that you have carefully
written the I/O phases of the sort so as to achieve sequential bandwidth. And, of
course, realize that if you don’t have enough memory to hold all of the data at once
that sort will take two passes.

One problem you may encounter in performing I/O is that systems often
perform extra memory copies; for example, when the read() system call is
invoked, datamay first be read from disk into a system buffer and then subsequently
copied into the specified user buffer. Hence, memory bandwidth during I/O can be
an issue.

Finally, for simplicity, assume that there is no overlap of reading, sorting, or writ-
ing. That is, when you are reading data from disk, that is all you are doing; when
sorting, you are just using the CPU and memory bandwidth; when writing, you are
just writing data to disk.

Your job in this task is to configure a system to extract peak performance when
sorting 1 GB of data (i.e., roughly 10 million 100-byte records). Use the following
table to make choices about which machine, memory, I/O interconnect, and disks
to buy.

CPU I/O interconnect

Slow 1 GIPS $200 Slow 80 MB/sec $50

Standard 2 GIPS $1000 Standard 160 MB/sec $100

Fast 4 GIPS $2000 Fast 320 MB/sec $400

Memory Disks

Slow 512 MB/sec $100/GB Slow 30 MB/sec $70

Standard 1 GB/sec $200/GB Standard 60 MB/sec $120

Fast 2 GB/sec $500/GB Fast 110 MB/sec $300
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Note:Assume that you are buying a single-processor system and that you can have
up to two I/O interconnects. However, the amount of memory and number of disks
are up to you (assume there is no limit on disks per I/O interconnect).

a. [20]<D.4>What is the total cost of your machine? (Break this down by part,
including the cost of the CPU, amount of memory, number of disks, and I/O
bus.)

b. [20]<D.4>How much time does it take to complete the sort of 1 GB worth of
records? (Break this down into time spent doing reads from disk, writes to disk,
and time spent sorting.)

c. [20]<D.4>What is the bottleneck in your system?

D.29 [25/25/25]<D.4>Wewill now examine cost-performance issues in sorting. After
all, it is easy to buy a high-performing machine; it is much harder to buy a
costeffective one.

One place where this issue arises is with the PennySort competition (research.
microsoft.com/barc/SortBenchmark/). PennySort asks that you sort as many
records as you can for a single penny. To compute this, you should assume that
a system you buy will last for 3 years (94,608,000 seconds), and divide this by
the total cost in pennies of the machine. The result is your time budget per penny.

Our task here will be a little simpler. Assume you have a fixed budget of $2000 (or
less). What is the fastest sorting machine you can build? Use the same hardware
table as in Exercise D.28 to configure the winning machine.

(Hint: You might want to write a little computer program to generate all the pos-
sible configurations.)

a. [25]<D.4>What is the total cost of your machine? (Break this down by part,
including the cost of the CPU, amount of memory, number of disks, and I/O
bus.)

b. [25]<D.4>How does the reading, writing, and sorting time break down with
this configuration?

c. [25]<D.4>What is the bottleneck in your system?

D.30 [20/20/20]<D.4, D.6>Getting good disk performance often requires amortiza-
tion of overhead. The idea is simple: If you must incur an overhead of some kind,
do as much useful work as possible after paying the cost and hence reduce its
impact. This idea is quite general and can be applied to many areas of computer
systems; with disks, it arises with the seek and rotational costs (overheads) that
you must incur before transferring data. You can amortize an expensive seek
and rotation by transferring a large amount of data.

In this exercise, we focus on how to amortize seek and rotational costs during the
second pass of a two-pass sort. Assume that when the second pass begins, there are
N sorted runs on the disk, each of a size that fits within main memory. Our task here
is to read in a chunk from each sorted run and merge the results into a final sorted
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output. Note that a read from one run will incur a seek and rotation, as it is very
likely that the last read was from a different run.

a. [20]<D.4, D.6>Assume that you have a disk that can transfer at 100 MB/sec,
with an average seek cost of 7 ms, and a rotational rate of 10,000 RPM. Assume
further that every time you read from a run, you read 1 MB of data and that there
are 100 runs each of size 1 GB. Also assume that writes (to the final sorted out-
put) take place in large 1 GB chunks. How long will the merge phase take,
assuming I/O is the dominant (i.e., only) cost?

b. [20]<D.4, D.6>Now assume that you change the read size from 1 MB to
10 MB. How is the total time to perform the second pass of the sort affected?

c. [20]<D.4, D.6> In both cases, assume that what we wish to maximize is disk
efficiency. We compute disk efficiency as the ratio of the time spent transferring
data over the total time spent accessing the disk. What is the disk efficiency in
each of the scenarios mentioned above?

D.31 [40]<D.2, D.4, D.6> In this exercise, you will write your own external sort. To
generate the data set, we provide a tool generate that works as follows:

generate <filename> <size (in MB)>

By running generate, you create a file named filename of size size MB.
The file consists of 100 byte keys, with 10-byte records (the part that must be
sorted).

We also provide a tool called check that checks whether a given input file is
sorted or not. It is run as follows:

check <filename>

The basic one-pass sort does the following: reads in the data, sorts the data, and
then writes the data out. However, numerous optimizations are available to you:
overlapping reading and sorting, separating keys from the rest of the record for
better cache behavior and hence faster sorting, overlapping sorting and writing,
and so forth.

One important rule is that data must always start on disk (and not in the file system
cache). The easiest way to ensure this is to unmount and remount the file system.

One goal: Beat the Datamation sort record. Currently, the record for sorting 1 mil-
lion 100-byte records is 0.44 seconds, which was obtained on a cluster of 32
machines. If you are careful, you might be able to beat this on a single PC config-
ured with a few disks.
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Embedded Systems

By Thomas M. Conte
North Carolina State University

Where a calculator on the ENIAC is equipped with 18,000 vacuum
tubes and weighs 30 tons, computers in the future may have only
1,000 vacuum tubes and perhaps weigh 1 1/2 tons.
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E.1 Introduction

Embedded computer systems—computers lodged in other devices where the pres-
ence of the computers is not immediately obvious—are the fastest-growing portion
of the computer market. These devices range from everyday machines (most
microwaves, most washing machines, printers, network switches, and automobiles
contain simple to very advanced embedded microprocessors) to handheld digital
devices (such as PDAs, cell phones, and music players) to video game consoles
and digital set-top boxes. Although in some applications (such as PDAs) the com-
puters are programmable, in many embedded applications the only programming
occurs in connection with the initial loading of the application code or a later soft-
ware upgrade of that application. Thus, the application is carefully tuned for the
processor and system. This process sometimes includes limited use of assembly
language in key loops, although time-to-market pressures and good software engi-
neering practice restrict such assembly language coding to a fraction of the
application.

Compared to desktop and server systems, embedded systems have a much
wider range of processing power and cost—from systems containing low-end 8-
bit and 16-bit processors that may cost less than a dollar, to those containing full
32-bit microprocessors capable of operating in the 500 MIPS range that cost
approximately 10 dollars, to those containing high-end embedded processors that
cost hundreds of dollars and can execute several billions of instructions per second.
Although the range of computing power in the embedded systems market is very
large, price is a key factor in the design of computers for this space. Performance
requirements do exist, of course, but the primary goal is often meeting the perfor-
mance need at a minimum price, rather than achieving higher performance at a
higher price.

Embedded systems often process information in very different ways from
general-purpose processors. Typically these applications include deadline-driven
constraints—so-called real-time constraints. In these applications, a particular
computation must be completed by a certain time or the system fails (there are other
constraints considered real time, discussed in the next subsection).

Embedded systems applications typically involve processing information as
signals. The lay term “signal” often connotes radio transmission, and that is true
for some embedded systems (e.g., cell phones). But a signal may be an image, a
motion picture composed of a series of images, a control sensor measurement, and
so on. Signal processing requires specific computation that many embedded pro-
cessors are optimized for. We discuss this in depth below. A wide range of bench-
mark requirements exist, from the ability to run small, limited code segments to the
ability to perform well on applications involving tens to hundreds of thousands of
lines of code.

Two other key characteristics exist in many embedded applications: the need to
minimize memory and the need to minimize power. In many embedded applica-
tions, the memory can be a substantial portion of the system cost, and it is important
to optimize memory size in such cases. Sometimes the application is expected to fit
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entirely in the memory on the processor chip; other times the application needs to
fit in its entirety in a small, off-chip memory. In either case, the importance of
memory size translates to an emphasis on code size, since data size is dictated
by the application. Some architectures have special instruction set capabilities
to reduce code size. Larger memories also mean more power, and optimizing
power is often critical in embedded applications. Although the emphasis on low
power is frequently driven by the use of batteries, the need to use less expensive
packaging (plastic versus ceramic) and the absence of a fan for cooling also limit
total power consumption.We examine the issue of power in more detail later in this
appendix.

Another important trend in embedded systems is the use of processor cores
together with application-specific circuitry—so-called “core plus ASIC” or “sys-
tem on a chip” (SOC), which may also be viewed as special-purpose multiproces-
sors (see Section E.4). Often an application’s functional and performance
requirements are met by combining a custom hardware solution together with soft-
ware running on a standardized embedded processor core, which is designed to
interface to such special-purpose hardware. In practice, embedded problems are
usually solved by one of three approaches:

1. The designer uses a combined hardware/software solution that includes some
custom hardware and an embedded processor core that is integrated with the
custom hardware, often on the same chip.

2. The designer uses custom software running on an off-the-shelf embedded
processor.

3. The designer uses a digital signal processor and custom software for the proces-
sor. Digital signal processors are processors specially tailored for signal-
processing applications. We discuss some of the important differences between
digital signal processors and general-purpose embedded processors below.

Figure E.1 summarizes these three classes of computing environments and their
important characteristics.

Real-Time Processing

Often, the performance requirement in an embedded application is a real-time
requirement. A real-time performance requirement is one where a segment of
the application has an absolute maximum execution time that is allowed. For exam-
ple, in a digital set-top box the time to process each video frame is limited, since the
processor must accept and process the frame before the next frame arrives (typi-
cally called hard real-time systems). In some applications, a more sophisticated
requirement exists: The average time for a particular task is constrained as well
as is the number of instances when some maximum time is exceeded. Such
approaches (typically called soft real-time) arise when it is possible to occasionally
miss the time constraint on an event, as long as not too many are missed. Real-time
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performance tends to be highly application dependent. It is usually measured using
kernels either from the application or from a standardized benchmark (see
Section E.3).

The construction of a hard real-time system involves three key variables. The
first is the rate at which a particular task must occur. Coupled to this are the hard-
ware and software required to achieve that real-time rate. Often, structures that are
very advantageous on the desktop are the enemy of hard real-time analysis. For
example, branch speculation, cache memories, and so on introduce uncertainty
into code. A particular sequence of code may execute either very efficiently or very
inefficiently, depending on whether the hardware branch predictors and caches “do
their jobs.” Engineers must analyze code assuming the worst-case execution time
(WCET). In the case of traditional microprocessor hardware, if one assumes that
all branches are mispredicted and all caches miss, theWCET is overly pessimistic.
Thus, the system designer may end up overdesigning a system to achieve a given
WCET, when a much less expensive system would have sufficed.

In order to address the challenges of hard real-time systems, and yet still exploit
such well-known architectural properties as branch behavior and access locality, it
is possible to change how a processor is designed. Consider branch prediction:
Although dynamic branch prediction is known to perform far more accurately than
static “hint bits” added to branch instructions, the behavior of static hints is much
more predictable. Furthermore, although caches perform better than software-
managed on-chip memories, the latter produces predictable memory latencies.
In some embedded processors, caches can be converted into software-managed
on-chip memories via line locking. In this approach, a cache line can be locked
in the cache so that it cannot be replaced until the line is unlocked

Feature Desktop Server Embedded

Price of system $1000–$10,000 $10,000–$10,000,000 $10–$100,000 (including
network routers at the high end)

Price of microprocessor
module

$100–$1000 $200–$2000
(per processor)

$0.20–$200 (per processor)

Microprocessors sold per
year (estimates for 2000)

150,000,000 4,000,000 300,000,000 (32-bit and 64-bit
processors only)

Critical system design issues Price-performance,
graphics performance

Throughput, availability,
scalability

Price, power consumption,
application-specific performance

Figure E.1 A summary of the three computing classes and their system characteristics. Note the wide range in
system price for servers and embedded systems. For servers, this range arises from the need for very large-scale mul-
tiprocessor systems for high-end transaction processing and Web server applications. For embedded systems, one
significant high-end application is a network router, which could include multiple processors as well as lots of mem-
ory and other electronics. The total number of embedded processors sold in 2000 is estimated to exceed 1 billion, if
you include 8-bit and 16-bit microprocessors. In fact, the largest-selling microprocessor of all time is an 8-bit micro-
controller sold by Intel! It is difficult to separate the low end of the server market from the desktop market, since low-
end servers—especially those costing less than $5000—are essentially no different from desktop PCs. Hence, up to a
few million of the PC units may be effectively servers.
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E.2 Signal Processing and Embedded Applications:
The Digital Signal Processor

A digital signal processor (DSP) is a special-purpose processor optimized for
executing digital signal processing algorithms. Most of these algorithms, from
time-domain filtering (e.g., infinite impulse response and finite impulse response
filtering), to convolution, to transforms (e.g., fast Fourier transform, discrete cosine
transform), to even forward error correction (FEC) encodings, all have as their
kernel the same operation: a multiply-accumulate operation. For example, the
discrete Fourier transform has the form:

X kð Þ¼
XN�1

n¼0

x nð ÞWkn
N where Wkn

N ¼ ej
2πkn
N ¼ cos 2π

kn

N

� �
+ jsin 2π

kn

N

� �

The discrete cosine transform is often a replacement for this because it does not
require complex number operations. Either transform has as its core the sum of
a product. To accelerate this, DSPs typically feature special-purpose hardware
to perform multiply-accumulate (MAC). A MAC instruction of “MAC A,B,C”
has the semantics of “A ¼ A + B * C.” In some situations, the performance of this
operation is so critical that a DSP is selected for an application based solely upon its
MAC operation throughput.

DSPs often employ fixed-point arithmetic. If you think of integers as having a
binary point to the right of the least-significant bit, fixed point has a binary point
just to the right of the sign bit. Hence, fixed-point data are fractions between �1
and +1.

Example Here are three simple 16-bit patterns:

0100 0000 0000 0000

0000 1000 0000 0000

0100 1000 0000 1000

What values do they represent if they are two’s complement integers? Fixedpoint
numbers?

Answer Number representation tells us that the ith digit to the left of the binary point
represents 2i�1 and the ith digit to the right of the binary point represents 2�i. First
assume these three patterns are integers. Then the binary point is to the far right,
so they represent 214, 211, and (214+ 211+ 23), or 16,384, 2048, and 18,440.

Fixed point places the binary point just to the right of the sign bit, so as fixed
point these patterns represent 2�1, 2�4, and (2�1 + 2�4 + 2�12). The fractions are
1/2, 1/16, and (2048 + 256 + 1)/4096 or 2305/4096, which represents about
0.50000, 0.06250, and 0.56274. Alternatively, for an n-bit two’s complement,
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fixed-point number we could just divide the integer presentation by 2n�1 to derive
the same results:

16,384=32,768¼ 1=2, 2048=32,768¼ 1=16, and 18,440=32,768¼ 2305=4096:

Fixed point can be thought of as a low-cost floating point. It doesn’t include an
exponent in every word and doesn’t have hardware that automatically aligns and
normalizes operands. Instead, fixed point relies on the DSP programmer to keep
the exponent in a separate variable and ensure that each result is shifted left or right
to keep the answer aligned to that variable. Since this exponent variable is often
shared by a set of fixed-point variables, this style of arithmetic is also called
blocked floating point, since a block of variables has a common exponent.

To support such manual calculations, DSPs usually have some registers that are
wider to guard against round-off error, just as floating-point units internally have
extra guard bits. Figure E.2 surveys four generations of DSPs, listing data sizes and
width of the accumulating registers. Note that DSP architects are not bound by the
powers of 2 for word sizes. Figure E.3 shows the size of data operands for the TI
TMS320C55 DSP.

In addition to MAC operations, DSPs often also have operations to accelerate
portions of communications algorithms. An important class of these algorithms
revolve around encoding and decoding forward error correction codes—codes
in which extra information is added to the digital bit stream to guard against errors
in transmission. A code of rate m/n has m information bits for (m + n) check bits.
So, for example, a 1/2 rate code would have 1 information bit per every 2 bits. Such
codes are often called trellis codes because one popular graphical flow diagram of

Generation Year Example DSP Data width Accumulator width

1 1982 TI TMS32010 16 bits 32 bits

2 1987 Motorola DSP56001 24 bits 56 bits

3 1995 Motorola DSP56301 24 bits 56 bits

4 1998 TI TMS320C6201 16 bits 40 bits

Figure E.2 Four generations of DSPs, their data width, and the width of the registers
that reduces round-off error.

Data size Memory operand in operation Memory operand in data transfer

16 bits 89.3% 89.0%

32 bits 10.7% 11.0%

Figure E.3 Size of data operands for the TMS320C55 DSP. About 90% of operands are
16 bits. This DSP has two 40-bit accumulators. There are no floating-point operations, as
is typical of many DSPs, so these data are all fixed-point integers.
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their encoding resembles a garden trellis. A common algorithm for decoding trellis
codes is due to Viterbi. This algorithm requires a sequence of compares and selects
in order to recover a transmitted bit’s true value. Thus DSPs often have compare-
select operations to support Viterbi decode for FEC codes.

To explain DSPs better, we will take a detailed look at two DSPs, both pro-
duced by Texas Instruments. The TMS320C55 series is a DSP family targeted
toward battery-powered embedded applications. In stark contrast to this, the
TMS VelociTI 320C6x series is a line of powerful, eight-issue VLIW processors
targeted toward a broader range of applications that may be less power sensitive.

The TI 320C55

At one end of the DSP spectrum is the TI 320C55 architecture. The C55 is opti-
mized for low-power, embedded applications. Its overall architecture is shown in
Figure E.4. At the heart of it, the C55 is a seven-staged pipelined CPU. The stages
are outlined below:

■ Fetch stage reads program data frommemory into the instruction buffer queue.

■ Decode stage decodes instructions and dispatches tasks to the other primary
functional units.

■ Address stage computes addresses for data accesses and branch addresses for
program discontinuities.

■ Access 1/Access 2 stages send data read addresses to memory.

■ Read stage transfers operand data on the B bus, C bus, and D bus.

■ Execute stage executes operation in the A unit and D unit and performs writes
on the E bus and F bus.

Instruction
buffer
unit
(IU)

Program
flow
unit
(PU)

Address
data flow

unit
(AU)

Data
computation

unit
(DU)

Data read buses BB, CB, DB (3 x 16)

Data read address buses BAB, CAB, DAB (3 x 24)

CPU

Data write address buses EAB, FAB (2 x 24)

Data write buses EB, FB (2 x 16)

Program address bus PAB (24)

Program read bus PB (32)

Figure E.4 Architecture of the TMS320C55 DSP. The C55 is a seven-stage pipelined pro-
cessor with some unique instruction execution facilities. (Courtesy Texas Instruments.)
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The C55 pipeline performs pipeline hazard detection and will stall on write after
read (WAR) and read after write (RAW) hazards.

The C55 does have a 24 KB instruction cache, but it is configurable to support
various workloads. It may be configured to be two-way set associative, direct-
mapped, or as a “ramset.” This latter mode is a way to support hard realtime appli-
cations. In this mode, blocks in the cache cannot be replaced.

The C55 also has advanced power management. It allows dynamic power man-
agement through software-programmable “idle domains.” Blocks of circuitry on
the device are organized into these idle domains. Each domain can operate nor-
mally or can be placed in a low-power idle state. A programmer-accessible Idle
Control Register (ICR) determines which domains will be placed in the idle state
when the execution of the next IDLE instruction occurs. The six domains are CPU,
direct memory access (DMA), peripherals, clock generator, instruction cache, and
external memory interface. When each domain is in the idle state, the functions of
that particular domain are not available. However, in the peripheral domain, each
peripheral has an Idle Enable bit that controls whether or not the peripheral will
respond to the changes in the idle state. Thus, peripherals can be individually con-
figured to idle or remain active when the peripheral domain is idled.

Since the C55 is a DSP, the central feature is its MAC units. The C55 has two
MAC units, each comprised of a 17-bit by 17-bit multiplier coupled to a 40-bit
dedicated adder. Each MAC unit performs its work in a single cycle; thus, the
C55 can execute two MACs per cycle in full pipelined operation. This kind of
capability is critical for efficiently performing signal processing applications.
The C55 also has a compare, select, and store unit (CSSU) for the add/compare
section of the Viterbi decoder.

The TI 320C6x

In stark contrast to the C55 DSP family is the high-end Texas Instruments VelociTI
320C6x family of processors. The C6x processors are closer to traditional very
long instruction word (VLIW) processors because they seek to exploit the high
levels of instruction-level parallelism (ILP) in many signal processing algorithms.
Texas Instruments is not alone in selecting VLIW for exploiting ILP in the embed-
ded space. Other VLIW DSP vendors include Ceva, StarCore, Philips/TriMedia,
and STMicroelectronics. Why do these vendors favor VLIW over superscalar? For
the embedded space, code compatibility is less of a problem, and so new applica-
tions can be either hand tuned or recompiled for the newest generation of proces-
sor. The other reason superscalar excels on the desktop is because the compiler
cannot predict memory latencies at compile time. In embedded, however, memory
latencies are often much more predictable. In fact, hard real-time constraints force
memory latencies to be statically predictable. Of course, a superscalar would also
perform well in this environment with these constraints, but the extra hardware to
dynamically schedule instructions is both wasteful in terms of precious chip area
and in terms of power consumption. Thus VLIW is a natural choice for high-
performance embedded.
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The C6x family employs different pipeline depths depending on the family
member. For the C64x, for example, the pipeline has 11 stages. The first four stages
of the pipeline perform instruction fetch, followed by two stages for instruction
decode, and finally four stages for instruction execution. The overall architecture
of the C64x is shown below in Figure E.5.

The C6x family’s execution stage is divided into two parts, the left or “1” side
and the right or “2” side. The L1 and L2 units perform logical and arithmetic oper-
ations. D units in contrast perform a subset of logical and arithmetic operations but
also perform memory accesses (loads and stores). The two M units perform multi-
plication and related operations (e.g., shifts). Finally the S units perform compari-
sons, branches, and some SIMD operations (see the next subsection for a detailed
explanation of SIMD operations). Each side has its own 32-entry, 32-bit register file
(the A file for the 1 side, the B file for the 2 side). A side may access the other side’s
registers, but with a 1- cycle penalty. Thus, an instruction executing on side 1 may
access B5, for example, but it will take 1- cycle extra to execute because of this.

VLIWs are traditionally very bad when it comes to code size, which runs con-
trary to the needs of embedded systems. However, the C6x family’s approach
“compresses” instructions, allowing the VLIW code to achieve the same density
as equivalent RISC (reduced instruction set computer) code. To do so, instruction
fetch is carried out on an “instruction packet,” shown in Figure E.6. Each instruc-
tion has a p bit that specifies whether this instruction is a member of the current

Program cache/program memory
32-bit address
256-bit data

Data cache/data memory
32-bit address

8-, 16-, 32-, 64-bit data

Program fetch

Instruction dispatch

Instruction decode

Control
registers

C6000 CPU

Control
logic

Test

Emulation

Interrupts

EDMA,
EMIF

Additional
peripherals:

timers,
serial ports,

etc.

Register file A

Data path A

.L1 .S1 .M1 .D1

Power
down

Register file B

Data path B

.D2 .M2 .S2 .L2

Figure E.5 Architecture of the TMS320C64x family of DSPs. The C6x is an eight-issue
traditional VLIW processor. (Courtesy Texas Instruments.)
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VLIW word or the next VLIW word (see the figure for a detailed explanation).
Thus, there are now no NOPs that are needed for VLIW encoding.

Software pipelining is an important technique for achieving high performance
in a VLIW. But software pipelining relies on each iteration of the loop having an
identical schedule to all other iterations. Because conditional branch instructions
disrupt this pattern, the C6x family provides a means to conditionally execute
instructions using predication. In predication, the instruction performs its work.
But when it is done executing, an additional register, for example A1, is checked.
If A1 is zero, the instruction does not write its results. If A1 is nonzero, the instruc-
tion proceeds normally. This allows simple if-then and if-then-else structures to be
collapsed into straight-line code for software pipelining.

Media Extensions

There is a middle ground between DSPs and microcontrollers: media extensions.
These extensions add DSP-like capabilities to microcontroller architectures at rela-
tively low cost. Because media processing is judged by human perception, the data
for multimedia operations are oftenmuch narrower than the 64-bit dataword ofmod-
ern desktop and server processors. For example, floating-point operations for
graphics are normally in single precision, not double precision, and often at a pre-
cision less than is required by IEEE 754. Rather than waste the 64-bit arithmetic-
logical units (ALUs) when operating on 32-bit, 16-bit, or even 8-bit integers, mul-
timedia instructions can operate on several narrower data items at the same time.
Thus, a partitioned add operation on 16-bit data with a 64-bit ALU would perform
four 16-bit adds in a single clock cycle. The extra hardware cost is simply to prevent
carries between the four 16-bit partitions of the ALU. For example, such instructions
might be used for graphical operations on pixels. These operations are commonly
called single-instruction multiple-data (SIMD) or vector instructions.

Most graphics multimedia applications use 32-bit floating-point operations.
Some computers double peak performance of single-precision, floating-point oper-
ations; they allow a single instruction to launch two 32-bit operations on operands
found side by side in a double-precision register. The two partitions must be insu-
lated to prevent operations on one half from affecting the other. Such floating-point
operations are called paired single operations. For example, such an operation

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

Instruction
A

p p p p p p p p

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

Figure E.6 Instruction packet of the TMS320C6x family of DSPs. The p bits determine
whether an instruction begins a new VLIW word or not. If the p bit of instruction i is 1,
then instruction i + 1 is to be executed in parallel with (in the same cycle as) instruction i.
If the p bit of instruction i is 0, then instruction i + 1 is executed in the cycle after instruc-
tion i. (Courtesy Texas Instruments.)
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might be used for graphical transformations of vertices. This doubling in perfor-
mance is typically accomplished by doubling the number of floating-point units,
making it more expensive than just suppressing carries in integer adders.

Figure E.7 summarizes the SIMD multimedia instructions found in several
recent computers.

DSPs also provide operations found in the first three rows of Figure E.7, but
they change the semantics a bit. First, because they are often used in real-time
applications, there is not an option of causing an exception on arithmetic overflow
(otherwise it could miss an event); thus, the result will be used no matter what the
inputs. To support such an unyielding environment, DSP architectures use saturat-
ing arithmetic: If the result is too large to be represented, it is set to the largest rep-
resentable number, depending on the sign of the result. In contrast, two’s
complement arithmetic can add a small positive number to a large positive.

Instruction category Alpha MAX
HP PA-RISC
MAX2

Intel Pentium
MMX

PowerPC
AltiVec SPARC VIS

Add/subtract 4H 8B, 4H, 2W 16B, 8H, 4W 4H, 2W

Saturating add/subtract 4H 8B, 4H 16B, 8H, 4W

Multiply 4H 16B, 8H

Compare 8B (>¼) 8B, 4H, 2W
(¼, >)

16B, 8H, 4W
(¼,>,>¼,<,<¼)

4H, 2W
(¼, not¼,>,<¼)

Shift right/left 4H 4H, 2W 16B, 8H, 4W

Shift right arithmetic 4H 16B, 8H, 4W

Multiply and add 8H

Shift and add
(saturating)

4H

AND/OR/XOR 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 16B, 8H, 4W 8B, 4H, 2W

Absolute difference 8B 16B, 8H, 4W 8B

Maximum/minimum 8B, 4W 16B, 8H, 4W

Pack (2n bits ! n bits) 2W ! 2B,
4H ! 4B

2*4H ! 8B 4H ! 4B,
2W ! 2H

4W ! 4B,
8H ! 8B

2W ! 2H,
2W ! 2B,
4H ! 4B

Unpack/merge 2B ! 2W,
4B ! 4H

2B ! 2W,
4B ! 4H

4B ! 4W,
8B ! 8H

4B ! 4H,
2*4B ! 8B

Permute/shuffle 4H 16B, 8H, 4W

Figure E.7 Summary of multimedia support for desktop processors. Note the diversity of support, with little in
common across the five architectures. All are fixed-width operations, performing multiple narrow operations on
either a 64-bit or 128-bit ALU. B stands for byte (8 bits), H for half word (16 bits), and W for word (32 bits). Thus,
8B means an operation on 8 bytes in a single instruction. Note that AltiVec assumes a 128-bit ALU, and the rest
assume 64 bits. Pack and unpack use the notation 2*2W to mean 2 operands each with 2 words. This table is a sim-
plification of the full multimedia architectures, leaving out many details. For example, HP MAX2 includes an instruc-
tion to calculate averages, and SPARC VIS includes instructions to set registers to constants. Also, this table does not
include the memory alignment operation of AltiVec, MAX, and VIS.

E.2 Signal Processing and Embedded Applications: The Digital Signal Processor ■ E-11



E.3 Embedded Benchmarks

It used to be the case just a couple of years ago that in the embedded market, many
manufacturers quoted Dhrystone performance, a benchmark that was criticized and
given up by desktop systems more than 20 years ago! As mentioned earlier, the
enormous variety in embedded applications, as well as differences in performance
requirements (hard real time, soft real time, and overall cost-performance), make
the use of a single set of benchmarks unrealistic. In practice, many designers of
embedded systems devise benchmarks that reflect their application, either as ker-
nels or as stand-alone versions of the entire application.

For those embedded applications that can be characterized well by kernel per-
formance, the best standardized set of benchmarks appears to be a new benchmark
set: the EDN Embedded Microprocessor Benchmark Consortium (or EEMBC,
pronounced “embassy”). The EEMBC benchmarks fall into six classes (called
“subcommittees” in the parlance of EEMBC): automotive/industrial, consumer,
telecommunications, digital entertainment, networking (currently in its second ver-
sion), and office automation (also the second version of this subcommittee).
Figure E.8 shows the six different application classes, which include 50
benchmarks.

Although many embedded applications are sensitive to the performance of
small kernels, remember that often the overall performance of the entire application
(which may be thousands of lines) is also critical. Thus, for many embedded sys-
tems, the EMBCC benchmarks can only be used to partially assess performance.

Benchmark type
(“subcommittee”)

Number of
kernels Example benchmarks

Automotive/industrial 16 6 microbenchmarks (arithmetic operations, pointer chasing, memory
performance, matrix arithmetic, table lookup, bit manipulation), 5 automobile
control benchmarks, and 5 filter or FFT benchmarks

Consumer 5 5 multimedia benchmarks (JPEG compress/decompress, filtering, and RGB
conversions)

Telecommunications 5 Filtering and DSP benchmarks (autocorrelation, FFT, decoder, encoder)

Digital entertainment 12 MP3 decode, MPEG-2 and MPEG-4 encode and decode (each of which is
applied to five different datasets), MPEG Encode Floating Point, 4 benchmark
tests for common cryptographic standards and algorithms (AES, DES, RSA,
and Huffman decoding for data decompression), and enhanced JPEG and
color-space conversion tests

Networking version 2 6 IP Packet Check (borrowed from the RFC1812 standard), IP Reassembly, IP
Network Address Translator (NAT), Route Lookup, OSPF, Quality of Service
(QOS), and TCP

Office automation
version 2

6 Ghostscript, text parsing, image rotation, dithering, B�ezier

Figure E.8 The EEMBC benchmark suite, consisting of 50 kernels in six different classes. See www.eembc.org for
more information on the benchmarks and for scores.
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Power Consumption and Efficiency as the Metric

Cost and power are often at least as important as performance in the embedded
market. In addition to the cost of the processor module (which includes any
required interface chips), memory is often the next most costly part of an embedded
system. Unlike a desktop or server system, most embedded systems do not have
secondary storage; instead, the entire application must reside in either FLASH or
DRAM. Because many embedded systems, such as PDAs and cell phones, are con-
strained by both cost and physical size, the amount of memory needed for the appli-
cation is critical. Likewise, power is often a determining factor in choosing a
processor, especially for battery-powered systems.

EEMBC EnergyBench provides data on the amount of energy a processor con-
sumes while running EEMBC’s performance benchmarks. An EEMBC-certified
Energymark score is an optional metric that a device manufacturer may choose
to supply in conjunction with certified scores for device performance as a way
of indicating a processor’s efficient use of power and energy. EEMBC has stan-
dardized on the use of National Instruments’ LabVIEW graphical development
environment and data acquisition hardware to implement EnergyBench.

Figure E.9 shows the relative performance per watt of typical operating power.
Compare this figure to Figure E.10, which plots raw performance, and notice how
different the results are. The NEC VR 4122 has a clear advantage in performance
per watt, but is the second-lowest performing processor! From the viewpoint of
power consumption, the NECVR 4122, which was designed for battery-based sys-
tems, is the big winner. The IBM PowerPC displays efficient use of power to
achieve its high performance, although at 6 W typical, it is probably not suitable
for most battery-based devices.
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Figure E.9 Relative performance per watt for the five embedded processors. The
power is measured as typical operating power for the processor and does not include
any interface chips.
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E.4 Embedded Multiprocessors

Multiprocessors are now common in server environments, and several desktop
multiprocessors are available from vendors, such as Sun, Compaq, and Apple.
In the embedded space, a number of special-purpose designs have used customized
multiprocessors, including the Sony PlayStation 2 (see Section E.5).

Many special-purpose embedded designs consist of a general-purpose pro-
grammable processor or DSP with special-purpose, finite-state machines that
are used for stream-oriented I/O. In applications ranging from computer graphics
and media processing to telecommunications, this style of special-purpose multi-
processor is becoming common. Although the interprocessor interactions in such
designs are highly regimented and relatively simple—consisting primarily of a
simple communication channel—because much of the design is committed to sil-
icon, ensuring that the communication protocols among the input/output proces-
sors and the general-purpose processor are correct is a major challenge in such
designs.

More recently, we have seen the first appearance, in the embedded space, of
embedded multiprocessors built from several general-purpose processors. These
multiprocessors have been focused primarily on the high-end telecommunications
and networkingmarket, where scalability is critical. An example of such a design is
the MXP processor designed by empowerTel Networks for use in voice-over-IP
systems. The MXP processor consists of four main components:

■ An interface to serial voice streams, including support for handling jitter

■ Support for fast packet routing and channel lookup

■ A complete Ethernet interface, including the MAC layer

■ Four MIPS32 R4000-class processors, each with its own cache (a total of
48 KB or 12 KB per processor)
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Figure E.10 Raw performance for the five embedded processors. The performance is
presented as relative to the performance of the AMD ElanSC520.
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The MIPS processors are used to run the code responsible for maintaining the
voice-over-IP channels, including the assurance of quality of service, echo cancel-
lation, simple compression, and packet encoding. Since the goal is to run as many
independent voice streams as possible, a multiprocessor is an ideal solution.

Because of the small size of the MIPS cores, the entire chip takes only 13.5 M
transistors. Future generations of the chip are expected to handle more voice chan-
nels, as well as do more sophisticated echo cancellation, voice activity detection,
and more sophisticated compression.

Multiprocessing is becoming widespread in the embedded computing arena for
two primary reasons. First, the issues of binary software compatibility, which pla-
gue desktop and server systems, are less relevant in the embedded space. Often
software in an embedded application is written from scratch for an application
or significantly modified (note that this is also the reason VLIW is favored over
superscalar in embedded instruction-level parallelism). Second, the applications
often have natural parallelism, especially at the high end of the embedded space.
Examples of this natural parallelism abound in applications such as a settop box, a
network switch, a cell phone (see Section E.7) or a game system (see Section E.5).
The lower barriers to use of thread-level parallelism together with the greater sen-
sitivity to die cost (and hence efficient use of silicon) are leading to widespread
adoption of multiprocessing in the embedded space, as the application needs grow
to demand more performance.

E.5 Case Study: The Emotion Engine of the Sony
PlayStation 2

Desktop computers and servers rely on the memory hierarchy to reduce average
access time to relatively static data, but there are embedded applications where data
are often a continuous stream. In such applications there is still spatial locality, but
temporal locality is much more limited.

To give another look at memory performance beyond the desktop, this section
examines the microprocessor at the heart of the Sony PlayStation 2. As we will see,
the steady stream of graphics and audio demanded by electronic games leads to a
different approach to memory design. The style is high bandwidth via many ded-
icated independent memories.

Figure E.11 shows a block diagram of the Sony PlayStation 2 (PS2). Not sur-
prisingly for a game machine, there are interfaces for video, sound, and a DVD
player. Surprisingly, there are two standard computer I/O buses, USB and IEEE
1394, a PCMCIA slot as found in portable PCs, and a modem. These additions
show that Sony had greater plans for the PS2 beyond traditional games. Although
it appears that the I/O processor (IOP) simply handles the I/O devices and the game
console, it includes a 34 MHz MIPS processor that also acts as the emulation com-
puter to run games for earlier Sony PlayStations. It also connects to a standard PC
audio card to provide the sound for the games.
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Thus, one challenge for thememory system of this embedded application is to act
as source or destination for the extensive number of I/O devices. The PS2 designers
met this challenge with two PC800 (400 MHz)DRDRAMchips using two channels,
offering 32 MB of storage and a peak memory bandwidth of 3.2 GB/sec.

What’s left in the figure are basically two big chips: the Graphics Synthesizer
and the Emotion Engine.
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Figure E.11 Block diagram of the Sony PlayStation 2. The 10 DMA channels orchestrate the transfers between all
the small memories on the chip, which when completed all head toward the Graphics Interface so as to be rendered
by the Graphics Synthesizer. The Graphics Synthesizer uses DRAM on chip to provide an entire frame buffer plus
graphics processors to perform the rendering desired based on the display commands given from the Emotion
Engine. The embedded DRAM allows 1024-bit transfers between the pixel processors and the display buffer. The
Superscalar CPU is a 64-bit MIPS III with two-instruction issue, and comes with a two-way, set associative, 16 KB
instruction cache; a two-way, set associative, 8 KB data cache; and 16 KB of scratchpadmemory. It has been extended
with 128-bit SIMD instructions for multimedia applications (see Section E.2). Vector Unit 0 is primarily a DSP-like
coprocessor for the CPU (see Section E.2), which can operate on 128-bit registers in SIMD manner between 8 bits
and 32 bits per word. It has 4 KB of instruction memory and 4 KB of data memory. Vector Unit 1 has similar functions
to VPU0, but it normally operates independently of the CPU and contains 16 KB of instruction memory and 16 KB of
data memory. All three units can communicate over the 128-bit system bus, but there is also a 128-bit dedicated path
between the CPU and VPU0 and a 128-bit dedicated path between VPU1 and the Graphics Interface. Although VPU0
and VPU1 have identical microarchitectures, the differences in memory size and units to which they have direct con-
nections affect the roles that they take in a game. At 0.25-micron line widths, the Emotion Engine chip uses 13.5M
transistors and is 225 mm2, and the Graphics Synthesizer is 279 mm2. To put this in perspective, the Alpha 21264
microprocessor in 0.25-micron technology is about 160 mm2 and uses 15M transistors. (This figure is based on
Figure 1 in “Sony’s Emotionally Charged Chip,” Microprocessor Report 13:5.)
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The Graphics Synthesizer takes rendering commands from the Emotion Engine
in what are commonly called display lists. These are lists of 32-bit commands that
tell the renderer what shape to use and where to place them, plus what colors and
textures to fill them.

This chip also has the highest bandwidth portion of the memory system. By
using embedded DRAM on the Graphics Synthesizer, the chip contains the full
video buffer and has a 2048-bit-wide interface so that pixel filling is not a bottle-
neck. This embedded DRAM greatly reduces the bandwidth demands on the
DRDRAM. It illustrates a common technique found in embedded applications:
separate memories dedicated to individual functions to inexpensively achieve
greater memory bandwidth for the entire system.

The remaining large chip is the Emotion Engine, and its job is to accept inputs
from the IOP and create the display lists of a video game to enable 3D video trans-
formations in real time. A major insight shaped the design of the Emotion Engine:
Generally, in a racing car game there are foreground objects that are constantly
changing and background objects that change less in reaction to the events,
although the background can be most of the screen. This observation led to a split
of responsibilities.

The CPU works with VPU0 as a tightly coupled coprocessor, in that every
VPU0 instruction is a standard MIPS coprocessor instruction, and the addresses
are generated by the MIPS CPU. VPU0 is called a vector processor, but it is similar
to 128-bit SIMD extensions for multimedia found in several desktop processors
(see Section E.2).

VPU1, in contrast, fetches its own instructions and data and acts in parallel with
CPU/VPU0, acting more like a traditional vector unit. With this split, the more
flexible CPU/VPU0 handles the foreground action and the VPU1 handles the back-
ground. Both deposit their resulting display lists into the Graphics Interface to send
the lists to the Graphics Synthesizer.

Thus, the programmers of the Emotion Engine have three processor sets to
choose from to implement their programs: the traditional 64-bit MIPS architecture
including a floating-point unit, the MIPS architecture extended with multimedia
instructions (VPU0), and an independent vector processor (VPU1). To accelerate
MPEG decoding, there is another coprocessor (Image Processing Unit) that can act
independent of the other two.

With this split of function, the question then is how to connect the units
together, how to make the data flow between units, and how to provide the
memory bandwidth needed by all these units. As mentioned earlier, the Emo-
tion Engine designers chose many dedicated memories. The CPU has a 16 KB
scratch pad memory (SPRAM) in addition to a 16 KB instruction cache and an
8 KB data cache. VPU0 has a 4 KB instruction memory and a 4 KB data
memory, and VPU1 has a 16 KB instruction memory and a 16 KB data mem-
ory. Note that these are four memories, not caches of a larger memory else-
where. In each memory the latency is just 1 clock cycle. VPU1 has more
memory than VPU0 because it creates the bulk of the display lists and because
it largely acts independently.
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The programmer organizes all memories as two double buffers, one pair for the
incoming DMA data and one pair for the outgoing DMA data. The programmer
then uses the various processors to transform the data from the input buffer to
the output buffer. To keep the data flowing among the units, the programmer next
sets up the 10 DMA channels, taking care to meet the real-time deadline for real-
istic animation of 15 frames per second.

Figure E.12 shows that this organization supports two main operating modes:
serial, where CPU/VPU0 acts as a preprocessor on what to give VPU1 for it to
create for the Graphics Interface using the scratchpad memory as the buffer,
and parallel, where both the CPU/VPU0 and VPU1 create display lists. The display
lists and the Graphics Synthesizer have multiple context identifiers to distinguish
the parallel display lists to produce a coherent final image.

All units in the Emotion Engine are linked by a common 150 MHz, 128-bit-
wide bus. To offer greater bandwidth, there are also two dedicated buses: a
128-bit path between the CPU and VPU0 and a 128-bit path between VPU1
and the Graphics Interface. The programmer also chooses which bus to use when
setting up the DMA channels.

Looking at the big picture, if a server-oriented designer had been given the
problem, we might see a single common bus with many local caches and cache-
coherent mechanisms to keep data consistent. In contrast, the PlayStation 2 fol-
lowed the tradition of embedded designers and has at least nine distinct
memory modules. To keep the data flowing in real time from memory to the dis-
play, the PS2 uses dedicated memories, dedicated buses, and DMA channels.
Coherency is the responsibility of the programmer, and, given the continuous flow
from main memory to the graphics interface and the real-time requirements,
programmer-controlled coherency works well for this application.

VPU0
SPRAM

Parallel connection

VPU1

Rendering
engine

Main
memory

CPU

VPU0
SPRAM
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Rendering
engine

CPU
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Figure E.12 Two modes of using Emotion Engine organization. The first mode
divides the work between the two units and then allows the Graphics Interface to prop-
erly merge the display lists. The second mode uses CPU/VPU0 as a filter of what to send
to VPU1, which then does all the display lists. It is up to the programmer to choose
between serial and parallel data flow. SPRAM is the scratchpad memory.
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E.6 Case Study: Sanyo VPC-SX500 Digital Camera

Another very familiar embedded system is a digital camera. Here we consider the
Sanyo VPC-SX500. When powered on, the microprocessor of the camera first
runs diagnostics on all components and writes any error messages to the liquid
crystal display (LCD) on the back of the camera. This camera uses a 1.8-inch
low-temperature polysilicon thin-film transistor (TFT) color LCD. When a pho-
tographer takes a picture, he first holds the shutter halfway so that the micropro-
cessor can take a light reading. The microprocessor then keeps the shutter open to
get the necessary light, which is captured by a charge-coupled device (CCD) as
red, green, and blue pixels. The CCD is a 1/2-inch, 1360 � 1024-pixel,
progressive-scan chip. The pixels are scanned out row by row; passed through
routines for white balance, color, and aliasing correction; and then stored in a
4 MB frame buffer. The next step is to compress the image into a standard format,
such as JPEG, and store it in the removable Flash memory. The photographer
picks the compression, in this camera called either fine or normal, with a com-
pression ratio of 10 to 20 times. A 512 MB Flash memory can store at least 1200
fine-quality compressed images or approximately 2000 normal-quality com-
pressed images. The microprocessor then updates the LCD display to show that
there is room for one less picture.

Although the previous paragraph covers the basics of a digital camera, there
are many more features that are included: showing the recorded images on the
color LCD display, sleep mode to save battery life, monitoring battery energy,
buffering to allow recording a rapid sequence of uncompressed images, and,
in this camera, video recording using MPEG format and audio recording using
WAV format.

The electronic brain of this camera is an embedded computer with several
special functions embedded on the chip [Okada et al. 1999]. Figure E.13 shows
the block diagram of a chip similar to the one in the camera. As mentioned in
Section E.1, such chips have been called systems on a chip (SOCs) because
they essentially integrate into a single chip all the parts that were found on
a small printed circuit board of the past. A SOC generally reduces size and
lowers power compared to less integrated solutions. Sanyo claims their SOC
enables the camera to operate on half the number of batteries and to offer a
smaller form factor than competitors’ cameras. For higher performance, it
has two buses. The 16-bit bus is for the many slower I/O devices: SmartMedia
interface, program and data memory, and DMA. The 32-bit bus is for the
SDRAM, the signal processor (which is connected to the CCD), the Motion
JPEG encoder, and the NTSC/PAL encoder (which is connected to the
LCD). Unlike desktop microprocessors, note the large variety of I/O buses that
this chip must integrate. The 32-bit RISC MPU is a proprietary design and runs
at 28.8 MHz, the same clock rate as the buses. This 700 mW chip contains
1.8M transistors in a 10.5 � 10.5 mm die implemented using a 0.35-micron
process.
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E.7 Case Study: Inside a Cell Phone

Although gaming consoles and digital cameras are familiar embedded systems,
today the most familiar embedded system is the cell phone. In 1999, there were
76 million cellular subscribers in the United States, a 25% growth rate from the
year before. That growth rate is almost 35% per year worldwide, as developing
countries find it much cheaper to install cellular towers than copper-wire-based
infrastructure. Thus, in many countries, the number of cell phones in use exceeds
the number of wired phones in use.

Not surprisingly, the cellular handset market is growing at 35% per year, with
about 280 million cellular phone handsets sold worldwide in 1999. To put that in
perspective, in the same year sales of personal computers were 120 million. These
numbers mean that tremendous engineering resources are available to improve cell
phones, and cell phones are probably leaders in engineering innovation per cubic
inch [Grice and Kanellos 2000].

Before unveiling the anatomy of a cell phone, let’s try a short introduction to
wireless technology.
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Figure E.13 The system on a chip (SOC) found in Sanyo digital cameras. This block diagram, found in Okada et al.
[1999], is for the predecessor of the SOC in the camera described in the text. The successor SOC, called Super Advanced
IC, uses three buses instead of two, operates at 60 MHz, consumes 800 mW, and fits 3.1M transistors in a 10.2 �
10.2 mm die using a 0.35-micron process. Note that this embedded system has twice as many transistors as the
state-of-the-art, high-performance microprocessor in 1990! The SOC in the figure is limited to processing 1024 �
768 pixels, but its successor supports 1360 � 1024 pixels.
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Background on Wireless Networks

Networks can be created out of thin air as well as out of copper and glass, creating
wireless networks. Much of this section is based on a report from the National
Research Council [1997].

A radio wave is an electromagnetic wave propagated by an antenna. Radio
waves are modulated, which means that the sound signal is superimposed on
the stronger radio wave that carries the sound signal, and hence is called the carrier
signal.Radio waves have a particular wavelength or frequency: They are measured
either as the length of the complete wave or as the number of waves per second.
Long waves have low frequencies, and short waves have high frequencies. FM
radio stations transmit on the band of 88 MHz to 108 MHz using frequency mod-
ulations (FM) to record the sound signal.

By tuning in to different frequencies, a radio receiver can pick up a specific
signal. In addition to AM and FM radio, other frequencies are reserved for citizens
band radio, television, pagers, air traffic control radar, Global Positioning System,
and so on. In the United States, the Federal Communications Commission decides
who gets to use which frequencies and for what purpose.

The bit error rate (BER) of a wireless link is determined by the received signal
power, noise due to interference caused by the receiver hardware, interference from
other sources, and characteristics of the channel. Noise is typically proportional to
the radio frequency bandwidth, and a key measure is the signal-to-noise ratio
(SNR) required to achieve a given BER. Figure E.14 lists more challenges for wire-
less communication.

Typically, wireless communication is selected because the communicating
devices are mobile or because wiring is inconvenient, which means the wireless
network must rearrange itself dynamically. Such rearrangement makes routing

Challenge Description Impact

Path loss Received power divided by transmitted power;
the radio must overcome signal-to-noise ratio
(SNR) of noise from interference. Path loss is
exponential in distance and depends on
interference if it is above 100 meters.

1 W transmit power, 1 GHz transmit frequency,
1 Mbit/sec data rate at 10�7 BER, distance
between radios can be 728 meters in free space
vs. 4 meters in a dense jungle.

Shadow fading Received signal blocked by objects, buildings
outdoors, or walls indoors; increase power to
improve received SNR. It depends on the number
of objects and their dielectric properties.

If transmitter is moving, need to change transmit
power to ensure received SNR in region.

Multipath fading Interference between multiple versions of signal
that arrive at different times, determined by time
between fastest signal and slowest signal relative
to signal bandwidth.

900 MHz transmit frequency signal power
changes every 30 cm.

Interference Frequency reuse, adjacent channel, narrow band
interference.

Requires filters, spread spectrum.

Figure E.14 Challenges for wireless communication.
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more challenging. A second challenge is that wireless signals are not protected and
hence are subject to mutual interference, especially as devices move. Power is
another challenge for wireless communication, both because the devices tend to
be battery powered and because antennas radiate power to communicate and little
of it reaches the receiver. As a result, raw bit error rates are typically a thousand to a
million times higher than copper wire.

There are two primary architectures for wireless networks: base station archi-
tectures and peer-to-peer architectures. Base stations are connected by landlines
for longer-distance communication, and the mobile units communicate only with
a single local base station. Peer-to-peer architectures allow mobile units to commu-
nicate with each other, and messages hop from one unit to the next until delivered
to the desired unit. Although peer-to-peer is more reconfigurable, base stations
tend to be more reliable since there is only one hop between the device and the
station. Cellular telephony, the most popular example of wireless networks, relies
on radio with base stations.

Cellular systems exploit exponential path loss to reuse the same frequency at
spatially separated locations, thereby greatly increasing the number of customers
served. Cellular systems will divide a city into nonoverlapping hexagonal cells that
use different frequencies if nearby, reusing a frequency only when cells are far
enough apart so that mutual interference is acceptable.

At the intersection of three hexagonal cells is a base station with transmitters
and antennas that is connected to a switching office that coordinates handoffs when
a mobile device leaves one cell and goes into another, as well as accepts and places
calls over landlines. Depending on topography, population, and so on, the radius of
a typical cell is 2 to 10 miles.

The Cell Phone

Figure E.15 shows the components of a radio, which is the heart of a cell phone.
Radio signals are first received by the antenna, amplified, passed through a mixer,
then filtered, demodulated, and finally decoded. The antenna acts as the interface
between the medium through which radio waves travel and the electronics of the
transmitter or receiver. Antennas can be designed to work best in particular direc-
tions, giving both transmission and reception directional properties. Modulation
encodes information in the amplitude, phase, or frequency of the signal to increase
its robustness under impaired conditions. Radio transmitters go through the same
steps, just in the opposite order.

Originally, all components were analog, but over time most were replaced by
digital components, requiring the radio signal to be converted from analog to dig-
ital. The desire for flexibility in the number of radio bands led to software routines
replacing some of these functions in programmable chips, such as digital signal
processors. Because such processors are typically found in mobile devices, empha-
sis is placed on performance per joule to extend battery life, performance per
square millimeter of silicon to reduce size and cost, and bytes per task to reduce
memory size.
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Figure E.16 shows the generic block diagram of the electronics of a cell phone
handset, with the DSP performing the signal processing and the microcontroller
handling the rest of the tasks. Cell phone handsets are basically mobile computers
acting as a radio. They include standard I/O devices—keyboard and LCD dis-
play—plus a microphone, speaker, and antenna for wireless networking. Battery
efficiency affects sales, both for standby power when waiting for a call and for
minutes of speaking.

When a cell phone is turned on, the first task is to find a cell. It scans the full
bandwidth to find the strongest signal, which it keeps doing every seven seconds
or if the signal strength drops, since it is designed to work from moving vehicles.
It then picks an unused radio channel. The local switching office registers the cell
phone and records its phone number and electronic serial number, and assigns it
a voice channel for the phone conversation. To be sure the cell phone got the right
channel, the base station sends a special tone on it, which the cell phone sends back to
acknowledge it. The cell phone times out after 5 seconds if it doesn’t hear the super-
visory tone, and it starts the process all over again. The original base station makes a
handoff request to the incoming base station as the signal strength drops offs.

RF amp Filter
Antenna

Demodulator DecoderMixer

Figure E.15 A radio receiver consists of an antenna, radio frequency amplifier, mixer,
filters, demodulator, and decoder. Amixer accepts two signal inputs and forms an out-
put signal at the sum and difference frequencies. Filters select a narrower band of fre-
quencies to pass on to the next stage. Modulation encodes information to make it more
robust. Decoding turns signals into information. Depending on the application, all elec-
trical components can be either analog or digital. For example, a car radio is all analog
components, but a PC modem is all digital except for the amplifier. Today analog silicon
chips are used for the RF amplifier and first mixer in cellular phones.

Speaker

Microphone

DSP

Micro-
controller

Antenna
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RF transmitter (Tx)

Display

Keyboard

Figure E.16 Block diagram of a cell phone. The DSP performs the signal processing
steps of Figure E.15, and themicrocontroller controls the user interface, battery manage-
ment, and call setup. (Based on Figure 1.3 of Groe and Larson [2000].)
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To achieve a two-way conversation over radio, frequency bands are set aside
for each direction, forming a frequency pair or channel. The original cellular base
stations transmitted at 869.04 to 893.97 MHz (called the forward path), and cell
phones transmitted at 824.04 to 848.97 MHz (called the reverse path), with the
frequency gap to keep them from interfering with each other. Cells might have
had between 4 and 80 channels. Channels were divided into setup channels for call
setup and voice channels to handle the data or voice traffic.

The communication is done digitally, just like a modem, at 9600 bits/sec. Since
wireless is a lossy medium, especially from a moving vehicle, the handset sends
each message five times. To preserve battery life, the original cell phones typically
transmit at two signal strengths—0.6 W and 3.0 W—depending on the distance to
the cell. This relatively low power not only allows smaller batteries and thus smal-
ler cell phones, but it also aids frequency reuse, which is the key to cellular
telephony.

Figure E.17 shows a circuit board from a Nokia digital phone, with the com-
ponents identified. Note that the board contains two processors. A Z-80 microcon-
troller is responsible for controlling the functions of the board, I/O with the
keyboard and display, and coordinating with the base station. The DSP handles
all signal compression and decompression. In addition there are dedicated chips
for analog-to-digital and digital-to-analog conversion, amplifiers, power manage-
ment, and RF interfaces.

In 2001, a cell phone had about 10 integrated circuits, including parts made in
exotic technologies like gallium arsinide and silicon germanium as well as standard
CMOS. The economics and desire for flexibility have shrunk this to just a few
chips. However, these SOCs still contain a separate microcontroller and DSP, with
code implementing many of the functions just described.

RF and
power

Audio D/A
and A/D

Battery

Memory

Microprocessor
and control logic

Figure E.17 Circuit board from a Nokia cell phone. (Courtesy HowStuffWorks, Inc.)
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Cell Phone Standards and Evolution

Improved communication speeds for cell phones were developed with multiple
standards. Code division multiple access (CDMA), as one popular example, uses
a wider radio frequency band for a path than the original cell phones, called
advanced mobile phone service (AMPS), a mostly analog system. The wider fre-
quency makes it more difficult to block and is called spread spectrum. Other stan-
dards are time division multiple access (TDMA) and global system for mobile
communication (GSM). These second-generation standards—CDMA, GSM,
and TDMA—are mostly digital.

The big difference for CDMA is that all callers share the same channel, which
operates at a much higher rate, and it then distinguishes the different calls by
encoding each one uniquely. Each CDMA phone call starts at 9600 bits/sec; it
is then encoded and transmitted as equal-sized messages at 1.25 Mbits/sec. Rather
than send each signal five times as in AMPS, each bit is stretched so that it takes 11
times the minimum frequency, thereby accommodating interference and yet suc-
cessful transmission. The base station receives the messages, and it separates them
into the separate 9600 bit/sec streams for each call.

To enhance privacy, CDMA uses pseudorandom sequences from a set of 64
predefined codes. To synchronize the handset and base station so as to pick a com-
mon pseudorandom seed, CDMA relies on a clock from the Global Positioning
System, which continuously transmits an accurate time signal. By carefully select-
ing the codes, the shared traffic sounds like random noise to the listener. Hence, as
more users share a channel there is more noise, and the signal-to-noise ratio grad-
ually degrades. Thus, the capacity of the CDMA system is a matter of taste,
depending upon the sensitivity of the listener to background noise.

In addition, CDMA uses speech compression and varies the rate of data trans-
ferred depending upon how much activity is going on in the call. Both these tech-
niques preserve bandwidth, which allows for more calls per cell. CDMA must
regulate power carefully so that signals near the cell tower do not overwhelm those
from far away, with the goal of all signals reaching the tower at about the same
level. The side benefit is that CDMA handsets emit less power, which both helps
battery life and increases capacity when users are close to the tower.

Thus, compared to AMPS, CDMA improves the capacity of a system by up to
an order of magnitude, has better call quality, has better battery life, and enhances
users’ privacy. After considerable commercial turmoil, there is a new third-
generation standard called International Mobile Telephony 2000 (IMT-2000),
based primarily on two competing versions of CDMA and one TDMA. This stan-
dard may lead to cell phones that work anywhere in the world.

E.8 Concluding Remarks

Embedded systems are a very broad category of computing devices. This appendix
has shown just some aspects of this. For example, the TI 320C55 DSP is a rela-
tively “RISC-like” processor designed for embedded applications, with very
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fine-tuned capabilities. On the other end of the spectrum, the TI 320C64x is a very
high-performance, eight-issue VLIW processor for very demanding tasks. Some
processors must operate on battery power alone; others have the luxury of being
plugged into line current. Unifying all of these is a need to perform some level of
signal processing for embedded applications. Media extensions attempt to merge
DSPs with some more general-purpose processing abilities to make these proces-
sors usable for signal processing applications. We examined several case studies,
including the Sony PlayStation 2, digital cameras, and cell phones. The PS2 per-
forms detailed three-dimensional graphics, whereas a cell phone encodes and
decodes signals according to elaborate communication standards. But both have
system architectures that are very different from general-purpose desktop or server
platforms. In general, architectural decisions that seem practical for general-
purpose applications, such as multiple levels of caching or out-of-order superscalar
execution, are much less desirable in embedded applications. This is due to chip
area, cost, power, and real-time constraints. The programming model that these
systems present places more demands on both the programmer and the compiler
for extracting parallelism.
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“The Medium is the Message” because it is the medium that shapes
and controls the search and form of human associations and actions.

Marshall McLuhan
Understanding Media (1964)

The marvels—of film, radio, and television—are marvels of one-
way communication, which is not communication at all.

Milton Mayer
On the Remote Possibility of

Communication (1967)
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Interconnection Networks for Parallel

and Distributed Processing (1984)

Indeed, as system complexity and integration continues to
increase, many designers are finding it more efficient to route
packets, not wires.

Bill Dally
Principles and Practices of

Interconnection Networks (2004)



F.1 Introduction

Previous chapters and appendices cover the components of a single computer but
give little consideration to the interconnection of those components and how mul-
tiple computer systems are interconnected. These aspects of computer architecture
have gained significant importance in recent years. In this appendix we see how to
connect individual devices together into a community of communicating devices,
where the term device is generically used to signify anything from a component or
set of components within a computer to a single computer to a system of com-
puters. Figure F.1 shows the various elements comprising this community: end
nodes consisting of devices and their associated hardware and software interfaces,
links from end nodes to the interconnection network, and the interconnection net-
work. Interconnection networks are also called networks, communication subnets,
or communication subsystems. The interconnection of multiple networks is called
internetworking. This relies on communication standards to convert information
from one kind of network to another, such as with the Internet.

There are several reasons why computer architects should devote attention to
interconnection networks. In addition to providing external connectivity, networks
are commonly used to interconnect the components within a single computer at
many levels, including the processor microarchitecture. Networks have long been
used in mainframes, but today such designs can be found in personal computers as
well, given the high demand on communication bandwidth needed to enable
increased computing power and storage capacity. Switched networks are replacing
buses as the normal means of communication between computers, between I/O
devices, between boards, between chips, and even between modules inside chips.
Computer architects must understand interconnect problems and solutions in order
to more effectively design and evaluate computer systems.

Interconnection networks cover a wide range of application domains, very
much like memory hierarchy covers a wide range of speeds and sizes. Networks
implemented within processor chips and systems tend to share characteristics
much in common with processors and memory, relying more on high-speed hard-
ware solutions and less on a flexible software stack. Networks implemented across
systems tend to share much in common with storage and I/O, relying more on the
operating system and software protocols than high-speed hardware—though we
are seeing a convergence these days. Across the domains, performance includes
latency and effective bandwidth, and queuing theory is a valuable analytical tool
in evaluating performance, along with simulation techniques.

This topic is vast—portions of Figure F.1 are the subject of entire books and
college courses. The goal of this appendix is to provide for the computer architect
an overview of network problems and solutions. This appendix gives introductory
explanations of key concepts and ideas, presents architectural implications of inter-
connection network technology and techniques, and provides useful references to
more detailed descriptions. It also gives a common framework for evaluating all
types of interconnection networks, using a single set of terms to describe the basic
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alternatives. As we will see, many types of networks have common preferred alter-
natives, but for others the best solutions are quite different. These differences
become very apparent when crossing between the networking domains.

Interconnection Network Domains

Interconnection networks are designed for use at different levels within and across
computer systems to meet the operational demands of various application areas—
high-performance computing, storage I/O, cluster/workgroup/enterprise systems,
internetworking, and so on. Depending on the number of devices to be connected
and their proximity, we can group interconnection networks into four major net-
working domains:

■ On-chip networks (OCNs)—Also referred to as network-on-chip (NoC), this
type of network is used for interconnecting microarchitecture functional units,
register files, caches, compute tiles, and processor and IP cores within chips or
multichip modules. Current and near future OCNs support the connection of a
few tens to a few hundred of such devices with a maximum interconnection
distance on the order of centimeters. Most OCNs used in high-performance
chips are custom designed to mitigate chip-crossing wire delay problems
caused by increased technology scaling and transistor integration, though some
proprietary designs are gaining wider use (e.g., IBM’s CoreConnect, ARM’s
AMBA, and Sonic’s Smart Interconnect). Examples of current OCNs are those
found in the Intel Teraflops processor chip [Hoskote07], connecting 80 simple
cores; the Intel Single-Chip Cloud Computer (SCCC) [Howard10], connecting
48 IA-32 architecture cores; and Tilera’s TILE-Gx line of processors [TILE-
GX], connecting 100 processing cores in 4Q 2011 using TSMC’s 40 nanome-
ter process and 200 cores planned for 2013 (code named “Stratton”) using
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Figure F.1 A conceptual illustration of an interconnected community of devices.
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TSMC’s 28 nanometer process. The networks peak at 256 GBps for both Intel
prototypes and up to 200 Tbps for the TILE-Gx100 processor. More detailed
information for OCNs is provided in Flich [2010].

■ System/storage area networks (SANs)—This type of network is used for inter-
processor and processor-memory interconnections within multiprocessor and
multicomputer systems, and also for the connection of storage and I/O compo-
nents within server and data center environments. Typically, several hundreds
of such devices can be connected, although some supercomputer SANs support
the interconnection of many thousands of devices, like the IBM Blue Gene/L
supercomputer. The maximum interconnection distance covers a relatively
small area—on the order of a few tens of meters usually—but some SANs have
distances spanning a few hundred meters. For example, InfiniBand, a popular
SAN standard introduced in late 2000, supports system and storage I/O inter-
connects at up to 120 Gbps over a distance of 300 m.

■ Local area networks (LANs)—This type of network is used for intercon-
necting autonomous computer systems distributed across a machine room
or throughout a building or campus environment. Interconnecting PCs in
a cluster is a prime example. Originally, LANs connected only up to a hun-
dred devices, but with bridging LANs can now connect up to a few thou-
sand devices. The maximum interconnect distance covers an area of a few
kilometers usually, but some have distance spans of a few tens of kilome-
ters. For instance, the most popular and enduring LAN, Ethernet, has a 10
Gbps standard version that supports maximum performance over a distance
of 40 km.

■ Wide area networks (WANs)—Also called long-haul networks, WANs con-
nect computer systems distributed across the globe, which requires internet-
working support. WANs connect many millions of computers over distance
scales of many thousands of kilometers. Asynchronous Transfer Mode
(ATM) is an example of a WAN.

Figure F.2 roughly shows the relationship of these networking domains in
terms of the number of devices interconnected and their distance scales. Overlap
exists for some of these networks in one or both dimensions, which leads to
product competition. Some network solutions have become commercial stan-
dards while others remain proprietary. Although the preferred solutions may sig-
nificantly differ from one interconnection network domain to another depending
on the design requirements, the problems and concepts used to address network
problems remain remarkably similar across the domains. No matter the target
domain, networks should be designed so as not to be the bottleneck to system
performance and cost efficiency. Hence, the ultimate goal of computer architects
is to design interconnection networks of the lowest possible cost that are capable
of transferring the maximum amount of available information in the shortest
possible time.
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Approach and Organization of This Appendix

Interconnection networks can be well understood by taking a top-down approach
to unveiling the concepts and complexities involved in designing them. We do this
by viewing the network initially as an opaque “black box” that simply and ideally
performs certain necessary functions. Then we systematically open various layers
of the black box, allowing more complex concepts and nonideal network behavior
to be revealed. We begin this discussion by first considering the interconnection of
just two devices in Section F.2, where the black box network can be viewed as a
simple dedicated link network—that is, wires or collections of wires running bidi-
rectionally between the devices.We then consider the interconnection of more than
two devices in Section F.3, where the black box network can be viewed as a shared
link network or as a switched point-to-point network connecting the devices. We
continue to peel away various other layers of the black box by considering in more
detail the network topology (Section F.4); routing, arbitration, and switching
(Section F.5); and switch microarchitecture (Section F.6). Practical issues for com-
mercial networks are considered in Section F.7, followed by examples illustrating
the trade-offs for each type of network in Section F.8. Internetworking is briefly
discussed in Section F.9, and additional crosscutting issues for interconnection net-
works are presented in Section F.10. Section F.11 gives some common fallacies
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Figure F.2 Relationship of the four interconnection network domains in terms of
number of devices connected and their distance scales: on-chip network (OCN), sys-
tem/storage area network (SAN), local area network (LAN), and wide area
network (WAN). Note that there are overlapping ranges where some of these networks
compete. Some supercomputer systems use proprietary custom networks to intercon-
nect several thousands of computers, while other systems, such as multicomputer clus-
ters, use standard commercial networks.
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and pitfalls related to interconnection networks, and Section F.12 presents some
concluding remarks. Finally, we provide a brief historical perspective and some
suggested reading in Section F.13.

F.2 Interconnecting Two Devices

This section introduces the basic concepts required to understand how communi-
cation between just two networked devices takes place. This includes concepts that
deal with situations in which the receiver may not be ready to process incoming
data from the sender and situations in which transport errors may occur. To ease
understanding, the black box network at this point can be conceptualized as an
ideal network that behaves as simple dedicated links between the two devices.
Figure F.3 illustrates this, where unidirectional wires run from device A to device
B and vice versa, and each end node contains a buffer to hold the data. Regardless
of the network complexity, whether dedicated link or not, a connection exists from
each end node device to the network to inject and receive information to/from the
network. We first describe the basic functions that must be performed at the end
nodes to commence and complete communication, and then we discuss network
media and the basic functions that must be performed by the network to carry
out communication. Later, a simple performance model is given, along with sev-
eral examples to highlight implications of key network parameters.

Network Interface Functions: Composing and Processing
Messages

Suppose we want two networked devices to read a word from each other’s mem-
ory. The unit of information sent or received is called a message. To acquire the
desired data, the two devices must first compose and send a certain type of message
in the form of a request containing the address of the data within the other device.
The address (i.e., memory or operand location) allows the receiver to identify
where to find the information being requested. After processing the request, each
device then composes and sends another type of message, a reply, containing the
data. The address and data information is typically referred to as the message
payload.

B enihcaMA enihcaM

Figure F.3 A simple dedicated link network bidirectionally interconnecting two
devices.
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In addition to payload, every message contains some control bits needed by the
network to deliver the message and process it at the receiver. The most typical are
bits to distinguish between different types of messages (e.g., request, reply, request
acknowledge, reply acknowledge) and bits that allow the network to transport the
information properly to the destination. These additional control bits are encoded
in the header and/or trailer portions of the message, depending on their location
relative to the message payload. As an example, Figure F.4 shows the format of a
message for the simple dedicated link network shown in Figure F.3. This example
shows a single-word payload, but messages in some interconnection networks can
include several thousands of words.

Before message transport over the network occurs, messages have to be com-
posed. Likewise, upon receipt from the network, they must be processed. These
and other functions described below are the role of the network interface (also
referred to as the channel adapter) residing at the end nodes. Together with some
direct memory access (DMA) engine and link drivers to transmit/receive messages
to/from the network, some dedicated memory or register(s) may be used to buffer
outgoing and incoming messages. Depending on the network domain and design
specifications for the network, the network interface hardware may consist of noth-
ing more than the communicating device itself (i.e., for OCNs and some SANs) or
a separate card that integrates several embedded processors and DMA engines with
thousands of megabytes of RAM (i.e., for many SANs and most LANs
and WANs).

In addition to hardware, network interfaces can include software or firmware to
perform the needed operations. Even the simple example shown in Figure F.3 may
invoke messaging software to translate requests and replies into messages with the
appropriate headers. This way, user applications need not worry about composing
and processing messages as these tasks can be performed automatically at a lower
level. An application program usually cooperates with the operating or runtime

Destination port

Message ID

Data

Sequence number 

Type

00 = Request

01 = Reply

10 = Request acknowledge

11 = Reply acknowledge

Checksum

Header

Payload

Trailer

Figure F.4 An example packet format with header, payload, and checksum in the
trailer.
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system to send and receive messages. As the network is likely to be shared bymany
processes running on each device, the operating system cannot allow messages
intended for one process to be received by another. Thus, the messaging software
must include protection mechanisms that distinguish between processes. This dis-
tinction could be made by expanding the header with a port number that is known
by both the sender and intended receiver processes.

In addition to composing and processing messages, additional functions need
to be performed by the end nodes to establish communication among the commu-
nicating devices. Although hardware support can reduce the amount of work, some
can be done by software. For example, most networks specify a maximum amount
of information that can be transferred (i.e., maximum transfer unit) so that network
buffers can be dimensioned appropriately. Messages longer than the maximum
transfer unit are divided into smaller units, called packets (or datagrams), that
are transported over the network. Packets are reassembled into messages at the des-
tination end node before delivery to the application. Packets belonging to the same
message can be distinguished from others by including a message ID field in the
packet header. If packets arrive out of order at the destination, they are reordered
when reassembled into a message. Another field in the packet header containing a
sequence number is usually used for this purpose.

The sequence of steps the end node follows to commence and complete com-
munication over the network is called a communication protocol. It generally has
symmetric but reversed steps between sending and receiving information. Commu-
nication protocols are implemented by a combination of software and hardware to
accelerate execution. For instance, many network interface cards implement hard-
ware timers as well as hardware support to split messages into packets and reas-
semble them, compute the cyclic redundancy check (CRC) checksum, handle
virtual memory addresses, and so on.

Some network interfaces include extra hardware to offload protocol processing
from the host computer, such as TCP offload engines for LANs and WANs. But,
for interconnection networks such as SANs that have low latency requirements,
this may not be enough even when lighter-weight communication protocols are
used such as message passing interface (MPI). Communication performance
can be further improved by bypassing the operating system (OS). OS bypassing
can be implemented by directly allocating message buffers in the network interface
memory so that applications directly write into and read from those buffers. This
avoids extra memory-to-memory copies. The corresponding protocols are referred
to as zero-copy protocols or user-level communication protocols. Protection can
still be maintained by calling the OS to allocate those buffers at initialization
and preventing unauthorized memory accesses in hardware.

In general, some or all of the following are the steps needed to send a message
at end node devices over a network:

1. The application executes a system call, which copies data to be sent into an
operating system or network interface buffer, divides the message into packets
(if needed), and composes the header and trailer for packets.
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2. The checksum is calculated and included in the header or trailer of packets.

3. The timer is started, and the network interface hardware sends the packets.

Message reception is in the reverse order:

3. The network interface hardware receives the packets and puts them into its
buffer or the operating system buffer.

2. The checksum is calculated for each packet. If the checksum matches the
sender’s checksum, the receiver sends an acknowledgment back to the packet
sender. If not, it deletes the packet, assuming that the sender will resend the
packet when the associated timer expires.

1. Once all packets pass the test, the system reassembles the message, copies the
data to the user’s address space, and signals the corresponding application.

The sender must still react to packet acknowledgments:

■ When the sender gets an acknowledgment, it releases the copy of the corre-
sponding packet from the buffer.

■ If the sender reaches the time-out instead of receiving an acknowledgment, it
resends the packet and restarts the timer.

Just as a protocol is implemented at network end nodes to support communi-
cation, protocols are also used across the network structure at the physical, data
link, and network layers responsible primarily for packet transport, flow control,
error handling, and other functions described next.

Basic Network Structure and Functions: Media and Form Factor,
Packet Transport, Flow Control, and Error Handling

Once a packet is ready for transmission at its source, it is injected into the network
using some dedicated hardware at the network interface. The hardware includes
some transceiver circuits to drive the physical network media—either electrical
or optical. The type of media and form factor depends largely on the interconnect
distances over which certain signaling rates (e.g., transmission speed) should be
sustainable. For centimeter or less distances on a chip or multichip module, typi-
cally the middle to upper copper metal layers can be used for interconnects at multi-
Gbps signaling rates per line. A dozen or more layers of copper traces or tracks
imprinted on circuit boards, midplanes, and backplanes can be used for Gbps
differential-pair signaling rates at distances of about a meter or so. Category 5E
unshielded twisted-pair copper wiring allows 0.25 Gbps transmission speed over
distances of 100 meters. Coaxial copper cables can deliver 10Mbps over kilometer
distances. In these conductor lines, distance can usually be traded off for higher
transmission speed, up to a certain point. Optical media enable faster transmission
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speeds at distances of kilometers. Multimode fiber supports 100 Mbps transmis-
sion rates over a few kilometers, and more expensive single-mode fiber supports
Gbps transmission speeds over distances of several kilometers. Wavelength divi-
sion multiplexing allows several times more bandwidth to be achieved in fiber (i.e.,
by a factor of the number of wavelengths used).

The hardware used to drive network links may also include some encoders to
encode the signal in a format other than binary that is suitable for the given trans-
port distance. Encoding techniques can use multiple voltage levels, redundancy,
data and control rotation (e.g., 4b5b encoding), and/or a guaranteed minimum
number of signal transitions per unit time to allow for clock recovery at the
receiver. The signal is decoded at the receiver end, and the packet is stored in
the corresponding buffer. All of these operations are performed at the network
physical layer, the details of which are beyond the scope of this appendix. Fortu-
nately, we do not need to worry about them. From the perspective of the data link
and higher layers, the physical layer can be viewed as a long linear pipeline without
staging in which signals propagate as waves through the network transmission
medium. All of the above functions are generally referred to as packet transport.

Besides packet transport, the network hardware and software are jointly
responsible at the data link and network protocol layers for ensuring reliable
delivery of packets. These responsibilities include: (1) preventing the sender
from sending packets at a faster rate than they can be processed by the receiver,
and (2) ensuring that the packet is neither garbled nor lost in transit. The first
responsibility is met by either discarding packets at the receiver when its buffer
is full and later notifying the sender to retransmit them, or by notifying the sender
to stop sending packets when the buffer becomes full and to resume later once it has
room for more packets. The latter strategy is generally known as flow control.

There are several interesting techniques commonly used to implement flow
control beyond simple handshaking between the sender and receiver. The more
popular techniques are Xon/Xoff (also referred to as Stop & Go) and credit-based
flow control. Xon/Xoff consists of the receiver notifying the sender either to stop or
to resume sending packets once high and low buffer occupancy levels are reached,
respectively, with some hysteresis to reduce the number of notifications. Notifica-
tions are sent as “stop” and “go” signals using additional control wires or encoded
in control packets. Credit-based flow control typically uses a credit counter at the
sender that initially contains a number of credits equal to the number of buffers at
the receiver. Every time a packet is transmitted, the sender decrements the credit
counter. When the receiver consumes a packet from its buffer, it returns a credit to
the sender in the form of a control packet that notifies the sender to increment its
counter upon receipt of the credit. These techniques essentially control the flow of
packets into the network by throttling packet injection at the sender when the
receiver reaches a low watermark or when the sender runs out of credits.

Xon/Xoff usually generates much less control traffic than credit-based flow
control because notifications are only sent when the high or low buffer occupancy
levels are crossed. On the other hand, credit-based flow control requires less than
half the buffer size required by Xon/Xoff. Buffers for Xon/Xoff must be large
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enough to prevent overflow before the “stop” control signal reaches the sender.
Overflow cannot happen when using credit-based flow control because the sender
will run out of credits, thus stopping transmission. For both schemes, full link
bandwidth utilization is possible only if buffers are large enough for the distance
over which communication takes place.

Let’s compare the buffering requirements of the two flow control techniques in
a simple example covering the various interconnection network domains.

Example Suppose we have a dedicated-link network with a raw data bandwidth of 8 Gbps
for each link in each direction interconnecting two devices. Packets of 100 bytes
(including the header) are continuously transmitted from one device to the other to
fully utilize network bandwidth.What is the minimum amount of credits and buffer
space required by credit-based flow control assuming interconnect distances of
1 cm, 1 m, 100 m, and 10 km if only link propagation delay is taken into account?
How does the minimum buffer space compare against Xon/Xoff?

Answer At the start, the receiver buffer is initially empty and the sender contains a number
of credits equal to buffer capacity. The sender will consume a credit every time a
packet is transmitted. For the sender to continue transmitting packets at network
speed, the first returned credit must reach the sender before the sender runs out
of credits. After receiving the first credit, the sender will keep receiving credits
at the same rate it transmits packets. As we are considering only propagation delay
over the link and no other sources of delay or overhead, null processing time at the
sender and receiver are assumed. The time required for the first credit to reach the
sender since it started transmission of the first packet is equal to the round-trip
propagation delay for the packet transmitted to the receiver and the return credit
transmitted back to the sender. This time must be less than or equal to the packet
transmission time multiplied by the initial credit count:

Packet propagation delay +Credit propagation delay� Packet size
Bandwidth

�Credit count

The speed of light is about 300,000 km/sec. Assume we can achieve 66% of that in
a conductor. Thus, the minimum number of credits for each distance is given by

Distance
2=3�300,000 km=sec

� �
�2� 100 bytes

8 Gbits=sec
�Credit count

As each credit represents one packet-sized buffer entry, the minimum amount of
credits (and, likewise, buffer space) needed by each device is one for the 1 cm and
1 m distances, 10 for the 100 m distance, and 1000 packets for the 10 km distance.
For Xon/Xoff, this minimum buffer size corresponds to the buffer fragment from
the high occupancy level to the top of the buffer and from the low occupancy level
to the bottom of the buffer. With the added hysteresis between both occupancy
levels to reduce notifications, the minimum buffer space for Xon/Xoff turns out
to be more than twice that for credit-based flow control.
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Networks that implement flow control do not need to drop packets and are
sometimes referred to as lossless networks; networks that drop packets are some-
times referred to as lossy networks. This single difference in the way packets are
handled by the network drastically constrains the kinds of solutions that can be
implemented to address other related network problems, including packet routing,
congestion, deadlock, and reliability, as we will see later in this appendix. This
difference also affects performance significantly as dropped packets need to be
retransmitted, thus consuming more link bandwidth and suffering extra delay.
These behavioral and performance differences ultimately restrict the interconnec-
tion network domains for which certain solutions are applicable. For instance, most
networks delivering packets over relatively short distances (e.g., OCNs and SANs)
tend to implement flow control; on the other hand, networks delivering packets
over relatively long distances (e.g., LANs and WANs) tend to be designed to drop
packets. For the shorter distances, the delay in propagating flow control informa-
tion back to the sender can be negligible, but not so for longer distance scales. The
kinds of applications that are usually run also influence the choice of lossless ver-
sus lossy networks. For instance, dropping packets sent by an Internet client like a
Web browser affects only the delay observed by the corresponding user. However,
dropping a packet sent by a process from a parallel application may lead to a sig-
nificant increase in the overall execution time of the application if that packet’s
delay is on the critical path.

The second responsibility of ensuring that packets are neither garbled nor lost
in transit can be met by implementing somemechanisms to detect and recover from
transport errors. Adding a checksum or some other error detection field to the
packet format, as shown in Figure F.4, allows the receiver to detect errors. This
redundant information is calculated when the packet is sent and checked upon
receipt. The receiver then sends an acknowledgment in the form of a control packet
if the packet passes the test. Note that this acknowledgment control packet may
simultaneously contain flow control information (e.g., a credit or stop signal), thus
reducing control packet overhead. As described earlier, the most common way to
recover from errors is to have a timer record the time each packet is sent and to
presume the packet is lost or erroneously transported if the timer expires before
an acknowledgment arrives. The packet is then resent.

The communication protocol across the network and network end nodes must
handle many more issues other than packet transport, flow control, and reliability.
For example, if two devices are from different manufacturers, they might order
bytes differently within a word (Big Endian versus Little Endian byte ordering).
The protocol must reverse the order of bytes in each word as part of the delivery
system. It must also guard against the possibility of duplicate packets if a delayed
packet were to become unstuck. Depending on the system requirements, the pro-
tocol may have to implement pipelining among operations to improve perfor-
mance. Finally, the protocol may need to handle network congestion to prevent
performance degradation when more than two devices are connected, as described
later in Section F.7.
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Characterizing Performance: Latency and Effective Bandwidth

Now that we have covered the basic steps for sending and receiving messages
between two devices, we can discuss performance. We start by discussing the
latency when transporting a single packet. Then we discuss the effective bandwidth
(also known as throughput) that can be achieved when the transmission of multiple
packets is pipelined over the network at the packet level.

Figure F.5 shows the basic components of latency for a single packet. Note that
some latency components will be broken down further in later sections as the inter-
nals of the “black box” network are revealed. The timing parameters in Figure F.5
apply to many interconnection network domains: inside a chip, between chips on a
board, between boards in a chassis, between chassis within a computer, between
computers in a cluster, between clusters, and so on. The values may change, but the
components of latency remain the same.

The following terms are often used loosely, leading to confusion, so we define
them here more precisely:

■ Bandwidth—Strictly speaking, the bandwidth of a transmission medium refers
to the range of frequencies for which the attenuation per unit length introduced
by that medium is below a certain threshold. It must be distinguished from the
transmission speed, which is the amount of information transmitted over a
medium per unit time. For example, modems successfully increased transmis-
sion speed in the late 1990s for a fixed bandwidth (i.e., the 3 KHz bandwidth
provided by voice channels over telephone lines) by encoding more voltage
levels and, hence, more bits per signal cycle. However, to be consistent with

Sender
overheadSender

Receiver

Transmission
time

(bytes/bandwidth)

Time of
flight

Transmission
time

(bytes/bandwidth)
Receiver
overhead

Transport latency

Total latency

Time

Figure F.5 Components of packet latency. Depending on whether it is an OCN, SAN,
LAN, or WAN, the relative amounts of sending and receiving overhead, time of flight,
and transmission time are usually quite different from those illustrated here.
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its more widely understood meaning, we use the term band-width to refer to the
maximum rate at which information can be transferred, where information
includes packet header, payload, and trailer. The units are traditionally bits
per second, although bytes per second is sometimes used. The term bandwidth
is also used to mean the measured speed of the medium (i.e., network links).
Aggregate bandwidth refers to the total data bandwidth supplied by the net-
work, and effective bandwidth or throughput is the fraction of aggregate band-
width delivered by the network to an application.

■ Time of flight—This is the time for the first bit of the packet to arrive at the
receiver, including the propagation delay over the links and delays due to other
hardware in the network such as link repeaters and network switches. The unit
of measure for time of flight can be in milliseconds for WANs, microseconds
for LANs, nanoseconds for SANs, and picoseconds for OCNs.

■ Transmission time—This is the time for the packet to pass through the network,
not including time of flight. One way to measure it is the difference in time
between when the first bit of the packet arrives at the receiver and when the
last bit of that packet arrives at the receiver. By definition, transmission time
is equal to the size of the packet divided by the data bandwidth of network
links. This measure assumes there are no other packets contending for that
bandwidth (i.e., a zero-load or no-load network).

■ Transport latency—This is the sum of time of flight and transmission time.
Transport latency is the time that the packet spends in the interconnection net-
work. Stated alternatively, it is the time between when the first bit of the packet
is injected into the network and when the last bit of that packet arrives at the
receiver. It does not include the overhead of preparing the packet at the sender
or processing it when it arrives at the receiver.

■ Sending overhead—This is the time for the end node to prepare the packet (as
opposed to the message) for injection into the network, including both hard-
ware and software components. Note that the end node is busy for the entire
time, hence the use of the term overhead. Once the end node is free, any sub-
sequent delays are considered part of the transport latency. We assume that
overhead consists of a constant term plus a variable term that depends on
packet size. The constant term includes memory allocation, packet header
preparation, setting up DMA devices, and so on. The variable term is mostly
due to copies from buffer to buffer and is usually negligible for very short
packets.

■ Receiving overhead—This is the time for the end node to process an incoming
packet, including both hardware and software components. We also assume
here that overhead consists of a constant term plus a variable term that depends
on packet size. In general, the receiving overhead is larger than the sending
overhead. For example, the receiver may pay the cost of an interrupt or may
have to reorder and reassemble packets into messages.
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The total latency of a packet can be expressed algebraically by the following:

Latency¼ Sending overhead +Time of flight +
Packet size
Bandwidth

+Receiving overhead

Let’s see how the various components of transport latency and the sending and
receiving overheads change in importance as we go across the interconnection
network domains: from OCNs to SANs to LANs to WANs.

Example Assume that we have a dedicated link network with a data bandwidth of 8 Gbps
for each link in each direction interconnecting two devices within an OCN, SAN,
LAN, or WAN, and we wish to transmit packets of 100 bytes (including the
header) between the devices. The end nodes have a per-packet sending overhead
of x+0.05 ns/byte and receiving overhead of 4/3(x)+0.05 ns/byte, where x is 0 μs
for the OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the WAN, which
are typical for these network types. Calculate the total latency to send packets from
one device to the other for interconnection distances of 0.5 cm, 5 m, 5000 m, and
5000 km assuming that time of flight consists only of link propagation delay
(i.e., no switching or other sources of delay).

Answer Using the above expression and the calculation for propagation delay through a
conductor given in the previous example, we can plug in the parameters for each
of the networks to find their total packet latency. For the OCN:

Latency¼Sending overhead +Time of flight +
Packet size
Bandwidth

+Receiving overhead

¼5 ns +
0:5 cm

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 5 ns

Converting all terms into nanoseconds (ns) leads to the following for
the OCN:

Total latency OCNð Þ¼5 ns +
0:5 cm

2=3�300,000 km=sec
+
100�8

8
ns + 5 ns

¼5 ns + 0:025 ns + 100 ns + 5 ns

¼110:025 ns

Substituting in the appropriate values for the SAN gives the following latency:

Total latency SANð Þ¼0:305 μs +
5 m

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 0:405 μs

¼0:305 μs + 0:025 μs + 0:1 μs + 0:405 μs

¼0:835 μs
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Substituting in the appropriate values for the LAN gives the following latency:

Total latency LANð Þ¼3:005 μs +
5 km

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 4:005 μs

¼3:005 μs + 25 μs + 0:1 μs + 4:005 μs

¼32:11 μs

Substituting in the appropriate values for the WAN gives the following latency:

Total latency WANð Þ¼30:005 μs +
5000 km

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 40:005 μs

¼30:005 μs + 25000 μs + 0:1 μs + 40:005 μs

¼25:07 ms

The increased fraction of the latency required by time of flight for the longer
distances along with the greater likelihood of errors over the longer distances are
among the reasonswhyWANsandLANsusemore sophisticatedand time-consuming
communication protocols, which increase sending and receiving overheads. The need
for standardization is another reason. Complexity also increases due to the require-
ments imposed on the protocol by the typical applications that run over the various
interconnectionnetworkdomains aswego fromtens tohundreds to thousands tomany
thousands of devices.Wewill consider this in later sectionswhenwe discuss connect-
ingmore than twodevices. The above example shows that the propagation delay com-
ponent of time of flight for WANs and some LANs is so long that other latency
components—including the sending and receiving overheads—can practically be
ignored. This is not so for SANs andOCNswhere the propagation delay pales in com-
parison to the overheadsand transmissiondelay.Remember that time-of-flight latency
due to switches and other hardware in the network besides sheer propagation delay
through the links is neglected in the above example. For noncongested networks,
switch latency generally is small compared to the overheads and propagation delay
through the links inWANs andLANs, but this is not necessarily so formultiprocessor
SANs and multicore OCNs, as we will see in later sections.

So far, we have considered the transport of a single packet and computed the
associated end-to-end total packet latency. In order to compute the effective band-
width for two networked devices, we have to consider a continuous stream of
packets transported between them. We must keep in mind that, in addition to min-
imizing packet latency, the goal of any network optimized for a given cost and
power consumption target is to transfer the maximum amount of available infor-
mation in the shortest possible time, as measured by the effective bandwidth deliv-
ered by the network. For applications that do not require a response before sending
the next packet, the sender can overlap the sending overhead of later packets with
the transport latency and receiver overhead of prior packets. This essentially pipe-
lines the transmission of packets over the network, also known as link pipelining.
Fortunately, as discussed in prior chapters of this book, there are many application
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areas where communication from either several applications or several threads
from the same application can run concurrently (e.g., a Web server concurrently
serving thousands of client requests or streaming media), thus allowing a device
to send a stream of packets without having to wait for an acknowledgment or a
reply. Also, as long messages are usually divided into packets of maximum size
before transport, a number of packets are injected into the network in succession
for such cases. If such overlap were not possible, packets would have to wait for
prior packets to be acknowledged before being transmitted and thus suffer signif-
icant performance degradation.

Packets transported in a pipelined fashion can be acknowledged quite straight-
forwardly simply by keeping a copy at the source of all unacknowledged packets
that have been sent and keeping track of the correspondence between returned
acknowledgments and packets stored in the buffer. Packets will be removed from
the buffer when the corresponding acknowledgment is received by the sender. This
can be done by including the message ID and packet sequence number associated
with the packet in the packet’s acknowledgment. Furthermore, a separate timer
must be associated with each buffered packet, allowing the packet to be resent
if the associated time-out expires.

Pipelining packet transport over the network has many similarities with pipe-
lining computation within a processor. However, among some differences are that
it does not require any staging latches. Information is simply propagated through
network links as a sequence of signal waves. Thus, the network can be considered
as a logical pipeline consisting of as many stages as are required so that the time of
flight does not affect the effective bandwidth that can be achieved. Transmission of
a packet can start immediately after the transmission of the previous one, thus over-
lapping the sending overhead of a packet with the transport and receiver latency of
previous packets. If the sending overhead is smaller than the transmission time,
packets follow each other back-to-back, and the effective bandwidth approaches
the raw link bandwidth when continuously transmitting packets. On the other hand,
if the sending overhead is greater than the transmission time, the effective band-
width at the injection point will remain well below the raw link bandwidth. The
resulting link injection bandwidth, BWLinkInjection, for each link injecting a contin-
uous stream of packets into a network is calculated with the following expression:

BWLinkInjection ¼ Packet size
max Sending overhead,Transmission timeð Þ

We must also consider what happens if the receiver is unable to consume packets
at the same rate they arrive. This occurs if the receiving overhead is greater than the
sending overhead and the receiver cannot process incoming packets fast enough.
In this case, the link reception bandwidth, BWLinkReception, for each reception link
of the network is less than the link injection bandwidth and is obtained with this
expression:

BWLinkReception ¼ Packet size
max Receiving overhead,Transmission timeð Þ

F.2 Interconnecting Two Devices ■ F-17



When communication takes place between two devices interconnected by ded-
icated links, all the packets sent by one device will be received by the other. If the
receiver cannot process packets fast enough, the receiver buffer will become full,
and flowcontrolwill throttle transmission at the sender.As this situation is produced
by causes external to the network, we will not consider it further here. Moreover, if
the receiving overhead is greater than the sending overhead, the receiver buffer will
fill up and flow controlwill, likewise, throttle transmission at the sender. In this case,
the effect of flow control is, on average, the same as if we replace sending overhead
with receiving overhead. Assuming an ideal network that behaves like two dedi-
cated links running in opposite directions at the full link bandwidth between the
two devices—which is consistent with our black box view of the network to this
point—the resulting effective bandwidth is the smaller of twice the injection band-
width (to account for the two injection links, one for each device) or twice the recep-
tion bandwidth. This results in the following expression for effective bandwidth:

Effective bandwidth¼ min 2�BWLinkInjection,2�BWLinkReception
� �¼ 2�Packet size

max Overhead,Transmission timeð Þ
where Overhead¼max(Sending overhead, Receiving overhead). Taking into
account the expression for the transmission time, it is obvious that the effective
bandwidth delivered by the network is identical to the aggregate network band-
width when the transmission time is greater than the overhead. Therefore, full
network utilization is achieved regardless of the value for the time of flight
and, thus, regardless of the distance traveled by packets, assuming ideal network
behavior (i.e., enough credits and buffers are provided for credit-based and Xon/
Xoff flow control). This analysis assumes that the sender and receiver network
interfaces can process only one packet at a time. If multiple packets can be pro-
cessed in parallel (e.g., as is done in IBM’s Federation network interfaces),
the overheads for those packets can be overlapped, which increases effective band-
width by that overlap factor up to the amount bounded by the transmission time.

Let’s use the equation on page F-17 to explore the impact of packet size, trans-
mission time, and overhead on BWLink Injection, BWLinkReception, and effective band-
width for the various network domains: OCNs, SANs, LANs, and WANs.

Example As in the previous example, assume we have a dedicated link network with a data
bandwidth of 8 Gbps for each link in each direction interconnecting the two
devices within an OCN, SAN, LAN, or WAN. Plot effective bandwidth versus
packet size for each type of network for packets ranging in size from 4 bytes
(i.e., a single 32-bit word) to 1500 bytes (i.e., the maximum transfer unit for Ether-
net), assuming that end nodes have the same per-packet sending and receiving
overheads as before: x+0.05 ns/byte and 4/3(x)+0.05 ns/byte, respectively, where
x is 0 μs for the OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the
WAN. What limits the effective bandwidth, and for what packet sizes is the effec-
tive bandwidth within 10% of the aggregate network bandwidth?
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Answer Figure F.6 plots effective bandwidth versus packet size for the four network
domains using the simple equation and parameters given above. For all packet
sizes in the OCN, transmission time is greater than overhead (sending or receiv-
ing), allowing full utilization of the aggregate bandwidth, which is 16 Gbps—that
is, injection link (alternatively, reception link) bandwidth times two to account for
both devices. For the SAN, overhead—specifically, receiving overhead—is larger
than transmission time for packets less than about 800 bytes; consequently, packets
of 655 bytes and larger are needed to utilize 90% or more of the aggregate band-
width. For LANs andWANs, most of the link bandwidth is not utilized since over-
head in this example is many times larger than transmission time for all
packet sizes.

This example highlights the importance of reducing the sending and receiving
overheads relative to packet transmission time in order to maximize the effective
bandwidth delivered by the network.

The analysis above suggests that it is possible to provide some upper bound for
the effective bandwidth by analyzing the path followed by packets and determining
where the bottleneck occurs. We can extend this idea beyond the network
interfaces by defining a model that considers the entire network from end to
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Figure F.6 Effective bandwidth versus packet size plotted in semi-log form for the
four network domains. Overhead can be amortized by increasing the packet size, but
for too large of an overhead (e.g., for WANs and some LANs) scaling the packet size is of
little help. Other considerations come into play that limit the maximum packet size.
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end as a pipe and identifying the narrowest section of that pipe. There are three
areas of interest in that pipe: the aggregate of all network injection links and the
corresponding network injection bandwidth (BWNetworkInjection), the aggregate of
all network reception links and the corresponding network reception bandwidth
(BWNetworkReception), and the aggregate of all network links and the corresponding
network bandwidth (BWNetwork). Expressions for these will be given in
later sections as various layers of the black box view of the network are
peeled away.

To this point, we have assumed that for just two interconnected devices the
black box network behaves ideally and the network bandwidth is equal to
the aggregate raw network bandwidth. In reality, it can be much less than the aggre-
gate bandwidth as we will see in the following sections. In general, the effective
bandwidth delivered end-to-end by the network to an application is upper bounded
by the minimum across all three potential bottleneck areas:

Effective bandwidth¼ min BWNetworkInjection, BWNetwork, BWNetworkReception
� �

We will expand upon this expression further in the following sections as we reveal
more about interconnection networks and consider the more general case of inter-
connecting more than two devices.

In some sections of this appendix, we show how the concepts introduced in
the section take shape in example high-end commercial products. Figure F.7
lists several commercial computers that, at one point in time in their existence,
were among the highest-performing systems in the world within their class.
Although these systems are capable of interconnecting more than two devices,
they implement the basic functions needed for interconnecting only two
devices. In addition to being applicable to the SANs used in those systems,
the issues discussed in this section also apply to other interconnect domains:
from OCNs to WANs.

F.3 Connecting More than Two Devices

To this point, we have considered the connection of only two devices communi-
cating over a network viewed as a black box, but what makes interconnection net-
works interesting is the ability to connect hundreds or even many thousands of
devices together. Consequently, what makes them interesting also makes them
more challenging to build. In order to connect more than two devices, a suitable
structure and more functionality must be supported by the network. This section
continues with our black box approach by introducing, at a conceptual level, addi-
tional network structure and functions that must be supported when interconnect-
ing more than two devices. More details on these individual subjects are given in
Sections F.4 through F.7. Where applicable, we relate the additional structure and
functions to network media, flow control, and other basics presented in the previ-
ous section. In this section, we also classify networks into two broad categories
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based on their connection structure—shared-media versus switched-media net-
works—and we compare them. Finally, expanded expressions for characterizing
network performance are given, followed by an example.

Additional Network Structure and Functions: Topology,
Routing, Arbitration, and Switching

Networks interconnecting more than two devices require mechanisms to physi-
cally connect the packet source to its destination in order to transport the packet
and deliver it to the correct destination. These mechanisms can be implemented
in different ways and significantly vary across interconnection network domains.
However, the types of network structure and functions performed by those mech-
anisms are very much the same, regardless of the domain.

When multiple devices are interconnected by a network, the connections
between them oftentimes cannot be permanently established with dedicated links.
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Intel ASCI Red
Paragon

2001 4510
[�2]

2500 ft2 1984
[4]

400
[400]

Few μs Handshaking;
CRC+parity

IBM ASCI White
SP Power3
[Colony]

2001 512
[�16]

10,000 ft2 1024
[6]

500
[500]

�3 μs 25 m; credit-
based; CRC

Intel Thunder
Itanium2
Tiger4
[QsNetII]

2004 1024
[�4]

120 m2 2048
[14]

928
[928]

0.240 μs 13 m; credit-
based; CRC for
link, dest.

Cray XT3 [SeaStar] 2004 30,508
[�1]

263.8 m2 80
[16]

3200
[3200]

Few μs 7 m; credit-
based; CRC

Cray X1E 2004 1024
[�1]

27 m2 32
[16]

1600
[1600]

0 (direct LD ST
accesses)

5 m; credit-
based; CRC

IBM ASC Purple
pSeries 575
[Federation]

2005 >1280
[�8]

6720 ft2 2048
[7]

2000
[2000]

�1 μs with up
to 4 packets
processed in k

25 m; credit-
based; CRC

IBM Blue Gene/L
eServer Sol.
[Torus Net.]

2005 65,536
[�2]

2500 ft2

(.9� .9�1.9 m3/
1 K node rack)

256
[8]

612.5
[1050]

�3 μs
(2300 cycles)

8.6 m; credit-
based; CRC
(header/pkt)

Figure F.7 Basic characteristics of interconnection networks in commercial high-performance computer systems.
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This could either be too restrictive as all the packets from a given source would go
to the same one destination (and not to others) or prohibitively expensive as a ded-
icated link would be needed from every source to every destination (we will eval-
uate this further in the next section). Therefore, networks usually share paths
among different pairs of devices, but how those paths are shared is determined
by the network connection structure, commonly referred to as the network topol-
ogy. Topology addresses the important issue of “What paths are possible for
packets?” so packets reach their intended destinations.

Every network that interconnects more than two devices also requires some
mechanism to deliver each packet to the correct destination. The associated func-
tion is referred to as routing, which can be defined as the set of operations that need
to be performed to compute a valid path from the packet source to its destinations.
Routing addresses the important issue of “Which of the possible paths are allow-
able (valid) for packets?” so packets reach their intended destinations. Depending
on the network, this function may be executed at the packet source to compute the
entire path, at some intermediate devices to compute fragments of the path on
the fly, or even at every possible destination device to verify whether that device
is the intended destination for the packet. Usually, the packet header shown in
Figure F.4 is extended to include the necessary routing information.

In general, as networks usually contain shared paths or parts thereof among dif-
ferent pairs of devices, packets may request some shared resources. When several
packets request the same resources at the same time, an arbitration function is
required to resolve the conflict. Arbitration, along with flow control, addresses
the important issue of “When are paths available for packets?” Every time arbitra-
tion is performed, there is a winner and possibly several losers. The losers are not
granted access to the requested resources and are typically buffered. As indicated in
the previous section, flow control may be implemented to prevent buffer overflow.
The winner proceeds toward its destination once the granted resources are switched
in, providing a path for the packet to advance. This function is referred to as switch-
ing. Switching addresses the important issue of “How are paths allocated to
packets?” To achieve better utilization of existing communication resources, most
networks do not establish an entire end-to-end path at once. Instead, as explained in
Section F.5, paths are usually established one fragment at a time.

These three network functions—routing, arbitration, and switching—must be
implemented in every network connecting more than two devices, no matter what
form the network topology takes. This is in addition to the basic functions men-
tioned in the previous section. However, the complexity of these functions and
the order in which they are performed depends on the category of network topol-
ogy, as discussed below. In general, routing, arbitration, and switching are required
to establish a valid path from source to destination from among the possible paths
provided by the network topology. Once the path has been established, the packet
transport functions previously described are used to reliably transmit packets and
receive them at the corresponding destination. Flow control, if implemented, pre-
vents buffer overflow by throttling the sender. It can be implemented at the end-to-
end level, the link level within the network, or both.
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Shared-Media Networks

The simplest way to connect multiple devices is to have them share the network
media, as shown for the bus in Figure F.8 (a). This has been the traditional way
of interconnecting devices. The shared media can operate in half-duplex mode,
where data can be carried in either direction over the media but simultaneous trans-
mission and reception of data by the same device is not allowed, or in full-duplex,
where the data can be carried in both directions and simultaneously transmitted and
received by the same device. Until very recently, I/O devices in most systems typ-
ically shared a single I/O bus, and early system-on-chip (SoC) designs made use of
a shared bus to interconnect on-chip components. The most popular LAN, Ether-
net, was originally implemented as a half-duplex bus shared by up to a hundred
computers, although now switched-media versions also exist.

Given that network media are shared, there must be a mechanism to coordinate
and arbitrate the use of the shared media so that only one packet is sent at a time. If
the physical distance between network devices is small, it may be possible to have
a central arbiter to grant permission to send packets. In this case, the network nodes
may use dedicated control lines to interface with the arbiter. Centralized arbitration
is impractical, however, for networks with a large number of nodes spread over
large distances, so distributed forms of arbitration are also used. This is the case
for the original Ethernet shared-media LAN.

A first step toward distributed arbitration of shared media is “looking before
you leap.” A node first checks the network to avoid trying to send a packet while
another packet is already in the network. Listening before transmission to avoid
collisions is called carrier sensing. If the interconnection is idle, the node tries
to send. Looking first is not a guarantee of success, of course, as some other node
may also decide to send at the same instant. When two nodes send at the same time,

Node Node

Shared-media network

Switched-media network

(B)

Switch fabric

(A)

Node

Node Node

Node Node

Figure F.8 (a) A shared-media network versus (b) a switched-media network. Ether-
net was originally a shared media network, but switched Ethernet is now available. All
nodes on the shared-media networksmust dynamically share the raw bandwidth of one
link, but switched-media networks can support multiple links, providing higher raw
aggregate bandwidth.
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a collision occurs. Let’s assume that the network interface can detect any resulting
collisions by listening to hear if the data become garbled by other data appearing
on the line. Listening to detect collisions is called collision detection. This is the
second step of distributed arbitration.

The problem is not solved yet. If, after detecting a collision, every node on the
network waited exactly the same amount of time, listened to be sure there was no
traffic, and then tried to send again, we could still have synchronized nodes that
would repeatedly bump heads. To avoid repeated head-on collisions, each node
whose packet gets garbled waits (or backs off) a random amount of time before
resending. Randomization breaks the synchronization. Subsequent collisions
result in exponentially increasing time between attempts to retransmit, so as not
to tax the network.

Although this approach controls congestion on the shared media, it is not guar-
anteed to be fair—some subsequent node may transmit while those that collided
are waiting. If the network does not have high demand from many nodes, this
simple approach works well. Under high utilization, however, performance
degrades since the media are shared and fairness is not ensured. Another distrib-
uted approach to arbitration of shared media that can support fairness is to pass a
token between nodes. The function of the token is to grant the acquiring node the
right to use the network. If the token circulates in a cyclic fashion between the
nodes, a certain amount of fairness is ensured in the arbitration process.

Once arbitration has been performed and a device has been granted access to
the shared media, the function of switching is straightforward. The granted device
simply needs to connect itself to the shared media, thus establishing a path to every
possible destination. Also, routing is very simple to implement. Given that the
media are shared and attached to all the devices, every device will see every packet.
Therefore, each device just needs to check whether or not a given packet is
intended for that device. A beneficial side effect of this strategy is that a device
can send a packet to all the devices attached to the shared media through a single
transmission. This style of communication is called broadcasting, in contrast to
unicasting, in which each packet is intended for only one device. The shared media
make it easy to broadcast a packet to every device or, alternatively, to a subset of
devices, called multicasting.

Switched-Media Networks

The alternative to sharing the entire network media at once across all attached
nodes is to switch between disjoint portions of it shared by the nodes. Those por-
tions consist of passive point-to-point links between active switch components that
dynamically establish communication between sets of source-destination pairs.
These passive and active components make up what is referred to as the network
switch fabric or network fabric, to which end nodes are connected. This approach
is shown conceptually in Figure F.8(b). The switch fabric is described in greater
detail in Sections F.4 through F.7, where various black box layers for switched-
media networks are further revealed. Nevertheless, the high-level view shown

F-24 ■ Appendix F Interconnection Networks



in Figure F.8(b) illustrates the potential bandwidth improvement of switched-
media networks over shared-media networks: aggregate bandwidth can be many
times higher than that of shared-media networks, allowing the possibility of greater
effective bandwidth to be achieved. At best, only one node at a time can transmit
packets over the shared media, whereas it is possible for all attached nodes to do so
over the switched-media network.

Like their shared-media counterparts, switched-media networks must imple-
ment the three additional functions previously mentioned: routing, arbitration,
and switching. Every time a packet enters the network, it is routed in order to select
a path toward its destination provided by the topology. The path requested by the
packet must be granted by some centralized or distributed arbiter, which resolves
conflicts among concurrent requests for resources along the same path. Once the
requested resources are granted, the network “switches in” the required connec-
tions to establish the path and allows the packet to be forwarded toward its desti-
nation. If the requested resources are not granted, the packet is usually buffered, as
mentioned previously. Routing, arbitration, and switching functions are usually
performed within switched networks in this order, whereas in shared-media net-
works routing typically is the last function performed.

Comparison of Shared- and Switched-Media Networks

In general, the advantage of shared-media networks is their low cost, but, conse-
quently, their aggregate network bandwidth does not scale at all with the number of
interconnected devices. Also, a global arbitration scheme is required to resolve
conflicting demands, possibly introducing another type of bottleneck and again
limiting scalability. Moreover, every device attached to the shared media increases
the parasitic capacitance of the electrical conductors, thus increasing the time of
flight propagation delay accordingly and, possibly, clock cycle time. In addition,
it is more difficult to pipeline packet transmission over the network as the shared
media are continuously granted to different requesting devices.

The main advantage of switched-media networks is that the amount of network
resources implemented scales with the number of connected devices, increasing
the aggregate network bandwidth. These networks allow multiple pairs of nodes
to communicate simultaneously, allowing much higher effective network band-
width than that provided by shared-media networks. Also, switched-media net-
works allow the system to scale to very large numbers of nodes, which is not
feasible when using shared media. Consequently, this scaling advantage can, at
the same time, be a disadvantage if network resources grow superlinearly. Net-
works of superlinear cost that provide an effective network bandwidth that grows
only sublinearly with the number of interconnected devices are inefficient designs
for many applications and interconnection network domains.

Characterizing Performance: Latency and Effective Bandwidth

The routing, switching, and arbitration functionality described above introduces
some additional components of packet transport latency that must be taken into
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account in the expression for total packet latency. Assuming there is no contention
for network resources—as would be the case in an unloaded network—total packet
latency is given by the following:

Latency¼ Sending overhead + TTotalProp + TR +TA +TS
� �

+
Packet size
Bandwidth

+Receiving overhead

Here TR, TA, and TS are the total routing time, arbitration time, and switching time
experienced by the packet, respectively, and are either measured quantities or cal-
culated quantities derived from more detailed analyses. These components are
added to the total propagation delay through the network links, TTotalProp, to give
the overall time of flight of the packet.

The expression above gives only a lower bound for the total packet latency as it
does not account for additional delays due to contention for resources that may
occur. When the network is heavily loaded, several packets may request the same
network resources concurrently, thus causing contention that degrades perfor-
mance. Packets that lose arbitration have to be buffered, which increases packet
latency by some contention delay amount of waiting time. This additional delay
is not included in the above expression. When the network or part of it approaches
saturation, contention delay may be several orders of magnitude greater than the
total packet latency suffered by a packet under zero load or even under slightly
loaded network conditions. Unfortunately, it is not easy to compute analytically
the total packet latency when the network is more than moderately loaded. Mea-
surement of these quantities using cycle-accurate simulation of a detailed network
model is a better and more precise way of estimating packet latency under such
circumstances. Nevertheless, the expression given above is useful in calculating
best-case lower bounds for packet latency.

For similar reasons, effective bandwidth is not easy to compute exactly, but we
can estimate best-case upper bounds for it by appropriately extending the model
presented at the end of the previous section. What we need to do is to find the nar-
rowest section of the end-to-end network pipe by finding the network injection
bandwidth (BWNetworkInjection), the network reception bandwidth (BWNetworkRecep-

tion), and the network bandwidth (BWNetwork) across the entire network intercon-
necting the devices.

The BWNetworkInjection can be calculated simply by multiplying the expression
for link injection bandwidth, BWLinkInjection, by the total number of network injec-
tion links. The BWNetworkReception is calculated similarly using BWLinkReception, but
it must also be scaled by a factor that reflects application traffic and other charac-
teristics. For more than two interconnected devices, it is no longer valid to assume a
one-to-one relationship among sources and destinations when analyzing the effect
of flow control on link reception bandwidth. It could happen, for example, that
several packets from different injection links arrive concurrently at the same recep-
tion link for applications that have many-to-one traffic characteristics, which
causes contention at the reception links. This effect can be taken into account
by an average reception factor parameter, σ, which is either a measured quantity
or a calculated quantity derived from detailed analysis. It is defined as the average
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fraction or percentage of packets arriving at reception links that can be accepted.
Only those packets can be immediately delivered, thus reducing network reception
bandwidth by that factor. This reduction occurs as a result of application behavior
regardless of internal network characteristics. Finally, BWNetwork takes into
account the internal characteristics of the network, including contention. We
will progressively derive expressions in the following sections that will enable
us to calculate this as more details are revealed about the internals of our black
box interconnection network.

Overall, the effective bandwidth delivered by the network end-to-end to an
application is determined by the minimum across the three sections, as described
by the following:

Effective bandwidth¼min BWNetworkInjection,BWNetwork,σ�BWNetworkReception
� �

¼min N�BWLinkInjection,BWNetwork,σ�N�BWLinkReception
� �

Let’s use the above expressions to compare the latency and effective bandwidth
of shared-media networks against switched-media networks for the four intercon-
nection network domains: OCNs, SANs, LANs, and WANs.

Example Plot the total packet latency and effective bandwidth as the number of intercon-
nected nodes, N, scales from 4 to 1024 for shared-media and switched-media
OCNs, SANs, LANs, and WANs. Assume that all network links, including the
injection and reception links at the nodes, each have a data bandwidth of 8 Gbps,
and unicast packets of 100 bytes are transmitted. Shared-media networks share one
link, and switched-media networks have at least as many network links as there are
nodes. For both, ignore latency and bandwidth effects due to contention within
the network. End nodes have per-packet sending and receiving overheads of
x+0.05 ns/byte and 4/3(x)+0.05 ns/byte, respectively, where x is 0 μs for the
OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the WAN, and inter-
connection distances are 0.5 cm, 5 m, 5000 m, and 5000 km, respectively. Also
assume that the total routing, arbitration, and switching times are constants or func-
tions of the number of interconnected nodes: TR¼2.5 ns, TA¼2.5(N) ns, and
TS¼2.5 ns for shared-media networks and TR¼TA¼TS¼2.5(log2 N) ns for
switched-media networks. Finally, taking into account application traffic charac-
teristics for the network structure, the average reception factor, σ, is assumed to be
N�1 for shared media and polylogarithmic (log2 N)

�1/4 for switched media.

Answer All components of total packet latency are the same as in the example given in the
previous section except for time of flight, which now has additional routing, arbi-
tration, and switching delays. For shared-media networks, the additional delays
total 5+2.5(N) ns; for switched-media networks, they total 7.5(log2 N) ns. Latency
is plotted only for OCNs and SANs in Figure F.9 as these networks give the more
interesting results. For OCNs, TR, TA, and TS combine to dominate time of flight
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and are much greater than each of the other latency components for a moderate to
large number of nodes. This is particularly so for the shared-media network. The
latency increases much more dramatically with the number of nodes for shared
media as compared to switched media given the difference in arbitration delay
between the two. For SANs, TR, TA, and TS dominate time of flight for most net-
work sizes but are greater than each of the other latency components in shared-
media networks only for large-sized networks; they are less than the other latency
components for switched-media networks but are not negligible. For LANs and
WANs, time of flight is dominated by propagation delay, which dominates other
latency components as calculated in the previous section; thus, TR, TA, and TS are
negligible for both shared and switched media.

Figure F.10 plots effective bandwidth versus number of interconnected nodes
for the four network domains. The effective bandwidth for all shared-media net-
works is constant through network scaling as only one unicast packet can be
received at a time over all the network reception links, and that is further limited
by the receiving overhead of each network for all but the OCN. The effective band-
width for all switched-media networks increases with the number of intercon-
nected nodes, but it is scaled down by the average reception factor. The
receiving overhead further limits effective bandwidth for all but the OCN.
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Figure F.9 Latency versus number of interconnected nodes plotted in semi-log form
for OCNs and SANs. Routing, arbitration, andswitchinghavemoreofan impacton latency
for networks in these twodomains, particularly for networkswith a largenumber of nodes,
given the low sending and receiving overheads and low propagation delay.
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Given the obvious advantages, why weren’t switched networks always used?
Earlier computers were much slower and could share the network media with little
impact on performance. In addition, the switches for earlier LANs andWANs took
up several large boards and were about as large as an entire computer. As a con-
sequence of Moore’s law, the size of switches has reduced considerably, and sys-
tems have a much greater need for high-performance communication. Switched
networks allow communication to harvest the same rapid advancements from sil-
icon as processors and main memory. Whereas switches from telecommunication
companies were once the size of mainframe computers, today we see single-chip
switches and even entire switched networks within a chip. Thus, technology and
application trends favor switched networks today. Just as single-chip processors
led to processors replacing logic circuits in a surprising number of places,
single-chip switches and switched on-chip networks are increasingly replacing
shared-media networks (i.e., buses) in several application domains. As an example,
PCI-Express (PCIe)—a switched network—was introduced in 2005 to replace the
traditional PCI-X bus on personal computer motherboards.

The previous example also highlights the importance of optimizing the routing,
arbitration, and switching functions in OCNs and SANs. For these network
domains in particular, the interconnect distances and overheads typically are small
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Figure F.10 Effective bandwidth versus number of interconnected nodes plotted in semi-log form for the four
network domains. The disparity in effective bandwidth between shared- and switched-media networks for all inter-
connect domains widens significantly as the number of nodes in the network increases. Only the switched on-chip
network is able to achieve an effective bandwidth equal to the aggregate bandwidth for the parameters given in this
example.
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enough to make latency and effective bandwidth much more sensitive to how well
these functions are implemented, particularly for larger-sized networks. This leads
mostly to implementations based mainly on the faster hardware solutions for these
domains. In LANs andWANs, implementations based on the slower but more flex-
ible software solutions suffice given that performance is largely determined by
other factors. The design of the topology for switched-media networks also plays
a major role in determining how close to the lower bound on latency and the upper
bound on effective bandwidth the network can achieve for OCN and SAN
domains.

The next three sections touch on these important issues in switched networks,
with the next section focused on topology.

F.4 Network Topology

When the number of devices is small enough, a single switch is sufficient to inter-
connect them within a switched-media network. However, the number of switch
ports is limited by existing very-large-scale integration (VLSI) technology, cost
considerations, power consumption, and so on. When the number of required net-
work ports exceeds the number of ports supported by a single switch, a fabric of
interconnected switches is needed. To embody the necessary property of full
access (i.e., connectedness), the network switch fabric must provide a path from
every end node device to every other device. All the connections to the network
fabric and between switches within the fabric use point-to-point links as opposed
to shared links—that is, links with only one switch or end node device on either
end. The interconnection structure across all the components—including switches,
links, and end node devices—is referred to as the network topology.

The number of network topologies described in the literature would be difficult
to count, but the number that have been used commercially is no more than about a
dozen or so. During the 1970s and early 1980s, researchers struggled to propose
new topologies that could reduce the number of switches through which packets
must traverse, referred to as the hop count. In the 1990s, thanks to the introduction
of pipelined transmission and switching techniques, the hop count became less crit-
ical. Nevertheless, today, topology is still important, particularly for OCNs and
SANs, as subtle relationships exist between topology and other network design
parameters that impact performance, especially when the number of end nodes
is very large (e.g., 64 K in the Blue Gene/L supercomputer) or when the latency
is critical (e.g., in multicore processor chips). Topology also greatly impacts the
implementation cost of the network.

Topologies for parallel supercomputer SANs have been the most visible and
imaginative, usually converging on regularly structured ones to simplify routing,
packaging, and scalability. Those for LANs and WANs tend to be more haphazard
or ad hoc, having more to do with the challenges of long distance or connecting
across different communication subnets. Switch-based topologies for OCNs are
only recently emerging but are quickly gaining in popularity. This section
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describes the more popular topologies used in commercial products. Their advan-
tages, disadvantages, and constraints are also briefly discussed.

Centralized Switched Networks

As mentioned above, a single switch suffices to interconnect a set of devices when
the number of switch ports is equal to or larger than the number of devices. This
simple network is usually referred to as a crossbar or crossbar switch. Within the
crossbar, crosspoint switch complexity increases quadratically with the number of
ports, as illustrated in Figure F.11(a). Thus, a cheaper solution is desirable when
the number of devices to be interconnected scales beyond the point supportable by
implementation technology.

A common way of addressing the crossbar scaling problem consists of splitting
the large crossbar switch into several stages of smaller switches interconnected in
such a way that a single pass through the switch fabric allows any destination to be
reached from any source. Topologies arranged in this way are usually referred to as
multistage interconnection networks or multistage switch fabrics, and these net-
works typically have complexity that increases in proportion toN logN. Multistage
interconnection networks (MINs) were initially proposed for telephone exchanges
in the 1950s and have since been used to build the communication backbone for
parallel supercomputers, symmetric multiprocessors, multicomputer clusters, and
IP router switch fabrics.
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Figure F.11 Popular centralized switched networks: (a) the crossbar network requires N2 crosspoint switches,
shown as black dots; (b) the Omega, a MIN, requires N/2 log2 N switches, shown as vertical rectangles. End node
devices are shown as numbered squares (total of eight). Links are unidirectional—data enter at the left and exit out
the top or right.
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The interconnection pattern or patterns between MIN stages are permutations
that can be represented mathematically by a set of functions, one for each stage.
Figure F.11(b) shows a well-known MIN topology, the Omega, which uses the
perfect-shuffle permutation as its interconnection pattern for each stage, followed
by exchange switches, giving rise to a perfect-shuffle exchange for each stage. In
this example, eight input-output ports are interconnected with three stages of 2�2
switches. It is easy to see that a single pass through the three stages allows any input
port to reach any output port. In general, when using k�k switches, a MIN with N
input-output ports requires at least logk N stages, each of which contains N/k
switches, for a total of N/k (logk N) switches.

Despite their internal structure, MINs can be seen as centralized switch fabrics
that have end node devices connected at the network periphery, hence the name
centralized switched network. From another perspective, MINs can be viewed
as interconnecting nodes through a set of switches that may not have any nodes
directly connected to them, which gives rise to another popular name for central-
ized switched networks—indirect networks.

Example Compute the cost of interconnecting 4096 nodes using a single crossbar switch
relative to doing so using aMIN built from 2�2, 4�4, and 16�16 switches. Con-
sider separately the relative cost of the unidirectional links and the relative cost of
the switches. Switch cost is assumed to grow quadratically with the number of
input (alternatively, output) ports, k, for k�k switches.

Answer The switch cost of the network when using a single crossbar is proportional to
40962. The unidirectional link cost is 8192, which accounts for the set of links from
the end nodes to the crossbar and also from the crossbar back to the end nodes.
When using a MIN with k�k switches, the cost of each switch is proportional
to k2 but there are 4096/k (logk 4096) total switches. Likewise, there are (logk
4096) stages of N unidirectional links per stage from the switches plus N links
to the MIN from the end nodes. Therefore, the relative costs of the crossbar with
respect to each MIN is given by the following:

Relative cost 2�2ð Þswitches ¼ 40962= 22�4096=2� log2 4096
� �¼ 170

Relative cost 4�4ð Þswitches ¼ 40962= 42�4096=4� log4 4096
� �¼ 170

Relative cost 16�16ð Þswitches ¼ 40962= 162�4096=16� log16 4096
� �¼ 85

Relative cost 2�2ð Þlinks ¼ 8192= 4096� log2 4096 + 1ð Þð Þ¼ 2=13¼ 0:1538

Relative cost 4�4ð Þlinks ¼ 8192= 4096� log4 4096 + 1ð Þð Þ¼ 2=7¼ 0:2857

Relative cost 16�16ð Þlinks ¼ 8192= 4096� log16 4096 + 1ð Þð Þ¼ 2=4¼ 0:5

In all cases, the single crossbar has much higher switch cost than the MINs. The
most dramatic reduction in cost comes from the MIN composed from the smallest
sized but largest number of switches, but it is interesting to see that the MINs with
2�2 and 4�4 switches yield the same relative switch cost. The relative link cost
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of the crossbar is lower than the MINs, but by less than an order of magnitude in
all cases. We must keep in mind that end node links are different from switch links
in their length and packaging requirements, so they usually have different associ-
ated costs. Despite the lower link cost, the crossbar has higher overall relative cost.

The reduction in switch cost of MINs comes at the price of performance: con-
tention is more likely to occur on network links, thus degrading performance. Con-
tention in the form of packets blocking in the network arises due to paths from
different sources to different destinations simultaneously sharing one or more
links. The amount of contention in the network depends on communication traffic
behavior. In the Omega network shown in Figure F.11(b), for example, a packet
from port 0 to port 1 blocks in the first stage of switches while waiting for a packet
from port 4 to port 0. In the crossbar, no such blocking occurs as links are not
shared among paths to unique destinations. The crossbar, therefore, is nonblock-
ing. Of course, if two nodes try to send packets to the same destination, there will
be blocking at the reception link even for crossbar networks. This is accounted for
by the average reception factor parameter (σ) when analyzing performance, as dis-
cussed at the end of the previous section.

To reduce blocking in MINs, extra switches must be added or larger ones need
to be used to provide alternative paths from every source to every destination. The
first commonly used solution is to add a minimum of logk N�1 extra switch stages
to the MIN in such a way that they mirror the original topology. The resulting net-
work is rearrangeably nonblocking as it allows nonconflicting paths among new
source-destination pairs to be established, but it also doubles the hop count and
could require the paths of some existing communicating pairs to be rearranged
under some centralized control. The second solution takes a different approach.
Instead of using more switch stages, larger switches—which can be implemented
by multiple stages if desired—are used in the middle of two other switch stages in
such a way that enough alternative paths through the middle-stage switches allow
for nonconflicting paths to be established between the first and last stages. The
best-known example of this is the Clos network, which is nonblocking. The multi-
path property of the three-stage Clos topology can be recursively applied to the
middle-stage switches to reduce the size of all the switches down to 2�2, assum-
ing that switches of this size are used in the first and last stages to begin with. What
results is a Beneŝ topology consisting of 2(log2 N)�1 stages, which is rearrange-
ably nonblocking. Figure F.12(a) illustrates both topologies, where all switches not
in the first and last stages comprise the middle-stage switches (recursively) of the
Clos network.

The MINs described so far have unidirectional network links, but bidirectional
forms are easily derived from symmetric networks such as the Clos and Beneŝ sim-
ply by folding them. The overlapping unidirectional links run in different direc-
tions, thus forming bidirectional links, and the overlapping switches merge into
a single switch with twice the ports (i.e., 4�4 switch). Figure F.12(b) shows
the resulting folded Beneŝ topology but in this case with the end nodes connected
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to the innermost switch stage of the original Beneŝ. Ports remain free at the other
side of the network but can be used for later expansion of the network to larger
sizes. These kind of networks are referred to as bidirectional multistage intercon-
nection networks. Among many useful properties of these networks are their mod-
ularity and their ability to exploit communication locality, which saves packets
from having to hop across all network stages. Their regularity also reduces routing
complexity and their multipath property enables traffic to be routed more evenly
across network resources and to tolerate faults.

Another way of deriving bidirectional MINs with nonblocking (rearrangeable)
properties is to form a balanced tree, where end node devices occupy leaves of the
tree and switches occupy vertices within the tree. Enough links in each tree level
must be provided such that the total link bandwidth remains constant across all
levels.Also, except for the root, switch ports for each vertex typically growas ki�ki,
where i is the tree level. This can be accomplished by using ki�1 total switches at
each vertex,where each switch has k input and k output ports, or k bidirectional ports
(i.e., k�k input-output ports). Networks having such topologies are called fat tree
networks. As only half of the k bidirectional ports are used in each direction, 2 N/k
switches are needed in each stage, totaling 2 N/k (logk/2 N) switches in the fat tree.
The number of switches in the root stage can be halved as no forward links are
needed, reducing switch count by N/k. Figure F.12(b) shows a fat tree for 4�4
switches. As can be seen, this is identical to the folded Beneŝ.

The fat tree is the topology of choice across a wide range of network sizes
for most commercial systems that use multistage interconnection networks. Most
SANs used in multicomputer clusters, and many used in the most powerful
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Figure F.12 Two Beneŝ networks. (a) A 16-port Clos topology, where themiddle-stage switches shown in the darker
shading are implemented with another Clos network whose middle-stage switches shown in the lighter shading are
implemented with yet another Clos network, and so on, until a Beneŝ network is produced that uses only 2�2
switches everywhere. (b) A folded Beneŝ network (bidirectional) in which 4�4 switches are used; end nodes attach
to the innermost set of the Beneŝ network (unidirectional) switches. This topology is equivalent to a fat tree, where
tree vertices are shown in shades.
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supercomputers, are based on fat trees. Commercial communication subsystems
offered by Myrinet, Mellanox, and Quadrics are also built from fat trees.

Distributed Switched Networks

Switched-media networks provide a very flexible framework to design communi-
cation subsystems external to the devices that need to communicate, as presented
above. However, there are cases where it is convenient to more tightly integrate the
end node devices with the network resources used to enable them to communicate.
Instead of centralizing the switch fabric in an external subsystem, an alternative
approach is to distribute the network switches among the end nodes, which then
become network nodes or simply nodes, yielding a distributed switched network.
As a consequence, each network switch has one or more end node devices directly
connected to it, thus forming a network node. These nodes are directly connected to
other nodes without indirectly going through some external switch, giving rise to
another popular name for these networks—direct networks.

The topology for distributed switched networks takes on a form much differ-
ent from centralized switched networks in that end nodes are connected across
the area of the switch fabric, not just at one or two of the peripheral edges of
the fabric. This causes the number of switches in the system to be equal to the
total number of nodes. A quite obvious way of interconnecting nodes consists
of connecting a dedicated link between each node and every other node in the
network. This fully connected topology provides the best connectivity (full con-
nectivity in fact), but it is more costly than a crossbar network, as the following
example shows.

Example Compute the cost of interconnecting N nodes using a fully connected topology rel-
ative to doing so using a crossbar topology. Consider separately the relative cost of
the unidirectional links and the relative cost of the switches. Switch cost is assumed
to grow quadratically with the number of unidirectional ports for k�k switches but
to grow only linearly with 1�k switches.

Answer The crossbar topology requires an N�N switch, so the switch cost is proportional
to N2. The link cost is 2N, which accounts for the unidirectional links from the end
nodes to the centralized crossbar, and vice versa. In the fully connected topology,
two sets of 1� (N�1) switches (possibly merged into one set) are used in each of
the N nodes to connect nodes directly to and from all other nodes. Thus, the total
switch cost for all N nodes is proportional to 2N(N�1). Regarding link cost, each
of the N nodes requires two unidirectional links in opposite directions between its
end node device and its local switch. In addition, each of the N nodes has N�1
unidirectional links from its local switch to other switches distributed across
all the other end nodes. Thus, the total number of unidirectional links is
2N+N(N�1), which is equal to N(N+1) for all N nodes. The relative costs of
the fully connected topology with respect to the crossbar is, therefore, the
following:
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Relative costswitches ¼ 2N N�1ð Þ=N2 ¼ 2 N�1ð Þ=N¼ 2 1�1=Nð Þ
Relative costlinks ¼N N + 1ð Þ=2N¼ N + 1ð Þ=2

As the number of interconnected devices increases, the switch cost of the fully
connected topology is nearly double the crossbar, with both being very high
(i.e., quadratic growth). Moreover, the fully connected topology always has higher
relative link cost, which grows linearly with the number of nodes. Again, keep in
mind that end node links are different from switch links in their length and pack-
aging, particularly for direct networks, so they usually have different associated
costs. Despite its higher cost, the fully connected topology provides no extra per-
formance benefits over the crossbar as both are nonblocking. Thus, crossbar net-
works are usually used in practice instead of fully connected networks.

A lower-cost alternative to fully connecting all nodes in the network is to
directly connect nodes in sequence along a ring topology, as shown in
Figure F.13. For bidirectional rings, each of the N nodes now uses only 3�3
switches and just two bidirectional network links (shared by neighboring nodes),
for a total ofN switches andN bidirectional network links. This linear cost excludes
the N injection-reception bidirectional links required within nodes.

Unlike shared-media networks, rings can allow many simultaneous transfers:
the first node can send to the second while the second sends to the third, and so on.
However, as dedicated links do not exist between logically nonadjacent node pairs,
packets must hop across intermediate nodes before arriving at their destination,
increasing their transport latency. For bidirectional rings, packets can be trans-
ported in either direction, with the shortest path to the destination usually being
the one selected. In this case, packets must travel N/4 network switch hops, on
average, with total switch hop count being one more to account for the local switch
at the packet source node. Along the way, packets may block on network resources
due to other packets contending for the same resources simultaneously.

Fully connected and ring-connected networks delimit the two extremes of dis-
tributed switched topologies, but there are many points of interest in between for a
given set of cost-performance requirements. Generally speaking, the ideal
switched-media topology has cost approaching that of a ring but performance

Figure F.13 A ring network topology, folded to reduce the length of the longest link.
Shaded circles represent switches, and black squares represent end node devices. The
gray rectangle signifies a network node consisting of a switch, a device, and its
connecting link.
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approaching that of a fully connected topology. Figure F.14 illustrates three pop-
ular direct network topologies commonly used in systems spanning the cost-
performance spectrum. All of them consist of sets of nodes arranged along multiple
dimensions with a regular interconnection pattern among nodes that can be
expressed mathematically. In the mesh or grid topology, all the nodes in each
dimension form a linear array. In the torus topology, all the nodes in each dimen-
sion form a ring. Both of these topologies provide direct communication to neigh-
boring nodes with the aim of reducing the number of hops suffered by packets in
the network with respect to the ring. This is achieved by providing greater connec-
tivity through additional dimensions, typically no more than three in commercial
systems. The hypercube or n-cube topology is a particular case of the mesh in
which only two nodes are interconnected along each dimension, leading to a num-
ber of dimensions, n, that must be large enough to interconnect all N nodes in the
system (i.e., n¼ log2 N). The hypercube provides better connectivity than meshes

(A) 2D grid or mesh of 16 nodes (B) 2D torus of 16 nodes

(C) Hypercube of 16 nodes (16 = 24 so n = 4)

Figure F.14 Direct network topologies that have appeared in commercial systems,
mostly supercomputers.
The shaded circles represent switches, and the black squares represent end node
devices. Switches have many bidirectional network links, but at least one link goes
to the end node device. These basic topologies can be supplemented with extra links
to improve performance and reliability. For example, connecting the switches on the
periphery of the 2D mesh, shown in (a), using the unused ports on each switch forms
a 2D torus, shown in (b). The hypercube topology, shown in (c) is an n-dimensional inter-
connect for 2n nodes, requiring n+1 ports per switch: one for the n nearest neighbor
nodes and one for the end node device.
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and tori at the expense of higher link and switch costs, in terms of the number of
links and number of ports per node.

Example Compute the cost of interconnecting N devices using a torus topology relative to
doing so using a fat tree topology. Consider separately the relative cost of the bidi-
rectional links and the relative cost of the switches—which is assumed to grow
quadratically with the number of bidirectional ports. Provide an approximate
expression for the case of switches being similar in size.

Answer Using k�k switches, the fat tree requires 2 N/k (logk/2 N) switches, assuming the
last stage (the root) has the same number of switches as each of the other stages.
Given that the number of bidirectional ports in each switch is k (i.e., there are k
input ports and k output ports for a k�k switch) and that the switch cost grows
quadratically with this, total network switch cost is proportional to 2kN logk/2
N. The link cost is N logk/2 N as each of the logk/2 N stages requires N bidirectional
links, including those between the devices and the fat tree. The torus requires as
many switches as nodes, each of them having 2n+1 bidirectional ports, including
the port to attach the communicating device, where n is the number of dimensions.
Hence, total switch cost for the torus is (2n+1)2N. Each of the torus nodes requires
2n+1 bidirectional links for the n different dimensions and the connection for its
end node device, but as the dimensional links are shared by two nodes, the total
number of links is (2n/2+1)N¼ (n+1)N bidirectional links for all N nodes. Thus,
the relative costs of the torus topology with respect to the fat tree are

Relative costswitches ¼ 2n+ 1ð Þ2N=2kN log k=2 N¼ 2n + 1ð Þ2=2k log k=2 N

Relative costlinks ¼ n + 1ð ÞN=N log k=2 N¼ n + 1ð Þ= log k=2 N

When switch sizes are similar, 2n+1ffik. In this case, the relative cost is

Relative costswitches ¼ 2n+ 1ð Þ2=2k log k=2 N ¼ 2n+ 1ð Þ=2log k=2 N ¼ k=2log k=2 N

When the number of switch ports (also called switch degree) is small, tori have
lower cost, particularly when the number of dimensions is low. This is an espe-
cially useful property when N is large. On the other hand, when larger switches
and/or a high number of tori dimensions are used, fat trees are less costly and pref-
erable. For example, when interconnecting 256 nodes, a fat tree is four times more
expensive in terms of switch and link costs when 4�4 switches are used. This
higher cost is compensated for by lower network contention, on average. The
fat tree is comparable in cost to the torus when 8�8 switches are used (e.g., for
interconnecting 256 nodes). For larger switch sizes beyond this, the torus costs
more than the fat tree as each node includes a switch. This cost can be amortized
by connecting multiple end node devices per switch, called bristling.

The topologies depicted in Figure F.14 all have in common the interesting
characteristic of having their network links arranged in several orthogonal
dimensions in a regular way. In fact, these topologies all happen to be particular
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instances of a larger class of direct network topologies known as k-ary n-cubes,
where k signifies the number of nodes interconnected in each of the n dimen-
sions. The symmetry and regularity of these topologies simplify network imple-
mentation (i.e, packaging) and packet routing as the movement of a
packet along a given network dimension does not modify the number of remain-
ing hops in any other dimension toward its destination. As we will see in the
next section, this topological property can be readily exploited by simple rout-
ing algorithms.

Like their indirect counterpart, direct networks can introduce blocking among
packets that concurrently request the same path, or part of it. The only exception is
fully connected networks. The same way that the number of stages and switch hops
in indirect networks can be reduced by using larger switches, the hop count in
direct networks can likewise be reduced by increasing the number of topological
dimensions via increased switch degree.

It may seem to be a good idea always to maximize the number of dimen-
sions for a system of a certain size and switch cost. However, this is not nec-
essarily the case. Most electronic systems are built within our three-dimensional
(3D) world using planar (2D) packaging technology such as integrated circuit
chips, printed circuit boards, and backplanes. Direct networks with up to three
dimensions can be implemented using relatively short links within this 3D
space, independent of system size. Links in higher-dimensioned networks
would require increasingly longer wires or fiber. This increase in link length
with system size is also indicative of MINs, including fat trees, which require
either long links within all the stages or increasingly longer links as more stages
are added. As we saw in the first example given in Section F.2, flow-controlled
buffers increase in size proportionally to link length, thus requiring greater sil-
icon area. This is among the reasons why the supercomputer with the largest
number of compute nodes existing in 2005, the IBM Blue Gene/L, implemented
a 3D torus network for interprocessor communication. A fat tree would have
required much longer links, rendering a 64K node system less feasible. This
highlights the importance of correctly selecting the proper network topology
that meets system requirements.

Besides link length, other constraints derived from implementing the topology
may also limit the degree to which a topology can scale. These are available pin-out
and achievable bisection bandwidth. Pin count is a local restriction on the band-
width of a chip, printed circuit board, and backplane (or chassis) connector. In
a direct network that integrates processor cores and switches on a single chip or
multichip module, pin bandwidth is used both for interfacing with main memory
and for implementing node links. In this case, limited pin count could reduce the
number of switch ports or bit lines per link. In an indirect network, switches are
implemented separately from processor cores, allowing most of the pins to be ded-
icated to communication bandwidth. However, as switches are grouped onto
boards, the aggregate of all input-output links of the switch fabric on a board
for a given topology must not exceed the board connector pin-outs.

The bisection bandwidth is a more global restriction that gives the interconnect
density and bandwidth that can be achieved by a given implementation
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(packaging) technology. Interconnect density and clock frequency are related to
each other: When wires are packed closer together, crosstalk and parasitic capac-
itance increase, which usually impose a lower clock frequency. For example, the
availability and spacing of metal layers limit wire density and frequency of on-chip
networks, and copper track density limits wire density and frequency on a printed
circuit board. To be implementable, the topology of a network must not exceed the
available bisection bandwidth of the implementation technology. Most networks
implemented to date are constrained more so by pin-out limitations rather than
bisection bandwidth, particularly with the recent move to blade-based systems.
Nevertheless, bisection bandwidth largely affects performance.

For a given topology, bisection bandwidth, BWBisection, is calculated by
dividing the network into two roughly equal parts—each with half the
nodes—and summing the bandwidth of the links crossing the imaginary divid-
ing line. For nonsymmetric topologies, bisection bandwidth is the smallest of all
pairs of equal-sized divisions of the network. For a fully connected network, the
bisection bandwidth is proportional to N2/2 unidirectional links (or N2/4 bidi-
rectional links), where N is the number of nodes. For a bus, bisection bandwidth
is the bandwidth of just the one shared half-duplex link. For other topologies,
values lie in between these two extremes. Network injection and reception
bisection bandwidth is commonly used as a reference value, which is N/2 for
a network with N injection and reception links, respectively. Any network
topology that provides this bisection bandwidth is said to have full bisection
bandwidth.

Figure F.15 summarizes the number of switches and links required, the corre-
sponding switch size, the maximum and average switch hop distances between
nodes, and the bisection bandwidth in terms of links for several topologies
discussed in this section for interconnecting 64 nodes.

Evaluation category Bus Ring 2D mesh 2D torus Hypercube Fat tree Fully connected

Performance
BWBisection in # links 1 2 8 16 32 32 1024

Max (ave.) hop count 1 (1) 32 (16) 14 (7) 8 (4) 6 (3) 11 (9) 1 (1)

Cost
I/O ports per switch NA 3 5 5 7 4 64

Number of switches NA 64 64 64 64 192 64

Number of net. links 1 64 112 128 192 320 2016

Total number of links 1 128 176 192 256 384 2080

Figure F.15 Performance and cost of several network topologies for 64 nodes. The bus is the standard reference at
unit network link cost and bisection bandwidth. Values are given in terms of bidirectional links and ports. Hop count
includes a switch and its output link, but not the injection link at end nodes. Except for the bus, values are given for
the number of network links and total number of links, including injection/reception links between end node devices
and the network.
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Effects of Topology on Network Performance

Switched network topologies require packets to take one or more hops to reach
their destination, where each hop represents the transport of a packet through a
switch and one of its corresponding links. Interestingly, each switch and its corre-
sponding links can be modeled as a black box network connecting more than two
devices, as was described in the previous section, where the term “devices” here
refers to end nodes or other switches. The only differences are that the sending and
receiving overheads are null through the switches, and the routing, switching, and
arbitration delays are not cumulative but, instead, are delays associated with each
switch.

As a consequence of the above, if the average packet has to traverse d hops to
its destination, then TR+TA+TS¼ (Tr +Ta+Ts)�d, where Tr, Ta, and Ts are the
routing, arbitration, and switching delays, respectively, of a switch. With the
assumption that pipelining over the network is staged on each hop at the packet
level (this assumption will be challenged in the next section), the transmission
delay is also increased by a factor of the number of hops. Finally, with the simpli-
fying assumption that all injection links to the first switch or stage of switches and
all links (including reception links) from the switches have approximately the same
length and delay, the total propagation delay through the network TTotalProp is the
propagation delay through a single link, TLinkProp, multiplied by d+1, which is the
hop count plus one to account for the injection link. Thus, the best-case lower-
bound expression for average packet latency in the network (i.e., the latency in
the absence of contention) is given by the following expression:

Latency¼ Sending overhead +TLinkProp� d + 1ð Þ+ Tr +Ta +Tsð Þ�d +
Packet size
Bandwidth

� d + 1ð Þ +Receiving overhead

Again, the expression on page F-40 assumes that switches are able to pipeline
packet transmission at the packet level.

Following the method presented previously, we can estimate the best-case
upper bound for effective bandwidth by finding the narrowest section of the
end-to-end network pipe. Focusing on the internal network portion of that pipe,
network bandwidth is determined by the blocking properties of the topology.
Non-blocking behavior can be achieved only by providing many alternative paths
between every source-destination pair, leading to an aggregate network bandwidth
that is many times higher than the aggregate network injection or reception band-
width. This is quite costly. As this solution usually is prohibitively expensive, most
networks have different degrees of blocking, which reduces the utilization of the
aggregate bandwidth provided by the topology. This, too, is costly but not in terms
of performance.

The amount of blocking in a network depends on its topology and the traffic
distribution. Assuming the bisection bandwidth, BWBisection, of a topology is
implementable (as typically is the case), it can be used as a constant measure of
the maximum degree of blocking in a network. In the ideal case, the network
always achieves full bisection bandwidth irrespective of the traffic behavior, thus
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transferring the bottlenecking point to the injection or reception links. However, as
packets destined to locations in the other half of the network necessarily must cross
the bisection links, those links pose as potential bottleneck links—potentially
reducing the network bandwidth to below full bisection bandwidth. Fortunately,
not all of the traffic must cross the network bisection, allowing more of the aggre-
gate network bandwidth provided by the topology to be utilized. Also, network
topologies with a higher number of bisection links tend to have less blocking as
more alternative paths are possible to reach destinations and, hence, a higher per-
centage of the aggregate network bandwidth can be utilized. If only a fraction of the
traffic must cross the network bisection, as captured by a bisection traffic fraction
parameter γ (0<γ�1), the network pipe at the bisection is, effectively, widened by
the reciprocal of that fraction, assuming a traffic distribution that loads the bisec-
tion links at least as heavily, on average, as other network links. This defines the
upper limit on achievable network bandwidth, BWNetwork:

BWNetwork ¼BWBisection

γ

Accordingly, the expression for effective bandwidth becomes the following when
network topology is taken into consideration:

Effective bandwidth¼ min N�BWLinkInjection,
BWBisection

γ
,σ�N�BWLinkReception

� �

It is important to note that γ depends heavily on the traffic patterns generated
by applications. It is a measured quantity or calculated from detailed traffic
analysis.

Example A common communication pattern in scientific programs is to have nearest neigh-
bor elements of a two-dimensional array to communicate in a given direction. This
pattern is sometimes called NEWS communication, standing for north, east, west,
and south—the directions on a compass. Map an 8�8 array of elements one-to-
one onto 64 end node devices interconnected in the following topologies: bus, ring,
2D mesh, 2D torus, hypercube, fully connected, and fat tree. How long does it take
in the best case for each node to send one message to its northern neighbor and one
to its eastern neighbor, assuming packets are allowed to use any minimal path pro-
vided by the topology?What is the corresponding effective bandwidth? Ignore ele-
ments that have no northern or eastern neighbors. To simplify the analysis, assume
that all networks experience unit packet transport time for each network hop—that
is, TLinkProp, Tr, Ta, Ts, and packet transmission time for each hop sum to one. Also
assume the delay through injection links is included in this unit time, and sending/
receiving overhead is null.

Answer This communication pattern requires us to send 2� (64�8) or 112 total packets—
that is, 56 packets in each of the two communication phases: northward and east-
ward. The number of hops suffered by packets depends on the topology. Commu-
nication between sources and destinations are one-to-one, so σ is 100%.
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The injection and reception bandwidth cap the effective bandwidth to a maximum
of 64 BW units (even though the communication pattern requires only 56 BW
units). However, this maximum may get scaled down by the achievable network
bandwidth, which is determined by the bisection bandwidth and the fraction of
traffic crossing it, γ, both of which are topology dependent. Here are the various
cases:

■ Bus—The mapping of the 8�8 array elements to nodes makes no difference
for the bus as all nodes are equally distant at one hop away. However,
the 112 transfers are done sequentially, taking a total of 112 time units.
The bisection bandwidth is 1, and γ is 100%. Thus, effective bandwidth
is only 1 BW unit.

■ Ring—Assume the first row of the array is mapped to nodes 0 to 7, the second
row to nodes 8 to 15, and so on. It takes just one time unit for all nodes simul-
taneously to send to their eastern neighbor (i.e., a transfer from node i to node
i+1). With this mapping, the northern neighbor for each node is exactly eight
hops away so it takes eight time units, which also is done in parallel for all
nodes. Total communication time is, therefore, 9 time units. The bisection
bandwidth is 2 bidirectional links (assuming a bidirectional ring), which is
less than the full bisection bandwidth of 32 bidirectional links. For eastward
communication, because only 2 of the eastward 56 packets must cross the
bisection in the worst case, the bisection links do not pose as bottlenecks.
For northward communication, 8 of the 56 packets must cross the two bisec-
tion links, yielding a γ of 10/112¼8.93%. Thus, the network bandwidth is
2/.0893¼22.4 BW units. This limits the effective bandwidth at 22.4 BW
units as well, which is less than half the bandwidth required by the commu-
nication pattern.

■ 2D mesh—There are eight rows and eight columns in our grid of 64 nodes,
which is a perfect match to the NEWS communication. It takes a total of just
2 time units for all nodes to send simultaneously to their northern neighbors
followed by simultaneous communication to their eastern neighbors. The
bisection bandwidth is 8 bidirectional links, which is less than full bisection
bandwidth. However, the perfect matching of this nearest neighbor communi-
cation pattern on this topology allows the maximum effective bandwidth to be
achieved regardless. For eastward communication, 8 of the 56 packets must
cross the bisection in the worst case, which does not exceed the bisection band-
width. None of the northward communications crosses the same network bisec-
tion, yielding a γ of 8/112¼7.14% and a network bandwidth of 8/0.0714¼112
BW units. The effective bandwidth is, therefore, limited by the communication
pattern at 56 BW units as opposed to the mesh network.

■ 2D torus—Wrap-around links of the torus are not used for this communication
pattern, so the torus has the same mapping and performance as the mesh.
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■ Hypercube—Assume elements in each row are mapped to the same location
within the eight 3-cubes comprising the hypercube such that consecutive row
elements are mapped to nodes only one hop away. Northern neighbors can be
similarlymapped tonodes only onehopaway in anorthogonal dimension. Thus,
the communication pattern takes just 2 time units. The hypercube provides full
bisection bandwidth of 32 links, but at most only 8 of the 112 packetsmust cross
the bisection. Thus, effective bandwidth is limited only by the communication
pattern to be 56 BW units, not by the hypercube network.

■ Fully connected—Here, nodes are equally distant at one hop away, regardless
of the mapping. Parallel transfer of packets in both the northern and eastern
directions would take only 1 time unit if the injection and reception links
could source and sink two packets at a time. As this is not the case, 2 time units
are required. Effective bandwidth is limited by the communication pattern
at 56 BW units, so the 1024 network bisection links largely go underutilized.

■ Fat tree—Assume the same mapping of elements to nodes as is done for the
ring and the use of switches with eight bidirectional ports. This allows simul-
taneous communication to eastern neighbors that takes at most three hops and,
therefore, 3 time units through the three bidirectional stages interconnecting the
eight nodes in each of the eight groups of nodes. The northern neighbor for
each node resides in the adjacent group of eight nodes, which requires five
hops, or 5 time units. Thus, the total time required on the fat tree is 8 time units.
The fat tree provides full bisection bandwidth, so in the worst case of half the
traffic needing to cross the bisection, an effective bandwidth of 56 BW units (as
limited by the communication pattern and not by the fattree network) is
achieved when packets are continually injected.

The above example should not lead one to the wrong conclusion that meshes
are just as good as tori, hypercubes, fat trees, and other networks with higher bisec-
tion bandwidth. A number of simplifications that benefit low-bisection networks
were assumed to ease the analysis. In practice, packets typically are larger than the
link width and occupy links for many more than just one network cycle. Also,
many communication patterns do not map so cleanly to the 2D mesh network
topology; instead, usually they are more global and irregular in nature. These
and other factors combine to increase the chances of packets blocking in low-
bisection networks, increasing latency and reducing effective bandwidth.

To put this discussion on topologies into further perspective, Figure F.16
listsvariousattributesof topologiesused incommercialhigh-performancecomputers.

F.5 Network Routing, Arbitration, and Switching

Routing, arbitration, and switching are performed at every switch along a packet’s
path in a switchedmedia network, nomatter what the network topology. Numerous
interesting techniques for accomplishing these network functions have been
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proposed in the literature. In this section, we focus on describing a representative
set of approaches used in commercial systems for the more commonly used net-
work topologies. Their impact on performance is also highlighted.

Routing

The routing algorithm defines which network path, or paths, are allowed for each
packet. Ideally, the routing algorithm supplies shortest paths to all packets such that

Company

System
[network]
name

Max.
number
of nodes
[× #
CPUs]

Basic network
topology

Injection
[reception]
node BW in
MB/sec

# of data
bits per
link per
direction

Raw
network
link BW
per
direction
in MB/sec

Raw network
bisection BW
(bidirectional)
in GB/sec

Intel ASCI Red
Paragon

4816
[�2]

2D mesh
64�64

400 [400] 16 bits 400 51.2

IBM ASCIWhite
SP Power3
[Colony]

512
[�16]

Bidirectional
MIN with 8-
port
bidirectional
switches
(typically a fat
tree or Omega)

500 [500] 8 bits (+1
bit of
control)

500 256

Intel Thunder
Itanium2
Tiger4
[QsNetII]

1024
[�4]

Fat tree with 8-
port
bidirectional
switches

928 [928] 8 bits (+2
of control
for 4b/5b
encoding)

1333 1365

Cray XT3
[SeaStar]

30,508
[�1]

3D torus
40�32�24

3200 [3200] 12 bits 3800 5836.8

Cray X1E 1024
[�1]

4-way bristled
2D torus
(�23�11)
with express
links

1600 [1600] 16 bits 1600 51.2

IBM ASC Purple
pSeries 575
[Federation]

>1280
[�8]

Bidirectional
MIN with 8-
port
bidirectional
switches
(typically a fat
tree or Omega)

2000 [2000] 8 bits (+2
bits of
control for
novel 5b/
6b
encoding
scheme)

2000 2560

IBM Blue Gene/
L eServer
Sol. [Torus
Net.]

65,536
[�2]

3D torus
32�32�64

612.5
[1050]

1 bit (bit
serial)

175 358.4

Figure F.16 Topological characteristics of interconnection networks used in commercial high-performance
machines.
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traffic load is evenly distributed across network links to minimize contention.
However, some paths provided by the network topology may not be allowed in
order to guarantee that all packets can be delivered, no matter what the traffic
behavior. Paths that have an unbounded number of allowed nonminimal hops from
packet sources, for instance, may result in packets never reaching their destina-
tions. This situation is referred to as livelock. Likewise, paths that cause a set of
packets to block in the network forever waiting only for network resources (i.e.,
links or associated buffers) held by other packets in the set also prevent packets
from reaching their destinations. This situation is referred to as deadlock. As dead-
lock arises due to the finiteness of network resources, the probability of its occur-
rence increases with increased network traffic and decreased availability of
network resources. For the network to function properly, the routing algorithmmust
guard against this anomaly,which canoccur in various forms—for example, routing
deadlock, request-reply (protocol) deadlock, and fault-induced (reconfiguration)
deadlock, etc. At the same time, for the network to provide the highest possible per-
formance, the routing algorithm must be efficient—allowing as many routing
options to packets as there are paths provided by the topology, in the best case.

The simplest way of guarding against livelock is to restrict routing such that
only minimal paths from sources to destinations are allowed or, less restrictively,
only a limited number of nonminimal hops. The strictest form has the added benefit
of consuming the minimal amount of network bandwidth, but it prevents packets
from being able to use alternative nonminimal paths in case of contention or faults
along the shortest (minimal) paths.

Deadlock is more difficult to guard against. Two common strategies are used in
practice: avoidance and recovery. In deadlock avoidance, the routing algorithm
restricts the paths allowed by packets to only those that keep the global network
state deadlock-free. A common way of doing this consists of establishing an order-
ing between a set of resources—the minimal set necessary to support network full
access—and granting those resources to packets in some total or partial order such
that cyclic dependency cannot form on those resources. This allows an escape path
always to be supplied to packets no matter where they are in the network to avoid
entering a deadlock state. In deadlock recovery, resources are granted to packets
without regard for avoiding deadlock. Instead, as deadlock is possible, some mech-
anism is used to detect the likely existence of deadlock. If detected, one or more
packets are removed from resources in the deadlock set—possibly by regressively
dropping the packets or by progressively redirecting the packets onto special dead-
lock recovery resources. The freed network resources are then granted to other
packets needing them to resolve the deadlock.

Let us consider routing algorithms designed for distributed switched networks.
Figure F.17(a) illustrates one of many possible deadlocked configurations for
packets within a region of a 2D mesh network. The routing algorithm can avoid
all such deadlocks (and livelocks) by allowing only the use of minimal paths that
cross the network dimensions in some total order. That is, links of a given dimen-
sion are not supplied to a packet by the routing algorithm until no other links are
needed by the packet in all of the preceding dimensions for it to reach its
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destination. This is illustrated in Figure F.17(b), where dimensions are crossed in
XY dimension order. All the packets must follow the same order when traversing
dimensions, exiting a dimension only when links are no longer required in that
dimension. This well-known algorithm is referred to as dimension-order routing
(DOR) or e-cube routing in hypercubes. It is used in many commercial systems
built from distributed switched networks and on-chip networks. As this routing
algorithm always supplies the same path for a given source-destination pair, it
is a deterministic routing algorithm.

Crossing dimensions in order on some minimal set of resources required to
support network full access avoids deadlock in meshes and hypercubes. However,
for distributed switched topologies that have wrap-around links (e.g., rings and
tori), a total ordering on a minimal set of resources within each dimension is also
needed if resources are to be used to full capacity. Alternatively, some empty
resources or bubbles along the dimensions would be required to remain below full
capacity and avoid deadlock. To allow full access, either the physical links must be
duplicated or the logical buffers associated with each link must be duplicated,
resulting in physical channels or virtual channels, respectively, on which the
ordering is done. Ordering is not necessary on all network resources to avoid dead-
lock—it is needed only on some minimal set required to support network full
access (i.e., some escape resource set). Routing algorithms based on this technique
(called Duato’s protocol) can be defined that allow alternative paths provided by
the topology to be used for a given source-destination pair in addition to the escape
resource set. One of those allowed paths must be selected, preferably the most

(A) (B)

s1 s2

d3 d4 d5

d2 d1

s4 s5 s3

s1 s2

d3 d4 d5

d2 d1

s4 s5 s3

Figure F.17 A mesh network with packets routing from sources, si, to destinations, di. (a) Deadlock forms from
packets destined to d1 through d4 blocking on others in the same set that fully occupy their requested buffer
resources one hop away from their destinations. This deadlock cycle causes other packets needing those resources
also to block, like packets from s5 destined to d5 that have reached node s3. (b) Deadlock is avoided using dimension-
order routing. In this case, packets exhaust their routes in the X dimension before turning into the Y dimension in
order to complete their routing.
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efficient one. Adapting the path in response to prevailing network traffic condi-
tions enables the aggregate network bandwidth to be better utilized and contention
to be reduced. Such routing capability is referred to as adaptive routing and is used
in many commercial systems.

Example How many of the possible dimensional turns are eliminated by dimension-order
routing on an n-dimensional mesh network? What is the fewest number of turns
that actually need to be eliminated while still maintaining connectedness and dead-
lock freedom? Explain using a 2D mesh network.

Answer The dimension-order routing algorithm eliminates exactly half of the possible
dimensional turns as it is easily proven that all turns from any lower-ordered
dimension into any higher-ordered dimension are allowed, but the converse is
not true. For example, of the eight possible turns in the 2D mesh shown in
Figure F.17, the four turns from X+ to Y+, X+ to Y�, X� to Y+, and X� to Y�
are allowed, where the signs (+ or�) refer to the direction of travel within a dimen-
sion. The four turns from Y+ to X+, Y+ to X�, Y� to X+, and Y� to X� are dis-
allowed turns. The elimination of these turns prevents cycles of any kind from
forming—and, thus, avoids deadlock—while keeping the network connected.
However, it does so at the expense of not allowing any routing adaptivity.

The Turn Model routing algorithm proves that the minimum number of elim-
inated turns to prevent cycles and maintain connectedness is a quarter of the pos-
sible turns, but the right set of turns must be chosen. Only some particular set of
eliminated turns allow both requirements to be satisfied. With the elimination of
the wrong set of a quarter of the turns, it is possible for combinations of allowed
turns to emulate the eliminated ones (and, thus, form cycles and deadlock) or for
the network not to be connected. For the 2D mesh, for example, it is possible to
eliminate only the two turns ending in the westward direction (i.e., Y+ to X�
and Y� to X�) by requiring packets to start their routes in the westward direction
(if needed) to maintain connectedness. Alternatives to this west-first routing for 2D
meshes are negative-first routing and north-last routing. For these, the extra quarter
of turns beyond that supplied by DOR allows for partial adaptivity in routing, mak-
ing these adaptive routing algorithms.

Routing algorithms for centralized switched networks can similarly be
defined to avoid deadlocks by restricting the use of resources in some total
or partial order. For fat trees, resources can be totally ordered along paths start-
ing from the input leaf stage upward to the root and then back down to the out-
put leaf stage. The routing algorithm can allow packets to use resources in
increasing partial order, first traversing up the tree until they reach some least
common ancestor (LCA) of the source and destination, and then back down the
tree until they reach their destinations. As there are many least common ances-
tors for a given destination, multiple alternative paths are allowed while going
up the tree, making the routing algorithm adaptive. However, only a single
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deterministic path to the destination is provided by the fat tree topology from a
least common ancestor. This self-routing property is common to many MINs
and can be readily exploited: The switch output port at each stage is given sim-
ply by shifts of the destination node address.

More generally, a tree graph can be mapped onto any topology—whether
direct or indirect—and links between nodes at the same tree level can be allowed
by assigning directions to them, where “up” designates paths moving toward the
tree root and “down” designates paths moving away from the root node. This
allows for generic up*/down* routing to be defined on any topology such
that packets follow paths (possibly adaptively) consisting of zero or more up links
followed by zero or more down links to their destination. Up/down ordering pre-
vents cycles from forming, avoiding deadlock. This routing technique was used in
Autonet—a self-configuring switched LAN—and in early Myrinet SANs.

Routing algorithms are implemented in practice by a combination of the rout-
ing information placed in the packet header by the source node and the routing
control mechanism incorporated in the switches. For source routing, the entire
routing path is precomputed by the source—possibly by table lookup—and placed
in the packet header. This usually consists of the output port or ports supplied for
each switch along the predetermined path from the source to the destination, which
can be stripped off by the routing control mechanism at each switch. An additional
bit field can be included in the header to signify whether adaptive routing is
allowed (i.e., that any one of the supplied output ports can be used). For distributed
routing, the routing information usually consists of the destination address. This is
used by the routing control mechanism in each switch along the path to determine
the next output port, either by computing it using a finite-state machine or by look-
ing it up in a local routing table (i.e., forwarding table). Compared to distributed
routing, source routing simplifies the routing control mechanism within the net-
work switches, but it requires more routing bits in the header of each packet, thus
increasing the header overhead.

Arbitration

The arbitration algorithm determines when requested network paths are available
for packets. Ideally, arbiters maximize the matching of free network resources and
packets requesting those resources. At the switch level, arbiters maximize the
matching of free output ports and packets located in switch input ports requesting
those output ports. When all requests cannot be granted simultaneously, switch
arbiters resolve conflicts by granting output ports to packets in a fair way such that
starvation of requested resources by packets is prevented. This could happen to
packets in shorter queues if a serve-longest-queue (SLQ) scheme is used. For
packets having the same priority level, simple round-robin (RR) or age-based
schemes are sufficiently fair and straightforward to implement.

Arbitration can be distributed to avoid centralized bottlenecks. A straightfor-
ward technique consists of two phases: a request phase and a grant phase. Let
us assume that each switch input port has an associated queue to hold incoming
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packets and that each switch output port has an associated local arbiter implement-
ing a round-robin strategy. Figure F.18(a) shows a possible set of requests for a
four-port switch. In the request phase, packets at the head of each input port queue
send a single request to the arbiters corresponding to the output ports requested by
them. Then, each output port arbiter independently arbitrates among the requests it
receives, selecting only one. In the grant phase, one of the requests to each arbiter
is granted the requested output port. When two packets from different input ports
request the same output port, only one receives a grant, as shown in the figure. As a
consequence, some output port bandwidth remains unused even though all input
queues have packets to transmit.

The simple two-phase technique can be improved by allowing several simul-
taneous requests to be made by each input port, possibly coming from different
virtual channels or from multiple adaptive routing options. These requests are sent
to different output port arbiters. By submitting more than one request per input
port, the probability of matching increases. Now, arbitration requires three phases:
request, grant, and acknowledgment. Figure F.18(b) shows the case in which up to
two requests can be made by packets at each input port. In the request phase,
requests are submitted to output port arbiters, and these arbiters select one of
the received requests, as is done for the two-phase arbiter. Likewise, in the grant
phase, the selected requests are granted to the corresponding requesters. Taking
into account that an input port can submit more than one request, it may receive
more than one grant. Thus, it selects among possibly multiple grants using some
arbitration strategy such as round-robin. The selected grants are confirmed to the
corresponding output port arbiters in the acknowledgment phase.

As can be seen in Figure F.18(b), it could happen that an input port that submits
several requests does not receive any grants, while some of the requested ports
remain free. Because of this, a second arbitration iteration can improve the prob-
ability of matching. In this iteration, only the requests corresponding to non-
matched input and output ports are submitted. Iterative arbiters with multiple

(B)(A)
tnemgdelwonkcAtnarGtseuqeR Request Grant

Figure F.18 Two arbitration techniques. (a) Two-phased arbitration in which two of
the four input ports are granted requested output ports. (b) Three-phased arbitration
in which three of the four input ports are successful in gaining the requested output
ports, resulting in higher switch utilization.
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requests per input port are able to increase the utilization of switch output ports and,
thus, the network link bandwidth. However, this comes at the expense of additional
arbiter complexity and increased arbitration delay, which could increase the router
clock cycle time if it is on the critical path.

Switching

The switching technique defines how connections are established in the network. Ide-
ally, connections between network resources are established or “switched in”only for
as long as they are actually needed and exactly at the point that they are ready and
needed to be used, considering both time and space. This allows efficient use of avail-
ablenetworkbandwidthbycompeting traffic flowsandminimal latency.Connections
at eachhopalong the topological pathallowedby the routingalgorithmandgrantedby
the arbitration algorithm can be established in three basicways: prior to packet arrival
using circuit switching, upon receipt of the entire packet using store-and-forward
packet switching, or upon receipt of only portions of the packetwith unit size no smal-
ler than that of the packet header using cut-through packet switching.

Circuit switching establishes a circuit a priori such that network bandwidth is
allocated for packet transmissions along an entire source-destination path. It is
possible to pipeline packet transmission across the circuit using staging at each
hop along the path, a technique known as pipelined circuit switching. As routing,
arbitration, and switching are performed only once for one or more packets, routing
bits are not needed in the header of packets, thus reducing latency andoverhead.This
can be very efficient when information is continuously transmitted between devices
for the same circuit setup. However, as network bandwidth is removed from the
shared pool andpreallocated regardless ofwhether sources are in need of consuming
it or not, circuit switching can be very inefficient and highly wasteful of bandwidth.

Packet switching enables network bandwidth to be shared and used more
efficiently when packets are transmitted intermittently, which is the more common
case. Packet switching comes in two main varieties—store-and-forward and
cutthrough switching, both of which allow network link bandwidth to be multi-
plexed on packet-sized or smaller units of information. This better enables band-
width sharing by packets originating from different sources. The finer granularity
of sharing, however, increases the overhead needed to perform switching: Routing,
arbitration, and switching must be performed for every packet, and routing and
flow control bits are required for every packet if flow control is used.

Store-and-forward packet switching establishes connections such that a packet
is forwarded to the next hop in sequence along its source-destination path only after
the entire packet is first stored (staged) at the receiving switch. As packets are
completely stored at every switch before being transmitted, links are completely
decoupled, allowing full link bandwidth utilization even if links have very different
bandwidths. This property is very important in WANs, but the price to pay is
packet latency; the total routing, arbitration, and switching delay is multiplicative
with the number of hops, as we have seen in Section F.4 when analyzing perfor-
mance under this assumption.
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Cut-through packet switching establishes connections such that a packet can “cut
through” switches in a pipelined manner once the header portion of the packet
(or equivalent amount of payload trailing the header) is staged at receiving switches.
That is, the rest of the packet neednot arrive before switching in the granted resources.
This allows routing, arbitration, and switching delay to be additivewith the number of
hops rather than multiplicative to reduce total packet latency. Cut-through comes
in two varieties, the main differences being the size of the unit of information on
which flow control is applied and, consequently, the buffer requirements at switches.
Virtual cut-through switching implements flow control at the packet level, whereas
wormhole switching implements it on flow units, or flits, which are smaller than
the maximum packet size but usually at least as large as the packet header. Since
wormhole switches need to be capable of storing only a small portion of a packet,
packets that block in the network may span several switches. This can cause other
packets to block on the links they occupy, leading to premature network saturation
and reduced effective bandwidth unless some centralized buffer is used within the
switch to store them—a technique called buffered wormhole switching. As chips
can implement relatively large buffers in current technology, virtual cut-through is
the more commonly used switching technique. However, wormhole switching
may still be preferred in OCNs designed to minimize silicon resources.

Premature network saturation caused by wormhole switching can be mitigated
by allowing several packets to share the physical bandwidth of a link simulta-
neously via time-multiplexed switching at the flit level. This requires physical links
to have a set of virtual channels (i.e., the logical buffers mentioned previously) at
each end, into which packets are switched. Before, we saw how virtual channels
can be used to decouple physical link bandwidth from buffered packets in such a
way as to avoid deadlock. Now, virtual channels are multiplexed in such a way that
bandwidth is switched in and used by flits of a packet to advance even though the
packet may share some links in common with a blocked packet ahead. This, again,
allows network bandwidth to be used more efficiently, which, in turn, reduces the
average packet latency.

Impact on Network Performance

Routing, arbitration, and switching can impact the packet latency of a loaded
network by reducing the contention delay experienced by packets. For an unloaded
network that has no contention, the algorithms used to perform routing and
arbitration have no impact on latency other than to determine the amount of delay
incurred in implementing those functions at switches—typically, the pin-to-pin
latency of a switch chip is several tens of nanoseconds. The only change to the
best-case packet latency expression given in the previous section comes from
the switching technique. Store-and-forward packet switching was assumed before
in which transmission delay for the entire packet is incurred on all d hops plus at the
source node. For cut-through packet switching, transmission delay is pipelined
across the network links comprising the packet’s path at the granularity of the
packet header instead of the entire packet. Thus, this delay component is reduced,
as shown in the following lower-bound expression for packet latency:
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Latency¼ Sending overhead +TLinkProp� d + 1ð Þ+ Tr + τa +TSð Þ�d +
Packet + d�Headerð Þð Þ

Bandwidth
+Receiving overhead

The effective bandwidth is impacted by how efficiently routing, arbitration, and
switching allow network bandwidth to be used. The routing algorithm can distrib-
ute traffic more evenly across a loaded network to increase the utilization of the
aggregate bandwidth provided by the topology—particularly, by the bisection
links. The arbitration algorithm can maximize the number of switch output ports
that accept packets, which also increases the utilization of network bandwidth. The
switching technique can increase the degree of resource sharing by packets, which
further increases bandwidth utilization. These combine to affect network band-
width, BWNetwork, by an efficiency factor, ρ, where 0<ρ�1:

BWNetwork ¼ ρ�BWBisection

γ

The efficiency factor, ρ, is difficult to calculate or to quantify by means other than
simulation. Nevertheless, with this parameter we can estimate the best-case upper-
bound effective bandwidth by using the following expression that takes into
account the effects of routing, arbitration, and switching:

Effective bandwidth¼ min N�BWLinkInjection, ρ�BWBisection

γ
,σ�N�BWLinkReception

� �

We note that ρ also depends on how well the network handles the traffic generated
by applications. For instance, ρ could be higher for circuit switching than for
cut-through switching if large streams of packets are continually transmitted
between a source-destination pair, whereas the converse could be true if packets
are transmitted intermittently.

Example Compare the performance of deterministic routing versus adaptive routing for a 3D
torus network interconnecting 4096 nodes. Do so by plotting latency versus
applied load and throughput versus applied load. Also compare the efficiency
of the best and worst of these networks. Assume that virtual cut-through switching,
three-phase arbitration, and virtual channels are implemented. Consider separately
the cases for two and four virtual channels, respectively. Assume that one of the
virtual channels uses bubble flow control in dimension order so as to avoid dead-
lock; the other virtual channels are used either in dimension order (for deterministic
routing) or minimally along shortest paths (for adaptive routing), as is done in the
IBM Blue Gene/L torus network.

Answer It is very difficult to compute analytically the performance of routing algorithms
given that their behavior depends on several network design parameters with com-
plex interdependences among them. As a consequence, designers typically resort
to cycle-accurate simulators to evaluate performance. One way to evaluate the
effect of a certain design decision is to run sets of simulations over a range of net-
work loads, each time modifying one of the design parameters of interest while
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keeping the remaining ones fixed. The use of synthetic traffic loads is quite fre-
quent in these evaluations as it allows the network to stabilize at a certain working
point and for behavior to be analyzed in detail. This is the method we use here
(alternatively, trace-driven or execution-driven simulation can be used).

Figure F.19 shows the typical interconnection network performance plots. On
the left, average packet latency (expressed in network cycles) is plotted as a func-
tion of applied load (traffic generation rate) for the two routing algorithms with two
and four virtual channels each; on the right, throughput (traffic delivery rate) is
similarly plotted. Applied load is normalized by dividing it by the number of nodes
in the network (i.e., bytes per cycle per node). Simulations are run under the
assumption of uniformly distributed traffic consisting of 256-byte packets, where
flits are byte sized. Routing, arbitration, and switching delays are assumed to sum
to 1 network cycle per hop while the time-of-flight delay over each link is assumed
to be 10 cycles. Link bandwidth is 1 byte per cycle, thus providing results that are
independent of network clock frequency.

As can be seen, the plots within each graph have similar characteristic shapes,
but they have different values. For the latency graph, all start at the no-load latency
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Figure F.19 Deterministic routing is compared against adaptive routing, both with either two or four virtual
channels, assuming uniformly distributed traffic on a 4 K node 3D torus network with virtual cut-through switch-
ing and bubble flow control to avoid deadlock. (a) Average latency is plotted versus applied load, and (b) through-
put is plotted versus applied load (the upper grayish plots show peak throughput, and the lower black plots show
sustained throughput). Simulation data were collected by P. Gilabert and J. Flich at the Universidad Politècnica de
València, Spain (2006).
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as predicted by the latency expression given above, then slightly increase with traf-
fic load as contention for network resources increases. At higher applied loads,
latency increases exponentially, and the network approaches its saturation point
as it is unable to absorb the applied load, ¼ causing packets to queue up at their
source nodes awaiting injection. In these simulations, the queues keep growing
over time, making latency tend toward infinity. However, in practice, queues reach
their capacity and trigger the application to stall further packet generation, or the
application throttles itself waiting for acknowledgments/responses to outstanding
packets. Nevertheless, latency grows at a slower rate for adaptive routing as alter-
native paths are provided to packets along congested resources.

For this same reason, adaptive routing allows the network to reach a higher peak
throughput for the same number of virtual channels as compared to deterministic
routing. At nonsaturation loads, throughput increases fairly linearly with applied
load.When the network reaches its saturation point, however, it is unable to deliver
traffic at the same rate at which traffic is generated. The saturation point, therefore,
indicates the maximum achievable or “peak” throughput, which would be no more
than that predicted by the effective bandwidth expression given above. Beyond
saturation, throughput tends to drop as a consequence of massive head-of-line
blocking across the network (as will be explained further in Section F.6), very
much like cars tend to advance more slowly at rush hour. This is an important
region of the throughput graph as it shows how significant of a performance drop
the routing algorithm can cause if congestion management techniques (discussed
briefly in Section F.7) are not used effectively. In this case, adaptive routing has
more of a performance drop after saturation than deterministic routing, as mea-
sured by the postsaturation sustained throughput.

For both routing algorithms, more virtual channels (i.e., four) give packets a
greater ability to pass over blocked packets ahead, allowing for a higher peak
throughput as compared to fewer virtual channels (i.e., two). For adaptive routing
with four virtual channels, the peak throughput of 0.43 bytes/cycle/node is near the
maximum of 0.5 bytes/cycle/node that can be obtained with 100% efficiency (i.e.,
ρ¼100%), assuming there is enough injection and reception bandwidth to make
the network bisection the bottlenecking point. In that case, the network bandwidth
is simply 100% times the network bisection bandwidth (BWBisection) divided by the
fraction of traffic crossing the bisection (γ), as given by the expression above. Tak-
ing into account that the bisection splits the torus into two equally sized halves, γ is
equal to 0.5 for uniform traffic as only half the injected traffic is destined to a node
at the other side of the bisection. The BWBisection for a 4096-node 3D torus network
is 16�16�4 unidirectional links times the link bandwidth (i.e., 1 byte/cycle). If
we normalize the bisection bandwidth by dividing it by the number of nodes (as we
did with network bandwidth), the BWBisection is 0.25 bytes/cycle/node. Dividing
this by γ gives the ideal maximally obtainable network bandwidth of 0.5 bytes/
cycle/node.

We can find the efficiency factor, ρ, of the simulated network simply by divid-
ing the measured peak throughput by the ideal throughput. The efficiency factor for
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the network with fully adaptive routing and four virtual channels is 0.43/(0.25/
0.5)¼86%, whereas for the network with deterministic routing and two virtual
channels it is 0.37/(0.25/0.5)¼74%. Besides the 12% difference in efficiency
between the two, another 14% gain in efficiency might be obtained with even bet-
ter routing, arbitration, switching, and virtual channel designs.

To put this discussion on routing, arbitration, and switching in perspective,
Figure F.20 lists the techniques used in SANs designed for commercial high-
performance computers. In addition to being applied to the SANs as shown in
the figure, the issues discussed in this section also apply to other interconnect
domains: from OCNs to WANs.

F.6 Switch Microarchitecture

Network switches implement the routing, arbitration, and switching functions of
switched-media networks. Switches also implement buffer management mecha-
nisms and, in the case of lossless networks, the associated flow control. For some
networks, switches also implement part of the network management functions that
explore, configure, and reconfigure the network topology in response to boot-up
and failures. Here, we reveal the internal structure of network switches by describ-
ing a basic switch microarchitecture and various alternatives suitable for different
routing, arbitration, and switching techniques presented previously.

Basic Switch Microarchitecture

The internal data path of a switch provides connectivity among the input and output
ports. Although a shared bus or a multiported central memory could be used, these
solutions are insufficient or too expensive, respectively, when the required aggre-
gate switch bandwidth is high. Most high-performance switches implement an
internal crossbar to provide nonblocking connectivity within the switch, thus
allowing concurrent connections between multiple input-output port pairs. Buffer-
ing of blocked packets can be done using first in, first out (FIFO) or circular
queues, which can be implemented as dynamically allocatable multi-queues
(DAMQs) in static RAM to provide high capacity and flexibility. These queues
can be placed at input ports (i.e., input buffered switch), output ports (i.e., output
buffered switch), centrally within the switch (i.e., centrally buffered switch), or at
both the input and output ports of the switch (i.e., input-output-buffered switch).
Figure F.21 shows a block diagram of an input-output-buffered switch.

Routing can be implemented using a finite-state machine or forwarding table
within the routing control unit of switches. In the former case, the routing infor-
mation given in the packet header is processed by a finite-state machine that deter-
mines the allowed switch output port (or ports if routing is adaptive), according to
the routing algorithm. Portions of the routing information in the header are usually
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Figure F.20 Routing, arbitration, and switching characteristics of interconnections networks in commercial
machines.

F.6 Switch Microarchitecture ■ F-57



stripped off or modified by the routing control unit after use to simplify processing
at the next switch along the path. When routing is implemented using forwarding
tables, the routing information given in the packet header is used as an address to
access a forwarding table entry that contains the allowed switch output port(s) pro-
vided by the routing algorithm. Forwarding tables must be preloaded into the
switches at the outset of network operation. Hybrid approaches also exist where
the forwarding table is reduced to a small set of routing bits and combined with
a small logic block. Those routing bits are used by the routing control unit to know
what paths are allowed and decide the output ports the packets need to take. The
goal with those approaches is to build flexible yet compact routing control units,
eliminating the area and power wastage of a large forwarding table and thus being
suitable for OCNs. The routing control unit is usually implemented as a centralized
resource, although it could be replicated at every input port so as not to become a
bottleneck. Routing is done only once for every packet, and packets typically are
large enough to take several cycles to flow through the switch, so a centralized
routing control unit rarely becomes a bottleneck. Figure F.21 assumes a centralized
routing control unit within the switch.

Arbitration is required when two or more packets concurrently request the
same output port, as described in the previous section. Switch arbitration can be
implemented in a centralized or distributed way. In the former case, all of the
requests and status information are transmitted to the central switch arbitration
unit; in the latter case, the arbiter is distributed across the switch, usually among
the input and/or output ports. Arbitration may be performed multiple times on
packets, and there may be multiple queues associated with each input port,
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increasing the number of arbitration requests that must be processed. Thus, many
implementations use a hierarchical arbitration approach, where arbitration is first
performed locally at every input port to select just one request among the corre-
sponding packets and queues, and later arbitration is performed globally to process
the requests made by each of the local input port arbiters. Figure F.21 assumes a
centralized arbitration unit within the switch.

The basic switch microarchitecture depicted in Figure F.21 functions in the fol-
lowing way. When a packet starts to arrive at a switch input port, the link controller
decodes the incoming signal and generates a sequence of bits, possibly deserializ-
ing data to adapt them to the width of the internal data path if different from the
external link width. Information is also extracted from the packet header or link
control signals to determine the queue to which the packet should be buffered.
As the packet is being received and buffered (or after the entire packet has been
buffered, depending on the switching technique), the header is sent to the routing
unit. This unit supplies a request for one or more output ports to the arbitration unit.
Arbitration for the requested output port succeeds if the port is free and has enough
space to buffer the entire packet or flit, depending on the switching technique. If
wormhole switching with virtual channels is implemented, additional arbitration
and allocation steps may be required for the transmission of each individual flit.
Once the resources are allocated, the packet is transferred across the internal cross-
bar to the corresponding output buffer and link if no other packets are ahead of it
and the link is free. Link-level flow control implemented by the link controller pre-
vents input queue overflow at the neighboring switch on the other end of the link. If
virtual channel switching is implemented, several packets may be time-
multiplexed across the link on a flit-by-flit basis. As the various input and output
ports operate independently, several incoming packets may be processed concur-
rently in the absence of contention.

Buffer Organizations

As mentioned above, queues can be located at the switch input, output, or both
sides. Output-buffered switches have the advantage of completely eliminating
head-of-line blocking. Head-of-line (HOL) blocking occurs when two or more
packets are buffered in a queue, and a blocked packet at the head of the queue
blocks other packets in the queue that would otherwise be able to advance if they
were at the queue head. This cannot occur in output-buffered switches as all the
packets in a given queue have the same status; they require the same output port.
However, it may be the case that all the switch input ports simultaneously receive a
packet for the same output port. As there are no buffers at the input side, output
buffers must be able to store all those incoming packets at the same time. This
requires implementing output queues with an internal switch speedup of k. That
is, output queues must have a write bandwidth k times the link bandwidth, where
k is the number of switch ports. This oftentimes is too expensive. Hence, this solu-
tion by itself has rarely been implemented in lossless networks. As the probability
of concurrently receiving many packets for the same output port is usually small,
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commercial systems that use output-buffered switches typically implement only
moderate switch speedup, dropping packets on rare buffer overflow.

Switches with buffers on the input side are able to receive packets without hav-
ing any switch speedup; however, HOL blocking can occur within input port
queues, as illustrated in Figure F.22(a). This can reduce switch output port utiliza-
tion to less than 60% even when packet destinations are uniformly distributed. As
shown in Figure F.22(b), the use of virtual channels (two in this case) can mitigate
HOL blocking but does not eliminate it. Amore effective solution is to organize the
input queues as virtual output queues (VOQs), shown in Figure F.22(c). With this,
each input port implements as many queues as there are output ports, thus provid-
ing separate buffers for packets destined to different output ports. This is a popular
technique widely used in ATM switches and IP routers. The main drawbacks of
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VOQs, however, are cost and lack of scalability: The number of VOQs grows qua-
dratically with switch ports. Moreover, although VOQs eliminate HOL blocking
within a switch, HOL blocking occurring at the network level end-to-end is not
solved. Of course, it is possible to design a switch with VOQ support at the network
level also—that is, to implement as many queues per switch input port as there are
output ports across the entire network—but this is extremely expensive. An alter-
native is to dynamically assign only a fraction of the queues to store (cache) sep-
arately only those packets headed for congested destinations.

Combined input-output-buffered switches minimize HOL blocking when there
is sufficient buffer space at the output side to buffer packets, and they minimize the
switch speedup required due to buffers being at the input side. This solution has the
further benefit of decoupling packet transmission through the internal crossbar of
the switch from transmission through the external links. This is especially useful
for cut-through switching implementations that use virtual channels, where flit
transmissions are time-multiplexed over the links. Many designs used in commer-
cial systems implement input-output-buffered switches.

Routing Algorithm Implementation

It is important to distinguish between the routing algorithm and its implementation.
While the routing algorithm describes the rules to forward packets across the net-
work and affects packet latency and network throughput, its implementation affects
the delay sufferedbypacketswhen reaching a node, the required silicon area, and the
power consumption associated with the routing computation. Several techniques
have been proposed to pre-compute the routing algorithm and/or hide the routing
computation delay. However, significantly less effort has been devoted to reduce
silicon area and power consumptionwithout significantly affecting routing flexibil-
ity. Both issues have become very important, particularly for OCNs. Many existing
designs address these issues by implementing relatively simple routing algorithms,
but more sophisticated routing algorithms will likely be needed in the future to deal
with increasingmanufacturing defects, process variability, and other complications
arising from continued technology scaling, as discussed briefly below.

As mentioned in a previous section, depending on where the routing algorithm
is computed, two basic forms of routing exist: source and distributed routing. In
source routing, the complexity of implementation is moved to the end nodes where
paths need to be stored in tables, and the path for a given packet is selected based on
the destination end node identifier. In distributed routing, however, the complexity
is moved to the switches where, at each hop along the path of a packet, a selection
of the output port to take is performed. In distributed routing, two basic implemen-
tations exist. The first one consists of using a logic block that implements a fixed
routing algorithm for a particular topology. The most common example of such an
implementation is dimension-order routing, where dimensions are offset in an
established order. Alternatively, distributed routing can be implemented with for-
warding tables, where each entry encodes the output port to be used for a particular
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destination. Therefore, in the worst case, as many entries as destination nodes are
required.

Both methods for implementing distributed routing have their benefits and
drawbacks. Logic-based routing features a very short computation delay, usually
requires a small silicon area, and has low power consumption. However, logic-
based routing needs to be designed with a specific topology in mind and, therefore,
is restricted to that topology. Table-based distributed routing is quite flexible and
supports any topology and routing algorithm. Simply, tables need to be filled with
the proper contents based on the applied routing algorithm (e.g., the up*/down*
routing algorithm can be defined for any irregular topology). However, the down
side of table-based distributed routing is its non-negligible area and power cost.
Also, scalability is problematic in table-based solutions as, in the worst case, a sys-
tem with N end nodes (and switches) requires as many as N tables each with N
entries, thus having quadratic cost.

Depending on the network domain, one solution is more suitable than the other.
For instance, in SANs, it is usual to find table-based solutions as is the case with
InfiniBand. In other environments, like OCNs, table-based implementations are
avoided due to the aforementioned costs in power and silicon area. In such envi-
ronments, it is more advisable to rely on logic-based implementations. Herein lies
some of the challenges OCN designers face: ever continuing technology scaling
through device miniaturization leads to increases in the number of manufacturing
defects, higher failure rates (either transient or permanent), significant process var-
iations (transistors behaving differently from design specs), the need for different
clock frequency and voltage domains, and tight power and energy budgets. All of
these challenges translate to the network needing support for heterogeneity. Dif-
ferent—possibly irregular—regions of the network will be created owing to failed
components, powered down switches and links, disabled components (due to
unacceptable variations in performance) and so on. Hence, heterogeneous systems
may emerge from a homogeneous design. In this framework, it is important to effi-
ciently implement routing algorithms designed to provide enough flexibility to
address these new challenges.

A well-known solution for providing a certain degree of flexibility while being
much more compact than traditional table-based approaches is interval routing
[Leeuwen 1987], where a range of destinations is defined for each output port.
Although this approach is not flexible enough, it provides a clue on how to address
emerging challenges. A more recent approach provides a plausible implementation
design point that lies between logic-based implementation (efficiency) and table-
based implementation (flexibility). Logic-Based Distributed Routing (LBDR) is a
hybrid approach that takes as a reference a regular 2D mesh but allows an irregular
network to be derived from it due to changes in topology induced by manufactur-
ing defects, failures, and other anomalies. Due to the faulty, disabled, and powered-
down components, regularity is compromised and the dimension-order routing
algorithm can no longer be used. To support such topologies, LBDR defines a
set of configuration bits at each switch. Four connectivity bits are used at each
switch to indicate the connectivity of the switch to the neighbor switches in the
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topology. Thus, one connectivity bit per port is used. Those connectivity bits are
used, for instance, to disable an output port leading to a faulty component. Addi-
tionally, eight routing bits are used, two per output port, to define the available
routing options. The value of the routing bits is set at power-on and is computed
from the routing algorithm to be implemented in the network. Basically, when a
routing bit is set, it indicates that a packet can leave the switch through the asso-
ciated output port and is allowed to perform a certain turn at the next switch. In this
respect, LBDR is similar to interval routing, but it defines geographical areas
instead of ranges of destinations. Figure F.23 shows an example where a
topology-agnostic routing algorithm is implemented with LBDR on an irregular
topology. The figure shows the computed configuration bits.

The connectivity and routing bits are used to implement the routing algorithm.
For that purpose, a small set of logic gates are used in combination with the con-
figuration bits. Basically, the LBDR approach takes as a reference the initial topol-
ogy (a 2D mesh), and makes a decision based on the current coordinates of the
router, the coordinates of the destination router, and the configuration bits.
Figure F.24 shows the required logic, and Figure F.25 shows an example of where
a packet is forwarded from its source to its destination with the use of the config-
uration bits. As can be noticed, routing restrictions are enforced by preventing the
use of the west port at switch 10.

LBDR represents a method for efficient routing implementation in OCNs.
This mechanism has been recently extended to support non-minimal paths,
collective communication operations, and traffic isolation. All of these improve-
ments have been made while maintaining a compact and efficient implementation
with the use of a small set of configuration bits. A detailed description of
LBDR and its extensions, and the current research on OCNs can be found in
Flich [2010].
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Figure F.23 Shown is an example of an irregular network that uses LBDR to implement the routing algorithm.
For each router, connectivity and routing bits are defined.
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Pipelining the Switch Microarchitecture

Performance can be enhanced by pipelining the switch microarchitecture. Pipe-
lined processing of packets in a switch has similarities with pipelined execution
of instructions in a vector processor. In a vector pipeline, a single instruction indi-
cates what operation to apply to all the vector elements executed in a pipelined
way. Similarly, in a switch pipeline, a single packet header indicates how to pro-
cess all of the internal data path physical transfer units (or phits) of a packet, which
are processed in a pipelined fashion. Also, as packets at different input ports are
independent of each other, they can be processed in parallel similar to the way mul-
tiple independent instructions or threads of pipelined instructions can be executed
in parallel.
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The switch microarchitecture can be pipelined by analyzing the basic functions
performed within the switch and organizing them into several stages. Figure F.26
shows a block diagram of a five-stage pipelined organization for the basic switch
microarchitecture given in Figure F.21, assuming cut-through switching and the
use of a forwarding table to implement routing. After receiving the header portion
of the packet in the first stage, the routing information (i.e., destination address) is
used in the second stage to look up the allowed routing option(s) in the forwarding
table. Concurrent with this, other portions of the packet are received and buffered
in the input port queue at the first stage. Arbitration is performed in the third stage.
The crossbar is configured to allocate the granted output port for the packet in the
fourth stage, and the packet header is buffered in the switch output port and ready
for transmission over the external link in the fifth stage. Note that the second and
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third stages are used only by the packet header; the payload and trailer portions of
the packet use only three of the stages—those used for data flow-thru once the
internal data path of the switch is set up.

A virtual channel switch usually requires an additional stage for virtual channel
allocation. Moreover, arbitration is required for every flit before transmission
through the crossbar. Finally, depending on the complexity of the routing and arbi-
tration algorithms, several clock cycles may be required for these operations.

Other Switch Microarchitecture Enhancements

As mentioned earlier, internal switch speedup is sometimes implemented to
increase switch output port utilization. This speedup is usually implemented by
increasing the clock frequency and/or the internal data path width (i.e., phit size)
of the switch. An alternative solution consists of implementing several parallel data
paths from each input port’s set of queues to the output ports. One way of doing this
is by increasing the number of crossbar input ports. When implementing several
physical queues per input port, this can be achieved by devoting a separate crossbar
port to each input queue. For example, the IBM Blue Gene/L implements two
crossbar access ports and two read ports per switch input port.

Another way of implementing parallel data paths between input and output
ports is to move the buffers to the crossbar crosspoints. This switch architecture
is usually referred to as a buffered crossbar switch. A buffered crossbar provides
independent data paths from each input port to the different output ports, thus mak-
ing it possible to send up to k packets at a time from a given input port to k different
output ports. By implementing independent crosspoint memories for each input-
output port pair, HOL blocking is eliminated at the switch level. Moreover, arbi-
tration is significantly simpler than in other switch architectures. Effectively, each
output port can receive packets from only a disjoint subset of the crosspoint mem-
ories. Thus, a completely independent arbiter can be implemented at each switch
output port, each of those arbiters being very simple.

A buffered crossbar would be the ideal switch architecture if it were not so
expensive. The number of crosspoint memories increases quadratically with the
number of switch ports, dramatically increasing its cost and reducing its scalability
with respect to the basic switch architecture. In addition, each crosspoint memory
must be large enough to efficiently implement link-level flow control. To reduce
cost, most designers prefer input-buffered or combined input-output-buffered
switches enhanced with some of the mechanisms described previously.

F.7 Practical Issues for Commercial Interconnection
Networks

There are practical issues in addition to the technical issues described thus far that
are important considerations for interconnection networks within certain domains.
We mention a few of these below.
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Connectivity

The type andnumber of devices that communicate and their communication require-
ments affect the complexity of the interconnection network and its protocols. The
protocols must target the largest network size and handle the types of anomalous
systemwide events that might occur. Among some of the issues are the following:
How lightweight should the network interface hardware/software be? Should it
attach to the memory network or the I/O network? Should it support cache coher-
ence? If the operating system must get involved for every network transaction,
the sending and receiving overhead becomes quite large. If the network interface
attaches to the I/O network (PCI-Express or HyperTransport interconnect), the
injection and reception bandwidth will be limited to that of the I/O network. This
is the case for the Cray XT3 SeaStar, Intel Thunder Tiger 4 QsNetII, andmany other
supercomputer and cluster networks. To support coherence, the sender may have to
flush the cache before each send, and the receiver may have to flush its cache before
each receive to prevent the stale-data problem. Such flushes further increase sending
and receiving overhead, often causing the network interface to be the network
bottleneck.

Computer systems typically have a multiplicity of interconnects with different
functions and cost-performance objectives. For example, processor-memory inter-
connects usually provide higher bandwidth and lower latency than I/O interconnects
and are more likely to support cache coherence, but they are less likely to follow or
become standards. Personal computers typically have a processormemory intercon-
nect and an I/O interconnect (e.g., PCI-X 2.0, PCIe or Hyper-Transport) designed to
connect both fast and slow devices (e.g., USB 2.0, Gigabit Ethernet LAN, Firewire
800). The Blue Gene/L supercomputer uses five interconnection networks, only
one of which is the 3D torus used for most of the interprocessor application traffic.
The others include a tree-based collective communication network for broadcast
and multicast; a tree-based barrier network for combining results (scatter, gather);
a control network fordiagnostics, debugging, and initialization; and aGigabit Ethernet
networkforI/Obetweenthenodesanddisk.TheUniversityofTexasatAustin’sTRIPS
Edge processor has eight specialized on-chip networks—some with bidirectional
channels aswide as 128 bits and somewith 168 bits in each direction—to interconnect
the 106 heterogeneous tiles composing the twoprocessor coreswith L2on-chip cache.
It also has a chip-to-chip switched network to interconnect multiple chips in a multi-
processor configuration. Two of the on-chip networks are switched networks: One is
used for operand transport and the other is used for on-chip memory communication.
The others are essentially fan-out trees or recombination dedicated link networks
used for status and control. The portion of chip area allocated to the interconnect is
substantial, with five of the seven metal layers used for global network wiring.

Standardization: Cross-Company Interoperability

Standards are useful in many places in computer design, including interconnection
networks. Advantages of successful standards include low cost and stability.
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The customer has many vendors to choose from, which keeps price close to cost
due to competition. It makes the viability of the interconnection independent of the
stability of a single company. Components designed for a standard interconnection
may also have a larger market, and this higher volume can reduce the vendors’
costs, further benefiting the customer. Finally, a standard allows many companies
to build products with interfaces to the standard, so the customer does not have to
wait for a single company to develop interfaces to all the products of interest.

One drawback of standards is the time it takes for committees and special-
interest groups to agree on the definition of standards, which is a problem when
technology is changing rapidly. Another problem is when to standardize: On
the one hand, designers would like to have a standard before anything is built;
on the other hand, it would be better if something were built before standardization
to avoid legislating useless features or omitting important ones. When done too
early, it is often done entirely by committee, which is like asking all of the chefs
in France to prepare a single dish of food—masterpieces are rarely served. Stan-
dards can also suppress innovation at that level, since standards fix the interfaces—
at least until the next version of the standards surface, which can be every few years
or longer. More often, we are seeing consortiums of companies getting together to
define and agree on technology that serve as “de facto” industry standards. This
was the case for InfiniBand.

LANs and WANs use standards and interoperate effectively. WANs involve
many types of companies and must connect to many brands of computers, so it
is difficult to imagine a proprietary WAN ever being successful. The ubiquitous
nature of the Ethernet shows the popularity of standards for LANs as well as
WANs, and it seems unlikely that many customers would tie the viability of their
LAN to the stability of a single company. Some SANs are standardized such as
Fibre Channel, but most are proprietary. OCNs for the most part are proprietary
designs, with a few gaining widespread commercial use in system-on-chip
(SoC) applications, such as IBM’s CoreConnect and ARM’s AMBA.

Congestion Management

Congestion arises when too many packets try to use the same link or set of links.
This leads to a situation in which the bandwidth required exceeds the bandwidth
supplied. Congestion by itself does not degrade network performance: simply, the
congested links are running at their maximum capacity. Performance degradation
occurs in the presence of HOL blocking where, as a consequence of packets going
to noncongested destinations getting blocked by packets going to congested des-
tinations, some link bandwidth is wasted and network throughput drops, as illus-
trated in the example given at the end of Section F.4. Congestion control refers to
schemes that reduce traffic when the collective traffic of all nodes is too large for
the network to handle.

One advantage of a circuit-switched network is that, once a circuit is estab-
lished, it ensures that there is sufficient bandwidth to deliver all the information
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sent along that circuit. Interconnection bandwidth is reserved as circuits are estab-
lished, and if the network is full, no more circuits can be established. Other switch-
ing techniques generally do not reserve interconnect bandwidth in advance, so the
interconnection network can become clogged with too many packets. Just as with
poor rush-hour commuters, a traffic jam of packets increases packet latency and, in
extreme cases, fewer packets per second get delivered by the interconnect. In order
to handle congestion in packet-switched networks, some form of congestion man-
agement must be implemented. The two kinds of mechanisms used are those that
control congestion and those that eliminate the performance degradation intro-
duced by congestion.

There are three basic schemes used for congestion control in interconnection
networks, each with its own weaknesses: packet discarding, flow control, and
choke packets. The simplest scheme is packet discarding, which we discussed
briefly in Section F.2. If a packet arrives at a switch and there is no room in the
buffer, the packet is discarded. This scheme relies on higher-level software that
handles errors in transmission to resend lost packets. This leads to significant band-
width wastage due to (re)transmitted packets that are later discarded and, therefore,
is typically used only in lossy networks like the Internet.

The second scheme relies on flow control, also discussed previously. When
buffers become full, link-level flow control provides feedback that prevents the
transmission of additional packets. This backpressure feedback rapidly propagates
backward until it reaches the sender(s) of the packets producing congestion,
forcing a reduction in the injection rate of packets into the network. Themain draw-
backs of this scheme are that sources become aware of congestion too late when the
network is already congested, and nothing is done to alleviate congestion. Back-
pressure flow control is common in lossless networks like SANs used in supercom-
puters and enterprise systems.

A more elaborate way of using flow control is by implementing it directly
between the sender and the receiver end nodes, generically called end-to-end flow
control. Windowing is one version of end-to-end credit-based flow control where
the window size should be large enough to efficiently pipeline packets through the
network. The goal of the window is to limit the number of unacknowledged
packets, thus bounding the contribution of each source to congestion, should it
arise. The TCP protocol uses a sliding window. Note that end-to-end flow control
describes the interaction between just two nodes of the interconnection network,
not the entire interconnection network between all end nodes. Hence, flow control
helps congestion control, but it is not a global solution.

Choke packets are used in the third scheme, which is built upon the premise that
traffic injection should be throttled only when congestion exists across the net-
work. The idea is for each switch to see how busy it is and to enter into a warning
state when it passes a threshold. Each packet received by a switch in the warning
state is sent back to the source via a choke packet that includes the intended des-
tination. The source is expected to reduce traffic to that destination by a fixed per-
centage. Since it likely will have already sent other packets along that path, the
source node waits for all the packets in transit to be returned before acting on

F.7 Practical Issues for Commercial Interconnection Networks ■ F-69



the choke packets. In this scheme, congestion is controlled by reducing the packet
injection rate until traffic reduces, just as metering lights that guard on-ramps con-
trol the rate of cars entering a freeway. This scheme works efficiently when the
feedback delay is short. When congestion notification takes a long time, usually
due to long time of flight, this congestion control scheme may become unsta-
ble—reacting too slowly or producing oscillations in packet injection rate, both
of which lead to poor network bandwidth utilization.

An alternative to congestion control consists of eliminating the negative
consequences of congestion. This can be done by eliminating HOL blocking at
every switch in the network as discussed previously. Virtual output queues can
be used for this purpose; however, it would be necessary to implement as many
queues at every switch input port as devices attached to the network. This solution
is very expensive, and not scalable at all. Fortunately, it is possible to achieve
good results by dynamically assigning a few set-aside queues to store only
the congested packets that travel through some hot-spot regions of the network,
very much like caches are intended to store only the more frequently accessed
memory locations. This strategy is referred to as regional explicit congestion
notification (RECN).

Fault Tolerance

The probability of system failures increases as transistor integration density and the
number of devices in the system increases. Consequently, system reliability and
availability have becomemajor concerns and will be even more important in future
systems with the proliferation of interconnected devices. A practical issue arises,
therefore, as to whether or not the interconnection network relies on all the devices
being operational in order for the network to work properly. Since software failures
are generally much more frequent than hardware failures, another question sur-
faces as to whether a software crash on a single device can prevent the rest of
the devices from communicating. Although some hardware designers try to build
fault-free networks, in practice, it is only a question of the rate of failures, not
whether they can be prevented. Thus, the communication subsystem must have
mechanisms for dealing with faults when—not if—they occur.

There are two main kinds of failure in an interconnection network: transient
and permanent. Transient failures are usually produced by electromagnetic inter-
ference and can be detected and corrected using the techniques described in
Section F.2. Oftentimes, these can be dealt with simply by retransmitting the
packet either at the link level or end-to-end. Permanent failures occur when some
component stops working within specifications. Typically, these are produced by
overheating, overbiasing, overuse, aging, and so on and cannot be recovered from
simply by retransmitting packets with the help of some higher-layer software pro-
tocol. Either an alternative physical path must exist in the network and be supplied
by the routing algorithm to circumvent the fault or the network will be crippled,
unable to deliver packets whose only paths are through faulty resources.

Three major categories of techniques are used to deal with permanent failures:
resource sparing, fault-tolerant routing, and network reconfiguration. In the first
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technique, faulty resources are switched off or bypassed, and some spare resources
are switched in to replace the faulty ones. As an example, the ServerNet intercon-
nection network is designed with two identical switch fabrics, only one of which is
usable at any given time. In case of failure in one fabric, the other is used. This
technique can also be implemented without switching in spare resources, leading
to a degraded mode of operation after a failure. The IBM Blue Gene/L supercom-
puter, for instance, has the facility to bypass failed network resources while retain-
ing its base topological structure and routing algorithm. The main drawback of this
technique is the relatively large number of healthy resources (e.g., midplane node
boards) that may need to be switched off after a failure in order to retain the base
topological structure (e.g., a 3D torus).

Fault-tolerant routing, on the other hand, takes advantage of the multiple paths
already existing in the network topology to route messages in the presence of fail-
ures without requiring spare resources. Alternative paths for each supported fault
combination are identified at design time and incorporated into the routing algo-
rithm. When a fault is detected, a suitable alternative path is used. The main dif-
ficulty when using this technique is guaranteeing that the routing algorithm will
remain deadlock-free when using the alternative paths, given that arbitrary fault
patterns may occur. This is especially difficult in direct networks whose regularity
can be compromised by the fault pattern. The Cray T3E is an example system that
successfully applies this technique on its 3D torus direct network. There are many
examples of this technique in systems using indirect networks, such as with the
bidirectional multistage networks in the ASCI White and ASC Purple. Those net-
works provide multiple minimal paths between end nodes and, inherently, have no
routing deadlock problems (see Section F.5). In these networks, alternative paths
are selected at the source node in case of failure.

Network reconfiguration is yet another, more general technique to handle vol-
untary and involuntary changes in the network topology due either to failures or to
some other cause. In order for the network to be reconfigured, the nonfaulty por-
tions of the topology must first be discovered, followed by computation of the new
routing tables and distribution of the routing tables to the corresponding network
locations (i.e., switches and/or end node devices). Network reconfiguration
requires the use of programmable switches and/or network interfaces, depending
on how routing is performed. It may also make use of generic routing algorithms
(e.g., up*/down* routing) that can be configured for all the possible network topol-
ogies that may result after faults. This strategy relieves the designer from having to
supply alternative paths for each possible fault combination at design time. Pro-
grammable network components provide a high degree of flexibility but at the
expense of higher cost and latency. Most standard and proprietary interconnection
networks for clusters and SANs—including Myrinet, Quadrics, InfiniBand,
Advanced Switching, and Fibre Channel—incorporate software for (re)configur-
ing the network routing in accordance with the prevailing topology.

Another practical issue ties to node failure tolerance. If an interconnection net-
work can survive a failure, can it also continue operation while a new node is added
to or removed from the network, usually referred to as hot swapping? If not, each
addition or removal of a new node disables the interconnection network, which is
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impractical for WANs and LANs and is usually intolerable for most SANs. Online
system expansion requires hot swapping, so most networks allow for it. Hot swap-
ping is usually supported by implementing dynamic network reconfiguration, in
which the network is reconfigured without having to stop user traffic. The main
difficulty with this is guaranteeing deadlock-free routing while routing tables
for switches and/or end node devices are dynamically and asynchronously updated
as more than one routing algorithm may be alive (and, perhaps, clashing) in the
network at the same time. Most WANs solve this problem by dropping packets
whenever required, but dynamic network reconfiguration is much more complex
in lossless networks. Several theories and practical techniques have recently been
developed to address this problem efficiently.

Example Figure F.27 shows the number of failures of 58 desktop computers on a local
area network for a period of just over one year. Suppose that one local area net-
work is based on a network that requires all machines to be operational for the
interconnection network to send data; if a node crashes, it cannot accept mes-
sages, so the interconnection becomes choked with data waiting to be delivered.
An alternative is the traditional local area network, which can operate in the
presence of node failures; the interconnection simply discards messages for a
node that decides not to accept them. Assuming that you need to have both your
workstation and the connecting LAN to get your work done, how much greater
are your chances of being prevented from getting your work done using the
failure-intolerant LAN versus traditional LANs? Assume the downtime for a
crash is less than 30 minutes. Calculate using the one-hour intervals from this
figure.

Answer Assuming the numbers for Figure F.27, the percentage of hours that you can’t get
your work done using the failure-intolerant network is

Intervals with failures
Total intervals

¼ Total intervals� Intervals with no failures
Total intervals

¼ 8974�8605
8974

¼ 369
8974

¼ 4:1%

The percentage of hours that you can’t get your work done using the traditional
network is just the time your workstation has crashed. If these failures are equally
distributed among workstations, the percentage is

Failures=Machines
Total intervals

¼ 654=58
8974

¼ 11:28
8974

¼ 0:13%

Hence, you are more than 30 times more likely to be prevented from getting your
work done with the failure-intolerant LAN than with the traditional LAN, accord-
ing to the failure statistics in Figure F.27. Stated alternatively, the person respon-
sible for maintaining the LANwould receive a 30-fold increase in phone calls from
irate users!
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F.8 Examples of Interconnection Networks

To further provide mass to the concepts described in the previous sections, we look
at five example networks from the four interconnection network domains consid-
ered in this appendix. In addition to one for each of the OCN, LAN, and WAN
areas, we look at two examples from the SAN area: one for system area networks

Failed
machines per
time interval

One-hour intervals with
number of failed machines

in first column

Total failures
per one-hour

interval

One-day intervals with
number of failed machines

in first column

Total failures
per one-day
interval

0 8605 0 184 0

1 264 264 105 105

2 50 100 35 70

3 25 75 11 33

4 10 40 6 24

5 7 35 9 45

6 3 18 6 36

7 1 7 4 28

8 1 8 4 32

9 2 18 2 18

10 2 20

11 1 11 2 22

12 1 12

17 1 17

20 1 20

21 1 21 1 21

31 1 31

38 1 38

58 1 58

Total 8974 654 373 573

Figure F.27 Measurement of reboots of 58 DECstation 5000 s running Ultrix over a 373-day period. These reboots
are distributed into time intervals of one hour and one day. The first column sorts the intervals according to the num-
ber of machines that failed in that interval. The next two columns concern one-hour intervals, and the last two col-
umns concern one-day intervals. The second and fourth columns show the number of intervals for each number of
failed machines. The third and fifth columns are just the product of the number of failedmachines and the number of
intervals. For example, there were 50 occurrences of one-hour intervals with 2 failedmachines, for a total of 100 failed
machines, and there were 35 days with 2 failedmachines, for a total of 70 failures. As we would expect, the number of
failures per interval changes with the size of the interval. For example, the day with 31 failures might include one hour
with 11 failures and one hour with 20 failures. The last row shows the total number of each column; the number of
failures doesn’t agree because multiple reboots of the same machine in the same interval do not result in separate
entries. (Randy Wang of the University of California–Berkeley collected these data.)
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and one for system/storage area networks. The first two examples are proprietary
networks used in high-performance systems; the latter three examples are network
standards widely used in commercial systems.

On-Chip Network: Intel Single-Chip Cloud Computer

With continued increases in transistor integration as predicted by Moore’s law,
processor designers are under the gun to find ways of combating chip-crossing
wire delay and other problems associated with deep submicron technology scaling.
Multicore microarchitectures have gained popularity, given their advantages of
simplicity, modularity, and ability to exploit parallelism beyond that which can
be achieved through aggressive pipelining and multiple instruction/data issuing
on a single core. No matter whether the processor consists of a single core or mul-
tiple cores, higher and higher demands are being placed on intrachip communica-
tion bandwidth to keep pace—not to mention interchip bandwidth. This has
spurred a great amount of interest in OCN designs that efficiently support commu-
nication of instructions, register operands, memory, and I/O data within and
between processor cores both on and off the chip. Here we focus on one such
on-chip network: The Intel Single-chip Cloud Computer prototype.

The Single-chip Cloud Computer (SCC) is a prototype chip multiprocessor
with 48 Intel IA-32 architecture cores. Cores are laid out (see Figure F.28) on a
network with a 2D mesh topology (6�4). The network connects 24 tiles, 4 on-
die memory controllers, a voltage regulator controller (VRC), and an external
system interface controller (SIF). In each tile two cores are connected to a router.
The four memory controllers are connected at the boundaries of the mesh, two on
each side, while the VRC and SIF controllers are connected at the bottom border of
the mesh.

Each memory controller can address two DDR3 DIMMS, each up to 8 GB of
memory, thus resulting in a maximum of 64 GB of memory. The VRC controller
allows any core or the system interface to adjust the voltage in any of the six pre-
defined regions configuring the network (two 2-tile regions). The clock can also
be adjusted at a finer granularity with each tile having its own operating frequency.
These regions can be turned off or scaled down for large power savings. Thismethod
allows full application control of the power state of the cores. Indeed, applications
have anAPI available todefine thevoltage and the frequencyof each region.TheSIF
controller is used to communicate the network from outside the chip.

Each of the tiles includes two processor cores (P54C-based IA) with associated
L1 16 KB data cache and 16 KB instruction cache and a 256 KB L2 cache (with
the associated controller), a 5-port router, traffic generator (for testing purposes
only), a mesh interface unit (MIU) handling all message passing requests, memory
look-up tables (with configuration registers to set the mapping of a core’s physical
addresses to the extended memory map of the system), a message-passing buffer,
and circuitry for the clock generation and synchronization for crossing asynchro-
nous boundaries.
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Focusing on the OCN, the MIU unit is in charge of interfacing the cores to the
network, including the packetization and de-packetization of large messages; com-
mand translation and address decoding/lookup; link-level flow control and credit
management; and arbiter decisions following a round-robin scheme. A credit-
based flow control mechanism is used together with virtual cut-through switching
(thus making it necessary to split long messages into packets). The routers are con-
nected in a 2D mesh layout, each on its own power supply and clock source. Links
connecting routers have 16B+2B side bands running at 2 GHz. Zero-load latency
is set to 4 cycles, including link traversal. Eight virtual channels are used for per-
formance (6 VCs) and protocol-level deadlock handling (2 VCs). A message-level
arbitration is implemented by a wrapped wave-front arbiter. The dimension-order
XY routing algorithm is used and pre-computation of the output port is performed
at every router.

Besides the tiles having regions defined for voltage and frequency, the network
(made of routers and links) has its own single region. Thus, all the network com-
ponents run at the same speed and use the same power supply. An asynchronous
clock transition is required between the router and the tile.

One of the distinctive features of the SCC architecture is the support for a
messaging-based communication protocol rather than hardware cache-coherent
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Figure F.28 SCC Top-level architecture. From Howard, J. et al., IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pp. 58–59.
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memory for inter-core communication. Message passing buffers are located on
every router and APIs are provided to take full control of MPI structures. Cache
coherency can be implemented by software.

The SCC router represents a significant improvement over the Teraflops pro-
cessor chip in the implementation of a 2D on-chip interconnect. Contrasted with
the 2D mesh implemented in the Teraflops processor, this implementation is tuned
for a wider data path in a multiprocessor interconnect and is more latency, area, and
power optimized for such a width. It targets a lower 2-GHz frequency of operation
compared to the 5 GHz of its predecessor Teraflops processor, yet with a higher-
performance interconnect architecture.

System Area Network: IBM Blue Gene/L 3D Torus Network

The IBMBlueGene/L was the largest-scaled, highest-performing computer system
in the world in 2005, according to www.top500.org. With 65,536 dual-processor
compute nodes and 1024 I/O nodes, this 360 TFLOPS (peak) supercomputer has a
system footprint of approximately 2500 square feet. Both processors at each node
can be used for computation and can handle their own communication protocol
processing in virtual mode or, alternatively, one of the processors can be used
for computation and the other for network interface processing. Packets range
in size from 32 bytes to a maximum of 256 bytes, and 8 bytes are used for the
header. The header includes routing, virtual channel, link-level flow control,
packet size, and other such information, along with 1 byte for CRC to protect
the header. Three bytes are used for CRC at the packet level, and 1 byte serves
as a valid indicator.

The main interconnection network is a proprietary 32�32�64 3D torus SAN
that interconnects all 64 K nodes. Each node switch has six 350 MB/sec bidirec-
tional links to neighboring torus nodes, an injection bandwidth of 612.5 MB/sec
from the two node processors, and a reception bandwidth of 1050 MB/sec to
the two node processors. The reception bandwidth from the network equals the
inbound bandwidth across all switch ports, which prevents reception links from
bottlenecking network performance. Multiple packets can be sunk concurrently
at each destination node because of the higher reception link bandwidth.

Two nodes are implemented on a 2�1�1 compute card, 16 compute cards
and 2 I/O cards are implemented on a 4�4�2 node board, 16 node boards are
implemented on an 8�8�8 midplane, and 2 midplanes form a 1024-node rack
with physical dimensions of 0.9�0.9�1.9 cubic meters. Links have a maximum
physical length of 8.6 meters, thus enabling efficient link-level flow control with
reasonably low buffering requirements. Low latency is achieved by implementing
virtual cut-through switching, distributing arbitration at switch input and output
ports, and precomputing the current routing path at the previous switch using a
finite-state machine so that part of the routing delay is removed from the critical
path in switches. High effective bandwidth is achieved using input-buffered
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switches with dual read ports, virtual cut-through switching with four virtual chan-
nels, and fully adaptive deadlock-free routing based on bubble flow control.

A key feature in networks of this size is fault tolerance. Failure rate is reduced
by using a relatively low link clock frequency of 700 MHz (same as processor
clock) on which both edges of the clock are used (i.e., 1.4 Gbps or 175 MB/sec
transfer rate is supported for each bit-serial network link in each direction), but
failuresmay still occur in the network. In case of failure, themidplane node boards
containing the fault(s) are switched off and bypassed to isolate the fault, and com-
putation resumes from the last checkpoint. Bypassing is done using separate
bypass switch boards associated with each midplane that are additional to the
set of torus node boards. Each bypass switch board can be configured to connect
either to the corresponding links in themidplane node boards or to the next bypass
board, effectively removing the corresponding set of midplane node boards.
Although the number of processing nodes is reduced to some degree in some net-
work dimensions, the machine retains its topological structure and routing
algorithm.

Some collective communication operations such as barrier synchronization,
broadcast/multicast, reduction, and so on are not performed well on the 3D
torus as the network would be flooded with traffic. To remedy this, two separate
tree networks with higher per-link bandwidth are used to implement collective
and combining operations more efficiently. In addition to providing support for
efficient synchronization and broadcast/multicast, hardware is used to perform
some arithmetic reduction operations in an efficient way (e.g., to compute the
sum or the maximum value of a set of values, one from each processing node).
In addition to the 3D torus and the two tree networks, the Blue Gene/L imple-
ments an I/O Gigabit Ethernet network and a control system Fast Ethernet net-
work of lower bandwidth to provide for parallel I/O, configuration, debugging,
and maintenance.

System/Storage Area Network: InfiniBand

InfiniBand is an industrywide de facto networking standard developed in October
2000 by a consortium of companies belonging to the InfiniBand Trade Associa-
tion. InfiniBand can be used as a system area network for interprocessor commu-
nication or as a storage area network for server I/O. It is a switch-based
interconnect technology that provides flexibility in the topology, routing algo-
rithm, and arbitration technique implemented by vendors and users. InfiniBand
supports data transmission rates of 2 to 120 Gbp/link per direction across distances
of 300 meters. It uses cut-through switching, 16 virtual channels and service levels,
credit-based link-level flow control, and weighted round-robin fair scheduling and
implements programmable forwarding tables. It also includes features useful for
increasing reliability and system availability, such as communication subnet man-
agement, end-to-end path establishment, and virtual destination naming.
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Figure F.30 shows the packet format for InfiniBand juxtaposed with two other net-
work standards from the LAN andWAN areas. Figure F.31 compares various char-
acteristics of the InfiniBand standard with two proprietary system area networks
widely used in research and commercial high-performance computer systems.

Institution
and
processor
[network]
name

Year
built

Number of
network
ports [cores
or tiles
+other ports]

Basic
network
topology

# of data
bits per
link per
direction

Link
bandwidth
[link clock
speed]

Routing;
arbitration;
switching

# of chip
metal layers;
flow control;
#virtual
channels

MIT Raw
[General
Dynamic
Network]

2002 16 ports [16
tiles]

2D mesh
(4�4)

32 bits 0.9 GB/sec
[225 MHz,
clocked at
proc speed]

XY DOR with
request-reply
deadlock
recovery; RR
arbitration;
wormhole

6 layers;
credit-based
no virtual
channels

IBM Power5 2004 7 ports [2 PE
cores+5 other
ports]

Crossbar 256 bits
Inst fetch;
64 bits for
stores;
256 bits
LDs

[1.9 GHz,
clocked at
proc speed]

Shortest-path;
nonblocking;
circuit switch

7 layers;
handshaking;
no virtual
channels

U.T. Austin
TRIP Edge
[Operand
Network]

2005 25 ports [25
execution unit
tiles]

2D mesh
(5�5)

110 bits 5.86 GB/sec
[533 MHz
clock scaled
by 80%]

YX DOR;
distributed RR
arbitration;
wormhole

7 layers; on/
off flow
control; no
virtual
channels

U.T. Austin
TRIP Edge
[On-Chip
Network]

2005 40 ports
[16 L2 tiles
+24 network
interface tile]

2D mesh
(10�4)

128 bits 6.8 GB/sec
[533 MHz
clock scaled
by 80%]

YX DOR;
distributed RR
arbitration;
VCT switched

7 layers;
credit-based
flow control;
4 virtual
channels

Sony, IBM,
Toshiba Cell
BE [Element
Interconnect
Bus]

2005 12 ports [1
PPE and
8 SPEs+3
other ports for
memory, I/O
interface]

Ring (4
total, 2 in
each
direction)

128 bits
data (+16
bits tag)

25.6 GB/sec
[1.6 GHz,
clocked at
half the proc
speed]

Shortest-path;
tree-based RR
arbitration
(centralized);
pipelined circuit
switch

8 layers;
credit-based
flow control;
no virtual
channels

Sun
UltraSPARC
T1 processor

2005 Up to 13 ports
[8 PE cores
+4 L2 banks
+1 shared I/O]

Crossbar 128 bits
both for
the 8 cores
and the
4 L2
banks

19.2 GB/sec
[1.2 GHz,
clocked at
proc speed]

Shortest-path;
age-based
arbitration;
VCT switched

9 layers;
handshaking;
no virtual
channels

Figure F.29 Characteristics of on-chip networks implemented in recent research and commercial processors.
Some processors implement multiple on-chip networks (not all shown)—for example, two in the MIT Raw and eight
in the TRIP Edge.
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Data (48)
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Checksum
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T
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Ethernet

Preamble
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Pad (0–46)

Checksum

Checksum

Checksum
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Destination

Destination

Source

Destination
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Destination queue
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Source

Source

Data (0–1500)

Data (0–4096)
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Figure F.30 Packet format for InfiniBand, Ethernet, and ATM. ATM calls their messages “cells” instead of packets, so
the proper name is ATM cell format. The width of each drawing is 32 bits. All three formats have destination addres-
sing fields, encoded differently for each situation. All three also have a checksum field to catch transmission errors,
although the ATM checksum field is calculated only over the header; ATM relies on higher-level protocols to catch
errors in the data. Both InfiniBand and Ethernet have a length field, since the packets hold a variable amount of data,
with the former counted in 32-bit words and the latter in bytes. InfiniBand and ATM headers have a type field (T) that
gives the type of packet. The remaining Ethernet fields are a preamble to allow the receiver to recover the clock from
the self-clocking code used on the Ethernet, the source address, and a pad field tomake sure the smallest packet is 64
bytes (including the header). InfiniBand includes a version field for protocol version, a sequence number to allow in-
order delivery, a field to select the destination queue, and a partition key field. Infiniband has many more small fields
not shown and many other packet formats; above is a simplified view. ATM’s short, fixed packet is a good match to
real-time demand of digital voice.
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InfiniBand offers two basic mechanisms to support user-level communica-
tion: send/receive and remote DMA (RDMA). With send/receive, the receiver
has to explicitly post a receive buffer (i.e., allocate space in its channel adapter
network interface) before the sender can transmit data. With RDMA, the sender
can remotely DMA data directly into the receiver device’s memory. For exam-
ple, for a nominal packet size of 4 bytes measured on a Mellanox MHEA28-XT
channel adapter connected to a 3.4 GHz Intel Xeon host device, sending and
receiving overhead is 0.946 and 1.423 μs, respectively, for the send/receive
mechanism, whereas it is 0.910 and 0.323 μs, respectively, for the RDMA
mechanism.

As discussed in Section F.2, the packet size is important in getting full benefit
of the network bandwidth. One might ask, “What is the natural size of messages?”
Figure F.32(a) shows the size of messages for a commercial fluid dynamics sim-
ulation application, called Fluent, collected on an InfiniBand network at The Ohio
State University’s Network-Based Computer Laboratory. One plot is cumulative in
messages sent and the other is cumulative in data bytes sent. Messages in this graph
are message passing interface (MPI) units of information, which gets divided into
InfiniBand maximum transfer units (packets) transferred over the network. As
shown, the maximum message size is over 512 KB, but approximately 90% of
the messages are less than 512 bytes. Messages of 2 KB represent approximately
50% of the bytes transferred. An Integer Sort application kernel in the NAS Parallel

Network
name
[vendors]

Used in top 10
supercomputer
clusters (2005)

Number
of nodes

Basic
network
topology

Raw link
bidirectional
BW

Routing
algorithm

Arbitration
technique

Switching
technique;
flow control

InfiniBand
[Mellanox,
Voltair]

SGI Altrix and
Dell Poweredge
Thunderbird

>Millions
(2128

GUID
addresses,
like IPv6)

Completely
configurable
(arbitrary)

4–240 Gbps Arbitrary
(table-
driven),
typically
up*/down*

Weighted
RR fair
scheduling
(2-level
priority)

Cut-through,
16 virtual
channels (15
for data);
credit-based

Myrinet-
2000
[Myricom]

Barcelona
Supercomputer
Center in Spain

8192
nodes

Bidirectional
MIN with 16-
port
bidirectional
switches
(Clos net.)

4 Gbps Source-
based
dispersive
(adaptive)
minimal
routing

Round-
robin
arbitration

Cut-through
switching with
no virtual
channels; Xon/
Xoff flow
control

QsNetII

[Quadrics]
Intel Thunder
Itanium2 Tiger4

>Tens of
thousands

Fat tree with
8-port
bidirectional
switches

21.3 Gbps Source-
based LCA
adaptive
shortest-
path
routing

2-phased
RR, priority,
aging,
distributed
at output
ports

Wormhole with
2 virtual
channels;
credit-based

Figure F.31 Characteristics of system area networks implemented in various top 10 supercomputer clusters in
2005.
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Benchmark suite is also measured to have about 75% of its messages below 512
bytes (plots not shown). Many applications send far more small messages than
large ones, particularly since requests and acknowledgments are more frequent
than data responses and block writes.

InfiniBand reduces protocol processing overhead by allowing it to be off-
loaded from the host computer to a controller on the InfiniBand network inter-
face card. The benefits of protocol offloading and bypassing the operating
system are shown in Figure F.32(b) for MVAPICH, a widely used implemen-
tation of MPI over InfiniBand. Effective bandwidth is plotted against message
size for MVAPICH configured in two modes and two network speeds. One
mode runs IPoIB, in which InfiniBand communication is handled by the IP
layer implemented by the host’s operating system (i.e., no OS bypass). The
other mode runs MVAPICH directly over VAPI, which is the native Mellanox
InfiniBand interface that offloads transport protocol processing to the channel
adapter hardware (i.e., OS bypass). Results are shown for 10 Gbps single data
rate (SDR) and 20 Gbps double data rate (DDR) InfiniBand networks. The
results clearly show that offloading the protocol processing and bypassing
the OS significantly reduce sending and receiving overhead to allow near
wire-speed effective bandwidth to be achieved.
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Figure F.32 Data collected by D.K. Panda, S. Sur, and L. Chai (2005) in the Network-Based Computing Laboratory
at The Ohio State University. (a) Cumulative percentage of messages and volume of data transferred as message size
varies for the Fluent application (www.fluent.com). Each x-axis entry includes all bytes up to the next one; for example,
128 represents 1 byte to 128 bytes. About 90% of the messages are less than 512 bytes, which represents about 40%
of the total bytes transferred. (b) Effective bandwidth versus message size measured on SDR and DDR InfiniBand
networks running MVAPICH (http://nowlab.cse.ohio-state.edu/projects/mpi-iba) with OS bypass (native) and
without (IPoIB).
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Ethernet: The Local Area Network

Ethernet has been extraordinarily successful as a LAN—from the 10Mbit/sec stan-
dard proposed in 1978 used practically everywhere today to the more recent 10
Gbit/sec standard that will likely be widely used. Many classes of computers
include Ethernet as a standard communication interface. Ethernet, codified as IEEE
standard 802.3, is a packet-switched network that routes packets using the desti-
nation address. It was originally designed for coaxial cable but today uses primarily
Cat5E copper wire, with optical fiber reserved for longer distances and higher
bandwidths. There is even a wireless version (802.11), which is testimony to its
ubiquity.

Over a 20-year span, computers became thousands of times faster than they
were in 1978, but the shared media Ethernet network remained the same. Hence,
engineers had to invent temporary solutions until a faster, higher-bandwidth net-
work became available. One solution was to use multiple Ethernets to interconnect
machines and to connect those Ethernets with internetworking devices that could
transfer traffic from one Ethernet to another, as needed. Such devices allow indi-
vidual Ethernets to operate in parallel, thereby increasing the aggregate intercon-
nection bandwidth of a collection of computers. In effect, these devices provide
similar functionality to the switches described previously for point-to-point
networks.

Figure F.33 shows the potential parallelism that can be gained. Depending on
how they pass traffic and what kinds of interconnections they can join together,
these devices have different names:

Single Ethernet: one packet at a time

Multiple Ethernets: multiple packets at a time

NodeNode

Node Node Node NodeNode

Node NodeNode Node

Bridge Bridge

NodeNode

Node Node Node NodeNode

Node NodeNode Node

Figure F.33 The potential increased bandwidth of using many Ethernets and bridges.
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■ Bridges—These devices connect LANs together, passing traffic from one side
to another depending on the addresses in the packet. Bridges operate at the
Ethernet protocol level and are usually simpler and cheaper than routers, dis-
cussed next. Using the notation of the OSI model described in the next section
(see Figure F.36 on page F-85), bridges operate at layer 2, the data link layer.

■ Routers or gateways—These devices connect LANs to WANs, or WANs to
WANs, and resolve incompatible addressing. Generally slower than bridges,
they operate at OSI layer 3, the network layer. WAN routers divide the network
into separate smaller subnets, which simplifies manageability and improves
security.

The final internetworking devices are hubs, but they merely extend multiple seg-
ments into a single LAN. Thus, hubs do not help with performance, as only one
message can transmit at a time. Hubs operate at OSI layer 1, called the physical

UCB1.
BARRNet.net
192.31.161.4

mojave.
Stanford.edu
36.22.0.120

CIS-Gateway.
Stanford.edu

36.1.0.22

SU-CM.
BARRNet.net
131.119.5.3

EthernetFDDI

T1 line

T3 line

inr-108-eecs.
Berkeley.edu

128.32.120.108 128.32.120.111

 inr-111-cs2.
Berkeley.edu

128.32.149.13

 mammoth.
Berkeley.edu

128.32.149.78

FDDI

FDDI

Ethernet Ethernet

Internet

fd-0.enss128.t3.
ans.net

192.31.48.244Stanford,
California

Berkeley,
California

Figure F.34 The connection established between mojave.stanford.edu andmammoth.berkeley.edu (1995). FDDI
is a 100 Mbit/sec LAN, while a T1 line is a 1.5 Mbit/sec telecommunications line and a T3 is a 45 Mbit/sec telecom-
munications line. BARRNet stands for Bay Area Research Network. Note that inr-111-cs2.Berkeley.edu is a router with
two Internet addresses, one for each port.
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layer. Since these devices were not planned as part of the Ethernet standard, their
ad hoc nature has added to the difficulty and cost of maintaining LANs.

As of 2011, Ethernet link speeds are available at 10, 100, 10,000, and 100,000
Mbits/sec. Although 10 and 100Mbits/sec Ethernets share the media with multiple
devices, 1000 Mbits/sec and above Ethernets rely on point-to-point links and
switches. Ethernet switches normally use some form of store-and-forward.

Ethernet has no real flow control, dating back to its first instantiation. It orig-
inally used carrier sensing with exponential back-off (see page F-23) to arbitrate for
the shared media. Some switches try to use that interface to retrofit their version of
flow control, but flow control is not part of the Ethernet standard.

Wide Area Network: ATM

Asynchronous Transfer Mode (ATM) is a wide area networking standard set by the
telecommunications industry. Although it flirted as competition to Ethernet as a
LAN in the 1990s, ATM has since retreated to its WAN stronghold.

Applications

Networks

Internetworking

Figure F.35 The role of internetworking. The width indicates the relative number of
items at each level.

Layer
number

Layer
name Main function

Example
protocol

Network
component

7 Application Used for applications specifically written to run over the
network

FTP, DNS,
NFS, http

Gateway, smart
switch

6 Presentation Translates from application to network format, and vice
versa

Gateway

5 Session Establishes, maintains, and ends sessions across the
network

Named
pipes, RPC

Gateway

4 Transport Additional connection below the session layer TCP Gateway

3 Network Translates logical network address and names to their
physical address (e.g., computer name to MAC address)

IP Router, ATM
switch

2 Data Link Turns packets into raw bits and at the receiving end turns
bits into packets

Ethernet Bridge, network
interface card

1 Physical Transmits raw bit stream over physical cable IEEE 802 Hub

Figure F.36 The OSI model layers. Based on www.geocities.com/SiliconValley/Monitor/3131/ne/osimodel.html.
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The telecommunications standard has scalable bandwidth built in. It starts at 155
Mbits/sec and scales by factors of 4 to 620 Mbits/sec, 2480 Mbits/sec, and so on.
Since it is a WAN, ATM’s medium is fiber, both single mode and multimode.
Although it is a switchedmedium, unlike the other examples it relies on virtual con-
nections for communication.ATMuses virtual channels for routing tomultiplex dif-
ferent connections on a single network segment, thereby avoiding the inefficiencies
of conventional connection-based networking. The WAN focus also led to store-
and-forward switching. Unlike the other protocols, Figure F.30 shows ATM has
a small, fixed-sized packet with 48 bytes of payload. It uses a credit-based flow con-
trol scheme as opposed to IP routers that do not implement flow control.

The reason for virtual connections and small packets is quality of service. Since
the telecommunications industry is concerned about voice traffic, predictability
matters as well as bandwidth. Establishing a virtual connection has less variability
than connectionless networking, and it simplifies store-and-forward switching.
The small, fixed packet also makes it simpler to have fast routers and switches.
Toward that goal, ATM even offers its own protocol stack to compete with
TCP/IP. Surprisingly, even though the switches are simple, the ATM suite of pro-
tocols is large and complex. The dream was a seamless infrastructure from LAN to
WAN, avoiding the hodgepodge of routers common today. That dream has faded
from inspiration to nostalgia.

F.9 Internetworking

Undoubtedly one of the most important innovations in the communications com-
munity has been internetworking. It allows computers on independent and incom-
patible networks to communicate reliably and efficiently. Figure F.34 illustrates
the need to traverse between networks. It shows the networks and machines
involved in transferring a file from Stanford University to the University of Cal-
ifornia at Berkeley, a distance of about 75 km.

The low cost of internetworking is remarkable. For example, it is vastly less
expensive to send electronic mail than to make a coast-to-coast telephone call
and leave a message on an answering machine. This dramatic cost improvement
is achieved using the same long-haul communication lines as the telephone call,
which makes the improvement even more impressive.

The enabling technologies for internetworking are software standards that
allow reliable communication without demanding reliable networks. The underly-
ing principle of these successful standards is that they were composed as a hierar-
chy of layers, each layer taking responsibility for a portion of the overall
communication task. Each computer, network, and switch implements its layer
of the standards, relying on the other components to faithfully fulfill their respon-
sibilities. These layered software standards are called protocol families or protocol
suites. They enable applications to work with any interconnection without extra
work by the application programmer. Figure F.35 suggests the hierarchical model
of communication.
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The most popular internetworking standard is TCP/IP (Transmission Control
Protocol/Internet Protocol). This protocol family is the basis of the humbly named
Internet, which connects hundreds of millions of computers around the world.
This popularity means TCP/IP is used even when communicating locally across
compatible networks; for example, the network file system (NFS) uses IP even
though it is very likely to be communicating across a homogenous LAN such
as Ethernet. We use TCP/IP as our protocol family example; other protocol
families follow similar lines. Section F.13 gives the history of TCP/IP.

The goal of a family of protocols is to simplify the standard by dividing respon-
sibilities hierarchically among layers, with each layer offering services needed by
the layer above. The application program is at the top, and at the bottom is the phys-
ical communication medium, which sends the bits. Just as abstract data types sim-
plify the programmer’s task by shielding the programmer from details of the
implementation of the data type, this layered strategy makes the standard easier
to understand.

There were many efforts at network protocols, which led to confusion in terms.
Hence, Open Systems Interconnect (OSI) developed a model that popularized
describing networks as a series of layers. Figure F.36 shows the model. Although
all protocols do not exactly follow this layering, the nomenclature for the different
layers is widely used. Thus, you can hear discussions about a simple layer 3 switch
versus a layer 7 smart switch.

The key to protocol families is that communication occurs logically at the same
level of the protocol in both sender and receiver, but services of the lower level
implement it. This style of communication is called peer-to-peer. As an analogy,
imagine that General A needs to send a message to General B on the battlefield.
General A writes the message, puts it in an envelope addressed to General B, and
gives it to a colonel with orders to deliver it. This colonel puts it in an envelope, and
writes the name of the corresponding colonel who reports to General B, and gives it
to a major with instructions for delivery. The major does the same thing and gives it
to a captain, who gives it to a lieutenant, who gives it to a sergeant. The sergeant
takes the envelope from the lieutenant, puts it into an envelope with the name of a
sergeant who is in General B’s division, and finds a private with orders to take the
large envelope. The private borrows a motorcycle and delivers the envelope to the
other sergeant. Once it arrives, it is passed up the chain of command, with each
person removing an outer envelope with his name on it and passing on the inner
envelope to his superior. As far as General B can tell, the note is from another gen-
eral. Neither general knows who was involved in transmitting the envelope, nor
how it was transported from one division to the other.

Protocol families follow this analogy more closely than you might think, as
Figure F.37 shows. The original message includes a header and possibly a trailer
sent by the lower-level protocol. The next-lower protocol in turn adds its own
header to the message, possibly breaking it up into smaller messages if it is too
large for this layer. Reusing our analogy, a long message from the general is
divided and placed in several envelopes if it could not fit in one. This division
of the message and appending of headers and trailers continues until the message
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descends to the physical transmission medium. The message is then sent to the des-
tination. Each level of the protocol family on the receiving end will check the mes-
sage at its level and peel off its headers and trailers, passing it on to the next higher
level and putting the pieces back together. This nesting of protocol layers for a spe-
cific message is called a protocol stack, reflecting the last in, first out nature of the
addition and removal of headers and trailers.

As in our analogy, the danger in this layered approach is the considerable
latency added to message delivery. Clearly, one way to reduce latency is to reduce
the number of layers, but keep in mind that protocol families define a standard but
do not force how to implement the standard. Just as there are many ways to imple-
ment an instruction set architecture, there are many ways to implement a protocol
family.

Our protocol stack example is TCP/IP. Let’s assume that the bottom protocol
layer is Ethernet. The next level up is the Internet Protocol or IP layer; the official
term for an IP packet is a datagram. The IP layer routes the datagram to the des-
tination machine, which may involve many intermediate machines or switches. IP
makes a best effort to deliver the packets but does not guarantee delivery, content,
or order of datagrams. The TCP layer above IP makes the guarantee of reliable, in-
order delivery and prevents corruption of datagrams.

Following the example in Figure F.37, assume an application programwants to
send amessage to a machine via an Ethernet. It starts with TCP. The largest number
of bytes that can be sent at once is 64 KB. Since the data may be much larger than
64 KB, TCP must divide them into smaller segments and reassemble them in
proper order upon arrival. TCP adds a 20-byte header (Figure F.38) to every data-
gram and passes them down to IP. The IP layer above the physical layer adds a
20-byte header, also shown in Figure F.38. The data sent down from the IP level

T

Message

H T

HH T T HH T T HH T T HH T T HH T TT
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Message
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Logical
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Figure F.37 A generic protocol stack with two layers. Note that communication is
peer-to-peer, with headers and trailers for the peer added at each sending layer and
removed by each receiving layer. Each layer offers services to the one above to shield
it from unnecessary details.
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IP header

IP data

TCP data

Identifier Fragment

Header checksum

Source

Source

Sequence number (length)

Destination

Destination

LengthType

Time Protocol

V L

TCP header

Urgent  pointer

Window

TCP data

32 bits

Piggyback acknowledgment

Flags

Checksum

L

 (0–65,516 bytes)

Figure F.38 The headers for IP and TCP. This drawing is 32 bits wide. The standard headers for both are 20 bytes,
but both allow the headers to optionally lengthen for rarely transmitted information. Both headers have a length of
header field (L) to accommodate the optional fields, as well as source and destination fields. The length field of the
whole datagram is in a separate length field in IP, while TCP combines the length of the datagram with the sequence
number of the datagram by giving the sequence number in bytes. TCP uses the checksum field to be sure that the
datagram is not corrupted, and the sequence number field to be sure the datagrams are assembled into the proper
order when they arrive. IP provides checksum error detection only for the header, since TCP has protected the rest of
the packet. One optimization is that TCP can send a sequence of datagrams before waiting for permission to send
more. The number of datagrams that can be sent without waiting for approval is called the window, and the window
field tells how many bytes may be sent beyond the byte being acknowledged by this datagram. TCP will adjust the
size of the window depending on the success of the IP layer in sending datagrams; the more reliable and faster it is,
the larger TCP makes the window. Since the window slides forward as the data arrive and are acknowledged, this
technique is called a sliding window protocol. The piggyback acknowledgment field of TCP is another optimization.
Since some applications send data back and forth over the same connection, it seems wasteful to send a datagram
containing only an acknowledgment. This piggyback field allows a datagram carrying data to also carry the acknowl-
edgment for a previous transmission, “piggybacking” on top of a data transmission. The urgent pointer field of TCP
gives the address within the datagram of an important byte, such as a break character. This pointer allows the appli-
cation software to skip over data so that the user doesn’t have to wait for all prior data to be processed before seeing a
character that tells the software to stop. The identifier field and fragment field of IP allow intermediary machines to
break the original datagram intomany smaller datagrams. A unique identifier is associated with the original datagram
and placed in every fragment, with the fragment field saying which piece is which. The time-to-live field allows a
datagram to be killed off after going through a maximum number of intermediate switches no matter where it is
in the network. Knowing the maximum number of hops that it will take for a datagram to arrive—if it ever
arrives—simplifies the protocol software. The protocol field identifies which possible upper layer protocol sent
the IP datagram; in our case, it is TCP. The V (for version) and type fields allow different versions of the IP protocol
software for the network. Explicit version numbering is included so that software can be upgraded gracefully machine
by machine, without shutting down the entire network. Nowadays, version six of the Internet protocol (IPv6) was
widely used.



to the Ethernet are sent in packets with the format shown in Figure F.30. Note that
the TCP packet appears inside the data portion of the IP datagram, just as
Figure F.37 suggests.

F.10 Crosscutting Issues for Interconnection Networks

This section describes five topics discussed in other chapters that are fundamen-
tally impacted by interconnection networks, and vice versa.

Density-Optimized Processors versus SPEC-Optimized
Processors

Given that people all over the world are accessing Web sites, it doesn’t really mat-
ter where servers are located. Hence, many servers are kept at collocation sites,
which charge by network bandwidth reserved and used and by space occupied
and power consumed. Desktop microprocessors in the past have been designed
to be as fast as possible at whatever heat could be dissipated, with little regard
for the size of the package and surrounding chips. In fact, some desktop micropro-
cessors from Intel and AMD as recently as 2006 burned as much as 130 watts!
Floor space efficiency was also largely ignored. As a result of these priorities,
power is a major cost for collocation sites, and processor density is limited by
the power consumed and dissipated, including within the interconnect!

With the proliferation of portable computers (notebook sales exceeded desktop
sales for the first time in 2005) and their reduced power consumption and cooling
demands, the opportunity exists for using this technology to create considerably
denser computation. For instance, the power consumption for the Intel Pentium
M in 2006 was 25 watts, yet it delivered performance close to that of a desktop
microprocessor for a wide set of applications. It is therefore conceivable that per-
formance per watt or performance per cubic foot could replace performance per
microprocessor as the important figure of merit. The key is that many applications
already make use of large clusters, so it is possible that replacing 64 power-hungry
processors with, say, 256 power-efficient processors could be cheaper yet be soft-
ware compatible. This places greater importance on power- and performance-
efficient interconnection network design.

The Google cluster is a prime example of this migration to many “cooler”
processors versus fewer “hotter” processors. It uses racks of up to 80 Intel Pen-
tium III 1 GHz processors instead of more power-hungry high-end processors.
Other examples include blade servers consisting of 1-inch-wide by 7-inch-high
rack unit blades designed based on mobile processors. The HP ProLiant BL10e
G2 blade server supports up to 20 1-GHz ultra-low-voltage Intel Pentium M
processors with a 400-MHz front-side bus, 1-MB L2 cache, and up to 1 GB
memory. The Fujitsu Primergy BX300 blade server supports up to 20 1.4- or
1.6-GHz Intel Pentium M processors, each with 512 MB of memory expandable
to 4 GB.
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Smart Switches versus Smart Interface Cards

Figure F.39 shows a trade-off as to where intelligence can be located within a net-
work. Generally, the question is whether to have either smarter network interfaces
or smarter switches. Making one smarter generally makes the other simpler and
less expensive. By having an inexpensive interface, it was possible for Ethernet
to become standard as part of most desktop and server computers. Lower-cost
switches were made available for people with small configurations, not needing
sophisticated forwarding tables and spanning-tree protocols of larger Ethernet
switches.

Myrinet followed the opposite approach. Its switches are dumb components
that, other than implementing flow control and arbitration, simply extract the first
byte from the packet header and use it to directly select the output port. No routing
tables are implemented, so the intelligence is in the network interface cards (NICs).
The NICs are responsible for providing support for efficient communication and
for implementing a distributed protocol for network (re)configuration. InfiniBand
takes a hybrid approach by offering lower-cost, less sophisticated interface cards
called target channel adapters (or TCAs) for less demanding devices such as
disks—in the hope that it can be included within some I/O devices—and by offer-
ing more expensive, powerful interface cards for hosts called host channel adapters
(or HCAs). The switches implement routing tables.

Switch

Interface
card

Small-scale
Ethernet switch

Large-scale
Ethernet switch

teniryMtenrehtE

Myrinet

InfiniBand

InfiniBand target 
channel adapter

InfiniBand host
channel adapter

More 
intelligence

Figure F.39 Intelligence in a network: switch versus network interface card. Note
that Ethernet switches come in two styles, depending on the size of the network,
and that InfiniBand network interfaces come in two styles, depending on whether they
are attached to a computer or to a storage device. Myrinet is a proprietary system area
network.
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Protection and User Access to the Network

A challenge is to ensure safe communication across a network without invoking
the operating system in the common case. The Cray Research T3D supercomputer
offers an interesting case study. Like the more recent Cray X1E, the T3D supports a
global address space, so loads and stores can access memory across the network.
Protection is ensured because each access is checked by the TLB. To support trans-
fer of larger objects, a block transfer engine (BLT) was added to the hardware. Pro-
tection of access requires invoking the operating system before using the BLT to
check the range of accesses to be sure there will be no protection violations.

Figure F.40 compares the bandwidth delivered as the size of the object varies
for reads and writes. For very large reads (e.g., 512 KB), the BLT achieves the
highest performance: 140 MB/sec. But simple loads get higher performance for
8 KB or less. For the write case, both achieve a peak of 90 MB/sec, presumably
because of the limitations of the memory bus. But, for writes, the BLT can only
match the performance of simple stores for transfers of 2 MB; anything smaller
and it’s faster to send stores. Clearly, a BLT that can avoid invoking the operating
system in the common case would be more useful.

Efficient Interface to the Memory Hierarchy versus the Network

Traditional evaluations of processor performance, such as SPECint and SPECfp,
encourage integration of the memory hierarchy with the processor as the efficiency
of the memory hierarchy translates directly into processor performance. Hence,
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Figure F.40 Bandwidth versus transfer size for simple memory access instructions
versus a block transfer device on the Cray Research T3D. (From Arpaci et al. [1995].)
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microprocessors have multiple levels of caches on chip along with buffers for
writes. Because benchmarks such as SPECint and SPECfp do not reward good
interfaces to interconnection networks, many machines make the access time to
the network delayed by the full memory hierarchy. Writes must lumber their
way through full write buffers, and reads must go through the cycles of first-,
second-, and often third-level cache misses before reaching the interconnection
network. This hierarchy results in newer systems having higher latencies to the
interconnect than older machines.

Let’s compare three machines from the past: a 40-MHz SPARCstation-2, a 50-
MHz SPARCstation-20 without an external cache, and a 50-MHz SPARCstation-
20 with an external cache. According to SPECint95, this list is in order of increas-
ing performance. The time to access the I/O bus (S-bus), however, increases in this
sequence: 200 ns, 500 ns, and 1000 ns. The SPARCstation-2 is fastest because it
has a single bus for memory and I/O, and there is only one level to the cache. The
SPARCstation-20 memory access must first go over the memory bus (M-bus) and
then to the I/O bus, adding 300 ns. Machines with a second-level cache pay an
extra penalty of 500 ns before accessing the I/O bus.

Compute-Optimized Processors versus Receiver Overhead

The overhead to receive a message likely involves an interrupt, which bears the
cost of flushing and then restarting the processor pipeline, if not offloaded. As
mentioned earlier, reading network status and receiving data from the network
interface likely operate at cache miss speeds. If microprocessors become more
superscalar and go to even faster clock rates, the number of missed instruction
issue opportunities per message reception will likely rise to unacceptable
levels.

F.11 Fallacies and Pitfalls

Myths and hazards are widespread with interconnection networks. This section
mentions several warnings, so proceed carefully.

Fallacy The interconnection network is very fast and does not need to be improved

The interconnection network provides certain functionality to the system, very
much like the memory and I/O subsystems. It should be designed to allow proces-
sors to execute instructions at the maximum rate. The interconnection network sub-
system should provide high enough bandwidth to keep from continuously entering
saturation and becoming an overall system bottleneck.

In the 1980s, when wormhole switching was introduced, it became feasible
to design large-diameter topologies with single-chip switches so that the band-
width capacity of the network was not the limiting factor. This led to the
flawed belief that interconnection networks need no further improvement.

F-92 ■ Appendix F Interconnection Networks



Since the 1980s, much attention has been placed on improving processor per-
formance, but comparatively less has been focused on interconnection net-
works. As technology advances, the interconnection network tends to
represent an increasing fraction of system resources, cost, power consumption,
and various other attributes that impact functionality and performance. Scaling
the bandwidth simply by overdimensioning certain network parameters is no
longer a cost-viable option. Designers must carefully consider the end-to-
end interconnection network design in concert with the processor, memory,
and I/O subsystems in order to achieve the required cost, power, functionality,
and performance objectives of the entire system. An obvious case in point is
multicore processors with on-chip networks.

Fallacy Bisection bandwidth is an accurate cost constraint of a network

Despite being very popular, bisection bandwidth has never been a practical con-
straint on the implementation of an interconnection network, although it may be
one in future designs. It is more useful as a performance measure than as a cost
measure. Chip pin-outs are the more realistic bandwidth constraint.

Pitfall Using bandwidth (in particular, bisection bandwidth) as the only measure of
network performance

It seldom is the case that aggregate network bandwidth (likewise, network bisec-
tion bandwidth) is the end-to-end bottlenecking point across the network. Even if it
were the case, networks are almost never 100% efficient in transporting packets
across the bisection (i.e., ρ<100%) nor at receiving them at network endpoints
(i.e., σ<100%). The former is highly dependent upon routing, switching, arbitra-
tion, and other such factors while both the former and the latter are highly depen-
dent upon traffic characteristics. Ignoring these important factors and
concentrating only on raw bandwidth can give very misleading performance pre-
dictions. For example, it is perfectly conceivable that a network could have higher
aggregate bandwidth and/or bisection bandwidth relative to another network but
also have lower measured performance!

Apparently, given sophisticated protocols like TCP/IP that maximize delivered
bandwidth, many network companies believe that there is only one figure of merit
for networks. This may be true for some applications, such as video streaming,
where there is little interaction between the sender and the receiver. Many appli-
cations, however, are of a request-response nature, and so for every large message
there must be one or more small messages. One example is NFS.

Figure F.41 compares a shared 10-Mbit/sec Ethernet LAN to a switched 155-
Mbit/sec ATM LAN for NFS traffic. Ethernet drivers were better tuned than the
ATM drivers, such that 10-Mbit/sec Ethernet was faster than 155-Mbit/sec
ATM for payloads of 512 bytes or less. Figure F.41 shows the overhead time, trans-
mission time, and total time to send all the NFS messages over Ethernet and ATM.
The peak link speed of ATM is 15 times faster, and the measured link speed for 8-
KB messages is almost 9 times faster. Yet, the higher overheads offset the benefits
so that ATM would transmit NFS traffic only 1.2 times faster.
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Pitfall Not providing sufficient reception link bandwidth, which causes the network end
nodes to become even more of a bottleneck to performance

Unless the traffic pattern is a permutation, several packets will concurrently
arrive at some destinations when most source devices inject traffic, thus pro-
ducing contention. If this problem is not addressed, contention may turn into
congestion that will spread across the network. This can be dealt with by ana-
lyzing traffic patterns and providing extra reception bandwidth. For example, it
is possible to implement more reception bandwidth than injection bandwidth.
The IBM Blue Gene/L, for example, implements an on-chip switch with 7-bit

Size
Number of
messages

Overhead (sec)
Number of data

bytes

Transmission
(sec) Total time (sec)

ATM Ethernet ATM Ethernet ATM Ethernet

32 771,060 532 389 33,817,052 4 48 536 436

64 56,923 39 29 4,101,088 0 5 40 34

96 4,082,014 2817 2057 428,346,316 46 475 2863 2532

128 5,574,092 3846 2809 779,600,736 83 822 3929 3631

160 328,439 227 166 54,860,484 6 56 232 222

192 16,313 11 8 3,316,416 0 3 12 12

224 4820 3 2 1,135,380 0 1 3 4

256 24,766 17 12 9,150,720 1 9 18 21

512 32,159 22 16 25,494,920 3 23 25 40

1024 69,834 48 35 70,578,564 8 72 56 108

1536 8842 6 4 15,762,180 2 14 8 19

2048 9170 6 5 20,621,760 2 19 8 23

2560 20,206 14 10 56,319,740 6 51 20 61

3072 13,549 9 7 43,184,992 4 39 14 46

3584 4200 3 2 16,152,228 2 14 5 17

4096 67,808 47 34 285,606,596 29 255 76 290

5120 6143 4 3 35,434,680 4 32 8 35

6144 5858 4 3 37,934,684 4 34 8 37

7168 4140 3 2 31,769,300 3 28 6 30

8192 287,577 198 145 2,390,688,480 245 2132 444 2277

Total 11,387,913 7858 5740 4,352,876,316 452 4132 8310 9872

Figure F.41 Total time on a 10-Mbit Ethernet and a 155-Mbit ATM, calculating the total overhead and transmis-
sion time separately. Note that the size of the headers needs to be added to the data bytes to calculate transmission
time. The higher overhead of the software driver for ATM offsets the higher bandwidth of the network. These mea-
surements were performed in 1994 using SPARCstation 10s, the ForeSystems SBA-200 ATM interface card, and the
Fore Systems ASX-200 switch. (NFS measurements taken by Mike Dahlin of the University of California–Berkeley.)
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injection and 12-bit reception links, where the reception BW equals the aggre-
gate switch input link BW.

Pitfall Using high-performance network interface cards but forgetting about the I/O sub-
system that sits between the network interface and the host processor

This issue is related to the previous one. Messages are usually composed in user
space buffers and later sent by calling a send function from the communications
library. Alternatively, a cache controller implementing a cache coherence protocol
may compose a message in some SANs and in OCNs. In both cases, messages have
to be copied to the network interface memory before transmission. If the I/O band-
width is lower than the link bandwidth or introduces significant overhead, this is
going to affect communication performance significantly. As an example, the first
10-Gigabit Ethernet cards in the market had a PCI-X bus interface for the system
with a significantly lower bandwidth than 10 Gbps.

Fallacy Zero-copy protocols do not require copying messages or fragments from one
buffer to another

Traditional communication protocols for computer networks allow access to com-
munication devices only through system calls in supervisor mode. As a conse-
quence of this, communication routines need to copy the corresponding
message from the user buffer to a kernel buffer when sending a message. Note that
the communication protocol may need to keep a copy of the message for retrans-
mission in case of error, and the application may modify the contents of the user
buffer once the system call returns control to the application. This buffer-to-buffer
copy is eliminated in zero-copy protocols because the communication routines are
executed in user space and protocols are much simpler.

However, messages still need to be copied from the application buffer to
the memory in the network interface card (NIC) so that the card hardware
can transmit it from there through to the network. Although it is feasible to
eliminate this copy by allocating application message buffers directly in the
NIC memory (and, indeed, this is done in some protocols), this may not be
convenient in current systems because access to the NIC memory is usually
performed through the I/O subsystem, which usually is much slower than
accessing main memory. Thus, it is generally more efficient to compose the
message in main memory and let DMA devices take care of the transfer to
the NIC memory.

Moreover, what few people count is the copy from where the message frag-
ments are computed (usually the ALU, with results stored in some processor reg-
ister) to main memory. Some systolic-like architectures in the 1980s, like the
iWarp, were able to directly transmit message fragments from the processor to
the network, effectively eliminating all the message copies. This is the approach
taken in the Cray X1E shared-memory multiprocessor supercomputer.

Similar comments can be made regarding the reception side; however, this
does not mean that zero-copy protocols are inefficient. These protocols represent
the most efficient kind of implementation used in current systems.
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Pitfall Ignoring software overhead when determining performance

Low software overhead requires cooperation with the operating system as well
as with the communication libraries, but even with protocol offloading it con-
tinues to dominate the hardware overhead and must not be ignored.
Figures F.32 and F.41 give two examples, one for a SAN standard and the
other for a WAN standard. Other examples come from proprietary SANs for
supercomputers. The Connection Machine CM-5 supercomputer in the early
1990s had a software overhead of 20 μs to send a message and a hardware
overhead of only 0.5 μs. The first Intel Paragon supercomputer built in the
early 1990s had a hardware overhead of just 0.2 μs, but the initial release of
the software had an overhead of 250 μs. Later releases reduced this overhead
down to 25 μs and, more recently, down to only a few microseconds, but this
still dominates the hardware overhead. The IBM Blue Gene/L has an MPI
sending/receiving overhead of approximately 3 μs, only a third of which (at
most) is attributed to the hardware.

This pitfall is simply Amdahl’s law applied to networks: Faster network
hardware is superfluous if there is not a corresponding decrease in software
overhead. The software overhead is much reduced these days with OS
bypass, lightweight protocols, and protocol offloading down to a few micro-
seconds or less, typically, but it remains a significant factor in determining
performance.

Fallacy MINs are more cost-effective than direct networks

AMIN is usually implemented using significantly fewer switches than the number
of devices that need to be connected. On the other hand, direct networks usually
include a switch as an integral part of each node, thus requiring as many switches as
nodes to interconnect. However, nothing prevents the implementation of nodes
with multiple computing devices on it (e.g., a multicore processor with an on-chip
switch) or with several devices attached to each switch (i.e., bristling). In these
cases, a direct network may be as (or even more) cost-effective as a MIN. Note
that, for a MIN, several network interfaces may be required at each node to match
the bandwidth delivered by the multiple links per node provided by the direct
network.

Fallacy Low-dimensional direct networks achieve higher performance than
high-dimensional networks such as hypercubes

This conclusion was drawn by several studies that analyzed the optimal number of
dimensions under the main physical constraint of bisection bandwidth. However,
most of those studies did not consider link pipelining, considered only very short
links, and/or did not consider switch architecture design constraints. The misplaced
assumption that bisection bandwidth serves as the main limit did not help matters.
Nowadays, most researchers and designers believe that high-radix switches are
more cost-effective than low-radix switches, including some who concluded the
opposite before.
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Fallacy Wormhole switching achieves better performance than other switching
techniques

Wormhole switching delivers the same no-load latency as other pipelined switch-
ing techniques, like virtual cut-through switching. The introduction of wormhole
switches in the late 1980s coinciding with a dramatic increase in network band-
width led many to believe that wormhole switching was the main reason for the
performance boost. Instead, most of the performance increase came from a drastic
increase in link bandwidth, which, in turn, was enabled by the ability of wormhole
switching to buffer packet fragments using on-chip buffers, instead of using the
node’s main memory or some other off-chip source for that task. More recently,
much larger on-chip buffers have become feasible, and virtual cutthrough achieved
the same no-load latency as wormhole while delivering much higher throughput.
This did not mean that wormhole switching was dead. It continues to be the switch-
ing technique of choice for applications in which only small buffers should be used
(e.g., perhaps for on-chip networks).

Fallacy Implementing a few virtual channels always increases throughput by allowing
packets to pass through blocked packets ahead

In general, implementing a few virtual channels in a wormhole switch is a
good idea because packets are likely to pass blocked packets ahead of them,
thus reducing latency and significantly increasing throughput. However, the
improvements are not as dramatic for virtual cut-through switches. In virtual
cut-through, buffers should be large enough to store several packets. As a con-
sequence, each virtual channel may introduce HOL blocking, possibly degrad-
ing performance at high loads. Adding virtual channels increases cost, but it
may deliver little additional performance unless there are as many virtual chan-
nels as switch ports and packets are mapped to virtual channels according to
their destination (i.e., virtual output queueing). It is certainly the case that vir-
tual channels can be useful in virtual cut-through networks to segregate differ-
ent traffic classes, which can be very beneficial. However, multiplexing the
packets over a physical link on a flit-by-flit basis causes all the packets from
different virtual channels to get delayed. The average packet delay is signifi-
cantly shorter if multiplexing takes place on a packet-by-packet basis, but in
this case packet size should be bounded to prevent any one packet from
monopolizing the majority of link bandwidth.

Fallacy Adaptive routing causes out-of-order packet delivery, thus introducing too much
overhead needed to reorder packets at the destination device

Adaptive routing allows packets to follow alternative paths through the network
depending on network traffic; therefore, adaptive routing usually introduces
outof-order packet delivery. However, this does not necessarily imply that reorder-
ing packets at the destination device is going to introduce a large overhead, making
adaptive routing not useful. For example, the most efficient adaptive routing algo-
rithms to date support fully adaptive routing in some virtual channels but required
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deterministic routing to be implemented in some other virtual channels in order to
prevent deadlocks (à la the IBM Blue Gene/L). In this case, it is very easy to select
between adaptive and deterministic routing for each individual packet. A single bit
in the packet header can indicate to the switches whether all the virtual channels
can be used or only those implementing deterministic routing. This hardware sup-
port can be used as indicated below to eliminate packet reordering overhead at the
destination.

Most communication protocols for parallel computers and clusters implement
two different protocols depending on message size. For short messages, an eager
protocol is used in which messages are directly transmitted, and the receiving
nodes use some preallocated buffer to temporarily store the incoming message.
On the other hand, for long messages, a rendezvous protocol is used. In this case,
a control message is sent first, requesting the destination node to allocate a buffer
large enough to store the entire message. The destination node confirms buffer
allocation by returning an acknowledgment, and the sender can proceed with frag-
menting the message into bounded-size packets, transmitting them to the
destination.

If eager messages use only deterministic routing, it is obvious that they do
not introduce any reordering overhead at the destination. On the other hand,
packets belonging to a long message can be transmitted using adaptive routing.
As every packet contains the sequence number within the message (or the off-
set from the beginning of the message), the destination node can store every
incoming packet directly in its correct location within the message buffer, thus
incurring no overhead with respect to using deterministic routing. The only
thing that differs is the completion condition. Instead of checking that the last
packet in the message has arrived, it is now necessary to count the arrived
packets, notifying the end of reception when the count equals the message size.
Taking into account that long messages, even if not frequent, usually consume
most of the network bandwidth, it is clear that most packets can benefit from
adaptive routing without introducing reordering overhead when using the pro-
tocol described above.

Fallacy Adaptive routing by itself always improves network fault tolerance because it
allows packets to follow alternative paths

Adaptive routing by itself is not enough to tolerate link and/or switch failures.
Some mechanism is required to detect failures and notify them, so that the routing
logic could exclude faulty paths and use the remaining ones. Moreover, while a
given link or switch failure affects a certain number of paths when using determin-
istic routing, many more source/destination pairs could be affected by the same
failure when using adaptive routing. As a consequence of this, some switches
implementing adaptive routing transition to deterministic routing in the presence
of failures. In this case, failures are usually tolerated by sending messages through
alternative paths from the source node. As an example, the Cray T3E implements
direction-order routing to tolerate a few failures. This fault-tolerant routing
technique avoids cycles in the use of resources by crossing directions in order
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(e.g., X+, Y+, Z+, Z�, Y�, then X�). At the same time, it provides an easy way to
send packets through nonminimal paths, if necessary, to avoid crossing faulty com-
ponents. For instance, a packet can be initially forwarded a few hops in the X+
direction even if it has to go in the X� direction at some point later.

Pitfall Trying to provide features only within the network versus end-to-end

The concern is that of providing at a lower level the features that can only be
accomplished at the highest level, thus only partially satisfying the communication
demand. Saltzer, Reed, and Clark [1984] gave the end-to-end argument as follows:

The function in question can completely and correctly be specified only with
the knowledge and help of the application standing at the endpoints of the
communication system. Therefore, providing that questioned function as a fea-
ture of the communication system itself is not possible. [page 278]

Their example of the pitfall was a network at MIT that used several gateways, each
of which added a checksum from one gateway to the next. The programmers of the
application assumed that the checksum guaranteed accuracy, incorrectly believing
that the message was protected while stored in the memory of each gateway. One
gateway developed a transient failure that swapped one pair of bytes per million
bytes transferred. Over time, the source code of one operating system was repeat-
edly passed through the gateway, thereby corrupting the code. The only solution
was to correct infected source files by comparing them to paper listings and repair-
ing code by hand! Had the checksums been calculated and checked by the appli-
cation running on the end systems, safety would have been ensured.

There is a useful role for intermediate checks at the link level, however, pro-
vided that end-to-end checking is available. End-to-end checking may show that
something is broken between two nodes, but it doesn’t point to where the problem
is. Intermediate checks can discover the broken component.

A second issue regards performance using intermediate checks. Although it is
sufficient to retransmit the whole in case of failures from the end point, it can be
much faster to retransmit a portion of the message at an intermediate point rather
than wait for a time-out and a full message retransmit at the end point.

Pitfall Relying on TCP/IP for all networks, regardless of latency, bandwidth, or software
requirements

The network designers on the first workstations decided it would be elegant to use a
single protocol stack no matter where the destination of the message: Across a
room or across an ocean, the TCP/IP overhead must be paid. This might have been
a wise decision back then, especially given the unreliability of early Ethernet hard-
ware, but it sets a high software overhead barrier for commercial systems of today.
Such an obstacle lowers the enthusiasm for low-latency network interface hard-
ware and low-latency interconnection networks if the software is just going to
waste hundreds of microseconds when the message must travel only dozens of
meters or less. It also can use significant processor resources. One rough rule of

F.11 Fallacies and Pitfalls ■ F-99



thumb is that each Mbit/sec of TCP/IP bandwidth needs about 1 MHz of processor
speed, so a 1000-Mbit/sec link could saturate a processor with an 800- to 1000-
MHz clock.

The flip side is that, from a software perspective, TCP/IP is the most desirable
target since it is the most connected and, hence, provides the largest number of
opportunities. The downside of using software optimized to a particular LAN or
SAN is that it is limited. For example, communication from a Java program
depends on TCP/IP, so optimization for another protocol would require creation
of glue software to interface Java to it.

TCP/IP advocates point out that the protocol itself is theoretically not as bur-
densome as current implementations, but progress has been modest in commercial
systems. There are also TCP/IP offloading engines in the market, with the hope of
preserving the universal software model while reducing processor utilization and
message latency. If processors continue to improve much faster than network
speeds, or if multiple processors become ubiquitous, software TCP/IP may become
less significant for processor utilization and message latency.

F.12 Concluding Remarks

Interconnection network design is one of the most exciting areas of computer archi-
tecture development today. With the advent of new multicore processor paradigms
and advances in traditional multiprocessor/cluster systems and the Internet, many
challenges and opportunities exist for interconnect architecture innovation. These
apply to all levels of computer systems: communication between cores on a chip,
between chips on a board, between boards in a system, and between computers in a
machine room, over a local area and across the globe. Irrespective of their domain
of application, interconnection networks should transfer the maximum amount of
information within the least amount of time for given cost and power constraints so
as not to bottleneck the system. Topology, routing, arbitration, switching, and flow
control are among some of the key concepts in realizing such high-performance
designs.

The design of interconnection networks is end-to-end: It includes injection
links, reception links, and the interfaces at network end points as much as it
does the topology, switches, and links within the network fabric. It is often
the case that the bandwidth and overhead at the end node interfaces are the
bottleneck, yet many mistakenly think of the interconnection network to mean
only the network fabric. This is as bad as processor designers thinking of com-
puter architecture to mean only the instruction set architecture or only the
microarchitecture! End-to-end issues and understanding of the traffic charac-
teristics make the design of interconnection networks challenging and very
much relevant even today. For instance, the need for low end-to-end latency
is driving the development of efficient network interfaces located closer to
the processor/memory controller. We may soon see most multicore processors
used in multiprocessor systems implementing network interfaces on-chip,
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devoting some core(s) to execute communication tasks. This is already the case
for the IBM Blue Gene/L supercomputer, which uses one of its two cores on
each processor chip for this purpose.

Networking has a long way to go from its humble shared-media beginnings. It
is in “catch-up” mode, with switched-media point-to-point networks only recently
displacing traditional bus-based networks in many networking domains, including
on chip, I/O, and the local area. We are not near any performance plateaus, so we
expect rapid advancement of WANs, LANs, SANs, and especially OCNs in the
near future. Greater interconnection network performance is key to the
information- and communication-centric vision of the future of our field, which,
so far, has benefited many millions of people around the world in various ways.
As the quotes at the beginning of this appendix suggest, this revolution in two-
way communication is at the heart of changes in the form of our human associa-
tions and actions.
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F.13 Historical Perspective and References

This appendix has taken the perspective that interconnection networks for very
different domains—from on-chip networks within a processor chip to wide
area networks connecting computers across the globe—share many of the same
concerns. With this, interconnection network concepts are presented in a uni-
fied way, irrespective of their application; however, their histories are vastly
different, as evidenced by the different solutions adopted to address similar
problems. The lack of significant interaction between research communities
from the different domains certainly contributed to the diversity of implemen-
ted solutions. Highlighted below are relevant readings on each topic. In addi-
tion, good general texts featuring WAN and LAN networking have been
written by Davie, Peterson, and Clark [1999] and by Kurose and Ross
[2001]. Good texts focused on SANs for multiprocessors and clusters have
been written by Duato, Yalamanchili, and Ni [2003] and by Dally and
Towles [2004]. An informative chapter devoted to dead-lock resolution in
interconnection networks was written by Pinkston [2004]. Finally, an edited
work by Jantsch and Tenhunen [2003] on OCNs for multicore processors
and system-on-chips is also interesting reading.
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Wide Area Networks

Wide area networks are the earliest of the data interconnection networks. The fore-
runner of the Internet is the ARPANET, which in 1969 connected computer sci-
ence departments across the United States that had research grants funded by the
Advanced Research Project Agency (ARPA), a U.S. government agency. It was
originally envisioned as using reliable communications at lower levels. Practical
experience with failures of the underlying technology led to the failure-tolerant
TCP/IP, which is the basis for the Internet today. Vint Cerf and Robert Kahn
are credited with developing the TCP/IP protocols in the mid-1970s, winning
the ACM Software Award in recognition of that achievement. Kahn [1972] is
an early reference on the ideas of ARPANET. For those interested in learning more
about TPC/IP, Stevens [1994–1996] has written classic books on the topic.

In 1975, there were roughly 100 networks in the ARPANET; in 1983, only
200. In 1995, the Internet encompassed 50,000 networks worldwide, about half
of which were in the United States. That number is hard to calculate now, but
the number of IP hosts grew by a factor of 15 from 1995 to 2000, reaching 100
million Internet hosts by the end of 2000. It has grownmuch faster since then.With
most service providers assigning dynamic IP addresses, many local area networks
using private IP addresses, and with most networks allowing wireless connections,
the total number of hosts in the Internet is nearly impossible to compute. In July
2005, the Internet Systems Consortium (www.isc.org) estimated more than 350
million Internet hosts, with an annual increase of about 25% projected. Although
key government networks made the Internet possible (i.e., ARPANET and
NSFNET), these networks have been taken over by the commercial sector, allow-
ing the Internet to thrive. But major innovations to the Internet are still likely to
come from government-sponsored research projects rather than from the commer-
cial sector. The National Science Foundation’s Global Environment for Network
Innovation (GENI) initiative is an example of this.

The most exciting application of the Internet is the World Wide Web, devel-
oped in 1989 by Tim Berners-Lee, a programmer at the European Center for Par-
ticle Research (CERN), for information access. In 1992, a young programmer at
the University of Illinois, Marc Andreessen, developed a graphical interface for the
Web called Mosaic. It became immensely popular. He later became a founder of
Netscape, which popularized commercial browsers. InMay 1995, at the time of the
second edition of this book, there were over 30,000 Web pages, and the number
was doubling every two months. During the writing of the third edition of this text,
there were more than 1.3 billion Web pages. In December 2005, the number of
Web servers approached 75 million, having increased by 30% during that
same year.

Asynchronous Transfer Mode (ATM) was an attempt to design the definitive
communication standard. It provided good support for data transmission as well as
digital voice transmission (i.e., phone calls). From a technical point of view, it
combined the best from packet switching and circuit switching, also providing
excellent support for providing quality of service (QoS). Alles [1995] offers a good
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survey on ATM. In 1995, no one doubted that ATM was going to be the future for
this community. Ten years later, the high equipment and personnel training costs
basically killed ATM, and we returned back to the simplicity of TCP/IP. Another
important blow to ATM was its defeat by the Ethernet family in the LAN domain,
where packet switching achieved significantly lower latencies than ATM, which
required establishing a connection before data transmission. ATM connectionless
servers were later introduced in an attempt to fix this problem, but they were expen-
sive and represented a central bottleneck in the LAN.

Finally, WANs today rely on optical fiber. Fiber technology has made so
many advances that today WAN fiber bandwidth is often underutilized. The
main reason for this is the commercial introduction of wavelength division
multiplexing (WDM), which allows each fiber to transmit many data streams
simultaneously over different wavelengths, thus allowing three orders of mag-
nitude bandwidth increase in just one generation, that is, 3 to 5 years (a good
text by Senior [1993] discusses optical fiber communications). However, IP
routers may still become a bottleneck. At 10- to 40-Gbps link rates, and with
thousands of ports in large core IP routers, packets must be processed very
quickly—that is, within a few tens of nanoseconds. The most time-consuming
operation is routing. The way IP addresses have been defined and assigned to
Internet hosts makes routing very complicated, usually requiring a complex
search in a tree structure for every packet. Network processors have become
popular as a cost-effective solution for implementing routing and other
packet-filtering operations. They usually are RISC-like and highly multi-
threaded and implement local stores instead of caches.

Local Area Networks

ARPA’s success with wide area networks led directly to the most popular local area
networks. Many researchers at Xerox Palo Alto Research Center had been funded
by ARPA while working at universities, so they all knew the value of networking.
In 1974, this group invented the Alto, the forerunner of today’s desktop computers
[Thacker et al. 1982], and the Ethernet [Metcalfe and Boggs 1976], today’s LAN.
This group—David Boggs, Butler Lampson, Ed McCreight, Bob Sprowl, and
Chuck Thacker—became luminaries in computer science and engineering, collect-
ing a treasure chest of awards among them.

This first Ethernet provided a 3-Mbit/sec interconnection, which seemed like
an unlimited amount of communication bandwidth with computers of that era. It
relied on the interconnect technology developed for the cable television industry.
Special microcode support gave a round-trip time of 50 μs for the Alto over Ether-
net, which is still a respectable latency. It was Boggs’ experience as a ham radio
operator that led to a design that did not need a central arbiter, but instead listened
before use and then varied back-off times in case of conflicts.

The announcement by Digital Equipment Corporation, Intel, and Xerox of a
standard for 10-Mbit/sec Ethernet was critical to the commercial success of
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Ethernet. This announcement short-circuited a lengthy IEEE standards effort,
which eventually did publish IEEE 802.3 as a standard for Ethernet.

There have been several unsuccessful candidates that have tried to replace the
Ethernet. The Fiber Data Distribution Interconnect (FDDI) committee, unfortu-
nately, took a very long time to agree on the standard, and the resulting interfaces
were expensive. It was also a shared medium when switches were becoming
affordable. ATM also missed the opportunity in part because of the long time
to standardize the LAN version of ATM, and in part because of the high latency
and poor behavior of ATM connectionless servers, as mentioned above. Infini-
Band for the reasons discussed below has also faltered. As a result, Ethernet con-
tinues to be the absolute leader in the LAN environment, and it remains a strong
opponent in the high-performance computing market as well, competing against
the SANs by delivering high bandwidth at low cost. The main drawback of Ether-
net for high-end systems is its relatively high latency and lack of support in most
interface cards to implement the necessary protocols.

Because of failures of the past, LAN modernization efforts have been centered
on extending Ethernet to lower-cost media such as unshielded twisted pair (UTP),
switched interconnects, and higher link speeds as well as to new domains such as
wireless communication. Practically all new PC motherboards and laptops imple-
ment a Fast/Gigabit Ethernet port (100/1000 Mbps), and most laptops implement a
54 Mbps Wireless Ethernet connection. Also, home wired or wireless LANs con-
necting all the home appliances, set-top boxes, desktops, and laptops to a shared
Internet connection are very common. Spurgeon [2006] has provided a nice online
summary of Ethernet technology, including some of its history.

System Area Networks

One of the first nonblocking multistage interconnection networks was proposed by
Clos [1953] for use in telephone exchange offices. Building on this, many early
inventions for system area networks came from their use in massively parallel pro-
cessors (MPPs). One of the first MPPs was the Illiac IV, a SIMD array built in the
early 1970s with 64 processing elements (“massive” at that time) interconnected
using a topology based on a 2D torus that provided neighbor-to-neighbor commu-
nication. Another representative of early MPP was the Cosmic Cube, which used
Ethernet interface chips to connect 64 processors in a 6-cube. Communication
between nonneighboring nodes was made possible by store-and-forwarding of
packets at intermediate nodes toward their final destination. A much larger and
truly “massive”MPP built in the mid-1980s was the Connection Machine, a SIMD
multiprocessor consisting of 64 K 1-bit processing elements, which also used a
hypercube with store-and-forwarding. Since these early MPP machines, intercon-
nection networks have improved considerably.

In the 1970s through the 1990s, considerable research went into trying to opti-
mize the topology and, later, the routing algorithm, switching, arbitration, and flow
control techniques. Initially, research focused on maximizing performance with
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little attention paid to implementation constraints or crosscutting issues. Many
exotic topologies were proposed having very interesting properties, but most of
them complicated the routing. Rising from the fray was the hypercube, a very pop-
ular network in the 1980s that has all but disappeared from MPPs since the 1990s.
What contributed to this shift was a performance model by Dally [1990] that
showed that if the implementation is wire limited, lower-dimensional topologies
achieve better performance than higher-dimensional ones because of their wider
links for a given wire budget. Many designers followed that trend assuming their
designs to be wire limited, even though most implementations were (and still are)
pin limited. Several supercomputers since the 1990s have implemented low-
dimensional topologies, including the Intel Paragon, Cray T3D, Cray T3E, HP
AlphaServer, Intel ASCI Red, and IBM Blue Gene/L.

Meanwhile, other designers followed a very different approach, implementing
bidirectional MINs in order to reduce the number of required switches below the
number of network nodes. The most popular bidirectional MIN was the fat tree
topology, originally proposed by Leiserson [1985] and first used in the Connection
Machine CM-5 supercomputer and, later, the IBM ASCI White and ASC Purple
supercomputers. This indirect topology was also used in several European parallel
computers based on the Transputer. The Quadrics network has inherited character-
istics from some of those Transputer-based networks. Myrinet has also evolved
significantly from its first version, with Myrinet 2000 incorporating the fat tree
as its principal topology. Indeed, most current implementations of SANs, including
Myrinet, InfiniBand, and Quadrics as well as future implementations such as PCI-
Express Advanced Switching, are based on fat trees.

Although the topology is the most visible aspect of a network, other features
also have a significant impact on performance. A seminal work that raised aware-
ness of deadlock properties in computer systems was published by Holt [1972].
Early techniques for avoiding deadlock in store-and-forward networks were pro-
posed by Merlin and Schweitzer [1980] and by Gunther [1981]. Pipelined switch-
ing techniques were first introduced by Kermani and Kleinrock [1979] (virtual cut-
through) and improved upon by Dally and Seitz [1986] (wormhole), which signif-
icantly reduced low-load latency and the topology’s impact on message latency
over previously proposed techniques. Wormhole switching was initially better
than virtual cut-through largely because flow control could be implemented at a
granularity smaller than a packet, allowing high-bandwidth links that were not
as constrained by available switch memory bandwidth. Today, virtual cut-through
is usually preferred over wormhole because it achieves higher throughput due to
less HOL blocking effects and is enabled by current integration technology that
allows the implementation of many packet buffers per link.

Tamir and Frazier [1992] laid the groundwork for virtual output queuing with
the notion of dynamically allocated multiqueues. Around this same time, Dally
[1992] contributed the concept of virtual channels, which was key to the develop-
ment of more efficient deadlock-free routing algorithms and congestion-reducing
flow control techniques for improved network throughput. Another highly relevant
contribution to routing was a new theory proposed by Duato [1993] that allowed
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the implementation of fully adaptive routing with just one “escape” virtual channel
to avoid deadlock. Previous to this, the required number of virtual channels to
avoid deadlock increased exponentially with the number of network dimensions.
Pinkston and Warnakulasuriya [1997] went on to show that deadlock actually can
occur very infrequently, giving credence to deadlock recovery routing approaches.
Scott and Goodman [1994] were among the first to analyze the usefulness of pipe-
lined channels for making link bandwidth independent of the time of flight. These
and many other innovations have become quite popular, finding use in most high-
performance interconnection networks, both past and present. The IBM Blue
Gene/L, for example, implements virtual cut-through switching, four virtual chan-
nels per link, fully adaptive routing with one escape channel, and pipelined links.

MPPs represent a very small (and currently shrinking) fraction of the informa-
tion technology market, giving way to bladed servers and clusters. In the United
States, government programs such as the Advanced Simulation and Computing
(ASC) program (formerly known as the Accelerated Strategic Computing Initia-
tive, or ASCI) have promoted the design of those machines, resulting in a series
of increasingly powerful one-of-a-kind MPPs costing $50 million to $100 million.
These days, many are basically lower-cost clusters of symmetric multiprocessors
(SMPs) (see Pfister [1998] and Sterling [2001] for two perspectives on clustering).
In fact, in 2005, nearly 75% of the TOP500 supercomputers were clusters. Nev-
ertheless, the design of each generation of MPPs and even clusters pushes inter-
connection network research forward to confront new problems arising due to
shear size and other scaling factors. For instance, source-based routing—the sim-
plest form of routing—does not scale well to large systems. Likewise, fat trees
require increasingly longer links as the network size increases, which led IBMBlue
Gene/L designers to adopt a 3D torus network with distributed routing that can be
implemented with bounded-length links.

Storage Area Networks

System area networks were originally designed for a single room or single floor
(thus their distances are tens to hundreds of meters) and were for use in MPPs
and clusters. In the intervening years, the acronym SAN has been co-opted to also
mean storage area networks, whereby networking technology is used to connect
storage devices to compute servers. Today, many refer to “storage” when they
say SAN. The most widely used SAN example in 2006 was Fibre Channel
(FC), which comes in many varieties, including various versions of Fibre Channel
Arbitrated Loop (FC-AL) and Fibre Channel Switched (FC-SW). Not only are disk
arrays attached to servers via FC links, but there are even some disks with FC links
attached to switches so that storage area networks can enjoy the benefits of greater
bandwidth and interconnectivity of switching.

In October 2000, the InfiniBand Trade Association announced the version 1.0
specification of InfiniBand [InfiniBand Trade Association 2001]. Led by Intel, HP,
IBM, Sun, and other companies, it was targeted to the high-performance
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computing market as a successor to the PCI bus by having point-to-point links and
switches with its own set of protocols. Its characteristics are desirable potentially
both for system area networks to connect clusters and for storage area networks to
connect disk arrays to servers. Consequently, it has had strong competition from
both fronts. On the storage area networking side, the chief competition for Infini-
Band has been the rapidly improving Ethernet technology widely used in LANs.
The Internet Engineering Task Force proposed a standard called iSCSI to send
SCSI commands over IP networks [Satran et al. 2001]. Given the cost advantages
of the higher-volume Ethernet switches and interface cards, Gigabit Ethernet dom-
inates the low-end and medium range for this market. What’s more, the slow intro-
duction of InfiniBand and its small market share delayed the development of chip
sets incorporating native support for InfiniBand. Therefore, network interface
cards had to be plugged into the PCI or PCI-X bus, thus never delivering on the
promise of replacing the PCI bus.

It was another I/O standard, PCI-Express, that finally replaced the PCI bus.
Like InfiniBand, PCI-Express implements a switched network but with point-
to-point serial links. To its credit, it maintains software compatibility with the
PCI bus, drastically simplifying migration to the new I/O interface. Moreover,
PCI-Express benefited significantly from mass market production and has found
application in the desktop market for connecting one or more high-end graphics
cards, making gamers very happy. Every PC motherboard now implements one
or more 16x PCI-Express interfaces. PCI-Express absolutely dominates the I/O
interface, but the current standard does not provide support for interprocessor
communication.

Yet another standard, Advanced Switching Interconnect (ASI), may emerge as
a complementary technology to PCI-Express. ASI is compatible with PCI-Express,
thus linking directly to current motherboards, but it also implements support for
interprocessor communication as well as I/O. Its defenders believe that it will even-
tually replace both SANs and LANs with a unified network in the data center mar-
ket, but ironically this was also said of InfiniBand. The interested reader is referred
to Pinkston et al. [2003] for a detailed discussion on this. There is also a new disk
interface standard called Serial Advanced Technology Attachment (SATA) that is
replacing parallel Integrated Device Electronics (IDE) with serial signaling tech-
nology to allow for increased bandwidth. Most disks in the market use this new
interface, but keep in mind that Fibre Channel is still alive and well. Indeed, most
of the promises made by InfiniBand in the SAN market were satisfied by Fibre
Channel first, thus increasing their share of the market.

Some believe that Ethernet, PCI-Express, and SATA have the edge in the
LAN, I/O interface, and disk interface areas, respectively. But the fate of the
remaining storage area networking contenders depends on many factors. A won-
derful characteristic of computer architecture is that such issues will not remain
endless academic debates, unresolved as people rehash the same arguments repeat-
edly. Instead, the battle is fought in the marketplace, with well-funded and talented
groups giving their best efforts at shaping the future. Moreover, constant changes
to technology reward those who are either astute or lucky. The best combination of
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technology and follow-through has often determined commercial success. Time
will tell us who will win and who will lose, at least for the next round!

On-Chip Networks

Relative to the other network domains, on-chip networks are in their infancy. As
recently as the late 1990s, the traditional way of interconnecting devices such as
caches, register files, ALUs, and other functional units within a chip was to use
dedicated links aimed at minimizing latency or shared buses aimed at simplicity.
But with subsequent increases in the volume of interconnected devices on a single
chip, the length and delay of wires to cross a chip, and chip power consumption, it
has become important to share on-chip interconnect bandwidth in a more struc-
tured way, giving rise to the notion of a network on-chip. Among the first to rec-
ognize this were Agarwal [Waingold et al. 1997] and Dally [Dally 1999; Dally and
Towles 2001]. They and others argued that on-chip networks that route packets
allow efficient sharing of burgeoning wire resources between many communica-
tion flows and also facilitate modularity to mitigate chip-crossing wire delay prob-
lems identified by Ho,Mai, and Horowitz [2001]. Switched on-chip networks were
also viewed as providing better fault isolation and tolerance. Challenges in
designing these networks were later described by Taylor et al. [2005], who also
proposed a 5-tuple model for characterizing the delay of OCNs. A design process
for OCNs that provides a complete synthesis flow was proposed by Bertozzi et al.
[2005]. Following these early works, much research and development has gone
into on-chip network design, making this a very hot area of microarchitecture
activity.

Multicore and tiled designs featuring on-chip networks have become very pop-
ular since the turn of the millennium. Pinkston and Shin [2005] provide a survey of
on-chip networks used in early multicore/tiled systems. Most designs exploit the
reduced wiring complexity of switched OCNs as the paths between cores/tiles can
be precisely defined and optimized early in the design process, thus enabling
improved power and performance characteristics. With typically tens of thousands
of wires attached to the four edges of a core or tile as “pinouts,” wire resources can
be traded off for improved network performance by having very wide channels
over which data can be sent broadside (and possibly scaled up or down according
to the power management technique), as opposed to serializing the data over fixed
narrow channels.

Rings, meshes, and crossbars are straightforward to implement in planar chip
technology and routing is easily defined on them, so these were popular topolog-
ical choices in early switched OCNs. It will be interesting to see if this trend con-
tinues in the future when several tens to hundreds of heterogeneous cores and tiles
will likely be interconnected within a single chip, possibly using 3D integration
technology. Considering that processor microarchitecture has evolved signifi-
cantly from its early beginnings in response to application demands and technolog-
ical advancements, we would expect to see vast architectural improvements to on-
chip networks as well.

F-108 ■ Appendix F Interconnection Networks



References
Agarwal, A., 1991. Limits on interconnection network performance. IEEE Trans. on Parallel and Dis-

tributed Systems 2 (4 (April)), 398–412.
Alles, A., 1995. “ATM internetworking” (May). www.cisco.com/warp/public/614/12.html.
Anderson, T.E., Culler, D.E., Patterson, D., 1995. A case for NOW (networks of workstations). IEEE

Micro 15 (1 (February)), 54–64.
Anjan, K.V., Pinkston, T.M., 1995. An efficient, fully-adaptive deadlock recovery scheme: Disha.

In: Proc. 22nd Annual Int’l. Symposium on Computer Architecture, June 22–24, 1995. Santa Mar-
gherita Ligure, Italy.

Arpaci, R.H., Culler, D.E., Krishnamurthy, A., Steinberg, S.G., Yelick, K., 1995. Empirical evaluation
of the Cray-T3D: A compiler perspective. In: Proc. 22nd Annual Int’l. Symposium on Computer
Architecture, June 22–24, 1995. Santa Margherita Ligure, Italy.

Bell, G., Gray, J., 2001. Crays, Clusters and Centers. Microsoft Corporation, Redmond, Wash. MSR-
TR-2001-76.

Benes, V.E., 1962. Rearrangeable three stage connecting networks. Bell Syst. Tech. J. 41, 1481–1492.
Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., De Micheli, G., 2005.

NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE Trans.
on Parallel and Distributed Systems 16 (2 (February)), 113–130.

Bhuyan, L.N., Agrawal, D.P., 1984. Generalized hypercube and hyperbus structures for a computer
network. IEEE Trans. on Computers 32 (4 (April)), 322–333.

Brewer, E.A., Kuszmaul, B.C., 1994. How to get good performance from the CM-5 data network.
In: Proc. Eighth Int’l Parallel Processing Symposium, April 26–29, 1994. Cancun, Mexico.

Clos, C., 1953. A study of non-blocking switching networks. Bell Systems Technical Journal
32 (March), 406–424.

Dally, W.J., 1990. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. on
Computers 39 (6 (June)), 775–785.

Dally, W.J., 1992. Virtual channel flow control. IEEE Trans. on Parallel and Distributed Systems 3 (2
(March)), 194–205.

Dally, W.J., 1999. Interconnect limited VLSI architecture. In: Proc. of the Int’l. Interconnect Technol-
ogy Conference, May 24–26, 1999. San Francisco, Calif.

Dally, W.J., Seitz, C.I., 1986. The torus routing chip. Distributed Computing 1 (4), 187–196.
Dally, W.J., Towles, B., 2001. Route packets, not wires: On-chip interconnection networks. In: Proc. of

the 38th Design Automation Conference, June 18–22, 2001. Las Vegas, Nev.
Dally, W.J., Towles, B., 2004. Principles and Practices of Interconnection Networks. Morgan Kauf-

mann Publishers, San Francisco.
Davie, B.S., Peterson, L.L., Clark, D., 1999. Computer Networks: A Systems Approach, second ed.

Morgan Kaufmann Publishers, San Francisco.
Duato, J., 1993. A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans. on

Parallel and Distributed Systems 4 (12 (December)), 1320–1331.
Duato, J., Pinkston, T.M., 2001. A general theory for deadlock-free adaptive routing using amixed set of

resources. IEEE Trans. on Parallel and Distributed Systems 12 (12 (December)), 1219–1235.
Duato, J., Yalamanchili, S., Ni, L., 2003. Interconnection Networks: An Engineering Approach. Mor-

gan Kaufmann Publishers, San Francisco. 2nd printing.
Duato, J., Johnson, I., Flich, J., Naven, F., Garcia, P., Nachiondo, T., 2005a. A new scalable and cost-

effective congestion management strategy for lossless multistage interconnection networks.
In: Proc. 11th Int’l. Symposium on High Performance Computer Architecture, February 12–16,
2005 San Francisco.

Duato, J., Lysne, O., Pang, R., Pinkston, T.M., 2005b. Part I: A theory for deadlock-free dynamic recon-
figuration of interconnection networks. IEEE Trans. on Parallel and Distributed Systems 16 (5
(May)), 412–427.

Flich, J., Bertozzi, D., 2010. Designing Network-on-Chip Architectures in the Nanoscale Era. CRC
Press, Boca Raton, FL.

Glass, C.J., Ni, L.M., 1992. The Turn Model for adaptive routing. In: Proc. 19th Int’l. Symposium on
Computer Architecture. May, Gold Coast, Australia.

Gunther, K.D., 1981. Prevention of deadlocks in packet-switched data transport systems. IEEE Trans.
on Communications, 512–524. COM–29:4 (April).

Ho, R., Mai, K.W., Horowitz, M.A., 2001. The future of wires. In: Proc. of the IEEE 89:4 (April),
pp. 490–504.

Holt, R.C., 1972. Some deadlock properties of computer systems. ACM Computer Surveys
4 (3 (September)), 179–196.

F.13 Historical Perspective and References ■ F-109

http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0010
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0010
http://www.cisco.com/warp/public/614/12.html
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0020
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0020
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0025
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0025
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0025
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0030
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0030
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0030
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0035
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0035
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0040
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0045
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0045
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0045
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0050
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0050
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0055
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0055
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0060
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0060
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0065
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0065
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0070
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0070
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0075
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0075
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0080
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0085
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0085
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0095
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0095
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0100
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0100
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0105
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0105
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0110
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0110
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0125
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0125
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0130
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0130
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0135
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0135
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0140
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0140
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0145
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0145


Hoskote, Y., Vangal, S., Singh, A., Borkar, N., Borkar, S., 2007. A 5-ghz mesh interconnect for a tera-
flops processor. IEEE Micro 27 (5), 51–61.

Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Finan, S., Ruhl, G., Jenkins, D., Wilson, H., Borka, N.,
Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S., Marella, S., Salihundam, P., Erraguntla, V.,
Konow, M., Riepen, M., Droege, G., Lindemann, J., Gries, M., Apel, T., Henriss, K., Lund-
Larsen, T., Steibl, S., Borkar, S., De, V., Van Der Wijngaart, R., Mattson, T., 2010. A 48-core
IA-32 message-passing processor with DVFS in 45 nm CMOS. In: IEEE International Solid-State
Circuits Conference Digest of Technical Papers, pp. 58–59.

InfiniBand Trade Association, 2001. InfiniBand Architecture Specifications Release 1.0.a. www.
infinibandta.org.

Jantsch, A., Tenhunen, H. (Eds.), 2003. Networks on Chips. Kluwer Academic Publishers, The
Netherlands.

Kahn, R.E., 1972. Resource-sharing computer communication networks. In: Proc. IEEE 60:11 (Novem-
ber), pp. 1397–1407.

Kermani, P., Kleinrock, L., 1979. Virtual cut-through: A new computer communication switching tech-
nique. Computer Networks 3 (January), 267–286.

Kurose, J.F., Ross, K.W., 2001. Computer Networking: A Top-Down Approach Featuring the Internet.
Addison-Wesley, Boston.

Leiserson, C.E., 1985. Fat trees: Universal networks for hardware-efficient supercomputing. IEEE
Trans. on Computers, 892–901. C–34:10 (October).

Merlin, P.M., Schweitzer, P.J., 1980. Deadlock avoidance in store-and-forward networks. I. Store-and-
forward deadlock. IEEE Trans. on Communications, 345–354. COM–28:3 (March).

Metcalfe, R.M., 1993. Computer/network interface design: Lessons from Arpanet and Ethernet. IEEE J.
on Selected Areas in Communications 11 (2 (February)), 173–180.

Metcalfe, R.M., Boggs, D.R., 1976. Ethernet: Distributed packet switching for local computer networks.
Comm. ACM 19 (7 (July)), 395–404.

Partridge, C., 1994. Gigabit Networking. Addison-Wesley, Reading, Mass.
Peh, L.S., Dally, W.J., 2001. A delay model and speculative architecture for pipelined routers. In: Proc.

7th Int’l. Symposium on High Performance Computer Architecture, January 20–24, 2001. Monter-
rey, Mexico.

Pfister, G.F., 1998. In Search of Clusters, second ed. Prentice Hall, Upper Saddle River, N.J.
Pinkston, T.M., 2004. Deadlock characterization and resolution in interconnection networks.

In: Zhu, M.C., Fanti, M.P. (Eds.), Deadlock Resolution in Computer-Integrated Systems. CRC
Press, Boca Raton, Fl, pp. 445–492.

Pinkston, T.M., Shin, J., 2005. Trends toward on-chip networked microsystems. Int’l. J. of High Per-
formance Computing and Networking 3 (1), 3–18.

Pinkston, T.M., Warnakulasuriya, S., 1997. On deadlocks in interconnection networks. In: Proc. 24th
Int’l. Symposium on Computer Architecture, June 2–4, 1997. Denver, Colo.

Pinkston, T.M., Benner, A., Krause, M., Robinson, I., Sterling, T., 2003. InfiniBand: The ‘de facto’
future standard for system and local area networks or just a scalable replacement for PCI buses?”
Special Issue on Communication Architecture for Clusters 6:2 (April). Cluster Computing, 95–104.

Puente, V., Beivide, R., Gregorio, J.A., Prellezo, J.M., Duato, J., Izu, C., 1999. Adaptive bubble router:
A design to improve performance in torus networks. In: Proc. 28th Int’l. Conference on Parallel
Processing, September 21–24, 1999. Aizu-Wakamatsu, Japan.

Rodrigo, S., Flich, J., Duato, J., Hummel, M., 2008. Efficient unicast and multicast support for CMPs.
In: Proc. 41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-41),
November 8–12, 2008. Lake Como, Italy, pp. 364–375.

Saltzer, J.H., Reed, D.P., Clark, D.D., 1984. End-to-end arguments in system design. ACM Trans. on
Computer Systems 2 (4 (November)), 277–288.

Satran, J., Smith, D., Meth, K., Sapuntzakis, C., Wakeley, M., Von Stamwitz, P., Haagens, R.,
Zeidner, E., Dalle Ore, L., Klein, Y., 2001. “iSCSI”, IPS working group of IETF, Internet draft.
www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt.

Scott, S.L., Goodman, J., 1994. The impact of pipelined channels on k-ary n-cube networks. IEEE
Trans. on Parallel and Distributed Systems 5 (1 (January)), 1–16.

Senior, J.M., 1993. Optical Fiber Commmunications: Principles and Practice, second ed. Prentice Hall,
Hertfordshire, U.K..

Spurgeon, C., 2006. Charles Spurgeon’s Ethernet Web Site. www.etherman-age.com/ethernet/ethernet.
html.

F-110 ■ Appendix F Interconnection Networks

http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0150
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0150
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0155
http://www.infinibandta.org
http://www.infinibandta.org
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0165
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0165
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0170
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0170
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0175
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0175
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0180
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0180
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0185
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0185
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0190
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0190
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0195
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0195
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0200
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0200
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0205
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0210
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0210
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0210
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0215
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0220
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0220
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0220
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0225
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0225
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0230
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0230
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0235
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0235
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0235
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0240
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0240
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0240
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0245
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0245
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0245
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0250
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0250
http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0260
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0260
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0265
http://refhub.elsevier.com/B978-0-12-811905-1.09974-0/rf0265
http://www.etherman-age.com/ethernet/ethernet.html
http://www.etherman-age.com/ethernet/ethernet.html


Sterling, T., 2001. Beowulf PC Cluster Computing with Windows and Beowulf PC Cluster Computing
with Linux. MIT Press, Cambridge, Mass.

Stevens, W.R., 1994–1996. TCP/IP Illustrated (three volumes). Addison-Wesley, Reading, Mass.
Tamir, Y., Frazier, G., 1992. Dynamically-allocated multi-queue buffers for VLSI communication

switches. IEEE Trans. on Computers 41 (6 (June)), 725–734.
Tanenbaum, A.S., 1988. Computer Networks, second ed. Prentice Hall, Englewood Cliffs, N.J.
Taylor,M.B., Lee,W., Amarasinghe, S.P., Agarwal, A., 2005. Scalar operand networks. IEEE Trans. on

Parallel and Distributed Systems 16 (2 (February)), 145–162.
Thacker, C.P., McCreight, E.M., Lampson, B.W., Sproull, R.F., Boggs, D.R., 1982. Alto: A personal

computer. In: Siewiorek, D.P., Bell, C.G., Newell, A. (Eds.), Computer Structures: Principles and
Examples. McGraw-Hill, New York, pp. 549–572.

TILE-GX, http://www.tilera.com/sites/default/files/productbriefs/PB025_TILE-Gx_Processor_A_v3.
pdf.

Vaidya, A.S., Sivasubramaniam, A., Das, C.R., 1997. Performance benefits of virtual channels and
adaptive routing: An application-driven study. In: Proc. 11th ACM Int’l Conference on Supercom-
puting, July 7–11, 1997. Vienna, Austria.

Van Leeuwen, J., Tan, R.B., 1987. Interval Routing. The Computer Journal 30 (4), 298–307.
von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E., 1992. Active messages: A mechanism for

integrated communication and computation. In: Proc. 19th Annual Int’l. Symposium on Computer
Architecture, May 19–21, 1992. Gold Coast, Australia.

Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M., Finch, P.,
Barua, R., Babb, J., Amarasinghe, S., Agarwal, A., 1997. Baring it all to software: Raw Machines.
IEEE Computer 30 (September), 86–93.

Yang, Y., Mason, G., 1991. Nonblocking broadcast switching networks. IEEE Trans. on Computers
40 (9 (September)), 1005–1015.

Exercises

Solutions to “starred” exercises are available for instructors who register at text-
books.elsevier.com.

✪ F.1 [15]<F.2, F.3> Is electronic communication always faster than nonelectronic
means for longer distances? Calculate the time to send 1000 GB using 25 8-mm
tapes and an overnight delivery service versus sending 1000 GB by FTP over
the Internet. Make the following four assumptions:

■ The tapes are picked up at 4 P.M. Pacific time and delivered 4200 km away at
10 A.M. Eastern time (7 A.M. Pacific time).

■ On one route the slowest link is a T3 line, which transfers at 45 Mbits/sec.

■ On another route the slowest link is a 100-Mbit/sec Ethernet.

■ You can use 50% of the slowest link between the two sites.
Will all the bytes sent by either Internet route arrive before the overnight delivery
person arrives?

✪ F.2 [10]<F.2, F.3>For the same assumptions as Exercise F.1, what is the bandwidth
of overnight delivery for a 1000-GB package?

✪ F.3 [10]<F.2, F.3>For the same assumptions as Exercise F.1, what is the minimum
bandwidth of the slowest link to beat overnight delivery? What standard network
options match that speed?
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✪ F.4 [15]<F.2, F.3>The original Ethernet standard was for 10 Mbits/sec and a max-
imum distance of 2.5 km. How many bytes could be in flight in the original Ether-
net? Assume you can use 90% of the peak bandwidth.

✪ F.5 [15]<F.2, F.3>Flow control is a problem for WANs due to the long time of
flight, as the example on page F-14 illustrates. Ethernet did not include flow
control when it was first standardized at 10 Mbits/sec. Calculate the number of
bytes in flight for a 10-Gbit/sec Ethernet over a 100 meter link, assuming you
can use 90% of peak bandwidth. What does your answer mean for network
designers?

✪ F.6 [15]<F.2, F.3>Assume the total overhead to send a zero-length data packet on an
Ethernet is 100 μs and that an unloaded network can transmit at 90% of the peak
1000-Mbit/sec rating. For the purposes of this question, assume that the size of the
Ethernet header and trailer is 56 bytes. Assume a continuous stream of packets of
the same size. Plot the delivered bandwidth of user data in Mbits/sec as the payload
data size varies from 32 bytes to the maximum size of 1500 bytes in 32-byte
increments.

✪ F.7 [10]<F.2, F.3>Exercise F.6 suggests that the delivered Ethernet bandwidth to a
single user may be disappointing. Making the same assumptions as in that exercise,
by howmuch would the maximum payload size have to be increased to deliver half
of the peak bandwidth?

✪ F.8 [10]<F.2, F.3>One reason that ATM has a fixed transfer size is that when a
short message is behind a long message, a node may need to wait for an entire
transfer to complete. For applications that are time sensitive, such as when
transmitting voice or video, the large transfer size may result in transmission
delays that are too long for the application. On an unloaded interconnection,
what is the worstcase delay in microseconds if a node must wait for one
full-size Ethernet packet versus an ATM transfer? See Figure F.30 (page F-
78) to find the packet sizes. For this question assume that you can transmit
at 100% of the 622-Mbits/sec ATM network and 100% of the 1000-Mbit/
sec Ethernet.

✪ F.9 [10]<F.2, F.3>Exercise F.7 suggests the need for expanding the maximum
pay-load to increase the delivered bandwidth, but Exercise F.8 suggests the
impact on worst-case latency of making it longer. What would be the impact
on latency of increasing the maximum payload size by the answer to Exercise
F.7?

✪ F.10 [12/12/20]<F.4>The Omega network shown in Figure F.11 on page F-31 con-
sists of three columns of four switches, each with two inputs and two outputs. Each
switch can be set to straight, which connects the upper switch input to the upper
switch output and the lower input to the lower output, and to exchange,which con-
nects the upper input to the lower output and vice versa for the lower input. For
each column of switches, label the inputs and outputs 0, 1,…, 7 from top to bottom,
to correspond with the numbering of the processors.
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a. [12]<F.4>When a switch is set to exchange and a message passes through,
what is the relationship between the label values for the switch input and output
used by the message? (Hint: Think in terms of operations on the digits of the
binary representation of the label number.)

b. [12]<F.4>Between any two switches in adjacent columns that are connected
by a link, what is the relationship between the label of the output connected to
the input?

c. [20]<F.4>Based on your results in parts (a) and (b), design and describe a
simple routing scheme for distributed control of the Omega network. Amessage
will carry a routing tag computed by the sending processor. Describe how the
processor computes the tag and how each switch can set itself by examining a bit
of the routing tag.

✪ F.11 [12/12/12/12/12/12]<F.4>Prove whether or not it is possible to realize the fol-
lowing permutations (i.e., communication patterns) on the eight-node Omega net-
work shown in Figure F.11 on page F-31:

a. [12]<F.4>Bit-reversal permutation—the node with binary coordinates an�1,
an�2, …, a1, a0 communicates with the node a0, a1, …, an�2, an�1.

b. [12]<F.4>Perfect shuffle permutation—the node with binary coordinates
an�1, an�2, …, a1, a0 communicates with the node an�2, an�3, …, a0, an�1

(i.e., rotate left 1 bit).

c. [12]<F.4>Bit-complement permutation—the node with binary coordinates
an�1, an�2, …, a1, a0 communicates with the node an�1, an�2,…, a1, a0
(i.e., complement each bit).

d. [12]<F.4>Butterfly permutation—the node with binary coordinates an�1,
an�2, …, a1, a0 communicates with the node a0, an�2, …, a1, an�1 (i.e., swap
the most and least significant bits).

e. [12]<F.4>Matrix transpose permutation—the node with binary coordinates
an�1, an�2, …, a1, a0 communicates with the node an/2�1, …, a0, an�1, …,
an/2 (i.e., transpose the bits in positions approximately halfway around).

f. [12]<F.4>Barrel-shift permutation—node i communicates with node i+1
modulo N�1, where N is the total number of nodes and 0� i.

✪ F.12 [12]<F.4>Design a network topology using 18-port crossbar switches that has
the minimum number of switches to connect 64 nodes. Each switch port supports
communication to and from one device.

✪ F.13 [15]<F.4>Design a network topology that has the minimum latency through the
switches for 64 nodes using 18-port crossbar switches. Assume unit delay in the
switches and zero delay for wires.

✪ F.14 [15]<F.4>Design a switch topology that balances the bandwidth required for all
links for 64 nodes using 18-port crossbar switches. Assume a uniform traffic
pattern.
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✪ F.15 [15]<F.4>Compare the interconnection latency of a crossbar, Omega network,
and fat tree with eight nodes. Use Figure F.11 on page F-31, Figure F.12 on page F-
33, and Figure F.14 on page F-37. Assume that the fat tree is built entirely from
two-input, two-output switches so that its hardware resources are more comparable
to that of the Omega network. Assume that each switch costs a unit time delay.
Assume that the fat tree randomly picks a path, so give the best case and worst
case for each example. How long will it take to send a message from node 0 to
node 6? How long will it take node 1 and node 7 to communicate?

✪ F.16 [15]<F.4>Draw the topology of a 6-cube after the same manner of the 4-cube in
Figure F.14 on page F-37. What is the maximum and average number of hops
needed by packets assuming a uniform distribution of packet destinations?

✪ F.17 [15]<F.4>Complete a table similar to Figure F.15 on page F-40 that captures the
performance and cost of various network topologies, but do it for the general case
of N nodes using k�k switches instead of the specific case of 64 nodes.

✪ F.18 [20]<F.4>Repeat the example given on page F-41, but use the bit-complement
communication pattern given in Exercise F.11 instead of NEWS communication.

✪ F.19 [15]<F.5>Give the four specific conditions necessary for deadlock to exist in an
interconnection network. Which of these are removed by dimension-order routing?
Which of these are removed in adaptive routing with the use of “escape” routing
paths? Which of these are removed in adaptive routing with the technique of dead-
lock recovery (regressive or progressive)? Explain your answer.

✪ F.20 [12/12/12/12]<F.5>Prove whether or not the following routing algorithms based
on prohibiting dimensional turns are suitable to be used as escape paths for 2D
meshes by analyzing whether they are both connected and deadlock-free. Explain
your answer. (Hint: You may wish to refer to the Turn Model algorithm and/or to
prove your answer by drawing a directed graph for a 4�4 mesh that depicts depen-
dencies between channels and verifying the channel dependency graph is free of
cycles.) The routing algorithms are expressed with the following abbreviations:
W¼west, E¼east, N¼north, and S¼ south.

a. [12]<F.5>Allowed turns are from W to N, E to N, S to W, and S to E.

b. [12]<F.5>Allowed turns are from W to S, E to S, N to E, and S to E.

c. [12]<F.5>Allowed turns are fromW to S, E to S, N to W, S to E, W to N, and
S to W.

d. [12]<F.5>Allowed turns are from S to E, E to S, S toW, N toW, N to E, and E
to N.

✪ F.21 [15]<F.5>Compute and compare the upper bound for the efficiency factor, ρ, for
dimension-order routing and up*/down* routing assuming uniformly distributed
traffic on a 64-node 2D mesh network. For up*/down* routing, assume optimal
placement of the root node (i.e., a node near the middle of the mesh). (Hint:
You will have to find the loading of links across the network bisection that carries
the global load as determined by the routing algorithm.)
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✪ F.22 [15]<F.5>For the same assumptions as Exercise F.21, find the efficiency factor
for up*/down* routing on a 64-node fat tree network using 4�4 switches. Com-
pare this result with the ρ found for up*/down* routing on a 2D mesh. Explain.

✪ F.23 [15]<F.5>Calculate the probability of matching two-phased arbitration requests
from all k input ports of a switch simultaneously to the k output ports assuming a
uniform distribution of requests and grants to/from output ports. How does this
compare to the matching probability for three-phased arbitration in which each
of the k input ports can make two simultaneous requests (again, assuming a uni-
form random distribution of requests and grants)?

✪ F.24 [15]<F.5>The equation on page F-52 shows the value of cut-through switching.
Ethernet switches used to build clusters often do not support cut-through switching.
Compare the time to transfer 1500 bytes over a 1000-Mbit/sec Ethernet with and
without cut-through switching for a 64-node cluster. Assume that each Ethernet
switch takes 1.0 μs and that a message goes through seven intermediate switches.

✪ F.25 [15]<F.5>Making the same assumptions as in Exercise F.24, what is the differ-
ence between cut-through and store-and-forward switching for 32 bytes?

✪ F.26 [15]<F.5>One way to reduce latency is to use larger switches. Unlike Exercise
F.24, let’s assume we need only three intermediate switches to connect any two
nodes in the cluster. Make the same assumptions as in Exercise F.24 for the remain-
ing parameters. What is the difference between cut-through and store-and-forward
for 1500 bytes? For 32 bytes?

✪ F.27 [20]<F.5>Using FlexSim 1.2 (http://ceng.usc.edu/smart/FlexSim/flexsim.html)
or some other cycle-accurate network simulator, simulate a 256-node 2D torus net-
work assuming wormhole routing, 32-flit packets, uniform (random) communica-
tion pattern, and four virtual channels. Compare the performance of deterministic
routing using DOR, adaptive routing using escape paths (i.e., Duato’s Protocol),
and true fully adaptive routing using progressive deadlock recovery (i.e., Disha
routing). Do so by plotting latency versus applied load and through-put versus
applied load for each, as is done in Figure F.19 for the example on page F-53. Also
run simulations and plot results for two and eight virtual channels for each. Com-
pare and explain your results by addressing how/why the number and use of virtual
channels by the various routing algorithms affect network performance. (Hint: Be
sure to let the simulation reach steady state by allowing a warm-up period of a sev-
eral thousand network cycles before gathering results.)

✪ F.28 [20]<F.5>Repeat Exercise F.27 using bit-reversal communication instead of the
uniform random communication pattern. Compare and explain your results by
addressing how/why the communication pattern affects network performance.

✪ F.29 [40]<F.5>Repeat Exercises F.27 and F.28 using 16-flit packets and 128-flit
packets. Compare and explain your results by addressing how/why the packet size
along with the other design parameters affect network performance.

F.30 [20]<F.2, F.4, F.5, F.8>Figures F.7, F.16, and F.20 show interconnection
network characteristics of several of the top 500 supercomputers by machine type
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as of the publication of the fourth edition. Update that figure to the most recent top
500. How have the systems and their networks changed since the data in the orig-
inal figure? Do similar comparisons for OCNs used in microprocessors and SANs
targeted for clusters using Figures F.29 and F.31.

✪ F.31 [12/12/12/15/15/18]<F.8>Use the M/M/1 queuing model to answer this exer-
cise. Measurements of a network bridge show that packets arrive at 200 packets
per second and that the gateway forwards them in about 2 ms.

a. [12]<F.8>What is the utilization of the gateway?

b. [12]<F.8>What is the mean number of packets in the gateway?

c. [12]<F.8>What is the mean time spent in the gateway?

d. [15]<F.8>Plot response time versus utilization as you vary the arrival rate.

e. [15]<F.8>For an M/M/1 queue, the probability of finding n or more tasks in
the system is Utilizationn. What is the chance of an overflow of the FIFO if it can
hold 10 messages?

f. [18]<F.8>How big must the gateway be to have packet loss due to FIFO over-
flow less than one packet per million?

✪ F.32 [20]<F.8>The imbalance between the time of sending and receiving can cause
problems in network performance. Sending too fast can cause the network to back
up and increase the latency of messages, since the receivers will not be able to pull
out the message fast enough. A technique called bandwidth matching proposes a
simple solution: Slow down the sender so that it matches the performance of the
receiver [Brewer and Kuszmaul 1994]. If two machines exchange an equal number
of messages using a protocol like UDP, one will get ahead of the other, causing it to
send all its messages first. After the receiver puts all these messages away, it will
then send its messages. Estimate the performance for this case versus a bandwidth-
matched case. Assume that the send overhead is 200 μs, the receive overhead is
300 μs, time of flight is 5 μs, latency is 10 μs, and that the two machines want
to exchange 100 messages.

F.33 [40]<F.8>Compare the performance of UDP with and without bandwidth
matching by slowing down the UDP send code to match the receive code as
advised by bandwidth matching [Brewer and Kuszmaul 1994]. Devise an exper-
iment to see how much performance changes as a result. How should you change
the send rate when two nodes send to the same destination? What if one sender
sends to two destinations?

✪ F.34 [40]<F.6, F.8> If you have access to an SMP and a cluster, write a program to
measure latency of communication and bandwidth of communication between pro-
cessors, as was plotted in Figure F.32 on page F-80.

F.35 [20/20/20]<F.9> If you have access to a UNIX system, use ping to explore the
Internet. First read the manual page. Then use pingwithout option flags to be sure
you can reach the following sites. It should say that X is alive. Depending on
your system, you may be able to see the path by setting the flags to verbose mode
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(-v) and trace route mode (-R) to see the path between your machine and the
example machine. Alternatively, you may need to use the program trace route
to see the path. If so, try its manual page. You may want to use the UNIX command
script to make a record of your session.

a. [20]<F.9>Trace the route to another machine on the same local area network.
What is the latency?

b. [20]<F.9>Trace the route to another machine on your campus that is not on
the same local area network.What is the latency?

c. [20]<F.9>Trace the route to another machine off campus. For example, if you
have a friend you send email to, try tracing that route. See if you can discover
what types of networks are used along that route.What is the latency?

F.36 [15]<F.9>Use FTP to transfer a file from a remote site and then between local
sites on the same LAN. What is the difference in bandwidth for each transfer? Try
the transfer at different times of day or days of the week. Is the WAN or LAN the
bottleneck?

✪ F.37 [10/10]<F.9, F.11>Figure F.41 on page F-93 compares latencies for a high-
bandwidth network with high overhead and a low-bandwidth network with low
overhead for different TCP/IP message sizes.

a. [10]<F.9, F.11>For what message sizes is the delivered bandwidth higher for
the high-bandwidth network?

b. [10]<F.9, F.11>For your answer to part (a), what is the delivered bandwidth
for each network?

✪ F.38 [15]<F.9, F.11>Using the statistics in Figure F.41 on page F-93, estimate the
per-message overhead for each network.

✪ F.39 [15]<F.9, F.11>Exercise F.37 calculates which message sizes are faster for two
networks with different overhead and peak bandwidth. Using the statistics in
Figure F.41 on page F-93, what is the percentage of messages that are transmitted
more quickly on the network with low overhead and bandwidth? What is the per-
centage of data transmitted more quickly on the network with high overhead and
bandwidth?

✪ F.40 [15]<F.9, F.11>One interesting measure of the latency and bandwidth of an
inter-connection is to calculate the size of a message needed to achieve one-half
of the peak bandwidth. This halfway point is sometimes referred to as n1/2, taken
from the terminology of vector processing. Using Figure F.41 on page F-93, esti-
mate n1/2 for TCP/IP message using 155-Mbit/sec ATM and 10-Mbit/sec Ethernet.

F.41 [Discussion]<F.10>The Google cluster used to be constructed from 1 rack unit
(RU) PCs, each with one processor and two disks. Today there are considerably
denser options. How much less floor space would it take if we were to replace
the 1 RU PCs with modern alternatives? Go to the Compaq or Dell Web sites
to find the densest alternative. What would be the estimated impact on cost of
the equipment? What would be the estimated impact on rental cost of floor space?
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What would be the impact on interconnection network design for achieving power/
performance efficiency?

F.42 [Discussion]<F.13>At the time of the writing of the fourth edition, it was unclear
what would happen with Ethernet versus InfiniBand versus Advanced Switching
in the machine room.What are the technical advantages of each?What are the eco-
nomic advantages of each? Why would people maintaining the system prefer one
to the other? How popular is each network today? How do they compare to
proprietary commercial networks such as Myrinet and Quadrics?
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G
Vector Processors in
More Depth

Revised by Krste Asanovic
Massachusetts Institute of Technology

I’m certainly not inventing vector processors. There are three
kinds that I know of existing today. They are represented by the
Illiac-IV, the (CDC) Star processor, and the TI (ASC) processor. Those
three were all pioneering processors.…One of the problems of
being a pioneer is you always make mistakes and I never, never
want to be a pioneer. It’s always best to come second when you
can look at the mistakes the pioneers made.

Seymour Cray
Public lecture at Lawrence Livermore Laboratorieson on the

introduction of the Cray-1 (1976)



G.1 Introduction

Chapter 4 introduces vector architectures and places Multimedia SIMD extensions
and GPUs in proper context to vector architectures.

In this appendix, we go into more detail on vector architectures, including more
accurate performance models and descriptions of previous vector architectures.
Figure G.1 shows the characteristics of some typical vector processors, including
the size and count of the registers, the number and types of functional units, the
number of load-store units, and the number of lanes.

G.2 Vector Performance in More Depth

The chime approximation is reasonably accurate for long vectors. Another source
of overhead is far more significant than the issue limitation.

The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time comes from the pipelining latency of the vector
operation and is principally determined by how deep the pipeline is for the func-
tional unit used. The start-up time increases the effective time to execute a convoy
to more than one chime. Because of our assumption that convoys do not overlap in
time, the start-up time delays the execution of subsequent convoys. Of course, the
instructions in successive convoys either have structural conflicts for some
functional unit or are data dependent, so the assumption of no overlap is reason-
able. The actual time to complete a convoy is determined by the sum of the vector
length and the start-up time. If vector lengths were infinite, this start-up overhead
would be amortized, but finite vector lengths expose it, as the following example
shows.

Example Assume that the start-up overhead for functional units is shown in Figure G.2.
Show the time that each convoy can begin and the total number of cycles

needed. How does the time compare to the chime approximation for a vector of
length 64?

Answer Figure G.3 provides the answer in convoys, assuming that the vector length is n.
One tricky question is when we assume the vector sequence is done; this deter-
mines whether the start-up time of the SV is visible or not. We assume that the
instructions following cannot fit in the same convoy, and we have already assumed
that convoys do not overlap. Thus, the total time is given by the time until the last
vector instruction in the last convoy completes. This is an approximation, and the
start-up time of the last vector instructionmay be seen in some sequences and not in
others. For simplicity, we always include it.

The time per result for a vector of length 64 is 4+(42/64)¼4.65 clock cycles,
while the chime approximation would be 4. The execution time with startup
overhead is 1.16 times higher.
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Processor (year)

Vector
clock rate
(MHz)

Vector
registers

Elements per
register (64-bit

elements) Vector arithmetic units

Vector
load-store

units Lanes

Cray-1 (1976) 80 8 64 6: FP add, FP multiply, FP reciprocal, integer
add, logical, shift

1 1

Cray X-MP (1983) 118 8 64 8: FP add, FP multiply, FP reciprocal, integer
add, 2 logical, shift, population count/parity

2 loads
1 store

1
Cray Y-MP (1988) 166

Cray-2 (1985) 244 8 64 5: FP add, FP multiply, FP reciprocal/sqrt,
integer add/shift/population count, logical

1 1

Fujitsu VP100/
VP200 (1982)

133 8–256 32–1024 3: FP or integer add/logical, multiply, divide 2 1 (VP100)
2 (VP200)

Hitachi S810/S820
(1983)

71 32 256 4: FP multiply-add, FP multiply/divide-add
unit, 2 integer add/logical

3 loads
1 store

1 (S810)
2 (S820)

Convex C-1 (1985) 10 8 128 2: FP or integer multiply/divide, add/logical 1 1 (64 bit)
2 (32 bit)

NEC SX/2 (1985) 167 8+32 256 4: FP multiply/divide, FP add, integer add/
logical, shift

1 4

Cray C90 (1991) 240 8 128 8: FP add, FP multiply, FP reciprocal, integer
add, 2 logical, shift, population count/parity

2 loads
1 store

2
Cray T90 (1995) 460

NEC SX/5 (1998) 312 8+64 512 4: FP or integer add/shift, multiply, divide,
logical

1 16

Fujitsu VPP5000
(1999)

300 8–256 128–4096 3: FP or integer multiply, add/logical, divide 1 load
1 store

16

Cray SV1 (1998) 300 8 64 (MSP) 8: FP add, FP multiply, FP reciprocal, integer
add, 2 logical, shift, population count/parity

1 load-store
1 load

2
8 (MSP)SV1ex (2001) 500

VMIPS (2001) 500 8 64 5: FP multiply, FP divide, FP add, integer add/
shift, logical

1 load-store 1

NEC SX/6 (2001) 500 8+64 256 4: FP or integer add/shift, multiply, divide,
logical

1 8

NEC SX/8 (2004) 2000 8+64 256 4: FP or integer add/shift, multiply, divide,
logical

1 4

Cray X1 (2002) 800 32 64
256 (MSP)

3: FP or integer, add/logical, multiply/shift,
divide/square root/logical

1 load
1 store

2
8 (MSP)

Cray XIE (2005) 1130

Figure G.1 Characteristics of several vector-register architectures. If the machine is a multiprocessor, the entries
correspond to the characteristics of one processor. Several of the machines have different clock rates in the vector
and scalar units; the clock rates shown are for the vector units. The Fujitsu machines’ vector registers are configurable:
The size and count of the 8K 64-bit entries may be varied inversely to one another (e.g., on the VP200, from eight
registers each 1K elements long to 256 registers each 32 elements long). The NEC machines have eight foreground
vector registers connected to the arithmetic units plus 32 to 64 background vector registers connected between the
memory system and the foreground vector registers. Add pipelines perform add and subtract. The multiply/divide-
add unit on the Hitachi S810/820 performs an FPmultiply or divide followed by an add or subtract (while themultiply-
add unit performs a multiply followed by an add or subtract). Note that most processors use the vector FP multiply
and divide units for vector integer multiply and divide, and several of the processors use the same units for FP scalar
and FP vector operations. Each vector load-store unit represents the ability to do an independent, overlapped transfer
to or from the vector registers. The number of lanes is the number of parallel pipelines in each of the functional units
as described in Section G.4. For example, the NEC SX/5 can complete 16 multiplies per cycle in the multiply functional
unit. Several machines can split a 64-bit lane into two 32-bit lanes to increase performance for applications that
require only reduced precision. The Cray SV1 and Cray X1 can group four CPUs with two lanes each to act in unison
as a single larger CPU with eight lanes, which Cray calls a Multi-Streaming Processor (MSP).



For simplicity, we will use the chime approximation for running time, incorporat-
ing start-up time effects only when we want performance that is more detailed or to
illustrate the benefits of some enhancement. For long vectors, a typical situation,
the overhead effect is not that large. Later in the appendix, we will explore ways to
reduce start-up overhead.

Start-up time for an instruction comes from the pipeline depth for the functional
unit implementing that instruction. If the initiation rate is to be kept at 1 clock cycle
per result, then

Pipeline depth¼ Total functional unit time
Clock cycle time

� �

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep to
achieve an initiation rate of one per clock cycle. Pipeline depth, then, is deter-
mined by the complexity of the operation and the clock cycle time of the proces-
sor. The pipeline depths of functional units vary widely—2 to 20 stages are
common—although the most heavily used units have pipeline depths of 4 to
8 clock cycles.

For VMIPS, we will use the same pipeline depths as the Cray-1, although laten-
cies in more modern processors have tended to increase, especially for loads. All
functional units are fully pipelined. From Chapter 4, pipeline depths are 6 clock
cycles for floating-point add and 7 clock cycles for floating-point multiply. On
VMIPS, as on most vector processors, independent vector operations using
different functional units can issue in the same convoy.

In addition to the start-up overhead, we need to account for the overhead of
executing the strip-mined loop. This strip-mining overhead, which arises from

Unit Start-up overhead (cycles)

Load and store unit 12

Multiply unit 7

Add unit 6

Figure G.2 Start-up overhead.

Convoy Starting time First-result time Last-result time

1. LV 0 12 11+n

2. MULVS.D LV 12+n 12+n+12 23+2n

3. ADDV.D 24+2n 24+2n+6 29+3n

4. SV 30+3n 30+3n+12 41+4n

Figure G.3 Starting times and first- and last-result times for convoys 1 through 4.
The vector length is n.
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the need to reinitiate the vector sequence and set the Vector Length Register (VLR)
effectively adds to the vector start-up time, assuming that a convoy does not over-
lap with other instructions. If that overhead for a convoy is 10 cycles, then the
effective overhead per 64 elements increases by 10 cycles, or 0.15 cycles per
element.

Two key factors contribute to the running time of a strip-mined loop consisting
of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chimes.
We use the notation Tchime for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead consists
of the cost of executing the scalar code for strip-mining each block, Tloop, plus
the vector start-up cost for each convoy, Tstart.

There may also be a fixed overhead associated with setting up the vector sequence
the first time. In recent vector processors, this overhead has become quite small, so
we ignore it.

The components can be used to state the total running time for a vector
sequence operating on a vector of length n, which we will call Tn:

Tn ¼ n

MVL

h i
� Tloop + Tstart
� �

+ n�Tchime

The values of Tstart, Tloop, and Tchime are compiler and processor dependent. The
register allocation and scheduling of the instructions affect both what goes in a con-
voy and the start-up overhead of each convoy.

For simplicity, we will use a constant value for Tloop on VMIPS. Based on a
variety of measurements of Cray-1 vector execution, the value chosen is 15 for
Tloop. At first glance, you might think that this value is too small. The overhead
in each loop requires setting up the vector starting addresses and the strides, incre-
menting counters, and executing a loop branch. In practice, these scalar instruc-
tions can be totally or partially overlapped with the vector instructions,
minimizing the time spent on these overhead functions. The value of Tloop of
course depends on the loop structure, but the dependence is slight compared with
the connection between the vector code and the values of Tchime and Tstart.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

Figure G.4 Start-up penalties on VMIPS. These are the start-up penalties in clock
cycles for VMIPS vector operations.
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Example What is the execution time on VMIPS for the vector operation A¼B� s,where s is
a scalar and the length of the vectors A and B is 200?

Answer Assume that the addresses of A and B are initially in Ra and Rb, s is in Fs, and
recall that for MIPS (and VMIPS) R0 always holds 0. Since (200 mod 64)¼8, the
first iteration of the strip-mined loop will execute for a vector length of 8 elements,
and the following iterations will execute for a vector length of 64 elements. The
starting byte addresses of the next segment of each vector is eight times the vector
length. Since the vector length is either 8 or 64, we increment the address registers
by 8�8¼64 after the first segment and 8�64¼512 for later segments. The total
number of bytes in the vector is 8�200¼1600, and we test for completion by
comparing the address of the next vector segment to the initial address plus
1600. Here is the actual code:

DADDUI R2,R0,#1600 ;total # bytes in vector
DADDU R2,R2,Ra ;address of the end of A vector
DADDUI R1,R0,#8 ;loads length of 1st segment
MTC1 VLR,R1 ;load vector length in VLR
DADDUI R1,R0,#64 ;length in bytes of 1st segment
DADDUI R3,R0,#64 ;vector length of other segments

Loop: LV V1,Rb ;load B
MULVS.D V2,V1,Fs ;vector * scalar
SV Ra,V2 ;store A
DADDU Ra,Ra,R1 ;address of next segment of A
DADDU Rb,Rb,R1 ;address of next segment of B
DADDUI R1,R0,#512 ;load byte offset next segment
MTC1 VLR,R3 ;set length to 64 elements
DSUBU R4,R2,Ra ;at the end of A?
BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into three
convoys, hence Tchime¼3. Let’s use our basic formula:

Tn ¼ n

MVL

h i
� Tloop + Tstart
� �

+ n�Tchime

T200 ¼ 4� 15 +Tstartð Þ + 200�3

T200 ¼ 60 + 4�Tstartð Þ + 600¼ 660 + 4�Tstartð Þ
The value of Tstart is the sum of:

■ The vector load start-up of 12 clock cycles

■ A 7-clock-cycle start-up for the multiply

■ A 12-clock-cycle start-up for the store

Thus, the value of Tstart is given by:

Tstart ¼ 12 + 7 + 12¼ 31
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So, the overall value becomes:

T200 ¼ 660 + 4�31¼ 784

The execution time per element with all start-up costs is then 784/200¼3.9,
compared with a chime approximation of three. In Section G.4, we will be more
ambitious—allowing overlapping of separate convoys.

Figure G.5 shows the overhead and effective rates per element for the previous
example (A¼B� s) with various vector lengths. A chime-counting model would
lead to 3 clock cycles per element, while the two sources of overhead add 0.9 clock
cycles per element in the limit.

Pipelined Instruction Start-Up and Multiple Lanes

Adding multiple lanes increases peak performance but does not change start-up
latency, and so it becomes critical to reduce start-up overhead by allowing the start
of one vector instruction to be overlapped with the completion of preceding vector
instructions. The simplest case to consider is when two vector instructions access a
different set of vector registers. For example, in the code sequence

ADDV.D V1,V2,V3
ADDV.D V4,V5,V6

Total time
per element

Total
overhead
per element

10

Clock
cycles

30 50 70 90 110 130 150 170 190
0

1

2

3

4

5

6

7

8

Vector size

9

Figure G.5 The total execution time per element and the total overhead time per
element versus the vector length for the example on page F-6. For short vectors,
the total start-up time is more than one-half of the total time, while for long vectors
it reduces to about one-third of the total time. The sudden jumps occur when the vector
length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase Tn by Tloop+Tstart.
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An implementation can allow the first element of the second vector instruction to
follow immediately the last element of the first vector instruction down the FP
adder pipeline. To reduce the complexity of control logic, some vector machines
require some recovery time or dead time in between two vector instructions dis-
patched to the same vector unit. Figure G.6 is a pipeline diagram that shows both
start-up latency and dead time for a single vector pipeline.

The following example illustrates the impact of this dead time on achievable
vector performance.

Example The Cray C90 has two lanes but requires 4 clock cycles of dead time between any
two vector instructions to the same functional unit, even if they have no data depen-
dences. For the maximum vector length of 128 elements, what is the reduction in
achievable peak performance caused by the dead time? What would be the reduc-
tion if the number of lanes were increased to 16?

Answer Amaximum length vector of 128 elements is divided over the two lanes and occupies
a vector functional unit for 64 clock cycles. The dead time adds another 4 cycles of
occupancy, reducing the peak performance to 64/(64+4)¼94.1% of the value with-
out dead time. If the number of lanes is increased to 16, maximum length vector
instructions will occupy a functional unit for only 128/16¼8 cycles, and the dead
time will reduce peak performance to 8/(8+4)¼66.6% of the value without dead
time. In this second case, the vector units can never be more than 2/3 busy!

Figure G.6 Start-up latency and dead time for a single vector pipeline. Each element
has a 5-cycle latency: 1 cycle to read the vector-register file, 3 cycles in execution, then 1
cycle to write the vector-register file. Elements from the same vector instruction can
follow each other down the pipeline, but this machine inserts 4 cycles of dead time
between two different vector instructions. The dead time can be eliminated with more
complex control logic. (Reproduced with permission from Asanovic [1998].)
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Pipelining instruction start-up becomes more complicated when multiple instruc-
tions can be reading and writing the same vector register and when some instructions
may stall unpredictably—for example, a vector load encountering memory bank
conflicts. However, as both the number of lanes and pipeline latencies increase, it
becomes increasingly important to allow fully pipelined instruction start-up.

G.3 Vector Memory Systems in More Depth

To maintain an initiation rate of one word fetched or stored per clock, the memory
system must be capable of producing or accepting this much data. As we saw in
Chapter 4, this usually done by spreading accesses across multiple independent
memory banks. Having significant numbers of banks is useful for dealing with vec-
tor loads or stores that access rows or columns of data.

The desired access rate and the bank access time determined how many banks
were needed to access memory without stalls. This example shows how these tim-
ings work out in a vector processor.

Example Suppose wewant to fetch a vector of 64 elements starting at byte address 136, and a
memory access takes 6 clocks. How many memory banks must we have to support
one fetch per clock cycle? With what addresses are the banks accessed? When will
the various elements arrive at the CPU?

Answer Six clocks per access require at least 6 banks, but because we want the number of
banks to be a power of 2, we choose to have 8 banks. Figure G.7 shows the timing
for the first few sets of accesses for an 8-bank system with a 6-clock-cycle access
latency.

The timing of real memory banks is usually split into two different components, the
access latency and the bank cycle time (or bank busy time). The access latency is the
time from when the address arrives at the bank until the bank returns a data value,
while the busy time is the time the bank is occupied with one request. The access
latency adds to the start-up cost of fetching a vector frommemory (the total memory
latency also includes time to traverse the pipelined interconnection networks that
transfer addresses and data between the CPU and memory banks). The bank busy
time governs the effective bandwidth of a memory system because a processor can-
not issue a second request to the same bank until the bank busy time has elapsed.

For simple unpipelined SRAM banks as used in the previous examples, the
access latency and busy time are approximately the same. For a pipelined
SRAM bank, however, the access latency is larger than the busy time because
each element access only occupies one stage in the memory bank pipeline. For a
DRAM bank, the access latency is usually shorter than the busy time because a
DRAM needs extra time to restore the read value after the destructive read oper-
ation. For memory systems that support multiple simultaneous vector accesses
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or allow nonsequential accesses in vector loads or stores, the number of mem-
ory banks should be larger than the minimum; otherwise, memory bank con-
flicts will exist.

Memory bank conflicts will not occur within a single vector memory instruc-
tion if the stride and number of banks are relatively prime with respect to each other
and there are enough banks to avoid conflicts in the unit stride case. When there are
no bank conflicts, multiword and unit strides run at the same rates. Increasing the
number of memory banks to a number greater than the minimum to prevent stalls
with a stride of length 1 will decrease the stall frequency for some other strides. For
example, with 64 banks, a stride of 32 will stall on every other access, rather than
every access. If we originally had a stride of 8 and 16 banks, every other access
would stall; with 64 banks, a stride of 8 will stall on every eighth access. If we have
multiple memory pipelines and/or multiple processors sharing the same memory
system, we will also need more banks to prevent conflicts. Even machines with
a single memory pipeline can experience memory bank conflicts on unit stride

Bank

Cycle no. 0 1 2 3 4 5 6 7

0 136

1 Busy 144

2 Busy Busy 152

3 Busy Busy Busy 160

4 Busy Busy Busy Busy 168

5 Busy Busy Busy Busy Busy 176

6 Busy Busy Busy Busy Busy 184

7 192 Busy Busy Busy Busy Busy

8 Busy 200 Busy Busy Busy Busy

9 Busy Busy 208 Busy Busy Busy

10 Busy Busy Busy 216 Busy Busy

11 Busy Busy Busy Busy 224 Busy

12 Busy Busy Busy Busy Busy 232

13 Busy Busy Busy Busy Busy 240

14 Busy Busy Busy Busy Busy 248

15 256 Busy Busy Busy Busy Busy

16 Busy 264 Busy Busy Busy Busy

Figure G.7 Memory addresses (in bytes) by bank number and time slot at which
access begins. Each memory bank latches the element address at the start of an access
and is then busy for 6 clock cycles before returning a value to the CPU. Note that the CPU
cannot keep all 8 banks busy all the time because it is limited to supplying one new
address and receiving one data item each cycle.
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accesses between the last few elements of one instruction and the first few elements
of the next instruction, and increasing the number of banks will reduce the prob-
ability of these inter-instruction conflicts. In 2011, most vector supercomputers
spread the accesses from each CPU across hundreds of memory banks. Because
bank conflicts can still occur in non-unit stride cases, programmers favor unit stride
accesses whenever possible.

A modern supercomputer may have dozens of CPUs, each with multiple mem-
ory pipelines connected to thousands of memory banks. It would be impractical to
provide a dedicated path between each memory pipeline and each memory bank,
so, typically, a multistage switching network is used to connect memory pipelines
to memory banks. Congestion can arise in this switching network as different vec-
tor accesses contend for the same circuit paths, causing additional stalls in the
memory system.

G.4 Enhancing Vector Performance

In this section, we present techniques for improving the performance of a vector
processor in more depth than we did in Chapter 4.

Chaining in More Depth

Early implementations of chaining worked like forwarding, but this restricted the
timing of the source and destination instructions in the chain. Recent implementa-
tions use flexible chaining, which allows a vector instruction to chain to essentially
any other active vector instruction, assuming that no structural hazard is generated.
Flexible chaining requires simultaneous access to the same vector register by dif-
ferent vector instructions, which can be implemented either by adding more read
and write ports or by organizing the vector-register file storage into interleaved
banks in a similar way to the memory system. We assume this type of chaining
throughout the rest of this appendix.

Even though a pair of operations depends on one another, chaining allows the
operations to proceed in parallel on separate elements of the vector. This permits
the operations to be scheduled in the same convoy and reduces the number of chimes
required. For the previous sequence, a sustained rate (ignoring start-up) of two
floating-point operations per clock cycle, or one chime, can be achieved, even though
the operations are dependent! The total running time for the above sequence becomes:

Vector length + Start-up timeADDV + Start-up timeMULV

Figure G.8 shows the timing of a chained and an unchained version of the above
pair of vector instructions with a vector length of 64. This convoy requires one
chime; however, because it uses chaining, the start-up overhead will be seen in
the actual timing of the convoy. In Figure G.8, the total time for chained operation
is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point operations done
in that time, 1.7 FLOPS per clock cycle are obtained. For the unchained version,
there are 141 clock cycles, or 0.9 FLOPS per clock cycle.
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Although chaining allows us to reduce the chime component of the execution
time by putting two dependent instructions in the same convoy, it does not eliminate
the start-up overhead. If we want an accurate running time estimate, we must count
the start-up time both within and across convoys. With chaining, the number of
chimes for a sequence is determinedby the number of different vector functional units
available in the processor and the number required by the application. In particular,
no convoy can contain a structural hazard. This means, for example, that a sequence
containing two vectormemory instructionsmust take at least two convoys, and hence
two chimes, on a processor like VMIPS with only one vector load-store unit.

Chaining is so important that every modern vector processor supports flexible
chaining.

Sparse Matrices in More Depth

Chapter 4 shows techniques to allow programs with sparse matrices to execute in
vector mode. Let’s start with a quick review. In a sparse matrix, the elements of a
vector are usually stored in some compacted form and then accessed indirectly.
Assuming a simplified sparse structure, we might see code that looks like this:

do 100 i = 1,n
100 A(K(i)) = A(K(i)) + C(M(i))

This code implements a sparse vector sum on the arrays A and C, using index
vectors K and M to designate the nonzero elements of A and C. (A and C must have
the same number of nonzero elements—n of them.) Another common representa-
tion for sparse matrices uses a bit vector to show which elements exist and a dense
vector for the nonzero elements. Often both representations exist in the same pro-
gram. Sparse matrices are found in many codes, and there are many ways to imple-
ment them, depending on the data structure used in the program.

A simple vectorizing compiler could not automatically vectorize the source
code above because the compiler would not know that the elements of K are distinct
values and thus that no dependences exist. Instead, a programmer directive would
tell the compiler that it could run the loop in vector mode.

More sophisticated vectorizing compilers can vectorize the loop automatically
without programmer annotations by inserting run time checks for data

Unchained

Chained

Total = 77

Total = 141
7 64

7 64

MULV

64

ADDV

64

MULV ADDV

6

6

Figure G.8 Timings for a sequence of dependent vector operations ADDV and MULV,
both unchained and chained. The 6- and 7-clock-cycle delays are the latency of the
adder and multiplier.
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dependences. These run time checks are implemented with a vectorized software
version of the advanced load address table (ALAT) hardware described in Appen-
dix H for the Itanium processor. The associative ALAT hardware is replaced with a
software hash table that detects if two element accesses within the same stripmine
iteration are to the same address. If no dependences are detected, the stripmine iter-
ation can complete using the maximum vector length. If a dependence is detected,
the vector length is reset to a smaller value that avoids all dependency violations,
leaving the remaining elements to be handled on the next iteration of the strip-
mined loop. Although this scheme adds considerable software overhead to the
loop, the overhead is mostly vectorized for the common case where there are
no dependences; as a result, the loop still runs considerably faster than scalar code
(although much slower than if a programmer directive was provided).

A scatter-gather capability is included on many of the recent supercomputers.
These operations often run more slowly than strided accesses because they are
more complex to implement and are more susceptible to bank conflicts, but they
are still much faster than the alternative, which may be a scalar loop. If the sparsity
properties of a matrix change, a new index vector must be computed. Many pro-
cessors provide support for computing the index vector quickly. The CVI (create
vector index) instruction in VMIPS creates an index vector given a stride (m),
where the values in the index vector are 0, m, 2�m,…, 63�m. Some processors
provide an instruction to create a compressed index vector whose entries corre-
spond to the positions with a one in the mask register. Other vector architectures
provide a method to compress a vector. In VMIPS, we define the CVI instruction
to always create a compressed index vector using the vector mask.When the vector
mask is all ones, a standard index vector will be created.

The indexed loads-stores and the CVI instruction provide an alternative method
to support conditional vector execution. Let us first recall code from Chapter 4:

low = 1
VL = (n mod MVL) /*find the odd-size piece*/
do 1 j = 0,(n/MVL) /*outer loop*/

do 10 i = low, low + VL - 1 /*runs for length VL*/
Y(i) = a * X(i) + Y(i) /*main operation*/

10 continue
low = low + VL /*start of next vector*/
VL = MVL /*reset the length to max*/

1 continue

Here is a vector sequence that implements that loop using CVI:

LV V1,Ra ;load vector A into V1
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets the VM to 1 if V1(i)!=F0
CVI V2,#8 ;generates indices in V2
POP R1,VM ;find the number of 1’s in VM
MTC1 VLR,R1 ;load vector-length register
CVM ;clears the mask
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LVI V3,(Ra+V2) ;load the nonzero A elements
LVI V4,(Rb+V2) ;load corresponding B elements
SUBV.D V3,V3,V4 ;do the subtract
SVI (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the condition-
ally executed version depends on the frequency with which the condition holds and
the cost of the operations. Ignoring chaining, the running time of the original ver-
sion is 5n+c1. The running time of the second version, using indexed loads and
stores with a running time of one element per clock, is 4n+4fn+c2, where f is
the fraction of elements for which the condition is true (i.e., A(i) ¦ 0). If we assume
that the values of c1 and c2 are comparable, or that they are much smaller than n, we
can find when this second technique is better.

Time1 ¼ 5 nð Þ
Time2 ¼ 4n+ 4fn

We want Time1>Time2, so

5n> 4n+ 4fn
1
4
> f

That is, the second method is faster if less than one-quarter of the elements are non-
zero. In many cases, the frequency of execution is much lower. If the index vector
can be reused, or if the number of vector statements within the if statement grows,
the advantage of the scatter-gather approach will increase sharply.

G.5 Effectiveness of Compiler Vectorization

Two factors affect the success with which a program can be run in vector mode.
The first factor is the structure of the program itself: Do the loops have true data
dependences, or can they be restructured so as not to have such dependences? This
factor is influenced by the algorithms chosen and, to some extent, by how they are
coded. The second factor is the capability of the compiler. While no compiler can
vectorize a loop where no parallelism among the loop iterations exists, there is tre-
mendous variation in the ability of compilers to determine whether a loop can be
vectorized. The techniques used to vectorize programs are the same as those
discussed in Chapter 3 for uncovering ILP; here, we simply review how well these
techniques work.

There is tremendous variation in howwell different compilers do in vectorizing
programs. As a summary of the state of vectorizing compilers, consider the data in
Figure G.9, which shows the extent of vectorization for different processors using a
test suite of 100 handwritten FORTRAN kernels. The kernels were designed to test
vectorization capability and can all be vectorized by hand; we will see several
examples of these loops in the exercises.
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G.6 Putting It All Together: Performance of Vector
Processors

In this section, we look at performance measures for vector processors and what they
tell us about the processors. To determine the performance of a processor on a vector
problem we must look at the start-up cost and the sustained rate. The simplest and
best way to report the performance of a vector processor on a loop is to give the
execution time of the vector loop. For vector loops, people often give the MFLOPS
(millions of floating-point operations per second) rating rather than execution time.
We use the notation Rn for the MFLOPS rating on a vector of length n. Using the
measurements Tn (time) or Rn (rate) is equivalent if the number of FLOPS is agreed
upon. In any event, either measurement should include the overhead.

In this section, we examine the performance of VMIPS on a DAXPY loop (see
Chapter 4) by looking at performance from different viewpoints. We will continue
to compute the execution time of a vector loop using the equation developed in
Section G.2. At the same time, we will look at different ways to measure perfor-
mance using the computed time. The constant values for Tloop used in this section
introduce some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a proces-
sor, length-related measures are often applied in addition to time and MFLOPS.
These length-related measures tend to vary dramatically across different processors

Processor Compiler
Completely
vectorized

Partially
vectorized

Not
vectorized

CDC CYBER 205 VAST-2 V2.21 62 5 33

Convex C-series FC5.0 69 5 26

Cray X-MP CFT77 V3.0 69 3 28

Cray X-MP CFT V1.15 50 1 49

Cray-2 CFT2 V3.1a 27 1 72

ETA-10 FTN 77 V1.0 62 7 31

Hitachi S810/820 FORT77/HAP V20-2B 67 4 29

IBM 3090/VF VS FORTRAN V2.4 52 4 44

NEC SX/2 FORTRAN77 / SX V.040 66 5 29

Figure G.9 Result of applying vectorizing compilers to the 100 FORTRAN test
kernels. For each processor we indicate how many loops were completely vectorized,
partially vectorized, and unvectorized. These loops were collected by Callahan,
Dongarra, and Levine [1988]. Two different compilers for the Cray X-MP show the large
dependence on compiler technology.
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and are interesting to compare. (Remember, though, that time is always the mea-
sure of interest when comparing the relative speed of two processors.) Three of the
most important length-related measures are

■ R∞—The MFLOPS rate on an infinite-length vector. Although this measure
may be of interest when estimating peak performance, real problems have lim-
ited vector lengths, and the overhead penalties encountered in real problems
will be larger.

■ N1/2—The vector length needed to reach one-half of R∞. This is a good mea-
sure of the impact of overhead.

■ Nv—The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let’s look at these measures for our DAXPY problem running on VMIPS. When
chained, the inner loop of the DAXPY code in convoys looks like Figure G.10
(assuming that Rx and Ry hold starting addresses).

Recall our performance equation for the execution time of a vector loop with n
elements, Tn:

Tn ¼ n

MVL

h i
� Tloop + Tstart
� �

+ n�Tchime

Chaining allows the loop to run in three chimes (and no less, since there is one
memory pipeline); thus, Tchime¼3. If Tchime were a complete indication of per-
formance, the loop would run at an MFLOPS rate of 2/3�clock rate (since there
are 2 FLOPS per iteration). Thus, based only on the chime count, a 500 MHz
VMIPS would run this loop at 333 MFLOPS assuming no strip-mining or
start-up overhead. There are several ways to improve the performance: Add addi-
tional vector load-store units, allow convoys to overlap to reduce the impact of
start-up overheads, and decrease the number of loads required by vector-register
allocation. We will examine the first two extensions in this section. The last
optimization is actually used for the Cray-1, VMIPS’s cousin, to boost the per-
formance by 50%. Reducing the number of loads requires an interprocedural
optimization; we examine this transformation in Exercise G.6. Before we exam-
ine the first two extensions, let’s see what the real performance, including
overhead, is.

LV V1,Rx MULVS.D V2,V1,F0 Convoy 1: chained load and multiply

LV V3,Ry ADDV.D V4,V2,V3 Convoy 2: second load and add, chained

SV Ry,V4 Convoy 3: store the result

Figure G.10 The inner loop of the DAXPY code in chained convoys.
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The Peak Performance of VMIPS on DAXPY

First, we should determine what the peak performance, R∞, really is, since we
know it must differ from the ideal 333 MFLOPS rate. For now, we continue to
use the simplifying assumption that a convoy cannot start until all the instructions
in an earlier convoy have completed; later we will remove this restriction. Using
this simplification, the start-up overhead for the vector sequence is simply the sum
of the start-up times of the instructions:

Tstart ¼ 12 + 7 + 12 + 6 + 12¼ 49

Using MVL¼64, Tloop¼15, Tstart¼49, and Tchime¼3 in the performance
equation, and assuming that n is not an exact multiple of 64, the time for an n-
element operation is

Tn ¼ n

64

h i
� 15 + 49ð Þ+ 3n

� n+ 64ð Þ+ 3n
¼ 4n+ 64

The sustained rate is actually over 4 clock cycles per iteration, rather than the the-
oretical rate of 3 chimes, which ignores overhead. The major part of the difference
is the cost of the start-up overhead for each block of 64 elements (49 cycles versus
15 for the loop overhead).

We can now compute R∞ for a 500 MHz clock as:

R∞ ¼ lim
n!∞

Operations per iteration�C1ock rate
C1ock cyc1es per iteration

� �

The numerator is independent of n, hence

R∞ ¼Operations per iteration�C1ock rate
lim
n!∞

C1ock cyc1es per iterationð Þ

lim
n!∞

Clock cycles per iterationð Þ¼ lim
n!∞

Tn

n

� �
¼ lim

n!∞

4n+ 64
n

� �
¼ 4

R∞ ¼ 2�500 MHz
4

¼ 250 MFLOPS

The performance without the start-up overhead, which is the peak performance
given the vector functional unit structure, is now 1.33 times higher. In actuality,
the gap between peak and sustained performance for this benchmark is even
larger!

Sustained Performance of VMIPS on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on a 100�100matrix. Thus, the
vector element lengths range from 99 down to 1. A vector of length k is used k
times. Thus, the average vector length is given by:
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X99
i¼1

i2

X99
i¼1

i

¼ 66:3

Now we can obtain an accurate estimate of the performance of DAXPY using a
vector length of 66:

T66 ¼ 2� 15 + 49ð Þ+ 66�3¼ 128 + 198¼ 326

R66 ¼ 2�66�500
326

MFLOPS¼ 202 MFLOPS

The peak number, ignoring start-up overhead, is 1.64 times higher than this
estimate of sustained performance on the real vector lengths. In actual practice,
the Linpack benchmark contains a nontrivial fraction of code that cannot be
vectorized. Although this code accounts for less than 20% of the time before
vectorization, it runs at less than one-tenth of the performance when counted
as FLOPS. Thus, Amdahl’s law tells us that the overall performance will be
significantly lower than the performance estimated from analyzing the
inner loop.

Since vector length has a significant impact on performance, the N1/2 and Nv

measures are often used in comparing vector machines.

Example What is N1/2 for just the inner loop of DAXPY for VMIPS with a 500 MHz clock?

Answer Using R∞ as the peak rate, we want to know the vector length that will achieve
about 125 MFLOPS. We start with the formula for MFLOPS assuming that the
measurement is made for N1/2 elements:

MFLOPS¼ FLOPS executed in N1=2 iterations

C1ock cyc1es to execute N1=2 iterations
�C1ock cycles

Second
�10�6

125¼ 2�N1=2

TN1=2

�500

Simplifying this and then assuming N1/2<64, so that TN1=2<64 ¼ 64 + 3�n, yields:

TN1=2
¼ 8�N1=2

64 + 3�N1=2 ¼ 8�N1=2

5�N1=2 ¼ 64

N1=2 ¼ 12:8

So N1/2¼13; that is, a vector of length 13 gives approximately one-half the peak
performance for the DAXPY loop on VMIPS.
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Example What is the vector length,Nv, such that the vector operation runs faster than the scalar?

Answer Again, we know that Nv<64. The time to do one iteration in scalar mode can be
estimated as 10+12+12+7+6+12¼59 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead.
In the last problem, we showed that this vector loop runs in vector mode in time
Tn�64¼64+3�n clock cycles. Therefore,

64 + 3Nv ¼ 59Nv

Nv ¼ 64
56

� �

Nv ¼ 2

For the DAXPY loop, vector mode is faster than scalar as long as the vector has at
least two elements. This number is surprisingly small.

DAXPY Performance on an Enhanced VMIPS

DAXPY, like many vector problems, is memory limited. Consequently, perfor-
mance could be improved by adding more memory access pipelines. This is the
major architectural difference between the Cray X-MP (and later processors)
and the Cray-1. The Cray X-MP has three memory pipelines, compared with
the Cray-1’s single memory pipeline, and the X-MP has more flexible chaining.
How does this affect performance?

Example What would be the value of T66 for DAXPY on VMIPS if we added two more
memory pipelines?

Answer With three memory pipelines, all the instructions fit in one convoy and take one
chime. The start-up overheads are the same, so

T66 ¼ 66
64

� �
� Tloop + Tstart
� �

+ 66�Tchime

T66 ¼ 2� 15 + 49ð Þ+ 66�1¼ 194

With three memory pipelines, we have reduced the clock cycle count for sustained
performance from 326 to 194, a factor of 1.7. Note the effect of Amdahl’s law: We
improved the theoretical peak rate as measured by the number of chimes by a factor
of 3, but only achieved an overall improvement of a factor of 1.7 in sustained
performance.
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Another improvement could come from allowing different convoys to overlap
and also allowing the scalar loop overhead to overlap with the vector instructions.
This requires that one vector operation be allowed to begin using a functional unit
before another operation has completed, which complicates the instruction issue
logic. Allowing this overlap eliminates the separate start-up overhead for every
convoy except the first and hides the loop overhead as well.

To achieve the maximum hiding of strip-mining overhead, we need to be able
to overlap strip-mined instances of the loop, allowing two instances of a convoy as
well as possibly two instances of the scalar code to be in execution simulta-
neously. This requires the same techniques we looked at in Chapter 3 to avoid
WAR hazards, although because no overlapped read and write of a single vector
element is possible, copying can be avoided. This technique, called tailgating,
was used in the Cray-2. Alternatively, we could unroll the outer loop to create
several instances of the vector sequence using different register sets (assuming
sufficient registers), just as we did in Chapter 3. By allowing maximum overlap
of the convoys and the scalar loop overhead, the start-up and loop overheads will
only be seen once per vector sequence, independent of the number of convoys and
the instructions in each convoy. In this way, a processor with vector registers can
have both low start-up overhead for short vectors and high peak performance for
very long vectors.

Example What would be the values of R∞ and T66 for DAXPY on VMIPS if we added two
more memory pipelines and allowed the strip-mining and start-up overheads to be
fully overlapped?

Answer
R∞ ¼ lim

n!∞

Operations per iteration�C1ock rate
C1ock cyc1es per iteration

� �

lim
n!∞

Clock cycles per iterationð Þ¼ lim
n!∞

Tn

n

� �

Since the overhead is only seen once, Tn¼n+49+15¼n+64. Thus,

lim
n!∞

Tn

n

� �
¼ lim

n!∞

n + 64
n

� �
¼ 1

R∞ ¼ 2�500 MHz
1

¼ 1000 MFLOPS

Adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T66¼130, so for
shorter vectors the sustained performance improvement is about 326/
130¼2.5 times.
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In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Tchime as:

Number of FLOPS per iteration�Clock rate
Tchime

By including the loop overhead, we can calculate values for peak performance for
an infinite-length vector (R∞) and also for sustained performance, Rn for a vector
of length n, which is computed as:

Rn ¼Number of FLOPS per iteration�n�Clock rate
Tn

Using these measures we also can find N1/2 and Nv, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar speed. A
wide variety of measures of performance of vector processors is useful in under-
standing the range of performance that applications may see on a vector processor.

G.7 A Modern Vector Supercomputer: The Cray X1

The Cray X1 was introduced in 2002, and, together with the NEC SX/8, represents
the state of the art in modern vector supercomputers. The X1 system architecture
supports thousands of powerful vector processors sharing a single global memory.

The Cray X1 has an unusual processor architecture, shown in Figure G.11. A
largeMulti-Streaming Processor (MSP) is formed by ganging together four Single-
Streaming Processors (SSPs). Each SSP is a complete single-chip vector micropro-
cessor, containing a scalar unit, scalar caches, and a two-lane vector unit. The SSP
scalar unit is a dual-issue out-of-order superscalar processor with a 16 KB instruc-
tion cache and a 16 KB scalar write-through data cache, both two-way set associa-
tive with 32-byte cache lines. The SSP vector unit contains a vector register file,
three vector arithmetic units, and one vector load-store unit. It is much easier to
pipeline deeply a vector functional unit than a superscalar issue mechanism, so
the X1 vector unit runs at twice the clock rate (800 MHz) of the scalar unit
(400 MHz). Each lane can perform a 64-bit floating-point add and a 64-bit
floating-point multiply each cycle, leading to a peak performance of 12.8 GFLOPS
per MSP.

All previous Cray machines could trace their instruction set architecture (ISA)
lineage back to the original Cray-1 design from 1976, with 8 primary registers each
for addresses, scalar data, and vector data. For the X1, the ISAwas redesigned from
scratch to incorporate lessons learned over the last 30 years of compiler and micro-
architecture research. The X1 ISA includes 64 64-bit scalar address registers and
64 64-bit scalar data registers, with 32 vector data registers (64 bits per element)
and 8 vector mask registers (1 bit per element). The large increase in the number of
registers allows the compiler to map more program variables into registers to
reduce memory traffic and also allows better static scheduling of code to improve
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run time overlap of instruction execution. Earlier Crays had a compact variable-
length instruction set, but the X1 ISA has fixedlength instructions to simplify
superscalar fetch and decode.

Four SSP chips are packaged on a multichip module together with four cache
chips implementing an external 2 MB cache (Ecache) shared by all the SSPs. The
Ecache is two-way set associative with 32-byte lines and a write-back policy. The
Ecache can be used to cache vectors, reducing memory traffic for codes that exhibit
temporal locality. The ISA also provides vector load and store instruction variants
that do not allocate in cache to avoid polluting the Ecache with data that is known
to have low locality. The Ecache has sufficient bandwidth to supply one 64-bit
word per lane per 800 MHz clock cycle, or over 50 GB/sec per MSP.

At the next level of the X1 packaging hierarchy, shown in Figure G.12, four
MSPs are placed on a single printed circuit board together with 16 memory con-
troller chips and DRAM to form an X1 node. Each memory controller chip has
eight separate Rambus DRAM channels, where each channel provides 1.6 GB/
sec of memory bandwidth. Across all 128 memory channels, the node has over
200 GB/sec of main memory bandwidth.

An X1 system can contain up to 1024 nodes (4096 MSPs or 16,384 SSPs),
connected via a very high-bandwidth global network. The network connections
are made via the memory controller chips, and all memory in the system is directly
accessible from any processor using load and store instructions. This provides
much faster global communication than the message-passing protocols used in
cluster-based systems. Maintaining cache coherence across such a large number
of high-bandwidth shared-memory nodes would be challenging. The approach
taken in the X1 is to restrict each Ecache to cache data only from the local node
DRAM. The memory controllers implement a directory scheme to maintain
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Figure G.11 Cray MSP module. (From Dunnigan et al. [2005].)
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coherency between the four Ecaches on a node. Accesses from remote nodes will
obtain the most recent version of a location, and remote stores will invalidate local
Ecaches before updating memory, but the remote node cannot cache these local
locations.

Vector loads and stores are particularly useful in the presence of long-latency
cache misses and global communications, as relatively simple vector hardware can
generate and track a large number of in-flight memory requests. Contemporary
superscalar microprocessors support only 8 to 16 outstanding cache misses,
whereas each MSP processor can have up to 2048 outstanding memory requests
(512 per SSP). To compensate, superscalar microprocessors have been moving
to larger cache line sizes (128 bytes and above) to bring in more data with each
cache miss, but this leads to significant wasted bandwidth on non-unit stride
accesses over large datasets. The X1 design uses short 32-byte lines throughout
to reduce bandwidth waste and instead relies on supporting many independent
cache misses to sustain memory bandwidth. This latency tolerance together with
the huge memory bandwidth for non-unit strides explains why vector machines can
provide large speedups over superscalar microprocessors for certain codes.

Multi-Streaming Processors

TheMulti-Streaming concept was first introduced by Cray in the SV1, but has been
considerably enhanced in the X1. The four SSPs within an MSP share Ecache, and
there is hardware support for barrier synchronization across the four SSPs within
an MSP. Each X1 SSP has a two-lane vector unit with 32 vector registers each
holding 64 elements. The compiler has several choices as to how to use the SSPs
within an MSP.
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Figure G.12 Cray X1 node. (From Tanqueray [2002].)
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The simplest use is to gang together four two-lane SSPs to emulate a single
eight-lane vector processor. The X1 provides efficient barrier synchronization
primitives between SSPs on a node, and the compiler is responsible for generating
the MSP code. For example, for a vectorizable inner loop over 1000 elements, the
compiler will allocate iterations 0–249 to SSP0, iterations 250–499 to SSP1, iter-
ations 500–749 to SSP2, and iterations 750–999 to SSP3. Each SSP can process its
loop iterations independently but must synchronize back with the other SSPs
before moving to the next loop nest.

If inner loops do not have many iterations, the eight-lane MSP will have low
efficiency, as each SSP will have only a few elements to process and execution
time will be dominated by start-up time and synchronization overheads. Another
way to use an MSP is for the compiler to parallelize across an outer loop, giving
each SSP a different inner loop to process. For example, the following nested loops
scale the upper triangle of a matrix by a constant:

/* Scale upper triangle by constant K. */
for (row = 0; row < MAX_ROWS; row++)

for (col = row; col < MAX_COLS; col++)
A[row][col] = A[row][col] * K;

Consider the case where MAX_ROWS and MAX_COLS are both 100 elements.
The vector length of the inner loop steps down from 100 to 1 over the iterations of
the outer loop. Even for the first inner loop, the loop length would be much less
than the maximum vector length (256) of an eight-lane MSP, and the code would
therefore be inefficient. Alternatively, the compiler can assign entire inner loops to
a single SSP. For example, SSP0 might process rows 0, 4, 8, and so on, while SSP1
processes rows 1, 5, 9, and so on. Each SSP now sees a longer vector. In effect, this
approach parallelizes the scalar overhead and makes use of the individual scalar
units within each SSP.

Most application code uses MSPs, but it is also possible to compile code to use
all the SSPs as individual processors where there is limited vector parallelism but
significant thread-level parallelism.

Cray X1E

In 2004, Cray announced an upgrade to the original Cray X1 design. The X1E
uses newer fabrication technology that allows two SSPs to be placed on a single
chip, making the X1E the first multicore vector microprocessor. Each physical
node now contains eight MSPs, but these are organized as two logical nodes
of four MSPs each to retain the same programming model as the X1. In addition,
the clock rates were raised from 400 MHz scalar and 800 MHz vector to
565 MHz scalar and 1130 MHz vector, giving an improved peak performance
of 18 GFLOPS.
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G.8 Concluding Remarks

During the 1980s and 1990s, rapid performance increases in pipelined scalar pro-
cessors led to a dramatic closing of the gap between traditional vector supercom-
puters and fast, pipelined, superscalar VLSI microprocessors. In 2011, it is possible
to buy a laptop computer for under $1000 that has a higher CPU clock rate than any
available vector supercomputer, even those costing tens of millions of dollars.
Although the vector supercomputers have lower clock rates, they support greater
parallelism using multiple lanes (up to 16 in the Japanese designs) versus the lim-
ited multiple issue of the superscalar microprocessors. Nevertheless, the peak
floating-point performance of the low-cost microprocessors is within a factor of
two of the leading vector supercomputer CPUs. Of course, high clock rates and
high peak performance do not necessarily translate into sustained application
performance. Main memory bandwidth is the key distinguishing feature between
vector supercomputers and superscalar microprocessor systems.

Providing this large non-unit stride memory bandwidth is one of the major
expenses in a vector supercomputer, and traditionally SRAM was used as main
memory to reduce the number of memory banks needed and to reduce vector
start-up penalties. While SRAM has an access time several times lower than that
of DRAM, it costs roughly 10 times as much per bit! To reduce main memory costs
and to allow larger capacities, all modern vector supercomputers now use DRAM
for main memory, taking advantage of new higher-bandwidth DRAM interfaces
such as synchronous DRAM.

This adoption of DRAM for main memory (pioneered by Seymour Cray in the
Cray-2) is one example of how vector supercomputers have adapted commodity
technology to improve their price-performance. Another example is that vector
supercomputers are now including vector data caches. Caches are not effective
for all vector codes, however, so these vector caches are designed to allow high
main memory bandwidth even in the presence of many cache misses. For example,
the Cray X1 MSP can have 2048 outstanding memory loads; for microprocessors,
8 to 16 outstanding cache misses per CPU are more typical maximum numbers.

Another example is the demise of bipolar ECL or gallium arsenide as technol-
ogies of choice for supercomputer CPU logic. Because of the huge investment in
CMOS technology made possible by the success of the desktop computer, CMOS
now offers competitive transistor performance with much greater transistor density
and much reduced power dissipation compared with these more exotic technolo-
gies. As a result, all leading vector supercomputers are now built with the same
CMOS technology as superscalar microprocessors. The primary reason why vector
supercomputers have lower clock rates than commodity microprocessors is that
they are developed using standard cell ASIC techniques rather than full custom
circuit design to reduce the engineering design cost. While a microprocessor
design may sell tens of millions of copies and can amortize the design cost over
this large number of units, a vector supercomputer is considered a success if over
a hundred units are sold!
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Conversely, via superscalar microprocessor designs have begun to absorb
some of the techniques made popular in earlier vector computer systems, such
as with the Multimedia SIMD extensions. As we showed in Chapter 4, the invest-
ment in hardware for SIMD performance is increasing rapidly, perhaps even more
than for multiprocessors. If the even wider SIMD units of GPUs become well inte-
grated with the scalar cores, including scatter-gather support, we may well con-
clude that vector architectures have won the architecture wars!

G.9 Historical Perspective and References

This historical perspective adds some details and references that were left out of the
version in Chapter 4.

The CDC STAR processor and its descendant, the CYBER 205, were memory-
memory vector processors. To keep the hardware simple and support the high
bandwidth requirements (up to three memory references per floating-point opera-
tion), these processors did not efficiently handle non-unit stride. While most loops
have unit stride, a non-unit stride loop had poor performance on these processors
because memory-to-memory data movements were required to gather together
(and scatter back) the nonadjacent vector elements; these operations used special
scatter-gather instructions. In addition, there was special support for sparse vectors
that used a bit vector to represent the zeros and nonzeros and a dense vector of
nonzero values. These more complex vector operations were slow because of
the long memory latency, and it was often faster to use scalar mode for sparse
or non-unit stride operations. Schneck [1987] described several of the early pipe-
lined processors (e.g., Stretch) through the first vector processors, including the
205 and Cray-1. Dongarra [1986] did another good survey, focusing on more
recent processors.

The 1980s also saw the arrival of smaller-scale vector processors, called
mini-supercomputers. Priced at roughly one-tenth the cost of a supercomputer
($0.5 to $1 million versus $5 to $10 million), these processors caught on quickly.
Although many companies joined the market, the two companies that were most
successful were Convex and Alliant. Convex started with the uniprocessor C-1
vector processor and then offered a series of small multiprocessors, ending with
the C-4 announced in 1994. The keys to the success of Convex over this period
were their emphasis on Cray software capability, the effectiveness of their com-
piler (see Figure G.9), and the quality of their UNIX OS implementation. The
C-4 was the last vector machine Convex sold; they switched to making large-scale
multiprocessors using Hewlett-Packard RISCmicroprocessors and were bought by
HP in 1995. Alliant [1987] concentrated more on the multiprocessor aspects; they
built an eight-processor computer, with each processor offering vector capability.
Alliant ceased operation in the early 1990s.

In the early 1980s, CDC spun out a group, called ETA, to build a new super-
computer, the ETA-10, capable of 10 GFLOPS. The ETA processor was delivered
in the late 1980s (see Fazio [1987]) and used low-temperature CMOS in a
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configuration with up to 10 processors. Each processor retained the memory-
memory architecture based on the CYBER 205. Although the ETA-10 achieved
enormous peak performance, its scalar speed was not comparable. In 1989,
CDC, the first supercomputer vendor, closed ETA and left the supercomputer
design business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extended the System/370 architecture with 171 vector instructions. The 3090/VF
was integrated into the 3090 CPU. Unlike most other vector processors of the time,
the 3090/VF routed its vectors through the cache. The IBM 370 machines contin-
ued to evolve over time and are now called the IBM zSeries. The vector extensions
have been removed from the architecture and some of the opcode space was reused
to implement 64-bit address extensions.

In late 1989, Cray Research was split into two companies, both aimed at build-
ing high-end processors available in the early 1990s. Seymour Cray headed the
spin-off, Cray Computer Corporation, until its demise in 1995. Their initial pro-
cessor, the Cray-3, was to be implemented in gallium arsenide, but they were
unable to develop a reliable and cost-effective implementation technology. A sin-
gle Cray-3 prototype was delivered to the National Center for Atmospheric
Research (NCAR) for evaluation purposes in 1993, but no paying customers were
found for the design. The Cray-4 prototype, which was to have been the first pro-
cessor to run at 1 GHz, was close to completion when the company filed for bank-
ruptcy. Shortly before his tragic death in a car accident in 1996, Seymour Cray
started yet another company, SRC Computers, to develop high-performance sys-
tems but this time using commodity components. In 2000, SRC announced the
SRC-6 system, which combined 512 Intel microprocessors, 5 billion gates of
reconfigurable logic, and a high-performance vector-style memory system.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
The J90 was a CMOS-based vector machine using DRAM memory starting at
$250,000, but with typical configurations running about $1 million. In mid-
1995, Cray Research was acquired by Silicon Graphics, and in 1998 released
the SV1 system, which grafted considerably faster CMOS processors onto the
J90 memory system, and which also added a data cache for vectors to each
CPU to help meet the increased memory bandwidth demands. The SV1 also intro-
duced the MSP concept, which was developed to provide competitive single-CPU
performance by ganging together multiple slower CPUs. Silicon Graphics sold
Cray Research to Tera Computer in 2000, and the joint company was renamed
Cray Inc.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University of
Illinois. Banerjee [1979] developed the test named after him. Padua and Wolfe
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers, including attempts to under-
stand the performance differences, have been undertaken by Lubeck, Moore,
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and Mendez [1985], Bucher [1983], and Jordan [1987]. There are several bench-
mark suites aimed at scientific usage and often employed for supercomputer
benchmarking, including Linpack and the Lawrence Livermore Laboratories FOR-
TRAN kernels. The University of Illinois coordinated the collection of a set of
benchmarks for supercomputers, called the Perfect Club. In 1993, the Perfect Club
was integrated into SPEC, which released a set of benchmarks, SPEChpc96, aimed
at high-end scientific processing in 1996. The NAS parallel benchmarks developed
at the NASAAmes Research Center [Bailey et al. 1991] have become a popular set
of kernels and applications used for supercomputer evaluation. A new benchmark
suite, HPC Challenge, was introduced consisting of a few kernels that stress
machine memory and interconnect bandwidths in addition to floating-point perfor-
mance [Luszczek et al. 2005]. Although standard supercomputer benchmarks are
useful as a rough measure of machine capabilities, large supercomputer purchases
are generally preceded by a careful performance evaluation on the actual mix of
applications required at the customer site.
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Exercises

In these exercises assume VMIPS has a clock rate of 500 MHz and that Tloop¼15.
Use the start-up times from Figure G.2, and assume that the store latency is always
included in the running time.

G.1 [10]<G.1, G.2>Write a VMIPS vector sequence that achieves the peakMFLOPS
performance of the processor (use the functional unit and instruction description in
Section G.2). Assuming a 500-MHz clock rate, what is the peak MFLOPS?

G.2 [20/15/15]<G.1–G.6>Consider the following vector code run on a 500 MHz
version of VMIPS for a fixed vector length of 64:

LV V1,Ra
MULV.D V2,V1,V3
ADDV.D V4,V1,V3
SV Rb,V2
SV Rc,V4

Exercises ■ G-29

http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0085
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0085
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0095
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0095
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0100
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0100
http://repositories.cdlib.org/lbnl/LBNL-57493
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0110
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0110
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0125
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0125
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0130
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0135
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0140
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0140
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0145
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0145
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0150
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0150
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0160
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0160
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0165
http://refhub.elsevier.com/B978-0-12-811905-1.09973-9/rf0165


Ignore all strip-mining overhead, but assume that the store latency must be
included in the time to perform the loop. The entire sequence produces 64 results.

a. [20]<G.1–G.4>Assuming no chaining and a single memory pipeline, how
many chimes are required? How many clock cycles per result (including both
stores as one result) does this vector sequence require, including start-up
overhead?

b. [15]<G.1–G.4> If the vector sequence is chained, how many clock cycles per
result does this sequence require, including overhead?

c. [15]<G.1–G.6>Suppose VMIPS had three memory pipelines and chaining.
If there were no bank conflicts in the accesses for the above loop, how many

clock cycles are required per result for this sequence?

G.3 [20/20/15/15/20/20/20]<G.2–G.6>Consider the following FORTRAN code:

do 10 i=1,n
A(i)=A(i)+B(i)
B(i)=x * B(i)

10 continue

Use the techniques of Section G.6 to estimate performance throughout this
exercise, assuming a 500 MHz version of VMIPS.

a. [20]<G.2–G.6>Write the best VMIPS vector code for the inner portion of the
loop. Assume x is in F0 and the addresses of A and B are in Ra and Rb,
respectively.

b. [20]<G.2–G.6>Find the total time for this loop on VMIPS (T100). What is the
MFLOPS rating for the loop (R100)?

c. [15]<G.2–G.6>Find R∞ for this loop.

d. [15]<G.2–G.6>Find N1/2 for this loop.

e. [20]<G.2–G.6>Find Nv for this loop. Assume the scalar code has been pipe-
line scheduled so that each memory reference takes six cycles and each FP oper-
ation takes three cycles. Assume the scalar overhead is also Tloop.

f. [20]<G.2–G.6>AssumeVMIPS has twomemory pipelines.Write vector code
that takes advantage of the second memory pipeline. Show the layout in
convoys.

g. [20]<G.2–G.6>Compute T100 and R100 for VMIPS with two memory
pipelines.

G.4 [20/10]<G.2>Suppose we have a version of VMIPS with eight memory banks
(each a double word wide) and a memory access time of eight cycles.

a. [20]<G.2> If a load vector of length 64 is executed with a stride of 20 double
words, how many cycles will the load take to complete?

b. [10]<G.2>What percentage of the memory bandwidth do you achieve on a
64-element load at stride 20 versus stride 1?
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G.5 [12/12]<G.5–G.6>Consider the following loop:

C=0.0
do 10 i=1,64

A(i)=A(i)+B(i)
C=C+A(i)

10 continue

a. [12]<G.5–G.6>Split the loop into two loops: one with no dependence and one
with a dependence. Write these loops in FORTRAN—as a source-to-source
transformation. This optimization is called loop fission.

b. [12]<G.5–G.6>Write the VMIPS vector code for the loop without a
dependence.

G.6 [20/15/20/20]<G.5–G.6>The compiled Linpack performance of the Cray-1
(designed in 1976) was almost doubled by a better compiler in 1989.
Let’s look at a simple example of how this might occur. Consider
the DAXPY-like loop (where k is a parameter to the procedure containing
the loop):

do 10 i=1,64
do 10 j=1,64
Y(k,j)=a*X(i,j)+Y(k,j)

10 continue

a. [20]<G.5–G.6>Write the straightforward code sequence for just the inner
loop in VMIPS vector instructions.

b. [15]<G.5–G.6>Using the techniques of Section G.6, estimate the perfor-
mance of this code on VMIPS by finding T64 in clock cycles. You may assume
that Tloop of overhead is incurred for each iteration of the outer loop.What limits
the performance?

c. [20]<G.5–G.6>Rewrite the VMIPS code to reduce the performance limita-
tion; show the resulting inner loop in VMIPS vector instructions. (Hint: Think
about what establishes Tchime; can you affect it?) Find the total time for the
resulting sequence.

d. [20]<G.5–G.6>Estimate the performance of your new version, using the
techniques of Section G.6 and finding T64.

G.7 [15/15/25]<G.4>Consider the following code:

do 10 i=1,64
if (B(i) .ne. 0) then

A(i)=A(i)/B(i)
10 continue

Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0
contains 0.
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a. [15]<G.4>Write the VMIPS code for this loop using the vector-mask capability.

b. [15]<G.4>Write the VMIPS code for this loop using scatter-gather.

c. [25]<G.4>Estimate the performance (T100 in clock cycles) of these two vector
loops, assuming a divide latency of 20 cycles. Assume that all vector instruc-
tions run at one result per clock, independent of the setting of the vector-mask
register. Assume that 50% of the entries of B are 0. Considering hardware costs,
which would you build if the above loop were typical?

G.8 [15/20/15/15]<G.1–G.6>The difference between peak and sustained perfor-
mance can be large. For one problem, a Hitachi S810 had a peak speed twice as
high as that of the Cray X-MP, while for another more realistic problem, the Cray
X-MP was twice as fast as the Hitachi processor. Let’s examine why this might
occur using two versions of VMIPS and the following code sequences:

C Code sequence 1
do 10 i=1,10000

A(i)=x * A(i)+y * A(i)
10 continue
C Code sequence 2

do 10 i=1,100
A(i)=x * A(i)

10 continue

Assume there is a version of VMIPS (call it VMIPS-II) that has two copies of every
floating-point functional unit with full chaining among them. Assume that both
VMIPS and VMIPS-II have two load-store units. Because of the extra functional
units and the increased complexity of assigning operations to units, all the over-
heads (Tloop and Tstart) are doubled for VMIPS-II.

a. [15]<G.1–G.6>Find the number of clock cycles on code sequence 1
on VMIPS.

b. [20]<G.1–G.6>Find the number of clock cycles on code sequence 1 for
VMIPS-II. How does this compare to VMIPS?

c. [15]<G.1–G.6>Find the number of clock cycles on code sequence 2 for VMIPS.

d. [15]<G.1–G.6>Find the number of clock cycles on code sequence 2 for
VMIPS-II. How does this compare to VMIPS?

G.9 [20]<G.5>Here is a tricky piece of code with two-dimensional arrays. Does this
loop have dependences? Can these loops be written so they are parallel? If so, how?
Rewrite the source code so that it is clear that the loop can be vectorized, if
possible.

do 290 j=2,n
do 290 i=2,j

aa(i,j)=aa(i-1,j)*aa(i-1,j)+bb(i,j)
290 continue
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G.10 [12/15]<G.5>Consider the following loop:

do 10 i=2,n
A(i)=B

10 C(i)=A(i - 1)

a. [12]<G.5>Show there is a loop-carried dependence in this code fragment.

b. [15]<G.5>Rewrite the code in FORTRAN so that it can be vectorized as two
separate vector sequences.

G.11 [15/25/25]<G.5>As we saw in Section G.5, some loop structures are not easily
vectorized. One common structure is a reduction—a loop that reduces an array to a
single value by repeated application of an operation. This is a special case of a
recurrence. A common example occurs in dot product:

dot=0.0
do 10 i=1,64

10 dot=dot+A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec-
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recurrence
and perhaps rewrite the loop as:

do 10 i=1,64
10 dot(i)=A(i) * B(i)

do 20 i=2,64
20 dot(1)=dot(1)+dot(i)

The variable dot has been expanded into a vector; this transformation is called
scalar expansion. We can try to vectorize the second loop either relying strictly on
the compiler (part (a)) or with hardware support as well (part (b)). There is an
important caveat in the use of vector techniques for reduction. To make reduction
work, we are relying on the associativity of the operator being used for the reduc-
tion. Because of rounding and finite range, however, floating-point arithmetic is
not strictly associative. For this reason, most compilers require the programmer
to indicate whether associativity can be used to more efficiently compile
reductions.

a. [15]<G.5>One simple scheme for compiling the loop with the recurrence is to
add sequences of progressively shorter vectors—two 32-element vectors, then
two 16-element vectors, and so on. This technique has been called recursive
doubling. It is faster than doing all the operations in scalar mode. Show how
the FORTRAN code would look for execution of the second loop in the preced-
ing code fragment using recursive doubling.

b. [25]<G.5> In some vector processors, the vector registers are addressable, and
the operands to a vector operation may be two different parts of the same vector
register. This allows another solution for the reduction, called partial sums.
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The key idea in partial sums is to reduce the vector to m sums where m is the
total latency through the vector functional unit, including the operand read and
write times. Assume that the VMIPS vector registers are addressable (e.g., you
can initiate a vector operation with the operand V1(16), indicating that the input
operand began with element 16). Also, assume that the total latency for adds,
including operand read and write, is eight cycles. Write a VMIPS code
sequence that reduces the contents of V1 to eight partial sums. It can be done
with one vector operation.

c. [25]<G.5>Discuss how adding the extension in part (b) would affect a
machine that had multiple lanes.

G.12 [40]<G.3–G.4>Extend the MIPS simulator to be a VMIPS simulator, including
the ability to count clock cycles. Write some short benchmark programs in MIPS
and VMIPS assembly language. Measure the speedup on VMIPS, the percentage
of vectorization, and usage of the functional units.

G.13 [50]<G.5>Modify the MIPS compiler to include a dependence checker. Run
some scientific code and loops through it and measure what percentage of the state-
ments could be vectorized.

G.14 [Discussion] Some proponents of vector processors might argue that the vector
processors have provided the best path to ever-increasing amounts of processor
power by focusing their attention on boosting peak vector performance. Others
would argue that the emphasis on peak performance is misplaced because an
increasing percentage of the programs are dominated by nonvector performance.
(Remember Amdahl’s law?) The proponents would respond that programmers
should work to make their programs vectorizable. What do you think about this
argument?
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H.1 Introduction: Exploiting Instruction-Level Parallelism
Statically

In this chapter, we discuss compiler technology for increasing the amount of par-
allelism that we can exploit in a program as well as hardware support for these
compiler techniques. The next section defines when a loop is parallel, how a depen-
dence can prevent a loop from being parallel, and techniques for eliminating some
types of dependences. The following section discusses the topic of scheduling code
to improve parallelism. These two sections serve as an introduction to these
techniques.

We do not attempt to explain the details of ILP-oriented compiler techniques,
since that would take hundreds of pages, rather than the 20 we have allotted.
Instead, we view this material as providing general background that will enable
the reader to have a basic understanding of the compiler techniques used to exploit
ILP in modern computers.

Hardware support for these compiler techniques can greatly increase their
effectiveness, and Sections H.4 and H.5 explore such support. The IA-64 repre-
sents the culmination of the compiler and hardware ideas for exploiting
parallelism statically and includes support for many of the concepts proposed
by researchers during more than a decade of research into the area of compiler-
based instruction-level parallelism. Section H.6 provides a description and perfor-
mance analyses of the Intel IA-64 architecture and its second-generation imple-
mentation, Itanium 2.

The core concepts that we exploit in statically based techniques—finding par-
allelism, reducing control and data dependences, and using speculation—are the
same techniques we saw exploited in Chapter 3 using dynamic techniques. The
key difference is that the techniques in this appendix are applied at compile time
by the compiler, rather than at runtime by the hardware. The advantages of compile
time techniques are primarily two: They do not burden runtime execution with any
inefficiency, and they can take into account a wider range of the program than a
runtime approach might be able to incorporate. As an example of the latter, the next
section shows how a compiler might determine that an entire loop can be executed
in parallel; hardware techniques might or might not be able to find such parallel-
ism. The major disadvantage of static approaches is that they can use only compile
time information. Without runtime information, compile time techniques must
often be conservative and assume the worst case.

H.2 Detecting and Enhancing Loop-Level Parallelism

Loop-level parallelism is normally analyzed at the source level or close to it, while
most analysis of ILP is done once instructions have been generated by the
compiler. Loop-level analysis involves determining what dependences exist
among the operands in a loop across the iterations of that loop. For now, we will
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consider only data dependences, which arise when an operand is written at some
point and read at a later point. Name dependences also exist and may be removed
by renaming techniques like those we explored in Chapter 3.

The analysis of loop-level parallelism focuses on determining whether data
accesses in later iterations are dependent on data values produced in earlier
iterations; such a dependence is called a loop-carried dependence. Most of the
examples we considered in Section 3.2 have no loop-carried dependences and,
thus, are loop-level parallel. To see that a loop is parallel, let us first look at the
source representation:

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s;

In this loop, there is a dependence between the two uses of x[i], but this depen-
dence is within a single iteration and is not loop carried. There is a dependence
between successive uses of i in different iterations, which is loop carried, but this
dependence involves an induction variable and can be easily recognized and elim-
inated. We saw examples of how to eliminate dependences involving induction
variables during loop unrolling in Section 3.2, and we will look at additional exam-
ples later in this section.

Because finding loop-level parallelism involves recognizing structures such as
loops, array references, and induction variable computations, the compiler can do
this analysis more easily at or near the source level, as opposed to the machine-code
level. Let’s look at a more complex example.

Example Consider a loop like this one:

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

Assume that A, B, and C are distinct, nonoverlapping arrays. (In practice, the
arrays may sometimes be the same or may overlap. Because the arrays may be
passed as parameters to a procedure, which includes this loop, determining whether
arrays overlap or are identical often requires sophisticated, interprocedural analysis
of the program.) What are the data dependences among the statements S1 and S2 in
the loop?

Answer There are two different dependences:

1. S1 uses a value computed by S1 in an earlier iteration, since iteration i com-
putes A[i+1], which is read in iteration i+1. The same is true of S2 for B[i]
and B[i+1].

2. S2 uses the value, A[i+1], computed by S1 in the same iteration.
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These two dependences are different and have different effects. To see how
they differ, let’s assume that only one of these dependences exists at a time.
Because the dependence of statement S1 is on an earlier iteration of S1, this depen-
dence is loop carried. This dependence forces successive iterations of this loop to
execute in series.

The second dependence (S2 depending on S1) is within an iteration and is not
loop carried. Thus, if this were the only dependence, multiple iterations of the loop
could execute in parallel, as long as each pair of statements in an iteration were kept
in order. We saw this type of dependence in an example in Section 3.2, where
unrolling was able to expose the parallelism.

It is also possible to have a loop-carried dependence that does not prevent par-
allelism, as the next example shows.

Example Consider a loop like this one:

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}

What are the dependences between S1 and S2? Is this loop parallel? If not, show
how to make it parallel.

Answer Statement S1 uses the value assigned in the previous iteration by statement S2, so
there is a loop-carried dependence between S2 and S1. Despite this loop-carried
dependence, this loop can be made parallel. Unlike the earlier loop, this depen-
dence is not circular: Neither statement depends on itself, and, although S1
depends on S2, S2 does not depend on S1. A loop is parallel if it can be written
without a cycle in the dependences, since the absence of a cycle means that the
dependences give a partial ordering on the statements.

Although there are no circular dependences in the above loop, it must be trans-
formed to conform to the partial ordering and expose the parallelism. Two obser-
vations are critical to this transformation:

1. There is no dependence from S1 to S2. If there were, then there would be a
cycle in the dependences and the loop would not be parallel. Since this other
dependence is absent, interchanging the two statements will not affect the exe-
cution of S2.

2. On the first iteration of the loop, statement S1 depends on the value of B[1]
computed prior to initiating the loop.

These two observations allow us to replace the loop above with the following code
sequence:
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A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

The dependence between the two statements is no longer loop carried, so iter-
ations of the loop may be overlapped, provided the statements in each iteration are
kept in order.

Our analysis needs to begin by finding all loop-carried dependences. This
dependence information is inexact, in the sense that it tells us that such a depen-
dence may exist. Consider the following example:

for (i=1;i<=100;i=i+1) {
A[i] = B[i] + C[i]
D[i] = A[i] * E[i]

}

The second reference to A in this example need not be translated to a load instruc-
tion, since we know that the value is computed and stored by the previous state-
ment; hence, the second reference to A can simply be a reference to the register into
which A was computed. Performing this optimization requires knowing that the
two references are always to the same memory address and that there is no inter-
vening access to the same location. Normally, data dependence analysis only tells
that one reference may depend on another; a more complex analysis is required to
determine that two references must be to the exact same address. In the example
above, a simple version of this analysis suffices, since the two references are in the
same basic block.

Often loop-carried dependences are in the form of a recurrence:

for (i=2;i<=100;i=i+1) {
Y[i] = Y[i-1] + Y[i];

}

A recurrence is when a variable is defined based on the value of that variable in
an earlier iteration, often the one immediately preceding, as in the above fragment.
Detecting a recurrence can be important for two reasons: Some architectures (espe-
cially vector computers) have special support for executing recurrences, and some
recurrences can be the source of a reasonable amount of parallelism. To see how
the latter can be true, consider this loop:

for (i=6;i<=100;i=i+1) {
Y[i] = Y[i-5] + Y[i];

}
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On the iteration i, the loop references element i � 5. The loop is said to have a
dependence distance of 5. Many loops with carried dependences have a depen-
dence distance of 1. The larger the distance, the more potential parallelism can
be obtained by unrolling the loop. For example, if we unroll the first loop, with
a dependence distance of 1, successive statements are dependent on one another;
there is still some parallelism among the individual instructions, but not much. If
we unroll the loop that has a dependence distance of 5, there is a sequence of five
statements that have no dependences, and thus much more ILP. Although many
loops with loop-carried dependences have a dependence distance of 1, cases with
larger distances do arise, and the longer distance may well provide enough paral-
lelism to keep a processor busy.

Finding Dependences

Finding the dependences in a program is an important part of three tasks: (1) good
scheduling of code, (2) determining which loops might contain parallelism, and (3)
eliminating name dependences. The complexity of dependence analysis arises
because of the presence of arrays and pointers in languages like C or C++, or
pass-by-reference parameter passing in FORTRAN. Since scalar variable refer-
ences explicitly refer to a name, they can usually be analyzed quite easily, with
aliasing because of pointers and reference parameters causing some complications
and uncertainty in the analysis.

How does the compiler detect dependences in general? Nearly all dependence
analysis algorithms work on the assumption that array indices are affine. In sim-
plest terms, a one-dimensional array index is affine if it can be written in the form
a� i + b, where a and b are constants and i is the loop index variable. The index of
a multidimensional array is affine if the index in each dimension is affine. Sparse
array accesses, which typically have the form x[y[i]], are one of the major
examples of nonaffine accesses.

Determining whether there is a dependence between two references to the same
array in a loop is thus equivalent to determining whether two affine functions can
have the same value for different indices between the bounds of the loop. For
example, suppose we have stored to an array element with index value a � i +
b and loaded from the same array with index value c � i + d, where i is the
for-loop index variable that runs from m to n. A dependence exists if two condi-
tions hold:

1. There are two iteration indices, j and k, both within the limits of the for loop.
That is, m � j � n, m � k � n.

2. The loop stores into an array element indexed by a� j + b and later fetches from
that same array element when it is indexed by c� k + d. That is, a� j + b¼ c�
k + d.
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In general, we cannot determine whether a dependence exists at compile time.
For example, the values of a, b, c, and dmay not be known (they could be values in
other arrays), making it impossible to tell if a dependence exists. In other cases, the
dependence testing may be very expensive but decidable at compile time. For
example, the accesses may depend on the iteration indices of multiple nested loops.
Many programs, however, contain primarily simple indices where a, b, c, and d are
all constants. For these cases, it is possible to devise reasonable compile time tests
for dependence.

As an example, a simple and sufficient test for the absence of a dependence is
the greatest common divisor (GCD) test. It is based on the observation that if a
loop-carried dependence exists, then GCD (c,a) must divide (d � b). (Recall that
an integer, x, divides another integer, y, if we get an integer quotient when we do
the division y/x and there is no remainder.)

Example Use the GCD test to determine whether dependences exist in the following loop:

for (i=1; i<=100; i=i+1) {
X[2*i+3] = X[2*i] * 5.0;

}

Answer Given the values a ¼ 2, b ¼ 3, c ¼ 2, and d ¼ 0, then GCD(a,c)¼ 2, and d � b ¼
�3. Since 2 does not divide �3, no dependence is possible.

The GCD test is sufficient to guarantee that no dependence exists; however,
there are cases where the GCD test succeeds but no dependence exists. This
can arise, for example, because the GCD test does not take the loop bounds into
account.

In general, determining whether a dependence actually exists is NP complete.
In practice, however, many common cases can be analyzed precisely at low cost.
Recently, approaches using a hierarchy of exact tests increasing in generality
and cost have been shown to be both accurate and efficient. (A test is exact if
it precisely determines whether a dependence exists. Although the general case
is NP complete, there exist exact tests for restricted situations that are much
cheaper.)

In addition to detecting the presence of a dependence, a compiler wants to
classify the type of dependence. This classification allows a compiler to recog-
nize name dependences and eliminate them at compile time by renaming and
copying.

Example The following loop has multiple types of dependences. Find all the true depen-
dences, output dependences, and antidependences, and eliminate the output depen-
dences and antidependences by renaming.
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for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

Answer The following dependences exist among the four statements:

1. There are true dependences from S1 to S3 and from S1 to S4 because of Y[i].
These are not loop carried, so they do not prevent the loop from being consid-
ered parallel. These dependences will force S3 and S4 to wait for S1 to
complete.

2. There is an antidependence from S1 to S2, based on X[i].

3. There is an antidependence from S3 to S4 for Y[i].

4. There is an output dependence from S1 to S4, based on Y[i].

The following version of the loop eliminates these false (or pseudo) dependences:

for (i=1; i<=100; i=i+1 {
/* Y renamed to T to remove output dependence */
T[i] = X[i] / c;
/* X renamed to X1 to remove antidependence */
X1[i] = X[i] + c;
/* Y renamed to T to remove antidependence */
Z[i] = T[i] + c;
Y[i] = c - T[i];

}

After the loop, the variable X has been renamed X1. In code that follows the loop,
the compiler can simply replace the name X by X1. In this case, renaming does not
require an actual copy operation but can be done by substituting names or by reg-
ister allocation. In other cases, however, renaming will require copying.

Dependence analysis is a critical technology for exploiting parallelism. At the
instruction level, it provides information needed to interchange memory references
when scheduling, as well as to determine the benefits of unrolling a loop. For
detecting loop-level parallelism, dependence analysis is the basic tool. Effectively
compiling programs to either vector computers or multiprocessors depends criti-
cally on this analysis. The major drawback of dependence analysis is that it applies
only under a limited set of circumstances—namely, among references within a sin-
gle loop nest and using affine index functions. Thus, there is a wide variety of sit-
uations in which array-oriented dependence analysis cannot tell us what we might
want to know, including the following:
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■ When objects are referenced via pointers rather than array indices (but see
discussion below)

■ When array indexing is indirect through another array, which happens with
many representations of sparse arrays

■ When a dependence may exist for some value of the inputs but does not exist in
actuality when the code is run since the inputs never take on those values

■ When an optimization depends on knowing more than just the possibility of a
dependence but needs to know on which write of a variable does a read of that
variable depend

To deal with the issue of analyzing programs with pointers, another type of anal-
ysis, often calledpoints-to analysis, is required (seeWilson andLam [1995]). The key
question that wewant answered from dependence analysis of pointers is whether two
pointers can designate the same address. In the case of complex dynamic data struc-
tures, this problem is extremely difficult. For example,wemaywant to knowwhether
twopointers can reference thesamenodeina list atagivenpoint inaprogram,which in
general is undecidable and in practice is extremely difficult to answer.Wemay, how-
ever, be able to answer a simpler question: Can two pointers designate nodes in the
same list, even if they may be separate nodes? This more restricted analysis can still
be quite useful in scheduling memory accesses performed through pointers.

The basic approach used in points-to analysis relies on information from three
major sources:

1. Type information, which restricts what a pointer can point to.

2. Information derived when an object is allocated or when the address of an object
is taken, which can be used to restrict what a pointer can point to. For example,
if p always points to an object allocated in a given source line and q never points
to that object, then p and q can never point to the same object.

3. Information derived from pointer assignments. For example, if p may be
assigned the value of q, then p may point to anything q points to.

There are several cases where analyzing pointers has been successfully applied
and is extremely useful:

■ When pointers are used to pass the address of an object as a parameter, it is
possible to use points-to analysis to determine the possible set of objects refer-
enced by a pointer. One important use is to determine if two pointer parameters
may designate the same object.

■ When a pointer can point to one of several types, it is sometimes possible to
determine the type of the data object that a pointer designates at different parts
of the program.

■ It is often possible to separate out pointers that may only point to a local object
versus a global one.
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There are two different types of limitations that affect our ability to do accu-
rate dependence analysis for large programs. The first type of limitation arises
from restrictions in the analysis algorithms. Often, we are limited by the lack
of applicability of the analysis rather than a shortcoming in dependence analysis
per se. For example, dependence analysis for pointers is essentially impossible
for programs that use pointers in arbitrary fashion—such as by doing arithmetic
on pointers.

The second limitation is the need to analyze behavior across procedure bound-
aries to get accurate information. For example, if a procedure accepts two param-
eters that are pointers, determining whether the values could be the same requires
analyzing across procedure boundaries. This type of analysis, called interproce-
dural analysis, is much more difficult and complex than analysis within a single
procedure. Unlike the case of analyzing array indices within a single loop nest,
points-to analysis usually requires an interprocedural analysis. The reason for this
is simple. Suppose we are analyzing a program segment with two pointers; if the
analysis does not know anything about the two pointers at the start of the program
segment, it must be conservative and assume the worst case. The worst case is that
the two pointers may designate the same object, but they are not guaranteed to
designate the same object. This worst case is likely to propagate through the anal-
ysis, producing useless information. In practice, getting fully accurate interproce-
dural information is usually too expensive for real programs. Instead, compilers
usually use approximations in interprocedural analysis. The result is that the infor-
mation may be too inaccurate to be useful.

Modern programming languages that use strong typing, such as Java, make the
analysis of dependences easier. At the same time the extensive use of procedures to
structure programs, as well as abstract data types, makes the analysis more diffi-
cult. Nonetheless, we expect that continued advances in analysis algorithms, com-
bined with the increasing importance of pointer dependency analysis, will mean
that there is continued progress on this important problem.

Eliminating Dependent Computations

Compilers can reduce the impact of dependent computations so as to achieve more
instruction-level parallelism (ILP). The key technique is to eliminate or reduce a
dependent computation by back substitution, which increases the amount of par-
allelism and sometimes increases the amount of computation required. These tech-
niques can be applied both within a basic block and within loops, and we describe
them differently.

Within a basic block, algebraic simplifications of expressions and an optimi-
zation called copy propagation, which eliminates operations that copy values, can
be used to simplify sequences like the following:

DADDUI R1,R2,#4
DADDUI R1,R1,#4
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to
DADDUI R1,R2,#8

assuming this is the only use of R1. In fact, the techniques we used to reduce
multiple increments of array indices during loop unrolling and to move the incre-
ments across memory addresses in Section 3.2 are examples of this type of
optimization.

In these examples, computations are actually eliminated, but it is also pos-
sible that we may want to increase the parallelism of the code, possibly even
increasing the number of operations. Such optimizations are called tree height
reduction because they reduce the height of the tree structure representing a
computation, making it wider but shorter. Consider the following code
sequence:

ADD R1,R2,R3
ADD R4,R1,R6
ADD R8,R4,R7

Notice that this sequence requires at least three execution cycles, since all the
instructions depend on the immediate predecessor. By taking advantage of asso-
ciativity, we can transform the code and rewrite it as

ADD R1,R2,R3
ADD R4,R6,R7
ADD R8,R1,R4

This sequence can be computed in two execution cycles. When loop unrolling is
used, opportunities for these types of optimizations occur frequently.

Although arithmetic with unlimited range and precision is associative, com-
puter arithmetic is not associative, for either integer arithmetic, because of limited
range, or floating-point arithmetic, because of both range and precision. Thus,
using these restructuring techniques can sometimes lead to erroneous behavior,
although such occurrences are rare. For this reason, most compilers require that
optimizations that rely on associativity be explicitly enabled.

When loops are unrolled, this sort of algebraic optimization is important to
reduce the impact of dependences arising from recurrences. Recurrences are
expressions whose value on one iteration is given by a function that depends on
the previous iterations. When a loop with a recurrence is unrolled, we may be able
to algebraically optimize the unrolled loop, so that the recurrence need only be
evaluated once per unrolled iteration. One common type of recurrence arises from
an explicit program statement, such as:

sum = sum + x;
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Assume we unroll a loop with this recurrence five times. If we let the value of x on
these five iterations be given by x1, x2, x3, x4, and x5, then we can write the
value of sum at the end of each unroll as:

sum = sum + x1 + x2 + x3 + x4 + x5;

If unoptimized, this expression requires five dependent operations, but it can be
rewritten as:

sum = ((sum + x1) + (x2 + x3)) + (x4 + x5);

which can be evaluated in only three dependent operations.
Recurrences also arise from implicit calculations, such as those associated with

array indexing. Each array index translates to an address that is computed based on
the loop index variable. Again, with unrolling and algebraic optimization, the
dependent computations can be minimized.

H.3 Scheduling and Structuring Code for Parallelism

We have already seen that one compiler technique, loop unrolling, is useful to
uncover parallelism among instructions by creating longer sequences of straight-
line code. There are two other important techniques that have been developed for
this purpose: software pipelining and trace scheduling.

Software Pipelining: Symbolic Loop Unrolling

Software pipelining is a technique for reorganizing loops such that each iteration in
the software-pipelined code is made from instructions chosen from different iter-
ations of the original loop. This approach is most easily understood by looking at
the scheduled code for the unrolled loop, which appeared in the example in
Section 2.2. The scheduler in this example essentially interleaves instructions from
different loop iterations, so as to separate the dependent instructions that occur
within a single loop iteration. By choosing instructions from different iterations,
dependent computations are separated from one another by an entire loop body,
increasing the possibility that the unrolled loop can be scheduled without stalls.

A software-pipelined loop interleaves instructions from different iterations
without unrolling the loop, as illustrated in Figure H.1. This technique is the soft-
ware counterpart to what Tomasulo’s algorithm does in hardware. The software-
pipelined loop for the earlier example would contain one load, one add, and one
store, each from a different iteration. There is also some start-up code that is needed
before the loop begins as well as code to finish up after the loop is completed. We
will ignore these in this discussion, for simplicity.
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Example Show a software-pipelined version of this loop, which increments all the elements
of an array whose starting address is in R1 by the contents of F2:

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2,Loop

You may omit the start-up and clean-up code.

Answer Software pipelining symbolically unrolls the loop and then selects instructions
from each iteration. Since the unrolling is symbolic, the loop overhead instructions
(the DADDUI and BNE) need not be replicated. Here’s the body of the unrolled loop
without overhead instructions, highlighting the instructions taken from each
iteration:

Iteration i: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

Iteration i+1: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

Iteration i+2: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

Software-
pipelined
iteration

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Figure H.1 A software-pipelined loop chooses instructions from different loop iter-
ations, thus separating the dependent instructions within one iteration of the
original loop. The start-up and finish-up code will correspond to the portions above
and below the software-pipelined iteration.
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The selected instructions from different iterations are then put together in the loop
with the loop control instructions:

Loop: S.D F4,16(R1) ;stores into M[i]
ADD.D F4,F0,F2 ;adds to M[i-1]
L.D F0,0(R1) ;loads M[i-2]
DADDUI R1,R1,#-8
BNE R1,R2,Loop

This loop can be run at a rate of 5 cycles per result, ignoring the start-up and clean-
up portions, and assuming that DADDUI is scheduled before the ADD.D and that
the L.D instruction, with an adjusted offset, is placed in the branch delay slot.
Because the load and store are separated by offsets of 16 (two iterations), the loop
should run for two fewer iterations. Notice that the reuse of registers (e.g., F4, F0,
and R1) requires the hardware to avoid the write after read (WAR) hazards that
would occur in the loop. This hazard should not be a problem in this case, since
no data-dependent stalls should occur.

By looking at the unrolled version we can see what the start-up code and finish-up
code will need to be. For start-up, we will need to execute any instructions that cor-
respond to iteration 1 and 2 that will not be executed. These instructions are the L.D
for iterations 1 and 2 and the ADD.D for iteration 1. For the finish-up code, we need
to execute any instructions that will not be executed in the final two iterations. These
include the ADD.D for the last iteration and the S.D for the last two iterations.

Register management in software-pipelined loops can be tricky. The previous
example is not too hard since the registers that are written on one loop iteration are
read on the next. In other cases, we may need to increase the number of iterations
between when we issue an instruction and when the result is used. This increase is
required when there are a small number of instructions in the loop body and the
latencies are large. In such cases, a combination of software pipelining and loop
unrolling is needed.

Software pipelining can be thought of as symbolic loop unrolling. Indeed, some
of the algorithms for software pipelining use loop-unrolling algorithms to figure
out how to software-pipeline the loop. The major advantage of software pipelining
over straight loop unrolling is that software pipelining consumes less code space.
Software pipelining and loop unrolling, in addition to yielding a better scheduled
inner loop, each reduce a different type of overhead. Loop unrolling reduces the
overhead of the loop—the branch and counter update code. Software pipelining
reduces the time when the loop is not running at peak speed to once per loop at
the beginning and end. If we unroll a loop that does 100 iterations a constant num-
ber of times, say, 4, we pay the overhead 100/4 ¼ 25 times—every time the inner
unrolled loop is initiated. Figure H.2 shows this behavior graphically. Because
these techniques attack two different types of overhead, the best performance
can come from doing both. In practice, compilation using software pipelining is
quite difficult for several reasons: Many loops require significant transformation
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before they can be software pipelined, the trade-offs in terms of overhead versus
efficiency of the software-pipelined loop are complex, and the issue of register
management creates additional complexities. To help deal with the last two of
these issues, the IA-64 added extensive hardware sport for software pipelining.
Although this hardware can make it more efficient to apply software pipelining,
it does not eliminate the need for complex compiler support, or the need to make
difficult decisions about the best way to compile a loop.

Global Code Scheduling

In Section 3.2 we examined the use of loop unrolling and code scheduling to
improve ILP. The techniques in Section 3.2 work well when the loop body is
straight-line code, since the resulting unrolled loop looks like a single basic block.
Similarly, software pipelining works well when the body is a single basic block,
since it is easier to find the repeatable schedule. When the body of an unrolled loop
contains internal control flow, however, scheduling the code is much more com-
plex. In general, effective scheduling of a loop body with internal control flow will
require moving instructions across branches, which is global code scheduling.
In this section, we first examine the challenge and limitations of global code

(a) Software pipelining

Proportional
to number of

unrolls

Overlap between
unrolled iterations

Time

Wind-down
code

Start-up
code

(b) Loop unrolling
Time

Number
of

overlapped
operations

Number
of

overlapped
operations

Figure H.2 The execution pattern for (a) a software-pipelined loop and (b) an
unrolled loop. The shaded areas are the times when the loop is not running with max-
imum overlap or parallelism among instructions. This occurs once at the beginning and
once at the end for the software-pipelined loop. For the unrolled loop it occurs m/n
times if the loop has a total ofm iterations and is unrolled n times. Each block represents
an unroll of n iterations. Increasing the number of unrollings will reduce the start-up and
clean-up overhead. The overhead of one iteration overlaps with the overhead of the
next, thereby reducing the impact. The total area under the polygonal region in each
case will be the same, since the total number of operations is just the execution rate
multiplied by the time.
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scheduling. In Section H.4 we examine hardware support for eliminating control
flow within an inner loop, then we examine two compiler techniques that can be
used when eliminating the control flow is not a viable approach.

Global code scheduling aims to compact a code fragment with internal control
structure into the shortest possible sequence that preserves the data and control
dependences. The data dependences force a partial order on operations, while
the control dependences dictate instructions across which code cannot be easily
moved. Data dependences are overcome by unrolling and, in the case of memory
operations, using dependence analysis to determine if two references refer to the
same address. Finding the shortest possible sequence for a piece of code means
finding the shortest sequence for the critical path, which is the longest sequence
of dependent instructions.

Control dependences arising from loop branches are reduced by unrolling.
Global code scheduling can reduce the effect of control dependences arising from
conditional nonloop branches bymoving code. Since moving code across branches
will often affect the frequency of execution of such code, effectively using global
code motion requires estimates of the relative frequency of different paths.
Although global code motion cannot guarantee faster code, if the frequency infor-
mation is accurate, the compiler can determine whether such code movement is
likely to lead to faster code.

Global code motion is important since many inner loops contain conditional
statements. Figure H.3 shows a typical code fragment, which may be thought of
as an iteration of an unrolled loop, and highlights the more common control flow.

A(i) = A(i) + B(i)

FT

XB(i) =

A(i) = 0?

C(i) =

Figure H.3 A code fragment and the common path shaded with gray. Moving the
assignments to B or C requires a more complex analysis than for straight-line code.
In this section we focus on scheduling this code segment efficiently without hardware
assistance. Predication or conditional instructions, which we discuss in the next section,
provide another way to schedule this code.

H-16 ■ Appendix H Hardware and Software for VLIW and EPIC



Effectively scheduling this code could require that we move the assignments to
B and C to earlier in the execution sequence, before the test of A. Such global code
motion must satisfy a set of constraints to be legal. In addition, the movement of the
code associated with B, unlike that associated with C, is speculative: It will speed
the computation up only when the path containing the code would be taken.

To perform the movement of B, we must ensure that neither the data flow nor
the exception behavior is changed. Compilers avoid changing the exception behav-
ior by not moving certain classes of instructions, such as memory references, that
can cause exceptions. In Section H.5, we will see how hardware support allows for
more opportunities for speculative code motion and removes control dependences.
Although such enhanced support for speculation can make it possible to explore
more opportunities, the difficulty of choosing how to best compile the code
remains complex.

How can the compiler ensure that the assignments to B and C can be moved
without affecting the data flow? To see what’s involved, let’s look at a typical code
generation sequence for the flowchart in Figure H.3. Assuming that the addresses
for A, B, C are in R1, R2, and R3, respectively, here is such a sequence:

LD R4,0(R1) ;load A
LD R5,0(R2) ;load B
DADDU R4,R4,R5 ;Add to A
SD R4,0(R1) ;Store A
...
BNEZ R4,elsepart ;Test A
... ;then part
SD ...,0(R2) ;Stores to B
...
J join ;jump over else

elsepart: ... ;else part
X ;code for X
...

join: ... ;after if
SD ...,0(R3) ;store C[i]

Let’s first consider the problem of moving the assignment to B to before the
BNEZ instruction. Call the last instruction to assign to B before the if statement
i. If B is referenced before it is assigned either in code segment X or after the if
statement, call the referencing instruction j. If there is such an instruction j, then
moving the assignment to B will change the data flow of the program. In particular,
moving the assignment to B will cause j to become data dependent on the moved
version of the assignment to B rather than on i, on which j originally depended.
You could imagine more clever schemes to allow B to be moved even when
the value is used: For example, in the first case, we could make a shadow copy
of B before the if statement and use that shadow copy in X. Such schemes are usu-
ally avoided, both because they are complex to implement and because they will
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slow down the program if the trace selected is not optimal and the operations end
up requiring additional instructions to execute.

Moving the assignment to C up to before the first branch requires two steps. First,
the assignment is moved over the join point of the else part into the portion corre-
sponding to the then part. This movement makes the instructions for C control
dependent on the branch and means that they will not execute if the else path, which
is the infrequent path, is chosen. Hence, instructions that were data dependent on the
assignment to C, and which execute after this code fragment, will be affected. To
ensure the correct value is computed for such instructions, a copy is made of the
instructions that compute and assign to C on the else path. Second, we can move
C from the then part of the branch across the branch condition, if it does not affect
any data flow into the branch condition. If C ismoved to before the if test, the copy of
C in the else branch can usually be eliminated, since it will be redundant.

We can see from this example that global code scheduling is subject to many
constraints. This observation is what led designers to provide hardware support to
make such code motion easier, and Sections H.4 and H.5 explores such support in
detail.

Global code scheduling also requires complex trade-offs to make code motion
decisions. For example, assuming that the assignment to B can bemoved before the
conditional branch (possibly with some compensation code on the alternative
branch), will this movement make the code run faster? The answer is, possibly!
Similarly, moving the copies of C into the if and else branches makes the code
initially bigger! Only if the compiler can successfully move the computation across
the if test will there be a likely benefit.

Consider the factors that the compiler would have to consider in moving the
computation and assignment of B:

■ What are the relative execution frequencies of the then case and the else case in the
branch? If the thencase ismuchmore frequent, the codemotionmaybebeneficial.
If not, it is less likely, although not impossible, to consider moving the code.

■ What is the cost of executing the computation and assignment to B above the
branch? It may be that there are a number of empty instruction issue slots in the
code above the branch and that the instructions for B can be placed into these
slots that would otherwise go empty. This opportunity makes the computation
of B “free” at least to first order.

■ How will the movement of B change the execution time for the then case? If B
is at the start of the critical path for the then case, moving it may be highly
beneficial.

■ Is B the best code fragment that can be moved above the branch? How does it
compare with moving C or other statements within the then case?

■ What is the cost of the compensation code that may be necessary for the else
case? How effectively can this code be scheduled, and what is its impact on
execution time?
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As we can see from this partial list, global code scheduling is an extremely
complex problem. The trade-offs depend on many factors, and individual
decisions to globally schedule instructions are highly interdependent. Even choos-
ing which instructions to start considering as candidates for global code motion is
complex!

To try to simplify this process, several different methods for global code sched-
uling have been developed. The two methods we briefly explore here rely on a
simple principle: Focus the attention of the compiler on a straight-line code seg-
ment representing what is estimated to be the most frequently executed code path.
Unrolling is used to generate the straight-line code, but, of course, the complexity
arises in how conditional branches are handled. In both cases, they are effectively
straightened by choosing and scheduling the most frequent path.

Trace Scheduling: Focusing on the Critical Path

Trace scheduling is useful for processors with a large number of issues per clock,
where conditional or predicated execution (see Section H.4) is inappropriate or
unsupported, and where simple loop unrolling may not be sufficient by itself to
uncover enough ILP to keep the processor busy. Trace scheduling is a way to orga-
nize the global code motion process, so as to simplify the code scheduling by incur-
ring the costs of possible code motion on the less frequent paths. Because it can
generate significant overheads on the designated infrequent path, it is best used
where profile information indicates significant differences in frequency between
different paths and where the profile information is highly indicative of program
behavior independent of the input. Of course, this limits its effective applicability
to certain classes of programs.

There are two steps to trace scheduling. The first step, called trace selection,
tries to find a likely sequence of basic blocks whose operations will be put together
into a smaller number of instructions; this sequence is called a trace. Loop unrol-
ling is used to generate long traces, since loop branches are taken with high prob-
ability. Additionally, by using static branch prediction, other conditional branches
are also chosen as taken or not taken, so that the resultant trace is a straight-line
sequence resulting from concatenating many basic blocks. If, for example, the pro-
gram fragment shown in Figure H.3 corresponds to an inner loop with the
highlighted path being much more frequent, and the loop were unwound four
times, the primary trace would consist of four copies of the shaded portion of
the program, as shown in Figure H.4.

Once a trace is selected, the second process, called trace compaction, tries to
squeeze the trace into a small number of wide instructions. Trace compaction is
code scheduling; hence, it attempts to move operations as early as it can in a
sequence (trace), packing the operations into as few wide instructions (or issue
packets) as possible.

The advantage of the trace scheduling approach is that it simplifies the deci-
sions concerning global code motion. In particular, branches are viewed as jumps
into or out of the selected trace, which is assumed to be the most probable path.
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A(i) = A(i) + B(i)

FT

B(i) =

A(i) = 0?

C(i) =

Trace entrance

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

Trace exit

Trace exit

Trace entrance

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

Trace exit

Trace entrance

A(i) = A(i) + B(i)

T F

B(i) =

C(i) =

A(i) = 0? Trace exit

Figure H.4 This trace is obtained by assuming that the program fragment in Figure H.3 is the inner loop and
unwinding it four times, treating the shaded portion in Figure H.3 as the likely path. The trace exits correspond
to jumps off the frequent path, and the trace entrances correspond to returns to the trace.

H-20 ■ Appendix H Hardware and Software for VLIW and EPIC



When code is moved across such trace entry and exit points, additional bookkeep-
ing code will often be needed on the entry or exit point. The key assumption is that
the trace is so much more probable than the alternatives that the cost of the book-
keeping code need not be a deciding factor: If an instruction can be moved and
thereby make the main trace execute faster, it is moved.

Although trace scheduling has been successfully applied to scientific code with
its intensive loops and accurate profile data, it remains unclear whether this
approach is suitable for programs that are less simply characterized and less loop
intensive. In such programs, the significant overheads of compensation code may
make trace scheduling an unattractive approach, or, at best, its effective use will be
extremely complex for the compiler.

Superblocks

One of the major drawbacks of trace scheduling is that the entries and exits into the
middle of the trace cause significant complications, requiring the compiler to gen-
erate and track the compensation code and often making it difficult to assess the
cost of such code. Superblocks are formed by a process similar to that used for
traces, but are a form of extended basic blocks, which are restricted to a single entry
point but allow multiple exits.

Because superblocks have only a single entry point, compacting a superblock
is easier than compacting a trace since only code motion across an exit need be
considered. In our earlier example, we would form superblocks that contained only
one entrance; hence, moving C would be easier. Furthermore, in loops that have a
single loop exit based on a count (for example, a for loop with no loop exit other
than the loop termination condition), the resulting superblocks have only one exit
as well as one entrance. Such blocks can then be scheduled more easily.

How can a superblock with only one entrance be constructed? The answer is to
use tail duplication to create a separate block that corresponds to the portion of the
trace after the entry. In our previous example, each unrolling of the loop would
create an exit from the superblock to a residual loop that handles the remaining
iterations. Figure H.5 shows the superblock structure if the code fragment from
Figure H.3 is treated as the body of an inner loop and unrolled four times. The
residual loop handles any iterations that occur if the superblock is exited, which,
in turn, occurs when the unpredicted path is selected. If the expected frequency of
the residual loop were still high, a superblock could be created for that loop as well.

The superblock approach reduces the complexity of bookkeeping and sched-
uling versus the more general trace generation approach but may enlarge code size
more than a trace-based approach. Like trace scheduling, superblock scheduling
may be most appropriate when other techniques (e.g., if conversion) fail. Even
in such cases, assessing the cost of code duplication may limit the usefulness of
the approach and will certainly complicate the compilation process.

Loop unrolling, software pipelining, trace scheduling, and superblock sched-
uling all aim at trying to increase the amount of ILP that can be exploited by a pro-
cessor issuing more than one instruction on every clock cycle. The effectiveness of
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Figure H.5 This superblock results from unrolling the code in Figure H.3 four times and creating a superblock.
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each of these techniques and their suitability for various architectural approaches
are among the hottest topics being actively pursued by researchers and designers of
high-speed processors.

H.4 Hardware Support for Exposing Parallelism:
Predicated Instructions

Techniques such as loop unrolling, software pipelining, and trace scheduling can
be used to increase the amount of parallelism available when the behavior of
branches is fairly predictable at compile time. When the behavior of branches is
not well known, compiler techniques alone may not be able to uncover much
ILP. In such cases, the control dependences may severely limit the amount of par-
allelism that can be exploited. To overcome these problems, an architect can extend
the instruction set to include conditional or predicated instructions. Such instruc-
tions can be used to eliminate branches, converting a control dependence into a
data dependence and potentially improving performance. Such approaches are use-
ful with either the hardware-intensive schemes in Chapter 3 or the software-
intensive approaches discussed in this appendix, since in both cases predication
can be used to eliminate branches.

The concept behind conditional instructions is quite simple: An instruction
refers to a condition, which is evaluated as part of the instruction execution. If
the condition is true, the instruction is executed normally; if the condition is false,
the execution continues as if the instruction were a no-op. Many newer architec-
tures include some form of conditional instructions. The most common example of
such an instruction is conditional move, which moves a value from one register to
another if the condition is true. Such an instruction can be used to completely elim-
inate a branch in simple code sequences.

Example Consider the following code:

if (A==0) {S=T;}

Assuming that registers R1, R2, and R3 hold the values of A, S, and T, respec-
tively, show the code for this statement with the branch and with the
conditional move.

Answer The straightforward code using a branch for this statement is (remember that we are
assuming normal rather than delayed branches)

BNEZ R1,L
ADDU R2,R3,R0

L:

Using a conditional move that performs the move only if the third operand is
equal to zero, we can implement this statement in one instruction:

CMOVZ R2,R3,R1
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The conditional instruction allows us to convert the control dependence present in
the branch-based code sequence to a data dependence. (This transformation is also
used for vector computers, where it is called if conversion.) For a pipelined pro-
cessor, this moves the place where the dependence must be resolved from near
the front of the pipeline, where it is resolved for branches, to the end of the pipeline,
where the register write occurs.

One obvious use for conditional move is to implement the absolute value func-
tion: A = abs (B), which is implemented as if (B<0) {A=-B;} else
{A=B;}. This if statement can be implemented as a pair of conditional moves,
or as one unconditional move (A=B) and one conditional move (A=-B).

In the example above or in the compilation of absolute value, conditional
moves are used to change a control dependence into a data dependence. This
enables us to eliminate the branch and possibly improve the pipeline behavior.
As issue rates increase, designers are faced with one of two choices: execute
multiple branches per clock cycle or find a method to eliminate branches to
avoid this requirement. Handling multiple branches per clock is complex, since
one branch must be control dependent on the other. The difficulty of accurately
predicting two branch outcomes, updating the prediction tables, and executing
the correct sequence has so far caused most designers to avoid processors that
execute multiple branches per clock. Conditional moves and predicated instruc-
tions provide a way of reducing the branch pressure. In addition, a conditional
move can often eliminate a branch that is hard to predict, increasing the
potential gain.

Conditional moves are the simplest form of conditional or predicated
instructions and, although useful for short sequences, have limitations. In par-
ticular, using conditional move to eliminate branches that guard the execution
of large blocks of code can be inefficient, since many conditional moves may
need to be introduced.

To remedy the inefficiency of using conditional moves, some architectures
support full predication, whereby the execution of all instructions is controlled
by a predicate. When the predicate is false, the instruction becomes a no-op. Full
predication allows us to simply convert large blocks of code that are branch depen-
dent. For example, an if-then-else statement within a loop can be entirely converted
to predicated execution, so that the code in the then case executes only if the value
of the condition is true and the code in the else case executes only if the value of the
condition is false. Predication is particularly valuable with global code scheduling,
since it can eliminate nonloop branches, which significantly complicate instruction
scheduling.

Predicated instructions can also be used to speculatively move an instruction
that is time critical, but may cause an exception if moved before a guarding branch.
Although it is possible to do this with conditional move, it is more costly.
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Example Here is a code sequence for a two-issue superscalar that can issue a combination of
one memory reference and one ALU operation, or a branch by itself, every cycle:

First instruction slot Second instruction slot

LW R1,40
(R2)

ADD R3,R4,R5

ADD R6,R3,R7

BEQZ R10,L

LW R8,0
(R10)

LW R9,0(R8)

This sequence wastes a memory operation slot in the second cycle and will incur a
data dependence stall if the branch is not taken, since the second LW after the
branch depends on the prior load. Show how the code can be improved using a
predicated form of LW.

Answer Call the predicated version load word LWC and assume the load occurs unless the
third operand is 0. The LW immediately following the branch can be converted to
an LWC and moved up to the second issue slot:

First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5

LWC R8,0(R10),R10 ADD R6,R3,R7

BEQZ R10,L

LW R9,0(R8)

This improves the execution time by several cycles since it eliminates one instruc-
tion issue slot and reduces the pipeline stall for the last instruction in the sequence.
Of course, if the compiler mispredicted the branch, the predicated instruction will
have no effect and will not improve the running time. This is why the transforma-
tion is speculative.

If the sequence following the branch were short, the entire block of code might
be converted to predicated execution and the branch eliminated.

When we convert an entire code segment to predicated execution or specula-
tively move an instruction and make it predicted, we remove a control dependence.
Correct code generation and the conditional execution of predicated instructions
ensure that we maintain the data flow enforced by the branch. To ensure that
the exception behavior is also maintained, a predicated instruction must not gen-
erate an exception if the predicate is false. The property of not causing exceptions is
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quite critical, as the previous example shows: If register R10 contains zero, the
instruction LW R8,0(R10) executed unconditionally is likely to cause a protec-
tion exception, and this exception should not occur. Of course, if the condition is
satisfied (i.e., R10 is not zero), the LWmay still cause a legal and resumable excep-
tion (e.g., a page fault), and the hardware must take the exception when it knows
that the controlling condition is true.

The major complication in implementing predicated instructions is deciding
when to annul an instruction. Predicated instructions may either be annulled during
instruction issue or later in the pipeline before they commit any results or raise an
exception. Each choice has a disadvantage. If predicated instructions are annulled
early in the pipeline, the value of the controlling condition must be known early to
prevent a stall for a data hazard. Since data-dependent branch conditions, which
tend to be less predictable, are candidates for conversion to predicated execution,
this choice can lead to more pipeline stalls. Because of this potential for data hazard
stalls, no design with predicated execution (or conditional move) annuls instruc-
tions early. Instead, all existing processors annul instructions later in the pipeline,
which means that annulled instructions will consume functional unit resources and
potentially have a negative impact on performance. A variety of other pipeline
implementation techniques, such as forwarding, interact with predicated instruc-
tions, further complicating the implementation.

Predicated or conditional instructions are extremely useful for implementing
short alternative control flows, for eliminating some unpredictable branches,
and for reducing the overhead of global code scheduling. Nonetheless, the useful-
ness of conditional instructions is limited by several factors:

■ Predicated instructions that are annulled (i.e., whose conditions are false) still
take some processor resources. An annulled predicated instruction requires
fetch resources at a minimum, and in most processors functional unit execution
time. Therefore, moving an instruction across a branch and making it condi-
tional will slow the program down whenever the moved instruction would
not have been normally executed. Likewise, predicating a control-dependent
portion of code and eliminating a branch may slow down the processor if that
code would not have been executed. An important exception to these situations
occurs when the cycles used by the moved instruction when it is not performed
would have been idle anyway (as in the earlier superscalar example). Moving
an instruction across a branch or converting a code segment to predicated exe-
cution is essentially speculating on the outcome of the branch. Conditional
instructions make this easier but do not eliminate the execution time taken
by an incorrect guess. In simple cases, where we trade a conditional move
for a branch and a move, using conditional moves or predication is almost
always better. When longer code sequences are made conditional, the benefits
are more limited.

■ Predicated instructions are most useful when the predicate can be evaluated
early. If the condition evaluation and predicated instructions cannot be
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separated (because of data dependences in determining the condition), then a
conditional instruction may result in a stall for a data hazard. With branch pre-
diction and speculation, such stalls can be avoided, at least when the branches
are predicted accurately.

■ The use of conditional instructions can be limited when the control flow
involves more than a simple alternative sequence. For example, moving an
instruction across multiple branches requires making it conditional on both
branches, which requires two conditions to be specified or requires additional
instructions to compute the controlling predicate. If such capabilities are not
present, the overhead of if conversion will be larger, reducing its advantage.

■ Conditional instructions may have some speed penalty compared with uncon-
ditional instructions. This may show up as a higher cycle count for such
instructions or a slower clock rate overall. If conditional instructions are more
expensive, they will need to be used judiciously.

For these reasons, many architectures have included a few simple conditional
instructions (with conditional move being the most frequent), but only a few archi-
tectures include conditional versions for the majority of the instructions. The
MIPS, Alpha, PowerPC, SPARC, and Intel x86 (as defined in the Pentium proces-
sor) all support conditional move. The IA-64 architecture supports full predication
for all instructions, as we will see in Section H.6.

H.5 Hardware Support for Compiler Speculation

As we saw in Chapter 3, many programs have branches that can be accurately pre-
dicted at compile time either from the program structure or by using a profile. In
such cases, the compiler may want to speculate either to improve the scheduling or
to increase the issue rate. Predicated instructions provide one method to speculate,
but they are really more useful when control dependences can be completely elim-
inated by if conversion. In many cases, we would like to move speculated instruc-
tions not only before the branch but also before the condition evaluation, and
predication cannot achieve this.

To speculate ambitiously requires three capabilities:

1. The ability of the compiler to find instructions that, with the possible use of reg-
ister renaming, can be speculatively moved and not affect the program data flow

2. The ability to ignore exceptions in speculated instructions, until we know that
such exceptions should really occur

3. The ability to speculatively interchange loads and stores, or stores and stores,
which may have address conflicts

The first of these is a compiler capability, while the last two require hardware sup-
port, which we explore next.
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Hardware Support for Preserving Exception Behavior

To speculate ambitiously, we must be able to move any type of instruction and still
preserve its exception behavior. The key to being able to do this is to observe that
the results of a speculated sequence that is mispredicted will not be used in the final
computation, and such a speculated instruction should not cause an exception.

There are four methods that have been investigated for supporting more ambi-
tious speculation without introducing erroneous exception behavior:

1. The hardware and operating system cooperatively ignore exceptions for spec-
ulative instructions. As we will see later, this approach preserves exception
behavior for correct programs, but not for incorrect ones. This approach may
be viewed as unacceptable for some programs, but it has been used, under pro-
gram control, as a “fast mode” in several processors.

2. Speculative instructions that never raise exceptions are used, and checks are
introduced to determine when an exception should occur.

3. A set of status bits, called poison bits, are attached to the result registers written
by speculated instructions when the instructions cause exceptions. The poison
bits cause a fault when a normal instruction attempts to use the register.

4. A mechanism is provided to indicate that an instruction is speculative, and the
hardware buffers the instruction result until it is certain that the instruction is no
longer speculative.

To explain these schemes, we need to distinguish between exceptions that indi-
cate a program error and would normally cause termination, such as a memory pro-
tection violation, and those that are handled and normally resumed, such as a page
fault. Exceptions that can be resumed can be accepted and processed for specula-
tive instructions just as if they were normal instructions. If the speculative instruc-
tion should not have been executed, handling the unneeded exception may have
some negative performance effects, but it cannot cause incorrect execution. The
cost of these exceptions may be high, however, and some processors use hardware
support to avoid taking such exceptions, just as processors with hardware specu-
lation may take some exceptions in speculative mode, while avoiding others until
an instruction is known not to be speculative.

Exceptions that indicate a program error should not occur in correct programs,
and the result of a program that gets such an exception is not well defined, except
perhaps when the program is running in a debuggingmode. If such exceptions arise
in speculated instructions, we cannot take the exception until we know that the
instruction is no longer speculative.

In the simplest method for preserving exceptions, the hardware and the oper-
ating system simply handle all resumable exceptions when the exception occurs
and simply return an undefined value for any exception that would cause termina-
tion. If the instruction generating the terminating exception was not speculative,
then the program is in error. Note that instead of terminating the program, the
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program is allowed to continue, although it will almost certainly generate incorrect
results. If the instruction generating the terminating exception is speculative, then
the program may be correct and the speculative result will simply be unused; thus,
returning an undefined value for the instruction cannot be harmful. This scheme
can never cause a correct program to fail, no matter how much speculation is done.
An incorrect program, which formerly might have received a terminating excep-
tion, will get an incorrect result. This is acceptable for some programs, assuming
the compiler can also generate a normal version of the program, which does not
speculate and can receive a terminating exception.

Example Consider that the following code fragment from an if-then-else statement of
the form

if (A==0) A = B; else A = A+4;

where A is at 0(R3) and B is at 0(R2):

LD R1,0(R3) ;load A
BNEZ R1,L1 ;test A
LD R1,0(R2) ;then clause
J L2 ;skip else

L1: DADDI R1,R1,#4 ;else clause
L2: SD R1,0(R3) ;store A

Assume that the then clause is almost always executed. Compile the code using
compiler-based speculation. Assume R14 is unused and available.

Answer Here is the new code:

LD R1,0(R3) ;load A
LD R14,0(R2) ;speculative load B
BEQZ R1,L3 ;other branch of the if
DADDI R14,R1,#4 ;the else clause

L3: SD R14,0(R3) ;nonspeculative store

The then clause is completely speculated. We introduce a temporary register to
avoid destroying R1 when B is loaded; if the load is speculative, R14 will be use-
less. After the entire code segment is executed, A will be in R14. The else clause
could have also been compiled speculatively with a conditional move, but if the
branch is highly predictable and low cost, this might slow the code down, since
two extra instructions would always be executed as opposed to one branch.

In such a scheme, it is not necessary to know that an instruction is speculative.
Indeed, it is helpful only when a program is in error and receives a terminating
exception on a normal instruction; in such cases, if the instruction were not marked
as speculative, the program could be terminated.
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In this method for handling speculation, as in the next one, renaming will often
be needed to prevent speculative instructions from destroying live values. Renam-
ing is usually restricted to register values. Because of this restriction, the targets of
stores cannot be destroyed and stores cannot be speculative. The small number of
registers and the cost of spilling will act as one constraint on the amount of spec-
ulation. Of course, the major constraint remains the cost of executing speculative
instructions when the compiler’s branch prediction is incorrect.

A second approach to preserving exception behavior when speculating intro-
duces speculative versions of instructions that do not generate terminating excep-
tions and instructions to check for such exceptions. This combination preserves the
exception behavior exactly.

Example Show how the previous example can be coded using a speculative load (sLD) and a
speculation check instruction (SPECCK) to completely preserve exception behav-
ior. Assume R14 is unused and available.

Answer Here is the code that achieves this:

LD R1,0(R3) ;load A
sLD R14,0(R2) ;speculative, no termination
BNEZ R1,L1 ;test A
SPECCK 0(R2) ;perform speculation check
J L2 ;skip else

L1: DADDI R14,R1,#4 ;else clause
L2: SD R14,0(R3) ;store A

Notice that the speculation check requires that we maintain a basic block for the
then case. If we had speculated only a portion of the then case, then a basic block
representing the then case would exist in any event. More importantly, notice that
checking for a possible exception requires extra code.

A third approach for preserving exception behavior tracks exceptions as they
occur but postpones any terminating exception until a value is actually used, pre-
serving the occurrence of the exception, although not in a completely precise fash-
ion. The scheme is simple: A poison bit is added to every register, and another bit is
added to every instruction to indicate whether the instruction is speculative. The
poison bit of the destination register is set whenever a speculative instruction
results in a terminating exception; all other exceptions are handled immediately.
If a speculative instruction uses a register with a poison bit turned on, the destina-
tion register of the instruction simply has its poison bit turned on. If a normal
instruction attempts to use a register source with its poison bit turned on, the
instruction causes a fault. In this way, any program that would have generated
an exception still generates one, albeit at the first instance where a result is used
by an instruction that is not speculative. Since poison bits exist only on register
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values and not memory values, stores are never speculative and thus trap if either
operand is “poison.”

Example Consider the code fragment from page H-29 and show how it would be compiled
with speculative instructions and poison bits. Show where an exception for the
speculative memory reference would be recognized. Assume R14 is unused and
available.

Answer Here is the code (an s preceding the opcode indicates a speculative instruction):

LD R1,0(R3) ;load A
sLD R14,0(R2) ;speculative load B
BEQZ R1,L3 ;
DADDI R14,R1,#4 ;

L3: SD R14,0(R3) ;exception for speculative LW

If the speculative sLD generates a terminating exception, the poison bit of R14will
be turned on. When the nonspeculative SW instruction occurs, it will raise an
exception if the poison bit for R14 is on.

One complication that must be overcome is how the OS saves the user registers
on a context switch if the poison bit is set. A special instruction is needed to save
and reset the state of the poison bits to avoid this problem.

The fourth and final approach listed earlier relies on a hardware mechanism
that operates like a reorder buffer. In such an approach, instructions are marked
by the compiler as speculative and include an indicator of how many branches
the instruction was speculatively moved across and what branch action (taken/
not taken) the compiler assumed. This last piece of information basically tells
the hardware the location of the code block where the speculated instruction orig-
inally was. In practice, most of the benefit of speculation is gained by allowing
movement across a single branch; thus, only 1 bit saying whether the speculated
instruction came from the taken or not taken path is required. Alternatively, the
original location of the speculative instruction is marked by a sentinel, which tells
the hardware that the earlier speculative instruction is no longer speculative and
values may be committed.

All instructions are placed in a reorder buffer when issued and are forced to
commit in order, as in a hardware speculation approach. (Notice, though, that
no actual speculative branch prediction or dynamic scheduling occurs.) The reor-
der buffer tracks when instructions are ready to commit and delays the “write-
back” portion of any speculative instruction. Speculative instructions are not
allowed to commit until the branches that have been speculatively moved over
are also ready to commit, or, alternatively, until the corresponding sentinel is
reached. At that point, we know whether the speculated instruction should have
been executed or not. If it should have been executed and it generated a terminating
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exception, then we know that the program should be terminated. If the instruction
should not have been executed, then the exception can be ignored. Notice that the
compiler, rather than the hardware, has the job of register renaming to ensure cor-
rect usage of the speculated result, as well as correct program execution.

Hardware Support for Memory Reference Speculation

Moving loads across stores is usually done when the compiler is certain the
addresses do not conflict. As we saw with the examples in Section 3.2, such trans-
formations are critical to reducing the critical path length of a code segment. To
allow the compiler to undertake such code motion when it cannot be absolutely
certain that such a movement is correct, a special instruction to check for address
conflicts can be included in the architecture. The special instruction is left at the
original location of the load instruction (and acts like a guardian), and the load
is moved up across one or more stores.

When a speculated load is executed, the hardware saves the address of the
accessed memory location. If a subsequent store changes the location before the
check instruction, then the speculation has failed. If the location has not been
touched, then the speculation is successful. Speculation failure can be handled
in two ways. If only the load instruction was speculated, then it suffices to redo
the load at the point of the check instruction (which could supply the target register
in addition to the memory address). If additional instructions that depended on the
load were also speculated, then a fix-up sequence that reexecutes all the speculated
instructions starting with the load is needed. In this case, the check instruction
specifies the address where the fix-up code is located.

In this section, we have seen a variety of hardware assist mechanisms. Such
mechanisms are key to achieving good support with the compiler-intensive
approaches of Chapter 3 and this appendix. In addition, several of them can be eas-
ily integrated in the hardware-intensive approaches of Chapter 3 and provide addi-
tional benefits.

H.6 The Intel IA-64 Architecture and Itanium Processor

This section is an overview of the Intel IA-64 architecture, the most advanced
VLIW-style processor, and its implementation in the Itanium processor.

The Intel IA-64 Instruction Set Architecture

The IA-64 is a RISC-style, register-register instruction set, but with many novel
features designed to support compiler-based exploitation of ILP. Our focus here
is on the unique aspects of the IA-64 ISA. Most of these aspects have been dis-
cussed already in this appendix, including predication, compiler-based parallelism
detection, and support for memory reference speculation.
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When they announced the IA-64 architecture, HP and Intel introduced the term
EPIC (Explicitly Parallel Instruction Computer) to distinguish this new architec-
tural approach from the earlier VLIW architectures and from other RISC architec-
tures. Although VLIW and EPIC architectures share many features, the EPIC
approach includes several concepts that extend the earlier VLIW approach. These
extensions fall into two main areas:

1. EPIC has greater flexibility in indicating parallelism among instructions and in
instruction formats. Rather than relying on a fixed instruction format where all
operations in the instruction must be capable of being executed in parallel and
where the format is completely rigid, EPIC uses explicit indicators of possible
instruction dependence as well as a variety of instruction formats. This EPIC
approach can express parallelism more flexibly than the more rigid VLIW
method and can reduce the increases in code size caused by the typically inflex-
ible VLIW instruction format.

2. EPIC has more extensive support for software speculation than the earlier
VLIW schemes that had only minimal support.

In addition, the IA-64 architecture includes a variety of features to improve perfor-
mance, such as register windows and a rotating floating-point register (FPR) stack.

The IA-64 Register Model

The components of the IA-64 register state are

■ 128 64-bit general-purpose registers, which as we will see shortly are actually
65 bits wide

■ 128 82-bit floating-point registers, which provide two extra exponent bits over
the standard 80-bit IEEE format

■ 64 1-bit predicate registers

■ 8 64-bit branch registers, which are used for indirect branches

■ A variety of registers used for system control, memory mapping, performance
counters, and communication with the OS

The integer registers are configured to help accelerate procedure calls using a
register stack mechanism similar to that developed in the Berkeley RISC-I proces-
sor and used in the SPARC architecture. Registers 0 to 31 are always accessible
and are addressed as 0 to 31. Registers 32 to 128 are used as a register stack,
and each procedure is allocated a set of registers (from 0 to 96) for its use. The new
register stack frame is created for a called procedure by renaming the registers in
hardware; a special register called the current frame pointer (CFM) points to the set
of registers to be used by a given procedure. The frame consists of two parts:
the local area and the output area. The local area is used for local storage, while
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the output area is used to pass values to any called procedure. The alloc instruc-
tion specifies the size of these areas. Only the integer registers have register stack
support.

On a procedure call, the CFM pointer is updated so that R32 of the called pro-
cedure points to the first register of the output area of the called procedure. This
update enables the parameters of the caller to be passed into the addressable reg-
isters of the callee. The callee executes an alloc instruction to allocate both the
number of required local registers, which include the output registers of the caller,
and the number of output registers needed for parameter passing to a called pro-
cedure. Special load and store instructions are available for saving and restoring the
register stack, and special hardware (called the register stack engine) handles over-
flow of the register stack.

In addition to the integer registers, there are three other sets of registers: the
floating-point registers, the predicate registers, and the branch registers. The
floating-point registers are used for floating-point data, and the branch registers
are used to hold branch destination addresses for indirect branches. The predication
registers hold predicates, which control the execution of predicated instructions;
we describe the predication mechanism later in this section.

Both the integer and floating-point registers support register rotation for reg-
isters 32 to 128. Register rotation is designed to ease the task of allocating registers
in software-pipelined loops, a problem that we discussed in Section H.3. In addi-
tion, when combined with the use of predication, it is possible to avoid the need for
unrolling and for separate prologue and epilogue code for a software-pipelined
loop. This capability reduces the code expansion incurred to use software pipelin-
ing and makes the technique usable for loops with smaller numbers of iterations,
where the overheads would traditionally negate many of the advantages.

Instruction Format and Support for Explicit Parallelism

The IA-64 architecture is designed to achieve the major benefits of a VLIW
approach—implicit parallelism among operations in an instruction and fixed for-
matting of the operation fields—while maintaining greater flexibility than a VLIW
normally allows. This combination is achieved by relying on the compiler to detect
ILP and schedule instructions into parallel instruction slots, but adding flexibility
in the formatting of instructions and allowing the compiler to indicate when an
instruction cannot be executed in parallel with its successors.

The IA-64 architecture uses two different concepts to achieve the benefits of
implicit parallelism and ease of instruction decode. Implicit parallelism is achieved
by placing instructions into instruction groups, while the fixed formatting of mul-
tiple instructions is achieved through the introduction of a concept called a bundle,
which contains three instructions. Let’s start by defining an instruction group.

An instruction group is a sequence of consecutive instructions with no register
data dependences among them (there are a few minor exceptions). All the instruc-
tions in a group could be executed in parallel, if sufficient hardware resources
existed and if any dependences through memory were preserved. An instruction
group can be arbitrarily long, but the compiler must explicitly indicate the
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boundary between one instruction group and another. This boundary is indicated
by placing a stop between two instructions that belong to different groups. To
understand how stops are indicated, we must first explain how instructions are
placed into bundles.

IA-64 instructions are encoded in bundles, which are 128 bits wide. Each bun-
dle consists of a 5-bit template field and three instructions, each 41 bits in length.
(Actually, the 41-bit quantities are not truly instructions, since they can only be
interpreted in conjunction with the template field. The name syllable is sometimes
used for these operations. For simplicity, we will continue to use the term “instruc-
tion.”) To simplify the decoding and instruction issue process, the template field of
a bundle specifies what types of execution units each instruction in the bundle
requires. Figure H.6 shows the five different execution unit types and describes
what instruction classes they may hold, together with some examples.

The 5-bit template field within each bundle describes both the presence of any
stops associated with the bundle and the execution unit type required by each
instruction within the bundle. Figure H.7 shows the possible formats that the tem-
plate field encodes and the position of any stops it specifies. The bundle formats
can specify only a subset of all possible combinations of instruction types and
stops. To see how the bundle works, let’s consider an example.

Example Unroll the array increment example, x[i] = x[i] + s, seven times and place the
instructions into bundles, first ignoring pipeline latencies (to minimize the number
of bundles) and then scheduling the code to minimize stalls. In scheduling the code
assume one bundle executes per clock and that any stalls cause the entire bundle to

Execution
unit slot

Instruction
type

Instruction
description Example instructions

I-unit A Integer ALU Add, subtract, and, or, compare

I Non-ALU integer Integer and multimedia shifts,
bit tests, moves

M-unit A Integer ALU Add, subtract, and, or, compare

M Memory access Loads and stores for integer/FP
registers

F-unit F Floating point Floating-point instructions

B-unit B Branches Conditional branches, calls, loop
branches

L + X L + X Extended Extended immediates, stops and
no-ops

Figure H.6 The five execution unit slots in the IA-64 architecture and what instruc-
tions types they may hold are shown. A-type instructions, which correspond to integer
ALU instructions, may be placed in either an I-unit or M-unit slot. L + X slots are special,
as they occupy two instruction slots; L + X instructions are used to encode 64-bit imme-
diates and a few special instructions. L + X instructions are executed either by the I-unit
or the B-unit.
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be stalled. Use the pipeline latencies from Figure 3.2. Use MIPS instruction mne-
monics for simplicity.

Answer The two different versions are shown in Figure H.8. Although the latencies are dif-
ferent from those in Itanium, the most common bundle, MMF, must be issued by
itself in Itanium, just as our example assumes.

Figure H.7 The 24 possible template values (8 possible values are reserved) and the
instruction slots and stops for each format. Stops are indicated by heavy lines andmay
appear within and/or at the end of the bundle. For example, template 9 specifies that the
instruction slots areM, M, and I (in that order) and that the only stop is between this bun-
dle and the next. Template 11 has the same type of instruction slots but also includes a
stop after the first slot. The L + X format is used when slot 1 is L and slot 2 is X.
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Figure H.8 The IA-64 instructions, including bundle bits and stops, for the unrolled version of x[i]5 x[i] + s, when
unrolled seven times and scheduled (a) to minimize the number of instruction bundles and (b) to minimize the
number of cycles (assuming that a hazard stalls an entire bundle). Blank entries indicate unused slots, which are
encoded as no-ops. The absence of stops indicates that some bundles could be executed in parallel. Minimizing the
number of bundles yields 9 bundles versus the 11 needed to minimize the number of cycles. The scheduled version
executes in just over half the number of cycles. Version (a) fills 85% of the instruction slots, while (b) fills 70%. The
number of empty slots in the scheduled code and the use of bundles may lead to code sizes that aremuch larger than
other RISC architectures. Note that the branch in the last bundle in both sequences depends on the DADD in the same
bundle. In the IA-64 instruction set, this sequence would be coded as a setting of a predication register and a branch
that would be predicated on that register. Normally, such dependent operations could not occur in the same bundle,
but this case is one of the exceptions mentioned earlier.
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Instruction Set Basics

Before turning to the special support for speculation, we briefly discuss the major
instruction encodings and survey the instructions in each of the five primary
instruction classes (A, I, M, F, and B). Each IA-64 instruction is 41 bits in length.
The high-order 4 bits, together with the bundle bits that specify the execution unit
slot, are used as the major opcode. (That is, the 4-bit opcode field is reused across
the execution field slots, and it is appropriate to think of the opcode as being 4 bits
plus theM, F, I, B, L + X designation.) The low-order 6 bits of every instruction are
used for specifying the predicate register that guards the instruction (see the next
subsection).

Figure H.9 summarizes most of the major instruction formats, other than the
multimedia instructions, and gives examples of the instructions encoded for each
format.

Predication and Speculation Support

The IA-64 architecture provides comprehensive support for predication: Nearly
every instruction in the IA-64 architecture can be predicated. An instruction is
predicated by specifying a predicate register, whose identity is placed in the lower
6 bits of each instruction field. Because nearly all instructions can be predicated,
both if conversion and code motion have lower overhead than they would with
only limited support for conditional instructions. One consequence of full predi-
cation is that a conditional branch is simply a branch with a guarding predicate!

Predicate registers are set using compare or test instructions. A compare
instruction specifies one of ten different comparison tests and two predicate reg-
isters as destinations. The two predicate registers are written either with the result
of the comparison (0 or 1) and the complement, or with some logical function that
combines the two tests (such as and) and the complement. This capability allows
multiple comparisons to be done in one instruction.

Speculation support in the IA-64 architecture consists of separate support for
control speculation, which deals with deferring exception for speculated instruc-
tions, and memory reference speculation, which supports speculation of load
instructions.

Deferred exception handling for speculative instructions is supported by pro-
viding the equivalent of poison bits. For the general-purpose registers (GPRs),
these bits are called NaTs (Not a Thing), and this extra bit makes the GPRs effec-
tively 65 bits wide. For the FP registers this capability is obtained using a special
value, NaTVal (Not a Thing Value); this value is encoded using a significand of
0 and an exponent outside of the IEEE range. Only speculative load instructions
generate such values, but all instructions that do not affect memory will cause a
NaT or NaTVal to be propagated to the result register. (There are both speculative
and non-speculative loads; the latter can only raise immediate exceptions and can-
not defer them.) Floating-point exceptions are not handled through this mechanism
but instead use floating-point status registers to record exceptions.
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Instruction
type

Number
of formats Representative instructions

Extra
opcode
bits

GPRs/
FPRs

Immediate
bits Other/comment

A 8 Add, subtract, and, or 9 3 0

Shift left and add 7 3 0 2-bit shift count

ALU immediates 9 2 8

Add immediate 3 2 14

Add immediate 0 2 22

Compare 4 2 0 2 predicate
register
destinations

Compare immediate 3 1 8 2 predicate
register
destinations

I 29 Shift R/L variable 9 3 0 Many multimedia
instructions use
this format.

Test bit 6 3 6-bit field
specifier

2 predicate
register
destinations

Move to BR 6 1 9-bit branch
predict

Branch register
specifier

M 46 Integer/FP load and store, line
prefetch

10 2 0 Speculative/
nonspeculative

Integer/FP load and store, and
line prefetch and post-
increment by immediate

9 2 8 Speculative/
nonspeculative

Integer/FP load prefetch and
register postincrement

10 3 Speculative/
nonspeculative

Integer/FP speculation check 3 1 21 in two
fields

B 9 PC-relative branch, counted
branch

7 0 21

PC-relative call 4 0 21 1 branch register

F 15 FP arithmetic 2 4

FP compare 2 2 2 6-bit predicate
regs

L + X 4 Move immediate long 2 1 64

Figure H.9 A summary of some of the instruction formats of the IA-64 ISA. Themajor opcode bits and the guarding
predication register specifier add 10 bits to every instruction. The number of formats indicated for each instruction
class in the second column (a total of 111) is a strict interpretation: A different use of a field, even of the same size, is
considered a different format. The number of formats that actually have different field sizes is one-third to one-half as
large. Some instructions have unused bits that are reserved; we have not included those in this table. Immediate bits
include the sign bit. The branch instructions include prediction bits, which are used when the predictor does not have
a valid prediction. Only one of the many formats for the multimedia instructions is shown in this table.
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A deferred exception can be resolved in two different ways. First, if a non-
speculative instruction, such as a store, receives a NaT or NaTVal as a source
operand, it generates an immediate and unrecoverable exception. Alternatively,
a chk.s instruction can be used to detect the presence of NaT or NaTVal and
branch to a routine designed by the compiler to recover from the speculative
operation. Such a recovery approach makes more sense for memory reference
speculation.

The inability to store the contents of instructions with a NaT or NaTVal set
would make it impossible for the OS to save the state of the processor. Thus,
IA-64 includes special instructions to save and restore registers that do not
cause an exception for a NaT or NaTVal and also save and restore the
NaT bits.

Memory reference support in the IA-64 uses a concept called advanced loads.
An advanced load is a load that has been speculatively moved above store instruc-
tions on which it is potentially dependent. To speculatively perform a load, the ld.
a (for advanced load) instruction is used. Executing this instruction creates an entry
in a special table, called the ALAT. The ALAT stores both the register destination
of the load and the address of the accessed memory location. When a store is exe-
cuted, an associative lookup against the active ALAT entries is performed. If there
is an ALAT entry with the same memory address as the store, the ALAT entry is
marked as invalid.

Before any nonspeculative instruction (i.e., a store) uses the value generated by
an advanced load or a value derived from the result of an advanced load, an explicit
check is required. The check specifies the destination register of the advanced load.
If the ALAT for that register is still valid, the speculation was legal and the only
effect of the check is to clear the ALAT entry. If the check fails, the action taken
depends on which of two different types of checks was employed. The first type of
check is an instruction ld.c, which simply causes the data to be reloaded from
memory at that point. An ld.c instruction is used when only the load is advanced.
The alternative form of a check, chk.a, specifies the address of a fix-up routine
that is used to reexecute the load and any other speculated code that depended on
the value of the load.

The Itanium 2 Processor

The Itanium 2 processor is the second implementation of the IA-64 architecture.
The first version, Itanium 1, became available in 2001 with an 800 MHz clock.
The Itanium 2, first delivered in 2003, had a maximum clock rate in 2005 of
1.6 GHz. The two processors are very similar, with some differences in the pipeline
structure and greater differences in the memory hierarchies. The Itanium 2 is about
four times faster than the Itanium 1. This performance improvement comes from a
doubling of the clock rate, a more aggressive memory hierarchy, additional func-
tional units that improve instruction throughput, more complete bypassing, a
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shorter pipeline that reduces some stalls, and a more mature compiler system. Dur-
ing roughly the same period that elapsed from the Itanium 1 to Itanium 2, the Pen-
tium processors improved by slightly more than a factor of three. The greater
improvement for the Itanium is reasonable given the novelty of the architecture
and software system versus the more established IA-32 implementations.

The Itanium 2 can fetch and issue two bundles, or up to six instructions, per
clock. The Itanium 2 uses a three-level memory hierarchy all on-chip. The first
level uses split instruction and data caches, each 16 KB; floating-point data are
not placed in the first-level cache. The second and third levels are unified caches
of 256 KB and of 3 MB to 9 MB, respectively.

Functional Units and Instruction Issue

There are 11 functional units in the Itanium 2 processor: two I-units, four M-units
(two for loads and two for stores), three B-units, and two F-units. All the functional
units are pipelined. Figure H.10 gives the pipeline latencies for some typical
instructions. In addition, when a result is bypassed from one unit to another, there
is usually at least one additional cycle of delay.

Itanium 2 can issue up to six instructions per clock from two bundles. In the
worst case, if a bundle is split when it is issued, the hardware could see as few as
four instructions: one from the first bundle to be executed and three from the sec-
ond bundle. Instructions are allocated to functional units based on the bundle bits,
ignoring the presence of no-ops or predicated instructions with untrue predicates.
In addition, when issue to a functional unit is blocked because the next instruction
to be issued needs an already committed unit, the resulting bundle is split. A split
bundle still occupies one of the two bundle slots, even if it has only one instruction
remaining.

Instruction Latency

Integer load 1

Floating-point load 5–9

Correctly predicted taken branch 0–3

Mispredicted branch 6

Integer ALU operations 0

FP arithmetic 4

Figure H.10 The latency of some typical instructions on Itanium 2. The latency is
defined as the smallest number of intervening instructions between two dependent
instructions. Integer load latency assumes a hit in the first-level cache. FP loads always
bypass the primary cache, so the latency is equal to the access time of the second-level
cache. There are some minor restrictions for some of the functional units, but these pri-
marily involve the execution of infrequent instructions.
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The Itanium 2 processor uses an eight-stage pipeline divided into four major
parts:

■ Front-end (stages IPG and Rotate)—Prefetches up to 32 bytes per clock (two
bundles) into a prefetch buffer, which can hold up to eight bundles (24 instruc-
tions). Branch prediction is done using a multilevel adaptive predictor like
those described in Chapter 3.

■ Instruction delivery (stages EXP and REN)—Distributes up to six instructions
to the 11 functional units. Implements register renaming for both rotation and
register stacking.

■ Operand delivery (REG)—Accesses the register file, performs register bypass-
ing, accesses and updates a register scoreboard, and checks predicate depen-
dences. The scoreboard is used to detect when individual instructions can
proceed, so that a stall of one instruction (for example, due to an unpredictable
event like a cache miss) in a bundle need not cause the entire bundle to stall. (As
we saw in Figure H.8, stalling the entire bundle leads to poor performance
unless the instructions are carefully scheduled.)

■ Execution (EXE, DET, and WRB)—Executes instructions through ALUs and
load-store units, detects exceptions and posts NaTs, retires instructions, and
performs write-back.

Both the Itanium 1 and the Itanium 2 have many of the features more com-
monly associated with the dynamically scheduled pipelines described in
Chapter 3: dynamic branch prediction, register renaming, scoreboarding, a pipeline
with a number of stages before execution (to handle instruction alignment, renam-
ing, etc.), and several stages following execution to handle exception detection.
Although these mechanisms are generally simpler than those in an advanced
dynamically scheduled superscalar, the overall effect is that the Itanium proces-
sors, which rely much more on compiler technology, seem to be as complex as
the dynamically scheduled processors we saw in Chapter 3!

One might ask why such features are included in a processor that relies primar-
ily on compile time techniques for finding and exploiting parallelism. There are
two main motivations. First, dynamic techniques are sometimes significantly bet-
ter, and omitting them would hurt performance significantly. The inclusion of
dynamic branch prediction is such a case.

Second, caches are absolutely necessary to achieve high performance, and with
caches come cache misses, which are both unpredictable and which in current pro-
cessors take a relatively long time. In the early VLIW processors, the entire pro-
cessor would freeze when a cache miss occurred, retaining the lockstep parallelism
initially specified by the compiler. Such an approach is totally unrealistic in a mod-
ern processor where cache misses can cost tens to hundreds of cycles. Allowing
some instructions to continue while others are stalled, however, requires the intro-
duction of some form of dynamic scheduling, in this case scoreboarding. In addi-
tion, if a stall is likely to be long, then antidependences are likely to prevent much
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progress while waiting for the cache miss; hence, the Itanium implementations also
introduce register renaming.

Itanium 2 Performance

Figure H.11 shows the performance of a 1.5 GHz Itanium 2 versus a Pentium 4, an
AMD Athlon processor, and an IBM Power5 for five SPECint and five SPECfp
benchmarks. Overall, the Itanium 2 is slightly slower than the Power5 for the full
set of SPEC floating-point benchmarks and about 35% faster than the AMDAthlon
or Pentium 4. On SPECint, the Itanium 2 is 15% faster than the Power5, while both
the AMD Athlon and Pentium 4 are about 15% faster than the Itanium 2. The Ita-
nium 2 and Power5 are much higher power and have larger die sizes. In fact, the
Power5 contains two processors, only one of which is active during normal SPEC
benchmarks, and still it has less than half the transistor count of the Itanium. If we
were to reduce the die size, transistor count, and power of the Power5 by eliminat-
ing one of the processors, the Itanium would be by far the largest and highest-
power processor.

H.7 Concluding Remarks

When the design of the IA-64 architecture began, it was a joint effort of Hewlett-
Packard and Intel and many of the designers had benefited from experience with
early VLIW processors as well of years of research building on the early concepts.
The clear goal for the IA-64 architecture was to achieve levels of ILP as good or
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Figure H.11 The performance of four multiple-issue processors for five SPECfp and SPECint benchmarks. The
clock rates of the four processors are Itanium 2 at 1.5 GHz, Pentium 4 Extreme Edition at 3.8 GHz, AMD Athlon 64
at 2.8 GHz, and the IBM Power5 at 1.9 GHz.
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better than what had been achieved with hardware-based approaches, while also
allowing a much simpler hardware implementation. With a simpler hardware
implementation, designers hoped that much higher clock rates could be achieved.
Indeed, when the IA-64 architecture and the first Itanium were announced, they
were announced as the successor to the RISC approaches with clearly superior
advantages.

Unfortunately, the practical reality has been quite different. The IA-64 and Ita-
nium implementations appear to be at least as complicated as the dynamically
based speculative processors, and neither approach has a significant and consistent
performance advantage. The fact that the Itanium designs have also not been more
power efficient has led to a situation where the Itanium design has been adopted by
only a small number of customers primarily interested in FP performance.

Intel had planned for IA-64 to be its new 64-bit architecture as well. But the
combination of its mediocre integer performance (especially in Itanium 1) and
large die size, together with AMD’s introduction of a 64-bit version of the IA-
32 architecture, forced Intel to extend the address space of IA-32. The availability
of a larger address space IA-32 processor with strong integer performance has fur-
ther reduced the interest in IA-64 and Itanium. Most recently, Intel has introduced
the name IPF to replace IA-64, since the former name made less sense once the
older x86 architecture was extended to 64 bits.
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I
Large-Scale Multiprocessors
and Scientific Applications

Hennessy and Patterson should move MPPs to Chapter 11.

Jim Gray, Microsoft Research
when asked about the coverage of massively parallel processors

(MPPs) for the third edition in 2000

Unfortunately for companies in the MPP business, the third edition
had only ten chapters and the MPP business did not grow as
anticipated when the first and second edition were written.



I.1 Introduction

The primary application of large-scale multiprocessors is for true parallel program-
ming, as opposed to multiprogramming or transaction-oriented computing where
independent tasks are executed in parallel without much interaction. In true parallel
computing, a set of tasks execute in a collaborative fashion on one application.
The primary target of parallel computing is scientific and technical applications.
In contrast, for loosely coupled commercial applications, such as Web servers
and most transaction-processing applications, there is little communication among
tasks. For such applications, loosely coupled clusters are generally adequate and
most cost-effective, since intertask communication is rare.

Because true parallel computing involves cooperating tasks, the nature of com-
munication between those tasks and how such communication is supported in the
hardware is of vital importance in determining the performance of the application.
The next section of this appendix examines such issues and the characteristics of
different communication models.

In comparison to sequential programs, whose performance is largely dictated
by the cache behavior and issues related to instruction-level parallelism, parallel
programs have several additional characteristics that are important to performance,
including the amount of parallelism, the size of parallel tasks, the frequency and
nature of intertask communication, and the frequency and nature of synchroniza-
tion. These aspects are affected both by the underlying nature of the application as
well as by the programming style. Section I.3 reviews the important characteristics
of several scientific applications to give a flavor of these issues.

As we saw in Chapter 5, synchronization can be quite important in achieving
good performance. The larger number of parallel tasks that may need to synchro-
nize makes contention involving synchronization a much more serious problem
in large-scale multiprocessors. Section I.4 examines methods of scaling up the
synchronization mechanisms of Chapter 5.

Section I.5 explores the detailed performance of shared-memory parallel appli-
cations executing on a moderate-scale shared-memory multiprocessor. As we will
see, the behavior and performance characteristics are quite a bit more complicated
than those in small-scale shared-memory multiprocessors. Section I.6 discusses
the general issue of how to examine parallel performance for different sized
multiprocessors. Section I.7 explores the implementation challenges of distributed
shared-memory cache coherence, the key architectural approach used in moderate-
scale multiprocessors. Sections I.7 and I.8 rely on a basic understanding of inter-
connection networks, and the reader should at least quickly review Appendix F
before reading these sections.

Section I.8 explores the design of one of the newest and most exciting large-
scale multiprocessors in recent times, Blue Gene. Blue Gene is a cluster-based mul-
tiprocessor, but it uses a custom, highly dense node designed specifically for this
function, as opposed to the nodes of most earlier cluster multiprocessors that used a
node architecture similar to those in a desktop or smaller-scale multiprocessor
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node. By using a custom node design, Blue Gene achieves a significant reduction
in the cost, physical size, and power consumption of a node. Blue Gene/L, a 64 K-
node version, was the world’s fastest computer in 2006, as measured by the linear
algebra benchmark, Linpack.

I.2 Interprocessor Communication: The Critical
Performance Issue

In multiprocessors with larger processor counts, interprocessor communication
becomes more expensive, since the distance between processors increases.
Furthermore, in truly parallel applications where the threads of the application
must communicate, there is usually more communication than in a loosely coupled
set of distinct processes or independent transactions, which characterize many
commercial server applications. These factors combine to make efficient interpro-
cessor communication one of the most important determinants of parallel perfor-
mance, especially for the scientific market.

Unfortunately, characterizing the communication needs of an application and
the capabilities of an architecture is complex. This section examines the key hard-
ware characteristics that determine communication performance, while the next
section looks at application behavior and communication needs.

Three performance metrics are critical in any hardware communication
mechanism:

1. Communication bandwidth—Ideally, the communication bandwidth is limited
by processor, memory, and interconnection bandwidths, rather than by some
aspect of the communication mechanism. The interconnection network deter-
mines the maximum communication capacity of the system. The bandwidth
in or out of a single node, which is often as important as total system bandwidth,
is affected both by the architecture within the node and by the communication
mechanism. How does the communication mechanism affect the communica-
tion bandwidth of a node? When communication occurs, resources within the
nodes involved in the communication are tied up or occupied, preventing other
outgoing or incoming communication. When this occupancy is incurred for
each word of a message, it sets an absolute limit on the communication band-
width. This limit is often lower than what the network or memory system can
provide. Occupancy may also have a component that is incurred for each com-
munication event, such as an incoming or outgoing request. In the latter case,
the occupancy limits the communication rate, and the impact of the occupancy
on overall communication bandwidth depends on the size of the messages.

2. Communication latency—Ideally, the latency is as low as possible. As
Appendix F explains:

Communication latency ¼ Sender overhead + Time of flight
+ Transmission time +Receiver overhead
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assuming no contention. Time of flight is fixed and transmission time is deter-
mined by the interconnection network. The software and hardware overheads in
sending and receiving messages are largely determined by the communication
mechanism and its implementation. Why is latency crucial? Latency affects
both performance and how easy it is to program a multiprocessor. Unless
latency is hidden, it directly affects performance either by tying up processor
resources or by causing the processor to wait.

Overhead and occupancy are closely related, since many forms of overhead also
tie up some part of the node, incurring an occupancy cost, which in turn limits
bandwidth. Key features of a communication mechanism may directly affect
overhead and occupancy. For example, how is the destination address for a
remote communication named, and how is protection implemented? When
naming and protection mechanisms are provided by the processor, as in a shared
address space, the additional overhead is small. Alternatively, if these mecha-
nisms must be provided by the operating system for each communication, this
increases the overhead and occupancy costs of communication, which in turn
reduce bandwidth and increase latency.

3. Communication latency hiding—How well can the communication mechanism
hide latency by overlapping communication with computation or with other
communication? Although measuring this is not as simple as measuring the first
two metrics, it is an important characteristic that can be quantified by measuring
the running time on multiprocessors with the same communication latency but
different support for latency hiding. Although hiding latency is certainly a good
idea, it poses an additional burden on the software system and ultimately on the
programmer. Furthermore, the amount of latency that can be hidden is applica-
tion dependent. Thus, it is usually best to reduce latency wherever possible.

Each of these performance measures is affected by the characteristics of the
communications needed in the application, as we will see in the next section.
The size of the data items being communicated is the most obvious characteristic,
since it affects both latency and bandwidth directly, as well as affecting the efficacy
of different latency-hiding approaches. Similarly, the regularity in the communi-
cation patterns affects the cost of naming and protection, and hence the commu-
nication overhead. In general, mechanisms that perform well with smaller as
well as larger data communication requests, and irregular as well as regular com-
munication patterns, are more flexible and efficient for a wider class of applica-
tions. Of course, in considering any communication mechanism, designers must
consider cost as well as performance.

Advantages of Different Communication Mechanisms

The two primary means of communicating data in a large-scale multiprocessor are
message passing and shared memory. Each of these two primary communication
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mechanisms has its advantages. For shared-memory communication, the advan-
tages include

■ Compatibility with the well-understood mechanisms in use in centralized
multiprocessors, which all use shared-memory communication. The OpenMP
consortium (seewww.openmp.org for description) has proposed a standardized
programming interface for shared-memory multiprocessors. Although mes-
sage passing also uses a standard, MPI or Message Passing Interface, this stan-
dard is not used either in shared-memory multiprocessors or in loosely coupled
clusters in use in throughput-oriented environments.

■ Ease of programming when the communication patterns among processors are
complex or vary dynamically during execution. Similar advantages simplify
compiler design.

■ The ability to develop applications using the familiar shared-memory model,
focusing attention only on those accesses that are performance critical.

■ Lower overhead for communication and better use of bandwidth when commu-
nicating small items. This arises from the implicit nature of communication and
the use of memory mapping to implement protection in hardware, rather than
through the I/O system.

■ The ability to use hardware-controlled caching to reduce the frequency of
remote communication by supporting automatic caching of all data, both
shared and private. As we will see, caching reduces both latency and contention
for accessing shared data. This advantage also comes with a disadvantage,
which we mention below.

The major advantages for message-passing communication include the following:

■ The hardware can be simpler, especially by comparison with a scalable shared-
memory implementation that supports coherent caching of remote data.

■ Communication is explicit, which means it is simpler to understand. In shared-
memory models, it can be difficult to know when communication is occurring
and when it is not, as well as how costly the communication is.

■ Explicit communication focuses programmer attention on this costly aspect
of parallel computation, sometimes leading to improved structure in a multi-
processor program.

■ Synchronization is naturally associated with sending messages, reducing the
possibility for errors introduced by incorrect synchronization.

■ It makes it easier to use sender-initiated communication, which may have some
advantages in performance.

■ If the communication is less frequent and more structured, it is easier to
improve fault tolerance by using a transaction-like structure. Furthermore,
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the less tight coupling of nodes and explicit communication make fault isola-
tion simpler.

■ The very largest multiprocessors use a cluster structure, which is inherently
based on message passing. Using two different communication models may
introduce more complexity than is warranted.

Of course, the desired communication model can be created in software on top of a
hardware model that supports either of these mechanisms. Supporting message
passing on top of shared memory is considerably easier: Because messages essen-
tially send data from one memory to another, sending a message can be implemen-
ted by doing a copy from one portion of the address space to another. The major
difficulties arise from dealing with messages that may be misaligned and of arbi-
trary length in a memory system that is normally oriented toward transferring
aligned blocks of data organized as cache blocks. These difficulties can be over-
come either with small performance penalties in software or with essentially no
penalties, using a small amount of hardware support.

Supporting shared memory efficiently on top of hardware for message passing
is much more difficult. Without explicit hardware support for shared memory, all
shared-memory references need to involve the operating system to provide address
translation and memory protection, as well as to translate memory references into
message sends and receives. Loads and stores usually move small amounts of data,
so the high overhead of handling these communications in software severely limits
the range of applications for which the performance of software-based shared
memory is acceptable. For these reasons, it has never been practical to use message
passing to implement shared memory for a commercial system.

I.3 Characteristics of Scientific Applications

The primary use of scalable shared-memory multiprocessors is for true parallel
programming, as opposed to multiprogramming or transaction-oriented comput-
ing. The primary target of parallel computing is scientific and technical applica-
tions. Thus, understanding the design issues requires some insight into the
behavior of such applications. This section provides such an introduction.

Characteristics of Scientific Applications

Our scientific/technical parallel workload consists of two applications and two
computational kernels. The kernels are fast Fourier transformation (FFT) and an
LU decomposition, which were chosen because they represent commonly used
techniques in a wide variety of applications and have performance characteristics
typical of many parallel scientific applications. In addition, the kernels have small
code segments whose behavior we can understand and directly track to specific
architectural characteristics. Like many scientific applications, I/O is essentially
nonexistent in this workload.
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The two applications that we use in this appendix are Barnes and Ocean, which
represent two important but very different types of parallel computation. We
briefly describe each of these applications and kernels and characterize their basic
behavior in terms of parallelism and communication. We describe how the prob-
lem is decomposed for a distributed shared-memory multiprocessor; certain data
decompositions that we describe are not necessary on multiprocessors that have
a single, centralized memory.

The FFT Kernel

The FFT is the key kernel in applications that use spectral methods, which arise in
fields ranging fromsignalprocessing to fluid flowtoclimatemodeling.TheFFTappli-
cationwestudyhere is a one-dimensional versionof a parallel algorithm for a complex
number FFT. It has a sequential execution time for n data points of n log n. The algo-
rithm uses a high radix (equal to

ffiffiffi
n

p
) that minimizes communication. The measure-

ments shown in this appendix are collected for a million-point input data set.
There are three primary data structures: the input and output arrays of the data

being transformed and the roots of unity matrix, which is precomputed and only
read during the execution. All arrays are organized as square matrices. The six
steps in the algorithm are as follows:

1. Transpose data matrix.

2. Perform 1D FFT on each row of data matrix.

3. Multiply the roots of unity matrix by the data matrix and write the result in the
data matrix.

4. Transpose data matrix.

5. Perform 1D FFT on each row of data matrix.

6. Transpose data matrix.

The data matrices and the roots of unity matrix are partitioned among processors in
contiguous chunks of rows, so that each processor’s partition falls in its own local
memory. The first row of the roots of unity matrix is accessed heavily by all pro-
cessors and is often replicated, as we do, during the first step of the algorithm just
shown. The data transposes ensure good locality during the individual FFT steps,
which would otherwise access nonlocal data.

The only communication is in the transpose phases, which require all-to-all
communication of large amounts of data. Contiguous subcolumns in the rows
assigned to a processor are grouped into blocks, which are transposed and placed
into the proper location of the destination matrix. Every processor transposes one
block locally and sends one block to each of the other processors in the system.
Although there is no reuse of individual words in the transpose, with long cache
blocks it makes sense to block the transpose to take advantage of the spatial locality
afforded by long blocks in the source matrix.
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The LU Kernel

LU is an LU factorization of a dense matrix and is representative of many dense
linear algebra computations, such as QR factorization, Cholesky factorization,
and eigenvalue methods. For a matrix of size n�n the running time is n3 and
the parallelism is proportional to n2. Dense LU factorization can be performed
efficiently by blocking the algorithm, using the techniques in Chapter 2, which
leads to highly efficient cache behavior and low communication. After blocking
the algorithm, the dominant computation is a dense matrix multiply that occurs in
the innermost loop. The block size is chosen to be small enough to keep the cache
miss rate low and large enough to reduce the time spent in the less parallel parts
of the computation. Relatively small block sizes (8�8 or 16�16) tend to satisfy
both criteria.

Two details are important for reducing interprocessor communication. First,
the blocks of the matrix are assigned to processors using a 2D tiling: The n

B� n
B

(where each block is B�B) matrix of blocks is allocated by laying a grid of size
p�p over the matrix of blocks in a cookie-cutter fashion until all the blocks are
allocated to a processor. Second, the dense matrix multiplication is performed
by the processor that owns the destination block. With this blocking and allocation
scheme, communication during the reduction is both regular and predictable. For
the measurements in this appendix, the input is a 512�512 matrix and a block of
16�16 is used.

A natural way to code the blocked LU factorization of a 2D matrix in a shared
address space is to use a 2D array to represent the matrix. Because blocks are allo-
cated in a tiled decomposition, and a block is not contiguous in the address space
in a 2D array, it is very difficult to allocate blocks in the local memories of the
processors that own them. The solution is to ensure that blocks assigned to a
processor are allocated locally and contiguously by using a 4D array (with the first
two dimensions specifying the block number in the 2D grid of blocks, and the next
two specifying the element in the block).

The Barnes Application

Barnes is an implementation of the Barnes-Hut n-body algorithm solving a
problem in galaxy evolution. N-body algorithms simulate the interaction among
a large number of bodies that have forces interacting among them. In this
instance, the bodies represent collections of stars and the force is gravity. To
reduce the computational time required to model completely all the individual
interactions among the bodies, which grow as n2, n-body algorithms take advan-
tage of the fact that the forces drop off with distance. (Gravity, for example,
drops off as 1/d2, where d is the distance between the two bodies.) The
Barnes-Hut algorithm takes advantage of this property by treating a collection
of bodies that are “far away” from another body as a single point at the center of
mass of the collection and with mass equal to the collection. If the body is far
enough from any body in the collection, then the error introduced will be
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negligible. The collections are structured in a hierarchical fashion, which can be
represented in a tree. This algorithm yields an n log n running time with par-
allelism proportional to n.

The Barnes-Hut algorithm uses an octree (each node has up to eight children)
to represent the eight cubes in a portion of space. Each node then represents the
collection of bodies in the subtree rooted at that node, which we call a cell.
Because the density of space varies and the leaves represent individual bodies,
the depth of the tree varies. The tree is traversed once per body to compute
the net force acting on that body. The force calculation algorithm for a body starts
at the root of the tree. For every node in the tree it visits, the algorithm determines
if the center of mass of the cell represented by the subtree rooted at the node is
“far enough away” from the body. If so, the entire subtree under that node is
approximated by a single point at the center of mass of the cell, and the force
that this center of mass exerts on the body is computed. On the other hand, if
the center of mass is not far enough away, the cell must be “opened” and each
of its subtrees visited. The distance between the body and the cell, together with
the error tolerances, determines which cells must be opened. This force calcula-
tion phase dominates the execution time. This appendix takes measurements
using 16K bodies; the criterion for determining whether a cell needs to be opened
is set to the middle of the range typically used in practice.

Obtaining effective parallel performance on Barnes-Hut is challenging because
the distribution of bodies is nonuniform and changes over time, making partition-
ing the work among the processors and maintenance of good locality of reference
difficult. We are helped by two properties: (1) the system evolves slowly, and (2)
because gravitational forces fall off quickly, with high probability, each cell
requires touching a small number of other cells, most of which were used on
the last time step. The tree can be partitioned by allocating each processor a subtree.
Many of the accesses needed to compute the force on a body in the subtree will be
to other bodies in the subtree. Since the amount of work associated with a subtree
varies (cells in dense portions of space will need to access more cells), the size of
the subtree allocated to a processor is based on some measure of the work it has to
do (e.g., how many other cells it needs to visit), rather than just on the number of
nodes in the subtree. By partitioning the octree representation, we can obtain good
load balance and good locality of reference, while keeping the partitioning cost
low. Although this partitioning scheme results in good locality of reference, the
resulting data references tend to be for small amounts of data and are unstructured.
Thus, this scheme requires an efficient implementation of shared-memory
communication.

The Ocean Application

Ocean simulates the influence of eddy and boundary currents on large-scale flow
in the ocean. It uses a restricted red-black Gauss-Seidel multigrid technique to
solve a set of elliptical partial differential equations. Red-black Gauss-Seidel is
an iteration technique that colors the points in the grid so as to consistently update
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each point based on previous values of the adjacent neighbors. Multigrid methods
solve finite difference equations by iteration using hierarchical grids. Each grid in
the hierarchy has fewer points than the grid below and is an approximation to the
lower grid. A finer grid increases accuracy and thus the rate of convergence,
while requiring more execution time, since it has more data points. Whether to
move up or down in the hierarchy of grids used for the next iteration is deter-
mined by the rate of change of the data values. The estimate of the error at every
time step is used to decide whether to stay at the same grid, move to a coarser
grid, or move to a finer grid. When the iteration converges at the finest level, a
solution has been reached. Each iteration has n2 work for an n�n grid and the
same amount of parallelism.

The arrays representing each grid are dynamically allocated and sized to the
particular problem. The entire ocean basin is partitioned into square subgrids
(as close as possible) that are allocated in the portion of the address space corre-
sponding to the local memory of the individual processors, which are assigned
responsibility for the subgrid. For the measurements in this appendix we use an
input that has 130�130 grid points. There are five steps in a time iteration. Since
data are exchanged between the steps, all the processors present synchronize at the
end of each step before proceeding to the next. Communication occurs when the
boundary points of a subgrid are accessed by the adjacent subgrid in nearest-
neighbor fashion.

Computation/Communication for the Parallel Programs

A key characteristic in determining the performance of parallel programs is the
ratio of computation to communication. If the ratio is high, it means the application
has lots of computation for each datum communicated. As we saw in Section I.2,
communication is the costly part of parallel computing; therefore, high
computation-to-communication ratios are very beneficial. In a parallel processing
environment, we are concerned with how the ratio of computation to communica-
tion changes as we increase either the number of processors, the size of the prob-
lem, or both. Knowing how the ratio changes as we increase the processor count
sheds light on how well the application can be sped up. Because we are often inter-
ested in running larger problems, it is vital to understand how changing the data set
size affects this ratio.

To understand what happens quantitatively to the computation-to-
communication ratio as we add processors, consider what happens separately to
computation and to communication as we either add processors or increase prob-
lem size. Figure I.1 shows that as we add processors, for these applications, the
amount of computation per processor falls proportionately and the amount of com-
munication per processor falls more slowly. As we increase the problem size, the
computation scales as the O( ) complexity of the algorithm dictates. Communica-
tion scaling is more complex and depends on details of the algorithm; we describe
the basic phenomena for each application in the caption of Figure I.1.
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The overall computation-to-communication ratio is computed from the indi-
vidual growth rate in computation and communication. In general, this ratio rises
slowly with an increase in dataset size and decreases as we add processors. This
reminds us that performing a fixed-size problem with more processors leads to
increasing inefficiencies because the amount of communication among processors
grows. It also tells us how quickly we must scale dataset size as we add processors
to keep the fraction of time in communication fixed. The following example illus-
trates these trade-offs.

Example Suppose we know that for a given multiprocessor the Ocean application spends
20% of its execution time waiting for communication when run on four processors.
Assume that the cost of each communication event is independent of processor
count, which is not true in general, since communication costs rise with processor
count. How much faster might we expect Ocean to run on a 32-processor machine
with the same problem size? What fraction of the execution time is spent on com-
munication in this case? How much larger a problem should we run if we want the
fraction of time spent communicating to be the same?

Answer The computation-to-communication ratio for Ocean is
ffiffiffi
n

p
=
ffiffiffi
p

p
, so if the problem

size is the same, the communication frequency scales by
ffiffiffi
p

p
. This means that

communication time increases by
ffiffiffi
8

p
. We can use a variation on Amdahl’s law,

Application Scaling of computation Scaling of communication
Scaling of computation-to-

communication

FFT n logn
p

n

p
log n

LU n

p

ffiffiffi
n

pffiffiffi
p

p
ffiffiffi
n

pffiffiffi
p

p

Barnes n logn
p

approximately

ffiffiffi
n

p
lognð Þffiffiffi
p

p approximately

ffiffiffi
n

pffiffiffi
p

p

Ocean n

p

ffiffiffi
n

pffiffiffi
p

p
ffiffiffi
n

pffiffiffi
p

p

Figure I.1 Scaling of computation, of communication, and of the ratio are critical factors in determining perfor-
mance on parallel multiprocessors. In this table, p is the increased processor count and n is the increased dataset
size. Scaling is on a per-processor basis. The computation scales up with n at the rate given by O( ) analysis and scales
down linearly as p is increased. Communication scaling is more complex. In FFT, all data points must interact, so com-
munication increases with n and decreases with p. In LU and Ocean, communication is proportional to the boundary
of a block, so it scales with dataset size at a rate proportional to the side of a square with n points, namely,

ffiffiffi
n

p
; for the

same reason communication in these two applications scales inversely to
ffiffiffi
p

p
. Barnes has the most complex scaling

properties. Because of the fall-off of interaction between bodies, the basic number of interactions among bodies that
require communication scales as

ffiffiffi
n

p
. An additional factor of log n is needed to maintain the relationships among the

bodies. As processor count is increased, communication scales inversely to
ffiffiffi
p

p
.
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recognizing that the computation is decreased but the communication time is
increased. If T4 is the total execution time for four processors, then the execution
time for 32 processors is

T32 ¼Compute time +Communication time

¼ 0:8�T4
8

+ 0:2�T4ð Þ�
ffiffiffi
8

p

¼ 0:1�T4 + 0:57�T4 ¼ 0:67�T4

Hence, the speedup is

Speedup¼ T4
T32

¼ T4
0:67�T4

¼ 1:49

and the fraction of time spent in communication goes from 20% to 0.57/
0.67¼85%.

For the fraction of the communication time to remain the same, we must keep
the computation-to-communication ratio the same, so the problem size must scale
at the same rate as the processor count. Notice that, because we have changed the
problem size, we cannot fairly compare the speedup of the original problem and the
scaled problem. We will return to the critical issue of scaling applications for mul-
tiprocessors in Section I.6.

I.4 Synchronization: Scaling Up

In this section, we focus first on synchronization performance problems in larger
multiprocessors and then on solutions for those problems.

Synchronization Performance Challenges

To understand why the simple spin lock scheme presented in Chapter 5 does not
scale well, imagine a large multiprocessor with all processors contending for the
same lock. The directory or bus acts as a point of serialization for all the processors,
leading to lots of contention, as well as traffic. The following example shows how
bad things can be.

Example Suppose there are 10 processors on a bus and each tries to lock a variable simul-
taneously. Assume that each bus transaction (read miss or write miss) is 100
clock cycles long. You can ignore the time of the actual read or write of a lock
held in the cache, as well as the time the lock is held (they won’t matter much!).
Determine the number of bus transactions required for all 10 processors to
acquire the lock, assuming they are all spinning when the lock is released at time
0. About how long will it take to process the 10 requests? Assume that the bus is
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totally fair so that every pending request is serviced before a new request and that
the processors are equally fast.

Answer When i processes are contending for the lock, they perform the following sequence
of actions, each of which generates a bus transaction:

i load linked operations to access the lock

i store conditional operations to try to lock the lock

1 store (to release the lock)

Thus, for i processes, there are a total of 2i+1 bus transactions. Note that this
assumes that the critical section time is negligible, so that the lock is released before
any other processors whose store conditional failed attempt another load linked.

Thus, for n processes, the total number of bus operations is

Xn
i¼1

2i+ 1ð Þ¼ n n + 1ð Þ+ n¼ n2 + 2n

For 10 processes there are 120 bus transactions requiring 12,000 clock cycles or
120 clock cycles per lock acquisition!

The difficulty in this example arises from contention for the lock and serialization
of lock access, as well as the latency of the bus access. (The fairness property of the
bus actually makes things worse, since it delays the processor that claims the lock
from releasing it; unfortunately, for any bus arbitration scheme some worst-case
scenario does exist.) The key advantages of spin locks—that they have low over-
head in terms of bus or network cycles and offer good performance when locks are
reused by the same processor—are both lost in this example. We will consider
alternative implementations in the next section, but before we do that, let’s con-
sider the use of spin locks to implement another common high-level synchroniza-
tion primitive.

Barrier Synchronization

One additional common synchronization operation in programs with parallel
loops is a barrier. A barrier forces all processes to wait until all the processes
reach the barrier and then releases all of the processes. A typical implementation
of a barrier can be done with two spin locks: one to protect a counter that tallies
the processes arriving at the barrier and one to hold the processes until the last
process arrives at the barrier. To implement a barrier, we usually use the ability to
spin on a variable until it satisfies a test; we use the notation spin(condi-
tion) to indicate this. Figure I.2 is a typical implementation, assuming that
lock and unlock provide basic spin locks and total is the number of pro-
cesses that must reach the barrier.
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In practice, another complication makes barrier implementation slightly
more complex. Frequently a barrier is used within a loop, so that processes
released from the barrier would do some work and then reach the barrier again.
Assume that one of the processes never actually leaves the barrier (it stays at
the spin operation), which could happen if the OS scheduled another process,
for example. Now it is possible that one process races ahead and gets to the
barrier again before the last process has left. The “fast” process then traps
the remaining “slow” process in the barrier by resetting the flag release.
Now all the processes will wait infinitely at the next instance of this barrier
because one process is trapped at the last instance, and the number of processes
can never reach the value of total.

The important observation in this example is that the programmer did
nothing wrong. Instead, the implementer of the barrier made some assump-
tions about forward progress that cannot be assumed. One obvious solution
to this is to count the processes as they exit the barrier (just as we did on
entry) and not to allow any process to reenter and reinitialize the barrier until
all processes have left the prior instance of this barrier. This extra step would
significantly increase the latency of the barrier and the contention, which as
we will see shortly are already large. An alternative solution is a sense-
reversing barrier, which makes use of a private per-process variable,
local_sense, which is initialized to 1 for each process. Figure I.3 shows
the code for the sense-reversing barrier. This version of a barrier is safely
usable; as the next example shows, however, its performance can still be
quite poor.

lock (counterlock);/* ensure update atomic */
if (count==0) release=0;/* first=>reset release */
count = count + 1;/* count arrivals */
unlock(counterlock);/* release lock */
if (count==total) {/* all arrived */

count=0;/* reset counter */
release=1;/* release processes */

}
else {/* more to come */

spin (release==1);/* wait for arrivals */
}

Figure I.2 Code for a simple barrier. The lock counterlock protects the counter so
that it can be atomically incremented. The variable count keeps the tally of how many
processes have reached the barrier. The variable release is used to hold the processes
until the last one reaches the barrier. The operation spin (release==1) causes a
process to wait until all processes reach the barrier.
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Example Suppose there are 10 processors on a bus and each tries to execute a barrier simul-
taneously. Assume that each bus transaction is 100 clock cycles, as before. You can
ignore the time of the actual read or write of a lock held in the cache as the time to
execute other nonsynchronization operations in the barrier implementation. Deter-
mine the number of bus transactions required for all 10 processors to reach the bar-
rier, be released from the barrier, and exit the barrier. Assume that the bus is totally
fair, so that every pending request is serviced before a new request and that the
processors are equally fast. Don’t worry about counting the processors out of
the barrier. How long will the entire process take?

Answer We assume that load linked and store conditional are used to implement lock and
unlock. Figure I.4 shows the sequence of bus events for a processor to traverse the
barrier, assuming that the first process to grab the bus does not have the lock. There
is a slight difference for the last process to reach the barrier, as described in the
caption.

For the ith process, the number of bus transactions is 3i+4. The last process to
reach the barrier requires one less. Thus, for n processes, the number of bus trans-
actions is

Xn
i¼1

3i+ 4ð Þ
 !

�1¼ 3n2 + 11n
2

�1

For 10 processes, this is 204 bus cycles or 20,400 clock cycles! Our barrier
operation takes almost twice as long as the 10-processor lock-unlock sequence.

local_sense =! local_sense; /* toggle local_sense */
lock (counterlock);/* ensure update atomic */
count=count+1;/* count arrivals */
if (count==total) {/* all arrived */

count=0;/* reset counter */
release=local_sense;/* release processes */

}
unlock (counterlock);/* unlock */
spin (release==local_sense);/* wait for signal */
}

Figure I.3 Code for a sense-reversing barrier. The key tomaking the barrier reusable is
the use of an alternating pattern of values for the flag release, which controls the exit
from the barrier. If a process races ahead to the next instance of this barrier while some
other processes are still in the barrier, the fast process cannot trap the other processes,
since it does not reset the value of release as it did in Figure I.2.
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As we can see from these examples, synchronization performance can be a
real bottleneck when there is substantial contention among multiple processes.
When there is little contention and synchronization operations are infrequent,
we are primarily concerned about the latency of a synchronization primitive—
that is, how long it takes an individual process to complete a synchronization
operation. Our basic spin lock operation can do this in two bus cycles: one to
initially read the lock and one to write it. We could improve this to a single bus
cycle by a variety of methods. For example, we could simply spin on the swap
operation. If the lock were almost always free, this could be better, but if the
lock were not free, it would lead to lots of bus traffic, since each attempt to
lock the variable would lead to a bus cycle. In practice, the latency of our spin
lock is not quite as bad as we have seen in this example, since the write miss
for a data item present in the cache is treated as an upgrade and will be cheaper
than a true read miss.

The more serious problem in these examples is the serialization of each pro-
cess’s attempt to complete the synchronization. This serialization is a problem
when there is contention because it greatly increases the time to complete the
synchronization operation. For example, if the time to complete all 10 lock
and unlock operations depended only on the latency in the uncontended case,
then it would take 1000 rather than 15,000 cycles to complete the synchroniza-
tion operations. The barrier situation is as bad, and in some ways worse, since it
is highly likely to incur contention. The use of a bus interconnect exacerbates
these problems, but serialization could be just as serious in a directory-based
multiprocessor, where the latency would be large. The next subsection presents
some solutions that are useful when either the contention is high or the processor
count is large.

Event

Number of
times for
process i Corresponding source line Comment

LL counterlock i lock (counterlock); All processes try for lock.

Store conditional i lock (counterlock); All processes try for lock.

LD count 1 count = count + 1; Successful process.

Load linked i�1 lock (counterlock); Unsuccessful process; try again.

SD count 1 count = count + 1; Miss to get exclusive access.

SD counterlock 1 unlock(counterlock); Miss to get the lock.

LD release 2 spin (release==local_sense);/ Read release: misses initially and
when finally written.

Figure I.4 Here are the actions, which require a bus transaction, taken when the ith process reaches the barrier.
The last process to reach the barrier requires one less bus transaction, since its read of release for the spin will hit in
the cache!
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Synchronization Mechanisms for Larger-Scale Multiprocessors

What we would like are synchronization mechanisms that have low latency in
uncontended cases and that minimize serialization in the case where contention
is significant. We begin by showing how software implementations can improve
the performance of locks and barriers when contention is high; we then explore two
basic hardware primitives that reduce serialization while keeping latency low.

Software Implementations

The major difficulty with our spin lock implementation is the delay due to conten-
tion when many processes are spinning on the lock. One solution is to artificially
delay processes when they fail to acquire the lock. The best performance is
obtained by increasing the delay exponentially whenever the attempt to acquire
the lock fails. Figure I.5 shows how a spin lock with exponential back-off is imple-
mented. Exponential back-off is a common technique for reducing contention in
shared resources, including access to shared networks and buses (see Sections
F.4 to F.8). This implementation still attempts to preserve low latency when con-
tention is small by not delaying the initial spin loop. The result is that if many pro-
cesses are waiting, the back-off does not affect the processes on their first attempt
to acquire the lock.We could also delay that process, but the result would be poorer

DADDUI R3,R0,#1 ;R3 = initial delay
lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin
DADDUI R2,R2,#1 ;get locked value
SC R2,0(R1) ;store conditional
BNEZ R2,gotit ;branch if store succeeds
DSLL R3,R3,#1 ;increase delay by factor of 2
PAUSE R3 ;delays by value in R3
J lockit

gotit: use data protected by lock

Figure I.5 A spin lock with exponential back-off.When the store conditional fails, the
process delays itself by the value in R3. The delay can be implemented by decrementing
a copy of the value in R3 until it reaches 0. The exact timing of the delay is multiproces-
sor dependent, although it should start with a value that is approximately the time to
perform the critical section and release the lock. The statement pause R3 should cause
a delay of R3 of these time units. The value in R3 is increased by a factor of 2 every time
the store conditional fails, which causes the process to wait twice as long before trying
to acquire the lock again. The small variations in the rate at which competing processors
execute instructions are usually sufficient to ensure that processes will not continually
collide. If the natural perturbation in execution time was insufficient, R3 could be initial-
ized with a small random value, increasing the variance in the successive delays and
reducing the probability of successive collisions.
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performance when the lock was in use by only two processes and the first one hap-
pened to find it locked.

Another technique for implementing locks is to use queuing locks. Queuing
locks work by constructing a queue of waiting processors; whenever a processor
frees up the lock, it causes the next processor in the queue to attempt access. This
eliminates contention for a lock when it is freed. We show how queuing locks oper-
ate in the next section using a hardware implementation, but software implementa-
tions using arrays can achieve most of the same benefits. Before we look at
hardware primitives, let’s look at a better mechanism for barriers.

Our barrier implementation suffers from contention both during the gather
stage, when we must atomically update the count, and at the release stage, when
all the processes must read the release flag. The former is more serious because it
requires exclusive access to the synchronization variable and thus creates much
more serialization; in comparison, the latter generates only read contention. We
can reduce the contention by using a combining tree, a structure where multiple
requests are locally combined in tree fashion. The same combining tree can be used
to implement the release process, reducing the contention there.

Our combining tree barrier uses a predetermined n-ary tree structure. We use
the variable k to stand for the fan-in; in practice, k¼4 seems to work well. When
the kth process arrives at a node in the tree, we signal the next level in the tree.
When a process arrives at the root, we release all waiting processes. As in our ear-
lier example, we use a sense-reversing technique. A tree-based barrier, as shown in
Figure I.6, uses a tree to combine the processes and a single signal to release the
barrier. Some MPPs (e.g., the T3D and CM-5) have also included hardware sup-
port for barriers, but more recent machines have relied on software libraries for this
support.

Hardware Primitives

In this subsection, we look at two hardware synchronization primitives. The first
primitive deals with locks, while the second is useful for barriers and a number of
other user-level operations that require counting or supplying distinct indices. In
both cases, we can create a hardware primitive where latency is essentially iden-
tical to our earlier version, but with much less serialization, leading to better scaling
when there is contention.

The major problem with our original lock implementation is that it introduces a
large amount of unneeded contention. For example, when the lock is released all
processors generate both a read and a write miss, although at most one processor
can successfully get the lock in the unlocked state. This sequence happens on each
of the 10 lock/unlock sequences, as we saw in the example on page I-12.

We can improve this situation by explicitly handing the lock from one waiting
processor to the next. Rather than simply allowing all processors to compete every
time the lock is released, we keep a list of the waiting processors and hand the lock
to one explicitly, when its turn comes. This sort of mechanism has been called a
queuing lock. Queuing locks can be implemented either in hardware, which we
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describe here, or in software using an array to keep track of the waiting processes.
The basic concepts are the same in either case. Our hardware implementation
assumes a directory-based multiprocessor where the individual processor caches
are addressable. In a bus-based multiprocessor, a software implementation would
be more appropriate and would have each processor using a different address for
the lock, permitting the explicit transfer of the lock from one process to another.

How does a queuing lock work? On the first miss to the lock variable, the
miss is sent to a synchronization controller, which may be integrated with the
memory controller (in a bus-based system) or with the directory controller. If
the lock is free, it is simply returned to the processor. If the lock is unavailable,

struct node{/* a node in the combining tree */
int counterlock; /* lock for this node */
int count; /* counter for this node */
int parent; /* parent in the tree = 0..P-1 except for root */

};
struct node tree [0..P–1]; /* the tree of nodes */
int local_sense; /* private per processor */
int release; /* global release flag */

/* function to implement barrier */
barrier (int mynode, int local_sense) {

lock (tree[mynode].counterlock); /* protect count */
tree[mynode].count=tree[mynode].count+1;

/* increment count */
if (tree[mynode].count==k) {/* all arrived at mynode */

if (tree[mynode].parent >=0) {
barrier(tree[mynode].parent);

} else{
release = local_sense;

};
tree[mynode].count = 0; /* reset for the next time */

unlock (tree[mynode].counterlock); /* unlock */
spin (release==local_sense); /* wait */

};
/* code executed by a processor to join barrier */
local_sense =! local_sense;
barrier (mynode);

Figure I.6 An implementation of a tree-based barrier reduces contention consider-
ably. The tree is assumed to be prebuilt statically using the nodes in the array tree. Each
node in the tree combines k processes and provides a separate counter and lock, so that
at most k processes contend at each node. When the kth process reaches a node in the
tree, it goes up to the parent, incrementing the count at the parent. When the count in
the parent node reaches k, the release flag is set. The count in each node is reset by the
last process to arrive. Sense-reversing is used to avoid races as in the simple barrier. The
value of tree[root].parent should be set to �1 when the tree is initially built.
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the controller creates a record of the node’s request (such as a bit in a vector) and
sends the processor back a locked value for the variable, which the processor then
spins on. When the lock is freed, the controller selects a processor to go ahead
from the list of waiting processors. It can then either update the lock variable
in the selected processor’s cache or invalidate the copy, causing the processor
to miss and fetch an available copy of the lock.

Example How many bus transactions and how long does it take to have 10 processors lock
and unlock the variable using a queuing lock that updates the lock on a miss? Make
the other assumptions about the system the same as those in the earlier example on
page I-12.

Answer For n processors, each will initially attempt a lock access, generating a bus trans-
action; one will succeed and free up the lock, for a total of n+1 transactions for the
first processor. Each subsequent processor requires two bus transactions, one to
receive the lock and one to free it up. Thus, the total number of bus transactions
is (n+1)+2(n�1)¼3n�1. Note that the number of bus transactions is now linear
in the number of processors contending for the lock, rather than quadratic, as it was
with the spin lock we examined earlier. For 10 processors, this requires 29 bus
cycles or 2900 clock cycles.

There are a couple of key insights in implementing such a queuing lock capability.
First, we need to be able to distinguish the initial access to the lock, so we can per-
form the queuing operation, and also the lock release, so we can provide the lock to
another processor. The queue of waiting processes can be implemented by a variety
of mechanisms. In a directory-based multiprocessor, this queue is akin to the shar-
ing set, and similar hardware can be used to implement the directory and queuing
lock operations. One complication is that the hardware must be prepared to reclaim
such locks, since the process that requested the lock may have been context-
switched and may not even be scheduled again on the same processor.

Queuing locks can be used to improve the performance of our barrier operation.
Alternatively, we can introduce a primitive that reduces the amount of time needed
to increment the barrier count, thus reducing the serialization at this bottleneck,
which should yield comparable performance to using queuing locks. One primitive
that has been introduced for this and for building other synchronization operations
is fetch-and-increment, which atomically fetches a variable and increments its
value. The returned value can be either the incremented value or the fetched value.
Using fetch-and-increment we can dramatically improve our barrier implementa-
tion, compared to the simple code-sensing barrier.

Example Write the code for the barrier using fetch-and-increment. Making the same assump-
tions as in our earlier example and also assuming that a fetch-and-increment oper-
ation, which returns the incremented value, takes 100 clock cycles, determine the
time for 10 processors to traverse the barrier. How many bus cycles are required?
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Answer Figure I.7 shows the code for the barrier. For n processors, this implementation
requires n fetch-and-increment operations, n cache misses to access the count,
and n cache misses for the release operation, for a total of 3n bus transactions.
For 10 processors, this is 30 bus transactions or 3000 clock cycles. Like the queue-
ing lock, the time is linear in the number of processors. Of course, fetch-and-
increment can also be used in implementing the combining tree barrier, reducing
the serialization at each node in the tree.

As we have seen, synchronization problems can become quite acute in largerscale
multiprocessors. When the challenges posed by synchronization are combined
with the challenges posed by long memory latency and potential load imbalance
in computations, we can see why getting efficient usage of large-scale parallel pro-
cessors is very challenging.

I.5 Performance of Scientific Applications on
Shared-Memory Multiprocessors

This section covers the performance of the scientific applications from
Section I.3 on both symmetric shared-memory and distributed shared-memory
multiprocessors.

Performance of a Scientific Workload on a Symmetric
Shared-Memory Multiprocessor

We evaluate the performance of our four scientific applications on a symmetric
shared-memory multiprocessor using the following problem sizes:

■ Barnes-Hut—16 K bodies run for six time steps (the accuracy control is set to
1.0, a typical, realistic value)

local_sense =! local_sense; /* toggle local_sense */
fetch_and_increment(count);/* atomic update */
if (count==total) {/* all arrived */

count=0;/* reset counter */
release=local_sense;/* release processes */

}
else {/* more to come */

spin (release==local_sense);/* wait for signal */
}

Figure I.7 Code for a sense-reversing barrier using fetch-and-increment to do the
counting.
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■ FFT—1 million complex data points

■ LU—A 512�512 matrix is used with 16�16 blocks

■ Ocean—A 130�130 grid with a typical error tolerance

In looking at the miss rates as we vary processor count, cache size, and block
size, we decompose the total miss rate into coherence misses and normal uni-
processor misses. The normal uniprocessor misses consist of capacity, conflict,
and compulsory misses. We label these misses as capacity misses because that
is the dominant cause for these benchmarks. For these measurements, we
include as a coherence miss any write misses needed to upgrade a block from
shared to exclusive, even though no one is sharing the cache block. This mea-
surement reflects a protocol that does not distinguish between a private and
shared cache block.

Figure I.8 shows the data miss rates for our four applications, as we increase the
number of processors from 1 to 16, while keeping the problem size constant. As we
increase the number of processors, the total amount of cache increases, usually
causing the capacity misses to drop. In contrast, increasing the processor count
usually causes the amount of communication to increase, in turn causing the coher-
ence misses to rise. The magnitude of these two effects differs by application.

In FFT, the capacity miss rate drops (from nearly 7% to just over 5%) but the
coherence miss rate increases (from about 1% to about 2.7%), leading to a constant
overall miss rate. Ocean shows a combination of effects, including some that relate
to the partitioning of the grid and how grid boundaries map to cache blocks. For a
typical 2D grid code the communication-generated misses are proportional to the
boundary of each partition of the grid, while the capacity misses are proportional to
the area of the grid. Therefore, increasing the total amount of cache while keeping
the total problem size fixed will have a more significant effect on the capacity miss
rate, at least until each subgrid fits within an individual processor’s cache. The sig-
nificant jump in miss rate between one and two processors occurs because of con-
flicts that arise from the way in which the multiple grids are mapped to the caches.
This conflict is present for direct-mapped and two-way set associative caches, but
fades at higher associativities. Such conflicts are not unusual in array-based appli-
cations, especially when there are multiple grids in use at once. In Barnes and LU,
the increase in processor count has little effect on the miss rate, sometimes causing
a slight increase and sometimes causing a slight decrease.

Increasing the cache size usually has a beneficial effect on performance, since it
reduces the frequency of costly cache misses. Figure I.9 illustrates the change in
miss rate as cache size is increased for 16 processors, showing the portion of the
miss rate due to coherence misses and to uniprocessor capacity misses. Two effects
can lead to a miss rate that does not decrease—at least not as quickly as we might
expect—as cache size increases: inherent communication and plateaus in the miss
rate. Inherent communication leads to a certain frequency of coherence misses that
are not significantly affected by increasing cache size. Thus, if the cache size is
increased while maintaining a fixed problem size, the coherence miss rate
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Figure I.8 Data miss rates can vary in nonobvious ways as the processor count is
increased from 1 to 16. The miss rates include both coherence and capacity miss rates.
The compulsory misses in these benchmarks are all very small and are included in the
capacity misses. Most of the misses in these applications are generated by accesses to
data that are potentially shared, although in the applications with larger miss rates (FFT
and Ocean), it is the capacity misses rather than the coherence misses that comprise the
majority of the miss rate. Data are potentially shared if they are allocated in a portion of
the address space used for shared data. In all except Ocean, the potentially shared data
are heavily shared, while in Ocean only the boundaries of the subgrids are actually
shared, although the entire grid is treated as a potentially shared data object. Of course,
since the boundaries change as we increase the processor count (for a fixed-size prob-
lem), different amounts of the grid become shared. The anomalous increase in capacity
miss rate for Ocean in moving from 1 to 2 processors arises because of conflict misses in
accessing the subgrids. In all cases except Ocean, the fraction of the cache misses
caused by coherence transactions rises when a fixed-size problem is run on an increas-
ing number of processors. In Ocean, the coherence misses initially fall as we add pro-
cessors due to a large number of misses that are write ownership misses to data that
are potentially, but not actually, shared. As the subgrids begin to fit in the aggregate
cache (around 16 processors), this effect lessens. The single-processor numbers include
write upgrade misses, which occur in this protocol even if the data are not actually
shared, since they are in the shared state. For all these runs, the cache size is 64 KB,
two-way set associative, with 32-byte blocks. Notice that the scale on the y-axis for each
benchmark is different, so that the behavior of the individual benchmarks can be seen
clearly.
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eventually limits the decrease in cache miss rate. This effect is most obvious in
Barnes, where the coherence miss rate essentially becomes the entire miss rate.

A less important effect is a temporary plateau in the capacity miss rate that
arises when the application has some fraction of its data present in cache but some
significant portion of the dataset does not fit in the cache or in caches that are
slightly bigger. In LU, a very small cache (about 4 KB) can capture the pair of
16�16 blocks used in the inner loop; beyond that, the next big improvement in
capacity miss rate occurs when both matrices fit in the caches, which occurs when
the total cache size is between 4 MB and 8 MB. This effect, sometimes called a
working set effect, is partly at work between 32 KB and 128 KB for FFT, where
the capacity miss rate drops only 0.3%. Beyond that cache size, a faster decrease in
the capacity miss rate is seen, as a major data structure begins to reside in the cache.
These plateaus are common in programs that deal with large arrays in a structured
fashion.

Increasing the block size is another way to change the miss rate in a cache. In
uniprocessors, larger block sizes are often optimal with larger caches. In
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Figure I.9 The miss rate usually drops as the cache size is increased, although coher-
ence misses dampen the effect. The block size is 32 bytes and the cache is two-way set
associative. The processor count is fixed at 16 processors. Observe that the scale for each
graph is different.
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multiprocessors, two new effects come into play: a reduction in spatial locality
for shared data and a potential increase in miss rate due to false sharing. Several
studies have shown that shared data have lower spatial locality than unshared
data. Poorer locality means that, for shared data, fetching larger blocks is less
effective than in a uniprocessor because the probability is higher that the block
will be replaced before all its contents are referenced. Likewise, increasing the
basic size also increases the potential frequency of false sharing, increasing
the miss rate.

Figure I.10 shows the miss rates as the cache block size is increased for a 16-
processor run with a 64 KB cache. The most interesting behavior is in Barnes,
where the miss rate initially declines and then rises due to an increase in the number
of coherence misses, which probably occurs because of false sharing. In the other
benchmarks, increasing the block size decreases the overall miss rate. In Ocean and
LU, the block size increase affects both the coherence and capacity miss rates about
equally. In FFT, the coherence miss rate is actually decreased at a faster rate than
the capacity miss rate. This reduction occurs because the communication in FFT is
structured to be very efficient. In less optimized programs, we would expect more
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Figure I.10 The data miss rate drops as the cache block size is increased. All these
results are for a 16-processor run with a 64 KB cache and two-way set associativity. Once
again we use different scales for each benchmark.
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false sharing and less spatial locality for shared data, resulting in more behavior
like that of Barnes.

Although the drop in miss rates with longer blocks may lead you to believe
that choosing a longer block size is the best decision, the bottleneck in bus-based
multiprocessors is often the limited memory and bus bandwidth. Larger blocks
mean more bytes on the bus per miss. Figure I.11 shows the growth in bus traffic
as the block size is increased. This growth is most serious in the programs that
have a high miss rate, especially Ocean. The growth in traffic can actually lead to
performance slowdowns due both to longer miss penalties and to increased bus
contention.

Performance of a Scientific Workload on a Distributed-Memory
Multiprocessor

The performance of a directory-based multiprocessor depends onmany of the same
factors that influence the performance of bus-based multiprocessors (e.g., cache
size, processor count, and block size), as well as the distribution of misses to var-
ious locations in the memory hierarchy. The location of a requested data item
depends on both the initial allocation and the sharing patterns. We start by exam-
ining the basic cache performance of our scientific/technical workload and then
look at the effect of different types of misses.
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Figure I.11 Bus traffic for data misses climbs steadily as the block size in the data
cache is increased. The factor of 3 increase in traffic for Ocean is the best argument
against larger block sizes. Remember that our protocol treats ownership or upgrade
misses the same as other misses, slightly increasing the penalty for large cache blocks;
in both Ocean and FFT, this simplification accounts for less than 10% of the traffic.
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Because the multiprocessor is larger and has longer latencies than our
snooping-based multiprocessor, we begin with a slightly larger cache (128 KB)
and a larger block size of 64 bytes.

In distributed-memory architectures, the distribution of memory requests
between local and remote is key to performance because it affects both the con-
sumption of global bandwidth and the latency seen by requests. Therefore, for
the figures in this section, we separate the cache misses into local and remote
requests. In looking at the figures, keep in mind that, for these applications, most
of the remote misses that arise are coherence misses, although some capacity mis-
ses can also be remote, and in some applications with poor data distribution such
misses can be significant.

As Figure I.12 shows, the miss rates with these cache sizes are not affected
much by changes in processor count, with the exception of Ocean, where the miss
rate rises at 64 processors. This rise results from two factors: an increase in map-
ping conflicts in the cache that occur when the grid becomes small, which leads to a
rise in local misses, and an increase in the number of the coherence misses, which
are all remote.

Figure I.13 shows how the miss rates change as the cache size is increased,
assuming a 64-processor execution and 64-byte blocks. These miss rates decrease
at rates that we might expect, although the dampening effect caused by little or no
reduction in coherence misses leads to a slower decrease in the remote misses than
in the local misses. By the time we reach the largest cache size shown, 512 KB, the
remote miss rate is equal to or greater than the local miss rate. Larger caches would
amplify this trend.

We examine the effect of changing the block size in Figure I.14. Because these
applications have good spatial locality, increases in block size reduce the miss rate,
even for large blocks, although the performance benefits for going to the largest
blocks are small. Furthermore, most of the improvement in miss rate comes from
a reduction in the local misses.

Rather than plot the memory traffic, Figure I.15 plots the number of bytes
required per data reference versus block size, breaking the requirement into local
and global bandwidth. In the case of a bus, we can simply aggregate the demands of
each processor to find the total demand for bus and memory bandwidth. For a scal-
able interconnect, we can use the data in Figure I.15 to compute the required per-
node global bandwidth and the estimated bisection bandwidth, as the next example
shows.

Example Assume a 64-processor multiprocessor with 1 GHz processors that sustain one
memory reference per processor clock. For a 64-byte block size, the remote miss
rate is 0.7%. Find the per-node and estimated bisection bandwidth for FFT.
Assume that the processor does not stall for remote memory requests; this might
be true if, for example, all remote data were prefetched. How do these bandwidth
requirements compare to various interconnection technologies?
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FFT performs all-to-all communication, so the bisection bandwidth is equal to
the number of processors times the per-node bandwidth, or about 64�448 MB/
sec¼28.7 GB/sec. The SGI Origin 3000 with 64 processors has a bisection band-
width of about 50 GB/sec. No standard networking technology comes close.

Answer The per-node bandwidth is simply the number of data bytes per reference times the
reference rate: 0.7%�1 GB/sec�64¼448 MB/sec. This rate is somewhat higher
than the hardware sustainable transfer rate for the CrayT3E (using a block prefetch)
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Figure I.12 The data miss rate is often steady as processors are added for these
benchmarks. Because of its grid structure, Ocean has an initially decreasing miss rate,
which rises when there are 64 processors. For Ocean, the local miss rate drops from 5%
at 8 processors to 2% at 32, before rising to 4% at 64. The remote miss rate in Ocean,
driven primarily by communication, rises monotonically from 1% to 2.5%. Note that, to
show the detailed behavior of each benchmark, different scales are used on the y-axis.
The cache for all these runs is 128 KB, two-way set associative, with 64-byte blocks.
Remote misses include any misses that require communication with another node,
whether to fetch the data or to deliver an invalidate. In particular, in this figure and other
data in this section, the measurement of remote misses includes write upgrade misses
where the data are up to date in the local memory but cached elsewhere and, therefore,
require invalidations to be sent. Such invalidations do indeed generate remote traffic,
but may or may not delay the write, depending on the consistency model.
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and lower than that for an SGI Origin 3000 (1.6 GB/processor pair). The FFT
per-node bandwidth demand exceeds the bandwidth sustainable from the fastest
standard networks by more than a factor of 5.

The previous example looked at the bandwidth demands. The other key issue for a
parallel program is remote memory access time, or latency. To get insight into this,
we use a simple example of a directory-based multiprocessor. Figure I.16 shows
the parameters we assume for our simple multiprocessor model. It assumes that the
time to first word for a local memory access is 85 processor cycles and that the path
to local memory is 16 bytes wide, while the network interconnect is 4 bytes wide.
This model ignores the effects of contention, which are probably not too serious in
the parallel benchmarks we examine, with the possible exception of FFT, which
uses all-to-all communication. Contention could have a serious performance
impact in other workloads.
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Figure I.13 Miss rates decrease as cache sizes grow. Steady decreases are seen in the
local miss rate, while the remote miss rate declines to varying degrees, depending on
whether the remote miss rate had a large capacity component or was driven primarily
by communication misses. In all cases, the decrease in the local miss rate is larger than
the decrease in the remote miss rate. The plateau in the miss rate of FFT, which wemen-
tioned in the last section, ends once the cache exceeds 128 KB. These runs were done
with 64 processors and 64-byte cache blocks.
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Figure I.17 shows the cost in cycles for the average memory reference,
assuming the parameters in Figure I.16. Only the latencies for each reference
type are counted. Each bar indicates the contribution from cache hits, local
misses, remote misses, and three-hop remote misses. The cost is influenced
by the total frequency of cache misses and upgrades, as well as by the distri-
bution of the location where the miss is satisfied. The cost for a remote mem-
ory reference is fairly steady as the processor count is increased, except for
Ocean. The increasing miss rate in Ocean for 64 processors is clear in
Figure I.12. As the miss rate increases, we should expect the time spent on
memory references to increase also.

Although Figure I.17 shows the memory access cost, which is the dominant
multiprocessor cost in these benchmarks, a complete performance model would
need to consider the effect of contention in the memory system, as well as the
losses arising from synchronization delays.
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Figure I.14 Data miss rate versus block size assuming a 128 KB cache and 64 pro-
cessors in total. Although difficult to see, the coherence miss rate in Barnes actually
rises for the largest block size, just as in the last section.

I-30 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications



B
yt

es
 p

er
 d

at
a 

re
fe

re
nc

e
B

yt
es

 p
er

 d
at

a 
re

fe
re

nc
e

B
yt

es
 p

er
 d

at
a 

re
fe

re
nc

e
B

yt
es

 p
er

 d
at

a 
re

fe
re

nc
e

0.0

2.0

3.0

1.0

16 32 64

Block size (bytes)

FFT

128

6.0

4.0

5.0

0.0

0.2

0.3

0.1

16 32 64

Block size (bytes)

LU

128

0.6

0.4

0.5

0.0

2.0

4.0

6.0

5.0

3.0

1.0

16 32 64

Block size (bytes)

Ocean

128

7.0

0.0

0.1

16 32 64

Block size (bytes)

Barnes

128

0.4

0.3

0.2

Local Global

Figure I.15 The number of bytes per data reference climbs steadily as block size is
increased. These data can be used to determine the bandwidth required per node both
internally and globally. The data assume a 128 KB cache for each of 64 processors.

Characteristic
Processor clock cycles

≤16 processors
Processor clock cycles

17–64 processors

Cache hit 1 1

Cache miss to local memory 85 85

Cache miss to remote home
directory

125 150

Cache miss to remotely cached
data (three-hop miss)

140 170

Figure I.16 Characteristics of the example directory-based multiprocessor. Misses
can be serviced locally (including from the local directory), at a remote home node,
or using the services of both the home node and another remote node that is caching
an exclusive copy. This last case is called a three-hopmiss and has a higher cost because
it requires interrogating both the home directory and a remote cache. Note that this
simple model does not account for invalidation time but does include some factor
for increasing interconnect time. These remote access latencies are based on those
in an SGI Origin 3000, the fastest scalable interconnect system in 2001, and assume a
500 MHz processor.
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Figure I.17 The effective latency of memory references in a DSM multiprocessor
depends both on the relative frequency of cache misses and on the location of
the memory where the accesses are served. These plots show the memory access cost
(a metric called average memory access time in Chapter 2) for each of the benchmarks
for 8, 16, 32, and 64 processors, assuming a 512 KB data cache that is two-way set asso-
ciative with 64-byte blocks. The average memory access cost is composed of four dif-
ferent types of accesses, with the cost of each type given in Figure I.16. For the Barnes
and LU benchmarks, the low miss rates lead to low overall access times. In FFT, the
higher access cost is determined by a higher local miss rate (1–4%) and a significant
three-hop miss rate (1%). The improvement in FFT comes from the reduction in local
miss rate from 4% to 1%, as the aggregate cache increases. Ocean shows the biggest
change in the cost of memory accesses, and the highest overall cost at 64 processors.
The high cost is driven primarily by a high local miss rate (average 1.6%). The memory
access cost drops from 8 to 16 processors as the grids more easily fit in the individual
caches. At 64 processors, the dataset size is too small to map properly and both local
misses and coherence misses rise, as we saw in Figure I.12.
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I.6 Performance Measurement of Parallel Processors
with Scientific Applications

One of the most controversial issues in parallel processing has been how to mea-
sure the performance of parallel processors. Of course, the straightforward answer
is to measure a benchmark as supplied and to examine wall-clock time. Measuring
wall-clock time obviously makes sense; in a parallel processor, measuring CPU
time can be misleading because the processors may be idle but unavailable for
other uses.

Users and designers are often interested in knowing not just how well a mul-
tiprocessor performs with a certain fixed number of processors, but also how the
performance scales as more processors are added. In many cases, it makes sense to
scale the application or benchmark, since if the benchmark is unscaled, effects aris-
ing from limited parallelism and increases in communication can lead to results
that are pessimistic when the expectation is that more processors will be used to
solve larger problems. Thus, it is often useful to measure the speedup as processors
are added both for a fixed-size problem and for a scaled version of the problem,
providing an unscaled and a scaled version of the speedup curves. The choice
of how to measure the uniprocessor algorithm is also important to avoid anomalous
results, since using the parallel version of the benchmark may understate the
uniprocessor performance and thus overstate the speedup.

Once we have decided to measure scaled speedup, the question is how to scale
the application. Let’s assume that we have determined that running a benchmark of
size n on p processors makes sense. The question is how to scale the benchmark to
run on m�p processors. There are two obvious ways to scale the problem:
(1) keeping the amount of memory used per processor constant, and (2) keeping
the total execution time, assuming perfect speedup, constant. The first method,
called memory-constrained scaling, specifies running a problem of size m�n
onm�p processors. The second method, called time-constrained scaling, requires
that we know the relationship between the running time and the problem size, since
the former is kept constant. For example, suppose the running time of the appli-
cation with data size n on p processors is proportional to n2/p. Then, with time-
constrained scaling, the problem to run is the problem whose ideal running time
on m�p processors is still n2/p. The problem with this ideal running time has sizeffiffiffiffi
m

p �n.

Example Suppose we have a problem whose execution time for a problem of size n is pro-
portional to n3. Suppose the actual running time on a 10-processor multiprocessor
is 1 hour. Under the time-constrained and memory-constrained scaling models,
find the size of the problem to run and the effective running time for a
100-processor multiprocessor.

Answer For the time-constrained problem, the ideal running time is the same, 1 hour,
so the problem size is

ffiffiffiffiffi
103

p �n or 2.15 times larger than the original. For
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memory-constrained scaling, the size of the problem is 10n and the ideal execution
time is 103/10, or 100 hours! Since most users will be reluctant to run a problem on
an order of magnitude more processors for 100 times longer, this size problem is
probably unrealistic.

In addition to the scaling methodology, there are questions as to how the pro-
gram should be scaled when increasing the problem size affects the quality of the
result. Often, we must change other application parameters to deal with this effect.
As a simple example, consider the effect of time to convergence for solving a dif-
ferential equation. This time typically increases as the problem size increases,
since, for example, we often require more iterations for the larger problem. Thus,
when we increase the problem size, the total running time may scale faster than the
basic algorithmic scaling would indicate.

For example, suppose that the number of iterations grows as the log of the prob-
lem size. Then, for a problemwhose algorithmic running time is linear in the size of
the problem, the effective running time actually grows proportional to n log n. If we
scaled from a problem of sizem on 10 processors, purely algorithmic scaling would
allow us to run a problem of size 10 m on 100 processors. Accounting for the
increase in iterations means that a problem of size k�m, where k log k¼10, will
have the same running time on 100 processors. This problem size yields a scaling
of 5.72 m, rather than 10 m.

In practice, scaling to deal with error requires a good understanding of the
application and may involve other factors, such as error tolerances (for example,
it affects the cell-opening criteria in Barnes-Hut). In turn, such effects often signif-
icantly affect the communication or parallelism properties of the application as
well as the choice of problem size.

Scaled speedup is not the same as unscaled (or true) speedup; confusing the two
has led to erroneous claims (e.g., see the discussion in Section I.6). Scaled speedup
has an important role, but only when the scaling methodology is sound and the
results are clearly reported as using a scaled version of the application. Singh,
Hennessy, and Gupta [1993] described these issues in detail.

I.7 Implementing Cache Coherence

In this section, we explore the challenge of implementing cache coherence,
starting first by dealing with the challenges in a snooping coherence protocol,
which we simply alluded to in Chapter 5. Implementing a directory protocol
adds some additional complexity to a snooping protocol, primarily arising from
the absence of broadcast, which forces the use of a different mechanism to
resolve races. Furthermore, the larger processor count of a directory-based
multiprocessor means that we cannot retain assumptions of unlimited buffering
and must find new ways to avoid deadlock, Let’s start with the snooping
protocols.
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As we mentioned in Chapter 5, the challenge of implementing misses in a
snooping coherence protocol without a bus lies in finding a way to make the multi-
step miss process appear atomic. Both an upgrade miss and a write miss require the
same basic processing and generate the same implementation challenges; for sim-
plicity, we focus on upgrade misses. Here are the steps in handling an upgrade
miss:

1. Detect the miss and compose an invalidate message for transmission to other
caches.

2. When access to the broadcast communication link is available, transmit the
message.

3. When the invalidates have been processed, the processor updates the state of the
cache block and then proceeds with the write that caused the upgrade miss.

There are two related difficulties that can arise. First, how will two processors, P1
and P2, that attempt to upgrade the same cache block at the same time resolve the
race? Second, when at step 3, how does a processor knowwhen all invalidates have
been processed so that it can complete the step?

The solution to finding a winner in the race lies in the ordering imposed by the
broadcast communication medium. The communication medium must broadcast
any cache miss to all the nodes. If P1 and P2 attempt to broadcast at the same time,
wemust ensure that either P1’s message will reach P2 first or P2’s will reach P1 first.
This property will be true if there is a single channel through which all ingoing and
outgoing requests from a node must pass through and if the communication network
does not accept amessage unless it can guarantee delivery (i.e., it is effectively circuit
switched, see Appendix F). If both P1 and P2 initiate their attempts to broadcast an
invalidate simultaneously, then the network can accept only one of these operations
and delay the other. This ordering ensures that either P1 or P2 will complete its com-
munication in step 2 first. The network can explicitly signal when it accepts a mes-
sage and can guarantee it will be the next transmission; alternatively, a processor can
simply watch the network for its own request, knowing that once the request is seen,
it will be fully transmitted to all processors before any subsequent messages.

Now, suppose P1 wins the race to transmit its invalidate; once it knows it has
won the race, it can continue with step 3 and complete the miss handling. There is a
potential problem, however, for P2. When P2 undertook step 1, it believed that the
block was in the shared state, but for P1 to advance at step 3, it must know that P2
has processed the invalidate, which must change the state of the block at P2 to inva-
lid! One simple solution is for P2 to notice that it has lost the race, by observing that
P1’s invalidate is broadcast before its own invalidate. P2 can then invalidate the
block and generate a write miss to get the data. P1 will see its invalidate before
P2’s, so it will change the block to modified and update the data, which guarantees
forward progress and avoids deadlock.When P1 sees the subsequent invalidate to a
block in the Modified state (a possibility that cannot arise in our basic protocol
discussed in Chapter 5), it knows that it was the winner of a race. It can simply
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ignore the invalidate, knowing that it will be followed by a write miss, or it can
write the block back to memory and make its state invalid.

Another solution is to give precedence to incoming requests over outgoing
requests, so that beforeP2 can transmit its invalidate itmust handle any pending inval-
idates or write misses. If any of those misses are for blockswith the same address as a
pending outgoing message, the processor must be prepared to restart the write oper-
ation, since the incoming request may cause the state of the block to change. Notice
thatP1knows that the invalidateswill beprocessedonce it has successfully completed
the broadcast, since precedence is given to invalidate messages over outgoing
requests. (Because itdoesnot employbroadcast, aprocessorusingadirectoryprotocol
cannot know when an invalidate is received; instead, explicit acknowledgments are
required, aswe discuss in the next section. Indeed, aswewill see, it cannot evenknow
it has won the race to become the owner until its request is acknowledged.)

Reads will also require a multiple-step process, since we need to get the data
back from memory or a remote cache (in a write-back cache system), but reads do
not introduce fundamentally new problems beyond what exists for writes.

There are, however, a few additional tricky edge cases that must be handled cor-
rectly. For example, in a write-back cache, a processor can generate a read miss that
requires a write-back, which it could delay, while giving the read miss priority. If a
snoop request appears for the cache block that is to bewritten back, the processormust
discover this and send thedata back. Failure to do so can create a deadlock situation.A
similar tricky situation exists when a processor generates a write miss, which will
make a block exclusive, but, before the processor receives the data and can update
the block, other processorsgenerate readmisses for that block.The readmisses cannot
be processed until the writing processor receives the data and updates the block.

One of the more difficult problems occurs in a write-back cache where the data
for a read or write miss can come either from memory or from one of the processor
caches, but the requesting processor will not know a priori where the data will
come from. In most bus-based systems, a single global signal is used to indicate
whether any processor has the exclusive (and hence the most up-to-date) copy; oth-
erwise, the memory responds. These schemes can work with a pipelined intercon-
nection by requiring that processors signal whether they have the exclusive copy
within a fixed number of cycles after the miss is broadcast.

In a modern multiprocessor, however, it is essentially impossible to bound the
amount of time required for a snoop request to be processed. Instead, a mechanism
is required to determine whether the memory has an up-to-date copy. One solution
is to add coherence bits to the memory, indicating whether the data are exclusive in
a remote cache. This mechanism begins to move toward the directory approach,
whose implementation challenges we consider next.

Implementing Cache Coherence in a DSM Multiprocessor

Implementing a directory-based cache coherence protocol requires overcoming
all the problems related to nonatomic actions for a snooping protocol without
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the use of broadcast (see Chapter 5), which forced a serialization on competing
writes and also ensured the serialization required for the memory consistency
model. Avoiding the need to broadcast is a central goal for a directory-based
system, so another method for ensuring serialization is necessary.

The serialization of requests for exclusive access to a memory block is eas-
ily enforced since those requests will be serialized when they reach the unique
directory for the specified block. If the directory controller simply ensures that
one request is completely serviced before the next is begun, writes will be seri-
alized. Because the requesters cannot know ahead of time who will win the
race and because the communication is not a broadcast, the directory must sig-
nal to the winner when it completes the processing of the winner’s request.
This is done by a message that supplies the data on a write miss or by an
explicit acknowledgment message that grants ownership in response to an
invalidation request.

What about the loser in this race? The simplest solution is for the system to send
a negative acknowledge, or NAK, which requires that the requesting node regen-
erate its request. (This is the equivalent of a collision in the broadcast network in a
snooping scheme, which requires that one of the transmitting nodes retry its com-
munication.) We will see in the next section why the NAK approach, as opposed to
buffering the request, is attractive.

Although the acknowledgment that a requesting node has ownership is com-
pleted when the write miss or ownership acknowledgment message is transmit-
ted, we still do not know that the invalidates have been received and processed by
the nodes that were in the sharing set. All memory consistency models eventually
require (either before the next cache miss or at a synchronization point, for exam-
ple) that a processor knows that all the invalidates for a write have been pro-
cessed. In a snooping scheme, the nature of the broadcast network provides
this assurance.

How can we know when the invalidates are complete in a directory scheme?
The only way to know that the invalidates have been completed is to have the des-
tination nodes of the invalidate messages (the members of the sharing set) explic-
itly acknowledge the invalidation messages sent from the directory. Who should
they be acknowledged to? There are two possibilities. In the first the acknowledg-
ments can be sent to the directory, which can count them, and when all acknowl-
edgments have been received, confirm this with a single message to the original
requester. Alternatively, when granting ownership, the directory can tell the reg-
ister how many acknowledgments to expect. The destinations of the invalidate
messages can then send an acknowledgment directly to the requester, whose iden-
tity is provided by the directory. Most existing implementations use the latter
scheme, since it reduces the possibility of creating a bottleneck at a directory.
Although the requirement for acknowledgments is an additional complexity in
directory protocols, this requirement arises from the avoidance of a serialization
mechanism, such as the snooping broadcast operation, which in itself is the limit
to scalability.
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Avoiding Deadlock from Limited Buffering

A new complication in the implementation is introduced by the potential scale of a
directory-based multiprocessor. In Chapter 5, we assumed that the network could
always accept a coherence message and that the request would be acted upon at
some point. In a much larger multiprocessor, this assumption of unlimited buffer-
ing may be unreasonable.What happens when the network does not have unlimited
buffering? The major implication of this limit is that a cache or directory controller
may be unable to complete a message send. This could lead to deadlock.

The potential deadlock arises from three properties, which characterize many
deadlock situations:

1. More than one resource is needed to complete a transaction: Message buffers
are needed to generate requests, create replies and acknowledgments, and
accept replies.

2. Resources are held until a nonatomic transaction completes: The buffer used to
create the reply cannot be freed until the reply is accepted, for reasons we will
see shortly.

3. There is no global partial order on the acquisition of resources: Nodes can gen-
erate requests and replies at will.

These characteristics lead to deadlock, and avoiding deadlock requires breaking
one of these properties. Freeing up resources without completing a transaction
is difficult, since the transaction must be completely backed out and cannot be left
half-finished. Hence, our approach will be to try to resolve the need for multiple
resources. We cannot simply eliminate this need, but we can try to ensure that the
resources will always be available.

One way to ensure that a transaction can always complete is to guarantee that
there are always buffers to accept messages. Although this is possible for a small
multiprocessor with processors that block on a cache miss or have a small number
of outstanding misses, it may not be very practical in a directory protocol, since a
single write could generate many invalidate messages. In addition, features such as
prefetch and multiple outstanding misses increase the amount of buffering
required. There is an alternative strategy, which most systems use and which
ensures that a transaction will not actually be initiated until we can guarantee that
it has the resources to complete. The strategy has four parts:

1. A separate network (physical or virtual) is used for requests and replies, where a
reply is any message that a controller waits for in transitioning between states.
This ensures that new requests cannot block replies that will free up buffers.

2. Every request that expects a reply allocates space to accept the reply when the
request is generated. If no space is available, the request waits. This ensures that
a node can always accept a reply message, which will allow the replying node to
free its buffer.
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3. Any controller can reject with a NAK any request, but it can never NAK a reply.
This prevents a transaction from starting if the controller cannot guarantee that it
has buffer space for the reply.

4. Any request that receives a NAK in response is simply retried.

To see that there are no deadlocks with the four properties above, we must
ensure that all replies can be accepted and that every request is eventually ser-
viced. Since a cache controller or directory controller always allocates a buffer to
handle the reply before issuing a request, it can always accept the reply when it
returns. To see that every request is eventually serviced, we need only show that
any request could be completed. Since every request starts with a read or write
miss at a cache, it is sufficient to show that any read or write miss is eventually
serviced. Since the write miss case includes the actions for a read miss as a sub-
set, we focus on showing the write misses are serviced. The simplest situation is
when the block is uncached; since that case is subsumed by the case when the
block is shared, we focus on the shared and exclusive cases. Let’s consider the
case where the block is shared:

■ The CPU attempts to do a write and generates a write miss that is sent to the
directory. For simplicity, we can assume that the processor is stalled. Although
it may issue further requests, it should not issue a request for the same cache
block until the first one is completed. Requests for independent blocks can be
handled separately.

■ The write miss is sent to the directory controller for this memory block. Note
that although one cache controller handles all the requests for a given cache
block, regardless of its memory contents, the directory controller handles
requests for different blocks as independent events (assuming sufficient buff-
ering, which is allocated before the directory issues any further messages on
behalf of the request). The only conflict at the directory controller is when
two requests arrive for the same block. The controller must wait for the first
operation to be completed. It can simply NAK the second request or buffer
it, but it should not service the second request for a given memory block until
the first is completed.

■ Now consider what happens at the directory controller: Suppose the write
miss is the next thing to arrive at the directory controller. The controller
sends out the invalidates, which can always be accepted after a limited
delay by the cache controller. Note that one possibility is that the cache
controller has an outstanding miss for the same block. This is the dual case
to the snooping scheme, and we must once again break the tie by forcing
the cache controller to accept and act on the directory request. Depending
on the exact timing, this cache controller will either get the cache line
later from the directory or will receive a NAK and have to restart the
process.
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The case where the block is exclusive is somewhat trickier. Our analysis begins
when the write miss arrives at the directory controller for processing. There are two
cases to consider:

■ The directory controller sends a fetch/invalidate message to the processor
where it arrives to find the block in the exclusive state. The cache controller
sends a data write-back to the home directory and makes its state invalid. This
reply arrives at the home directory controller, which can always accept the
reply, since it preallocated the buffer. The directory controller sends back
the data to the requesting processor, which can always accept the reply; after
the cache is updated, the requesting cache controller notifies the processor.

■ The directory controller sends a fetch/invalidate message to the node indicated
as owner. When the message arrives at the owner node, it finds that this cache
controller has taken a read or write miss that caused the block to be replaced. In
this case, the cache controller has already sent the block to the home directory
with a data write-back and made the data unavailable. Since this is exactly the
effect of the fetch/invalidate message, the protocol operates correctly in this
case as well.

We have shown that our coherence mechanism operates correctly when the
cache and directory controller can accept requests for operation on cache blocks
for which they have no outstanding operations in progress, when replies are
always accepted, and when requests can be NAKed and forced to retry. Like
the case of the snooping protocol, the cache controller must be able to break ties,
and it always does so by favoring the instructions from the directory. The ability to
NAK requests is what allows an implementation with finite buffering to avoid
deadlock.

Implementing the Directory Controller

To implement a cache coherence scheme, the cache controller must have the same
abilities it needed in the snooping case, namely, the capability of handling requests
for independent blocks while awaiting a response to a request from the local pro-
cessor. The incoming requests are still processed in order, and each one is com-
pleted before beginning the next. Should a cache controller receive too many
requests in a short period of time, it can NAK them, knowing that the directory
will subsequently regenerate the request.

The directory must also be multithreaded and able to handle requests for mul-
tiple blocks independently. This situation is somewhat different than having the
cache controller handle incoming requests for independent blocks, since the direc-
tory controller will need to begin processing one request while an earlier one is still
underway. The directory controller cannot wait for one to complete before servic-
ing the next request, since this could lead to deadlock. Instead, the directory con-
troller must be reentrant; that is, it must be capable of suspending its execution
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while waiting for a reply and accepting another transaction. The only place this
must occur is in response to read or write misses, while waiting for a response from
the owner. This leads to three important observations:

1. The state of the controller need only be saved and restored while either a fetch
operation from a remote location or a fetch/invalidate is outstanding.

2. The implementation can bound the number of outstanding transactions being
handled in the directory by simply NAKing read or write miss requests that
could cause the number of outstanding requests to be exceeded.

3. If instead of returning the data through the directory, the owner node forwards
the data directly to the requester (as well as returning it to the directory), we can
eliminate the need for the directory to handle more than one outstanding
request. This motivation, in addition to the reduction of latency, is the reason
for using the forwarding style of protocol. There are other complexities from
forwarding protocols that arise when requests arrive closely spaced in time.

The major remaining implementation difficulty is to handle NAKs. One alter-
native is for each processor to keep track of its outstanding transactions so it
knows, when the NAK is received, what the requested transaction was. The alter-
native is to bundle the original request into the NAK, so that the controller receiv-
ing the NAK can determine what the original request was. Because every request
allocates a slot to receive a reply and a NAK is a reply, NAKs can always be
received. In fact, the buffer holding the return slot for the request can also hold
information about the request, allowing the processor to reissue the request if it
is NAKed.

In practice, great care is required to implement these protocols correctly and to
avoid deadlock. The key ideas we have seen in this section—dealing with nona-
tomicity and finite buffering—are critical to ensuring a correct implementation.
Designers have found that both formal and informal verification techniques are
helpful for ensuring that implementations are correct.

I.8 The Custom Cluster Approach: Blue Gene/L

Blue Gene/L (BG/L) is a scalable message-passing supercomputer whose design
offers unprecedented computing density as measured by compute power per watt.
By focusing on power efficiency, BG/L also achieves unmatched throughput per
cubic foot. High computing density, combined with cost-effective nodes and exten-
sive support for RAS, allows BG/L to efficiently scale to very large processor counts.

BG/L is a distributed-memory, message-passing computer but one that is quite
different from the cluster-based, often throughput-oriented computers that rely on
commodity technology in the processors, interconnect, and, sometimes, the pack-
aging and system-level organization. BG/L uses a special customized processing
node that contains two processors (derived from low-power, lower-clock-rate
PowerPC 440 chips used in the embedded market), caches, and interconnect logic.
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A complete computing node is formed by adding SDRAM chips, which are the
only commodity semiconductor parts in the BG/L design.

BG/L consists of up to 64 K nodes organized into 32 racks each containing 1 K
nodes in about 50 cubic feet. Each rack contains two double-sided boards with 512
nodes each. Due to the high density within a board and rack, 85% of the intercon-
nect is within a single rack, greatly reducing the complexity and latency associated
with connections between racks. Furthermore, the compact size of a rack, which is
enabled by the low power and high density of each node, greatly improves effi-
ciency, since the interconnection network for connections within a single rack
are integrated into the single compute chip that comprises each node.

Appendix F discusses the main BL/G interconnect network, which is a three-
dimensional torus. There are four other networks: Gigabit Ethernet, connected at
designated I/O nodes; a JTAG network used for test; a barrier network; and a global
collective network. The barrier network contains four independent channels and
can be used for performing a global or or a global and across all the processors
with latency of less than 1.5 microseconds. The global collective network connects
all the processors in a tree and is used for global operations. It supports a variety of
integer reductions directly, avoiding the need to involve the processor, and leading
to times for large-scale reductions that are 10 to 100 times faster than in typical
supercomputers. The collective network can also be used to broadcast a single
value efficiently. Support for the collective network as well as the torus is included
in the chip that forms of the heart of each processing node.

The Blue Gene/L Computing Node

Each BG/L node consists of a single processing chip and several SDRAM chips.
The BG/L processing chip, shown in Figure I.18, contains the following:

1. Two PowerPC 440 CPUs, each a two-issue superscalar with a seven-stage
pipeline and speculative out-order issue capability, clocked at a modest
(and power-saving) 700 MHz. Each CPU has separate 32 KB I and D caches
that are nonbblocking with up to four outstanding misses. Cache coherence
must be enforced in software. Each CPU also contains a pair of floating-point
coprocessors, each with its own FP register set and each capable of issuing a
multiply-add each clock cycle, supporting a special SIMD instruction set
capability that includes complex arithmetic using a pair of registers and
128-bit operands.

2. Separate fully associative L2 caches, each with 2 KB of data and a 128-byte
block size, that act essentially like prefetch buffers. The L2 cache controllers
recognize streamed data access and also handle prefetch from L3 or main mem-
ory. They have low latency (11 cycles) and provide high bandwidth (5 bytes per
clock). The L2 prefetch buffer can supply 5.5 GB/sec to the L1 caches.

3. A 4 MB L3 cache implemented with embedded DRAM. Each L2 buffer is con-
nected by a bus supplying 11 GB/sec of bandwidth from the L3 cache.
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4. A memory bus supporting 256 to 512 MB of DDR DRAMS and providing
5.5 GB/sec of memory bandwidth to the L3 cache. This amount of memory
might seem rather modest for each node, given that the node contains two pro-
cessors, each with two FP units. Indeed Amdahl’s rule of thumb (1 MB per 1
MIPS) and an assumption of 25% of peak performance would favor about 2.7
times the memory per node. For floating-point-intensive applications where the
computational need usually grows faster than linear in the memory size, the
upper limit of 512 MB/node is probably reasonable.

5. Support logic for the five interconnection networks.

Byplacingall the logicother thanDRAMsintoa singlechip,BG/Lachieveshigher
density, lower power, and lower cost,making it possible to pack the processing nodes
extremelydensely.Thedensity in termsallows the interconnectionnetworks tobe low
latency,highbandwidth, andquite cost effective.Thecombinationyieldsa supercom-
puter that scales very cost-effectively, yielding an order-of-magnitude improvement
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Figure I.18 The BG/L processing node. The unfilled boxes are the PowerPC processors
with added floating-point units. The solid gray boxes are network interfaces, and the
shaded lighter gray boxes are part of the memory system, which is supplemented by
DDR RAMS.
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in GFLOPs/watt over other approaches as well as significant improvements in
GFLOPS/$ for very large-scale multiprocessors.

For example, BG/L with 64 K nodes has a peak performance of 360 TF and
uses about 1.4 megawatts. To achieve 360 TF peak using the Power5+, which
is the most power-efficient, high-end FP processor, would require about 23,500
processors (the dual processor can execute up to 8 FLOPs/clock at 1.9 GHz).
The power requirement for just the processors, without external cache, DRAM,
or interconnect, would be about 2.9 megawatts, or about double the power of
the entire BG/L system. Likewise, the smaller die size of the BG/L node and its
need for DRAMs as the only external chip produce significant cost savings versus
a node built using a high-end multiprocessor. Figure I.19 shows a photo of the 64K
node BG/L. The total size occupied by this 128K-processor multiprocessor is com-
parable to that occupied by earlier multiprocessors with 16K processors.

I.9 Concluding Remarks

The landscape of large-scale multiprocessors has changed dramatically over the
past five to ten years. While some form of clustering is now used for all the
largest-scale multiprocessors, calling them all “clusters” ignores significant differ-
ences in architecture, implementation style, cost, and performance. Bell and Gray

Figure I.19 The 64 K-processor Blue Gene/L system.
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[2002] discussed this trend, arguing that clusters will dominate. While Dongarra
et al. [2005] agreed that some form of clustering is almost inevitable in the largest
multiprocessors, they developed a more nuanced classification that attempts to dis-
tinguish among a variety of different approaches.

In Figure I.20 we summarize the range of terminology that has been used for
large-scale multiprocessors and focus on defining the terms from an architectural
and implementation perspective. Figure I.21 shows the hierarchical relationship of
these different architecture approaches. Although there has been some conver-
gence in architectural approaches over the past 15 years, the TOP500 list, which
reports the 500 fastest computers in the world as measured by the Linpack bench-
mark, includes commodity clusters, customized clusters, Symmetric Multiproces-
sors (SMPs), DSMs, and constellations, as well as processors that are both scalar
and vector.

Terminology Characteristics Examples

MPP Originally referred to a class of architectures characterized by large
numbers of small, typically custom processors and usually using
an SIMD style architecture.

Connection Machines CM-2

SMP (symmetric
multiprocessor)

Shared-memory multiprocessors with a symmetric relationship to
memory; also called UMA (uniform memory access). Scalable
versions of these architectures used multistage interconnection
networks, typically configured with at most 64 to 128 processors.

SUN Sunfire, NEC Earth
Simulator

DSM (distributed
shared memory)

A class of architectures that support scalable shared memory in a
distributed fashion. These architectures are available both with and
without cache coherence and typically can support hundreds to
thousands of processors.

SGI Origin and Altix, Cray
T3E, Cray X1, IBM p5 590/5

Cluster A class of multiprocessors using message passing. The individual
nodes are either commodities or customized, likewise the
interconnect.

See commodity and custom
clusters

Commodity
cluster

A class of clusters where the nodes are truly commodities,
typically headless workstations, motherboards, or blade servers,
connected with a SAN or LAN usually accessible via an I/O bus.

“Beowulf” and other
“homemade” clusters

Custom cluster A cluster architecture where the nodes and the interconnect are
customized and more tightly integrated than in a commodity
cluster. Also called distributed memory or message passing
multiprocessors.

IBM Blue Gene, Cray XT3

Constellation Large-scale multiprocessors that use clustering of smaller-scale
multiprocessors, typically with a DSM or SMP architecture and 32
or more processors.

Larger SGI Origin/Altix,
ASC Purple

Figure I.20 A classification of large-scale multiprocessors. The term MPP, which had the original meaning
described above, has been used more recently, and less precisely, to refer to all large-scale multiprocessors. None
of the commercial shipping multiprocessors is a true MPP in the original sense of the word, but such an approach
may make sense in the future. Both the SMP and DSM class includes multiprocessors with vector support. The term
constellation has been used in different ways; the above usage seems both intuitive and precise [Dongarra et al. 2005].
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Nonetheless, there are some clearly emerging trends, which we can see by
looking at the distribution of types of multiprocessors in the TOP500 list:

1. Clusters represent a majority of the systems. The lower development effort for
clusters has clearly been a driving force in making them more popular. The
high-end multiprocessor market has not grown sufficiently large to support
full-scale, highly customized designs as the dominant choice.

2. The majority of the clusters are commodity clusters, often put together by users,
rather than a system vendor designing a standard product.

3. Although commodity clusters dominate in their representation, the top 25
entries on the list are much more varied and include 9 custom clusters (primarily
instances of Blue Gene or Cray XT3 systems), 2 constellations, 8 commodity
clusters, 2 SMPs (one of which is the NEC Earth Simulator, which has nodes
with vector processors), and 4 DSM multiprocessors.

4. Vector processors, which once dominated the list, have almost disappeared.

5. The IBMBlue Gene dominates the top 10 systems, showing the advantage of an
approach the uses some commodity processor cores, but customizes many other
functions and balances performance, power, and packaging density.

6. Architectural convergence has been driven more by market effects (lack of
growth, limited suppliers, etc.) than by a clear-cut consensus on the best archi-
tectural approaches.

Larger
multiprocessors

Shared address
space

Symmetric shared 
memory (SMP)

Examples: IBM eServer, 
SUN Sunfire

Distributed shared
memory (DSM)

Commodity clusters:
Beowulf and others

Custom
cluster

Uniform cluster:
IBM Blue Gene

Cache coherent: 
ccNUMA:

SGI Origin/Altix

Constellation cluster of 
DSMs or SMPs

SGI Altix, ASC Purple

Noncache coherent: 
Cray T3E, X1

Distributed
address space

Figure I.21 The space of large-scale multiprocessors and the relation of different classes.
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Software, both applications and programming languages and environments,
remains the big challenge for parallel computing, just as it was 30 years ago, when
multiprocessors such as the Illiac IV were being designed. The combination of ease
of programming with high parallel performance remains elusive. Until better pro-
gress is made on this front, convergence toward a single programming model and
underlying architectural approach (remembering that for uniprocessors we essen-
tially have one programming model and one architectural approach!) will be slow
or will be driven by factors other than proven architectural superiority.
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J
Computer Arithmetic

by David Goldberg
Xerox Palo Alto Research Center

The Fast drives out the Slow even if the Fast is wrong.

W. Kahan



J.1 Introduction

Although computer arithmetic is sometimes viewed as a specialized part of CPU
design, it is a very important part. This was brought home for Intel in 1994 when
their Pentium chip was discovered to have a bug in the divide algorithm. This
floating-point flaw resulted in a flurry of bad publicity for Intel and also cost them
a lot of money. Intel took a $300 million write-off to cover the cost of replacing
the buggy chips.

In this appendix, we will study some basic floating-point algorithms, includ-
ing the division algorithm used on the Pentium. Although a tremendous variety
of algorithms have been proposed for use in floating-point accelerators, actual
implementations are usually based on refinements and variations of the few basic
algorithms presented here. In addition to choosing algorithms for addition, sub-
traction, multiplication, and division, the computer architect must make other
choices. What precisions should be implemented? How should exceptions be
handled? This appendix will give you the background for making these and other
decisions.

Our discussion of floating point will focus almost exclusively on the IEEE
floating-point standard (IEEE 754) because of its rapidly increasing acceptance.
Although floating-point arithmetic involves manipulating exponents and shifting
fractions, the bulk of the time in floating-point operations is spent operating on
fractions using integer algorithms (but not necessarily sharing the hardware that
implements integer instructions). Thus, after our discussion of floating point,
we will take a more detailed look at integer algorithms.

Some good references on computer arithmetic, in order from least to most
detailed, are Chapter 3 of Patterson and Hennessy [2009]; Chapter 7 of Hamacher,
Vranesic, and Zaky [1984]; Gosling [1980]; and Scott [1985].

J.2 Basic Techniques of Integer Arithmetic

Readers who have studied computer arithmetic before will find most of this section
to be review.

Ripple-Carry Addition

Adders are usually implemented by combining multiple copies of simple com-
ponents. The natural components for addition are half adders and full adders.
The half adder takes two bits a and b as input and produces a sum bit s and a
carry bit cout as output. Mathematically, s¼ (a+b) mod 2, and cout¼b(a+b)/2c,
where b c is the floor function. As logic equations, s¼ ab + ab and cout¼ab,
where ab means a ^ b and a+b means a _ b. The half adder is also called
a (2,2) adder, since it takes two inputs and produces two outputs. The full adder
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is a (3,2) adder and is defined by s¼ (a+b+c) mod 2, cout¼b(a+b+c)/2c, or
the logic equations

s¼ abc+ abc+ abc+ abcJ:2:1

cout ¼ ab+ ac + bcJ:2:2

The principal problem in constructing an adder for n-bit numbers out of smaller
pieces is propagating the carries from one piece to the next. The most obvious
way to solve this is with a ripple-carry adder, consisting of n full adders, as
illustrated in Figure J.1. (In the figures in this appendix, the least-significant
bit is always on the right.) The inputs to the adder are an�1an�2⋯a0
and bn�1bn�2⋯b0, where an�1an�2⋯a0 represents the number
an�12n�1 + an�22n�2 +⋯+ a0. The ci+1 output of the ith adder is fed into the ci + 1

input of the next adder (the (i+1)-th adder) with the lower-order carry-in c0
set to 0. Since the low-order carry-in is wired to 0, the low-order adder could be a half
adder. Later, however, we will see that setting the low-order carry-in bit to 1 is useful
for performing subtraction.

In general, the time a circuit takes to produce an output is proportional to the
maximum number of logic levels through which a signal travels. However, deter-
mining the exact relationship between logic levels and timings is highly technology
dependent. Therefore, when comparing adders we will simply compare the number
of logic levels in each one. How many levels are there for a ripple-carry adder? It
takes two levels to compute c1 from a0 and b0. Then it takes two more levels to com-
pute c2 from c1, a1, b1, and so on, up to cn. So, there are a total of 2n levels. Typical
values of n are 32 for integer arithmetic and 53 for double-precision floating point.
The ripple-carry adder is the slowest adder, but also the cheapest. It can be built with
only n simple cells, connected in a simple, regular way.

Because the ripple-carry adder is relatively slow compared with the designs
discussed in Section J.8, you might wonder why it is used at all. In technologies
like CMOS, even though ripple adders take time O(n), the constant factor is very
small. In such cases short ripple adders are often used as building blocks in larger
adders.

b
n–1

a
n–1

s
n–1

Full
adder

c
n–1

s
n–2

c
n

a
n–2

b
n–2

Full
adder

b
1

a
1

s
1

Full
adder

s
0

a
0

b
0

Full
adder

c
2 c

1

0

Figure J.1 Ripple-carry adder, consisting of n full adders. The carry-out of one full
adder is connected to the carry-in of the adder for the next most-significant bit. The
carries ripple from the least-significant bit (on the right) to the most-significant bit
(on the left).
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Radix-2 Multiplication and Division

The simplest multiplier computes the product of two unsigned numbers, one bit at a
time, as illustrated in Figure J.2(a). The numbers to be multiplied are an�1an�2⋯a0
and bn�1bn�2⋯b0, and they are placed in registers A and B, respectively. Register
P is initially 0. Each multiply step has two parts:

Multiply Step (i) If the least-significant bit of A is 1, then register B, containing bn�1bn�2⋯b0, is
added to P; otherwise, 00⋯00 is added to P. The sum is placed back into P.

(ii) Registers P and A are shifted right, with the carry-out of the sum being moved
into the high-order bit of P, the low-order bit of P being moved into register A,
and the rightmost bit of A, which is not used in the rest of the algorithm, being
shifted out.

Carry-out

AP

n

n

n

Shift

P

B0

A

n + 1

n1

n

Shift

(a)

(b)

1

B

Figure J.2 Block diagram of (a) multiplier and (b) divider for n-bit unsigned integers.
Each multiplication step consists of adding the contents of P to either B or 0 (depending
on the low-order bit of A), replacing P with the sum, and then shifting both P and A one
bit right. Each division step involves first shifting P and A one bit left, subtracting B from
P, and, if the difference is nonnegative, putting it into P. If the difference is nonnegative,
the low-order bit of A is set to 1.
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After n steps, the product appears in registers P and A, with A holding the
lower-order bits.

The simplest divider also operates on unsigned numbers and produces the
quotient bits one at a time. A hardware divider is shown in Figure J.2(b). To
compute a/b, put a in the A register, b in the B register, and 0 in the P register
and then perform n divide steps. Each divide step consists of four parts:

Divide Step (i) Shift the register pair (P,A) one bit left.

(ii) Subtract the content of register B (which is bn�1bn�2⋯b0) from register P,
putting the result back into P.

(iii) If the result of step 2 is negative, set the low-order bit of A to 0, otherwise to 1.

(iv) If the result of step 2 is negative, restore the old value of P by adding the
contents of register B back into P.

After repeating this process n times, the A register will contain the quotient, and
the P register will contain the remainder. This algorithm is the binary version of the
paper-and-pencil method; a numerical example is illustrated in Figure J.3(a).

Notice that the two block diagrams in Figure J.2 are very similar. The main
difference is that the register pair (P,A) shifts right when multiplying and left when
dividing. By allowing these registers to shift bidirectionally, the same hardware
can be shared between multiplication and division.

The division algorithm illustrated in Figure J.3(a) is called restoring, because
if subtraction by b yields a negative result, the P register is restored by adding b
back in. The restoring algorithm has a variant that skips the restoring step and
instead works with the resulting negative numbers. Each step of this nonrestoring
algorithm has three parts:

Nonrestoring If P is negative,

Divide Step (i-a) Shift the register pair (P,A) one bit left.

(ii-a) Add the contents of register B to P.

Else,

(i-b) Shift the register pair (P,A) one bit left.

(ii-b) Subtract the contents of register B from P.

(iii) If P is negative, set the low-order bit of A to 0, otherwise set it to 1.

After repeating this n times, the quotient is in A. If P is nonnegative, it is the
remainder. Otherwise, it needs to be restored (i.e., add b), and then it will be the
remainder. A numerical example is given in Figure J.3(b). Since steps (i-a) and (i-
b) are the same, you might be tempted to perform this common step first, and then
test the sign of P. That doesn’t work, since the sign bit can be lost when shifting.
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P A
00000 1110 Divide 14¼11102 by 3¼112. B always contains 00112.

00001 110 step 1(i): shift.

�00011 step 1(ii): subtract.

�00010 1100 step 1(iii): result is negative, set quotient bit to 0.

00001 1100 step 1(iv): restore.

00011 100 step 2(i): shift.

�00011 step 2(ii): subtract.

00000 1001 step 2(iii): result is nonnegative, set quotient bit to 1.

00001 001 step 3(i): shift.

�00011 step 3(ii): subtract.

�00010 0010 step 3(iii): result is negative, set quotient bit to 0.

00001 0010 step 3(iv): restore.

00010 010 step 4(i): shift.

�00011 step 4(ii): subtract.

�00001 0100 step 4(iii): result is negative, set quotient bit to 0.

00010 0100 step 4(iv): restore. The quotient is 01002 and the remainder is 000102.

(a)

00000 1110 Divide 14¼11102 by 3¼112. B always contains 00112.

00001 110 step 1(i-b): shift.

+11101 step 1(ii-b): subtract b (add two’s complement).

11110 1100 step 1(iii): P is negative, so set quotient bit to 0.

11101 100 step 2(i-a): shift.

+00011 step 2(ii-a): add b.

00000 1001 step 2(iii): P is nonnegative, so set quotient bit to 1.

00001 001 step 3(i-b): shift.

+11101 step 3(ii-b): subtract b.

11110 0010 step 3(iii): P is negative, so set quotient bit to 0.

11100 010 step 4(i-a): shift.

+00011 step 4(ii-a): add b.

11111 0100 step 4(iii): P is negative, so set quotient bit to 0.

+00011 Remainder is negative, so do final restore step.

00010 The quotient is 01002 and the remainder is 000102.

(b)

Figure J.3 Numerical example of (a) restoring division and (b) nonrestoring division.
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The explanation for why the nonrestoring algorithm works is this. Let rk be the
contents of the (P,A) register pair at step k, ignoring the quotient bits (which are sim-
ply sharing the unused bits of register A). In Figure J.3(a), initially A contains 14, so
r0¼14. At the end of the first step, r1¼28, and so on. In the restoring algorithm, part
(i) computes 2rk and then part (ii) 2rk�2nb (2nb since b is subtracted from the left
half). If 2rk�2nb�0, both algorithms end the step with identical values in (P,A). If
2rk�2nb<0, then the restoring algorithm restores this to 2rk, and the next step
begins by computing rres¼2(2rk)�2nb. In the non-restoring algorithm, 2rk�2nb
is kept as a negative number, and in the next step rnonres¼2(2rk�2nb)+
2nb¼4rk�2nb¼ rres. Thus (P,A) has the same bits in both algorithms.

If a and b are unsigned n-bit numbers, hence in the range 0�a,b�2n�1, then
the multiplier in Figure J.2 will work if register P is n bits long. However, for
division, P must be extended to n+1 bits in order to detect the sign of P. Thus
the adder must also have n+1 bits.

Why would anyone implement restoring division, which uses the same hard-
ware as nonrestoring division (the control is slightly different) but involves an extra
addition? In fact, the usual implementation for restoring division doesn’t actually
perform an add in step (iv). Rather, the sign resulting from the subtraction is tested
at the output of the adder, and only if the sum is nonnegative is it loaded back into
the P register.

As a final point, before beginning to divide, the hardware must check to see
whether the divisor is 0.

Signed Numbers

There are four methods commonly used to represent signed n-bit numbers: sign
magnitude, two’s complement, one’s complement, and biased. In the sign magni-
tude system, the high-order bit is the sign bit, and the low-order n�1 bits are the
magnitude of the number. In the two’s complement system, a number and its
negative add up to 2n. In one’s complement, the negative of a number is obtained
by complementing each bit (or, alternatively, the number and its negative add up to
2n�1). In each of these three systems, nonnegative numbers are represented in the
usual way. In a biased system, nonnegative numbers do not have their usual rep-
resentation. Instead, all numbers are represented by first adding them to the bias
and then encoding this sum as an ordinary unsigned number. Thus, a negative num-
ber k can be encoded as long as k+bias�0. A typical value for the bias is 2n�1.

Example Using 4-bit numbers (n¼4), if k¼3 (or in binary, k¼00112), how is�k expressed
in each of these formats?

Answer In signed magnitude, the leftmost bit in k¼00112 is the sign bit, so flip it to 1:�k is
represented by 10112. In two’s complement, k+11012¼2n¼16. So�k is repre-
sented by 11012. In one’s complement, the bits of k¼00112 are flipped, so�k
is represented by 11002. For a biased system, assuming a bias of 2n�1¼8, k is
represented by k+bias¼10112, and�k by�k+bias¼01012.
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The most widely used system for representing integers, two’s complement, is the
system we will use here. One reason for the popularity of two’s complement is that
it makes signed addition easy: Simply discard the carry-out from the highorder bit.
To add 5+�2, for example, add 01012 and 11102 to obtain 00112, resulting in the
correct value of 3. A useful formula for the value of a two’s complement number
an�1an�2⋯a1a0 is

�an�12
n�1 + an�22

n�2 +⋯ + a12
1 + a0J:2:3

As an illustration of this formula, the value of 11012 as a 4-bit two’s complement
number is �1 �23+1 �22+0 �21+1 �20¼�8+4+1¼�3, confirming the result of
the example above.

Overflow occurs when the result of the operation does not fit in the represen-
tation being used. For example, if unsigned numbers are being represented using 4
bits, then 6¼01102 and 11¼10112. Their sum (17) overflows because its binary
equivalent (100012) doesn’t fit into 4 bits. For unsigned numbers, detecting over-
flow is easy; it occurs exactly when there is a carry-out of the most-significant bit.
For two’s complement, things are trickier: Overflow occurs exactly when the carry
into the high-order bit is different from the (to be discarded) carry-out of the high-
order bit. In the example of 5+�2 above, a 1 is carried both into and out of the
leftmost bit, avoiding overflow.

Negating a two’s complement number involves complementing each bit and
then adding 1. For instance, to negate 00112, complement it to get 11002 and then
add 1 to get 11012. Thus, to implement a�b using an adder, simply feed a and b
(where b is the number obtained by complementing each bit of b) into the adder and
set the low-order, carry-in bit to 1. This explains why the rightmost adder in
Figure J.1 is a full adder.

Multiplying two’s complement numbers is not quite as simple as adding them.
The obvious approach is to convert both operands to be nonnegative, do an
unsigned multiplication, and then (if the original operands were of opposite signs)
negate the result. Although this is conceptually simple, it requires extra time and
hardware. Here is a better approach: Suppose that we are multiplying a times b
using the hardware shown in Figure J.2(a). Register A is loaded with the number
a; B is loaded with b. Since the content of register B is always b, we will use B and
b interchangeably. If B is potentially negative but A is nonnegative, the only
change needed to convert the unsigned multiplication algorithm into a two’s com-
plement one is to ensure that when P is shifted, it is shifted arithmetically; that is,
the bit shifted into the high-order bit of P should be the sign bit of P (rather than the
carry-out from the addition). Note that our n-bit-wide adder will now be adding
n-bit two’s complement numbers between �2n�1 and 2n�1�1.

Next, suppose a is negative. The method for handling this case is called Booth
recoding. Booth recoding is a very basic technique in computer arithmetic and
will play a key role in Section J.9. The algorithm on page J-4 computes a�b by
examining the bits of a from least significant to most significant. For example, if
a¼7¼01112, then step (i) will successively add B, add B, add B, and add 0. Booth
recoding “recodes” the number 7 as 8�1¼ 10002�00012 ¼ 1001, where 1
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represents�1. This gives an alternative way to compute a�b, namely, successively
subtract B, add 0, add 0, and add B. This is more complicated than the unsigned algo-
rithm on page J-4, since it uses both addition and subtraction. The advantage shows
up for negative values of a.With the proper recoding, we can treat a as though it were
unsigned. For example, take a¼�4¼11002. Think of 11002 as the unsigned num-
ber 12, and recode it as 12¼ 16�4¼ 100002�01002 ¼ 10100. If themultiplication
algorithm is only iterated n times (n¼4 in this case), the high-order digit is ignored,
and we end up subtracting 01002¼4 times the multiplier—exactly the right answer.
This suggests that multiplying using a recoded form of a will work equally well for
both positive and negative numbers. And, indeed, to deal with negative values of a,
all that is required is to sometimes subtract b from P, instead of adding either b or 0 to
P. Here are the precise rules: If the initial content of A is an�1⋯a0, then at the ith
multiply step the low-order bit of register A is ai, and step (i) in the multiplication
algorithm becomes:

I. If ai¼0 and ai�1¼0, then add 0 to P.

II. If ai¼0 and ai�1¼1, then add B to P.

III. If ai¼1 and ai�1¼0, then subtract B from P.

IV. If ai¼1 and ai�1¼1, then add 0 to P.

For the first step, when i¼0, take ai�1 to be 0.

Example When multiplying �6 times �5, what is the sequence of values in the (P,A)
register pair?

Answer See Figure J.4.

P A
0000 1010 Put �6¼10102 into A, �5¼10112 into B.

0000 1010 step 1(i): a0¼a�1¼0, so from rule I add 0.

0000 0101 step 1(ii): shift.

+0101 step 2(i): a1¼1, a0¼0.Rule III says subtract b (or
add�b¼�10112¼01012).

0101 0101

0010 1010 step 2(ii): shift.

+ 1011 step 3(i): a2¼0, a1¼1. Rule II says add b (1011).

1101 1010

1110 1101 step 3(ii): shift. (Arithmetic shift—load 1 into leftmost bit.)

+ 0101 step 4(i): a3¼1, a2¼0. Rule III says subtract b.

0011 1101

0001 1110 step 4(ii): shift. Final result is 000111102¼30.

Figure J.4 Numerical example of Booth recoding. Multiplication of a¼�6 by b¼�5
to get 30.
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The four prior cases can be restated as saying that in the ith step you should add
(ai�1�ai)B to P. With this observation, it is easy to verify that these rules work,
because the result of all the additions is

Xn�1

i¼0

b ai�1�aið Þ2i ¼ b �an�12
n�1 + an�22

n�2 +… + a12 + a0
� �

+ ba�1

Using Equation J.2.3 (page J-8) together with a�1¼0, the right-hand side is seen to
be the value of b�a as a two’s complement number.

The simplest way to implement the rules for Booth recoding is to extend the A
register one bit to the right so that this new bit will contain ai�1. Unlike the naive
method of inverting any negative operands, this technique doesn’t require extra
steps or any special casing for negative operands. It has only slightly more control
logic. If the multiplier is being shared with a divider, there will already be the capa-
bility for subtracting b, rather than adding it. To summarize, a simple method for
handling two’s complement multiplication is to pay attention to the sign of P when
shifting it right, and to save the most recently shifted-out bit of A to use in deciding
whether to add or subtract b from P.

Booth recoding is usually the best method for designing multiplication hardware
that operates on signed numbers. For hardware that doesn’t directly implement it,
however, performing Booth recoding in software or microcode is usually too slow
because of the conditional tests and branches. If the hardware supports arithmetic
shifts (so that negative b is handled correctly), then the following method can be
used. Treat the multiplier a as if it were an unsigned number, and perform the first
n�1multiply steps using the algorithm on page J-4. If a<0 (in which case there will
be a 1 in the low-order bit of the A register at this point), then subtract b from P;
otherwise (a�0), neither add nor subtract. In either case, do a final shift (for a total
of n shifts). This works because it amounts to multiplying b by
�an�12n�1 +⋯+ a12 + a0, which is the value of an�1⋯a0 as a two’s complement
number by Equation J.2.3. If the hardware doesn’t support arithmetic shift, then
converting the operands to be nonnegative is probably the best approach.

Two final remarks: A good way to test a signed-multiply routine is to
try �2n�1��2n�1, since this is the only case that produces a 2n�1 bit result.
Unlike multiplication, division is usually performed in hardware by converting
the operands to be nonnegative and then doing an unsigned divide. Because divi-
sion is substantially slower (and less frequent) than multiplication, the extra time
used to manipulate the signs has less impact than it does on multiplication.

Systems Issues

When designing an instruction set, a number of issues related to integer arithmetic
need to be resolved. Several of them are discussed here.

First, what should be done about integer overflow? This situation is compli-
cated by the fact that detecting overflow differs depending on whether the operands
are signed or unsigned integers. Consider signed arithmetic first. There are three
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approaches: Set a bit on overflow, trap on overflow, or do nothing on overflow. In
the last case, software has to check whether or not an overflow occurred. The most
convenient solution for the programmer is to have an enable bit. If this bit is turned
on, then overflow causes a trap. If it is turned off, then overflow sets a bit (or, alter-
natively, have two different add instructions). The advantage of this approach is
that both trapping and nontrapping operations require only one instruction. Fur-
thermore, as we will see in Section J.7, this is analogous to how the IEEE
floating-point standard handles floating-point overflow. Figure J.5 shows how
some common machines treat overflow.

What about unsigned addition? Notice that none of the architectures in
Figure J.5 traps on unsigned overflow. The reason for this is that the primary
use of unsigned arithmetic is in manipulating addresses. It is convenient to be able
to subtract from an unsigned address by adding. For example, when n¼4, we can
subtract 2 from the unsigned address 10¼10102 by adding 14¼11102. This
generates an overflow, but we would not want a trap to be generated.

A second issue concerns multiplication. Should the result of multiplying two
n-bit numbers be a 2n-bit result, or should multiplication just return the low-order n
bits, signaling overflow if the result doesn’t fit in n bits? An argument in favor of an
n-bit result is that in virtually all high-level languages, multiplication is an oper-
ation in which arguments are integer variables and the result is an integer variable
of the same type. Therefore, compilers won’t generate code that utilizes a double-
precision result. An argument in favor of a 2n-bit result is that it can be used by an
assembly language routine to substantially speed up multiplication of multiple-
precision integers (by about a factor of 3).

A third issue concerns machines that want to execute one instruction every cycle.
It is rarely practical to perform amultiplication or division in the same amount of time
that an addition or register-registermove takes. There are three possible approaches to
this problem. The first is to have a single-cyclemultiply-step instruction. This might
do one step of the Booth algorithm. The second approach is to do integer multipli-
cation in the floating-point unit and have it be part of the floating-point instruction set.

Machine Trap on signed overflow?
Trap on unsigned
overflow?

Set bit on signed
overflow?

Set bit on unsigned
overflow?

VAX If enable is on No Yes. Add sets V
bit.

Yes. Add sets C bit.

IBM 370 If enable is on No Yes. Add sets
cond code.

Yes. Logical add
sets cond code.

Intel
8086

No No Yes. Add sets V
bit.

Yes. Add sets C bit.

MIPS
R3000

Two add instructions; one always
traps, the other never does.

No No. Software must deduce it from sign of
operands and result.

SPARC No No Addcc sets V bit.
Add does not.

Addcc sets C bit.
Add does not.

Figure J.5 Summary of how various machines handle integer overflow. Both the 8086 and SPARC have an instruc-
tion that traps if the V bit is set, so the cost of trapping on overflow is one extra instruction.

J.2 Basic Techniques of Integer Arithmetic ■ J-11



(This is what DLX does.) The third approach is to have an autonomous unit in the
CPUdo themultiplication. In this case, the result either can be guaranteed to be deliv-
ered in a fixed number of cycles—and the compiler charged with waiting the proper
amount of time—or there can be an interlock. The same comments apply to division
as well. As examples, the original SPARC had a multiply-step instruction but no
divide-step instruction,while theMIPSR3000has an autonomous unit that doesmul-
tiplication and division (newer versions of the SPARC architecture added an integer
multiply instruction). The designers of the HP Precision Architecture did an espe-
cially thorough job of analyzing the frequency of the operands for multiplication
and division, and they based their multiply and divide steps accordingly. (See
Magenheimer et al. [1988] for details.)

The final issue involves the computation of integer division and remainder for
negative numbers. For example, what is�5 DIV 3 and�5 MOD 3?When computing
x DIV y and x MOD y, negative values of x occur frequently enough to be worth some
careful consideration. (On the other hand, negative values of y are quite rare.) If
there are built-in hardware instructions for these operations, they should corre-
spond to what high-level languages specify. Unfortunately, there is no agreement
among existing programming languages. See Figure J.6.

One definition for these expressions stands out as clearly superior, namely,
x DIV y¼bx/yc, so that 5 DIV 3¼1 and �5 DIV 3¼�2. And MOD should satisfy
x¼ (x DIV y)�y+x MOD y, so that x MOD y�0. Thus, 5 MOD 3¼2, and �5 MOD

3¼1. Some of the many advantages of this definition are as follows:

1. A calculation to compute an index into a hash table of size N can use MOD N and
be guaranteed to produce a valid index in the range from 0 to N�1.

2. In graphics, when converting from one coordinate system to another, there is no
“glitch” near 0. For example, to convert from a value x expressed in a system
that uses 100 dots per inch to a value y on a bitmapped display with 70 dots per
inch, the formula y¼ (70�x) DIV 100 maps one or two x coordinates into each
y coordinate. But if DIV were defined as in Pascal to be x/y rounded to 0, then
0 would have three different points (�1, 0, 1) mapped into it.

3. x MOD 2k is the same as performing a bitwise AND with a mask of k bits, and x DIV

2k is the same as doing a k-bit arithmetic right shift.

Language Division Remainder

FORTRAN �5/3¼�1 MOD(�5, 3)¼�2

Pascal �5 DIV 3¼�1 �5 MOD 3¼1

Ada �5/3¼�1 �5 MOD 3¼1
�5 REM 3¼�2

C �5/3 undefined �5% 3 undefined

Modula-3 �5 DIV 3¼�2 �5 MOD 3¼1

Figure J.6 Examples of integer division and integer remainder in various program-
ming languages.
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Finally, a potential pitfall worth mentioning concerns multiple-precision addi-
tion. Many instruction sets offer a variant of the add instruction that adds three
operands: two n-bit numbers together with a third single-bit number. This third
number is the carry from the previous addition. Since the multiple-precision num-
ber will typically be stored in an array, it is important to be able to increment the
array pointer without destroying the carry bit.

J.3 Floating Point

Many applications require numbers that aren’t integers. There are a number of
ways that nonintegers can be represented. One is to use fixed point; that is, use inte-
ger arithmetic and simply imagine the binary point somewhere other than just to
the right of the least-significant digit. Adding two such numbers can be done with
an integer add, whereas multiplication requires some extra shifting. Other repre-
sentations that have been proposed involve storing the logarithm of a number and
doing multiplication by adding the logarithms, or using a pair of integers (a,b) to
represent the fraction a/b.However, only one noninteger representation has gained
widespread use, and that is floating point. In this system, a computer word is
divided into two parts, an exponent and a significand. As an example, an exponent
of�3 and a significand of 1.5 might represent the number 1.5�2�3¼0.1875. The
advantages of standardizing a particular representation are obvious. Numerical
analysts can build up high-quality software libraries, computer designers can
develop techniques for implementing high-performance hardware, and hardware
vendors can build standard accelerators. Given the predominance of the
floating-point representation, it appears unlikely that any other representation will
come into widespread use.

The semantics of floating-point instructions are not as clear-cut as the seman-
tics of the rest of the instruction set, and in the past the behavior of floating-point
operations varied considerably from one computer family to the next. The varia-
tions involved such things as the number of bits allocated to the exponent and
significand, the range of exponents, how rounding was carried out, and the actions
taken on exceptional conditions like underflow and overflow. Computer architec-
ture books used to dispense advice on how to deal with all these details, but
fortunately this is no longer necessary. That’s because the computer industry is rap-
idly converging on the format specified by IEEE standard 754-1985 (also an inter-
national standard, IEC 559). The advantages of using a standard variant of
floating point are similar to those for using floating point over other noninteger
representations.

IEEE arithmetic differs from many previous arithmetics in the following major
ways:

1. When rounding a “halfway” result to the nearest floating-point number, it picks
the one that is even.

2. It includes the special values NaN, ∞, and�∞.
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3. It uses denormal numbers to represent the result of computations whose value is
less than 1:0�2Emin .

4. It rounds to nearest by default, but it also has three other rounding modes.

5. It has sophisticated facilities for handling exceptions.

To elaborate on (1), note that when operating on two floating-point numbers,
the result is usually a number that cannot be exactly represented as another
floating-point number. For example, in a floating-point system using base 10
and two significant digits, 6.1�0.5¼3.05. This needs to be rounded to two digits.
Should it be rounded to 3.0 or 3.1? In the IEEE standard, such halfway cases are
rounded to the number whose low-order digit is even. That is, 3.05 rounds to 3.0,
not 3.1. The standard actually has four rounding modes. The default is round to
nearest, which rounds ties to an even number as just explained. The other modes
are round toward 0, round toward+∞, and round toward�∞.

We will elaborate on the other differences in following sections. For further
reading, see IEEE [1985], Cody et al. [1984], and Goldberg [1991].

Special Values and Denormals

Probably the most notable feature of the standard is that by default a computation
continues in the face of exceptional conditions, such as dividing by 0 or taking the
square root of a negative number. For example, the result of taking the square root
of a negative number is a NaN (Not a Number), a bit pattern that does not represent
an ordinary number. As an example of how NaNs might be useful, consider the
code for a zero finder that takes a function F as an argument and evaluates F at
various points to determine a zero for it. If the zero finder accidentally probes out-
side the valid values for F, then F may well cause an exception. Writing a zero
finder that deals with this case is highly language and operating-system dependent,
because it relies on how the operating system reacts to exceptions and how this
reaction is mapped back into the programming language. In IEEE arithmetic it
is easy to write a zero finder that handles this situation and runs on many different
systems. After each evaluation of F, it simply checks to see whether F has returned
a NaN; if so, it knows it has probed outside the domain of F.

In IEEE arithmetic, if the input to an operation is a NaN, the output is NaN
(e.g., 3+NaN¼NaN). Because of this rule, writing floating-point subroutines that
can accept NaN as an argument rarely requires any special case checks. For exam-
ple, suppose that arccos is computed in terms of arctan, using the formula

arccosx¼ 2arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ= 1 + xð Þp� �

. If arctan handles an argument of NaN
properly, arccos will automatically do so, too. That’s because if x is a NaN,

1 +x, 1�x, (1+x)/(1�x), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ= 1 + xð Þp

will also be NaNs. No checking
for NaNs is required.

While the result of
ffiffiffiffiffiffiffi�1

p
is a NaN, the result of 1/0 is not a NaN, but +∞, which

is another special value. The standard defines arithmetic on infinities (there are
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both +∞ and �∞) using rules such as 1/∞¼0. The formula
arccosx¼ 2arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ= 1 + xð Þp� �

illustrates how infinity arithmetic can be
used. Since arctan x asymptotically approaches π/2 as x approaches∞, it is natural
to define arctan(∞)¼π/2, in which case arccos(�1) will automatically be com-
puted correctly as 2 arctan(∞)¼π.

The final kind of special values in the standard are denormal numbers. In many
floating-point systems, if Emin is the smallest exponent, a number less than 1:0�
2Emin cannot be represented, and a floating-point operation that results in a number
less than this is simply flushed to 0. In the IEEE standard, on the other hand, num-
bers less than 1:0�2Emin are represented using significands less than 1. This is
called gradual underflow. Thus, as numbers decrease in magnitude below 2Emin ,
they gradually lose their significance and are only represented by 0 when all their
significance has been shifted out. For example, in base 10 with four significant
figures, let x¼ 1:234�10Emin . Then, x/10 will be rounded to 0:123�10Emin , having
lost a digit of precision. Similarly x/100 rounds to 0:012�10Emin , and x/1000 to
0:001�10Emin , while x/10000 is finally small enough to be rounded to 0. Denor-
mals make dealing with small numbers more predictable by maintaining familiar
properties such as x¼y, x�y¼0. For example, in a flush-to-zero system (again
in base 10 with four significant digits), if x¼ 1:256�10Emin and y¼ 1:234�10Emin ,
then x� y¼ 0:022�10Emin , which flushes to zero. So even though x 6¼y, the
computed value of x�y¼0. This never happens with gradual underflow. In this
example, x� y¼ 0:022�10Emin is a denormal number, and so the computation of
x�y is exact.

Representation of Floating-Point Numbers

Let us consider how to represent single-precision numbers in IEEE arithmetic.
Single-precision numbers are stored in 32 bits: 1 for the sign, 8 for the exponent,
and 23 for the fraction. The exponent is a signed number represented using the bias
method (see the subsection “Signed Numbers,” page J-7) with a bias of 127. The
term biased exponent refers to the unsigned number contained in bits 1 through 8,
and unbiased exponent (or just exponent) means the actual power to which 2 is to
be raised. The fraction represents a number less than 1, but the significand of the
floating-point number is 1 plus the fraction part. In other words, if e is the biased
exponent (value of the exponent field) and f is the value of the fraction field, the
number being represented is 1. f�2e�127.

Example What single-precision number does the following 32-bit word represent?

1 10000001 01000000000000000000000

Answer Considered as an unsigned number, the exponent field is 129, making the value of
the exponent 129�127¼2. The fraction part is .012¼ .25, making the significand
1.25. Thus, this bit pattern represents the number �1.25�22¼�5.
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The fractional part of a floating-point number (.25 in the example above) must
not be confused with the significand, which is 1 plus the fractional part. The lead-
ing 1 in the significand 1.f does not appear in the representation; that is, the leading
bit is implicit. When performing arithmetic on IEEE format numbers, the fraction
part is usually unpacked, which is to say the implicit 1 is made explicit.

Figure J.7 summarizes the parameters for single (and other) precisions.
It shows the exponents for single precision to range from �126 to 127; accord-
ingly, the biased exponents range from 1 to 254. The biased exponents of 0 and
255 are used to represent special values. This is summarized in Figure J.8. When
the biased exponent is 255, a zero fraction field represents infinity, and a nonzero
fraction field represents a NaN. Thus, there is an entire family of NaNs. When the
biased exponent and the fraction field are 0, then the number represented is 0.
Because of the implicit leading 1, ordinary numbers always have a significand
greater than or equal to 1. Thus, a special convention such as this is required to
represent 0. Denormalized numbers are implemented by having a word with a zero
exponent field represent the number 0:f �2Emin .

The primary reason why the IEEE standard, like most other floating-point for-
mats, uses biased exponents is that it means nonnegative numbers are ordered in
the same way as integers. That is, the magnitude of floating-point numbers can be
compared using an integer comparator. Another (related) advantage is that 0 is repre-
sented by a word of all 0s. The downside of biased exponents is that adding them is
slightly awkward, because it requires that the bias be subtracted from their sum.

Single Single extended Double Double extended

p (bits of precision) 24 �32 53 �64

Emax 127 �1023 1023 �16383

Emin �126 ��1022 �1022 ��16382

Exponent bias 127 1023

Figure J.7 Format parameters for the IEEE 754 floating-point standard. The first row
gives the number of bits in the significand. The blanks are unspecified parameters.

Exponent Fraction Represents

e¼Emin�1 f¼0 �0

e¼Emin�1 f 6¼0 0:f �2Emin

Emin�e�Emax — 1.f�2e

e¼Emax+1 f¼0 �∞
e¼Emax+1 f 6¼0 NaN

Figure J.8 Representation of special values.When the exponent of a number falls out-
side the range Emin�e�Emax, then that number has a special interpretation as indicated
in the table.
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J.4 Floating-Point Multiplication

The simplest floating-point operation is multiplication, so we discuss it first. A
binary floating-point number x is represented as a significand and an exponent,
x¼ s�2e. The formula

s1�2e1
� �� s2�2e2

� �¼ s1 � s2ð Þ�2e1 + e2

shows that a floating-point multiply algorithm has several parts. The first part mul-
tiplies the significands using ordinary integer multiplication. Because floating-
point numbers are stored in sign magnitude form, the multiplier need only deal
with unsigned numbers (although we have seen that Booth recoding handles
signed two’s complement numbers painlessly). The second part rounds the result.
If the significands are unsigned p-bit numbers (e.g., p¼24 for single precision),
then the product can have as many as 2p bits and must be rounded to a p-bit num-
ber. The third part computes the new exponent. Because exponents are stored with
a bias, this involves subtracting the bias from the sum of the biased exponents.

Example How does the multiplication of the single-precision numbers

1 1000001 0000… ¼ �1�23

0 1000001 1000… ¼ 1�24

proceed in binary?

Answer When unpacked, the significands are both 1.0, their product is 1.0, and so the result
is of the form:

1 ???????? 000…

To compute the exponent, use the formula:

biased exp e1 + e2ð Þ¼ biased exp e1ð Þ + biased exp e2ð Þ�bias

From Figure J.7, the bias is 127¼011111112, so in two’s complement �127 is
100000012. Thus, the biased exponent of the product is

10000010
10000011

+ 10000001
10000110

Since this is 134 decimal, it represents an exponent of 134�bias¼134�127, as
expected.

The interesting part of floating-point multiplication is rounding. Some of the
different cases that can occur are illustrated in Figure J.9. Since the cases are similar
in all bases, the figure uses human-friendly base 10, rather than base 2.
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In the figure, p¼3, so the final result must be rounded to three significant
digits. The three most-significant digits are in boldface. The fourth most-
significant digit (marked with an arrow) is the round digit, denoted by r.

If the round digit is less than 5, then the bold digits represent the rounded result. If
the round digit is greater than 5 (as in part (a)), then 1 must be added to the least-
significant bold digit. If the round digit is exactly 5 (as in part (b)), then additional
digits must be examined to decide between truncation or incrementing by 1. It is only
necessary to know if any digits past 5 are nonzero. In the algorithm below, thiswill be
recorded in a sticky bit. Comparing parts (a) and (b) in the figure shows that there are
two possible positions for the round digit (relative to the least-significant digit of the
product). Case (c) illustrates that, when adding 1 to the least-significant bold digit,
there may be a carry-out. When this happens, the final significand must be 10.0.

There is a straightforward method of handling rounding using the multiplier of
Figure J.2 (page J-4) together with an extra sticky bit. If p is the number of bits in
the significand, then the A, B, and P registers should be p bits wide. Multiply the
two significands to obtain a 2p-bit product in the (P,A) registers (see Figure J.10).
During the multiplication, the first p�2 times a bit is shifted into the A register, OR
it into the sticky bit. This will be used in halfway cases. Let s represent the sticky
bit, g (for guard) the most-significant bit of A, and r (for round) the second most-
significant bit of A. There are two cases:

1. The high-order bit of P is 0. Shift P left 1 bit, shifting in the g bit from A. Shift-
ing the rest of A is not necessary.

2. The high-order bit of P is 1. Set s :¼ s _ r and r :¼ g, and add 1 to the exponent.

Now if r¼0, P is the correctly rounded product. If r¼1 and s¼1, then P+1 is
the product (where by P+1 we mean adding 1 to the least-significant bit of P).

(a) 1.23

� 6.78 r¼9>5 so round up
rounds to 8.348.3394

"
(b) 2.83

� 4.47 r¼5 and a following digit 6¼0 so round up
rounds to 1.27�10112.6501

"
(c) 1.28

� 7.81 r¼6>5 so round up
rounds to 1.00�10109.9968

"
Figure J.9 Examples of rounding a multiplication. Using base 10 and p¼3, parts (a)
and (b) illustrate that the result of a multiplication can have either 2p�1 or 2p digits;
hence, the position where a 1 is added when rounding up (just left of the arrow) can
vary. Part (c) shows that rounding up can cause a carry-out.
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If r¼1 and s¼0, we are in a halfway case and round up according to the least-
significant bit of P. As an example, apply the decimal version of these rules to
Figure J.9(b). After the multiplication, P¼126 and A¼501, with g¼5, r¼0
and s¼1. Since the high-order digit of P is nonzero, case (2) applies and
r :¼ g, so that r¼5, as the arrow indicates in Figure J.9. Since r¼5, we could
be in a halfway case, but s¼1 indicates that the result is in fact slightly over
1/2, so add 1 to P to obtain the correctly rounded product.

The precise rules for rounding depend on the rounding mode and are given in
Figure J.11. Note that P is nonnegative, that is, it contains the magnitude of the
result. A good discussion of more efficient ways to implement rounding is in
Santoro, Bewick, and Horowitz [1989].

Example In binary with p¼4, show how the multiplication algorithm computes the product
�5�10 in each of the four rounding modes.

Answer In binary,�5 is�1.0102�22 and 10¼1.0102�23. Applying the integer multipli-
cation algorithm to the significands gives 011001002, so P¼01102, A¼01002,
g¼0, r¼1, and s¼0. The high-order bit of P is 0, so case (1) applies. Thus, P
becomes 11002, and since the result is negative, Figure J.11 gives:

round to�∞ 11012 add 1 since r _ s¼1 / 0¼TRUE

round to+∞ 11002

round to 0 11002

round to nearest 11002 no add since r ^ p0¼1 ^ 0¼FALSE and
r ^ s¼1 ^ 0¼FALSE

The exponent is 2+3¼5, so the result is�1.1002�25¼�48, except when round-
ing to�∞, in which case it is �1.1012�25¼�52.

Product

Case (1): x
0
 = 0

Shift needed

Case (2): x
0
 = 1

Increment exponent

Adjust binary point,
add 1 to exponent to compensate

rnd sticky

rnd sticky x2  x3  x4  x5x0 . x1

x1 .  x2  x3  x4  x5 g

x0  x1 .  x2  x3  x4  x5 g r ss s s

P A

Figure J.10 The two cases of the floating-point multiply algorithm. The top line
shows the contents of the P and A registers after multiplying the significands, with
p¼6. In case (1), the leading bit is 0, and so the P register must be shifted. In case
(2), the leading bit is 1, no shift is required, but both the exponent and the round
and sticky bits must be adjusted. The sticky bit is the logical OR of the bits marked s.
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Overflow occurs when the rounded result is too large to be represented. In sin-
gle precision, this occurs when the result has an exponent of 128 or higher. If e1 and
e2 are the two biased exponents, then 1�ei�254, and the exponent calculation
e1+e2�127 gives numbers between 1+1�127 and 254+254�127, or between
�125 and 381. This range of numbers can be represented using 9 bits. So one way
to detect overflow is to perform the exponent calculations in a 9-bit adder (see
Exercise J.12). Remember that you must check for overflow after rounding—
the example in Figure J.9(c) shows that this can make a difference.

Denormals

Checking for underflow is somewhat more complex because of denormals. In sin-
gle precision, if the result has an exponent less than�126, that does not necessarily
indicate underflow, because the result might be a denormal number. For example,
the product of (1�2�64) with (1�2�65) is 1�2�129, and �129 is below the legal
exponent limit. But this result is a valid denormal number, namely, 0.125�2�126.
In general, when the unbiased exponent of a product dips below �126, the result-
ing product must be shifted right and the exponent incremented until the exponent
reaches �126. If this process causes the entire significand to be shifted out, then
underflow has occurred. The precise definition of underflow is somewhat subtle—
see Section J.7 for details.

When one of the operands of a multiplication is denormal, its significand will
have leading zeros, and so the product of the significands will also have leading
zeros. If the exponent of the product is less than�126, then the result is denormal,
so right-shift and increment the exponent as before. If the exponent is greater than
�126, the result may be a normalized number. In this case, left-shift the product
(while decrementing the exponent) until either it becomes normalized or the
exponent drops to �126.

Denormal numbers present a major stumbling block to implementing
floating-point multiplication, because they require performing a variable
shift in the multiplier, which wouldn’t otherwise be needed. Thus, high-
performance, floating-point multipliers often do not handle denormalized

Rounding mode Sign of result≥0 Sign of result<0

�∞ +1 if r _ s

+∞ +1 if r _ s

0

Nearest +1 if r ^ p0 or r ^ s +1 if r ^ p0 or r ^ s

Figure J.11 Rules for implementing the IEEE roundingmodes. Let S be themagnitude
of the preliminary result. Blanks mean that the pmost-significant bits of S are the actual
result bits. If the condition listed is true, add 1 to the pth most-significant bit of S. The
symbols r and s represent the round and sticky bits, while p0 is the pth most-significant
bit of S.
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numbers, but instead trap, letting software handle them. A few practical codes
frequently underflow, even when working properly, and these programs will
run quite a bit slower on systems that require denormals to be processed by
a trap handler.

So far we haven’t mentioned how to deal with operands of zero. This can be
handled by either testing both operands before beginning the multiplication or test-
ing the product afterward. If you test afterward, be sure to handle the case 0�∞
properly: This results in NaN, not 0. Once you detect that the result is 0, set the
biased exponent to 0. Don’t forget about the sign. The sign of a product is the
XOR of the signs of the operands, even when the result is 0.

Precision of Multiplication

In the discussion of integer multiplication, we mentioned that designers must
decide whether to deliver the low-order word of the product or the entire prod-
uct. A similar issue arises in floating-point multiplication, where the exact
product can be rounded to the precision of the operands or to the next higher
precision. In the case of integer multiplication, none of the standard high-level
languages contains a construct that would generate a “single times single gets
double” instruction. The situation is different for floating point. Many lan-
guages allow assigning the product of two single-precision variables to a
double-precision one, and the construction can also be exploited by numerical
algorithms. The best-known case is using iterative refinement to solve linear
systems of equations.

J.5 Floating-Point Addition

Typically, a floating-point operation takes two inputs with p bits of precision and
returns a p-bit result. The ideal algorithm would compute this by first performing
the operation exactly, and then rounding the result to p bits (using the current
rounding mode). The multiplication algorithm presented in the previous section
follows this strategy. Even though hardware implementing IEEE arithmetic must
return the same result as the ideal algorithm, it doesn’t need to actually perform the
ideal algorithm. For addition, in fact, there are better ways to proceed. To see this,
consider some examples.

First, the sum of the binary 6-bit numbers 1.100112 and 1.100012�2�5: When
the summands are shifted so they have the same exponent, this is

1:10011
+ :0000110001

Using a 6-bit adder (and discarding the low-order bits of the second addend) gives

1:10011
+ :00001
+ 1:10100
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The first discarded bit is 1. This isn’t enough to decide whether to round up. The
rest of the discarded bits, 0001, need to be examined. Or, actually, we just need to
record whether any of these bits are nonzero, storing this fact in a sticky bit just as
in the multiplication algorithm. So, for adding two p-bit numbers, a p-bit adder is
sufficient, as long as the first discarded bit (round) and the OR of the rest of the
bits (sticky) are kept. Then Figure J.11 can be used to determine if a roundup is
necessary, just as with multiplication. In the example above, sticky is 1, so a
roundup is necessary. The final sum is 1.101012.

Here’s another example:

1:11011
+ :0101001

A 6-bit adder gives:

1:11011
+ :01010
+ 10:00101

Because of the carry-out on the left, the round bit isn’t the first discarded bit; rather,
it is the low-order bit of the sum (1). The discarded bits, 01, are OR’ed together to
make sticky. Because round and sticky are both 1, the high-order 6 bits of the sum,
10.00102, must be rounded up for the final answer of 10.00112.

Next, consider subtraction and the following example:

1:00000
� :00000101111

The simplest way of computing this is to convert� .000001011112 to its two’s
complement form, so the difference becomes a sum:

1:00000
+ 1:11111010001

Computing this sum in a 6-bit adder gives:

1:00000
+ 1:11111

0:11111

Because the top bits canceled, the first discarded bit (the guard bit) is needed to fill in
the least-significant bit of the sum, which becomes 0.1111102, and the second dis-
carded bit becomes the round bit. This is analogous to case (1) in the multiplication
algorithm (see page J-19). The round bit of 1 isn’t enough to decide whether to round
up. Instead, we need to OR all the remaining bits (0001) into a sticky bit. In this case,
sticky is1, so the final resultmustbe roundedup to0.111111.Thisexample shows that
if subtraction causes themost-significant bit to cancel, then one guard bit is needed. It
is natural to ask whether two guard bits are needed for the case when the two most-
significant bits cancel. The answer is no, because if x and y are so close that the top
two bits of x�y cancel, then x�y will be exact, so guard bits aren’t needed at all.
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To summarize, addition is more complex than multiplication because, depend-
ing on the signs of the operands, it may actually be a subtraction. If it is an addition,
there can be carry-out on the left, as in the second example. If it is subtraction, there
can be cancellation, as in the third example. In each case, the position of the round
bit is different. However, we don’t need to compute the exact sum and then round.
We can infer it from the sum of the high-order p bits together with the round and
sticky bits.

The rest of this section is devoted to a detailed discussion of the floatingpoint
addition algorithm. Let a1 and a2 be the two numbers to be added. The notations ei
and si are used for the exponent and significand of the addends ai. This means that
the floating-point inputs have been unpacked and that si has an explicit leading bit.
To add a1 and a2, perform these eight steps:

1. If e1<e2, swap the operands. This ensures that the difference of the exponents
satisfies d¼e1�e2�0. Tentatively set the exponent of the result to e1.

2. If the signs of a1 and a2 differ, replace s2 by its two’s complement.

3. Place s2 in a p-bit register and shift it d¼e1�e2 places to the right (shifting in
1’s if s2 was complemented in the previous step). From the bits shifted out, set g
to the most-significant bit, set r to the next most-significant bit, and set sticky to
the OR of the rest.

4. Compute a preliminary significand S¼ s1+ s2 by adding s1 to the p-bit register
containing s2. If the signs of a1 and a2 are different, the most-significant bit of S
is 1, and there was no carry-out, then S is negative. Replace S with its two’s
complement. This can only happen when d¼0.

5. Shift S as follows. If the signs of a1 and a2 are the same and there was a carryout
in step 4, shift S right by one, filling in the high-order position with 1 (the carry-
out). Otherwise, shift it left until it is normalized. When left-shifting, on the first
shift fill in the low-order position with the g bit. After that, shift in zeros. Adjust
the exponent of the result accordingly.

6. Adjust r and s. If S was shifted right in step 5, set r :¼ low-order bit of S before
shifting and s :¼ g OR r OR s. If there was no shift, set r :¼ g, s :¼ r OR s. If
there was a single left shift, don’t change r and s. If there were two or more left
shifts, r :¼ 0, s :¼ 0. (In the last case, two or more shifts can only happen when
a1 and a2 have opposite signs and the same exponent, in which case the com-
putation s1+ s2 in step 4 will be exact.)

7. Round S using Figure J.11; namely, if a table entry is nonempty, add 1 to the
low-order bit of S. If rounding causes carry-out, shift S right and adjust the expo-
nent. This is the significand of the result.

8. Compute the sign of the result. If a1 and a2 have the same sign, this is the sign of
the result. If a1 and a2 have different signs, then the sign of the result depends on
which of a1 or a2 is negative, whether there was a swap in step 1, and whether S
was replaced by its two’s complement in step 4. See Figure J.12.
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Example Use the algorithm to compute the sum (�1.0012�2�2)+ (�1.1112�20).

Answer s1¼1.001, e1¼�2, s2¼1.111, e2¼0

1. e1<e2, so swap. d¼2. Tentative exp¼0.

2. Signs of both operands negative, don’t negate s2.

3. Shift s2 (1.001 after swap) right by 2, giving s2¼ .010, g¼0, r¼1, s¼0.

4.
1:111

+ :010

1ð Þ0:001 S¼ 0:001, with a carry�out:

5. Carry-out, so shift S right, S¼1.000, exp¼exp+1, so exp¼1.

6. r¼ low-order bit of sum¼1, s¼g _ r _ s¼0 _ 1 _ 0¼1.

7. r AND s¼TRUE, so Figure J.11 says round up, S¼S+1 or S¼1.001.

8. Both signs negative, so sign of result is negative. Final answer:
�S�2exp¼1.0012�21.

Example Use the algorithm to compute the sum (�1.0102)+1.1002.

Answer s1¼1.010, e1¼0, s2¼1.100, e2¼0

1. No swap, d¼0, tentative exp¼0.

2. Signs differ, replace s2 with 0.100.

3. d¼0, so no shift. r¼g¼ s¼0.

4.
1:010

+ 0:100

1:110 Signs are different, most-significant bit is 1, no carry-out, so

must two’s complement sum, giving S¼ 0:010:

swap compl sign(a1) sign(a2) sign(result)

Yes + � �
Yes � + +

No No + � +

No No � + �
No Yes + � �
No Yes � + +

Figure J.12 Rules for computing the sign of a sum when the addends have
different signs. The swap column refers to swapping the operands in step 1, while the
compl column refers to performing a two’s complement in step 4. Blanks are “don’t care.”
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5. Shift left twice, so S¼1.000, exp¼exp�2, or exp¼�2.

6. Two left shifts, so r¼g¼ s¼0.

7. No addition required for rounding.

8. Answer is sign�S�2exp or sign�1.000�2�2. Get sign from Figure J.12.
Since complement but no swap and sign(a1) is�, the sign of the sum is +. Thus,
the answer¼1.0002�2�2.

Speeding Up Addition

Let’s estimate how long it takes to perform the algorithm above. Step 2 may require
an addition, step 4 requires one or two additions, and step 7 may require an addi-
tion. If it takes T time units to perform a p-bit add (where p¼24 for single preci-
sion, 53 for double), then it appears the algorithm will take at least 4 T time units.
But that is too pessimistic. If step 4 requires two adds, then a1 and a2 have the same
exponent and different signs, but in that case the difference is exact, so no roundup
is required in step 7. Thus, only three additions will ever occur. Similarly,
it appears that a variable shift may be required both in step 3 and step 5. But if
je1�e2j�1, then step 3 requires a right shift of at most one place, so only step
5 needs a variable shift. And, if je1�e2j>1, then step 3 needs a variable shift,
but step 5 will require a left shift of at most one place. So only a single variable
shift will be performed. Still, the algorithm requires three sequential adds, which,
in the case of a 53-bit double-precision significand, can be rather time consuming.

Anumber of techniques can speed up addition.One is to use pipelining. The “Put-
ting It All Together” section gives examples of how some commercial chips pipeline
addition. Another method (used on the Intel 860 [Kohn and Fu 1989]) is to perform
two additions in parallel. We now explain how this reduces the latency from 3T to T.

There are three cases to consider. First, suppose that both operands have the
same sign. We want to combine the addition operations from steps 4 and 7. The
position of the high-order bit of the sum is not known ahead of time, because
the addition in step 4 may or may not cause a carry-out. Both possibilities are
accounted for by having two adders. The first adder assumes the add in step 4 will
not result in a carry-out. Thus, the values of r and s can be computed before the add
is actually done. If r and s indicate that a roundup is necessary, the first adder will
compute S¼ s1+ s2+1, where the notation +1 means adding 1 at the position of the
least-significant bit of s1. This can be done with a regular adder by setting the low-
order carry-in bit to 1. If r and s indicate no roundup, the adder computes S¼ s1+ s2
as usual. One extra detail: When r¼1, s¼0, you will also need to know the low-
order bit of the sum, which can also be computed in advance very quickly. The
second adder covers the possibility that there will be carry-out. The values of r
and s and the position where the roundup 1 is added are different from above,
but again they can be quickly computed in advance. It is not known whether there
will be a carry-out until after the add is actually done, but that doesn’t matter. By
doing both adds in parallel, one adder is guaranteed to reduce the correct answer.
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The next case is when a1 and a2 have opposite signs but the same exponent.
The sum a1+a2 is exact in this case (no roundup is necessary) but the sign isn’t
known until the add is completed. So don’t compute the two’s complement (which
requires an add) in step 2, but instead compute s1 + s2 + 1 and s1 + s2 + 1 in parallel.
The first sum has the result of simultaneously complementing s1 and computing the
sum, resulting in s2� s1. The second sum computes s1� s2. One of these will be
nonnegative and hence the correct final answer. Once again, all the additions
are done in one step using two adders operating in parallel.

The last case, when a1 and a2 have opposite signs and different exponents, is
more complex. If je1�e2j>1, the location of the leading bit of the difference is in
one of two locations, so there are two cases just as in addition. When je1�e2j¼1,
cancellation is possible and the leading bit could be almost anywhere. However,
only if the leading bit of the difference is in the same position as the leading bit of s1
could a roundup be necessary. So one adder assumes a roundup, and the other
assumes no roundup. Thus, the addition of step 4 and the rounding of step 7
can be combined. However, there is still the problem of the addition in step 2!

To eliminate this addition, consider the following diagram of step 4:

j__ __ p __ __j
s1 1:xxxxxxx
s2� 1yyzzzzz

If the bits marked z are all 0, then the high-order p bits of S¼ s1� s2 can be com-
puted as s1 + s2 + 1. If at least one of the z bits is 1, use s1 + s2. So s1� s2 can be
computed with one addition. However, we still don’t know g and r for the two’s
complement of s2, which are needed for rounding in step 7.

To compute s1� s2 and get the proper g and r bits, combine steps 2 and 4 as
follows. Don’t complement s2 in step 2. Extend the adder used for computing S two
bits to the right (call the extended sum S0). If the preliminary sticky bit (computed
in step 3) is 1, compute S0 ¼ s01 + s

0
2, where s1

0 has two 0 bits tacked onto the right,
and s20 has preliminary g and r appended. If the sticky bit is 0, compute s01 + s

0
2 + 1.

Now the two low-order bits of S0 have the correct values of g and r (the sticky
bit was already computed properly in step 3). Finally, this modification can be
combined with the modification that combines the addition from steps 4 and 7
to provide the final result in time T, the time for one addition.

A fewmore details need to be considered, as discussed in Santoro, Bewick, and
Horowitz [1989] and Exercise J.17. Although the Santoro paper is aimed at mul-
tiplication, much of the discussion applies to addition as well. Also relevant is
Exercise J.19, which contains an alternative method for adding signed magnitude
numbers.

Denormalized Numbers

Unlike multiplication, for addition very little changes in the preceding description
if one of the inputs is a denormal number. There must be a test to see if the exponent
field is 0. If it is, then when unpacking the significand there will not be a leading 1.
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By setting the biased exponent to 1 when unpacking a denormal, the algorithm
works unchanged.

To deal with denormalized outputs, step 5 must be modified slightly. Shift S
until it is normalized, or until the exponent becomes Emin (that is, the biased expo-
nent becomes 1). If the exponent is Emin and, after rounding, the high-order bit of S
is 1, then the result is a normalized number and should be packed in the usual way,
by omitting the 1. If, on the other hand, the high-order bit is 0, the result is denor-
mal. When the result is unpacked, the exponent field must be set to 0. Section J.7
discusses the exact rules for detecting underflow.

Incidentally, detecting overflow is very easy. It can only happen if step 5
involves a shift right and the biased exponent at that point is bumped up to 255
in single precision (or 2047 for double precision), or if this occurs after rounding.

J.6 Division and Remainder

In this section, we’ll discuss floating-point division and remainder.

Iterative Division

We earlier discussed an algorithm for integer division. Converting it into a floating-
point division algorithm is similar to converting the integer multiplication algo-
rithm into floating point. The formula

s1�2e1ð Þ= s2�2e2ð Þ¼ s1=s2ð Þ�2e1�e2

shows that if the divider computes s1/s2, then the final answer will be this quotient
multiplied by 2e1�e2 . Referring to Figure J.2(b) (page J-4), the alignment of oper-
ands is slightly different from integer division. Load s2 into B and s1 into P. The A
register is not needed to hold the operands. Then the integer algorithm for divi-
sion (with the one small change of skipping the very first left shift) can be used,
and the result will be of the form q0 � q1⋯. To round, simply compute two addi-
tional quotient bits (guard and round) and use the remainder as the sticky bit. The
guard digit is necessary because the first quotient bit might be 0. However, since
the numerator and denominator are both normalized, it is not possible for the two
most-significant quotient bits to be 0. This algorithm produces one quotient bit in
each step.

A different approach to division converges to the quotient at a quadratic
rather than a linear rate. An actual machine that uses this algorithm will be dis-
cussed in Section J.10. First, we will describe the two main iterative algorithms,
and then we will discuss the pros and cons of iteration when compared with the
direct algorithms. A general technique for constructing iterative algorithms,
called Newton’s iteration, is shown in Figure J.13. First, cast the problem in
the form of finding the zero of a function. Then, starting from a guess for the zero,
approximate the function by its tangent at that guess and form a new guess based
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on where the tangent has a zero. If xi is a guess at a zero, then the tangent line has
the equation:

y� f xið Þ¼ f 0 xið Þ x� xið Þ
This equation has a zero at

x¼ xi+ 1 ¼ xi� f xið Þ
f 0 xið ÞJ:6:1

To recast division as finding the zero of a function, consider f(x)¼x�1�b. Since the
zero of this function is at 1/b, applying Newton’s iteration to it will give an iterative
method of computing 1/b from b. Using f 0(x)¼�1/x2, Equation J.6.1 becomes:

xi+ 1 ¼ xi�1=xi�b

�1=x2i
¼ xi + xi� x2i b¼ xi 2� xibð ÞJ:6:2

Thus, we could implement computation of a/b using the following method:

1. Scale b to lie in the range 1�b<2 and get an approximate value of 1/b (call it
x0) using a table lookup.

2. Iterate xi+1¼xi(2�xib) until reaching an xn that is accurate enough.

3. Compute axn and reverse the scaling done in step 1.

Here are some more details. Howmany times will step 2 have to be iterated? To
say that xi is accurate to p bits means that j(xi�1/b)/(1/b)j¼2�p, and a simple alge-
braic manipulation shows that when this is so, then (xi+1�1/b)/(1/b)¼2�2p. Thus,
the number of correct bits doubles at each step. Newton’s iteration is self-correct-
ing in the sense that making an error in xi doesn’t really matter. That is, it treats xi as
a guess at 1/b and returns xi+1 as an improvement on it (roughly doubling the
digits). One thing that would cause xi to be in error is rounding error. More

x
x

i+1
x

i

f(x)

f(x
i
)

Figure J.13 Newton’s iteration for zero finding. If xi is an estimate for a zero of f, then
xi +1 is a better estimate. To compute xi+1, find the intersection of the x-axis with the
tangent line to f at f(xi).
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importantly, however, in the early iterations we can take advantage of the fact that
we don’t expect many correct bits by performing the multiplication in reduced pre-
cision, thus gaining speed without sacrificing accuracy. Another application of
Newton’s iteration is discussed in Exercise J.20.

The second iterative division method is sometimes called Goldschmidt’s algo-
rithm. It is based on the idea that to compute a/b, you should multiply the numer-
ator and denominator by a number r with rb	1. In more detail, let x0¼a
and y0þ¼b. At each step compute xi+1¼ rixi and yi+1¼ riyi. Then the quotient
xi+1/yi+1¼xi/yi¼a/b is constant. If we pick ri so that yi!1, then xi!a/b, so the
xi converge to the answer we want. This same idea can be used to compute other
functions. For example, to compute the square root of a, let x0¼a and y0¼a, and at
each step compute xi+1¼ ri

2xi, yi+1¼ riyi. Then xi+1/yi+1
2 ¼xi/yi

2¼1/a, so if the ri are
chosen to drive xi!1, then yi !

ffiffiffi
a

p
. This technique is used to compute square

roots on the TI 8847.
Returning to Goldschmidt’s division algorithm, set x0¼a and y0¼b, and write

b¼1�δ, where jδj<1. If we pick r0¼1+δ, then y1¼ r0y0¼1�δ2. We next pick
r1¼1+δ2, so that y2¼ r1y1¼1�δ4, and so on. Since jδj<1, yi!1. With this

choice of ri, the xi will be computed as xi + 1 ¼ rixi ¼ 1 + δ2
i

� �
xi ¼

1 + 1�bð Þ2i
� �

xi, or

xi+ 1 ¼ a 1 + 1�bð Þ½ 
 1 + 1�bð Þ2
h i

1 + 1�bð Þ4
h i

⋯ 1 + 1�bð Þ2i
h i

J:6:3

There appear to be two problems with this algorithm. First, convergence is slow
when b is not near 1 (that is, δ is not near 0), and, second, the formula isn’t self-
correcting—since the quotient is being computed as a product of independent
terms, an error in one of them won’t get corrected. To deal with slow convergence,
if you want to compute a/b, look up an approximate inverse to b (call it b0), and run
the algorithm on ab0/bb0. This will converge rapidly since bb0 	1.

To deal with the self-correction problem, the computation should be run with
a few bits of extra precision to compensate for rounding errors. However, Gold-
schmidt’s algorithm does have a weak form of self-correction, in that the precise
value of the ri does not matter. Thus, in the first few iterations, when the full pre-
cision of 1�δ2

i
is not needed you can choose ri to be a truncation of 1 + δ

2i , which
may make these iterations run faster without affecting the speed of convergence.
If ri is truncated, then yi is no longer exactly 1�δ2

i
. Thus, Equation J.6.3 can no

longer be used, but it is easy to organize the computation so that it does not
depend on the precise value of ri. With these changes, Goldschmidt’s algorithm
is as follows (the notes in brackets show the connection with our earlier
formulas).

1. Scale a and b so that 1�b<2.

2. Look up an approximation to 1/b (call it b0) in a table.

3. Set x0¼ab0 and y0¼bb0.
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4. Iterate until xi is close enough to a/b:

Loop

r	 2� y if yi ¼ 1 + δi, then r	 1�δi½ 

y¼ y� r yi+ 1 ¼ yi� r	 1�δi

2
� �

xi +1 ¼ xi� r xi +1 ¼ xi� r½ 

End loop

The two iteration methods are related. Suppose in Newton’s method that we
unroll the iteration and compute each term xi+1 directly in terms of b, instead of
recursively in terms of xi. By carrying out this calculation (see Exercise J.22),
we discover that

xi + 1 ¼ x0 2� x0bð Þ 1 + x0b�1ð Þ2
� i

1 + x0b�1ð Þ4
h i

⋯ 1 + x0b�1ð Þ2i
h ih

This formula is very similar to Equation J.6.3. In fact, they are identical if a and b in
J.6.3 are replaced with ax0, bx0, and a¼1. Thus, if the iterations were done to infi-
nite precision, the two methods would yield exactly the same sequence xi.

The advantage of iteration is that it doesn’t require special divide hardware.
Instead, it can use the multiplier (which, however, requires extra control). Further,
on each step, it delivers twice as many digits as in the previous step—unlike ordi-
nary division, which produces a fixed number of digits at every step.

There are two disadvantages with inverting by iteration. The first is that the
IEEE standard requires division to be correctly rounded, but iteration only delivers
a result that is close to the correctly rounded answer. In the case of Newton’s iter-
ation, which computes 1/b instead of a/b directly, there is an additional problem.
Even if 1/bwere correctly rounded, there is no guarantee that a/bwill be. An exam-
ple in decimal with p¼2 is a¼13, b¼51. Then a/b¼ .2549…, which rounds to
.25. But 1/b¼ .0196…, which rounds to .020, and then a� .020¼ .26, which is off
by 1. The second disadvantage is that iteration does not give a remainder. This is
especially troublesome if the floating-point divide hardware is being used to
perform integer division, since a remainder operation is present in almost every
high-level language.

Traditional folklore has held that the way to get a correctly rounded result from
iteration is to compute 1/b to slightly more than 2p bits, compute a/b to slightly
more than 2p bits, and then round to p bits. However, there is a faster way, which
apparently was first implemented on the TI 8847. In this method, a/b is computed
to about 6 extra bits of precision, giving a preliminary quotient q. By comparing qb
with a (again with only 6 extra bits), it is possible to quickly decide whether q
is correctly rounded or whether it needs to be bumped up or down by 1 in the
least-significant place. This algorithm is explored further in Exercise J.21.

One factor to take into account when deciding on division algorithms is the rel-
ative speed of division and multiplication. Since division is more complex than mul-
tiplication, it will run more slowly. A common rule of thumb is that division
algorithms should try to achieve a speed that is about one-third that of multiplication.
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One argument in favor of this rule is that there are real programs (such as some ver-
sions of spice) where the ratio of division to multiplication is 1:3. Another place
where a factor of 3 arises is in the standard iterative method for computing square
root. This method involves one division per iteration, but it can be replaced by one
using three multiplications. This is discussed in Exercise J.20.

Floating-Point Remainder

For nonnegative integers, integer division and remainder satisfy:

a¼ a DIV bð Þb + a REM b, 0� a REM b< b

A floating-point remainder x REM y can be similarly defined as x¼ INT(x/y)y+x REM

y. How should x/y be converted to an integer? The IEEE remainder function uses
the round-to-even rule. That is, pick n¼ INT (x/y) so that jx/y�nj�1/2. If two dif-
ferent n satisfy this relation, pick the even one. Then REM is defined to be x�yn.
Unlike integers where 0�a REM b<b, for floating-point numbers jx REM yj�y/2.
Although this defines REM precisely, it is not a practical operational definition,
because n can be huge. In single precision, n could be as large as 2127/
2�126¼2253	1076.

There is a natural way to compute REM if a direct division algorithm is used.
Proceed as if you were computing x/y. If x¼ s12e1 and y¼ s22e2 and the divider
is as in Figure J.2(b) (page J-4), then load s1 into P and s2 into B. After e1�e2
division steps, the P register will hold a number r of the form x�yn satisfying
0� r<y. Since the IEEE remainder satisfies jREMj�y/2, REM is equal to either r
or r�y. It is only necessary to keep track of the last quotient bit produced, which
is needed to resolve halfway cases. Unfortunately, e1�e2 can be a lot of steps, and
floating-point units typically have a maximum amount of time they are allowed to
spend on one instruction. Thus, it is usually not possible to implement REM directly.
None of the chips discussed in Section J.10 implements REM, but they could by
providing a remainder-step instruction—this is what is done on the Intel 8087 fam-
ily. A remainder step takes as arguments two numbers x and y, and performs divide
steps until either the remainder is in P or n steps have been performed, where n is a
small number, such as the number of steps required for division in the highest-
supported precision. Then REM can be implemented as a software routine that calls
the REM step instruction b(e1�e2)/nc times, initially using x as the numerator but
then replacing it with the remainder from the previous REM step.

REM can be used for computing trigonometric functions. To simplify things,
imagine that we are working in base 10 with five significant figures, and consider
computing sin x. Suppose that x¼7. Then we can reduce by π¼3.1416 and com-
pute sin(7)¼ sin(7�2�3.1416)¼ sin(0.7168) instead. But, suppose we want to
compute sin(2.0�105). Then 2�105/3.1416¼63661.8, which in our five-place
system comes out to be 63662. Since multiplying 3.1416 times 63662 gives
200000.5392, which rounds to 2.0000�105, argument reduction reduces
2�105 to 0, which is not even close to being correct. The problem is that our
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five-place system does not have the precision to do correct argument reduction.
Suppose we had the REM operator. Then we could compute 2�105 REM 3.1416
and get� .53920. However, this is still not correct because we used 3.1416, which
is an approximation for π. The value of 2�105 REM π is� .071513.

Traditionally, there have been two approaches to computing periodic functions
with large arguments. The first is to return an error for their value when x is large.
The second is to store π to a very large number of places and do exact argument
reduction. The REM operator is not much help in either of these situations. There is a
third approach that has been used in some math libraries, such as the Berkeley
UNIX 4.3bsd release. In these libraries, π is computed to the nearest floating-point
number. Let’s call this machine π, and denote it by π0. Then, when computing sin x,
reduce x using x REM π0. As we saw in the above example, x REM π0 is quite different
from x REM π when x is large, so that computing sin x as sin(x REM π0) will not give
the exact value of sin x. However, computing trigonometric functions in this fash-
ion has the property that all familiar identities (such as sin2x+cos2x¼1) are true to
within a few rounding errors. Thus, using REM together with machine π provides a
simple method of computing trigonometric functions that is accurate for small
arguments and still may be useful for large arguments.

When REM is used for argument reduction, it is very handy if it also returns the
low-order bits of n (where x REM y¼x�ny). This is because a practical implemen-
tation of trigonometric functions will reduce by something smaller than 2π.
For example, it might use π/2, exploiting identities such as sin(x�π/2)¼�cos
x, sin(x�π)¼�sin x. Then the low bits of n are needed to choose the correct
identity.

J.7 More on Floating-Point Arithmetic

Before leaving the subject of floating-point arithmetic, we present a few additional
topics.

Fused Multiply-Add

Probably the most common use of floating-point units is performing matrix
operations, and the most frequent matrix operation is multiplying a matrix times
a matrix (or vector), which boils down to computing an inner product,
x1 �y1+x2 �y2+…+xn �yn. Computing this requires a series of multiply-add
combinations.

Motivated by this, the IBM RS/6000 introduced a single instruction that
computes ab+c, the fused multiply-add. Although this requires being able to read
three operands in a single instruction, it has the potential for improving the perfor-
mance of computing inner products.

The fused multiply-add computes ab+c exactly and then rounds. Although
rounding only once increases the accuracy of inner products somewhat, that is
not its primary motivation. There are two main advantages of rounding once. First,
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as we saw in the previous sections, rounding is expensive to implement because it
may require an addition. By rounding only once, an addition operation has been
eliminated. Second, the extra accuracy of fused multiply-add can be used to com-
pute correctly rounded division and square root when these are not available
directly in hardware. Fused multiply-add can also be used to implement efficient
floating-point multiple-precision packages.

The implementation of correctly rounded division using fused multiply-add
has many details, but the main idea is simple. Consider again the example from
Section J.6 (page J-30), which was computing a/b with a¼13, b¼51. Then 1/b
rounds to b0 ¼ .020, and ab0 rounds to q0 ¼ .26, which is not the correctly rounded
quotient. Applying fused multiply-add twice will correctly adjust the result, via the
formulas

r¼ a�bq0

q00 ¼ q0 + rb0

Computing to two-digit accuracy, bq0 ¼51� .26 rounds to 13, and so r¼a�bq0

would be 0, giving no adjustment. But using fused multiply-add gives
r¼a�bq0 ¼13� (51� .26)¼� .26, and then q00 ¼q0 + rb0 ¼ .26� .0052¼ .2548,
which rounds to the correct quotient, .25. More details can be found in the papers
by Montoye, Hokenek, and Runyon [1990] and Markstein [1990].

Precisions

The standard specifies four precisions: single, single extended, double, and double
extended. The properties of these precisions are summarized in Figure J.7 (page J-
16). Implementations are not required to have all four precisions, but are encour-
aged to support either the combination of single and single extended or all of sin-
gle, double, and double extended. Because of the widespread use of double
precision in scientific computing, double precision is almost always implemented.
Thus, the computer designer usually only has to decide whether to support double
extended and, if so, how many bits it should have.

The Motorola 68882 and Intel 387 coprocessors implement extended precision
using the smallest allowable size of 80 bits (64 bits of significand). However, many
of the more recently designed, high-performance floating-point chips do not imple-
ment 80-bit extended precision. One reason is that the 80-bit width of extended
precision is awkward for 64-bit buses and registers. Some new architectures, such
as SPARC V8 and PA-RISC, specify a 128-bit extended (or quad) precision. They
have established a de facto convention for quad that has 15 bits of exponent and
113 bits of significand.

Although most high-level languages do not provide access to extended preci-
sion, it is very useful to writers of mathematical software. As an example, consider
writing a library routine to compute the length of a vector (x,y) in the plane, namely,ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y2
p

. If x is larger than 2Emax=2, then computing this in the obvious way will
overflow. This means that either the allowable exponent range for this subroutine
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will be cut in half or a more complex algorithm using scaling will have to be
employed. But, if extended precision is available, then the simple algorithm will
work. Computing the length of a vector is a simple task, and it is not difficult to
come up with an algorithm that doesn’t overflow. However, there are more com-
plex problems for which extended precision means the difference between a
simple, fast algorithm and a much more complex one. One of the best examples
of this is binary-to-decimal conversion. An efficient algorithm for binary-to-
decimal conversion that makes essential use of extended precision is very readably
presented in Coonen [1984]. This algorithm is also briefly sketched in Goldberg
[1991]. Computing accurate values for transcendental functions is another example
of a problem that is made much easier if extended precision is present.

One very important fact about precision concerns double rounding. To illus-
trate in decimals, suppose that we want to compute 1.9�0.66 and that single
precision is two digits, while extended precision is three digits. The exact result
of the product is 1.254. Rounded to extended precision, the result is 1.25. When
further rounded to single precision, we get 1.2. However, the result of 1.9�0.66
correctly rounded to single precision is 1.3. Thus, rounding twice may not pro-
duce the same result as rounding once. Suppose you want to build hardware that
only does double-precision arithmetic. Can you simulate single precision by
computing first in double precision and then rounding to single? The above
example suggests that you can’t. However, double rounding is not always
dangerous. In fact, the following rule is true (this is not easy to prove, but
see Exercise J.25).

If x and y have p-bit significands, and x+y is computed exactly and then rounded
to q places, a second rounding to p places will not change the answer if q�2p+2.
This is true not only for addition, but also for multiplication, division, and square
root.

In our example above, q¼3 and p¼2, so q Š 2p+2 is not true. On the other
hand, for IEEE arithmetic, double precision has q¼53 and p¼24, so q¼53 Š
2p +2¼50. Thus, single precision can be implemented by computing in double
precision—that is, computing the answer exactly and then rounding to double—
and then rounding to single precision.

Exceptions

The IEEE standard defines five exceptions: underflow, overflow, divide by zero,
inexact, and invalid. By default, when these exceptions occur, they merely set a
flag and the computation continues. The flags are sticky, meaning that once set they
remain set until explicitly cleared. The standard strongly encourages implementa-
tions to provide a trap-enable bit for each exception. When an exception with an
enabled trap handler occurs, a user trap handler is called, and the value of the asso-
ciated exception flag is undefined. In Section J.3 we mentioned that

ffiffiffiffiffiffiffi�3
p

has the
value NaN and 1/0 is∞. These are examples of operations that raise an exception.
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By default, computing
ffiffiffiffiffiffiffi�3

p
sets the invalid flag and returns the value NaN.

Similarly 1/0 sets the divide-by-zero flag and returns ∞.
The underflow, overflow, and divide-by-zero exceptions are found in most

other systems. The invalid exception is for the result of operations such asffiffiffiffiffiffiffi�1
p

, 0/0, or∞�∞, which don’t have any natural value as a floating-point num-
ber or as�∞. The inexact exception is peculiar to IEEE arithmetic and occurs
either when the result of an operation must be rounded or when it overflows. In
fact, since 1/0 and an operation that overflows both deliver∞, the exception flags
must be consulted to distinguish between them. The inexact exception is an
unusual “exception,” in that it is not really an exceptional condition because it
occurs so frequently. Thus, enabling a trap handler for the inexact exception will
most likely have a severe impact on performance. Enabling a trap handler doesn’t
affect whether an operation is exceptional except in the case of underflow. This is
discussed below.

The IEEE standard assumes that when a trap occurs, it is possible to identify the
operation that trapped and its operands. On machines with pipelining or multiple
arithmetic units, when an exception occurs, it may not be enough to simply have
the trap handler examine the program counter. Hardware support may be necessary
to identify exactly which operation trapped.

Another problem is illustrated by the following program fragment.

r1 = r2/r3
r2 = r4 + r5

These two instructions might well be executed in parallel. If the divide traps, its
argument r2 could already have been overwritten by the addition, especially since
addition is almost always faster than division. Computer systems that support trap-
ping in the IEEE standard must provide some way to save the value of r2, either in
hardware or by having the compiler avoid such a situation in the first place. This
kind of problem is not peculiar to floating point. In the sequence

r1 = 0(r2)
r2 = r3

it would be efficient to execute r2 = r3 while waiting for memory. But, if acces-
sing 0(r2) causes a page fault, r2might no longer be available for restarting the
instruction r1 = 0(r2).

One approach to this problem, used in theMIPSR3010, is to identify instructions
that may cause an exception early in the instruction cycle. For example, an addition
can overflow only if one of the operands has an exponent of Emax, and so on. This
early check is conservative: It might flag an operation that doesn’t actually cause an
exception. However, if such false positives are rare, then this technique will have
excellent performance. When an instruction is tagged as being possibly exceptional,
special code in a trap handler can compute it without destroying any state. Remember
that all these problems occur only when trap handlers are enabled. Otherwise, setting
the exception flags during normal processing is straightforward.
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Underflow

We have alluded several times to the fact that detection of underflow is more
complex than for the other exceptions. The IEEE standard specifies that if an
underflow trap handler is enabled, the system must trap if the result is denormal.
On the other hand, if trap handlers are disabled, then the underflow flag is set
only if there is a loss of accuracy—that is, if the result must be rounded. The
rationale is, if no accuracy is lost on an underflow, there is no point in setting a
warning flag. But if a trap handler is enabled, the user might be trying to sim-
ulate flush-to-zero and should therefore be notified whenever a result dips
below 1:0�2Emin .

So if there is no trap handler, the underflow exception is signaled only when
the result is denormal and inexact, but the definitions of denormal and inexact
are both subject to multiple interpretations. Normally, inexact means there was
a result that couldn’t be represented exactly and had to be rounded. Consider
the example (in a base 2 floating-point system with 3-bit significands) of
1:112�2�2
� �� 1:112�2Emin

� �¼ 0:1100012�2Emin , with round to nearest in effect.
The delivered result is 0:112�2Emin , which had to be rounded, causing inexact to
be signaled. But is it correct to also signal underflow? Gradual underflow loses
significance because the exponent range is bounded. If the exponent range were
unbounded, the delivered result would be 1:102�2Emin�1, exactly the same answer
obtained with gradual underflow. The fact that denormalized numbers have fewer
bits in their significand than normalized numbers therefore doesn’t make any
difference in this case. The commentary to the standard [Cody et al. 1984] encour-
ages this as the criterion for setting the underflow flag. That is, it should be
set whenever the delivered result is different from what would be delivered in a
system with the same fraction size, but with a very large exponent range. However,
owing to the difficulty of implementing this scheme, the standard allows setting
the underflow flag whenever the result is denormal and different from the infinitely
precise result.

There are two possible definitions of what it means for a result to be denormal.
Consider the example of 1.102�2�1 multiplied by 1:102�2Emin . The exact product
is 0:1111�2Emin . The rounded result is the normal number 1:002�2Emin . Should
underflow be signaled? Signaling underflow means that you are using the before
rounding rule, because the result was denormal before rounding. Not signaling
underflow means that you are using the after rounding rule, because the result
is normalized after rounding. The IEEE standard provides for choosing either rule;
however, the one chosen must be used consistently for all operations.

To illustrate these rules, consider floating-point addition. When the result of an
addition (or subtraction) is denormal, it is always exact. Thus, the underflow flag
never needs to be set for addition. That’s because if traps are not enabled then no
exception is raised. And if traps are enabled, the value of the underflow flag is
undefined, so again it doesn’t need to be set.

One final subtlety should be mentioned concerning underflow. When there is
no underflow trap handler, the result of an operation on p-bit numbers that causes
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an underflow is a denormal number with p�1 or fewer bits of precision. When
traps are enabled, the trap handler is provided with the result of the operation
rounded to p bits and with the exponent wrapped around. Now there is a potential
double-rounding problem. If the trap handler wants to return the denormal result, it
can’t just round its argument, because that might lead to a double-rounding error.
Thus, the trap handler must be passed at least one extra bit of information if it is to
be able to deliver the correctly rounded result.

J.8 Speeding Up Integer Addition

The previous section showed that many steps go into implementing floating-point
operations; however, each floating-point operation eventually reduces to an integer
operation. Thus, increasing the speed of integer operations will also lead to faster
floating point.

Integer addition is the simplest operation and the most important. Even for
programs that don’t do explicit arithmetic, addition must be performed to incre-
ment the program counter and to calculate addresses. Despite the simplicity of
addition, there isn’t a single best way to perform high-speed addition. We will dis-
cuss three techniques that are in current use: carry-lookahead, carry-skip, and
carry-select.

Carry-Lookahead

An n-bit adder is just a combinational circuit. It can therefore be written by a logic
formula whose form is a sum of products and can be computed by a circuit with two
levels of logic. How do you figure out what this circuit looks like? From
Equation J.2.1 (page J-3) the formula for the ith sum can be written as:

si ¼ aibici + aibici + aibici + aibiciJ:8:1

where ci is both the carry-in to the ith adder and the carry-out from the (i�1)-st
adder.

The problem with this formula is that, although we know the values of ai
and bi—they are inputs to the circuit—we don’t know ci. So our goal is to write
ci in terms of ai and bi. To accomplish this, we first rewrite Equation J.2.2
(page J-3) as:

ci ¼ gi�1 + pi�1ci�1, gi�1 ¼ ai�1bi�1, pi�1 ¼ ai�1 + bi�1J:8:2

Here is the reason for the symbols p and g: If gi�1 is true, then ci is certainly
true, so a carry is generated. Thus, g is for generate. If pi�1 is true, then if ci�1 is
true, it is propagated to ci. Start with Equation J.8.1 and use Equation J.8.2 to
replace ci with gi�1+pi�1ci�1. Then, use Equation J.8.2 with i�1 in place of i
to replace ci�1 with ci�2, and so on. This gives the result:

ci ¼ gi�1 + pi�1gi�2 + pi�1pi�2gi�3 +⋯+ pi�1pi�2⋯p1g0 + pi�1pi�2⋯p1p0c0J:8:3
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An adder that computes carries using Equation J.8.3 is called a carry-lookahead
adder, or CLA. A CLA requires one logic level to form p and g, two levels to form
the carries, and two for the sum, for a grand total of five logic levels. This is a vast
improvement over the 2n levels required for the ripple-carry adder.

Unfortunately, as is evident from Equation J.8.3 or from Figure J.14, a carry-
lookahead adder on n bits requires a fan-in of n+1 at the OR gate as well as at the
rightmost AND gate. Also, the pn�1 signal must drive n AND gates. In addition, the
rather irregular structure and many long wires of Figure J.14 make it impractical to
build a full carry-lookahead adder when n is large.

However, we can use the carry-lookahead idea to build an adder that has about
log2n logic levels (substantially fewer than the 2n required by a ripplecarry adder)
and yet has a simple, regular structure. The idea is to build up the p’s and g’s in
steps. We have already seen that

c1 ¼ g0 + c0p0

This says there is a carry-out of the 0th position (c1) either if there is a carry gen-
erated in the 0th position or if there is a carry into the 0th position and the carry
propagates. Similarly,

c2 ¼G01 +P01c0

G01 means there is a carry generated out of the block consisting of the first two bits.
P01 means that a carry propagates through this block. P and G have the following
logic equations:

G01 ¼ g1 + p1g0
P01 ¼ p1p0
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Figure J.14 Pure carry-lookahead circuit for computing the carry-out cn of an
n-bit adder.
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More generally, for any j with i< j, j+1<k, we have the recursive relations:

ck + 1 ¼Gik +PikciJ:8:4

Gik ¼Gj+ 1,k +Pj+ 1,kGijJ:8:5

Pik ¼PijPj + 1,kJ:8:6

Equation J.8.5 says that a carry is generated out of the block consisting of bits i
through k inclusive if it is generated in the high-order part of the block (j+1, k)
or if it is generated in the low-order part of the block (i,j) and then propagated
through the high part. These equations will also hold for i� j<k if we set Gii¼gi
and Pii¼pi.

Example Express P03 and G03 in terms of p’s and g’s.

Answer Using Equation J.8.6, P03¼P01P23¼P00P11P22P33. Since Pii¼pi, P03¼p0p1p2p3.
For G03, Equation J.8.5 says G03¼G23+P23G01¼ (G33+P33G22)+ (P22P33)
(G11+P11G00)¼g3+p3g2+p3p2g1+p3p2p1g0.

With these preliminaries out of the way, we can now show the design of a
practical CLA. The adder consists of two parts. The first part computes various
values of P and G from pi and gi, using Equations J.8.5 and J.8.6; the second part
uses these P and G values to compute all the carries via Equation J.8.4. The first
part of the design is shown in Figure J.15. At the top of the diagram, input num-
bers a7… a0 and b7… b0 are converted to p’s and g’s using cells of type 1. Then
various P’s and G’s are generated by combining cells of type 2 in a binary tree
structure. The second part of the design is shown in Figure J.16. By feeding c0 in
at the bottom of this tree, all the carry bits come out at the top. Each cell must
know a pair of (P,G) values in order to do the conversion, and the value it needs
is written inside the cells. Now compare Figures J.15 and J.16. There is a one-to-
one correspondence between cells, and the value of (P,G) needed by the carry-
generating cells is exactly the value known by the corresponding (P,G)-
generating cells. The combined cell is shown in Figure J.17. The numbers to
be added flow into the top and downward through the tree, combining with c0
at the bottom and flowing back up the tree to form the carries. Note that one thing
is missing from Figure J.17: a small piece of extra logic to compute c8 for the
carry-out of the adder.

The bits in a CLA must pass through about log2 n logic levels, compared with
2n for a ripple-carry adder. This is a substantial speed improvement, especially for
a large n. Whereas the ripple-carry adder had n cells, however, the CLA has 2n
cells, although in our layout they will take n log n space. The point is that a small
investment in size pays off in a dramatic improvement in speed.

A number of technology-dependent modifications can improve CLAs. For
example, if each node of the tree has three inputs instead of two, then the height

J.8 Speeding Up Integer Addition ■ J-39



of the tree will decrease from log2 n to log3 n. Of course, the cells will be more
complex and thus might operate more slowly, negating the advantage of the
decreased height. For technologies where rippling works well, a hybrid design
might be better. This is illustrated in Figure J.19. Carries ripple between adders
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at the top level, while the “B” boxes are the same as those in Figure J.17. This
design will be faster if the time to ripple between four adders is faster than the time
it takes to traverse a level of “B” boxes. (To make the pattern more clear,
Figure J.19 shows a 16-bit adder, so the 8-bit adder of Figure J.17 corresponds
to the right half of Figure J.19.)

Carry-Skip Adders

A carry-skip adder sits midway between a ripple-carry adder and a carry-
lookahead adder, both in terms of speed and cost. (A carry-skip adder is not called
a CSA, as that name is reserved for carry-save adders.) The motivation for this
adder comes from examining the equations for P and G. For example,

P03 ¼ p0p1p2p3
G03 ¼ g3 + p3g2 + p3p2g1 + p3p2p1g0

Computing P is much simpler than computing G, and a carry-skip adder only
computes the P’s. Such an adder is illustrated in Figure J.18. Carries begin rippling
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simultaneously through each block. If any block generates a carry, then the carry-out
of ablockwill be true, even though the carry-in to theblockmaynot becorrect yet. If at
the start of each add operation the carry-in to each block is 0, then no spurious carry-
outswill be generated. Thus, the carry-out of each block can be thought of as if itwere
the G signal. Once the carry-out from the least-significant block is generated, it not
only feeds into the next block but is also fed through the AND gate with the
P signal from that next block. If the carry-out and P signals are both true, then the
carry skips the second block and is ready to feed into the third block, and so on.
The carry-skip adder is only practical if the carry-in signals can be easily cleared
at the start of each operation—for example, by precharging in CMOS.

To analyze the speed of a carry-skip adder, let’s assume that it takes 1 time
unit for a signal to pass through two logic levels. Then it will take k time units for
a carry to ripple across a block of size k, and it will take 1 time unit for a carry to
skip a block. The longest signal path in the carry-skip adder starts with a carry
being generated at the 0th position. If the adder is n bits wide, then it takes k time
units to ripple through the first block, n/k�2 time units to skip blocks, and kmore
to ripple through the last block. To be specific: if we have a 20-bit adder broken
into groups of 4 bits, it will take 4+ (20/4�2)+4¼11 time units to perform an
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add. Some experimentation reveals that there are more efficient ways to divide 20
bits into blocks. For example, consider five blocks with the least-significant 2 bits
in the first block, the next 5 bits in the second block, followed by blocks of size 6,
5, and 2. Then the add time is reduced to 9 time units. This illustrates an important
general principle. For a carry-skip adder, making the interior blocks larger will
speed up the adder. In fact, the same idea of varying the block sizes can
sometimes speed up other adder designs as well. Because of the large amount
of rippling, a carry-skip adder is most appropriate for technologies where rippling
is fast.

Carry-Select Adder

A carry-select adder works on the following principle: Two additions are
performed in parallel, one assuming the carry-in is 0 and the other assuming the
carry-in is 1. When the carry-in is finally known, the correct sum (which has been
precomputed) is simply selected. An example of such a design is shown in
Figure J.20. An 8-bit adder is divided into two halves, and the carry-out from
the lower half is used to select the sum bits from the upper half. If each block
is computing its sum using rippling (a linear time algorithm), then the design in
Figure J.20 is twice as fast at 50% more cost. However, note that the c4 signal must
drive manymuxes, which may be very slow in some technologies. Instead of divid-
ing the adder into halves, it could be divided into quarters for a still further speedup.
This is illustrated in Figure J.21. If it takes k time units for a block to add k-bit
numbers, and if it takes 1 time unit to compute the mux input from the two
carry-out signals, then for optimal operation each block should be 1 bit wider than
the next, as shown in Figure J.21. Therefore, as in the carry-skip adder, the best
design involves variable-size blocks.

As a summary of this section, the asymptotic time and space requirements
for the different adders are given in Figure J.22. (The times for carry-skip and
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carry-select come from a careful choice of block size. See Exercise J.26 for the
carry-skip adder.) These different adders shouldn’t be thought of as disjoint
choices, but rather as building blocks to be used in constructing an adder. The util-
ity of these different building blocks is highly dependent on the technology used.
For example, the carry-select adder works well when a signal can drive many
muxes, and the carry-skip adder is attractive in technologies where signals can
be cleared at the start of each operation. Knowing the asymptotic behavior of
adders is useful in understanding them, but relying too much on that behavior is
a pitfall. The reason is that asymptotic behavior is only important as n grows very
large. But n for an adder is the bits of precision, and double precision today is the
same as it was 20 years ago—about 53 bits. Although it is true that as computers
get faster, computations get longer—and thus have more rounding error, which in
turn requires more precision—this effect grows very slowly with time.

J.9 Speeding Up Integer Multiplication and Division

The multiplication and division algorithms presented in Section J.2 are fairly slow,
producing 1 bit per cycle (although that cycle might be a fraction of the CPU
instruction cycle time). In this section, we discuss various techniques for
higher-performance multiplication and division, including the division algorithm
used in the Pentium chip.
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known, it is used to select the other sum bits.

Adder Time Space

Ripple 0(n) 0(n)

CLA 0(log n) 0(n log n)

Carry-skip 0
ffiffiffi
n

pð Þ 0(n)

Carry-select 0
ffiffiffi
n

pð Þ 0(n)

Figure J.22 Asymptotic time and space requirements for four different types of
adders.
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Shifting over Zeros

Although the technique of shifting over zeros is not currently used much, it is
instructive to consider. It is distinguished by the fact that its execution time is oper-
and dependent. Its lack of use is primarily attributable to its failure to offer enough
speedup over bit-at-a-time algorithms. In addition, pipelining, synchronization
with the CPU, and good compiler optimization are difficult with algorithms that
run in variable time. In multiplication, the idea behind shifting over zeros is to
add logic that detects when the low-order bit of the A register is 0 (see
Figure J.2(a) on page J-4) and, if so, skips the addition step and proceeds directly
to the shift step—hence the term shifting over zeros.

What about shifting for division? In nonrestoring division, an ALU oper-
ation (either an addition or subtraction) is performed at every step. There
appears to be no opportunity for skipping an operation. But think about
division this way: To compute a/b, subtract multiples of b from a, and then
report how many subtractions were done. At each stage of the subtraction pro-
cess the remainder must fit into the P register of Figure J.2(b) (page J-4). In the
case when the remainder is a small positive number, you normally subtract b;
but suppose instead you only shifted the remainder and subtracted b the next
time. As long as the remainder was sufficiently small (its high-order bit 0),
after shifting it still would fit into the P register, and no information would
be lost. However, this method does require changing the way we keep track
of the number of times b has been subtracted from a. This idea usually goes
under the name of SRT division, for Sweeney, Robertson, and Tocher, who
independently proposed algorithms of this nature. The main extra complica-
tion of SRT division is that the quotient bits cannot be determined immediately
from the sign of P at each step, as they can be in ordinary nonrestoring
division.

More precisely, to divide a by b where a and b are n-bit numbers, load a and b
into the A and B registers, respectively, of Figure J.2 (page J-4).

SRT Division 1. If B has k leading zeros when expressed using n bits, shift all the registers left
k bits.

2. For i¼0, n�1,

a) If the top three bits of P are equal, set qi¼0 and shift (P,A) one bit left.

b) If the top three bits of P are not all equal and P is negative, set qi¼�1 (also
written as 1), shift (P,A) one bit left, and add B.

c) Otherwise set qi¼1, shift (P,A) one bit left, and subtract B.

End loop

3. If the final remainder is negative, correct the remainder by adding B, and correct
the quotient by subtracting 1 from q0. Finally, the remainder must be shifted k
bits right, where k is the initial shift.
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Anumerical example is given in Figure J.23. Althoughwe are discussing integer
division, it helps in explaining the algorithm to imagine the binary point just left of
the most-significant bit. This changes Figure J.23 from 010002/00112 to 0.10002/
.00112. Since the binary point is changed in both the numerator and denominator,
the quotient is not affected. The (P,A) register pair holds the remainder and is a two’s
complement number. For example, if P contains 111102 andA¼0, then the remain-
der is 1.11102¼�1/8. If r is the value of the remainder, then �1� r<1.

Given these preliminaries, we can now analyze the SRT division algorithm. The
first step of the algorithm shifts b so that b�1/2. The rule for which ALU operation
to perform is this: If�1/4� r<1/4 (true whenever the top three bits of P are equal),
then compute 2r by shifting (P,A) left one bit; if r<0 (and hence r<�1/4, since
otherwise it would have been eliminated by the first condition), then compute 2r
+b by shifting and then adding; if r�1/4 and subtract b from 2r. Using b�1/2,
it is easy to check that these rules keep �1/2� r<1/2. For nonrestoring division,
we only have jrj�b, and we need P to be n+1 bits wide. But, for SRT division,
the bound on r is tighter, namely, �1/2� r<1/2. Thus, we can save a bit by elim-
inating the high-order bit of P (and b and the adder). In particular, the test for equality
of the top three bits of P becomes a test on just two bits.

The algorithm might change slightly in an implementation of SRT division.
After each ALU operation, the P register can be shifted as many places as necessary
to make either r�1/4 or r<�1/4. By shifting k places, k quotient bits are set equal
to zero all at once. For this reason SRT division is sometimes described as one that
keeps the remainder normalized to jrj�1/4.

P A
00000 1000 Divide 8¼1000 by 3¼0011. B contains 0011.

00010 0000 Step 1: B had two leading 0 s, so shift left by 2. B now contains 1100.

Step 2.1: Top three bits are equal. This is case (a), so

00100 0000 set q0¼0 and shift.

Step 2.2: Top three bits not equal and P�0 is case (c), so

01000 0001 set q1¼1 and shift.

+ 10100 Subtract B.

11100 0001 Step 2.3: Top bits equal is case (a), so

11000 0010 set q2¼0 and shift.

Step 2.4: Top three bits unequal is case (b), so

10000 0101 set q3¼�1 and shift.

+ 01100 Add B.

11100 Step 3. remainder is negative so restore it and subtract 1 from q.

+ 01100

01000 Must undo the shift in step 1, so right-shift by 2 to get true remainder.
Remainder¼10, quotient¼ 0101�1¼ 0010.

Figure J.23 SRT division of 10002/00112. The quotient bits are shown in bold, using
the notation 1 for �1.
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Notice that the value of the quotient bit computed in a given step is based on
which operation is performed in that step (which in turn depends on the result of the
operation from the previous step). This is in contrast to nonrestoring division,
where the quotient bit computed in the ith step depends on the result of the oper-
ation in the same step. This difference is reflected in the fact that when the final
remainder is negative, the last quotient bit must be adjusted in SRT division,
but not in nonrestoring division. However, the key fact about the quotient bits
in SRT division is that they can include 1. Although Figure J.23 shows the quotient
bits being stored in the low-order bits of A, an actual implementation can’t do this
because you can’t fit the three values �1, 0, 1 into one bit. Furthermore, the quo-
tient must be converted to ordinary two’s complement in a full adder. A common
way to do this is to accumulate the positive quotient bits in one register and the
negative quotient bits in another, and then subtract the two registers after all the
bits are known. Because there is more than one way to write a number in terms
of the digits �1, 0, 1, SRT division is said to use a redundant quotient
representation.

The differences between SRT division and ordinary nonrestoring division can
be summarized as follows:

1. ALU decision rule—In nonrestoring division, it is determined by the sign of P;
in SRT, it is determined by the two most-significant bits of P.

2. Final quotient—In nonrestoring division, it is immediate from the successive
signs of P; in SRT, there are three quotient digits (1, 0, 1), and the final quotient
must be computed in a full n-bit adder.

3. Speed—SRT division will be faster on operands that produce zero quotient bits.

The simple version of the SRT division algorithm given above does not offer
enough of a speedup to be practical in most cases. However, later on in this section
we will study variants of SRT division that are quite practical.

Speeding Up Multiplication with a Single Adder

As mentioned before, shifting-over-zero techniques are not used much in current
hardware. We now discuss some methods that are in widespread use. Methods that
increase the speed of multiplication can be divided into two classes: those that use a
single adder and those that use multiple adders. Let’s first discuss techniques that
use a single adder.

In the discussion of addition we noted that, because of carry propagation, it is
not practical to perform addition with two levels of logic. Using the cells of
Figure J.17, adding two 64-bit numbers will require a trip through seven cells
to compute the P’s and G’s and seven more to compute the carry bits, which will
require at least 28 logic levels. In the simple multiplier of Figure J.2 on page J-4,
each multiplication step passes through this adder. The amount of computation in
each step can be dramatically reduced by using carry-save adders (CSAs). A carry-
save adder is simply a collection of n independent full adders. A multiplier using
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such an adder is illustrated in Figure J.24. Each circle marked “+” is a single-bit full
adder, and each box represents one bit of a register. Each addition operation results
in a pair of bits, stored in the sum and carry parts of P. Since each add is indepen-
dent, only two logic levels are involved in the add—a vast improvement over 28.

To operate the multiplier in Figure J.24, load the sum and carry bits of P with
zero and perform the first ALU operation. (If Booth recoding is used, it might be a
subtraction rather than an addition.) Then shift the low-order sum bit of P into A, as
well as shifting A itself. The n�1 high-order bits of P don’t need to be shifted
because on the next cycle the sum bits are fed into the next lower-order adder. Each
addition step is substantially increased in speed, since each add cell is working
independently of the others, and no carry is propagated.

There are two drawbacks to carry-save adders. First, they require more
hardware because there must be a copy of register P to hold the carry outputs
of the adder. Second, after the last step, the high-order word of the result must
be fed into an ordinary adder to combine the sum and carry parts. One way to
accomplish this is by feeding the output of P into the adder used to perform
the addition operation. Multiplying with a carry-save adder is sometimes called
redundant multiplication because P is represented using two registers. Since there
are many ways to represent P as the sum of two registers, this representation is
redundant. The term carry-propagate adder (CPA) is used to denote an adder that
is not a CSA. A propagate adder may propagate its carries using ripples, carry-
lookahead, or some other method.

Another way to speed upmultiplication without using extra adders is to examine
k low-order bits of A at each step, rather than just one bit. This is often called higher-
radix multiplication. As an example, suppose that k¼2. If the pair of bits is 00, add
0 to P; if it is 01, add B. If it is 10, simply shift b one bit left before adding it to P.
Unfortunately, if the pair is 11, it appears we would have to compute b+2b. But this
can be avoided by using a higher-radix version of Booth recoding. Imagine A as a
base 4 number: When the digit 3 appears, change it to 1 and add 1 to the next higher
digit to compensate. An extra benefit of using this scheme is that just like ordinary
Booth recoding, it works for negative as well as positive integers (Section J.2).

B

A

P

Sum bits

Carry bits

c
i

a
i

c
i+1

s
i

b
i

Shift

+ + + + + +

+

Figure J.24 Carry-save multiplier. Each circle represents a (3,2) adder working indepen-
dently. At each step, the only bit of P that needs to be shifted is the low-order sum bit.
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The precise rules for radix-4 Booth recoding are given in Figure J.25. At the ith
multiply step, the two low-order bits of the A register contain a2i and a2i+1. These
two bits, together with the bit just shifted out (a2i�1), are used to select the multiple
of b that must be added to the P register. A numerical example is given in
Figure J.26. Another name for this multiplication technique is overlapping triplets,
since it looks at 3 bits to determine what multiple of b to use, whereas ordinary
Booth recoding looks at 2 bits.

Besides having more complex control logic, overlapping triplets also requires
that the P register be 1 bit wider to accommodate the possibility of 2b or�2b being
added to it. It is possible to use a radix-8 (or even higher) version of Booth recod-
ing. In that case, however, it would be necessary to use the multiple 3B as a poten-
tial summand. Radix-8 multipliers normally compute 3B once and for all at the
beginning of a multiplication operation.

Low-order bits of A Last bit shifted out

2i+1 2i 2i�1 Multiple

0 0 0 0

0 0 1 +b

0 1 0 +b

0 1 1 +2b

1 0 0 �2b

1 0 1 �b

1 1 0 �b

1 1 1 0

Figure J.25 Multiples of b to use for radix-4 Booth recoding. For example, if the two
low-order bits of the A register are both 1, and the last bit to be shifted out of the A
register is 0, then the correct multiple is�b, obtained from the second-to-last row of
the table.

P A L
00000 1001 Multiply �7¼1001 times �5¼1011. B contains 1011.

+ 11011 Low-order bits of A are 0, 1; L¼0, so add B.

11011 1001

11110 1110 0 Shift right by two bits, shifting in 1 s on the left.

+ 01010 Low-order bits of A are 1, 0; L¼0, so add �2b.

01000 1110 0

00010 0011 1 Shift right by two bits.

Product is 35¼0100011.

Figure J.26 Multiplication of27 times25 using radix-4 Booth recoding. The column
labeled L contains the last bit shifted out the right end of A.
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Faster Multiplication with Many Adders

If the space for many adders is available, then multiplication speed can be
improved. Figure J.27 shows a simple array multiplier for multiplying two 5-bit
numbers, using three CSAs and one propagate adder. Part (a) is a block diagram
of the kind we will use throughout this section. Parts (b) and (c) show the adder in
more detail. All the inputs to the adder are shown in (b); the actual adders with their
interconnections are shown in (c). Each row of adders in (c) corresponds to a box in
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Figure J.27 An array multiplier. The 5-bit number in A is multiplied by b4b3b2b1b0. Part
(a) shows the block diagram, (b) shows the inputs to the array, and (c) expands the array
to show all the adders.
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(a). The picture is “twisted” so that bits of the same significance are in the same
column. In an actual implementation, the array would most likely be laid out as
a square instead.

The array multiplier in Figure J.27 performs the same number of additions as
the design in Figure J.24, so its latency is not dramatically different from that of a
single carry-save adder. However, with the hardware in Figure J.27, multiplication
can be pipelined, increasing the total throughput. On the other hand, although this
level of pipelining is sometimes used in array processors, it is not used in any of the
single-chip, floating-point accelerators discussed in Section J.10. Pipelining is dis-
cussed in general in Appendix C and by Kogge [1981] in the context of multipliers.

Sometimes the space budgeted on a chip for arithmetic may not hold an array
large enough to multiply two double-precision numbers. In this case, a popular
design is to use a two-pass arrangement such as the one shown in Figure J.28.
The first pass through the array “retires” 5 bits of B. Then the result of this first
pass is fed back into the top to be combined with the next three summands. The
result of this second pass is then fed into a CPA. This design, however, loses
the ability to be pipelined.

If arrays require as many addition steps as the much cheaper arrangements in
Figures J.2 and J.24, why are they so popular? First of all, using an array has a
smaller latency than using a single adder—because the array is a combinational
circuit, the signals flow through it directly without being clocked. Although the
two-pass adder of Figure J.28 would normally still use a clock, the cycle time
for passing through k arrays can be less than k times the clock that would be needed
for designs like the ones in Figures J.2 or J.24. Second, the array is amenable to
various schemes for further speedup. One of them is shown in Figure J.29. The
idea of this design is that two adds proceed in parallel or, to put it another way,
each stream passes through only half the adders. Thus, it runs at almost twice
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Figure J.28 Multipass array multiplier. Multiplies two 8-bit numbers with about half
the hardware that would be used in a one-pass design like that of Figure J.27. At the
end of the second pass, the bits flow into the CPA. The inputs used in the first pass
are marked in bold.
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the speed of the multiplier in Figure J.27. This even/odd multiplier is popular in
VLSI because of its regular structure. Arrays can also be speeded up using asyn-
chronous logic. One of the reasons why the multiplier of Figure J.2 (page J-4)
needs a clock is to keep the output of the adder from feeding back into the input
of the adder before the output has fully stabilized. Thus, if the array in Figure J.28 is
long enough so that no signal can propagate from the top through the bottom in the
time it takes for the first adder to stabilize, it may be possible to avoid clocks alto-
gether. Williams et al. [1987] discussed a design using this idea, although it is for
dividers instead of multipliers.

The techniques of the previous paragraph still have a multiply time of 0(n), but
the time can be reduced to log n using a tree. The simplest tree would combine pairs
of summands b0A⋯bn�1A, cutting the number of summands from n to n/2. Then
these n/2 numbers would be added in pairs again, reducing to n/4, and so on, and
resulting in a single sum after log n steps. However, this simple binary tree idea
doesn’t map into full (3,2) adders, which reduce three inputs to two rather than
reducing two inputs to one. A tree that does use full adders, known as a Wallace
tree, is shown in Figure J.30. When computer arithmetic units were built out of
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Figure J.29 Even/odd array. The first two adders work in parallel. Their results are fed
into the third and fourth adders, which also work in parallel, and so on.
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MSI parts, a Wallace tree was the design of choice for high-speed multipliers.
There is, however, a problem with implementing it in VLSI. If you try to fill in
all the adders and paths for the Wallace tree of Figure J.30, you will discover that
it does not have the nice, regular structure of Figure J.27. This is why VLSI
designers have often chosen to use other log n designs such as the binary tree mul-
tiplier, which is discussed next.

The problem with adding summands in a binary tree is coming up with a (2,1)
adder that combines two digits and produces a single-sum digit. Because of
carries, this isn’t possible using binary notation, but it can be done with some
other representation. We will use the signed-digit representation 1, 1, and 0,
which we used previously to understand Booth’s algorithm. This representation
has two costs. First, it takes 2 bits to represent each signed digit. Second, the algo-
rithm for adding two signed-digit numbers ai and bi is complex and requires
examining aiai�1ai�2 and bibi�1bi�2. Although this means you must look 2 bits
back, in binary addition you might have to look an arbitrary number of bits back
because of carries.

We can describe the algorithm for adding two signed-digit numbers as follows.
First, compute sum and carry bits si and ci+1 using Figure J.31. Then compute the
final sum as si+ci. The tables are set up so that this final sum does not generate a
carry.

Example What is the sum of the signed-digit numbers 1102 and 0012?

Answer The two low-order bits sum to 0 + 1¼ 11, the next pair sums to 1 + 0¼ 01, and the
high-order pair sums to 1+0¼01, so the sum is 11 + 010 + 0100¼ 1012.
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Figure J.30 Wallace tree multiplier. An example of a multiply tree that computes a
product in 0(log n) steps.
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This, then, defines a (2,1) adder. With this in hand, we can use a straightforward
binary tree to perform multiplication. In the first step it adds b0A+b1A in parallel
with b2A+b3A,…, bn�2A+bn�1A. The next step adds the results of these sums in
pairs, and so on. Although the final sum must be run through a carry-propagate
adder to convert it from signed-digit form to two’s complement, this final add step
is necessary in any multiplier using CSAs.

To summarize, both Wallace trees and signed-digit trees are log n multipliers.
The Wallace tree uses fewer gates but is harder to lay out. The signed-digit tree has
a more regular structure, but requires 2 bits to represent each digit and has more
complicated add logic. As with adders, it is possible to combine different multiply
techniques. For example, Booth recoding and arrays can be combined. In
Figure J.27 instead of having each input be biA, we could have it be bibi�1A.
To avoid having to compute the multiple 3b, we can use Booth recoding.

Faster Division with One Adder

The two techniques we discussed for speeding up multiplication with a single
adder were carry-save adders and higher-radix multiplication. However, there is
a difficulty when trying to utilize these approaches to speed up nonrestoring divi-
sion. If the adder in Figure J.2(b) on page J-4 is replaced with a carry-save adder,
then P will be replaced with two registers, one for the sum bits and one for the carry
bits (compare with the multiplier in Figure J.24). At the end of each cycle, the sign
of P is uncertain (since P is the unevaluated sum of the two registers), yet it is the
sign of P that is used to compute the quotient digit and decide the next ALU oper-
ation. When a higher radix is used, the problem is deciding what value to subtract
from P. In the paper-and-pencil method, you have to guess the quotient digit. In
binary division, there are only two possibilities. We were able to finesse the prob-
lem by initially guessing one and then adjusting the guess based on the sign of P.
This doesn’t work in higher radices because there are more than two possible quo-
tient digits, rendering quotient selection potentially quite complicated: You would
have to compute all the multiples of b and compare them to P.

Both the carry-save technique and higher-radix division can be made to work
if we use a redundant quotient representation. Recall from our discussion of SRT
division (page J-45) that by allowing the quotient digits to be �1, 0, or 1, there is
often a choice of which one to pick. The idea in the previous algorithm was to
choose 0 whenever possible, because that meant an ALU operation could be

1 1
+ 1
0 0

1
+ 1

1 0

0 1 x
+ 0 y

1 1
0 1

1 x
+ 0 y

1 1
1 1

+ 1 + 0

1 0 0 0 if x�0 and
y�0 otherwise

if x�0 and
y�0 otherwise

Figure J.31 Signed-digit addition table. The leftmost sum shows that when comput-
ing 1+1, the sum bit is 0 and the carry bit is 1.
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skipped. In carry-save division, the idea is that, because the remainder (which is the
value of the (P,A) register pair) is not known exactly (being stored in carry-save
form), the exact quotient digit is also not known. But, thanks to the redundant rep-
resentation, the remainder doesn’t have to be known precisely in order to pick a
quotient digit. This is illustrated in Figure J.32, where the x-axis represents ri,
the remainder after i steps. The line labeled qi¼1 shows the value that ri+1 would
be if we chose qi¼1, and similarly for the lines qi¼0 and qi¼�1. We can choose
any value for qi, as long as ri+1¼2ri�qib satisfies jri+1j�b. The allowable ranges
are shown in the right half of Figure J.32. This shows that you don’t need to know
the precise value of ri in order to choose a quotient digit qi. You only need to know
that r lies in an interval small enough to fit entirely within one of the overlapping
bars shown in the right half of Figure J.32.

This is the basis for using carry-save adders. Look at the high-order bits of the
carry-save adder and sum them in a propagate adder. Then use this approximation
of r (together with the divisor, b) to compute qi, usually by means of a lookup table.
The same technique works for higher-radix division (whether or not a carry-save
adder is used). The high-order bits P can be used to index a table that gives one of
the allowable quotient digits.

The design challenge when building a high-speed SRT divider is figuring out
how many bits of P and B need to be examined. For example, suppose that we take
a radix of 4, use quotient digits of 2, 1, 0, 1, 2, but have a propagate adder. How
many bits of P and B need to be examined? Deciding this involves two steps. For
ordinary radix-2 nonrestoring division, because at each stage jrj�b, the P buffer
won’t overflow. But, for radix 4, ri+1¼4ri�qib is computed at each stage, and if ri
is near b, then 4riwill be near 4b, and even the largest quotient digit will not bring r
back to the range jri+1j�b. In other words, the remainder might grow without
bound. However, restricting jrij�2b/3 makes it easy to check that ri will stay
bounded.

After figuring out the bound that ri must satisfy, we can draw the diagram in
Figure J.33, which is analogous to Figure J.32. For example, the diagram shows
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Figure J.32 Quotient selection for radix-2 division. The x-axis represents the ith
remainder, which is the quantity in the (P,A) register pair. The y-axis shows the value
of the remainder after one additional divide step. Each bar on the right-hand
graph gives the range of ri values for which it is permissible to select the associated
value of qi.
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that if ri is between (1/12)b and (5/12)b, we can pick q¼1, and so on. Or, to put it
another way, if r/b is between 1/12 and 5/12, we can pick q¼1. Suppose the
divider examines 5 bits of P (including the sign bit) and 4 bits of b (ignoring
the sign, since it is always nonnegative). The interesting case is when the high bits
of P are 00011xxx⋯, while the high bits of b are 1001xxx⋯. Imagine the binary
point at the left end of each register. Since we truncated, r (the value of P
concatenated with A) could have a value from 0.00112 to 0.01002, and b could
have a value from .10012 to .10102. Thus, r/b could be as small as 0.00112/
.10102 or as large as 0.01002/.10012, but 0.00112/.10102¼3/10<1/3 would
require a quotient bit of 1, while 0.01002/.10012¼4/9>5/12 would require a quo-
tient bit of 2. In other words, 5 bits of P and 4 bits of b aren’t enough to pick a
quotient bit. It turns out that 6 bits of P and 4 bits of b are enough. This can be
verified by writing a simple program that checks all the cases. The output of such
a program is shown in Figure J.34.

Example Using 8-bit registers, compute 149/5 using radix-4 SRT division.

Answer Follow the SRT algorithm on page J-45, but replace the quotient selection rule in
step 2 with one that uses Figure J.34. See Figure J.35.

The Pentium uses a radix-4 SRT division algorithm like the one just presented,
except that it uses a carry-save adder. Exercises J.34(c) and J.35 explore this in
detail. Although these are simple cases, all SRT analyses proceed in the same
way. First compute the range of ri, then plot ri against ri+1 to find the quotient
ranges, and finally write a program to compute how many bits are necessary.
(It is sometimes also possible to compute the required number of bits analytically.)
Various details need to be considered in building a practical SRT divider.

2b
3

–2b
3

2b
3

5b
12

b
3

b
6

b
12

0

q
i
 = –2 q

i
 = –1 q

i
 = 1q

i
 = 0 q

i
 = 2

r
i

r
i +1 

= 4r
i 
– q

i
b

q
i 
= 2

q
i 
= 1

r
i

q
i 
= 0

q
i 
= –2

q
i 
= –1

–2b
3

r
i +1

Figure J.33 Quotient selection for radix-4 division with quotient digits22,21, 0, 1, 2.
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For example, the quotient lookup table has a fairly regular structure, which means it
is usually cheaper to encode it as a PLA rather than in ROM. For more details about
SRT division, see Burgess and Williams [1995].

J.10 Putting It All Together

In this section, we will compare the Weitek 3364, the MIPS R3010, and the Texas
Instruments 8847 (see Figures J.36 and J.37). In many ways, these are ideal chips
to compare. They each implement the IEEE standard for addition, subtraction,

b Range of P q b Range of P q

8 �12 �7 �2 12 �18 �10 �2

8 �6 �3 �1 12 �10 �4 �1

8 �2 1 0 12 �4 3 0

8 2 5 1 12 3 9 1

8 6 11 2 12 9 17 2

9 �14 �8 �2 13 �19 �11 �2

9 �7 �3 �1 13 �10 �4 �1

9 �3 2 0 13 �4 3 0

9 2 6 1 13 3 9 1

9 7 13 2 13 10 18 2

10 �15 �9 �2 14 �20 �11 �2

10 �8 �3 �1 14 �11 �4 �1

10 �3 2 0 14 �4 3 0

10 2 7 1 14 3 10 1

10 8 14 2 14 10 19 2

11 �16 �9 �2 15 �22 �12 �2

11 �9 �3 �1 15 �12 �4 �1

11 �3 2 0 15 �5 4 0

11 2 8 1 15 3 11 1

11 8 15 2 15 11 21 2

Figure J.34 Quotient digits for radix-4 SRT division with a propagate adder. The top
row says that if the high-order 4 bits of b are 10002¼8, and if the top 6 bits of P are
between 1101002¼�12 and 1110012¼�7, then �2 is a valid quotient digit.
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P A
000000000 10010101 Divide 149 by 5. B contains 00000101.

000010010 10100000 Step 1: B had 5 leading 0s, so shift left by 5. B now
contains 10100000, so use b¼10 section of
table.

Step 2.1: Top 6 bits of P are 2, so shift left by 2. From
table, can pick q to be 0 or 1. Choose q0¼0.001001010 1000000

Step 2.2: Top 6 bits of P are 9, so shift left 2. q1¼2.

100101010 000002

+ 011000000 Subtract 2b.

111101010 000002 Step 2.3: Top bits¼�3, so shift left 2. Can pick 0 or �1
for q, pick q2¼0.110101000 00020

Step 2.4: Top bits¼�11, so shift left 2. q3¼�2.

010100000 0202

+ 101000000 Add 2b.

111100000 Step 3: Remainder is negative, so restore by adding b
and subtract 1 from q.+ 010100000

010000000 Answer: q¼ 0202�1¼ 29

To get remainder, undo shift in step 1 so
remainder¼010000000 >>5¼4.

Figure J.35 Example of radix-4 SRT division. Division of 149 by 5.

Features MIPS R3010 Weitek 3364 TI 8847

Clock cycle time (ns) 40 50 30

Size (mil2) 114,857 147,600 156,180

Transistors 75,000 165,000 180,000

Pins 84 168 207

Power (watts) 3.5 1.5 1.5

Cycles/add 2 2 2

Cycles/mult 5 2 3

Cycles/divide 19 17 11

Cycles/square root � 30 14

Figure J.36 Summary of the three floating-point chips discussed in this section. The
cycle times are for production parts available in June 1989. The cycle counts are for
double-precision operations.
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Figure J.37 Chip layout for the TI 8847, MIPS R3010, and Weitek 3364. In the left-hand columns are the photo-
micrographs; the right-hand columns show the corresponding floor plans.

(Continued)
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multiplication, and division on a single chip. All were introduced in 1988 and run
with a cycle time of about 40 nanoseconds. However, as we will see, they use quite
different algorithms. The Weitek chip is well described in Birman et al. [1990], the
MIPS chip is described in less detail in Rowen, Johnson, and Ries [1988], and
details of the TI chip can be found in Darley et al. [1989].

These three chips have a number of things in common. They perform addition
and multiplication in parallel, and they implement neither extended precision nor a
remainder step operation. (Recall from Section J.6 that it is easy to implement the
IEEE remainder function in software if a remainder step instruction is available.)
The designers of these chips probably decided not to provide extended precision
because the most influential users are those who run portable codes, which can’t
rely on extended precision. However, as we have seen, extended precision can
make for faster and simpler math libraries.

In the summary of the three chips given in Figure J.36, note that a higher tran-
sistor count generally leads to smaller cycle counts. Comparing the cycles/op num-
bers needs to be done carefully, because the figures for the MIPS chip are those for
a complete system (R3000/3010 pair), while the Weitek and TI numbers are for
stand-alone chips and are usually larger when used in a complete system.

The MIPS chip has the fewest transistors of the three. This is reflected in the
fact that it is the only chip of the three that does not have any pipelining or hardware

Figure J.37 (Continued)
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square root. Further, the multiplication and addition operations are not completely
independent because they share the carry-propagate adder that performs the final
rounding (as well as the rounding logic).

Addition on the R3010 uses a mixture of ripple, CLA, and carry-select. A
carry-select adder is used in the fashion of Figure J.20 (page J-43). Within each
half, carries are propagated using a hybrid ripple-CLA scheme of the type indicated
in Figure J.19 (page J-42). However, this is further tuned by varying the size of
each block, rather than having each fixed at 4 bits (as they are in Figure J.19).
The multiplier is midway between the designs of Figures J.2 (page J-4) and
J.27 (page J-50). It has an array just large enough so that output can be fed back
into the input without having to be clocked. Also, it uses radix-4 Booth recoding
and the even/odd technique of Figure J.29 (page J-52). The R3010 can do a divide
and multiply in parallel (like the Weitek chip but unlike the TI chip). The divider is
a radix-4 SRTmethod with quotient digits�2,�1, 0, 1, and 2, and is similar to that
described in Taylor [1985]. Double-precision division is about four times slower
than multiplication. The R3010 shows that for chips using an 0(n) multiplier, an
SRT divider can operate fast enough to keep a reasonable ratio between multiply
and divide.

The Weitek 3364 has independent add, multiply, and divide units. It also uses
radix-4 SRT division. However, the add and multiply operations on the Weitek
chip are pipelined. The three addition stages are (1) exponent compare, (2) add
followed by shift (or vice versa), and (3) final rounding. Stages (1) and (3) take
only a half-cycle, allowing the whole operation to be done in two cycles, even
though there are three pipeline stages. The multiplier uses an array of the style
of Figure J.28 but uses radix-8 Booth recoding, which means it must compute 3
times the multiplier. The three multiplier pipeline stages are (1) compute 3b,
(2) pass through array, and (3) final carry-propagation add and round. Single pre-
cision passes through the array once, double precision twice. Like addition, the
latency is two cycles.

The Weitek chip uses an interesting addition algorithm. It is a variant on the
carry-skip adder pictured in Figure J.18 (page J-42). However, Pij, which is the log-
ical AND of many terms, is computed by rippling, performing one AND per
ripple. Thus, while the carries propagate left within a block, the value of Pij is prop-
agating right within the next block, and the block sizes are chosen so that both waves
complete at the same time. Unlike theMIPS chip, the 3364 has hardware square root,
which shares the divide hardware. The ratio of double-precision multiply to divide is
2:17. The large disparity between multiply and divide is due to the fact that multi-
plication uses radix-8 Booth recoding, while division uses a radix-4 method. In the
MIPS R3010, multiplication and division use the same radix.

The notable feature of the TI 8847 is that it does division by iteration (using the
Goldschmidt algorithm discussed in Section J.6). This improves the speed of divi-
sion (the ratio of multiply to divide is 3:11), but means that multiplication and divi-
sion cannot be done in parallel as on the other two chips. Addition has a two-stage
pipeline. Exponent compare, fraction shift, and fraction addition are done in the
first stage, normalization and rounding in the second stage. Multiplication uses
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a binary tree of signed-digit adders and has a three-stage pipeline. The first stage
passes through the array, retiring half the bits; the second stage passes through the
array a second time; and the third stage converts from signed-digit form to two’s
complement. Since there is only one array, a new multiply operation can only be
initiated in every other cycle. However, by slowing down the clock, two passes
through the array can be made in a single cycle. In this case, a new multiplication
can be initiated in each cycle. The 8847 adder uses a carry-select algorithm rather
than carry-lookahead. As mentioned in Section J.6, the TI carries 60 bits of pre-
cision in order to do correctly rounded division.

These three chips illustrate the different trade-offs made by designers with sim-
ilar constraints. One of the most interesting things about these chips is the diversity
of their algorithms. Each uses a different add algorithm, as well as a different mul-
tiply algorithm. In fact, Booth recoding is the only technique that is universally
used by all the chips.

J.11 Fallacies and Pitfalls

Fallacy Underflows rarely occur in actual floating-point application code

Although most codes rarely underflow, there are actual codes that underflow fre-
quently. SDRWAVE [Kahaner 1988], which solves a one-dimensional wave equa-
tion, is one such example. This program underflows quite frequently, even when
functioning properly. Measurements on one machine show that adding hardware
support for gradual underflow would cause SDRWAVE to run about 50% faster.

Fallacy Conversions between integer and floating point are rare

In fact, in spice they are as frequent as divides. The assumption that conversions
are rare leads to a mistake in the SPARC version 8 instruction set, which does not
provide an instruction to move from integer registers to floating-point registers.

Pitfall Don’t increase the speed of a floating-point unit without increasing its memory
bandwidth

A typical use of a floating-point unit is to add two vectors to produce a third vector.
If these vectors consist of double-precision numbers, then each floating-point
add will use three operands of 64 bits each, or 24 bytes of memory. The memory
bandwidth requirements are even greater if the floating-point unit can perform
addition and multiplication in parallel (as most do).

Pitfall �x is not the same as 0�x

This is a fine point in the IEEE standard that has tripped up some designers.
Because floating-point numbers use the sign magnitude system, there are two
zeros, +0 and �0. The standard says that 0�0¼+0, whereas� (0)¼�0. Thus,
�x is not the same as 0�x when x¼0.
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J.12 Historical Perspective and References

The earliest computers used fixed point rather than floating point. In “Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument,” Burks,
Goldstine, and von Neumann [1946] put it like this:

There appear to be two major purposes in a “floating” decimal point system both of
which arise from the fact that the number of digits in a word is a constant fixed by
design considerations for each particular machine. The first of these purposes is to
retain in a sum or product as many significant digits as possible and the second of
these is to free the human operator from the burden of estimating and inserting into
a problem “scale factors”—multiplicative constants which serve to keep numbers
within the limits of the machine.
There is, of course, no denying the fact that human time is consumed in arrang-

ing for the introduction of suitable scale factors. We only argue that the time so
consumed is a very small percentage of the total time we will spend in preparing
an interesting problem for our machine. The first advantage of the floating point
is, we feel, somewhat illusory. In order to have such a floating point, one must
waste memory capacity that could otherwise be used for carrying more digits
per word. It would therefore seem to us not at all clear whether the modest advan-
tages of a floating binary point offset the loss of memory capacity and the
increased complexity of the arithmetic and control circuits.

This enables us to see things from the perspective of early computer designers,
who believed that saving computer time and memory were more important than
saving programmer time.

The original papers introducing the Wallace tree, Booth recoding, SRT divi-
sion, overlapped triplets, and so on are reprinted in Swartzlander [1990]. A good
explanation of an early machine (the IBM 360/91) that used a pipelined Wallace
tree, Booth recoding, and iterative division is in Anderson et al. [1967]. A discus-
sion of the average time for single-bit SRT division is in Freiman [1961]; this is one
of the few interesting historical papers that does not appear in Swartzlander.

The standard book of Mead and Conway [1980] discouraged the use of CLAs
as not being cost effective in VLSI. The important paper by Brent and Kung [1982]
helped combat that view. An example of a detailed layout for CLAs can be found in
Ngai and Irwin [1985] or in Weste and Eshraghian [1993], and a more theoretical
treatment is given by Leighton [1992]. Takagi, Yasuura, and Yajima [1985] pro-
vide a detailed description of a signed-digit tree multiplier.

Before the ascendancy of IEEE arithmetic, many different floating-point for-
mats were in use. Three important ones were used by the IBM 370, the DEC VAX,
and the Cray. Here is a brief summary of these older formats. The VAX format is
closest to the IEEE standard. Its single-precision format (F format) is like IEEE
single precision in that it has a hidden bit, 8 bits of exponent, and 23 bits of fraction.
However, it does not have a sticky bit, which causes it to round halfway cases up
instead of to even. The VAX has a slightly different exponent range from IEEE
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single: Emin is �128 rather than �126 as in IEEE, and Emax is 126 instead of 127.
The main differences between VAX and IEEE are the lack of special values and
gradual underflow. The VAX has a reserved operand, but it works like a signaling
NaN: It traps whenever it is referenced. Originally, the VAX’s double precision
(D format) also had 8 bits of exponent. However, as this is too small for many
applications, a G format was added; like the IEEE standard, this format has 11 bits
of exponent. The VAX also has an H format, which is 128 bits long.

The IBM370 floating-point format uses base 16 rather than base 2. Thismeans it
cannot use a hidden bit. In single precision, it has 7 bits of exponent and 24 bits (6 hex
digits) of fraction. Thus, the largest representable number is 1627¼24�27¼229,
compared with 228 for IEEE. However, a number that is normalized in the hexadec-
imal sense only needs to have a nonzero leading digit.When interpreted in binary, the
threemost-significant bits could be zero. Thus, there are potentially fewer than24bits
of significance. The reason for using the higher base was to minimize the amount of
shifting required when adding floating-point numbers. However, this is less signifi-
cant in current machines, where the floating-point add time is usually fixed indepen-
dently of the operands. Another difference between 370 arithmetic and IEEE
arithmetic is that the 370 has neither a round digit nor a sticky digit, which effectively
means that it truncates rather than rounds. Thus, inmany computations, the resultwill
systematically be too small. Unlike theVAXand IEEE arithmetic, every bit pattern is
a valid number. Thus, library routinesmust establish conventions forwhat to return in
case of errors. In the IBM FORTRAN library, for example,

ffiffiffiffiffiffiffi�4
p

returns 2!
Arithmetic on Cray computers is interesting because it is driven by a motiva-

tion for the highest possible floating-point performance. It has a 15-bit exponent
field and a 48-bit fraction field. Addition on Cray computers does not have a guard
digit, and multiplication is even less accurate than addition. Thinking of multipli-
cation as a sum of p numbers, each 2p bits long, Cray computers drop the low-order
bits of each summand. Thus, analyzing the exact error characteristics of the mul-
tiply operation is not easy. Reciprocals are computed using iteration, and division
of a by b is done by multiplying a times 1/b. The errors in multiplication and recip-
rocation combine to make the last three bits of a divide operation unreliable. At
least Cray computers serve to keep numerical analysts on their toes!

The IEEE standardization process began in 1977, inspired mainly byW. Kahan
and based partly on Kahan’s work with the IBM 7094 at the University of Toronto
[Kahan 1968]. The standardization process was a lengthy affair, with gradual
underflow causing the most controversy. (According to Cleve Moler, visitors to
the United States were advised that the sights not to be missed were Las Vegas,
the Grand Canyon, and the IEEE standards committee meeting.) The standard
was finally approved in 1985. The Intel 8087 was the first major commercial IEEE
implementation and appeared in 1981, before the standard was finalized. It con-
tains features that were eliminated in the final standard, such as projective bits.
According to Kahan, the length of double-extended precision was based on what
could be implemented in the 8087. Although the IEEE standard was not based on
any existing floating-point system, most of its features were present in some other
system. For example, the CDC 6600 reserved special bit patterns for INDEFINITE

J-64 ■ Appendix J Computer Arithmetic



and INFINITY, while the idea of denormal numbers appears in Goldberg [1967] as
well as in Kahan [1968]. Kahan was awarded the 1989 Turing prize in recognition
of his work on floating point.

Although floating point rarely attracts the interest of the general press, news-
papers were filled with stories about floating-point division in November 1994. A
bug in the division algorithm used on all of Intel’s Pentium chips had just come to
light. It was discovered by Thomas Nicely, a math professor at Lynchburg College
in Virginia. Nicely found the bug when doing calculations involving reciprocals of
prime numbers. News of Nicely’s discovery first appeared in the press on the front
page of the November 7 issue of Electronic Engineering Times. Intel’s immediate
response was to stonewall, asserting that the bug would only affect theoretical
mathematicians. Intel told the press, “This doesn’t even qualify as an errata… even
if you’re an engineer, you’re not going to see this.”

Under more pressure, Intel issued a white paper, dated November 30, explain-
ing why they didn’t think the bug was significant. One of their arguments was
based on the fact that if you pick two floating-point numbers at random and divide
one into the other, the chance that the resulting quotient will be in error is about 1 in
9 billion. However, Intel neglected to explain why they thought that the typical
customer accessed floating-point numbers randomly.

Pressure continued to mount on Intel. One sore point was that Intel had known
about the bug before Nicely discovered it, but had decided not to make it public.
Finally, on December 20, Intel announced that they would unconditionally replace
any Pentium chip that used the faulty algorithm and that they would take an unspe-
cified charge against earnings, which turned out to be $300 million.

The Pentium uses a simple version of SRT division as discussed in Section J.9.
The bug was introduced when they converted the quotient lookup table to a PLA.
Evidently there were a few elements of the table containing the quotient digit 2 that
Intel thought would never be accessed, and they optimized the PLA design using
this assumption. The resulting PLA returned 0 rather than 2 in these situations.
However, those entries were really accessed, and this caused the division bug.
Even though the effect of the faulty PLA was to cause 5 out of 2048 table entries
to be wrong, the Pentium only computes an incorrect quotient 1 out of 9 billion
times on random inputs. This is explored in Exercise J.34.
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Exercises

J.1 [12]< J.2>Using n bits, what is the largest and smallest integer that can be repre-
sented in the two’s complement system?

J.2 [20/25]< J.2> In the subsection “Signed Numbers” (page J-7), it was stated that
two’s complement overflows when the carry into the high-order bit position is dif-
ferent from the carry-out from that position.
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a. [20]< J.2>Give examples of pairs of integers for all four combinations of
carry-in and carry-out. Verify the rule stated above.

b. [25]< J.2>Explain why the rule is always true.

J.3 [12]< J.2>Using 4-bit binary numbers, multiply�8��8 using Booth recoding.

J.4 [15]< J.2>Equations J.2.1 and J.2.2 are for adding two n-bit numbers.
Derive similar equations for subtraction, where there will be a borrow instead
of a carry.

J.5 [25]< J.2>On a machine that doesn’t detect integer overflow in hardware, show
how you would detect overflow on a signed addition operation in software.

J.6 [15/15/20]< J.3>Represent the following numbers as single-precision and
double-precision IEEE floating-point numbers:

a. [15]< J.3>10.

b. [15]< J.3>10.5.

c. [20]< J.3>0.1.

J.7 [12/12/12/12/12]< J.3>Below is a list of floating-point numbers. In single preci-
sion, write down each number in binary, in decimal, and give its representation in
IEEE arithmetic.

a. [12]< J.3>The largest number less than 1.

b. [12]< J.3>The largest number.

c. [12]< J.3>The smallest positive normalized number.

d. [12]< J.3>The largest denormal number.

e. [12]< J.3>The smallest positive number.

J.8 [15]< J.3> Is the ordering of nonnegative floating-point numbers the same as inte-
gers when denormalized numbers are also considered?

J.9 [20]< J.3>Write a program that prints out the bit patterns used to represent
floating-point numbers on your favorite computer. What bit pattern is used
for NaN?

J.10 [15]< J.4>Using p¼4, show how the binary floating-point multiply algorithm
computes the product of 1.875�1.875.

J.11 [12/10]< J.4>Concerning the addition of exponents in floating-point multiply:

a. [12]< J.4>What would the hardware that implements the addition of expo-
nents look like?

b. [10]< J.4> If the bias in single precision were 129 instead of 127, would addi-
tion be harder or easier to implement?

J.12 [15/12]< J.4> In the discussion of overflow detection for floating-point multipli-
cation, it was stated that (for single precision) you can detect an overflowed expo-
nent by performing exponent addition in a 9-bit adder.
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a. [15]< J.4>Give the exact rule for detecting overflow.

b. [12]< J.4>Would overflow detection be any easier if you used a 10-bit adder
instead?

J.13 [15/10]< J.4>Floating-point multiplication:

a. [15]< J.4>Construct two single-precision floating-point numbers whose prod-
uct doesn’t overflow until the final rounding step.

b. [10]< J.4> Is there any rounding mode where this phenomenon cannot occur?

J.14 [15]< J.4>Give an example of a product with a denormal operand but a normal-
ized output. How large was the final shifting step? What is the maximum possible
shift that can occur when the inputs are double-precision numbers?

J.15 [15]< J.5>Use the floating-point addition algorithm on page J-23 to compute
1.0102� .10012 (in 4-bit precision).

J.16 [10/15/20/20/20]< J.5> In certain situations, you can be sure that a+b is exactly
representable as a floating-point number, that is, no rounding is necessary.

a. [10]< J.5> If a, b have the same exponent and different signs, explain why a
+b is exact. This was used in the subsection “Speeding Up Addition” on page
J-25.

b. [15]< J.5>Give an example where the exponents differ by 1, a and b have dif-
ferent signs, and a+b is not exact.

c. [20]< J.5> If a�b�0, and the top two bits of a cancel when computing a�b,
explain why the result is exact (this fact is mentioned on page J-22).

d. [20]< J.5> If a�b�0, and the exponents differ by 1, show that a�b is exact
unless the high order bit of a�b is in the same position as that of a (mentioned
in “Speeding Up Addition,” page J-25).

e. [20]< J.5> If the result of a�b or a+b is denormal, show that the result is
exact (mentioned in the subsection “Underflow,” on page J-36).

J.17 [15/20]< J.5>Fast floating-point addition (using parallel adders) for p¼5.

a. [15]< J.5>Step through the fast addition algorithm for a+b, where
a¼1.01112 and b¼ .110112.

b. [20]< J.5>Suppose the rounding mode is toward+∞. What complication
arises in the above example for the adder that assumes a carry-out? Suggest
a solution.

J.18 [12]< J.4, J.5>Howwould you use two parallel adders to avoid the final round-up
addition in floating-point multiplication?

J.19 [30/10]< J.5>This problem presents a way to reduce the number of addition steps
in floating-point addition from three to two using only a single adder.

a. [30]< J.5>Let A and B be integers of opposite signs, with a and b their mag-
nitudes. Show that the following rules for manipulating the unsigned numbers a
and b gives A+B.
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1. Complement one of the operands.
2. Use end-around carry to add the complemented operand and the other

(uncomplemented) one.
3. If there was a carry-out, the sign of the result is the sign associated with the

uncomplemented operand.
4. Otherwise, if there was no carry-out, complement the result, and give it the

sign of the complemented operand.

b. [10]< J.5>Use the above to showhow steps 2 and 4 in the floating-point addi-
tion algorithm on page J-23 can be performed using only a single addition.

J.20 [20/15/20/15/20/15]< J.6> Iterative square root.

a. [20]< J.6>Use Newton’s method to derive an iterative algorithm for square
root. The formula will involve a division.

b. [15]< J.6>What is the fastest way you can think of to divide a floating-point
number by 2?

c. [20]< J.6> If division is slow, then the iterative square root routine will also be
slow. Use Newton’s method on f(x)¼1/x2�a to derive a method that doesn’t
use any divisions.

d. [15]< J.6>Assume that the ratio division by 2 : floating-point add : floating-
point multiply is 1:2:4. What ratios of multiplication time to divide time makes
each iteration step in the method of part (c) faster than each iteration in the
method of part (a)?

e. [20]< J.6>When using the method of part (a), how many bits need to be in the
initial guess in order to get double-precision accuracy after three iterations?
(You may ignore rounding error.)

f. [15]< J.6>Suppose that when spice runs on the TI 8847, it spends 16.7% of its
time in the square root routine (this percentage has been measured on other
machines). Using the values in Figure J.36 and assuming three iterations,
how much slower would spice run if square root were implemented in software
using the method of part(a)?

J.21 [10/20/15/15/15]< J.6>Correctly rounded iterative division. Let a and b be
floating-point numbers with p-bit significands (p¼53 in double precision). Let
q be the exact quotient q¼a/b, 1�q<2. Suppose that q is the result of an iteration
process, that q has a few extra bits of precision, and that 0< q�q< 2�p. For the
following, it is important that q< q, even when q can be exactly represented as a
floating-point number.

a. [10]< J.6> If x is a floating-point number, and 1�x<2, what is the next rep-
resentable number after x?

b. [20]< J.6>Show how to compute q0 from q, where q0 has p+1 bits of precision
and jq�q0j<2�p.

c. [15]< J.6>Assuming round to nearest, show that the correctly rounded quo-
tient is either q0, q0 �2�p, or q0 +2�p.
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d. [15]< J.6>Give rules for computing the correctly rounded quotient from q0

based on the low-order bit of q0 and the sign of a�bq0.

e. [15]< J.6>Solve part (c) for the other three rounding modes.

J.22 [15]< J.6>Verify the formula on page J-30. (Hint: If xn ¼ x0 2� x0bð Þ�
Πi¼1,n 1 + 1� x0bð Þ2i

h i
, then 2� xnb¼ 2� x0b 2� x0bð ÞΠ 1 + 1� x0bð Þ2i

h i
¼

2� 1� 1� x0bð Þ2
h i

Π 1 + 1� x0bð Þ2i
h i

.)

J.23 [15]< J.7>Our example that showed that double rounding can give a different
answer from rounding once used the round-to-even rule. If halfway cases are
always rounded up, is double rounding still dangerous?

J.24 [10/10/20/20]< J.7>Some of the cases of the italicized statement in the “Preci-
sions” subsection (page J-33) aren’t hard to demonstrate.

a. [10]< J.7>What formmust a binary number have if rounding to q bits followed
by rounding to p bits gives a different answer than rounding directly to p bits?

b. [10]< J.7>Show that for multiplication of p-bit numbers, rounding to q bits
followed by rounding to p bits is the same as rounding immediately to p bits
if q�2p.

c. [20]< J.7> If a and b are p-bit numbers with the same sign, show that rounding
a+b to q bits followed by rounding to p bits is the same as rounding immedi-
ately to p bits if q�2p+1.

d. [20]< J.7>Do part (c) when a and b have opposite signs.

J.25 [Discussion]< J.7> In the MIPS approach to exception handling, you need a test
for determining whether two floating-point operands could cause an exception.
This should be fast and also not have too many false positives. Can you come
up with a practical test? The performance cost of your design will depend on
the distribution of floating-point numbers. This is discussed in Knuth [1981]
and the Hamming paper in Swartzlander [1990].

J.26 [12/12/10]< J.8>Carry-skip adders.

a. [12]< J.8>Assuming that time is proportional to logic levels, how long does it
take an n-bit adder divided into (fixed) blocks of length k bits to perform an
addition?

b. [12]< J.8>What value of k gives the fastest adder?

c. [10]< J.8>Explain why the carry-skip adder takes time 0
ffiffiffi
n

pð Þ.
J.27 [10/15/20]< J.8>Complete the details of the block diagrams for the following

adders.

a. [10]< J.8> In Figure J.15, show how to implement the “1” and “2” boxes in
terms of AND and OR gates.

b. [15]< J.8> In Figure J.19, what signals need to flow from the adder cells in the
top row into the “C” cells? Write the logic equations for the “C” box.

c. [20]< J.8>Show how to extend the block diagram in J.17 so it will produce the
carry-out bit c8.
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J.28 [15]< J.9>For ordinary Booth recoding, the multiple of b used in the ith step
is simply ai�1�ai. Can you find a similar formula for radix-4 Booth recoding
(overlapped triplets)?

J.29 [20]< J.9>Expand Figure J.29 in the fashion of J.27, showing the individual
adders.

J.30 [25]< J.9>Write out the analog of Figure J.25 for radix-8 Booth recoding.

J.31 [18]< J.9>Suppose that an�1 … a1a0 and bn�1 … b1b0 are being added in a
signed-digit adder as illustrated in the example on page J-53. Write a formula
for the ith bit of the sum, si, in terms of ai, ai�1, ai�2, bi, bi�1, and bi�2.

J.32 [15]< J.9>The text discussed radix-4 SRT division with quotient digits of �2,
�1, 0, 1, 2. Suppose that 3 and�3 are also allowed as quotient digits.What relation
replaces jrij�2b/3?

J.33 [25/20/30]< J.9>Concerning the SRT division table, Figure J.34:

a. [25]< J.9>Write a program to generate the results of Figure J.34.

b. [20]< J.9>Note that Figure J.34 has a certain symmetry with respect to pos-
itive and negative values of P. Can you find a way to exploit the symmetry and
only store the values for positive P?

c. [30]< J.9>Suppose a carry-save adder is used instead of a propagate adder.
The input to the quotient lookup table will be k bits of divisor and l bits of
remainder, where the remainder bits are computed by summing the top l bits
of the sum and carry registers. What are k and l? Write a program to generate
the analog of Figure J.34.

J.34 [12/12/12]< J.9, J.12>The first several million Pentium chips produced had a
flaw that caused division to sometimes return the wrong result. The Pentium uses
a radix-4 SRT algorithm similar to the one illustrated in the example on page J-56
(but with the remainder stored in carry-save format; see Exercise J.33(c)). Accord-
ing to Intel, the bug was due to five incorrect entries in the quotient lookup table.

a. [12]< J.9, J.12>The bad entries should have had a quotient of plus or minus 2,
but instead had a quotient of 0. Because of redundancy, it’s conceivable that the
algorithm could “recover” from a bad quotient digit on later iterations. Show
that this is not possible for the Pentium flaw.

b. [12]< J.9, J.12>Since the operation is a floating-point divide rather than an
integer divide, the SRT division algorithm on page J-45 must be modified in
two ways. First, step 1 is no longer needed, since the divisor is already normal-
ized. Second, the very first remainder may not satisfy the proper bound
(jrj�2b/3 for Pentium; see page J-55). Show that skipping the very first left
shift in step 2(a) of the SRT algorithm will solve this problem.

c. [12]< J.9, J.12> If the faulty table entries were indexed by a remainder that
could occur at the very first divide step (when the remainder is the divisor), ran-
dom testing would quickly reveal the bug. This didn’t happen. What does that
tell you about the remainder values that index the faulty entries?
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J.35 [12]< J.6, J.9>The discussion of the remainder-step instruction assumed that
division was done using a bit-at-a-time algorithm. What would have to change
if division were implemented using a higher-radix method?

J.36 [25]< J.9> In the array of Figure J.28, the fact that an array can be pipelined is not
exploited. Can you come up with a design that feeds the output of the bottom CSA
into the bottom CSAs instead of the top one, and that will run faster than the
arrangement of Figure J.28?
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K.1 Introduction

This appendix covers 10 instruction set architectures, some of which remain a vital
part of the IT industry and some of which have retired to greener pastures. We keep
them all in part to show the changes in fashion of instruction set architecture
over time.

We start with eight RISC architectures, using RISC V as our basis for compar-
ison. There are billions of dollars of computers shipped each year for ARM (includ-
ing Thumb-2), MIPS (including microMIPS), Power, and SPARC. ARM
dominates in both the PMD (including both smart phones and tablets) and the
embedded markets.

The 80x86 remains the highest dollar-volume ISA, dominating the desktop and
the much of the server market. The 80x86 did not get traction in either the embed-
ded or PMD markets, and has started to lose ground in the server market. It has
been extended more than any other ISA in this book, and there are no plans to stop
it soon. Now that it has made the transition to 64-bit addressing, we expect this
architecture to be around, although it may play a smaller role in the future then
it did in the past 30 years.

The VAX typifies an ISA where the emphasis was on code size and offering a
higher level machine language in the hopes of being a better match to programming
languages. The architects clearly expected it to be implemented with large amounts
of microcode, which made single chip and pipelined implementations more chal-
lenging. Its successor was the Alpha, a RISC architecture similar to MIPS and
RISC V, but which had a short life.

The vulnerable IBM 360/370 remains a classic that set the standard for many
instruction sets to follow. Among the decisions the architects made in the early
1960s were:

■ 8-bit byte

■ Byte addressing

■ 32-bit words

■ 32-bit single precision floating-point format + 64-bit double precision floating-
point format

■ 32-bit general-purpose registers, separate 64-bit floating-point registers

■ Binary compatibility across a family of computers with different cost-
performance

■ Separation of architecture from implementation

As mentioned in Chapter 2, the IBM 370 was extended to be virtualizable, so it
had the lowest overhead for a virtual machine of any ISA. The IBM 360/370
remains the foundation of the IBM mainframe business in a version that has
extended to 64 bits.
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K.2 A Survey of RISC Architectures for Desktop, Server,
and Embedded Computers

Introduction

We cover two groups of Reduced Instruction Set Computer (RISC) architectures in
this section. The first group is the desktop, server RISCs, and PMD processors:

■ Advanced RISC Machines ARMv8, AArch64, the 64-bit ISA,

■ MIPS64, version 6, the most recent the 64-bit ISA,

■ Power version 3.0, which merges the earlier IBM Power architecture and the
PowerPC architecture.

■ RISC-V, specifically RV64G, the 64-bit extension of RISC-V.

■ SPARCv9, the 64-bit ISA.

As Figure K.1 shows these architectures are remarkably similar.
There are two other important historical RISC processors that are almost iden-

tical to those in the list above: the DEC Alpha processor, which was made by Dig-
ital Equipment Corporation from 1992 to 2004 and is almost identical to MIPS64.
Hewlett-Packard’s PA-RISC was produced by HP from about 1986 to 2005, when
it was replaced by Itanium. PA-RISC is most closely related to the Power ISA,
which emerged from the IBM Power design, itself a descendant of IBM 801.

The second group is the embedded RISCs designed for lower-end applications:

■ Advanced RISC Machines, Thumb-2: an 32-bit instruction set with 16-bit and
32-bit instructions. The architecture includes features from both ARMv7
and ARMv8.

■ microMIPS64: a version of the MIPS64 instruction set with 16-it
instructions, and

■ RISC-V Compressed extension (RV64GC), a set of 16-bit instructions added
to RV64G

Both RV64GC and microMIPS64 have corresponding 32-bit versions: RV32GC
and microMIPS32.

Since the comparison of the base 32-bit or 64-bit desktop and server architec-
ture will examine the differences among those ISAs, our discussion of the embed-
ded architectures focuses on the 16-bit instructions. Figure K.2 shows that these
embedded architectures are also similar. In all three, the 16-bit instructions are ver-
sions of 32-bit instructions, typically with a restricted set of registers.The idea is to
reduce the code size by replacing common 32-bit instructions with 16-bit versions.
For RV32GC or Thumb-2, including the 16-bit instructions yields a reduction in
code size to about 0.73 of the code size using only the 32-bit ISA (either RV32G
or ARMv7).
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Figure K.1 Summary of the most recent version of five architectures for desktop, server, and PMD use (all had
earlier versions). Except for the number of data address modes and some instruction set details, the integer instruc-
tion sets of these architectures are very similar. Contrast this with Figure K.29. In ARMv8, register 31 is a 0 (like register
0 in the other architectures), but when it is used in a load or store, it is the current stack pointer, a special purpose
register. We can either think of SP-based addressing as a different mode (which is how the assembly mnemonics
operate) or as simply a register + offset addressing mode (which is how the instruction is encoded).

Figure K.2 Summary of three recent architectures for embedded applications. All three use 16-bit extensions of a
base instruction set. Except for number of data address modes and a number of instruction set details, the integer
instruction sets of these architectures are similar. Contrast this with Figure K.29. An earlier 16-bit version of the MIPS
instruction set, called MIPS16, was created in 1995 and was replaced by microMIPS32 and microMIPS64. The first
Thumb architecture had only 16-bit instructions and was created in 1996. Thumb-2 is built primarily on ARMv7,
the 32-bit ARM instruction set; it offers 16 registers. RISC-V also defines RV32E, which has only 16 registers, includes
the 16-bit instructions, and cannot have floating point. It appears that most implementations for embedded appli-
cations opt for RV32C or RV64GC.



A key difference among these three architectures is the structure of the base
32-bit ISA. In the case of RV64GC, the 32-bit instructions are exactly those of
RV64G. This is possible because RISC V planned for the 16-it option from the
beginning, and branch addresses and jump addresses are specified to 16-it
boundaries. In the case of microMIPS64, the base ISA is MIPS64, with one
change: branch and jump offsets are interpreted as 16-bit rather than 32-bit
aligned. (microMIPS also uses the encoding space that was reserved in MIPS64
for user-defined instruction set extensions; such extensions are not part of the
base ISA.)

Thumb-2 uses a slightly different approach. The 32-bit instructions in Thumb-
2 are mostly a subset of those in ARMv7; certain features that were dropped in
ARMv8 are not included (e.g., conditional execution of most instructions and
the ability to write the PC as a GPR). Thumb-2 also includes a few dozen instruc-
tions introduced in ARMv8, specifically bit field manipulation, additional system
instructions, and synchronization support. Thus, the 32-bit instructions in Thumb-
2 constitute a unique ISA.

Earlier versions of the 16-bit instruction sets for MIPS (MIPS16) and ARM
(Thumb), took the approach of creating a separate mode, invoked by a procedure
call, to transfer control to a code segment that employed only 16-bit instructions.

The 16-bit instruction set was not complete and was only intended for user pro-
grams that were code-size critical.

One complication of this description is that some of the older RISCs have been
extended over the years. We decided to describe the most recent versions of the
architectures: ARMv8 (the 64-bit architecture AArch64), MIPS64 R6, Power
v3.0, RV64G, and SPARC v9 for the desktop/server/PMD, and the 16-bit subset
of the ISAs for microMIPS64, RV64GC, and Thumb-2.

The remaining sections proceed as follows. After discussing the addressing
modes and instruction formats of our RISC architectures, we present the survey
of the instructions in five steps:

■ Instructions found in the RV64G core, described in Appendix A.

■ Instructions not found in the RV64G or RV64GC but found in two or more of
the other architectures. We describe and organize these by functionality, e.g.
instructions that support extended integer arithmetic.

■ Instruction groups unique to ARM, MIPS, Power, or SPARC, organized by
function.

■ Multimedia extensions of the desktop/server/PMD RISCs

■ Digital signal-processing extensions of the embedded RISCs

Although the majority of the instructions in these architectures are included, we
have not included every single instruction; this is especially true for the Power
and ARM ISAs, which have many instructions.
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Addressing Modes and Instruction Formats

Figure K.3 shows the data addressing modes supported by the desktop/server/
PMD architectures. Since all, but ARM, have one register that always has the value
0 when used in address modes, the absolute address mode with limited range can be
synthesized using register 0 as the base in displacement addressing. (This register
can be changed by arithmetic-logical unit (ALU) operations in PowerPC, but is
always zero when it is used in an address calculation.) Similarly, register indirect
addressing is synthesized by using displacement addressing with an offset of 0.
Simplified addressing modes is one distinguishing feature of RISC architectures.

As Figure K.4 shows, the embedded architectures restrict the registers that
can be accessed with the 16-bit instructions, typically to only 8 registers, for most
instructions, and a few special instructions that refer to other registers. Figure K.5
shows the data addressing modes supported by the embedded architectures in their
16-bit instruction mode. These versions of load/store instructions restrict the reg-
isters that can be used in address calculations, as well as significantly shorten the
immediate fields, used for displacements.

References to code are normally PC-relative, although jump register indirect is
supported for returning from procedures, for case statements, and for pointer func-
tion calls. One variation is that PC-relative branch addresses are often shifted left 2
bits before being added to the PC for the desktop RISCs, thereby increasing the
branch distance. This works because the length of all instructions for the desktop

Figure K.3 Summary of data addressing modes supported by the desktop architectures, where B, H, W, D indi-
cate what datatypes can use the addressing mode. Note that ARM includes two different types of address modes
with updates, one of which is included in Power.
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RISCs is 32 bits and instructions must be aligned on 32-bit words in memory.
Embedded architectures and RISC V (when extended) have 16-bit-long instruc-
tions and usually shift the PC-relative address by 1 for similar reasons.

Figure K.6 shows the most important instruction formats of the desktop/server/
PMD RISC instructions. Each instruction set architecture uses four primary
instruction formats, which typically include 90–98% of the instructions. The
register-register format is used for register-register ALU instructions, while the
ALU immediate format is used for ALU instructions with an immediate operand
and also for loads and stores. The branch format is used for conditional branches,
and the jump/call format for unconditional branches (jumps) and procedures calls.

There are a number of less frequently used instruction formats that Figure K.6
leaves out. Figure K.7 summarizes these for the desktop/server/PMD architectures.

Unlike, their 32-bit base architectures, the 16-bit extensions (microMIPS64,
RV64GC, and Thumb-2) are focused on minimizing code. As a result, there are
a larger number of instruction formats, even though there are far fewer instructions.

Figure K.4 Register encodings for the 16-bit subsets of microMIPS64, RV64GC, and Thumb-2, including the core
general purpose registers, and special-purpose registers accessible by some instructions.

Figure K.5 Summary of data addressing modes supported by the embedded architectures.microMIPS64, RV64c,
and Thumb-2 show only the modes supported in 16-bit instruction formats. The stack pointer in RV64GC and micro-
MIPS64 is a designed GPR; it is another version of r31 is Thumb-2. In microMIPS64, the global pointer is register 30 and
is used by the linkage convention to point to the global variable data pool. Notice that typically only 8 registers are
accessible as base registers (and as we will see as ALU sources and destinations).
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Figure K.6 Instruction formats for desktop/server RISC architectures. These four formats are found in all five archi-
tectures. (The superscript notation in this figure means the width of a field in bits.) Although the register fields are
located in similar pieces of the instruction, be aware that the destination and two source fields are sometimes scram-
bled. Op¼ the main opcode, Opx¼ an opcode extension, Rd¼ the destination register, Rs1¼ source register 1, Rs2
¼ source register 2, and Const¼ a constant (used as an immediate, address, mask, or sift amount). Although the labels
on the instruction formats tell where various instructions are encoded, there are variations. For example, loads and
stores, both use the ALU immediate form inMIPS. In RISC-V, loads use the ALU immediate format, while stores use the
branch format.
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microMIPs64 and RV64GC have eight and seven major formats, respectively, and
Thumb-2 has 15. As Figure K.8 shows, these involve varying number of register
operands (0 to 3), different immediate sizes, and even different size register spec-
ifiers, with a small number of registers accessible my most instructions, and fewer
instructions able to access all 32 registers.

Instructions

The similarities of each architecture allow simultaneous descriptions, starting with
the operations equivalent to the RISC-V 64-bit ISA.

Figure K.7 Other instruction formats beyond the four major formats of the previous figure. In some cases, there
are formats very similar to one of the four core formats, but where a register field is used for other purposes. The
Power architecture also includes a number of formats for vector operations.
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Architecture

Opcode 
main: 
extended

Register 
specifiers x 
length

Immediate 
field 
length Typical instructions

microMIPS64 6 none 10 Jumps
6 1x5 5 Register-register operation (32 registers) and Load using SP 

as base register; any destination
6 1x3 7 Branches equal/not equal zero. Loads using GP. as base.

,noitareporetsiger-retsigeR3x24:6  rd/rs1, and rs2; 8 registers
6:1 2x3 3 Register-register immediate, rd/rs1, and rs2; 8 registers
6 2x3 4 Loads and stores; 8 registers

itareporetsiger-retsigeR3x24:6 on, rd, and rs1; 8 registers
retsiger-retsigeR5x26 operation; 32 registers.

RV64GC 2:3 11 Jumps
2:3 1x3 7 Branch
2:3 1x3 8 Immediate one source register.
2:3 1x5 6 Store using SP as base.
2:3 1x5 6 ALU immediate and load using SP as base.

noitareporetsiger-retsigeR5x24:2
2:3 2x3 5 Loads and stores using 8 registers. 

Thumb-2 3:2 2x3 5 Shift, move, load/store word/byte
3:2 1x3 8 immediates: add, subtract, move, and compare
4:1 1x3 8 Load/store with stack pointer as base, Add to SP or PC, 

Load/store multiple
dexedniretsigerdaoL3x33:4

4:4 8 Conditional branch, system instruction
tnereffid22:suoenallecsiM21:4 instructions with 12 formats 

(includes compare and branch on zero, pop/push registers, 
adjust stack pointer, reverse bytes, IF-THEN instruction). 

5 1x3 8 Load relative to PC
hcnarblanoitidnocnU115

tcartbus/ddA3x31:6
6:3 1x4, 1x3 Special data processing

gnissecorpatadlacigoL3x24:6
tsniegnahcdnahcnarB4x16:6 ruction set (ARM vs. Thumb)

Figure K.8 Instruction formats for the 16-bit instructions of microMIPS64, RV64GC, and Thumb-2. For instructions
with a destination and two sources, but only two register fields, the instruction uses one of the registers as both
source and destination. Note that the extended opcode field (or function field) and immediate field sometimes over-
lap or are identical. For RV64GC and microMIPS64, all the formats are shown; for Thumb-2, the Miscellaneous format
includes 22 instructions with 12 slightly different formats; we use the extended opcode field, but a few of these
instructions have immediate or register fields.
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RV64G Core Instructions

Almost every instruction found in the RV64G is found in the other architectures, as
Figures K.9 through K.19 show. (For reference, definitions of the RISC-V instruc-
tions are found in Section A.9.) Instructions are listed under four categories: data
transfer (Figure K.9); arithmetic, logical (Figure K.10); control (Figure K.11 and
Figure K.12); and floating point (Figure K.13).

If a RV64G core instruction requires a short sequence of instructions in other
architectures, these instructions are separated by semicolons in Figure K.9 through
Figure K.13. (To avoid confusion, the destination register will always be the left-
most operand in this appendix, independent of the notation normally used with
each architecture.).

Compare and Conditional Branch

Every architecture must have a scheme for compare and conditional branch, but
despite all the similarities, each of these architectures has found a different way
to perform the operation! Figure K.11 summarizes the control instructions, while
Figure K.12 shows details of how conditional branches are handled. SPARC uses
the traditional four condition code bits stored in the program status word: negative,
zero, carry, and overflow. They can be set on any arithmetic or logical instruction;
unlike earlier architectures, this setting is optional on each instruction. An explicit
option leads to fewer problems in pipelined implementation. Although condition
codes can be set as a side effect of an operation, explicit compares are synthesized
with a subtract using r0 as the destination. SPARC conditional branches test con-
dition codes to determine all possible unsigned and signed relations. Floating point
uses separate condition codes to encode the EEE 754 conditions, requiring a
floating-point compare instruction. Version 9 expanded SPARC branches in four
ways: a separate set of condition codes for 64-bit operations; a branch that tests the
contents of a register and branches if the value is =, not=, <, <=, >=, or
<= 0; three more sets of floating-point condition codes; and branch instructions
that encode static branch prediction.

Power also uses four condition codes: less than, greater than, equal, and sum-
mary overflow, but it has eight copies of them. This redundancy allows the Power
instructions to use different condition codes without conflict, essentially giving
Power eight extra 4-bit registers. Any of these eight condition codes can be the target
of a compare instruction, and any can be the source of a conditional branch. The
integer instructions have an option bit that behaves as if the integer is followed
by a compare to zero that sets the first condition “register.” Power also lets the second
“register” be optionally set by floating-point instructions. PowerPC provides logical
operations among these eight 4-bit condition code registers (CRAND, CROR,
CRXOR, CRNAND, CRNOR, CREQV), allowing more complex conditions to be
tested by a single branch. Finally, Power includes a set of branch count registers,
that are automatically decremented when tested, and can be used in a branch con-
dition. There are also special instructions for moving from/to the condition register.
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Figure K.9 Desktop RISC data transfer instructions equivalent to RV64G core. A sequence of instructions to syn-
thesize a RV64G instruction is shown separated by semicolons. The MIPS and Power instructions for atomic opera-
tions load and conditionally store a pair of registers and can be used to implement the RV64G atomic operations with
at most one intervening ALU instruction. The SPARC instructions: compare-and-swap, swap, LDSTUB provide atomic
updates to a memory location and can be used to build the RV64G instructions. The Power3 instructions provide all
the functionality, as the RV64G instructions, depending on a function field.
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Figure K.10 Desktop RISC arithmetic/logical instructions equivalent to RISC-V integer ISA. MIPS also provides
instructions that trap on arithmetic overflow, which are synthesized in other architectures with multiple instructions.
Note that in the “Arithmetic/logical” category all machines but SPARC use separate instructionmnemonics to indicate
an immediate operand; SPARC offers immediate versions of these instructions but uses a single mnemonic. (Of
course, these are separate opcodes!)
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RISC-V andMIPS are most similar. RISC-V uses a compare and branch with a
full set of arithmetic comparisons. MIPS also uses compare and branch, but the
comparisons are limited to equality and tests against zero. This limited set of con-
ditions simplifies the branch determination (since an ALU operation is not required
to test the condition), at the cost of sometimes requiring the use of a set-on-less-than
instruction (SLT, SLTI, SLTU, SLTIU), which compares two operands and then
set the destination register to 1 if less and to 0 otherwise. Figure K.12 provides

Instruction name ARMv8 MIPS64 PowerPC RISC-V SPARC v.9

Branch on integer  
compare

B.cond, 
CBZ, CBNZ

BEQ, BNE, 
B_Z (<, 
>, 
<=, >=) 
OR
S***; BEZ

BC BEQ, BNE, 
BLT, BGE, 
BLTU, BGEU 

BR_Z, BPcc 
(<, >,
<=, >=, =, 
not=)

Branch on floating-point 
compare

B.cond BC1T, 
BC1F

BC BEZ, BNZ FBPfcc (<, >, 
<=,
>=, =,...)

Jump, jump register B, BR J, JR B, BCLR, 
BCCTR

JAL, JALR 
(with x0)

BA, JMPL 
r0,...

Call, call register BL, BLR JAL,

JALR

BL, BLA, 
BCLRL, 
BCCTRL

JAL, JALR CALL, JMPL

Trap SVC, HVC, 
SMC

BREAK TW, TWI ECALL Ticc, SIR

Return from interrupt ERET JR; ERET RFI EBREAK DONE, RETRY,
RETURN 

Figure K.11 Desktop RISC control instructions equivalent to RV64G.

ARMv8 MIPS64 PowerPC RISC-V SPARC v.9

Number of condition code bits  
(integer and FP)

16 (8 + the 
inverse)

none 8  4 both none 2  4 
integer,
4  2 FP

Basic compare instructions  
(integer and FP)

1 integer; 1 
FP

1 integer, 1 FP 4 integer, 2 FP 2 integer; 3 FP 1 FP

Basic branch instructions  
(integer and FP)

1 2 integer, 1 FP 1 both 4 integer (used 
for FP as well)

3 integer,
1 FP

Compare register with register/  
constant and branch

— =, not= — =, not =, >=, < —

Compare register to zero and  
branch

— =, not=, <, <=, 
>, >=

— =, not=, <, <=, 
>, >=

=, not=, <, 
<=, >, >=

Figure K.12 Summary of five desktop RISC approaches to conditional branches. Integer compare on SPARC is
synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.
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additional details on conditional branch. RISC-V floating point comparisons sets an
integer register to 0 or 1, and then use conditional branches on that content.MIPS also
uses separate floating-point compare, which sets a floating point register to 0 or 1,
which is then tested by a floating-point conditional branch.

Floating point  (instruc-

Multiply add; Negative 
multiply add: single, 
double
Multiply subtract single, 
double, Negative multiply 
subtract: single, double
Copy sign or negative sign 
double or single to another 
FP register
Replace sign bit with XOR 
of sign bits single double
Maximum or minimum 
single, double
Classify floating point 
value single double

Convert between FP single 
or double and FP single or 
double, OR integer single 
or double, signed and 
unsigned with rounding

tion formats) R-R R-R R-R R-R R-R

Instruction name ARMv8 MIPS64 PowerPC RISC-V SPARC v.9

Add single, double FADD ADD.* FADD* FADD.* FADD*

Subtract single, double FSUB SUB.* FSUB* FSUB.* FSUB*

Multiply single, double FMUL MUL.* FMUL* FMUL.* FMUL*

Divide single, double FDIV DIV.* FDIV* FDIV.* FDIV*

Square root single, double FSQRT SQRT.* FSQRT* FSQRT.* FSQRT*

FMADD, 
FNMADD

MADD.*
NMAD.*

FMADD*, 
FNMADD*

FMADD.*
FNMADD.*

FMSUB, 
FNMSUB

MSUB.*, 
NMSUB.*

FMSUB*, 
FNMSUB*

FMSUB.*,
FNMSUB.*

FMOV, 
FNEG

FMOV.*, FNEG.* FMOV*, 
FNEG*

FSGNJ.*, 
FSGNJN.*

FMOV*, 
FNEG*

FABS FABS.* FABS* FSGNJX.* FABS*

FMAX, 
FMIN

MAX.*, MIN.* FMAX.*, FMIN.*

FCLASS.*CLASS.*

Compare FCMP CMP.* FCMP* FCMP.* FCMP*

FCVT CVT, CEIL, 
FLOO R

FCVT F*TO*

Figure K.13 Desktop RISC floating-point instructions equivalent to RV64G ISA with an empty entry meaning that
the instruction is unavailable. ARMv8 uses the same assembly mnemonic for single and double precision; the reg-
ister designator indicates the precision. “*” is used as an abbreviation for S or D. For floating point compares all con-
ditions: equal, not equal, less than, and less-then or equal are provided. Moves operate in both directions from/to
integer registers. Classify sets a register based onwhether the floating point quantity is plus orminus infinity, denorm,
+/ � 0, etc.). The sign-injection instructions take two operands, but are primarily used to form floating point move,
negate, and absolute value, which are separate instructions in the other ISAs.
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ARM is similar to SPARC, in that it provides four traditional condition codes
that are optionally set. CMP subtracts one operand from the other and the difference
sets the condition codes. Compare negative (CMN) adds one operand to the other,
and the sum sets the condition codes. TST performs logical AND on the two oper-
ands to set all condition codes but overflow, while TEQ uses exclusive OR to set
the first three condition codes. Like SPARC, the conditional version of the ARM
branch instruction tests condition codes to determine all possible unsigned and
signed relations. ARMv8 added both bit-test instructions and also compare and
branch against zero. Floating point compares on ARM, set the integer condition
codes, which are used by the B.cond instruction.

As Figure K.13 shows the floating point support is similar on all five
architectures.

RV64GC Core 16-bit Instructions

Figures K.14 through K.17 summarize the data transfer, ALU, and control instruc-
tions for our three embedded processors: microMIPS64, RV64GC, and Thumb-2.
Since these architectures are all based on 32-bit or 64-bit versions of the full archi-
tecture, we focus our attention on the functionality implemented by the 16-bit
instructions. Since floating point is optional, we do not include it. I

Instruction name
microMIPS64
rs1;rs2/dst; offset

RV64GC
rs1;rs2/dst; offset

Thumb-2
rs1;rs2/dst; offset

Load word 8;8;4 8;8;5 8;8;5
Load double word 8;8;5
Load word with stack pointer as base register 1;32;5 1;32;6 1;3;8
Load double word with stack pointer as base register 1;32;6
Store word 8;8;4 8;8;5 8;8;5
Store double word 8;8;5
Store word with stack pointer as base register 1;32;5 1;32;6 1;3;8
Store double with stack pointer as base register 1;32;6

Figure K.14 Embedded RISC data transfer instructions equivalent to RV64GC 16-bit ISA; a blank indicates that the
instruction is not a 16-bit instruction. Rather than show the instruction name, where appropriate, we show the num-
ber of registers that can the base register for the address calculation, followed by the number of registers that can be
the destination for a load or the source for a store, and finally, the size of the immediate used for address calculation.
For example: 8; 8; 5 for a load means that there are 8 possible base registers, 8 possible destination registers for the
load, and a 5-bit offset for the address calculation. For a store, 8; 8; 5, specifies that the source of the value to store
comes from one of 8 registers. Remember that Thumb-2 also has 32-bit instructions (although not the full ARMv8 set)
and that RV64GC and microMIPS64 have the full set of 32-bit instructions in RV64I or MIPS64.
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microMIPS64 RV64GC Thumb-2

sffotib-01hcnarblanoitidnocnU et 11-bit offset 11-bit offset
Unconditional branch and link 11-bit offset 11-bit offset
Unconditional branch to register w/wo link any of 32 registers any of 32 registers
Compare register to zero (=/!=) and branch 8 registers; 7-bit offset 8 registers; 8-bit 

offset
no: but see caption

Figure K.16 Summary of three embedded RISC approaches to conditional branches. A blank indicates that
the instruction does not exist. Thumb-2 uses 4 condition code bits; it provides a conditional branch that tests the
4-bit condition code and has a branch offset of 8 bits.

Instruction Name/Function

Load immediate
etaidemmireppudaoL

add immediate
add immediate word (32 bits) & sign 
extend
add immediate to stack pointer

add immediate to stack pointer store 
in reg.
shift left/right logical 

citemhtirathgirtfihs
AND immediate

evom
dda

AND, OR, XOR

Thumb-2

8;8

8;8;3

1;7

8;8;5 (shift amt.)
8;8;5 (shift amt.)
8;8

61;61
8;8;8

16;16
8;8

8;8;8

microMIPS64

8;7

32;4

1;9

1;8;6

8;8;3 (shift amt.)

8;8;4
23;23
8;8;8

8;8
8;8;8tcartbus

add word, subtract word (32 bits)
& sign extend 

RV64GC

32;6
6;23

32;6
32;6

1;6 
(adds 16x imm.)
1;8;6
(adds 4x imm.)
8;6(shift amt.)

fihs(6;8 t amt.)
8;6

23;23
23;23

8;8
8;8

8;8

Figure K.15 ALU instructions provided in RV64GC and the equivalents, if any, in the 16-bit instructions of micro-
MIPS64 or Thumb-2. An entry shows the number of register sources/destinations, followed by the size of the imme-
diate field, if it exists for that instruction. The add to stack pointer with scaled immediate instructions are used for
adjusting the stack pointer and creating a pointer to a location on the stack. In Thumb, the add has two forms one
with three operands from the 8-register subset (Lo) and one with two operands but any of 16-registers.
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Instructions: Common Extensions beyond RV64G

Figures K.15 through K.18 list instructions not found in Figures K.9 through K.13
in the same four categories (data transfer, ALU, and control. The only significant
floating point extension is the reciprocal instruction, which both MIPS64 and
Power support. Instructions are put in these lists if they appear in more than
one of the standard architectures. Recall that Figure K.3 on page 6 showed the
address modes supported by the various instruction sets. All three processors pro-
vide more address modes than provided by RV64G. The loads and stores using
these additional address modes are not shown in Figure K.17, but are effectively
additional data transfer instructions. This means that ARM has 64 additional load
and store instructions, while Power3 has 12, and MIPS64 and SPARVv9 each
have 4.

To accelerate branches, modern processors use dynamic branch prediction (see
Section 3.3). Many of these architectures in earlier versions supported delayed
branches, although they have been dropped or largely eliminated in later versions

Function Definition ARMv8 MIPS64 PowerPC SPARC v.9

Load/store 
multiple registers 

Loads or stores 2 or 
more registers 

Load pair, 
store pair

Load store 
multiple (<=31 
registers), 

Cache 
manipulation and 
prefetch

Modifies status of a 
cache line or does a 
prefetch

Prefetch CACHE, 
PREFETCH

Prefetch Prefetch

Figure K.17 Data transfer instructions not found in RISC-V core but found in two or more of the five desktop
architectures. SPARC requires memory accesses to be aligned, while the other architectures support unaligned
access, albeit, often with major performance penalties. The other architectures do not require alignment, but may
use slow mechanisms to handle unaligned accesses.MIPS provides a set of instructions to handle misaligned
accesses: LDL and LDR (load double left and load double right instructions) work as a pair to load a misaligned word;
the corresponding store instructions perform the inverse. The Prefetch instruction causes a cache prefetch, while
CACHE provides limited user control over the cache state.

Name Definition ARMv8 MIPS64 PowerPC SPARC v.9

Delayed branches Delayed branches 
with/without cancellation

BEQ, BNE, BGTZ, 
BLEZ, BCxEQZ, 
BCxNEZ

BPcc, A,
FPBcc, A

Conditional trap Traps if a condition is true TEQ, TNE, TGE, 
TLT, TGEU, TLTU

TW, TD, 
TWI, TDI

Tcc

Figure K.18 Control instructions not found in RV64G core but found in two or more of the other architectures.
MIPS64 Release 6 has nondelayed and normal delayed branches, while SPARC v.9 has delayed branches with can-
cellation based on the static prediction.
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of the architecture, typically by offering a nondelayed version, as the preferred con-
ditional branch. The SPARC “annulling” branch is an optimized form of delayed
branch that executes the instruction in the delay slot only if the branch is taken;
otherwise, the instruction is annulled. This means the instruction at the target of
the branch can safely be copied into the delay slot since it will only be executed
if the branch is taken. The restrictions are that the target is not another branch and
that the target is known at compile time. (SPARC also offers a nondelayed jump
because an unconditional branch with the annul bit set does not execute the follow-
ing instruction.).

In contrast to the differences among the full ISAs, the 16-bit subsets of the three
embedded ISAs have essentially no significant differences other than those
described in the earlier figures (e.g. size of immediate fields, uses of SP or other
registers, etc.).

Now that we have covered the similarities, we will focus on the unique features
of each architecture. We first cover the desktop/server RISCs, ordering them by
length of description of the unique features from shortest to longest, and then
the embedded RISCs.

Instructions Unique to MIPS64 R6

MIPS has gone through six generations of instruction sets. Generations 1–4 mostly
added instructions. Release 6 eliminated many older instructions but also provided
support for nondelayed branches and misaligned data access. Figure K.19 summa-
rizes the unique instructions in MIPS64 R6.

Instruction 
class Instruction name(s) Function

ALU Byte align Take a pair of registers and extract a word or double word of bytes. 
Used to implement unaligned byte copies. 

Align Immediate to PC Adds the upper 16 bits of the PC to an immediate shifted left 16 bits 
and puts the result in a register; Used to get a PC-relative address. 

Bit swap Reverses the bits in each byte of a register.
No-op and link Puts the value of PC+8 into a register
Logical NOR Computes the NOR of 2 registers

Control transfer Branch and Link conditional Compares a register to 0 and does a branch if condition is true; places 
the return address in the link register.

Jump indexed, Jump and 
link indexed

Adds an offset and register to get new PC, w/wo link address

Figure K.19 Additional instructions provided MIPS64 R6. In addition, there are several instructions for supporting
virtual machines, most are privileged.
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Instructions Unique to SPARC v.9

Several features are unique to SPARC. We review the major figures and then sum-
marize those and small differences in a figure.

Register Windows

The primary unique feature of SPARC is register windows, an optimization for
reducing register traffic on procedure calls. Several banks of registers are used, with
a new one allocated on each procedure call. Although this could limit the depth of
procedure calls, the limitation is avoided by operating the banks as a circular buffer.
The knee of the cost-performance curve seems to be six to eight banks; programs
with deeper call stacks, would need to save and restore the registers to memory.

SPARC can have between 2 and 32 windows, typically using 8 registers each
for the globals, locals, incoming parameters, and outgoing parameters. (Given that
each window has 16 unique registers, an implementation of SPARC can have as
few as 40 physical registers and as many as 520, although most have 128 to 136, so
far.) Rather than tie window changes with call and return instructions, SPARC has
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s
window by pointing to the next window of registers in addition to performing an
add instruction. The trick is that the source registers are from the caller’s window of
the addition operation, while the destination register is in the callee’s window.
SPARC compilers typically use this instruction for changing the stack pointer
to allocate local variables in a new stack frame. RESTORE is the inverse of SAVE,
bringing back the caller’s window while acting as an add instruction, with the
source registers from the callee’s window and the destination register in the caller’s
window. This automatically deallocates the stack frame. Compilers can also make
use of it for generating the callee’s final return value.

The danger of register windows is that the larger number of registers could
slow down the clock rate. This was not the case for early implementations. The
SPARC architecture (with register windows) and the MIPS R2000 architecture
(without) have been built in several technologies since 1987. For several genera-
tions the SPARC clock rate has not been slower than theMIPS clock rate for imple-
mentations in similar technologies, probably because cache access times dominate
register access times in these implementations. With the advent of multiple issue,
which requires many more register ports, as will as register renaming or reorder
buffers, register windows posed a larger penalty.Register windows were a feature
of the original Berkeley RISC designs, and their inclusion in SPARC was inspired
by those designs. Tensilica is the only other major architecture in use today
employs them, and they were not included in the RISC-V ISA.

Fast Traps

SPARCv9 includes support to make traps fast. It expands the single level of traps to at
least four levels,allowing thewindowoverflowandunderflowtraphandlers tobe inter-
rupted. The extra levels mean the handler does not need to check for page faults or
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misalignedstackpointersexplicitly in thecode, therebymaking thehandler faster.Two
new instructions were added to return from this multilevel handler: RETRY (which
retries the interrupted instruction) and DONE (which does not). To support user-level
traps, the instruction RETURN will return from the trap in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. The
designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multi-word arithmetic (see Taylor et al. [1986] and Ungar et al.
[1984]). A small amount of support is offered for tagged data types with operations
for addition, subtraction, and hence comparison. The two least-significant bits indi-
cate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc set
the overflow bit if either operand is not tagged as an integer or if the result is too
large. A subsequent conditional branch or trap instruction can decide what to do.
(If the operands are not integers, software recovers the operands, checks the types
of the operands, and invokes the correct operation based on those types.) It turns
out that the misaligned memory access trap can also be put to use for tagged data,
since loading from a pointer with the wrong tag can be an invalid access.
Figure K.20 shows both types of tag support.

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, – 3

+
–

–

Figure K.20 SPARC uses the two least-significant bits to encode different data types
for the tagged arithmetic instructions. (a) Integer arithmetic, which takes a single cycle
as long as the operands and the result are integers. (b) The misaligned trap can be used
to catch invalid memory accesses, such as trying to use an integer as a pointer. For lan-
guages with paired data like LISP, an offset of –3 can be used to access the even word of
a pair (CAR) and +1 can be used for the odd word of a pair (CDR).
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Figure K.21 summarizes the additional instructions mentioned above as well as
several others.

Instructions Unique to ARM

Earlier versions of the ARM architecture (ARM v6 and v7) had a number of
unusual features including conditional execution of all instructions, and making
the PC a general purpose register. These features were eliminated with the arrival
of ARMv8 (in both the 32-bit and 64-bit ISA). What remains, however, is much of
the complexity, at least in terms of the size of the instruction set. As Figure K.3 on
page 6 shows, ARM has the most addressing modes, including all those listed in
the table; remember that these addressing modes add dozens of load/store instruc-
tions compared to RVG, even though they are not listed in the table that follows. As
Figure K.6 on page 8 shows, ARMv8 also has by far the largest number of different
instruction formats, which reflects a variety of instructions, as well as the different
addressing modes, some of which are applicable to some loads and stores but not
others.

Most ARMv8 ALU instructions allow the second operand to be shifted before
the operation is completed. This extends the range of immediates, but operand
shifting is not limited to immediates. The shift options are shift left logical, shift
right logical, shift right arithmetic, and rotate right. In addition, as in Power3, most
ALU instructions can optionally set the condition flags. Figure K.22 includes the
additional instructions, but does not enumerate all the varieties (such as optional
setting of the condition flags); see the caption for more detail. While conditional
execution of all instructions was eliminated, ARMv8 provides a number of condi-
tional instructions beyond the conditional move and conditional set, mentioned
earlier.

Instruction 
class Instruction name(s) Function

Data transfer SAVE, RESTORE Save or restore a register window
Nonfaulting load Version of load instructions that do not generate faults on address 

exceptions; allows speculation for loads.
ALU Tagged add, Tagged subtract, 

with and without trap 
Perform a tagged add/subtract, set condition codes, optionally 
trap.

Control transfer Retry, Return, and Done To provide handling for traps.
Floating Point 
Instructions

FMOVcc Conditional move between FP registers based on integer or FP 
condition codes.

Figure K.21 Additional instructions provided in SPARCv9. Although register windows are by far the most signif-
icant distinction, they do not require many instructions!
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Instructions Unique to Power3

Power3 is the result of several generations of IBM commercial RISC machines—
IBM RT/PC, IBM Power1, and IBM Power2, and the PowerPC development,
undertaken primarily by IBM and Motorola. First, we describe branch registers
and the support for loop branches. Figure K.23 then lists the other instructions pro-
vided only in Power3.

Instruction 
class Instruction name(s) Function

Data transfer Load/Store Non-temporal pair Loads/stores a pair of registers with an indication not to cache 
the data. Base + scaled offset addressing mode only. 

ALU Add Extended word/double word Add 2 registers after left shifting the second register operand 
and extending it.

Add with shift; add immediate with 
shift

Adds with shift of the second operand.

Address of page Computes the address of a page based on PC (similar to 
ADDUIPC, which is the same as ADR in ARMv8)

AND, OR, XOR, XOR NOT shifted 
register

Logical operation on a register and a shifted register.

Bit field clear shifted Shift operand, invert and AND with another operand
Conditional compare, immediate, 
negative, negative immediate

If condition true, then set condition flags to compare result, 
otherwise leave condition flags untouched. 

Conditional increment, invert, 
negate

If condition then set destination to increment/invert/negate of 
source register

elbuod,drowflah,drow,etyb:muskcehcCRCasetupmoCCRC
Multiply add, subtract Integer multiply-add or multiply-subtract
Multiply negate Negate the product of two integers; word & double word
Move immediate or inverse Replace 16-bits in a register with immediate, possibly shifted
Reverse bit order Reverses the order of bits in a register
Signed bit field move Move a signed bit field; sign extend to left; zero extend to right
Unsigned divide, multiple, multiply 
negate, multiply-add, multiply-sub

Unsigned versions of the basic instructions

Control transfer CBNZ, CBZ Compare branch =/!= 0, indicating this is not a call or return.
TBNZ, TBZ Tests bit in a register =/!= 0, and branch.

Figure K.22 Additional instructions provided in ARMv8, the AArch64 instruction set. Unless noted the instruction
is available in a word and double word format, if there is a difference. Most of the ALU instructions can optionally set
the condition codes; these are not included as separate instructions here or in earlier tables.
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Instruction 
class Instruction name(s) Function

Data transfer LHBRX, LWBRX, LDBRX Loads a halfword/word/double word but reverses the byte order.
SHBRX, SWBRX, SDBRX Stores a halfword/word/double word but reverses the byte order 
LDQ, STQ Load/store quadword to a register pair.

retsigeranirebmunmodnaraetareneGNARDULA
CMPB

CMPRB

Compares the individual bytes in a register and sets another 
register byte by byte. 
Compares a byte (x) against two other bytes (y and z) and sets a 
condition to indicate if the value of y<=x<=z. 

CRAND, CRNAND, CROR, 
CRNOR, CRXOR, CREQV, 
CORC, CRANDC

Logical operations on the condition register.

ZCMPEQB Compares a byte (x) against the eight bytes in another register and 
sets a condition to indicate if x = any of the 8 bytes

EXTSWSL Sign extend word and shift left
POPCNTB, POPCNTW
POPCNTD

Count number of 1s in each byte and place total in another byte.
Count number of 1s in each word and place total in another word.
Count number of 1s in a double word.

PRTYD, PRTYW Compute byte parity of the bytes in a word or double word.
BPERMD Permutes the bits in a double word, producing a permuted byte.

CDTBCD, CDCBCD, 
ADDGCS

Instructions to convert from/to binary coded decimal (BCD) or 
operate on two BCD values

Control transfer BA, BCA Branches to an absolute address, conditionally & unconditionally 
BCCTR, BCCTRL Conditional branch to address in the count register, w/wo linking 
BCTSAR, BCTARL Conditional branch to address in the Branch Target Address 

register, w/wo linking 
CLRBHRB, MFBHRBE Manipulate the branch history rolling buffer. 

Floating Point 
Instructions

FRSQRTE Computes an estimate of reciprocal of the square root,

FTDIV, FTSQRT Tests for divide by zero or square of negative number
dnaoreztsniagaretsigertseTLESF select one of two operands to move

Decimal floating point 
operations

A series of 48 instructions to support decimal floating point.

Figure K.23 Additional instructions provided in Power3. Rotate instructions have two forms: one that sets a con-
dition register and one that does not. There are a set of string instructions that load up to 32 bytes from an arbitrary
address to a set of registers. These instructions will be phased out in future implementations, and hence we just
mention them here.
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Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, Power3 puts the address into a special register called
the link register. Since many procedures will return without calling another pro-
cedure, link doesn’t always have to be saved away. Making the return address a
special register makes the return jump faster since the hardware need not go
through the register read pipeline stage for return jumps.

In a similar vein, Power3 has a count register to be used in for loops where the
program iterates for a fixed number of times. By using a special register the branch
hardware can determine quickly whether a branch based on the count register is
likely to branch, since the value of the register is known early in the execution
cycle. Tests of the value of the count register in a branch instruction will automat-
ically decrement the count register.

Given that the count register and link register are already located with the hard-
ware that controls branches, and that one of the problems in branch prediction is
getting the target address early in the pipeline (see Appendix C), the Power archi-
tects decided to make a second use of these registers. Either register can hold a
target address of a conditional branch. Thus, PowerPC supplements its basic con-
ditional branch with two instructions that get the target address from these registers
(BCLR, BCCTR). Figure K.23 shows the several dozen instructions that have been
added; note that there is an extensive facility for decimal floating point, as well.

Instructions: Multimedia Extensions of the
Desktop/Server RISCs

Support for multimedia and graphics operations developed in several phases,
beginning in 1996 with Intel MMX,MIPSMDMX, and SPARCVIS. As described
in Section 4.3, which we assume the reader has read, these extensions allowed a
register to be treated as multiple independent small integers (8 or 16 bits long) with
arithmetic and logical operations done in parallel on all the items in a register.
These initial SIMD extensions, sometimes called packed SIMD, were further
developed after 2000 by widening the registers, partially or totally separating them
from the general purpose or floating pointer registers, and by adding support for
parallel floating point operations. RISC-V has reserved an extension for such
packed SIMD instructions, but the designers have opted to focus on a true vector
extension for the present. The vector extension RV64V is a vector architecture,
and, as Section 4.3 points out, a true vector instruction set is considerably more
general, and can typically perform the operations handled by the SIMD extensions
using vector operations.

Figure K.24 shows the basic structure of the SIMD extensions in ARM, MIPS,
Power, and SPARC. Note the difference in how the SIMD “vector registers” are
structured: repurposing the floating point, extending the floating point, or adding
additional registers. Other key differences include support for FP as well as integers,
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support for 128-bit integers, and provisions for immediate fields as operands in inte-
ger and logical operations. Standard load and store instructions are used for moving
data from the SIMD registers to memory with special extensions to handle moving
less than a full SIMD register. SPARCVIS, which was one of the earliest ISA exten-
sions for graphics, is much more limited: only add, subtract, and multiply are
included, there is no FP support, and only limited instructions for bit element oper-
ations; we include it in Figure K.24 but will not be going into more detail.

Figure K.25 shows the arithmetic instructions included in these SIMD exten-
sions; only those appearing in at least two extensions are included. MIPS SIMD
includes many other instructions, as does the Power 3 Vector-Scalar extension,
which we do not cover. One frequent feature not generally found in general-
purpose microprocessors is saturating operations. Saturation means that when a
calculation overflows the result is set to the largest positive number or most neg-
ative number, rather than a modulo calculation as in two’s complement arithmetic.
Commonly found in digital signal processors (see the next subsection), these sat-
urating operations are helpful in routines for filtering. Another common extension
are instructions for accumulating values within a single register; the dot product
instruction an the maximum/minimum instructions are typical examples.

In addition to the arithmetic instructions, the most common additions are log-
ical and bitwise operations and instructions for doing version of permutations and
packing elements into the SIMD registers. These additions are summarized in
Figure K.26, Lastly, all three extensions support SIMD FP operations, as summa-
rized in Figure K.27.

ARMv8 MIPS64 R6 Power v3.0 SPARCv9

Name of ISA extension Advanced SIMD MIPS64 SIMD 
Architecture

Vector Facility VIS

Date of Current Version 2011 2012 2015 1995
Vector registers: # x size 32 x 128 bits 32 x 128 bits 32 x 128 bits 32 x 64 bits
Use GP/FP registers or 
independent set

extend FP registers 
doubling width

extend FP registers 
doubling width

Independent Same as FP registers

Integer data sizes 8, 16, 32, 64 8, 16, 32, 64 8, 16, 32, 64, 128 8,16, 32
FP data sizes 32, 64 32, 64 32
Immediates for integer and 
logical operations

5 bits arithmetic
8 bits logical

Figure K.24 Structure of the SIMD extensions intended for multimedia support. In addition to the vector facility,
The last row states whether the SIMD instruction set supports immediates (e.g, add vector immediate or AND vector
immediate); the entry states the size of immediates for those ISAs that support them. Note that the fact that an imme-
diate is present is encoded in the opcode space, and could alternatively be added to the next table as additional
instructions. Power 3 has an optional Vector-Scalar Extension. The Vector-Scalar Extension defines a set of vector
registers that overlap the FP and normal vector registers, eliminating the need to move data back and forth to
the vector registers. It also supports double precision floating point operations.
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Instruction category ARM Advanced SIMD MIPS SIMD Power Vector Facility

Q,D2,W4,H8,B61D2;W4;H8,B61D2;W4,H8,B61tcartbus/ddA
Saturating add/sub 16B, 8H, 4W; 2 D 16B, 8H; 4W; 2 D 16B, 8H, 4W, 2 D, Q
Absolute value of difference 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q
Adjacent add & subtract (pairwise) 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D

Q;D2;W4,H8,B61D2;W4,H8,B61egarevA
Dot product add, dot product subtract 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D
Divide: signed, unsigned 16B, 8H, 4W 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q
Multiply: signed, unsigned 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D
Multiply add, multiply subtract 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D
Maximum, signed & unsigned 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q
Minimum, signed & unsigned 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

Q;D2;W4,H8,B61D2;W4,H8,B61dengisnu&dengis,oludoM
Q;D2;W4,H8,B61D2;W4,H8,B61D2;W4,H8,B61lauqeerapmoC

Compare <, <=, signed, unsigned 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

Figure K.25 Summary of arithmetic SIMD instructions. B stands for byte (8 bits), H for half word (16 bits), and W for
word (32 bits), D for double word (64 bits), and Q for quadword (128 bits). Thus, 8Bmeans an operation on 8 bytes in a
single instruction. Note that some instructions–such as adjacent add/subtract, or multiply–produce results that are
twice the width of the inputs (e.g. multiply on 16 bytes produces 8 halfword results). Dot product is a multiply and
accumulate. The SPARC VIS instructions are aimed primarily at graphics and are structured accordingly.

Instruction category ARM Advanced SIMD MIPS SIMD Power Vector Facility

Shift right/left, logical, arithmetic 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q 16B, 8H, 4W; 2 D; Q
Count leading or trailing zeros 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

QQQrox/ro/dna
Bit insert & extract 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

;W4,H8,B61tnuocnoitalupoP 2 D 16B, 8H, 4W; 2 D; Q
D2;W4,H8,B6D2;W4,H8,B61thgir/tfel,ddo/neveevaelretnI
D2;W4,H8,B6D2;W4,H8,B61ddo/nevekcaP
D2;W4,H8,B61D2;W4,H8,B61elffuhS
D2;W4,H8,B61D2;W4,H8,B61TALPS

Figure K.26 Summary of logical, bitwise, permute, and pack/unpack instructions, using the same format as the
previous figure. When there is a single operand the instruction applies to the entire register; for logical operations
there is no difference.Interleave puts together the elements (all even, odd, leftmost or rightmost) from two different
registers to create one value; it can be used for unpacking. Pack moves the even or odd elements from two different
registers to the leftmost and rightmost halves of the result. Shuffle creates a from two registers based on a mask that
selects which source for each item. SPLAT copies a value into each item in a register.



Instructions: Digital Signal-Processing Extensions
of the Embedded RISCs

Both Thumb2 and microMIPS32 provide instructions for DSP (Digital Signal Pro-
cessing) and multimedia operations. In Thumb2, these are part of the core instruc-
tion set; in microMIPS32, they are part of the DSP extension. These extensions,
which are encoded as 32-bit instructions, are less extensive than the multimedia
and graphics support provided in the SIMD/Vector extensions of MIPS64 or
ARMv8 (AArch64). Like those more comprehensive extensions, the ones in
Thumb2 and microMIPS32 also rely on packed SIMD, but they use the existing
integer registers, with a small extension to allow a wide accumulator, and only
operate on integer data. RISC-V has specified that the “P” extension will support
packed integer SIMD using the floating point registers, but at the time of publica-
tion, the specification was not completed.

DSP operations often include linear algebra functions and operations such
as convolutions; these operations produce intermediate results that will be larger
than the inputs. In Thumb2, this is handled by a set of operations that produce
64-bit results using a pair of integer registers. In microMIPS32 DSP, there are 4
64-bit accumulator registers, including the Hi-Lo register, which is already
exists for doing integer multiply and divide. Both architectures provide parallel
arithmetic using bytes, halfwords, and words, as in the multimedia extensions in
ARMv8 and MIPS64. In addition, the MIPS DSP extension handles fractional
data, such data is heavily used in DSP operations. Fractional data items have a
sign bit and the remaining bits are used to represent the fraction, providing a
range of values from -1.0 to 0.9999 (in decimal). MIPS DSP supports two
fractional data sizes Q15 and Q31 each with one sign bit and 15 or 31 bits
of fraction.

Figure K.28 shows the common operations using the same notation as was
used in Figure K.25. Remember that the basic 32-bit instruction set provides
additional functionality, including basic arithmetic, logical, and bit
manipulation.

Figure K.27 Summary of floating point, using the same format as the previous figure.
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Concluding Remarks

This survey covers the addressing modes, instruction formats, and almost all the
instructions found in 8 RISC architectures. Although the later sections concentrate
on the differences, it would not be possible to cover 8 architectures in these few
pages if there were not so many similarities. In fact, we would guess that more than
90% of the instructions executed for any of these architectures would be found in
Figures K.9 through K.13. To contrast this homogeneity, Figure K.29 gives a sum-
mary for four architectures from the 1970s in a format similar to that shown in
Figure K.1. (Since it would be impossible to write a single section in this style
for those architectures, the next three sections cover the 80x86, VAX, and IBM
360/370.) In the history of computing, there has never been such widespread agree-
ment on computer architecture as there has been since the RISC ideas emerged in
the 1980s.

PSD23SPIMorcim2-bmuhTnoitcnuF

51Q2,B4H2,B4tcartbuS/ddA
13Q,51Q2,B4H2,B4noitarutashtiwtcartbuS/ddA

Add/Subtract with Exchange (exchanges halfwords in rt, then adds first 
halfword and subtracts second) with optional saturation

2H

B4)seulavehtmus(ddaybecudeR
13Q,51Q2eulavetulosbA

Precision reduce/increase (reduces or increases the precision of a value) 2B, Q15, 2Q15, Q31
H2,B4noitarutaslanoitpohtiw,citemhtira&lacigol,thgir,tfel:stfihS

51Q2,H2,B2H2ylpitluM
Multiply add/subtract (to GPR or accumulator register in MIPS) 2H 2Q15
Complex multiplication step (2 multiplies and addition/subtraction) 2H 2Q15
Multiply and accumulate (by addition or subtraction) 2H Q15, Q31

H,BstibetacilpeR
Compare: =, <, <=, se H2,B4dleifnoitidnocst
Pick (use condition bits to choose bytes or halfwords from two operands) 4B, 2H

HdnarepohcaemorfdrowflahagnisoohckcaP
Extract Q63
Move from/to WDrotalumucca

Figure K.28 Summary of two embedded RISC DSP operations, showing the data types for each operation. A blank
indicates that the operation is not supported as a single instruction. Byte quantities are usually unsigned. Complex
multiplication step implements multiplication of complex numbers where each component is a Q15 value. ARM uses
its standard condition register, while MIPS adds a set of condition bits as part of the state in the DSP extension.
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K.3 The Intel 80x86

Introduction

MIPS was the vision of a single architect. The pieces of this architecture fit nicely
together and the whole architecture can be described succinctly. Such is not the case
of the 80x86: It is the product of several independent groups who evolved the archi-
tecture over 20 years, adding new features to the original instruction set as you might
add clothing to a packed bag. Here are important 80x86 milestones:

■ 1978—The Intel 8086 architecture was announced as an assembly language–
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Whereas the 8080 was a straightforward accumulator machine, the 8086
extended the architecture with additional registers. Because nearly every reg-
ister has a dedicated use, the 8086 falls somewhere between an accumulator
machine and a general-purpose register machine, and can fairly be called an
extended accumulator machine.

■ 1980—The Intel 8087 floating-point coprocessor is announced. This architec-
ture extends the 8086 with about 60 floating-point instructions. Its architects
rejected extended accumulators to go with a hybrid of stacks and registers,

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977
Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, ... , 

432
Addressing (size, model) 24 bits, flat/  

31 bits, flat
4 + 16 bits, 
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/No 370 No 16-bit aligned No
Data addressing modes 2/3 5 9 =14
Protection Page None Optional Page
Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

deppamyromeMdeppamyromeMedocpOedocpOO/I
Integer registers (size, model, 
number)

16 GPR × 32 bits 8 dedicated  
data × 16 bits

8 data and 8 address  
× 32 bits

15 GPR × 32 bits

Separate floating-point 
registers

4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (floating  
hexadecimal)

IEEE 754 single,  
double, extended

IEEE 754 single,  
double, extended

DEC 

Figure K.29 Summary of four 1970s architectures. Unlike the architectures in Figure K.1, there is little agreement
between these architectures in any category. (See Section K.3 for more details on the 80x86 and Section K.4 for a
description of the VAX.)
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essentially an extended stack architecture: A complete stack instruction set is
supplemented by a limited set of register-memory instructions.

■ 1982—The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory mapping and protection
model, and by adding a few instructions to round out the instruction set and
to manipulate the protection model. Because it was important to run 8086 pro-
grams without change, the 80286 offered a real addressing mode to make the
machine look just like an 8086.

■ 1985—The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the 80386
added new addressing modes and additional operations. The added instructions
make the 80386 nearly a general-purpose register machine. The 80386 also
added paging support in addition to segmented addressing (see Chapter 2). Like
the 80286, the 80386 has a mode to execute 8086 programs without change.

This history illustrates the impact of the “golden handcuffs” of compatibility on
the 80x86, as the existing software base at each step was too important to jeopar-
dize with significant architectural changes. Fortunately, the subsequent 80486 in
1989, Pentium in 1992, and P6 in 1995 were aimed at higher performance, with
only four instructions added to the user-visible instruction set: three to help with
multiprocessing plus a conditional move instruction.

Since 1997 Intel has added hundreds of instructions to support multimedia by
operating on many narrower data types within a single clock (see Appendix A).
These SIMD or vector instructions are primarily used in hand-coded libraries or
drivers and rarely generated by compilers. The first extension, called MMX,
appeared in 1997. It consists of 57 instructions that pack and unpack multiple
bytes, 16-bit words, or 32-bit double words into 64-bit registers and performs shift,
logical, and integer arithmetic on the narrow data items in parallel. It supports both
saturating and nonsaturating arithmetic. MMX uses the registers comprising the
floating-point stack and hence there is no new state for operating systems to save.

In 1999 Intel added another 70 instructions, labeled SSE, as part of Pentium III.
The primary changes were to add eight separate registers, double their width to 128
bits, and add a single-precision floating-point data type. Hence, four 32-bit
floating-point operations can be performed in parallel. To improve memory perfor-
mance, SSE included cache prefetch instructions plus streaming store instructions
that bypass the caches and write directly to memory.

In 2001, Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit floating-
point operations in parallel. Almost all of these 144 instructions are versions of
existing MMX and SSE instructions that operate on 64 bits of data in parallel.
Not only does this change enable multimedia operations, but it also gives the com-
piler a different target for floating-point operations than the unique stack architec-
ture. Compilers can choose to use the eight SSE registers as floating-point registers
as found in the RISC machines. This change has boosted performance on the
Pentium 4, the first microprocessor to include SSE2 instructions. At the time of
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announcement, a 1.5 GHz Pentium 4 was 1.24 times faster than a 1 GHz Pentium
III for SPECint2000(base), but it was 1.88 times faster for SPECfp2000(base).

In 2003 a company other than Intel enhanced the IA-32 architecture this time.
AMD announced a set of architectural extensions to increase the address space for
32 to 64 bits. Similar to the transition from 16- to 32-bit address space in 1985 with
the 80386, AMD64 widens all registers to 64 bits. It also increases the number of
registers to sixteen and has 16 128-bit registers to support XMM, AMD’s answer to
SSE2. Rather than expand the instruction set, the primary change is adding a new
mode called long mode that redefines the execution of all IA-32 instructions with
64-bit addresses. To address the larger number of registers, it adds a new prefix to
instructions. AMD64 still has a 32-bit mode that is backwards compatible to the
standard Intel instruction set, allowing a more graceful transition to 64-bit addres-
sing than the HP/Intel Itanium. Intel later followed AMD’s lead, making almost
identical changes so that most software can run on either 64-bit address version
of the 80x86 without change.

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other server or desktop processor
in the world. Nevertheless, its checkered ancestry has led to an architecture that is
difficult to explain and impossible to love.

We start our explanation with the registers and addressing modes, move on to
the integer operations, then cover the floating-point operations, and conclude with
an examination of instruction encoding.

80x86 Registers and Data Addressing Modes

The evolution of the instruction set can be seen in the registers of the 80x86
(Figure K.30). Original registers are shown in black type, with the extensions of
the 80386 shown in a lighter shade, a coloring scheme followed in subsequent fig-
ures. The 80386 basically extended all 16-bit registers (except the segment regis-
ters) to 32 bits, prefixing an “E” to their name to indicate the 32-bit version. The
arithmetic, logical, and data transfer instructions are two-operand instructions that
allow the combinations shown in Figure K.31.

To explain the addressing modes, we need to keep in mind whether we are talk-
ing about the 16-bit mode used by both the 8086 and 80286 or the 32-bit mode
available on the 80386 and its successors. The seven data memory addressing
modes supported are

■ Absolute

■ Register indirect

■ Based

■ Indexed

■ Based indexed with displacement

■ Based with scaled indexed

■ Based with scaled indexed and displacement
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FPR 0

FPR 1

FPR 2

FPR 3

FPR 4

FPR 5

FPR 6

FPR 7

079

015

015

8 731

GPR 0 AccumulatorEAX AX AH AL

GPR 3 Base addr. regEBX BX BH BL

GPR 1 Count reg: string, loopECX CX CH CL

GPR 2 Data reg: multiply, divideEDX DX DH DL

GPR 6 ESI Index reg, string source ptr.SI

Code segment ptr.CS

Stack  segment ptr. (top of stack)SS

Data segment ptr.DS

Extra data segment ptr. ES

Data segment ptr. 2FS

Data segment ptr. 3GS

GPR 7 EDI Index reg, string dest. ptr.DI

GPR 5 EBP Base ptr. (for base of stack seg.)BP

PC

GPR 4 ESP Stack ptr.SP

EIP Instruction ptr. (PC)IP

EFLAGS Condition codesFLAGS

 Top of FP stack,

 FP condition codes
Status

80x86, 80x28680x386, 80x486, Pentium

Figure K.30 The 80x86 has evolved over time, and so has its register set. The original set is shown in black and the
extended set in gray. The 8086 divided the first four registers in half so that they could be used either as one 16-bit
register or as two 8-bit registers. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. The floating-point registers on the bottom are 80 bits wide, and although
they look like regular registers they are not. They implement a stack, with the top of stack pointed to by the status
register. One operand must be the top of stack, and the other can be any of the other seven registers below the top
of stack.
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Displacements can be 8 or 32 bits in 32-bit mode, and 8 or 16 bits in 16-bit mode.
If we count the size of the address as a separate addressing mode, the total is 11
addressing modes.

Although a memory operand can use any addressing mode, there are restric-
tions on what registers can be used in a mode. The section “80x86 Instruction
Encoding” on page K-11 gives the full set of restrictions on registers, but the fol-
lowing description of addressing modes gives the basic register options:

■ Absolute—With 16-bit or 32-bit displacement, depending on the mode.

■ Register indirect—BX, SI, DI in 16-bit mode and EAX, ECX, EDX, EBX,
ESI, and EDI in 32-bit mode.

■ Based mode with 8-bit or 16-bit/32-bit displacement—BP, BX, SI, and DI
in 16-bit mode and EAX, ECX, EDX, EBX, ESI, and EDI in 32-bit mode.
The displacement is either 8 bits or the size of the address mode: 16 or 32 bits.
(Intel gives two different names to this single addressing mode, based and
indexed, but they are essentially identical and we combine them. This book
uses indexed addressing to mean something different, explained next.)

■ Indexed—The address is the sum of two registers. The allowable combinations
are BX+SI, BX+DI, BP+SI, and BP+DI. This mode is called based
indexed on the 8086. (The 32-bit mode uses a different addressing mode to
get the same effect.)

■ Based indexed with 8- or 16-bit displacement—The address is the sum of dis-
placement and contents of two registers. The same restrictions on registers
apply as in indexed mode.

■ Base plus scaled indexed—This addressing mode and the next were added in
the 80386 and are only available in 32-bit mode. The address calculation is

Base register + 2Scale� Index� register

Source/destination operand type Second source operand

retsigeR
etaidemmI

yromeM
retsigeR

etaidemmI

retsigeR
retsigeR
retsigeR
yromeM
yromeM

Figure K.31 Instruction types for the arithmetic, logical, and data transfer instruc-
tions. The 80x86 allows the combinations shown. The only restriction is the absence
of a memory-memory mode. Immediates may be 8, 16, or 32 bits in length; a register
is any one of the 14 major registers in Figure K.30 (not IP or FLAGS).
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where Scale has the value 0, 1, 2, or 3; Index register can be any of the eight
32-bit general registers except ESP; and Base register can be any of the eight
32-bit general registers.

■ Base plus scaled index with 8- or 32-bit displacement—The address is the sum
of the displacement and the address calculated by the scaled mode immediately
above. The same restrictions on registers apply.

The 80x86 uses Little Endian addressing.
Ideally, we would refer discussion of 80x86 logical and physical addresses to

Chapter 2, but the segmented address space prevents us from hiding that infor-
mation. Figure K.32 shows the memory mapping options on the generations of
80x86 machines; Chapter 2 describes the segmented protection scheme in greater
detail.

The assembly language programmer clearly must specify which segment reg-
ister should be used with an address, no matter which address mode is used. To
save space in the instructions, segment registers are selected automatically depend-
ing on which address register is used. The rules are simple: References to instruc-
tions (IP) use the code segment register (CS), references to the stack (BP or SP)
use the stack segment register (SS), and the default segment register for the other
registers is the data segment register (DS). The next section explains how they can
be overridden.

80x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (called word) data
types. The data type distinctions apply to register operations as well as memory
accesses. The 80386 adds 32-bit addresses and data, called double words. Almost
every operation works on both 8-bit data and one longer data size. That size is
determined by the mode and is either 16 or 32 bits.

Clearly some programs want to operate on data of all three sizes, so the 80x86
architects provide a convenient way to specify each version without expanding
code size significantly. They decided that most programs would be dominated
by either 16- or 32-bit data, and so it made sense to be able to set a default large
size. This default size is set by a bit in the code segment register. To override the
default size, an 8-bit prefix is attached to the instruction to tell the machine to use
the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default seg-
ment register, lock the bus so as to perform a semaphore (see Chapter 5), or repeat the
following instruction until CX counts down to zero. This last prefix was intended to
be paired with a byte move instruction to move a variable number of bytes. The
80386 also added a prefix to override the default address size.

K.3 The Intel 80x86 ■ K-35



The 80x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including logical operations, test, shifts, and
integer and decimal arithmetic operations

3. Control flow, including conditional branches and unconditional jumps, calls,
and returns

4. String instructions, including string move and string compare

OffsetSegment

16 32

32

32

32

20 20

20

1010

12

Physical address

Physical address

Linear address

Logical address

Paging

Segmentation

OffsetSegment

16 16

24

24

Logical address

OffsetSegment

16

Physical address

12 4

16

20

Logical address

Segmentation

edom detcetorPedom laeR

)68208()6808( (80386, 80486, Pentium)

Figure K.32 The original segmented scheme of the 8086 is shown on the left.All 80x86 processors support this style
of addressing, called real mode. It simply takes the contents of a segment register, shifts it left 4 bits, and adds it to the
16-bit offset, forming a 20-bit physical address. The 80286 (center) used the contents of the segment register to select
a segment descriptor, which includes a 24-bit base address among other items. It is added to the 16-bit offset to form
the 24-bit physical address. The 80386 and successors (right) expand this base address in the segment descriptor to
32 bits and also add an optional paging layer below segmentation. A 32-bit linear address is first formed from the
segment and offset, and then this address is divided into two 10-bit fields and a 12-bit page offset. The first 10-bit field
selects the entry in the first-level page table, and then this entry is used in combination with the second 10-bit field to
access the second-level page table to select the upper 20 bits of the physical address. Prepending this 20-bit address
to the final 12-bit field gives the 32-bit physical address. Paging can be turned off, redefining the 32-bit linear address
as the physical address. Note that a “flat” 80x86 address space comes simply by loading the same value in all the
segment registers; that is, it doesn’t matter which segment register is selected.
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Figure K.33 shows some typical 80x86 instructions and their functions.
The data transfer, arithmetic, and logic instructions are unremarkable, except

that the arithmetic and logic instruction operations allow the destination to be either
a register or a memory location.

Control flow instructions must be able to address destinations in another seg-
ment. This is handled by having two types of control flow instructions: “near” for
intrasegment (within a segment) and “far” for intersegment (between segments)
transfers. In far jumps, which must be unconditional, two 16-bit quantities follow
the opcode in 16-bit mode. One of these is used as the instruction pointer,
while the other is loaded into CS and becomes the new code segment. In 32-
bit mode the first field is expanded to 32 bits to match the 32-bit program
counter (EIP).

Calls and returns work similarly—a far call pushes the return instruction
pointer and return segment on the stack and loads both the instruction pointer
and the code segment. A far return pops both the instruction pointer and the code
segment from the stack. Programmers or compiler writers must be sure to always
use the same type of call and return for a procedure—a near return does not work
with a far call, and vice versa.

String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs.

Figure K.34 lists some of the integer 80x86 instructions. Many of the
instructions are available in both byte and word formats.

noitcnuFnoitcurtsnI

JE name

JMP name IP name

CALLF name, seg SP SP–2;M[SS:SP] IP+5;SP SP–2;

PUSH SI SP SP–2;M[SS:SP] SI

POP DI DI M[SS:SP];SP SP+2

ADD AX,#6765 AX AX+6765

SHL BX,1 BX BX1..15## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI] 8M[DS:SI];DI DI+1;SI SI+1

MOVW BX,[DI+45] BX 16M[DS:DI+45]

M[SS:SP]  CS;IP name;CS seg; 

if equal(CC) {IP name};IP–128   name  IP+128

Figure K.33 Some typical 80x86 instructions and their functions. A list of frequent
operations appears in Figure K.34. We use the abbreviation SR:X to indicate the forma-
tion of an address with segment register SR and offset X. This effective address corre-
sponding to SR:X is (SR<<4)+X. The CALLF saves the IP of the next instruction and
the current CS on the stack.
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80x86 Floating-Point Operations

Intel provided a stack architecture with its floating-point instructions: loads push
numbers onto the stack, operations find operands in the top two elements of the
stacks, and stores can pop elements off the stack, just as the stack example in
Figure A.31 on page A-4 suggests.

gninaeMnoitcurtsnI

Control Conditional and unconditional branches
JNZ, JZ Jump if condition to IP + 8-bit offset; JNE (for JNZ) and JE (for JZ) are alternative names
JMP, JMPF Unconditional jump—8- or 16-bit offset intrasegment (near) and intersegment (far) versions
CALL, CALLF Subroutine call—16-bit offset; return address pushed; near and far versions
RET, RETF Pops return address from stack and jumps to it; near and far versions
LOOP Loop branch—decrement CX; jump to IP + 8-bit displacement if CX ¦ 0
Data transfer Move data between registers or between register and memory
MOV Move between two registers or between register and memory
PUSH Push source operand on stack
POP Pop operand from stack top to a register
LES Load ES and one of the GPRs from memory
Arithmetic/logical Arithmetic and logical operations using the data registers and memory
ADD Add source to destination; register-memory format
SUB Subtract source from destination; register-memory format
CMP Compare source and destination; register-memory format
SHL Shift left
SHR Shift logical right
RCR Rotate right with carry as fill
CBW Convert byte in AL to word in AX
TEST Logical AND of source and destination sets flags
INC Increment destination; register-memory format
DEC Decrement destination; register-memory format
OR Logical OR; register-memory format
XOR Exclusive OR; register-memory format
String instructions Move between string operands; length given by a repeat prefix
MOVS Copies from string source to destination; may be repeated
LODS Loads a byte or word of a string into the A register

Figure K.34 Some typical operations on the 80x86.Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand.
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Intel supplemented this stack architecture with instructions and addressing
modes that allow the architecture to have some of the benefits of a register-memory
model. In addition to finding operands in the top two elements of the stack, one
operand can be inmemory or in one of the seven registers below the top of the stack.

This hybrid is still a restricted register-memory model, however, in that loads
always move data to the top of the stack while incrementing the top of stack pointer
and stores can only move the top of stack to memory. Intel uses the notation ST to
indicate the top of stack, andST(i) to represent the ith register below the top of stack.

One novel feature of this architecture is that the operands are wider in the reg-
ister stack than they are stored in memory, and all operations are performed at this
wide internal precision. Numbers are automatically converted to the internal 80-bit
format on a load and converted back to the appropriate size on a store. Memory
data can be 32-bit (single-precision) or 64-bit (double-precision) floating-point
numbers, called real by Intel. The register-memory version of these instructions
will then convert the memory operand to this Intel 80-bit format before performing
the operation. The data transfer instructions also will automatically convert 16- and
32-bit integers to reals, and vice versa, for integer loads and stores.

The 80x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store

2. Arithmetic instructions, including add, subtract, multiply, divide, square root,
and absolute value

3. Comparison, including instructions to send the result to the integer CPU so that
it can branch

4. Transcendental instructions, including sine, cosine, log, and exponentiation

Figure K.35 shows some of the 60 floating-point operations. We use the curly
brackets {} to show optional variations of the basic operations: {I} means there
is an integer version of the instruction, {P} means this variation will pop one
operand off the stack after the operation, and {R} means reverse the sense of
the operands in this operation.

Not all combinations are provided. Hence,

F{I}SUB{R}{P}

represents these instructions found in the 80x86:

FSUB

FISUB

FSUBR

FISUBR

FSUBP

FSUBRP
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There are no pop or reverse pop versions of the integer subtract instructions.
Note that we get even more combinations when including the operand modes

for these operations. The floating-point add has these options, ignoring the integer
and pop versions of the instruction:

FADD Both operands are in the in stack, and the result replaces the top of
stack.

FADD ST(i) One source operand is ith register below the top of stack, and the
result replaces the top of stack.

FADD ST(i),ST One source operand is the top of stack, and the result replaces ith
register below the top of stack.

FADD mem32 One source operand is a 32-bit location in memory, and the result
replaces the top of stack.

FADD mem64 One source operand is a 64-bit location in memory, and the result
replaces the top of stack.

As mentioned earlier SSE2 presents a model of IEEE floating-point registers.

80x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 8086 is complex, with
many different instruction formats. Instructions may vary from 1 byte, when there
are no operands, to up to 6 bytes, when the instruction contains a 16-bit immediate

erapmoCcitemhtirArefsnartataD Transcendental

F{I}LD mem/ST(i) F{I}ADD{P}mem/ST(i) F{I}COM{P}{P} FPATAN

F{I}ST{P} mem/ST(i) F{I}SUB{R}{P}mem/ST(i) F{I}UCOM{P}{P} F2XM1

SOCFFSTSW AX/memI}MUL{P}mem/ST(i){FIPDLF

NATPFF{I}DIV{R}{P}mem/ST(i) 1DLF

MERPFTRQSFZDLF

INSFSBAF

X2LYFFRNDINT

Figure K.35 The floating-point instructions of the 80x86. The first column shows the data transfer instructions,
which move data to memory or to one of the registers below the top of the stack. The last three operations push
constants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described above. Note
that the last three operate only on the top of stack. The third column is the compare instructions. Since there are no
special floating-point branch instructions, the result of the compare must be transferred to the integer CPU via the
FSTSW instruction, either into the AX register or into memory, followed by an SAHF instruction to set the condition
codes. The floating-point comparison can then be tested using integer branch instructions. The final column gives the
higher-level floating-point operations.
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and uses 16-bit displacement addressing. Prefix instructions increase 8086 instruc-
tion length beyond the obvious sizes.

The 80386 additions expand the instruction size even further, as Figure K.36
shows. Both the displacement and immediate fields can be 32 bits long, two more
prefixes are possible, the opcode can be 16 bits long, and the scaled indexmode spec-
ifier adds another 8 bits. The maximum possible 80386 instruction is 17 bytes long.

Figure K.37 shows the instruction format for several of the example instruc-
tions in Figure K.33. The opcode byte usually contains a bit saying whether the
operand is a byte wide or the larger size, 16 bits or 32 bits depending on the mode.
For some instructions, the opcode may include the addressing mode and the reg-
ister; this is true in many instructions that have the form register
 register op immediate. Other instructions use a “postbyte” or extra
opcode byte, labeled “mod, reg, r/m” in Figure K.36, which contains the addres-
sing mode information. This postbyte is used for many of the instructions that
address memory. The based with scaled index uses a second postbyte, labeled
“sc, index, base” in Figure K.36.

The floating-point instructions are encoded in the escape opcode of the 8086
and the postbyte address specifier. The memory operations reserve 2 bits to decide

Seg. override

Opcode

mod, reg, r/m

Disp8

Disp16

Disp24

Imm8

Imm16

Disp32

Imm24

Imm32

Opcode ext.

sc, index, base

Addr. override

Size override

Prefixes

Address
specifiers

Displacement

Immediate

Opcode

Repeat

Lock

Figure K.36 The instruction format of the 8086 (black type) and the extensions for
the 80386 (shaded type). Every field is optional except the opcode.
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whether the operand is a 32- or 64-bit real or a 16- or 32-bit integer. Those same 2
bits are used in versions that do not access memory to decide whether the stack
should be popped after the operation and whether the top of stack or a lower reg-
ister should get the result.

Alas, you cannot separate the restrictions on registers from the encoding of the
addressing modes in the 80x86. Hence, Figures K.38 and K.39 show the encoding
of the two postbyte address specifiers for both 16- and 32-bit mode.

JE

a.  JE PC + displacement

rebmun tnemgeSFLLAC Offset

b.  CALLF

c.  MOV  BX, [DI + 45]

PUSH

d.  PUSH SI

ADD w

e.  ADD AX, #6765

SHL
r-r

postbytev/w

f.  SHL BX, 1

g.  TEST DX, #42

Reg

4 4 8

6 8 8

61618

2

5 3

4 1 613

Constant

6 2 8

7 1 8 8

Condition Displacement

tnemecalpsiDw/dVOM
r-m

postbyte

TEST Postbyte Immediatew

Reg

Figure K.37 Typical 8086 instruction formats. The encoding of the postbyte is shown
in Figure K.38.Many instructions contain the 1-bit field w, which says whether the oper-
ation is a byte or a word. Fields of the form v/w or d/w are a d-field or v-field followed by
the w-field. The d-field in MOV is used in instructions that may move to or frommemory
and shows the direction of the move. The field v in the SHL instruction indicates a
variable-length shift; variable-length shifts use a register to hold the shift count. The
ADD instruction shows a typical optimized short encoding usable only when the first
operand is AX. Overall instructions may vary from 1 to 6 bytes in length.
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w = 1 mod = 0 mod = 1 mod = 2

reg w = 0 16b 32b r/m 16b 32b 16b 32b 16b 32b mod = 3 

0 A L A X EAX 0

1 CL CX ECX 1

2 D L D X EDX 2

3 BL BX EBX 3

4 A H SP ESP 4 SI+disp16 (sib)+disp8 "

5 CH BP EBP 5 DI+disp8 EBP+disp8 DI+disp16 "

6 D H SI ESI 6 BP+disp8 ESI+disp8 "

7 BH D I EDI 7

a

addr=BX+SI

addr=BX+DI

addr=BP+SI

addr=BP+SI

addr=SI

ddr=DI

addr=disp16

addr=BX

=ED X

=EBX

=(si)b

=disp32

=ESI

=ED I BX+disp8 EDI+disp8

SI+disp8

BP+disp16

BX+disp16

(sib)+disp32

EBP+disp32

ESI+disp32

EDI+disp32 "

same same same same same

=ECX

=EAX

addr  as  addr  as  addr as addr as as

mod= 0 mod= 0 mod= 0 mod= 0 reg

+ disp 8 + disp 8 + disp1 6 + disp3 2 field

Figure K.38 The encoding of the first address specifier of the 80x86,mod, reg, r/m. The first four columns show the
encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16- or 32-
bit mode. The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the
value in the 2-bit mod field and the address size. Basically, the registers used in the address calculation are listed in the
sixth and seventh columns, under mod¼ 0, with mod¼ 1 adding an 8-bit displacement and mod¼ 2 adding a 16- or
32-bit displacement, depending on the address mode. The exceptions are r/m¼ 6whenmod¼ 1 or mod¼ 2 in 16-bit
mode selects BP plus the displacement; r/m¼ 5 when mod¼ 1 or mod¼ 2 in 32-bit mode selects EBP plus displace-
ment; and r/m ¼ 4 in 32-bit mode when mod ¦3 (sib) means use the scaled index mode shown in Figure K.39. When
mod ¼ 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

esaBxednI

XAEXAE0
XCEXCE1
XDEXDE2
XBEXBE3
PSExednioN4

23psid,0=domfIPBE5
If mod ¦ 0, EBP

ISEISE6
IDEIDE7

Figure K.39 Based plus scaled index mode address specifier found in the 80386. This
mode is indicated by the (sib) notation in Figure K.38. Note that this mode expands the
list of registers to be used in other modes: Register indirect using ESP comes from Scale
¼ 0, Index ¼ 4, and Base ¼ 4, and base displacement with EBP comes from Scale ¼ 0,
Index ¼ 5, and mod ¼ 0. The two-bit scale field is used in this formula of the effective
address: Base register + 2Scale � Index register.



Putting It All Together: Measurements
of Instruction Set Usage

In this section, we present detailed measurements for the 80x86 and then compare
the measurements to MIPS for the same programs. To facilitate comparisons
among dynamic instruction set measurements, we use a subset of the SPEC92 pro-
grams. The 80x86 results were taken in 1994 using the Sun Solaris FORTRAN and
C compilers V2.0 and executed in 32-bit mode. These compilers were comparable
in quality to the compilers used for MIPS.

Remember that these measurements depend on the benchmarks chosen and the
compiler technology used. Although we feel that the measurements in this section
are reasonably indicative of the usage of these architectures, other programs may
behave differently from any of the benchmarks here, and different compilers may
yield different results. In doing a real instruction set study, the architect would want
to have a much larger set of benchmarks, spanning as wide an application range as
possible, and consider the operating system and its usage of the instruction set.
Single-user benchmarks like those measured here do not necessarily behave in
the same fashion as the operating system.

We start with an evaluation of the features of the 80x86 in isolation, and later
compare instruction counts with those of DLX.

Measurements of 80x86 Operand Addressing

We start with addressing modes. Figure K.40 shows the distribution of the operand
types in the 80x86. These measurements cover the “second” operand of the oper-
ation; for example,

mov EAX, [45]

counts as a single memory operand. If the types of the first operand were counted,
the percentage of register usage would increase by about a factor of 1.5.

The 80x86 memory operands are divided into their respective addressing
modes in Figure K.41. Probably the biggest surprise is the popularity of the

Integer average FP average

%54retsigeR
%61etaidemmI

%22
%6
%27%93yromeM

Figure K.40 Operand type distribution for the average of five SPECint92 programs
(compress, eqntott, espresso, gcc, li) and the average of five SPECfp92 programs
(doduc, ear, hydro2d, mdljdp2, su2cor).
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addressing modes added by the 80386, the last four rows of the figure. They
account for about half of all the memory accesses. Another surprise is the popu-
larity of direct addressing. On most other machines, the equivalent of the direct
addressing mode is rare. Perhaps the segmented address space of the 80x86 makes
direct addressing more useful, since the address is relative to a base address from
the segment register.

These addressing modes largely determine the size of the Intel instructions.
Figure K.42 shows the distribution of instruction sizes. The average number of
bytes per instruction for integer programs is 2.8, with a standard deviation of
1.5, and 4.1 with a standard deviation of 1.9 for floating-point programs. The dif-
ference in length arises partly from the differences in the addressing modes: Integer
programs rely more on the shorter register indirect and 8-bit displacement addres-
sing modes, while floating-point programs more frequently use the 80386 addres-
sing modes with the longer 32-bit displacements.

Given that the floating-point instructions have aspects of both stacks and reg-
isters, how are they used? Figure K.43 shows that, at least for the compilers used in
this measurement, the stack model of execution is rarely followed. (See Section L.3
for a historical explanation of this observation.)

Finally, Figures K.44 and K.45 show the instruction mixes for 10 SPEC92
programs.

Comparative Operation Measurements

Figures K.46 and K.47 show the number of instructions executed for each of the 10
programs on the 80x86 and the ratio of instruction execution compared with that

Addressing mode Integer average FP average

%31tceridniretsigeR
%13.psidtib-8+esaB
%9.psidtib-23+esaB
%0dexednI
%0.psidtib-8+dexednidesaB
%0.psidtib-23+dexednidesaB
%22dexednidelacs+esaB

Base + scaled indexed + 8-bit disp. 0%
Base + scaled indexed + 32-bit disp. 4%

%3
%51
%52
%0
%0
%1
%7

8%
4%
%73%02tceridtib-23

Figure K.41 Operand addressing mode distribution by program. This chart does not
include addressing modes used by branches or control instructions.
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for DLX: Numbers less than 1.0 mean that the 80x86 executes fewer instructions
than DLX. The instruction count is surprisingly close to DLX for many integer
programs, as you would expect a load-store instruction set architecture like
DLX to execute more instructions than a register-memory architecture like the
80x86. The floating-point programs always have higher counts for the 80x86,

doduc ear hydro2d mdljdp2 su2cor FP average

Stack (2nd operand ST (1
Register (2nd operand ST(i), i 

)) 1.1% 0.0% 0.0% 0.2% 0.6% 0.4%
> 1) 17.3% 63.4% 14.2% 7.1% 30.7% 26.5%

%1.37%7.86%7.29%8.58%6.63%6.18yromeM

Option

Figure K.43 The percentage of instructions for the floating-point operations (add, sub, mul, div) that use each of
the three options for specifying a floating-point operand on the 80x86. The three options are (1) the strict stack
model of implicit operands on the stack, (2) register version naming an explicit operand that is not one of the top two
elements of the stack, and (3) memory operand.
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Figure K.42 Averages of the histograms of 80x86 instruction lengths for five SPE-
Cint92 programs and for five SPECfp92 programs, all running in 32-bit mode.
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presumably due to the lack of floating-point registers and the use of a stack
architecture.

Another question is the total amount of data traffic for the 80x86 versus DLX,
since the 80x86 can specify memory operands as part of operations while DLX
can only access via loads and stores. Figures K.46 and K.47 also show the data
reads, data writes, and data read-modify-writes for these 10 programs. The total

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

%02%6.72%6.72%0.81%5.6%9.8daoL
%8%8.7%8.7%5.11%1.3%4.21erotS
%01%8.8%8.8%6.41%6.6%4.5ddA
%3%4.2%4.2%3.3%4.2%0.1buS

Mul 0%
Div 0%

%2%0.1%0.1%8.0%1.5%8.1erapmoC
Mov reg-reg 3.2% 0.1% 1.8% 2.3% 2.3% 2%

%0%5.1%4.0mmidaoL
Cond. branch 5.4% 8.2% 5.1% 2.7% 2.7% 5%
Uncond branch 0.8% 0.4% 1.3% 0.3% 0.3% 1%

%0%1.0%1.0%6.1%5.0llaC
%0%1.0%1.0%6.1%5.0tceridnipmj,nruteR
%2%5.2%5.2%5.4%1.1tfihS

AND 0.8% 0.8% 0.7% 1.3% 1.3% 1%
OR %0%1.0%1.0%1.0
Other (XOR, not, . . .) 0%

%41%6.21%6.21%1.9%5.22%1.41PFdaoL
%7%6.6%6.6%1.4%4.11%6.8PFerotS
%5%6.6%6.6%4.1%1.6%8.5PFddA
%3%9.2%9.2%1.3%7.2%2.2PFbuS
%9%0.21%0.21%1.4%0.8%9.8PFluM
%0%2.0%2.0%8.0%1.2PFviD

Compare FP 9.4% 6.9% 10.8% 0.5% 0.5% 5%
Mov reg-reg FP 2.5% 0.8% 0.3% 0.8% 0.8% 1%
Other (abs, sqrt, . . .) 3.9% 3.8% 4.1% 0.8% 0.8% 2%

Figure K.44 80x86 instruction mix for five SPECfp92 programs.
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accesses ratio to DLX of each memory access type is shown in the bottom
rows, with the read-modify-write counting as one read and one write. The
80x86 performs about two to four times as many data accesses as DLX for
floating-point programs, and 1.25 times as many for integer programs. Finally,
Figure K.48 shows the percentage of instructions in each category for 80x86
and DLX.

Instruction compress eqntott espresso gcc (cc1) li Int. average

%22%3.32%9.42%9.12%5.81%8.02daoL
%21%7.81%6.61%3.8%2.3%8.31erotS
%8%1.6%6.7%51.8%8.8%3.01ddA
%5%6.3%9.2%5.3%6.01%0.7buS
%0%1.0luM

Div 0%
Compare 8.2% 27.7% 15.3% 13.5% 7.7% 16%
Mov reg-reg 7.9% 0.6% 5.0% 4.2% 7.8% 4%

%0%4.0%6.0%2.0%5.0mmidaoL
Cond. branch 15.5% 28.6% 18.9% 17.4% 15.4% 20%
Uncond. branch 1.2% 0.2% 0.9% 2.2% 2.2% 1%

%1%2.3%5.1%7.0%4.0%5.0llaC
Return, jmp indirect 0.5% 0.4% 0.7% 1.5% 3.2% 1%

%1%7.1%5.2%8.3tfihS
AND 8.4% 1.0% 8.7% 4.5% 8.4% 6%
OR %1%4.0%4.0%7.2%6.0
Other (XOR %1%1.0%2.2%9.0)...,ton,
Load FP 0%
Store FP 0%
Add FP 0%
Sub FP 0%
Mul FP 0%
Div FP 0%
Compare FP 0%
Mov reg-reg FP 0%
Other (abs, sqrt, . . .) 0%

Figure K.45 80x86 instruction mix for five SPECint92 programs.
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Concluding Remarks

Beauty is in the eye of the beholder.

Old Adage

As we have seen, “orthogonal” is not a term found in the Intel architectural dictio-
nary. To fully understand which registers and which addressing modes are avail-
able, you need to see the encoding of all addressing modes and sometimes the
encoding of the instructions.

compress eqntott espresso gcc (cc1) li Int. avg.

Instructions executed on 80x86 (millions) 2226 1203 2216 3770 5020
Instructions executed ratio to DLX 0.61 1.74 0.85 0.96 0.98 1.03
Data reads on 80x86 (millions) 589 229 622 1079 1459
Data writes on 80x86 (millions) 311 39 191 661 981
Data read-modify-writes on 80x86 (millions) 26 1 129 48 48
Total data reads on 80x86 (millions) 615 230 751 1127 1507

01.149.052.183.190.158.0XLDotoitardaerataD
Total data writes on 80x86 (millions) 338 40 319 709 1029

51.302.152.193.262.976.1XLDotoitaretirwataD
Total data accesses on 80x86 (millions) 953 269 1070 1836 2536

32.130.152.185.152.130.1XLDotoitarsseccaataD

Figure K.46 Instructions executed and data accesses on 80x86 and ratios compared to DLX for five SPECint92
programs.

doduc ear hydro2d mdljdp2 su2cor FP average

Instructions executed on 80x86 (millions) 1223 15,220 13,342 6197 6197
Instructions executed ratio to DLX 1.19 1.19 2.53 2.09 1.62 1.73
Data reads on 80x86 (millions) 515 6007 5501 3696 3643
Data writes on 80x86 (millions) 260 2205 2085 892 892
Data read-modify-writes on 80x86 (millions) 1 0 189 124 124
Total data reads on 80x86 (millions) 517 6007 5690 3820 3767

15.319.377.484.463.240.2XLDotoitardaerataD
Total data writes on 80x86 (millions) 261 2205 2274 1015 1015

3XLDotoitaretirwataD .68 33.25 38.74 16.74 9.35 20.35
Total data accesses on 80x86 (millions) 778 8212 7965 4835 4782

53.474.437.599.541.304.2XLDotoitarsseccaataD

Figure K.47 Instructions executed and data accesses for five SPECfp92 programs on 80x86 and ratio to DLX.
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Some argue that the inelegance of the 80x86 instruction set is unavoidable, the
price that must be paid for rampant success by any architecture. We reject that
notion. Obviously, no successful architecture can jettison features that were added
in previous implementations, and over time some features may be seen as unde-
sirable. The awkwardness of the 80x86 began at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions of the 8087,
80286, and 80386.

A counterexample is the IBM 360/370 architecture, which is much older than
the 80x86. It dominates the mainframe market just as the 80x86 dominates the PC
market. Due undoubtedly to a better base and more compatible enhancements, this
instruction set makes much more sense than the 80x86 more than 30 years after its
first implementation.

For better or worse, Intel had a 16-bit microprocessor years before its compet-
itors’more elegant architectures, and this head start led to the selection of the 8086
as the CPU for the IBM PC. What it lacks in style is made up in quantity, making
the 80x86 beautiful from the right perspective.

The saving grace of the 80x86 is that its architectural components are not too
difficult to implement, as Intel has demonstrated by rapidly improving perfor-
mance of integer programs since 1978. High floating-point performance is a larger
challenge in this architecture.

K.4 The VAX Architecture

VAX: the most successful minicomputer design in industry history . . . the VAX was
probably the hacker’s favorite machine . . . . Especially noted for its large,
assembler-programmer-friendly instruction set—an asset that became a liability
after the RISC revolution.

Eric Raymond
The New Hacker’s Dictionary (1991)

Integer average FP average

Category x86 DLX x86 DLX

Total data transfer 34% 36% 28% 2%
Total integer arithmetic 34% 31% 16% 12%
Total control 24% 20% 6% 10%
Total logical 8% 13% 3% 2%
Total FP data transfer 0% 0% 22% 33%
Total FP arithmetic 0% 0% 25% 41%

Figure K.48 Percentage of instructions executed by category for 80x86 and DLX for
the averages of five SPECint92 and SPECfp92 programs of Figures K.46 and K.47.
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Introduction

To enhance your understanding of instruction set architectures, we chose the VAX as
the representative Complex Instruction Set Computer (CISC) because it is so differ-
ent fromMIPS and yet still easy to understand. By seeing two such divergent styles,
we are confident that you will be able to learn other instruction sets on your own.

At the time the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages in order to simplify
compilers. For example, because programming languages had loops, instruction
sets should have loop instructions. As VAX architect William Strecker said
(“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,” AFIPS
Proc., National Computer Conference, 1978):

A major goal of the VAX-11 instruction set was to provide for effective compiler
generated code. Four decisions helped to realize this goal: 1) A very regular and
consistent treatment of operators . . . . 2) An avoidance of instructions unlikely
to be generated by a compiler . . . . 3) Inclusions of several forms of common
operators . . . . 4) Replacement of common instruction sequences with single
instructions . . . . Examples include procedure calling, multiway branching, loop
control, and array subscript calculation.

Recall that DRAMs of the mid-1970s contained less than 1/1000th the capacity
of today’s DRAMs, so code space was also critical. Hence, another prevailing phi-
losophy was to minimize code size, which is de-emphasized in fixed-length
instruction sets like MIPS. For example, MIPS address fields always use 16 bits,
even when the address is very small. In contrast, the VAX allows instructions to be
a variable number of bytes, so there is little wasted space in address fields.

Whole books have been written just about the VAX, so this VAX extension
cannot be exhaustive. Hence, the following sections describe only a few of its
addressing modes and instructions. To show the VAX instructions in action, later
sections show VAX assembly code for two C procedures. The general style will be
to contrast these instructions with theMIPS code that you are already familiar with.

The differing goals for VAX andMIPS have led to very different architectures.
The VAX goals, simple compilers and code density, led to the powerful addressing
modes, powerful instructions, and efficient instruction encoding. The MIPS goals
were high performance via pipelining, ease of hardware implementation, and com-
patibility with highly optimizing compilers. The MIPS goals led to simple instruc-
tions, simple addressing modes, fixed-length instruction formats, and a large
number of registers.

VAX Operands and Addressing Modes

The VAX is a 32-bit architecture, with 32-bit-wide addresses and 32-bit-wide reg-
isters. Yet, the VAX supports many other data sizes and types, as Figure K.49
shows. Unfortunately, VAX uses the name “word” to refer to 16-bit quantities;
in this text, a word means 32 bits. Figure K.49 shows the conversion between
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the MIPS data type names and the VAX names. Be careful when reading about
VAX instructions, as they refer to the names of the VAX data types.

The VAX provides sixteen 32-bit registers. The VAX assembler uses the
notation r0, r1, . . . , r15 to refer to these registers, and we will stick to that
notation. Alas, 4 of these 16 registers are effectively claimed by the instruction set
architecture. For example, r14 is the stack pointer (sp) and r15 is the program
counter (pc). Hence, r15 cannot be used as a general-purpose register, and using
r14 is very difficult because it interferes with instructions that manipulate the
stack. The other dedicated registers are r12, used as the argument pointer (ap),
and r13, used as the frame pointer (fp); their purpose will become clear later.
(Like MIPS, the VAX assembler accepts either the register number or the register
name.)

VAX addressing modes include those discussed in Appendix A, which has all
the MIPS addressing modes: register, displacement, immediate, and PC-relative.
Moreover, all these modes can be used for jump addresses or for data addresses.

But that’s not all the addressing modes. To reduce code size, the VAX has three
lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit
addresses called, respectively, byte displacement, word displacement, and long
displacement addressing. Thus, an address can be not only as small as possible
but also as large as necessary; large addresses need not be split, so there is no equiv-
alent to the MIPS lui instruction (see Figure A.24 on page A-37).

Those are still not all the VAX addressing modes. Several have a deferred
option, meaning that the object addressed is only the address of the real object,
requiring another memory access to get the operand. This addressing mode is
called indirect addressing in other machines. Thus, register deferred, autoincre-
ment deferred, and byte/word/long displacement deferred are other addressing
modes to choose from. For example, using the notation of the VAX assembler,

Bits Data type MIPS name VAX name

08 Integer Byte Byte
16 Integer Half word Word
32 Integer Word Long word
32 Floating point Single precision F_floating
64 Integer Double word Quad word
64 Floating point Double precision D_floating or G_floating
8n Character string Character Character 

Figure K.49 VAX data types, their lengths, and names. The first letter of the VAX type
(b, w, l, f, q, d, g, c) is often used to complete an instruction name. Examples of move
instructions include movb, movw, movl, movf, movq, movd, movg, and movc3.
Each move instruction transfers an operand of the data type indicated by the letter
following mov.
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r1 means the operand is register 1 and (r1) means the operand is the location in
memory pointed to by r1.

There is yet another addressing mode. Indexed addressing automatically con-
verts the value in an index operand to the proper byte address to add to the rest of
the address. For a 32-bit word, we needed to multiply the index of a 4-byte quantity
by 4 before adding it to a base address. Indexed addressing, called scaled addres-
sing on some computers, automatically multiplies the index of a 4-byte quantity by
4 as part of the address calculation.

To cope with such a plethora of addressing options, the VAX architecture
separates the specification of the addressing mode from the specification of
the operation. Hence, the opcode supplies the operation and the number of oper-
ands, and each operand has its own addressing mode specifier. Figure K.50
shows the name, assembler notation, example, meaning, and length of the address
specifier.

The VAX style of addressing means that an operation doesn’t know where its
operands come from; a VAX add instruction can have three operands in registers,
three operands in memory, or any combination of registers and memory
operands.

Addressing mode

name Syntax Example Meaning
Length of address

specifier in bytes

Literal #value #–1 )eulavdengistib-6(11–
ehtfohtgnel+1001001#eulav#etaidemmI

immediate
13r3rnrretsigeR

Register deferred (rn) (r3) Memory[r3] 1
Byte/word/long 
displacement

Displacement (rn) 100(r3) Memory[r3 + 100] 1 + length of the
displacement

Byte/word/long 
displacement deferred

@displacement (rn) @100(r3) Memory[Memory [r3 + 100]] 1 + length of the
displacement

Indexed (scaled) Base mode [rx] (r3)[r4] Memory[r3 + r4 d]
(where d is data size in bytes)

1 + length of base 
addressing mode

Autoincrement (rn)+ (r3)+ Memory[r3]; r3 = r3 + d 1
Autodecrement – (rn) –(r3) r3 = r3 – d; Memory[r3] 1
Autoincrement deferred @(rn)+ @(r3)+ Memory[Memory[r3]]; r3 = r3 + d 1

Figure K.50 Definition and length of the VAX operand specifiers. The length of each addressing mode is 1 byte
plus the length of any displacement or immediate field needed by themode. Literal mode uses a special 2-bit tag and
the remaining 6 bits encode the constant value. If the constant is too big, it must use the immediate addressingmode.
Note that the length of an immediate operand is dictated by the length of the data type indicated in the opcode, not
the value of the immediate. The symbol d in the last four modes represents the length of the data in bytes; d is 4 for
32-bit add.
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Example How long is the following instruction?

addl3 r1,737(r2),(r3)[r4]

The name addl3 means a 32-bit add instruction with three operands. Assume the
length of the VAX opcode is 1 byte.

Answer The first operand specifier—r1—indicates register addressing and is 1 byte long.
The second operand specifier—737(r2)—indicates displacement addressing
and has two parts: The first part is a byte that specifies the word displacement
addressing mode and base register (r2); the second part is the 2-byte-long dis-
placement (737). The third operand specifier—(r3)[r4]—also has two parts:
The first byte specifies register deferred addressing mode ((r3)), and the second
byte specifies the Index register and the use of indexed addressing ([r4]). Thus, the
total length of the instruction is 1 + (1) + (1 + 2) + (1 + 1) ¼ 7 bytes.

In this example instruction, we show the VAX destination operand on the left and
the source operands on the right, just as we show MIPS code. The VAX assembler
actually expects operands in the opposite order, but we felt it would be less con-
fusing to keep the destination on the left for both machines. Obviously, left or right
orientation is arbitrary; the only requirement is consistency.

Elaboration Because the PC is 1 of the 16 registers that can be selected in a VAX addressing
mode, 4 of the 22 VAX addressing modes are synthesized from other addressing
modes. Using the PC as the chosen register in each case, immediate addressing is
really autoincrement, PC-relative is displacement, absolute is autoincrement
deferred, and relative deferred is displacement deferred.

Encoding VAX Instructions

Given the independence of the operations and addressing modes, the encoding of
instructions is quite different from MIPS.

VAX instructions begin with a single byte opcode containing the operation and
the number of operands. The operands follow the opcode. Each operand begins
with a single byte, called the address specifier, that describes the addressing mode
for that operand. For a simple addressing mode, such as register addressing, this
byte specifies the register number as well as the mode (see the rightmost column
in Figure K.50). In other cases, this initial byte can be followed by many more
bytes to specify the rest of the address information.

As a specific example, let’s show the encoding of the add instruction from the
example on page K-24:

addl3 r1,737(r2),(r3)[r4]

Assume that this instruction starts at location 201.
Figure K.51 shows the encoding. Note that the operands are stored in memory

in opposite order to the assembly code above. The execution of VAX instructions
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begins with fetching the source operands, so it makes sense for them to come first.
Order is not important in fixed-length instructions like MIPS, since the source and
destination operands are easily found within a 32-bit word.

The first byte, at location 201, is the opcode. The next byte, at location 202, is a
specifier for the index mode using register r4. Like many of the other specifiers,
the left 4 bits of the specifier give the mode and the right 4 bits give the register
used in that mode. Since addl3 is a 4-byte operation, r4 will be multiplied by 4
and added to whatever address is specified next. In this case it is register deferred
addressing using register r3. Thus, bytes 202 and 203 combined define the third
operand in the assembly code.

The following byte, at address 204, is a specifier for word displacement addres-
sing using register r2 as the base register. This specifier tells the VAX that the fol-
lowing two bytes, locations 205 and 206, contain a 16-bit address to be added to r2.

The final byte of the instruction gives the destination operand, and this specifier
selects register addressing using register r1.

Such variability in addressing means that a single VAX operation can have
many different lengths; for example, an integer add varies from 3 bytes to 19 bytes.
VAX implementations must decode the first operand before they can find the sec-
ond, and so implementors are strongly tempted to take 1 clock cycle to decode each
operand; thus, this sophisticated instruction set architecture can result in higher
clock cycles per instruction, even when using simple addresses.

VAX Operations

In keeping with its philosophy, the VAX has a large number of operations as well
as a large number of addressing modes. We review a few here to give the flavor of
the machine.

Given the power of the addressing modes, the VAX move instruction performs
several operations found in other machines. It transfers data between any two
addressable locations and subsumes load, store, register-register moves, and

Byte address Contents at each byte Machine code

1c3lddagniniatnocedocpO102 hex

44]4r[rofreificepsedomxednI202 hex

203 Register indirect mode specifier for (r3) 63hex

204 Word displacement mode specifier using r2 as base c2hex

1e737tnatsnoctib-61ehT502 hex

20602 hex

151rrofreificepsedomretsigeR702 hex

Figure K.51 The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4], assuming
it starts at address 201. To satisfy your curiosity, the right column shows the actual VAX
encoding in hexadecimal notation. Note that the 16-bit constant 737ten takes 2 bytes.
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memory-memory moves as special cases. The first letter of the VAX data type (b,
w, l, f, q, d, g, c in Figure K.49) is appended to the acronym mov to determine the
size of the data. One special move, called move address, moves the 32-bit address
of the operand rather than the data. It uses the acronym mova.

The arithmetic operations of MIPS are also found in the VAX, with two major
differences. First, the type of the data is attached to the name. Thus, addb, addw,
and addl operate on 8-bit, 16-bit, and 32-bit data in memory or registers, respec-
tively; MIPS has a single add instruction that operates only on the full 32-bit reg-
ister. The second difference is that to reduce code size the add instruction specifies
the number of unique operands; MIPS always specifies three even if one operand is
redundant. For example, the MIPS instruction

add $1, $1, $2

takes 32 bits like all MIPS instructions, but the VAX instruction

addl2 r1, r2

uses r1 for both the destination and a source, taking just 24 bits: 8 bits for the
opcode and 8 bits each for the two register specifiers.

Number of Operations

Now we can show how VAX instruction names are formed:

operationð Þ datatypeð Þ 2
3

� �

The operation add works with data types byte, word, long, float, and double and
comes in versions for either 2 or 3 unique operands, so the following instructions
are all found in the VAX:

addb2 addw2 addl2 addf2 addd2
addb3 addw3 addl3 addf3 addd3

Accounting for all addressing modes (but ignoring register numbers and immediate
values) and limiting to just byte, word, and long, there are more than 30,000 ver-
sions of integer add in the VAX; MIPS has just 4!

Another reason for the large number of VAX instructions is the instructions
that either replace sequences of instructions or take fewer bytes to represent a sin-
gle instruction. Here are four such examples (* means the data type):

VAX operation Example Meaning

clr* clrl r3 r3 = 0

inc* incl r3 r3 = r3+1

dec* decl r3 r3 = r3 −1

push* pushl r3 sp = sp −4; Memory[sp] = r3;
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The push instruction in the last row is exactly the same as using the move instruc-
tion with autodecrement addressing on the stack pointer:

movl – (sp), r3

Brevity is the advantage of pushl: It is 1 byte shorter since sp is implied.

Branches, Jumps, and Procedure Calls

The VAX branch instructions are related to the arithmetic instructions because the
branch instructions rely on condition codes. Condition codes are set as a side effect
of an operation, and they indicate whether the result is positive, negative, or zero or
if an overflow occurred. Most instructions set the VAX condition codes according
to their result; instructions without results, such as branches, do not. The VAX con-
dition codes are N (Negative), Z (Zero), V (oVerflow), and C (Carry). There is also
a compare instruction cmp* just to set the condition codes for a subsequent branch.

The VAX branch instructions include all conditions. Popular branch instruc-
tions include beql(=), bneq( 6¼), blss(<), bleq(�), bgtr(>),
and bgeq(�), which do just what you would expect. There are also unconditional
branches whose name is determined by the size of the PC-relative offset. Thus,
brb (branch byte) has an 8-bit displacement, and brw (branch word) has a 16-
bit displacement.

The final major category we cover here is the procedure call and return instruc-
tions. Unlike the MIPS architecture, these elaborate instructions can take dozens of
clock cycles to execute. The next two sections show how they work, but we need to
explain the purpose of the pointers associated with the stack manipulated by calls
and ret. The stack pointer, sp, is just like the stack pointer inMIPS; it points to the
top of the stack. The argument pointer, ap, points to the base of the list of arguments
or parameters in memory that are passed to the procedure. The frame pointer, fp,
points to the base of the local variables of the procedure that are kept in memory (the
stack frame). The VAX call and return instructions manipulate these pointers to
maintain the stack in proper condition across procedure calls and to provide conve-
nient base registers to use when accessing memory operands. As we shall see, call
and return also save and restore the general-purpose registers as well as the program
counter. Figure K.52 gives a further sampling of the VAX instruction set.

An Example to Put It All Together: swap

To see programming in VAX assembly language, we translate two C procedures,
swap and sort. The C code for swap is reproduced in Figure K.53. The next
section covers sort.

We describe the swap procedure in three general steps of assembly language
programming:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.
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gninaemnoitcurtsnIelpmaxEepytnoitcurtsnI

n byte, half-word, word, or double-word operands; * is data type
mov* Move between two operands

or word, extending it with zeros
an operand; data type is last

on integer or logical bytes, half words (16 bits), words (32 bits); * is data 
type 

 size of data type
sehcnarblanoitidnocnudnalanoitidnoClortnoC
 branch not equal

l, branch greater than or equal

nd; branch if result second operand
 case selector

ents on stack (see “A Longer 
Example: sort” on page K-33)

RTRAN-style parameter list
return address (like MIPS jal)

Data transfers Move data betwee

Arithmetic/logical Operations 

Procedure Call/return from procedure

Floating point Floating-point operations on D, F, G, and H formats
format floating numbers
n D-format floating numbers

on F-format floating point
e of coefficients in F format

snoitarepolaicepSrehtO
 redundancy check

movzb* Move a byte to a half word 
mova* Move the 32-bit address of 
push* Push operand onto stack

add*_ Add with 2 or 3 operands
cmp* Compare and set condition codes
tst* Compare to zero and set condition codes
ash* Arithmetic shift
clr* Clear
cvtb* Sign-extend byte to

beql, bneq Branch equal,
bleq, bgeq Branch less than or equa
brb, brw Unconditional branch with an 8-bit or 16-bit address
jmp Jump using any addressing mode to specify target
aobleq Add one to opera
case_ Jump based on

calls Call procedure with argum

callg Call procedure with FO
jsb Jump to subroutine, saving 
ret Return from procedure call

addd_ Add double-precision D-
subd_ Subtract double-precisio
mulf_ Multiply single-precisi
polyf Evaluate a polynomial using tabl

crc Calculate cyclic
insque Insert a queue entry into a queue

Figure K.52 Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, l, d, f, g, h,
and q. The underline, as in addd_, means there are 2-operand (addd2) and 3-operand (addd3) forms of this
instruction.
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The VAX code for these procedures is based on code produced by the VMS C
compiler using optimization.

Register Allocation for swap

In contrast to MIPS, VAX parameters are normally allocated to memory, so this
step of assembly language programming is more properly called “variable alloca-
tion.” The standard VAX convention on parameter passing is to use the stack. The
two parameters, v[] and k, can be accessed using register ap, the argument
pointer: The address 4(ap) corresponds to v[] and 8(ap) corresponds to k.
Remember that with byte addressing the address of sequential 4-byte words differs
by 4. The only other variable is temp, which we associate with register r3.

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp = v[k];

v[k] = v[k + 1];

v[k + 1] = temp;

Since this program uses v[] and k several times, to make the programs run faster
the VAX compiler first moves both parameters into registers:

movl r2, 4(ap) ;r2 = v[]

movl r1, 8(ap) ;r1 = k

Note that we follow the VAX convention of using a semicolon to start a comment;
the MIPS comment symbol # represents a constant operand in VAX assembly
language.

swap(int v[], int k)

{

   int temp;

   temp = v[k];

   v[k] = v[k + 1];

   v[k + 1] = temp;

}

Figure K.53 A C procedure that swaps two locations in memory. This procedure will
be used in the sorting example in the next section.
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The VAX has indexed addressing, so we can use index k without converting it
to a byte address. The VAX code is then straightforward:

movl r3, (r2)[r1] ;r3 (temp) = v[k]

addl3 r0, #1,8(ap) ;r0 = k + 1

movl (r2)[r1],(r2)[r0] ;v[k] = v[r0] (v[k + 1])

movl (r2)[r0],r3 ;v[k + 1] = r3 (temp)

Unlike the MIPS code, which is basically two loads and two stores, the key VAX
code is one memory-to-register move, one memory-to-memory move, and one
register-to-memory move. Note that the addl3 instruction shows the flexibility
of the VAX addressing modes: It adds the constant 1 to a memory operand and
places the result in a register.

Now we have allocated storage and written the code to perform the operations
of the procedure. The only missing item is the code that preserves registers across
the routine that calls swap.

Preserving Registers across Procedure Invocation of swap

The VAX has a pair of instructions that preserve registers, calls and ret. This
example shows how they work.

The VAX C compiler uses a form of callee convention. Examining the code
above, we see that the values in registers r0, r1, r2, and r3 must be saved
so that they can later be restored. The calls instruction expects a 16-bit mask
at the beginning of the procedure to determine which registers are saved: if bit i
is set in the mask, then register i is saved on the stack by the calls instruction.
In addition, calls saves this mask on the stack to allow the return instruction
(ret) to restore the proper registers. Thus, the calls executed by the caller does
the saving, but the callee sets the call mask to indicate what should be saved.

One of the operands for calls gives the number of parameters being passed,
so that calls can adjust the pointers associated with the stack: the argument
pointer (ap), frame pointer (fp), and stack pointer (sp). Of course, calls also
saves the program counter so that the procedure can return!

Thus, to preserve these four registers for swap, we just add the mask at the
beginning of the procedure, letting the calls instruction in the caller do all the work:

.word m̂<r0,r1,r2,r3> ;set bits in mask for 0,1,2,3

This directive tells the assembler to place a 16-bit constant with the proper bits set
to save registers r0 through r3.

The return instruction undoes the work of calls. When finished, ret sets the
stack pointer from the current frame pointer to pop everything calls placed on
the stack. Along the way, it restores the register values saved by calls, including
those marked by the mask and old values of the fp, ap, and pc.
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To complete the procedure swap, we just add one instruction:

ret ;restore registers and return

The Full Procedure swap

We are now ready for the whole routine. Figure K.54 identifies each block of code
with its purpose in the procedure, with theMIPS code on the left and the VAX code
on the right. This example shows the advantage of the scaled indexed addressing
and the sophisticated call and return instructions of the VAX in reducing the num-
ber of lines of code. The 17 lines of MIPS assembly code became 8 lines of VAX
assembly code. It also shows that passing parameters in memory results in extra
memory accesses.

Keep in mind that the number of instructions executed is not the same as per-
formance; the fallacy on page K-38 makes this point.

Note that VAX software follows a convention of treating registers r0 and r1
as temporaries that are not saved across a procedure call, so the VMS C compiler
does include registers r0 and r1 in the register saving mask. Also, the C compiler
should have used r1 instead of 8(ap) in the addl3 instruction; such examples
inspire computer architects to try to write compilers!

MIPS versus VAX

Saving register

Procedure body

Restoring registers

swap: addi $29,$29, –12
sw  $2, 0($29)
sw $15, 4($29)
sw $16, 8($29)

swap: .word ^m<r0,r1,r2,r3>

muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

movl r2, 4(a)
movl r1, 8(a) 
movl r3, (r2)[r1]
addl3 r0, #1,8(ap)
movl (r2)[r1],(r2)[r0]
movl (r2)[r0],r3

lw  $2, 0($29)
lw $15, 4($29)
lw $16, 8($29)
addi $29,$29, 12

Procedure return
ret$31jr

Figure K.54 MIPS versus VAX assembly code of the procedure swap in Figure K.53
on page K-30.
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A Longer Example: sort

We show the longer example of the sort procedure. Figure K.55 shows the C ver-
sion of the program. Once again we present this procedure in several steps, con-
cluding with a side-by-side comparison to MIPS code.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are found in the stack in loca-
tions 4(ap) and 8(ap), respectively. The two local variables are assigned to regis-
ters: i to r6 and j to r4. Because the two parameters are referenced frequently in the
code, the VMS C compiler copies the address of these parameters into registers
upon entering the procedure:

moval r7,8(ap) ;move address of n into r7

moval r5,4(ap) ;move address of v into r5

It would seem that moving the value of the operand to a register would be more
useful than its address, but once again we bow to the decision of the VMS C com-
piler. Apparently the compiler cannot be sure that v and n don’t overlap in memory.

Code for the Body of the sort Procedure

The procedure body consists of two nested for loops and a call to swap, which
includes parameters. Let’s unwrap the code from the outside to the middle.

The Outer Loop

The first translation step is the first for loop:

for (i = 0; i < n; i = i + 1) {

Recall that the C for statement has three parts: initialization, loop test, and iteration
increment. It takes just one instruction to initialize i to 0, the first part of the for
statement:

clrl r6 ;i = 0

sort (int v[], int n)

{

int i, j;

for (i = 0; i < n; i = i + 1) {

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1)

{ swap(v,j);

}

}

}

Figure K.55 A C procedure that performs a bubble sort on the array v.
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It also takes just one instruction to increment i, the last part of the for:

incl r6 ;i = i + 1

The loop should be exited if i < n is false, or said another way, exit the loop if
i � n. This test takes two instructions:

for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)
bgeq exit1 ;go to exit1 if r6 � mem[r7] (i � n)

Note that cmpl sets the condition codes for use by the conditional branch
instruction bgeq.

The bottom of the loop just jumps back to the loop test:

brb for1tst ;branch to test of outer loop
exit1:

The skeleton code of the first for loop is then

clrl r6 ;i = 0
for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)

bgeq exit1 ;go to exit1 if r6� mem[r7] (i� n)
...
(body of first for loop)
...

incl r6 ;i = i + 1
brb for1tst ;branch to test of outer loop

exit1:

The Inner Loop
The second for loop is

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1) {

The initialization portion of this loop is again one instruction:

subl3 r4,r6,#1 ;j = i – 1

The decrement of j is also one instruction:

decl r4 ;j = j – 1

The loop test has two parts. We exit the loop if either condition fails, so the first test
must exit the loop if it fails (j < 0):

for2tst:blss exit2 ;go to exit2 if r4< 0 (j< 0)

Notice that there is no explicit comparison. The lack of comparison is a benefit of
condition codes, with the conditions being set as a side effect of the prior instruc-
tion. This branch skips over the second condition test.

The second test exits ifv[j]>v[j+1] is false, or exits ifv[j]�v[j+1].
First we load v and put j + 1 into registers:

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
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Register indirect addressing is used to get the operand pointed to by r5.
Once again the index addressing mode means we can use indices without con-

verting to the byte address, so the two instructions for v[j] � v[j + 1] are

cmpl (r3)[r4],(r3)[r2] ;v[r4] : v[r2] (v[j]:v[j + 1])
bleq exit2 ;go to exit2 if v[j] � v[j + 1]

The bottom of the loop jumps back to the full loop test:

brb for2tst # jump to test of inner loop

Combining the pieces, the second for loop looks like this:
subl3 r4,r6, #1 ;j = i – 1

for2tst: blss exit2 ;go to exit2 if r4 < 0 (j < 0)
movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
cmpl (r3)[r4],(r3)[r2];v[r4] : v[r2]
bleq exit2 ;go to exit2 if v[j] ð [j+1]

...
(body of second for loop) ...

decl r4 ;j = j – 1
brb for2tst ;jump to test of inner loop

exit2:

Notice that the instruction blss (at the top of the loop) is testing the condition
codes based on the new value of r4 (j), set either by the subl3 before entering
the loop or by the decl at the bottom of the loop.

The Procedure Call
The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

calls #2,swap

The constant 2 indicates the number of parameters pushed on the stack.

Passing Parameters
The C compiler passes variables on the stack, so we pass the parameters to swap
with these two instructions:

pushl (r5) ;first swap parameter is v
pushl r4 ;second swap parameter is j

Register indirect addressing is used to get the operand of the first instruction.

Preserving Registers across Procedure Invocation of sort

The only remaining code is the saving and restoring of registers using the callee
save convention. This procedure uses registers r2 through r7, so we add a mask
with those bits set:

K-64 ■ Appendix K Survey of Instruction Set Architectures



.word m̂<r2,r3,r4,r5,r6,r7>; set mask for registers 2-7

Since ret will undo all the operations, we just tack it on the end of the procedure.

The Full Procedure sort

Now we put all the pieces together in Figure K.56. To make the code easier to fol-
low, once again we identify each block of code with its purpose in the procedure
and list the MIPS and VAX code side by side. In this example, 11 lines of the sort
procedure in C become the 44 lines in the MIPS assembly language and 20 lines in
VAX assembly language. The biggest VAX advantages are in register saving and
restoring and indexed addressing.

Fallacies and Pitfalls

The ability to simplify means to eliminate the unnecessary so that the necessary
may speak.

Hans Hoffman
Search for the Real (1967)

Fallacy It is possible to design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hardware
and software technologies. Over time those technologies are likely to change, and
decisions that may have been correct at one time later look like mistakes. For exam-
ple, in 1975 the VAX designers overemphasized the importance of code size effi-
ciency and underestimated how important ease of decoding and pipelining would
be 10 years later. And, almost all architectures eventually succumb to the lack of
sufficient address space. Avoiding these problems in the long run, however, would
probably mean compromising the efficiency of the architecture in the short run.

Fallacy An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature—the branches are not PC-relative,
and the address is too small in displacement addressing. Yet, the machine has been
an enormous success because it correctly handled several new problems. First, the
architecture has a large amount of address space. Second, it is byte addressed and
handles bytes well. Third, it is a general-purpose register machine. Finally, it is sim-
ple enough to be efficiently implemented across a wide performance and cost range.

The Intel 8086 provides an evenmore dramatic example. The 8086 architecture
is the only widespread architecture in existence today that is not truly a general-
purpose register machine. Furthermore, the segmented address space of the
8086 causes major problems for both programmers and compiler writers. Never-
theless, the 8086 architecture—because of its selection as the microprocessor in the
IBM PC—has been enormously successful.
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MIPS versus VAX

Saving registers
sort: addi $29,$29, –36

sw $15, 0($29)
sw $16, 4($29)
sw $17, 8($29)
sw $18,12($29)
sw $19,16($29)
sw $20,20($29)
sw $24,24($29)
sw $25,28($29)
sw $31,32($29)

sort: .word ^m<r2,r3,r4,r5,r6,r7>

Procedure body
Move parameters move $18, $4

move $20, $5
moval r7,8(ap)
moval r5,4(ap)

Outer loop add $19, $0, $0
for1tst: slt $8, $19, $20

beq $8, $0, exit1

clrl r6
for1tst: cmpl r6,(r7)

bgeq exit1

$17, $19, –1addipoolrennI
for2tst: slti $8, $17, 0

bne $8, $0, exit2
muli $15, $17, 4
add $16, $18, $15
lw $24, 0($16)
lw $25, 4($16)
slt $8, $25, $24
beq $8, $0, exit2

for2tst:
subl3 r4,r6,#1

blss exit2
movl r3,(r5)

addl3 r2,r4,#1 
cmpl (r3)[r4],(r3)[r2]
bleq exit2

Pass parameters
and call

move $4, $18
move $5, $17
jal swap

pushl (r5)
pushl  r4
calls #2,swap

poolrennI

Outer loop exit2: addi $19, $19, 1

$17, $17, –1addi
j for2tst

decl r4
brb for2tst

j for1tst
exit2: incl r6

brb for1tst

Restoring registers
exit1: lw $15,0($29)

lw $16, 4($29)
lw $17, 8($29)
lw $18,12($29)
lw $19,16($29)
lw $20,20($29)
lw $24,24($29)
lw $25,28($29)
lw $31,32($29)
addi $29,$29, 36

Procedure return
retexit1:$31jr

Figure K.56 MIPS32 versus VAX assembly version of procedure sort in Figure K.55 on page K-33.



Fallacy The architecture that executes fewer instructions is faster.

Designers of VAX machines performed a quantitative comparison of VAX and
MIPS for implementations with comparable organizations, the VAX 8700 and
the MIPS M2000. Figure K.57 shows the ratio of the number of instructions exe-
cuted and the ratio of performance measured in clock cycles. MIPS executes about
twice as many instructions as the VAX while the MIPS M2000 has almost three
times the performance of the VAX 8700.

Concluding Remarks

The Virtual Address eXtension of the PDP-11 architecture … provides a virtual
address of about 4.3 gigabytes which, even given the rapid improvement of mem-
ory technology, should be adequate far into the future.

William Strecker

“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,”
AFIPS Proc., National Computer Conference (1978)

We have seen that instruction sets can vary quite dramatically, both in how they
access operands and in the operations that can be performed by a single instruction.
Figure K.58 compares instruction usage for both architectures for two programs;
even very different architectures behave similarly in their use of instruction classes.
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Figure K.57 Ratio of MIPS M2000 to VAX 8700 in instructions executed and perfor-
mance in clock cycles using SPEC89 programs. On average, MIPS executes a little over
twice as many instructions as the VAX, but the CPI for the VAX is almost six times the
MIPS CPI, yielding almost a threefold performance advantage. (Based on data from “Per-
formance from Architecture: Comparing a RISC and CISC with Similar Hardware Orga-
nization,” by D. Bhandarkar and D. Clark, in Proc. Symp. Architectural Support for
Programming Languages and Operating Systems IV, 1991.)
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A product of its time, the VAX emphasis on code density and complex oper-
ations and addressing modes conflicts with the current emphasis on easy decoding,
simple operations and addressing modes, and pipelined performance.

With more than 600,000 sold, the VAX architecture has had a very successful
run. In 1991, DEC made the transition from VAX to Alpha.

Orthogonality is key to the VAX architecture; the opcode is independent of the
addressing modes, which are independent of the data types and even the number of
unique operands. Thus, a few hundred operations expand to hundreds of thousands of
instructionswhenaccounting for thedata types, operandcounts, andaddressingmodes.

Exercises

K.1 [3] <K.4> The following VAX instruction decrements the location pointed to be
register r5:

decl (r5)
What is the single MIPS instruction, or if it cannot be represented in a single
instruction, the shortest sequence of MIPS instructions, that performs the same
operation? What are the lengths of the instructions on each machine?

K.2 [5]<K.4> This exercise is the same as Exercise K.1, except this VAX instruction
clears a location using autoincrement deferred addressing:

clrl @(r5)+

K.3 [5]<K.4> This exercise is the same as Exercise K.1, except this VAX instruction
adds 1 to register r5, placing the sum back in register r5, compares the sum to reg-
ister r6, and then branches to L1 if r5 < r6:

aoblss r6, r5, L1 # r5 = r5 + 1; if (r5 < r6) goto L1.

K.4 [5]<K.4> Show the single VAX instruction, or minimal sequence of instructions,
for this C statement:

a = b + 100;
Assume a corresponds to register r3 and b corresponds to register r4.

K.5 [10] <K.4> Show the single VAX instruction, or minimal sequence of instruc-
tions, for this C statement:

x[i + 1] = x[i] + c;
Assume c corresponds to register r3, i to register r4, and x is an array of 32-bit
words beginning at memory location 4,000,000ten.

Program Machine Branch
Arithmetic/

 logical
Data 

transfer
Floating

point Totals

gcc VAX 30% 40% 19% 89%
MIPS 24% 35% 27% 86%

spice VAX 18% 23% 15% 23% 79%
MIPS 04% 29% 35% 15% 83%

Figure K.58 The frequency of instruction distribution for two programs on VAX
and MIPS.
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K.5 The IBM 360/370 Architecture for Mainframe Computers

Introduction

The term “computer architecture” was coined by IBM in 1964 for use with the IBM
360. Amdahl, Blaauw, and Brooks [1964] used the term to refer to the programmer-
visible portion of the instruction set. They believed that a family of machines of the
same architecture should be able to run the same software. Although this idea may
seem obvious to us today, it was quite novel at the time. IBM, even though it was the
leading company in the industry, had five different architectures before the 360.Thus,
the notion of a company standardizing on a single architecture was a radical one. The
360 designers hoped that six different divisions of IBM could be brought together by
defining a common architecture. Their definition of architecture was

… the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

The term “machine language programmer” meant that compatibility would
hold, even in assembly language, while “timing independent” allowed different
implementations.

The IBM 360 was introduced in 1964 with six models and a 25:1 performance
ratio. Amdahl, Blaauw, and Brooks [1964] discussed the architecture of the IBM
360 and the concept of permitting multiple object-code-compatible implementa-
tions. The notion of an instruction set architecture as we understand it today
was the most important aspect of the 360. The architecture also introduced several
important innovations, now in wide use:

1. 32-bit architecture

2. Byte-addressable memory with 8-bit bytes

3. 8-, 16-, 32-, and 64-bit data sizes

4. 32-bit single-precision and 64-bit double-precision floating-point data

In 1971, IBMshipped the first System/370 (models 155 and 165),which included
a number of significant extensions of the 360, as discussed by Case and Padegs
[1978], who also discussed the early history of System/360. Themost important addi-
tion was virtual memory, though virtual memory 370 s did not ship until 1972, when
a virtual memory operating systemwas ready. By 1978, the high-end 370was several
hundred times faster than the low-end 360 s shipped 10 years earlier. In 1984, the 24-
bit addressingmodel built into the IBM360 needed to be abandoned, and the 370-XA
(eXtended Architecture) was introduced. While old 24-bit programs could be sup-
ported without change, several instructions could not function in the same manner
when extended to a 32-bit addressing model (31-bit addresses supported) because
they would not produce 31-bit addresses. Converting the operating system, which
was written mostly in assembly language, was no doubt the biggest task.

Several studies of the IBM 360 and instruction measurement have been made.
Shustek’s thesis [1978] is the best known and most complete study of the 360/370
architecture. He made several observations about instruction set complexity that
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were not fully appreciated until some years later. Another important study of the
360 is the Toronto study by Alexander and Wortman [1975] done on an IBM 360
using 19 XPL programs.

System/360 Instruction Set

The 360 instruction set is shown in the following tables, organized by instruction
type and format. System/370 contains 15 additional user instructions.

Integer/Logical and Floating-Point R-R Instructions

The * indicates the instruction is floating point, and may be either D (double pre-
cision) or E (single precision).

noitpircseDnoitcurtsnI

retsigerlacigolddAALR

retsigerddAAR

noitiddaPFA*R

retsigerlacigolerapmoCCLR

retsigererapmoCCR

erapmocPFC*R

retsigerediviDDR

edividPFD*R

evlahPFH*R

retsigertnemelpmocdaoLLCR

tnemelpmocdaoLLC*R

retsigerevitagendaoLLNR

evitagendaoLLN*R

retsigerevitisopdaoLLPR

evitisopdaoLLP*R

retsigerdaoLLR

retsigerPFdaoLL*R

retsigertsetdnadaoLLTR

retsigerPFtsetdnadaoLLT*R

retsigerylpitluMMR

ylpitlumPFM*R

retsigerdnANR

retsigerrOOR

ltcartbuSSLR ogical register
retsigertcartbuSSR

noitcartbusPFS*R

retsigerroevisulcxEXR
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Branches and Status Setting R-R Instructions

These are R-R format instructions that either branch or set some system status; sev-
eral of them are privileged and legal only in supervisor mode.

noitpircseDnoitcurtsnI

BALR Branch and link
BCTR Branch on count
BCR Branch/condition
ISK Insert key
SPM Set program mask
SSK Set storage key
SVC Supervisor call

Branches/Logical and Floating-Point Instructions—RX Format

These are all RX format instructions. The symbol “+” means either a word oper-
ation (and then stands for nothing) or H (meaning half word); for example, A+
stands for the two opcodes A and AH. The “*” represents D or E, standing for
double- or single-precision floating point.

noitpircseDnoitcurtsnI

A+ Add
A* FP add
AL Add logical
C+ Compare
C* FP compare
CL Compare logical

ediviDD

D* FP divide
L+ Load
L* Load FP register
M+ Multiply
M* FP multiply

dnAN

rOO

S+ Subtract
S* FP subtract
SL Subtract logical
ST+ Store
ST* Store FP register

roevisulcxEX
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Branches and Special Loads and Stores—RX Format

noitpircseDnoitcurtsnI

knil dna hcnarBBAL

noitidnoc hcnarBBC

tnuoc no hcnarBBCT

yranib-trevnoCCVB

lamiced-trevnoCCVD

etucexEEX

retcarahc tresnIIC

sserdda daoLLA

retcarahc erotSSTC

RS and SI Format Instructions

These are the RS and SI format instructions. The symbol “*” may be A (arith-
metic) or L (logical).

noitpircseDnoitcurtsnI

hgih/hcnarBBXH

lauqe-wol/hcnarBBXLE

igol erapmoCCLI cal immediate
O/I tlaHHIO

WSP daoLLPSW

elpitlum daoLLM

etaidemmi evoMMVI

etaidemmi dnANI

etaidemmi rOOI

tcerid daeRRDD

O/I tratSSIO

L/A tfel tfihSSL*

L/A elbuod tfel tfihSSLD*

L/A thgir tfihSSR*

L/A elbuod thgir tfihSSRD*

ksam metsys teSSSM

elpitlum erotSSTM

lennahc tseTTCH

O/I tseTTIO

ksam rednu tseTTM

tes-dna-tseTTS

tcerid etirWWRD

etaidemmi ro evisulcxEXI
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SS Format Instructions

These are add decimal or string instructions.

noitpircseDnoitcurtsnI

dekcapddAAP

srahclacigolerapmoCCLC

dekcaperapmoCCP

dekcapediviDDP

tidEED

kramdnatidEEDMK

dekcapylpitluMMP

retcarahcevoMMVC

ciremunevoMMVN

tesffohtiwevoMMVO

enozevoMMVZ

sretcarahcdnANC

sretcarahcrOOC

r → decimal)etcarahC(kcaPPACK

dekcaptcartbuSSP

etalsnarTTR

tsetdnaetalsnarTTRT

kcapnUUNPK

sretcarahcroevisulcxEXC

dekcapddadnaoreZZAP

360 Detailed Measurements

Figure K.59 shows the frequency of instruction usage for four IBM 360 programs.
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Instruction PLIC FORTGO PLIGO COBOLGO Average

%61%61%5%31%23lortnoC
%51%41%5%31%82BC, BCR

%1%2%3BAL, BALR

%01%12%71%3A, AR

%3%7%3SR

%2%3%6SLL

%2%1%1%8LA

%2%7CLI

NI 7% 2%
%3%0%4%4%5C

%2%3%1%3TM

%1%2MH

Arithmetic/logical 29% 35% 29% 9% 26%

%33%02%65%04%71refsnartataD
%91%91%82%32%7L, LR

%5%1%61%2MVI

%3%7%3ST

%2%2%7LD

%2%2%7STD

%1%3LPDR

%1%3LH

%1%2IC

%0%1LTR

%2%7tniopgnitaolF
%1%3AD

%1%3MDR

%11%04%4gnirts,lamiceD
%3%7%4MVC

AP 11% 3%
ZAP 9% 2%
CVD 5% 1%
MP 3% 1%
CLC 3% 1%
CP 2% 1%
ED 1% 0%

%88%58%09%59%28latoT

Figure K.59 Distribution of instruction execution frequencies for the four 360 programs. All instructions with a fre-
quency of execution greater than 1.5% are included. Immediate instructions, which operate on only a single byte, are
included in the section that characterized their operation, rather than with the long character-string versions of the
same operation. By comparison, the average frequencies for the major instruction classes of the VAX are 23% (con-
trol), 28% (arithmetic), 29% (data transfer), 7% (floating point), and 9% (decimal). Once again, a 1% entry in the aver-
age column can occur because of entries in the constituent columns. These programs are a compiler for the
programming language PL-I and runtime systems for the programming languages FORTRAN, PL/I, and Cobol.



K.6 Historical Perspective and References

Section L.4 (available online) features a discussion on the evolution of instruction
sets and includes references for further reading and exploration of related topics.
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M
Historical Perspectives and
References

If … history … teaches us anything, it is that man in his quest for
knowledge and progress is determined and cannot be deterred.

John F. Kennedy
Address at Rice University (1962)

Those who cannot remember the past are condemned to repeat it.
George Santayana

The Life of Reason (1905), Vol. 2, Chapter 3



M.1 Introduction

This appendix provides historical background on some of the key ideas presented
in the chapters. We may trace the development of an idea through a series of
machines or describe significant projects. If you are interested in examining the
initial development of an idea or machine or are interested in further reading,
references are provided at the end of each section.

SectionM.2 starts us off with the invention of the digital computer and corre-
sponds to Chapter 1. Section M.3, on memory hierarchy, corresponds to Chapter 2
and Appendix B. Section M.4, on instruction set architecture, covers Appendices
A, J, and K. Section M.5, on pipelining and instruction-level parallelism, corre-
sponds to Chapter 3 and Appendices C and H. Section M.6, on data-level paral-
lelism in vector, SIMD, and GPU architectures, corresponds to Chapter 4.
Section M.7, on multiprocessors and parallel programming, covers Chapter 5
and Appendices F, G, and I. Section M.8, on the development of clusters, covers
Chapter 6. Finally, Section M.9, on I/O, corresponds to Appendix D.

M.2 The Early Development of Computers (Chapter 1)

In this historical section, we discuss the early development of digital computers
and the development of performance measurement methodologies.

The First General-Purpose Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built the world’s first fully operational electronic general-purpose
computer. This machine, called ENIAC (Electronic Numerical Integrator and
Calculator), was funded by the U.S. Army and became operational during World
War II, but it was not publicly disclosed until 1946. ENIAC was used for comput-
ing artillery firing tables. The machine was enormous—100 feet long, 8½ feet
high, and several feet wide. Each of the 20 ten-digit registers was 2 feet long.
In total, there were 18,000 vacuum tubes.

Although the size was three orders of magnitude bigger than the size of the
average machines built today, it was more than five orders of magnitude slower,
with an add taking 200 microseconds. The ENIAC provided conditional jumps
and was programmable, which clearly distinguished it from earlier calculators.
Programming was done manually by plugging up cables and setting switches
and required from a half hour to a whole day. Data were provided on punched
cards. The ENIAC was limited primarily by a small amount of storage and tedious
programming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing programs
as numbers; von Neumann helped crystallize the ideas and wrote a memo propos-
ing a stored-program computer called EDVAC (Electronic Discrete Variable
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Automatic Computer). Herman Goldstine distributed the memo and put von Neu-
mann’s name on it, much to the dismay of Eckert and Mauchly, whose names were
omitted. This memo has served as the basis for the commonly used term von
Neumann computer. Several early inventors in the computer field believe that this
term gives too much credit to von Neumann, who conceptualized and wrote up the
ideas, and too little to the engineers, Eckert and Mauchly, who worked on the
machines. Like most historians, your authors (winners of the 2000 IEEE von
Neumann Medal) believe that all three individuals played a key role in developing
the stored-program computer. Von Neumann’s role in writing up the ideas, in gen-
eralizing them, and in thinking about the programming aspects was critical in trans-
ferring the ideas to a wider audience.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic com-
puters. When he returned to Cambridge, Wilkes decided to embark on a project
to build a stored-program computer named EDSAC (Electronic Delay Storage
Automatic Calculator). (The EDSAC used mercury delay lines for its memory;
hence, the phrase “delay storage” in its name.) The EDSAC became operational
in 1949 and was the world’s first full-scale, operational, stored-program computer
[Wilkes, Wheeler, and Gill 1951; Wilkes 1985, 1995]. (A small prototype called
the Mark I, which was built at the University of Manchester and ran in 1948, might
be called the first operational stored-program machine.) The EDSAC was an
accumulator-based architecture. This style of instruction set architecture remained
popular until the early 1970s. (Appendix A starts with a brief summary of the
EDSAC instruction set.)

In 1947, Mauchly took the time to help found the Association for Computing
Machinery. He served as the ACM’s first vice-president and second president.
That same year, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding that the patent be turned over to the
university, may have helped Eckert and Mauchly conclude that they should leave.
Their departure crippled the EDVAC project, which did not become operational
until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study at
Princeton in 1946. Together with Arthur Burks, they issued a report based on the
1944 memo [Burks, Goldstine, and von Neumann 1946]. The paper led to the
IAS machine built by Julian Bigelow at Princeton’s Institute for Advanced Study.
It had a total of 1024 40-bit words andwas roughly 10 times faster than ENIAC. The
group thought about uses for themachine, published a set of reports, and encouraged
visitors. These reports and visitors inspired the development of a number of new
computers, including the first IBM computer, the 701, which was based on the
IAS machine. The paper by Burks, Goldstine, and von Neumann was incredible
for the period. Reading it today, you would never guess this landmark paper was
writtenmore than 50 years ago, asmost of the architectural concepts seen inmodern
computers are discussed there (e.g., see the quote at the beginning of Chapter 2).

In the same time period as ENIAC, Howard Aiken was designing an electro-
mechanical computer called the Mark-I at Harvard. TheMark-I was built by a team
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of engineers from IBM. He followed the Mark-I with a relay machine, the Mark-II,
and a pair of vacuum tube machines, the Mark-III and Mark-IV. The Mark-III
and Mark-IV were built after the first stored-program machines. Because they
had separate memories for instructions and data, the machines were regarded as
reactionary by the advocates of stored-program computers. The term Harvard
architecture was coined to describe this type of machine. Though clearly different
from the original sense, this term is used today to apply to machines with a single
main memory but with separate instruction and data caches.

The Whirlwind project [Redmond and Smith 1980] began at MIT in 1947 and
was aimed at applications in real-time radar signal processing. Although it led to
several inventions, its overwhelming innovation was the creation of magnetic core
memory, the first reliable and inexpensive memory technology. Whirlwind had
2048 16-bit words of magnetic core. Magnetic cores served as the main memory
technology for nearly 30 years.

Important Special-Purpose Machines

DuringWorldWar II, major computing efforts in both Great Britain and the United
States focused on special-purpose code-breaking computers. The work in Great
Britainwas aimed at decryptingmessages encodedwith theGermanEnigma coding
machine. This work, which occurred at a location called Bletchley Park, led to two
important machines. The first, an electromechanical machine, conceived of byAlan
Turing, was called BOMB [see Good in Metropolis, Howlett, and Rota 1980]. The
second, much larger and electronic machine, conceived and designed by Newman
and Flowers, was calledCOLOSSUS [seeRandall inMetropolis, Howlett, andRota
1980]. These were highly specialized cryptanalysis machines, which played a vital
role in the war by providing the ability to read coded messages, especially those
sent to U-boats. The work at Bletchley Park was highly classified (indeed, some
of it is still classified), so its direct impact on the development of ENIAC, EDSAC,
and other computers is difficult to trace, but it certainly had an indirect effect in
advancing the technology and gaining understanding of the issues.

Similar work on special-purpose computers for cryptanalysis went on in the
United States. The most direct descendent of this effort was the company Engineer-
ing Research Associates (ERA) [see Thomash in Metropolis, Howlett, and Rota
1980], which was founded after the war to attempt to commercialize on the key
ideas. ERA built several machines that were sold to secret government agencies,
and it was eventually purchased by Sperry-Rand, which had earlier purchased the
Eckert Mauchly Computer Corporation.

Another early set of machines that deserves credit was a group of special-
purpose machines built by Konrad Zuse in Germany in the late 1930s and early
1940s [see Bauer and Zuse in Metropolis, Howlett, and Rota 1980]. In addition
to producing an operating machine, Zuse was the first to implement floating point,
which von Neumann claimed was unnecessary! His early machines used a
mechanical store that was smaller than other electromechanical solutions of the
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time. His last machine was electromechanical but, because of the war, was never
completed.

An important early contributor to the development of electronic computers was
JohnAtanasoff, who built a small-scale electronic computer in the early 1940s [Ata-
nasoff 1940].Hismachine, designed at IowaStateUniversity,was a special-purpose
computer (called the ABC, for Atanasoff Berry Computer) that was never
completely operational. Mauchly briefly visited Atanasoff before he built ENIAC,
and several of Atanasoff’s ideas (e.g., using binary representation) likely influenced
Mauchly. The presence of the Atanasoff machine, delays in filing the ENIAC pat-
ents (the work was classified, and patents could not be filed until after the war), and
the distribution of von Neumann’s EDVAC paper were used to break the Eckert–
Mauchly patent [Larson 1973]. Though controversy still rages over Atanasoff’s
role, Eckert and Mauchly are usually given credit for building the first working,
general-purpose, electronic computer [Stern 1980]. Atanasoff, however, demon-
strated several important innovations included in later computers. Atanasoff
deservesmuch credit for hiswork, and hemight fairly be given credit for theworld’s
first special-purpose electronic computer and for possibly influencing Eckert and
Mauchly.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer
Corporation. Their first machine, the BINAC, was built for Northrop and was
shown in August 1949. After some financial difficulties, the Eckert-Mauchly Com-
puter Corporation was acquired by Remington-Rand, later called Sperry-Rand.
Sperry-Rand merged the Eckert-Mauchly acquisition, ERA, and its tabulating
business to form a dedicated computer division, called UNIVAC. UNIVAC deliv-
ered its first computer, the UNIVAC I, in June 1951. The UNIVAC I sold for
$250,000 and was the first successful commercial computer—48 systems were
built! Today, this early machine, along with many other fascinating pieces of com-
puter lore, can be seen at the Computer History Museum in Mountain View,
California. Other places where early computing systems can be visited include
the Deutsches Museum in Munich and the Smithsonian Institution in Washington,
D.C., as well as numerous online virtual museums.

IBM, which earlier had been in the punched card and office automation busi-
ness, didn’t start building computers until 1950. The first IBM computer, the IBM
701 based on von Neumann’s IAS machine, shipped in 1952 and eventually sold
19 units [see Hurd in Metropolis, Howlett, and Rota 1980]. In the early 1950s,
many people were pessimistic about the future of computers, believing that the
market and opportunities for these “highly specialized” machines were quite lim-
ited. Nonetheless, IBM quickly became the most successful computer company.
Their focus on reliability and customer- and market-driven strategies were key.
Although the 701 and 702 were modest successes, IBM’s follow-up machines,
the 650, 704, and 705 (delivered in 1954 and 1955) were significant successes,
each selling from 132 to 1800 computers.
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Several books describing the early days of computing have been written by the
pioneers [Goldstine 1972;Wilkes 1985, 1995], as well as Metropolis, Howlett, and
Rota [1980], which is a collection of recollections by early pioneers. There are
numerous independent histories, often built around the people involved [Slater
1987], as well as a journal, Annals of the History of Computing, devoted to the
history of computing.

Development of Quantitative Performance Measures:
Successes and Failures

In the earliest days of computing, designers set performance goals—ENIACwas to
be 1000 times faster than the Harvard Mark-I, and the IBM Stretch (7030) was to
be 100 times faster than the fastest machine in existence. What wasn’t clear,
though, was how this performance was to be measured. In looking back over
the years, it is a consistent theme that each generation of computers obsoletes
the performance evaluation techniques of the prior generation.

The original measure of performance was time to perform an individual oper-
ation, such as addition. Since most instructions took the same execution time, the
timing of one gave insight into the others. As the execution times of instructions in
a machine becamemore diverse, however, the time for one operation was no longer
useful for comparisons. To take these differences into account, an instruction mix
was calculated by measuring the relative frequency of instructions in a computer
across many programs. The Gibson mix [Gibson 1970] was an early popular
instruction mix. Multiplying the time for each instruction times its weight in the
mix gave the user the average instruction execution time. (If measured in clock
cycles, average instruction execution time is the same as average cycles per instruc-
tion.) Since instruction sets were similar, this was a more accurate comparison than
add times. From average instruction execution time, then, it was only a small step
to MIPS (as we have seen, the one is the inverse of the other). MIPS had the virtue
of being easy for the layperson to understand.

As CPUs became more sophisticated and relied on memory hierarchies and
pipelining, there was no longer a single execution time per instruction; MIPS could
not be calculated from the mix and the manual. The next step was benchmarking
using kernels and synthetic programs. Curnow and Wichmann [1976] created the
Whetstone synthetic program by measuring scientific programs written in Algol
60. This program was converted to FORTRAN and was widely used to character-
ize scientific program performance. An effort with similar goals to Whetstone, the
Livermore FORTRAN Kernels, was made by McMahon [1986] and researchers at
Lawrence Livermore Laboratory in an attempt to establish a benchmark for super-
computers. These kernels, however, consisted of loops from real programs.

As it became clear that using MIPS to compare architectures with different
instruction sets would not work, a notion of relative MIPS was created. When
the VAX-11/780 was ready for announcement in 1977, DEC ran small benchmarks
that were also run on an IBM 370/158. IBMmarketing referred to the 370/158 as a
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1 MIPS computer, and, because the programs ran at the same speed, DEC market-
ing called the VAX-11/780 a 1 MIPS computer. Relative MIPS for a machine M
was defined based on some reference machine as:

MIPSM ¼ PerformanceM
Performancereference

�MIPSreference

The popularity of the VAX-11/780made it a popular reference machine for relative
MIPS, especially since relative MIPS for a 1MIPS computer is easy to calculate: If
a machine was five times faster than the VAX-11/780, for that benchmark its rating
would be 5 relative MIPS. The 1 MIPS rating was unquestioned for 4 years, until
Joel Emer of DECmeasured the VAX-11/780 under a time-sharing load. He found
that the VAX-11/780 native MIPS rating was 0.5. Subsequent VAXes that ran 3
nativeMIPS for some benchmarks were therefore called 6MIPSmachines because
they ran six times faster than the VAX-11/780. By the early 1980s, the termMIPS
was almost universally used to mean relative MIPS.

The 1970s and 1980s marked the growth of the supercomputer industry, which
was defined by high performance on floating-point-intensive programs. Average
instruction time and MIPS were clearly inappropriate metrics for this industry,
hence the invention of MFLOPS (millions of floating-point operations per
second), which effectively measured the inverse of execution time for a bench-
mark. Unfortunately, customers quickly forget the program used for the rating,
andmarketing groups decided to start quoting peakMFLOPS in the supercomputer
performance wars.

SPEC (System Performance and Evaluation Cooperative) was founded in the
late 1980s to try to improve the state of benchmarking and make a more valid basis
for comparison. The group initially focused on workstations and servers in the
UNIXmarketplace, and these remain the primary focus of these benchmarks today.
The first release of SPEC benchmarks, now called SPEC89, was a substantial
improvement in the use of more realistic benchmarks. SPEC2006 still dominates
processor benchmarks almost two decades later.
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M.3 The Development of Memory Hierarchy and Protection
(Chapter 2 and Appendix B)

Although the pioneers of computing knew of the need for a memory hierarchy and
coined the term, the automatic management of two levels was first proposed
by Kilburn et al. [1962]. It was demonstrated with the Atlas computer at the
University of Manchester. This computer appeared the year before the IBM 360
was announced. Although IBM planned for its introduction with the next genera-
tion (System/370), the operating system TSS was not up to the challenge in 1970.
Virtual memory was announced for the 370 family in 1972, and it was for this com-
puter that the term translation lookaside buffer was coined [Case and Padegs
1978]. The only computers today without virtual memory are a few supercom-
puters, embedded processors, and older personal computers.

Both the Atlas and the IBM 360 provided protection on pages, and the GE
645 was the first system to provide paged segmentation. The earlier Burroughs
computers provided virtual memory using segmentation, similar to the seg-
mented address scheme of the Intel 8086. The 80286, the first 80x86 to have
the protection mechanisms described in Appendix C, was inspired by the
Multics protection software that ran on the GE 645. Over time, computers
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evolved more elaborate mechanisms. The most elaborate mechanism was capa-
bilities, which attracted the greatest interest in the late 1970s and early 1980s
[Fabry 1974; Wulf, Levin, and Harbison 1981]. Wilkes [1982], one of the early
workers on capabilities, had this to say:

Anyone who has been concerned with an implementation of the type just
described [capability system], or has tried to explain one to others, is likely to feel
that complexity has got out of hand. It is particularly disappointing that the
attractive idea of capabilities being tickets that can be freely handed around
has become lost ….
Compared with a conventional computer system, there will inevitably be a cost

to be met in providing a system in which the domains of protection are small and
frequently changed. This cost will manifest itself in terms of additional hardware,
decreased runtime speed, and increased memory occupancy. It is at present an
open question whether, by adoption of the capability approach, the cost can
be reduced to reasonable proportions. [p. 112]

Today there is little interest in capabilities either from the operating systems or the
computer architecture communities, despite growing interest in protection and
security.

Bell and Strecker [1976] reflected on the PDP-11 and identified a small address
space as the only architectural mistake that is difficult to recover from. At the time
of the creation of PDP-11, core memories were increasing at a very slow rate. In
addition, competition from 100 other minicomputer companies meant that DEC
might not have a cost-competitive product if every address had to go through
the 16-bit data path twice, hence the architect’s decision to add only 4 more address
bits than found in the predecessor of the PDP-11.

The architects of the IBM 360 were aware of the importance of address size and
planned for the architecture to extend to 32 bits of address. Only 24 bits were used
in the IBM 360, however, because the low-end 360 models would have been even
slower with the larger addresses in 1964. Unfortunately, the architects didn’t reveal
their plans to the software people, and programmers who stored extra information
in the upper 8 “unused” address bits foiled the expansion effort. (Apple made a
similar mistake 20 years later with the 24-bit address in the Motorola 68000, which
required a procedure to later determine “32-bit clean” programs for the Macintosh
when later 68000s used the full 32-bit virtual address.) Virtually every computer
since then will check to make sure the unused bits stay unused and trap if the bits
have the wrong value.

As mentioned in the text, system virtual machines were pioneered at IBM as
part of its investigation into virtual memory. IBM’s first computer with virtual
memory was the IBM 360/67, introduced in 1967. IBM researchers wrote the
program CP-67 that created the illusion of several independent 360 computers.
They then wrote an interactive, single-user operating system called CMS that
ran on these virtual machines. CP-67 led to the product VM/370, and today
IBM sells z/VM for its mainframe computers [Meyer and Seawright 1970;
Van Vleck 2005].
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A few years after the Atlas paper, Wilkes published the first paper describing
the concept of a cache [1965]:

The use is discussed of a fast core memory of, say, 32,000 words as slave to a
slower core memory of, say, one million words in such a way that in practical cases
the effective access time is nearer that of the fast memory than that of the slow
memory. [p. 270]

This two-page paper describes a direct-mapped cache. Although this is the first
publication on caches, the first implementation was probably a direct-mapped
instruction cache built at the University of Cambridge. It was based on tunnel diode
memory, the fastest form of memory available at the time. Wilkes stated that G.
Scarott suggested the idea of a cache memory.

Subsequent to that publication, IBM started a project that led to the first com-
mercial computer with a cache, the IBM 360/85 [Liptay 1968]. Gibson [1967]
described how to measure program behavior as memory traffic as well as miss rate
and showed how the miss rate varies between programs. Using a sample of 20 pro-
grams (each with 3 million references!), Gibson also relied on average memory
access time to compare systems with and without caches. This precedent is more
than 40 years old, and yet many used miss rates until the early 1990s.

Conti, Gibson, and Pitkowsky [1968] described the resulting performance of
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 programs
in the paper, even though the 360/85 has a slower clock cycle time (80 ns versus
60 ns), less memory interleaving (4 versus 16), and a slower main memory (1.04
microsecond versus 0.75microsecond). This paper was also the first to use the term
cache.

Others soon expanded the cache literature. Strecker [1976] published the first
comparative cache design paper examining caches for the PDP-11. Smith [1982]
later published a thorough survey paper that used the terms spatial locality and
temporal locality; this paper has served as a reference for many computer
designers.

Although most studies relied on simulations, Clark [1983] used a hardware
monitor to record cache misses of the VAX-11/780 over several days. Clark
and Emer [1985] later compared simulations and hardware measurements for
translations.

Hill [1987] proposed the three C’s used in Appendix B to explain cache
misses. Jouppi [1998] retrospectively said that Hill’s three C’s model led directly
to his invention of the victim cache to take advantage of faster direct-mapped
caches and yet avoid most of the cost of conflict misses. Sugumar and Abraham
[1993] argued that the baseline cache for the three C’s model should use
optimal replacement; this would eliminate the anomalies of least recently used
(LRU)-based miss classification and allow conflict misses to be broken down into
those caused by mapping and those caused by a nonoptimal replacement
algorithm.

One of the first papers on nonblocking caches was by Kroft [1981]. Kroft
[1998] later explained that he was the first to design a computer with a cache at
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Control Data Corporation, and when using old concepts for newmechanisms he hit
upon the idea of allowing his two-ported cache to continue to service other
accesses on a miss.

Baer andWang [1988] did one of the first examinations of the multilevel inclu-
sion property. Wang, Baer, and Levy [1989] then produced an early paper on per-
formance evaluation of multilevel caches. Later, Jouppi and Wilton [1994]
proposed multilevel exclusion for multilevel caches on chip.

In addition to victim caches, Jouppi [1990] also examined prefetching via
streaming buffers. His work was extended by Farkas, Jouppi, and Chow [1995]
to streaming buffers that work well with nonblocking loads and speculative exe-
cution for in-order processors, and later Farkas et al. [1997] showed that, while out-
of-order processors can tolerate unpredictable latency better, they still benefit.
They also refined memory bandwidth demands of stream buffers.

Proceedings of the Symposium on Architectural Support for Compilers and
Operating Systems (ASPLOS) and the International Computer Architecture Sym-
posium (ISCA) from the 1990s are filled with papers on caches. (In fact, some
wags claimed ISCA really stood for the International Cache Architecture
Symposium.)

Chapter 2 relies on the measurements of SPEC2000 benchmarks collected by
Cantin and Hill [2001]. There are several other papers used in Chapter 2 that
are cited in the captions of the figures that use the data: Agarwal and Pudar
[1993]; Barroso, Gharachorloo, and Bugnion [1998]; Farkas and Jouppi [1994];
Jouppi [1990]; Lam, Rothberg, and Wolf [1991]; Lebeck and Wood [1994];
McCalpin [2005]; Mowry, Lam, and Gupta [1992]; and Torrellas, Gupta, and
Hennessy [1992].
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M.4 The Evolution of Instruction Sets (Appendices A, J, and K)

One’s eyebrows should rise whenever a future architecture is developed with a
stack- or register-oriented instruction set.

Meyers [1978, p. 20]

The earliest computers, including the UNIVAC I, the EDSAC, and the IAS
computers, were accumulator-based computers. The simplicity of this type of
computer made it the natural choice when hardware resources were very con-
strained. The first general-purpose register computer was the Pegasus, built by
Ferranti, Ltd., in 1956. The Pegasus had eight general-purpose registers, with
R0 always being zero. Block transfers loaded the eight registers from the drum
memory.

Stack Architectures

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the first com-
puter to seriously consider software and hardware-software trade-offs. Barton
and the designers at Burroughs made the B5000 a stack architecture (as described
in Barton [1961]). Designed to support high-level languages such as ALGOL, this
stack architecture used an operating system (MCP) written in a high-level lan-
guage. The B5000 was also the first computer from a U.S. manufacturer to support
virtual memory. The B6500, introduced in 1968 (and discussed in Hauck and Dent
[1968]), added hardware-managed activation records. In both the B5000 and
B6500, the top two elements of the stack were kept in the processor and the rest
of the stack was kept in memory. The stack architecture yielded good code density,
but only provided two high-speed storage locations. The authors of both the orig-
inal IBM 360 paper [Amdahl, Blaauw, and Brooks 1964] and the original PDP-11
paper [Bell et al. 1970] argued against the stack organization. They cited three
major points in their arguments against stacks:
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■ Performance is derived from fast registers, not the way they are used.

■ The stack organization is too limiting and requires many swap and copy
operations.

■ The stack has a bottom, and when placed in slower memory there is a
performance loss.

Stack-based hardware fell out of favor in the late 1970s and, except for the Intel
80x86 floating-point architecture, essentially disappeared; for example, except for
the 80x86, none of the computers listed in the SPEC report uses a stack.

In the 1990s, however, stack architectures received a shot in the arm with the
success of the Java Virtual Machine (JVM). The JVM is a software interpreter for
an intermediate language produced by Java compilers, called Java bytecodes
[Lindholm and Yellin 1999]. The purpose of the interpreter is to provide software
compatibility across many platforms, with the hope of “write once, run every-
where.” Although the slowdown is about a factor of 10 due to interpretation, there
are times when compatibility is more important than performance, such as when
downloading a Java “applet” into an Internet browser.

Although a few have proposed hardware to directly execute the JVM instruc-
tions (see McGhan and O’Connor [1998]), thus far none of these proposals has
been significant commercially. The hope instead is that just-in-time (JIT) Java
compilers—which compile during runtime to the native instruction set of the
computer running the Java program—will overcome the performance penalty
of interpretation. The popularity of Java has also led to compilers that compile
directly into the native hardware instruction sets, bypassing the illusion of the
Java bytecodes.

Computer Architecture Defined

IBM coined the term computer architecture in the early 1960s. Amdahl, Blaauw,
and Brooks [1964] used the term to refer to the programmer-visible portion of the
IBM 360 instruction set. They believed that a family of computers of the same
architecture should be able to run the same software. Although this idea may seem
obvious to us today, it was quite novel at that time. IBM, although it was the lead-
ing company in the industry, had five different architectures before the 360; thus,
the notion of a company standardizing on a single architecture was a radical one.
The 360 designers hoped that defining a common architecture would bring six
different divisions of IBM together. Their definition of architecture was

… the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

The termmachine language programmermeant that compatibility would hold,
even in machine language, while timing independent allowed different implemen-
tations. This architecture blazed the path for binary compatibility, which others
have followed.
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The IBM 360 was the first computer to sell in large quantities with both byte
addressing using 8-bit bytes and general-purpose registers. The 360 also had
register-memory and limited memory-memory instructions. Appendix K summa-
rizes this instruction set.

In 1964, Control Data delivered the first supercomputer, the CDC 6600. As
Thornton [1964] discussed, he, Cray, and the other 6600 designers were among
the first to explore pipelining in depth. The 6600 was the first general-purpose,
load-store computer. In the 1960s, the designers of the 6600 realized the need
to simplify architecture for the sake of efficient pipelining. Microprocessor and
minicomputer designers largely neglected this interaction between architectural
simplicity and implementation during the 1970s, but it returned in the 1980s.

High-Level Language Computer Architecture

In the late 1960s and early 1970s, people realized that software costs were growing
faster than hardware costs. McKeeman [1967] argued that compilers and operating
systems were getting too big and too complex and taking too long to develop.
Because of inferior compilers and the memory limitations of computers, most
systems programs at the time were still written in assembly language. Many
researchers proposed alleviating the software crisis by creating more powerful,
software-oriented architectures. Tanenbaum [1978] studied the properties of
high-level languages. Like other researchers, he found that most programs are sim-
ple. He argued that architectures should be designed with this in mind and that they
should optimize for program size and ease of compilation. Tanenbaum proposed a
stack computer with frequency-encoded instruction formats to accomplish these
goals; however, as we have observed, program size does not translate directly
to cost-performance, and stack computers faded out shortly after this work.

Strecker’s article [1978] discusses how he and the other architects at DEC
responded to this by designing the VAX architecture. The VAX was designed
to simplify compilation of high-level languages. Compiler writers had complained
about the lack of complete orthogonality in the PDP-11. The VAX architecture
was designed to be highly orthogonal and to allow the mapping of a high-level
language statement into a single VAX instruction. Additionally, the VAX
designers tried to optimize code size because compiled programs were often too
large for available memories. Appendix K summarizes this instruction set.

The VAX-11/780 was the first computer announced in the VAX series. It is
one of the most successful—and most heavily studied—computers ever built.
The cornerstone of DEC’s strategy was a single architecture, VAX, running a sin-
gle operating system, VMS. This strategy worked well for over 10 years. The large
number of papers reporting instruction mixes, implementation measurements, and
analysis of the VAX makes it an ideal case study [Clark and Levy 1982; Wiecek
1982]. Bhandarkar and Clark [1991] gave a quantitative analysis of the disadvan-
tages of the VAX versus a RISC computer, essentially a technical explanation for
the demise of the VAX.
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While the VAXwas being designed, a more radical approach, called high-level
language computer architecture (HLLCA), was being advocated in the research
community. This movement aimed to eliminate the gap between high-level lan-
guages and computer hardware—what Gagliardi [1973] called the “semantic
gap”—by bringing the hardware “up to” the level of the programming language.
Meyers [1982] provided a good summary of the arguments and a history of high-
level language computer architecture projects. HLLCA never had a significant
commercial impact. The increase in memory size on computers eliminated the code
size problems arising from high-level languages and enabled operating systems to
be written in high-level languages. The combination of simpler architectures
together with software offered greater performance and more flexibility at lower
cost and lower complexity.

Reduced Instruction Set Computers

In the early 1980s, the direction of computer architecture began to swing away from
providing high-level hardware support for languages. Ditzel and Patterson [1980]
analyzed the difficulties encountered by the high-level language architectures
and argued that the answer lay in simpler architectures. In another paper [Patterson
and Ditzel 1980], these authors first discussed the idea of Reduced Instruction Set
Computers (RISCs) and presented the argument for simpler architectures. Clark and
Strecker [1980], who were VAX architects, rebutted their proposal.

The simple load-store computers such as MIPS are commonly called RISC
architectures. The roots of RISC architectures go back to computers like the
6600, where Thornton, Cray, and others recognized the importance of instruction
set simplicity in building a fast computer. Cray continued his tradition of keeping
computers simple in the CRAY-1. Commercial RISCs are built primarily on the
work of three research projects: the Berkeley RISC processor, the IBM 801,
and the Stanford MIPS processor. These architectures have attracted enormous
industrial interest because of claims of a performance advantage of anywhere from
two to five times over other computers using the same technology.

Begun in 1975, the IBM project was the first to start but was the last to become
public. The IBM computer was designed as a 24-bit ECL minicomputer, while the
university projects were both MOS-based, 32-bit microprocessors. John Cocke is
considered the father of the 801 design. He received both the Eckert–Mauchly and
Turing awards in recognition of his contribution. Radin [1982] described the high-
lights of the 801 architecture. The 801 was an experimental project that was never
designed to be a product. In fact, to keep down costs and complexity, the computer
was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that was to
give this architectural approach its name (see Patterson and Ditzel [1980]). They
built two computers called RISC-I and RISC-II. Because the IBM project was not
widely known or discussed, the role played by the Berkeley group in promoting the
RISC approach was critical to acceptance of the technology. They also built one of
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the first instruction caches to support hybrid-format RISCs (see Patterson et al.
[1983]). It supported 16-bit and 32-bit instructions in memory but 32 bits in the
cache. The Berkeley group went on to build RISC computers targeted toward
Smalltalk, described by Ungar et al. [1984], and LISP, described by Taylor
et al. [1986].

In 1981, Hennessy and his colleagues at Stanford published a description of the
Stanford MIPS computer. Efficient pipelining and compiler-assisted scheduling of
the pipeline were both important aspects of the original MIPS design. MIPS stood
for Microprocessor without Interlocked Pipeline Stages, reflecting the lack of
hardware to stall the pipeline, as the compiler would handle dependencies.

These early RISC computers—the 801, RISC-II, and MIPS—had much in
common. Both university projects were interested in designing a simple computer
that could be built in VLSI within the university environment. All three computers
used a simple load-store architecture and fixed-format 32-bit instructions, and
emphasized efficient pipelining. Patterson [1985] described the three computers
and the basic design principles that have come to characterize what a RISC com-
puter is, and Hennessy [1984] provided another view of the same ideas, as well as
other issues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance advan-
tage and traced its roots to a substantially lower CPI—under 2 for a RISC processor
and over 10 for a VAX-11/780 (though not with identical workloads). A paper by
Emer and Clark [1984] characterizing VAX-11/780 performance was instrumental
in helping the RISC researchers understand the source of the performance advan-
tage seen by their computers.

Since the university projects finished up, in the 1983–1984 time frame, the
technology has been widely embraced by industry. Many manufacturers of the
early computers (those made before 1986) claimed that their products were RISC
computers. These claims, however, were often born more of marketing ambition
than of engineering reality.

In 1986, the computer industry began to announce processors based on the tech-
nology explored by the three RISC research projects. Moussouris et al. [1986]
described the MIPS R2000 integer processor, while Kane’s book [1986] provides
a complete description of the architecture. Hewlett-Packard converted their existing
minicomputer line to RISC architectures; Lee [1989] described the HP Precision
Architecture. IBM never directly turned the 801 into a product. Instead, the ideas
were adopted for a new, low-end architecture that was incorporated in the IBM
RT-PC and described in a collection of papers [Waters 1986]. In 1990, IBM
announced a new RISC architecture (the RS 6000), which is the first superscalar
RISC processor. In 1987, Sun Microsystems began delivering computers based
on the SPARCarchitecture, a derivative of theBerkeleyRISC-II processor; SPARC
is described in Garner et al. [1988]. The PowerPC joined the forces of Apple, IBM,
and Motorola. Appendix K summarizes several RISC architectures.

To help resolve the RISC versus traditional design debate, designers of VAX
processors later performed a quantitative comparison of VAX and a RISC proces-
sor for implementations with comparable organizations. Their choices were the
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VAX 8700 and the MIPSM2000. The differing goals for VAX andMIPS have led
to very different architectures. The VAX goals, simple compilers and code density,
led to powerful addressing modes, powerful instructions, efficient instruction
encoding, and few registers. The MIPS goals were high performance via pipelin-
ing, ease of hardware implementation, and compatibility with highly optimizing
compilers. These goals led to simple instructions, simple addressing modes,
fixed-length instruction formats, and a large number of registers.

Figure M.1 shows the ratio of the number of instructions executed, the ratio of
CPIs, and the ratio of performance measured in clock cycles. Since the organiza-
tions were similar, clock cycle times were assumed to be the same. MIPS executes
about twice as many instructions as the VAX, while the CPI for the VAX is about
six times larger than that for the MIPS. Hence, the MIPS M2000 has almost
three times the performance of the VAX 8700. Furthermore, much less hardware
is needed to build the MIPS processor than the VAX processor. This cost-
performance gap is the reason why the company that used to make the VAX intro-
duced a MIPS-based product and then has dropped the VAX completely and
switched to Alpha, which is quite similar to MIPS. Bell and Strecker [1998]
summarized the debate inside the company. Today, DEC, once the second largest
computer company and the major success of the minicomputer industry, exists
only as remnants within HP and Intel.
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Looking back, only one Complex Instruction Set Computer (CISC) instruction
set survived the RISC/CISC debate, and that one had binary compatibility with PC
software. The volume of chips is so high in the PC industry that there is a sufficient
revenue stream to pay the extra design costs—and sufficient resources due to
Moore’s law—to build microprocessors that translate from CISC to RISC inter-
nally. Whatever loss in efficiency occurred (due to longer pipeline stages and big-
ger die size to accommodate translation on the chip) was overcome by the
enormous volume and the ability to dedicate IC processing lines specifically to this
product.

Interestingly, Intel also concluded that the future of the 80x86 line was doubt-
ful. They created the IA-64 architecture to support 64-bit addressing and to
move to a RISC-style instruction set. The embodiment of the IA-64 (see Huck
et al. [2000]) architecture in the Itanium-1 and Itanium-2 has been a mixed suc-
cess. Although high performance has been achieved for floating-point applica-
tions, the integer performance was never impressive. In addition, the Itanium
implementations have been large in transistor count and die size and power
hungry. The complexity of the IA-64 instruction set, standing at least in partial
conflict with the RISC philosophy, no doubt contributed to this area and power
inefficiency.

AMD decided instead to just stretch the architecture from a 32-bit address to a
64-bit address, much as Intel had done when the 80386 stretched it from a 16-bit
address to a 32-bit address. Intel later followed AMD’s example. In the end, the
tremendous marketplace advantage of the 80x86 presence was too much even
for Intel, the owner of this legacy, to overcome!
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M.5 The Development of Pipelining and Instruction-Level
Parallelism (Chapter 3 and Appendices C and H)

Early Pipelined CPUs

The first general-purpose pipelined processor is considered to be Stretch, the IBM
7030. Stretch followed the IBM 704 and had a goal of being 100 times faster than
the 704. The goal was a stretch from the state of the art at that time, hence the

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-27

http://www.ti.com/corp/docs/company/history/1980s.shtml
http://www.ti.com/corp/docs/company/history/1980s.shtml


nickname.The planwas to obtain a factor of 1.6 fromoverlapping fetch, decode, and
execute, using a four-stage pipeline. Bloch [1959] and Bucholtz [1962] described
the design and engineering trade-offs, including the use of ALU bypasses.

A series of general pipelining descriptions that appeared in the late 1970s and
early 1980s provided most of the terminology and described most of the basic tech-
niques used in simple pipelines. These surveys includeKeller [1975],Ramamoorthy
and Li [1977], and Chen [1980], as well as Kogge [1981], whose book is devoted
entirely to pipelining. Davidson and his colleagues [1971, 1975] developed the
concept of pipeline reservation tables as a design methodology for multicycle pipe-
lines with feedback (also described in Kogge [1981]). Many designers use a varia-
tion of these concepts, in either designing pipelines or in creating software to
schedule them.

The RISC processors were originally designed with ease of implementation
and pipelining in mind. Several of the early RISC papers, published in the early
1980s, attempt to quantify the performance advantages of the simplification in
instruction set. The best analysis, however, is a comparison of a VAX and a MIPS
implementation published by Bhandarkar and Clark in 1991, 10 years after the first
published RISC papers (see Figure M.1). After 10 years of arguments about the
implementation benefits of RISC, this paper convinced even the most skeptical
designers of the advantages of a RISC instruction set architecture.

J. E. Smith and his colleagues have written a number of papers examining
instruction issue, exception handling, and pipeline depth for high-speed scalar
CPUs. Kunkel and Smith [1986] evaluated the impact of pipeline overhead and
dependences on the choice of optimal pipeline depth; they also provided an excel-
lent discussion of latch design and its impact on pipelining. Smith and Pleszkun
[1988] evaluated a variety of techniques for preserving precise exceptions. Weiss
and Smith [1984] evaluated a variety of hardware pipeline scheduling and instruc-
tion issue techniques.

The MIPS R4000 was one of the first deeply pipelined microprocessors and is
described by Killian [1991] and by Heinrich [1993]. The initial Alpha implemen-
tation (the 21064) has a similar instruction set and similar integer pipeline struc-
ture, with more pipelining in the floating-point unit.

The Introduction of Dynamic Scheduling

In 1964, CDC delivered the first CDC 6600. The CDC 6600 was unique in many
ways. In addition to introducing scoreboarding, the CDC 6600 was the first pro-
cessor to make extensive use of multiple functional units. It also had peripheral
processors that used multithreading. The interaction between pipelining and
instruction set design was understood, and a simple, load-store instruction set
was used to promote pipelining. The CDC 6600 also used an advanced packaging
technology. Thornton [1964] described the pipeline and I/O processor architecture,
including the concept of out-of-order instruction execution. Thornton’s book
[1970] provides an excellent description of the entire processor, from technology
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to architecture, and includes a foreword by Cray. (Unfortunately, this book is
currently out of print.) The CDC 6600 also has an instruction scheduler for the
FORTRAN compilers, described by Thorlin [1967].

The IBM 360 Model 91: A Landmark Computer

The IBM 360/91 introduced many new concepts, including tagging of data, reg-
ister renaming, dynamic detection of memory hazards, and generalized forward-
ing. Tomasulo’s algorithm is described in his 1967 paper. Anderson, Sparacio,
and Tomasulo [1967] described other aspects of the processor, including the
use of branch prediction. Many of the ideas in the 360/91 faded from use for nearly
25 years before being broadly resurrected in the 1990s. Unfortunately, the 360/91
was not successful, and only a handful were sold. The complexity of the design
made it late to the market and allowed the Model 85, which was the first IBM
processor with a cache, to outperform the 91.

Branch-Prediction Schemes

The 2-bit dynamic hardware branch-prediction scheme was described by J. E.
Smith [1981]. Ditzel and McLellan [1987] described a novel branch-target buffer
for CRISP, which implements branch folding. The correlating predictor we exam-
ine was described by Pan, So, and Rameh [1992]. Yeh and Patt [1992, 1993] gen-
eralized the correlation idea and described multilevel predictors that use branch
histories for each branch, similar to the local history predictor used in the
21264. McFarling’s tournament prediction scheme, which he refers to as a com-
bined predictor, is described in his 1993 technical report. There are a variety of
more recent papers on branch prediction based on variations in the multilevel
and correlating predictor ideas. Kaeli and Emma [1991] described return address
prediction, and Evers et al. [1998] provided an in-depth analysis of multilevel pre-
dictors. The data shown in Chapter 3 are from Skadron et al. [1999]. There are
several schemes for prediction that may offer some additional benefit beyond tour-
nament predictors. Eden and Mudge [1998] and Jimenez and Lin [2002] have
described such approaches.

The Development of Multiple-Issue Processors

IBM did pioneering work on multiple issue. In the 1960s, a project called ACS was
underway inCalifornia. It includedmultiple-issue concepts, a proposal for dynamic
scheduling (although with a simpler mechanism than Tomasulo’s scheme, which
used backup registers), and fetching down both branch paths. The project originally
started as a newarchitecture to followStretch and surpass theCDC6600/6800.ACS
started in New York but was moved to California, later changed to be S/360 com-
patible, and eventually canceled. John Cocke was one of the intellectual forces
behind the team that included a number of IBM veterans and younger contributors,
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many of whom went on to other important roles in IBM and elsewhere: Jack Ber-
tram, Ed Sussenguth, Gene Amdahl, Herb Schorr, Fran Allen, Lynn Conway,
and Phil Dauber, among others. While the compiler team published many of their
ideas and had great influence outside IBM, the architecture ideas were not widely
disseminated at that time. The most complete accessible documentation of this
important project is atwww.cs.clemson.edu/�mark/acs.html, which includes inter-
views with the ACS veterans and pointers to other sources. Sussenguth [1999] is a
good overview of ACS.

Most of the early multiple-issue processors that actually reached the market
followed an LIW or VLIW design approach. Charlesworth [1981] reported on
the Floating Point Systems AP-120B, one of the first wide-instruction processors
containing multiple operations per instruction. Floating Point Systems applied the
concept of software pipelining both in a compiler and by handwriting assembly
language libraries to use the processor efficiently. Because the processor was an
attached processor, many of the difficulties of implementing multiple issue in
general-purpose processors (for example, virtual memory and exception handling)
could be ignored.

One of the interesting approaches used in early VLIW processors, such as the
AP-120B and i860, was the idea of a pipeline organization that requires operations
to be “pushed through” a functional unit and the results to be caught at the end of the
pipeline. In such processors, operations advance only when another operation
pushes them from behind (in sequence). Furthermore, an instruction specifies the
destination for an instruction issued earlier that will be pushed out of the pipeline
when this new operation is pushed in. Such an approach has the advantage that it
does not specify a result destination when an operation first issues but only when
the result register is actually written. This separation eliminates the need to detect
write after write (WAW) and write after read (WAR) hazards in the hardware.
The disadvantage is that it increases code size since no-ops may be needed to push
results out when there is a dependence on an operation that is still in the pipeline and
no other operations of that type are immediately needed. Instead of the “push-and-
catch” approach used in these two processors, almost all designers have chosen to
use self-draining pipelines that specify the destination in the issuing instruction and
in which an issued instruction will complete without further action. The advantages
in code density and simplifications in code generation seem to outweigh the advan-
tages of the more unusual structure.

Several research projects introduced some form of multiple issue in the mid-
1980s. For example, the Stanford MIPS processor had the ability to place two
operations in a single instruction, although this capability was dropped in com-
mercial variants of the architecture, primarily for performance reasons. Along
with his colleagues at Yale, Fisher [1983] proposed creating a processor with
a very wide instruction (512 bits) and named this type of processor a VLIW.
Code was generated for the processor using trace scheduling, which Fisher
[1981] had developed originally for generating horizontal microcode. The imple-
mentation of trace scheduling for the Yale processor is described by Fisher et al.
[1984] and by Ellis [1986].
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Although IBM canceled ACS, active research in the area continued in the
1980s. More than 10 years after ACS was canceled, John Cocke made a new
proposal for a superscalar processor that dynamically made issue decisions; he
and Tilak Agerwala described the key ideas in several talks in the mid-1980s
and coined the term superscalar. He called the design America; it is described
by Agerwala and Cocke [1987]. The IBM Power1 architecture (the RS/6000 line)
is based on these ideas (see Bakoglu et al. [1989]).

J. E. Smith [1984] and his colleagues at Wisconsin proposed the decoupled
approach that included multiple issue with limited dynamic pipeline scheduling.
A key feature of this processor is the use of queues to maintain order among a class
of instructions (such as memory references) while allowing it to slip behind or
ahead of another class of instructions. The Astronautics ZS-1 described by Smith
et al. [1987] embodies this approach with queues to connect the load-store unit and
the operation units. The Power2 design uses queues in a similar fashion. J. E. Smith
[1989] also described the advantages of dynamic scheduling and compared that
approach to static scheduling.

The concept of speculation has its roots in the original 360/91, which per-
formed a very limited form of speculation. The approach used in recent processors
combines the dynamic scheduling techniques of the 360/91 with a buffer to allow
in-order commit. Smith and Pleszkun [1988] explored the use of buffering to
maintain precise interrupts and described the concept of a reorder buffer. Sohi
[1990] described adding renaming and dynamic scheduling, making it possible
to use the mechanism for speculation. Patt and his colleagues were early propo-
nents of aggressive reordering and speculation. They focused on checkpoint and
restart mechanisms and pioneered an approach called HPSm, which is also an
extension of Tomasulo’s algorithm [Hwu and Patt 1986].

The use of speculation as a technique in multiple-issue processors was evalu-
ated by Smith, Johnson, and Horowitz [1989] using the reorder buffer technique;
their goal was to study available ILP in nonscientific code using speculation and
multiple issue. In a subsequent book, Johnson [1990] described the design of a
speculative superscalar processor. Johnson later led the AMD K-5 design, one
of the first speculative superscalars.

In parallel with the superscalar developments, commercial interest in VLIW
approaches also increased. The Multiflow processor (see Colwell et al. [1987])
was based on the concepts developed at Yale, although many important refine-
ments were made to increase the practicality of the approach. Among these was
a control-lable store buffer that provided support for a form of speculation.
Although more than 100 Multiflow processors were sold, a variety of problems,
including the difficulties of introducing a new instruction set from a small company
and competition from commercial RISC microprocessors that changed the
economics in the mini-computer market, led to the failure of Multiflow as a
company.

Around the same time as Multiflow, Cydrome was founded to build a VLIW-
style processor (see Rau et al. [1989]), which was also unsuccessful commercially.
Dehnert, Hsu, and Bratt [1989] explained the architecture and performance of the
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Cydrome Cydra 5, a processor with a wide-instruction word that provides dynamic
register renaming and additional support for software pipelining. The Cydra 5 is a
unique blend of hardware and software, including conditional instructions and
register rotation, aimed at extracting ILP. Cydrome relied on more hardware than
the Multiflow processor and achieved competitive performance primarily on
vector-style codes. In the end, Cydrome suffered from problems similar to those
of Multiflow and was not a commercial success. Both Multiflow and Cydrome,
although unsuccessful as commercial entities, produced a number of people with
extensive experience in exploiting ILP as well as advanced compiler technology;
many of those people have gone on to incorporate their experience and the pieces
of the technology in newer processors. Fisher and Rau [1993] edited a comprehen-
sive collection of papers covering the hardware and software of these two impor-
tant processors.

Rau had also developed a scheduling technique called polycyclic scheduling,
which is a basis for most software-pipelining schemes (see Rau, Glaeser, and
Picard [1982]). Rau’s work built on earlier work by Davidson and his colleagues
on the design of optimal hardware schedulers for pipelined processors. Other his-
torical LIW processors have included the Apollo DN 10000 and the Intel i860, both
of which could dual-issue FP and integer operations.

Compiler Technology and Hardware Support for Scheduling

Loop-level parallelism and dependence analysis were developed primarily by D.
Kuck and his colleagues at the University of Illinois in the 1970s. They also coined
the commonly used terminology of antidependence and output dependence and
developed several standard dependence tests, including the GCD and Banerjee
tests. The latter test was named after Uptal Banerjee and comes in a variety of fla-
vors. Recent work on dependence analysis has focused on using a variety of exact
tests ending with a linear programming algorithm called Fourier–Motzkin. D.
Maydan and W. Pugh both showed that the sequences of exact tests were a prac-
tical solution.

In the area of uncovering and scheduling ILP, much of the early work was con-
nected to the development of VLIW processors, described earlier. Lam [1988]
developed algorithms for software pipelining and evaluated their use on Warp,
a wide-instruction-word processor designed for special-purpose applications.
Weiss and Smith [1987] compared software pipelining versus loop unrolling as
techniques for scheduling code on a pipelined processor. Rau [1994] developed
modulo scheduling to deal with the issues of software-pipelining loops and simul-
taneously handling register allocation.

Support for speculative code scheduling was explored in a variety of contexts,
including several processors that provided a mode in which exceptions were
ignored, allowing more aggressive scheduling of loads (e.g., the MIPS TFP pro-
cessor [Hsu 1994]). Several groups explored ideas for more aggressive hardware
support for speculative code scheduling. For example, Smith, Horowitz, and Lam
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[1992] created a concept called boosting that contains a hardware facility for sup-
porting speculation but provides a checking and recovery mechanism, similar to
those in IA-64 and Crusoe. The sentinel scheduling idea, which is also similar
to the speculate-and-check approach used in both Crusoe and the IA-64 architec-
tures, was developed jointly by researchers at the University of Illinois and HP
Laboratories (see Mahlke et al. [1992]).

In the early 1990s, Wen-Mei Hwu and his colleagues at the University of Illi-
nois developed a compiler framework, called IMPACT (see Chang et al. [1991]),
for exploring the interaction between multiple-issue architectures and compiler
technology. This project led to several important ideas, including superblock
scheduling (see Hwu et al. [1993]), extensive use of profiling for guiding a variety
of optimizations (e.g., procedure inlining), and the use of a special buffer (similar
to the ALAT or program-controlled store buffer) for compile-aided memory con-
flict detection (see Gallagher et al. [1994]). They also explored the performance
trade-offs between partial and full support for predication in Mahlke et al. [1995].

The early RISC processors all had delayed branches, a scheme inspired from
microprogramming, and several studies on compile time branch prediction were
inspired by delayed branch mechanisms. McFarling and Hennessy [1986] did a
quantitative comparison of a variety of compile time and runtime branch-
prediction schemes. Fisher and Freudenberger [1992] evaluated a range of compile
time branch-prediction schemes using the metric of distance between mispredic-
tions. Ball and Larus [1993] and Calder et al. [1997] described static prediction
schemes using collected program behavior.

EPIC and the IA-64 Development

The roots of the EPIC approach lie in earlier attempts to build LIW and VLIW
machines—especially those at Cydrome and Multiflow—and in a long history
of compiler work that continued after these companies failed at HP, the University
of Illinois, and elsewhere. Insights gained from that work led designers at HP to
propose a VLIW-style, 64-bit architecture to follow the HP PA RISC architecture.
Intel was looking for a new architecture to replace the x86 (now called IA-32)
architecture and to provide 64-bit capability. In 1995, they formed a partnership
to design a new architecture, IA-64 (see Huck et al. [2000]), and build processors
based on it. Itanium (see Sharangpani and Arora [2000]) is the first such processor.
In 2002, Intel introduced the second-generation IA-64 design, the Itanium 2
(see McNairy and Soltis [2003] and McCormick and Knies [2002]).

Studies of ILP and Ideas to Increase ILP

A series of early papers, including Tjaden and Flynn [1970] and Riseman and
Foster [1972], concluded that only small amounts of parallelism could be available
at the instruction level without investing an enormous amount of hardware. These
papers dampened the appeal of multiple instruction issue for more than 10 years.
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Nicolau and Fisher [1984] published a paper based on their work with trace sched-
uling and asserted the presence of large amounts of potential ILP in scientific
programs.

Since then there have been many studies of the available ILP. Such studies
have been criticized because they presume some level of both hardware support
and compiler technology. Nonetheless, the studies are useful to set expectations
as well as to understand the sources of the limitations. Wall has participated in sev-
eral such studies, including Jouppi and Wall [1989] and Wall [1991, 1993].
Although the early studies were criticized as being conservative (e.g., they didn’t
include speculation), the last study is by far the most ambitious study of ILP to date
and the basis for the data in Section 3.10. Sohi and Vajapeyam [1989] provided
measurements of available parallelism for wide-instruction-word processors.
Smith, Johnson, and Horowitz [1989] also used a speculative superscalar processor
to study ILP limits. At the time of their study, they anticipated that the processor
they specified was an upper bound on reasonable designs. Recent and upcoming
processors, however, are likely to be at least as ambitious as their processor.
Skadron et al. [1999] examined the performance trade-offs and limitations in a
processor comparable to the most aggressive processors in 2005, concluding that
the larger window sizes will not make sense without significant improvements on
branch prediction for integer programs.

Lam and Wilson [1992] looked at the limitations imposed by speculation and
showed that additional gains are possible by allowing processors to speculate in
multiple directions, which requires more than one PC. (Such schemes cannot
exceed what perfect speculation accomplishes, but they help close the gap between
realistic prediction schemes and perfect prediction.) Wall’s 1993 study includes a
limited evaluation of this approach (up to eight branches are explored).

Going Beyond the Data Flow Limit

One other approach that has been explored in the literature is the use of value pre-
diction. Value prediction can allow speculation based on data values. There have
been a number of studies of the use of value prediction. Lipasti and Shen published
two papers in 1996 evaluating the concept of value prediction and its potential
impact on ILP exploitation. Calder, Reinman, and Tullsen [1999] explored the idea
of selective value prediction. Sodani and Sohi [1997] approached the same prob-
lem from the viewpoint of reusing the values produced by instructions. Moshovos
et al. [1997] showed that deciding when to speculate on values, by tracking
whether such speculation has been accurate in the past, is important to achieving
performance gains with value speculation.Moshovos and Sohi [1997] and Chrysos
and Emer [1998] focused on predicting memory dependences and using this infor-
mation to eliminate the dependence through memory. González and González
[1998], Babbay and Mendelson [1998], and Calder, Reinman, and Tullsen
[1999] are more recent studies of the use of value prediction. This area is currently
highly active, with new results being published in every conference.
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Recent Advanced Microprocessors

Theyears 1994 and 1995 saw the announcement ofwide superscalar processors (three
ormore issues per clock) by everymajor processor vendor: Intel PentiumPro andPen-
tium II (these processors share the same core pipeline architecture, described by Col-
well andSteck[1995]);AMDK-5,K-6, andAthlon;SunUltraSPARC(seeLauterbach
andHorel [1999]);Alpha21164 (seeEdmondson et al. [1995]) and21264 (seeKessler
[1999]);MIPSR10000 andR12000 (seeYeager [1996]); PowerPC603, 604, and 620
(see Diep, Nelson, and Shen [1995]); and HP 8000 (Kumar [1997]). The latter part of
thedecade (1996–2000) sawsecondgenerationsofmanyof theseprocessors (Pentium
III, AMDAthlon, andAlpha 21264, among others). The second generation, although
similar in issue rate, could sustain a lower CPI and provided much higher clock rates.
All included dynamic scheduling, and they almost universally supported speculation.
In practice, many factors, including the implementation technology, thememory hier-
archy, the skill of the designers, and the type of applications benchmarked, all play a
role in determining which approach is best.

The period from2000 to 2005was dominated by three trends among superscalar
processors: the introduction of higher clock rates achieved through deeper pipelin-
ing (e.g., in the Pentium 4; seeHinton et al. [2001]), the introduction ofmultithread-
ing by IBM in the Power 4 and by Intel in the Pentium 4Extreme, and the beginning
of themovement tomulticore by IBM in thePower 4,AMDinOpteron (seeKeltcher
et al. [2003]), and most recently by Intel (see Douglas [2005]).

Multithreading and Simultaneous Multithreading

The concept of multithreading dates back to one of the earliest transistorized com-
puters, the TX-2. TX-2 is also famous for being the computer on which Ivan Suth-
erland created Sketchpad, the first computer graphics system. TX-2 was built at
MIT’s Lincoln Laboratory and became operational in 1959. It used multiple
threads to support fast context switching to handle I/O functions. Clark [1957]
described the basic architecture, and Forgie [1957] described the I/O architecture.
Multithreading was also used in the CDC 6600, where a fine-grained multithread-
ing scheme with interleaved scheduling among threads was used as the architecture
of the I/O processors. The HEP processor, a pipelined multiprocessor designed by
Denelcor and shipped in 1982, used fine-grained multithreading to hide the pipe-
line latency as well as to hide the latency to a large memory shared among all the
processors. Because the HEP had no cache, this hiding of memory latency was
critical. Burton Smith, one of the primary architects, described the HEP architec-
ture in a 1978 paper, and Jordan [1983] published a performance evaluation. The
TERA processor extends the multithreading ideas and is described by Alverson
et al. in a 1992 paper. The Niagara multithreading approach is similar to those
of the HEP and TERA systems, although Niagara employs caches reducing the
need for thread-based latency hiding.

In the late 1980s and early 1990s, researchers explored the concept of coarse-
grained multithreading (also called block multithreading) as a way to tolerate
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latency, especially in multiprocessor environments. The SPARCLE processor in
the Alewife system used such a scheme, switching threads whenever a highlatency
exceptional event, such as a long cache miss, occurred. Agarwal et al. described
SPARCLE in a 1993 paper. The IBM Pulsar processor uses similar ideas.

By the early 1990s, several research groups had arrived at two key insights.
First, they realized that fine-grained multithreading was needed to get the max-
imum performance benefit, since in a coarse-grained approach, the overhead of
thread switching and thread start-up (e.g., filling the pipeline from the new
thread) negated much of the performance advantage (see Laudon, Gupta, and
Horowitz [1994]). Second, several groups realized that to effectively use large
numbers of functional units would require both ILP and thread-level parallelism
(TLP). These insights led to several architectures that used combinations of multi-
threading and multiple issue. Wolfe and Shen [1991] described an architecture
called XIMD that statically interleaves threads scheduled for a VLIW processor.
Hirata et al. [1992] described a proposed processor for media use that combines a
static superscalar pipeline with support for multithreading; they reported speed-
ups from combining both forms of parallelism. Keckler and Dally [1992] com-
bined static scheduling of ILP and dynamic scheduling of threads for a processor
with multiple functional units. The question of how to balance the allocation of
functional units between ILP and TLP and how to schedule the two forms of par-
allelism remained open.

When it became clear in the mid-1990s that dynamically scheduled supersca-
lars would be delivered shortly, several research groups proposed using the
dynamic scheduling capability to mix instructions from several threads on the
fly. Yamamoto et al. [1994] appear to have published the first such proposal,
though the simulation results for their multithreaded superscalar architecture use
simplistic assumptions. This work was quickly followed by Tullsen, Eggers,
and Levy [1995], who provided the first realistic simulation assessment and coined
the term simultaneous multithreading. Subsequent work by the same group
together with industrial coauthors addressed many of the open questions about
SMT. For example, Tullsen et al. [1996] addressed questions about the challenges
of scheduling ILP versus TLP. Lo et al. [1997] provided an extensive discussion of
the SMT concept and an evaluation of its performance potential, and Lo et. al.
[1998] evaluated database performance on an SMT processor. Tuck and Tullsen
[2003] reviewed the performance of SMT on the Pentium 4.

The IBM Power4 introduced multithreading (see Tendler et al. [2002]), while
the Power5 used simultaneous multithreading. Mathis et al. [2005] explored
the performance of SMT in the Power5, while Sinharoy et al. [2005] described
the system architecture.
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M.6 The Development of SIMD Supercomputers, Vector
Computers, Multimedia SIMD Instruction Extensions,
and Graphical Processor Units (Chapter 4)

In this historical section, we start with perhaps the most infamous supercomputer,
the Illiac IV, as a representative of the early SIMD (Single Instruction, Multiple
Data) architectures and then move to perhaps the most famous supercomputer,
the Cray-1, as a representative of vector architectures. The next step is Multimedia
SIMD Extensions, which got its name in part due to an advertising campaign
involving the “Bunny People,” a disco-dancing set of workers in cleansuits on a
semiconductor fabrication line. We conclude with the history of GPUs, which is
not quite as colorful.

SIMD Supercomputers

The cost of a general multiprocessor is, however, very high and further design
options were considered which would decrease the cost without seriously degrad-
ing the power or efficiency of the system. The options consist of recentralizing one
of the three major components.… Centralizing the [control unit] gives rise to the
basic organization of [an] … array processor such as the Illiac IV.

Bouknight et al. [1972]
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… with Iliac IV, programming the machine was very difficult and the architecture
probably was not very well suited to some of the applications we were trying to
run. The key idea was that I did not think we had a very good match in Iliac IV
between applications and architecture.

David Kuck
Software designer for the Illiac IV and

early pioneer in parallel software
David Kuck

An oral history conducted in 1991 by Andrew Goldstein,
IEEE History Center, New Brunswick, N.J.

The SIMDmodel was one of the earliest models of parallel computing, dating back
to the first large-scale multiprocessor, the Illiac IV. Rather than pipelining the data
computation as in vector architectures, these machines had an array of functional
units; hence, they might be considered array processors.

The earliest ideas on SIMD-style computers are from Unger [1958] and Slot-
nick, Borck, and McReynolds [1962]. Slotnick’s Solomon design formed the basis
of the Illiac IV, perhaps the most infamous of the supercomputer projects.
Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the planned
multiprocessor. (In 2011 dollars, that was an increase from $54M to $152M.)
Actual performance was at best 15 MFLOPS versus initial predictions of 1000
MFLOPS for the full system [Hord 1982]. Delivered to NASA Ames Research
in 1972, the computer required three more years of engineering before it was
usable. These events slowed investigation of SIMD, but Danny Hillis [1985] resus-
citated this style in the Connection Machine, which had 65,536 1-bit processors.

The basic trade-off in SIMDmultiprocessors is performance of a processor ver-
sus number of processors. SIMD supercomputers of the 1980s emphasized a large
degree of parallelism over performance of the individual processors. The Connec-
tion Multiprocessor 2, for example, offered 65,536 single-bit-wide processors,
while the Illiac IV planned for 64 64-bit processors. Massively parallel SIMDmul-
tiprocessors relied on interconnection or communication networks to exchange
data between processing elements.

After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMD model faded away as supercomputers for two main reasons.
First, it is too inflexible. A number of important problems were not data parallel,
and the architecture did not scale down in a competitive fashion; that is, small-scale
SIMD multiprocessors often have worse cost-performance compared with that of
the alternatives. Second, SIMD could not take advantage of the tremendous per-
formance and cost advantages of SISD (Single Instruction, Single Data) micropro-
cessor technology of the 1980s, which was doubling in performance every
18 months. Instead of leveraging this low-cost technology, designers of SIMD
multiprocessors had to build custom processors for their multiprocessors.
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Vector Computers

I’m certainly not inventing vector processors. There are three kinds that I know of
existing today. They are represented by the Illiac-IV, the (CDC) Star processor, and
the TI (ASC) processor. Those three were all pioneering processors. … One of the
problems of being a pioneer is you always make mistakes and I never, never want
to be a pioneer. It’s always best to come second when you can look at the mistakes
the pioneers made.

Seymour Cray
Public lecture at Lawrence Livermore Laboratories

on the introduction of the Cray-1 (1976)

The first vector processors were the Control Data Corporation (CDC) STAR-100
(see Hintz and Tate [1972]) and the Texas Instruments ASC (see Watson [1972]),
both announced in 1972. Both were memory-memory vector processors. They had
relatively slow scalar units—the STAR used the same units for scalars and
vectors—making the scalar pipeline extremely deep. Both processors had high
start-up overhead and worked on vectors of several hundred to several thousand
elements. The crossover between scalar and vector could be over 50 elements.
It appears that not enough attention was paid to the role of Amdahl’s law on these
two processors.

Seymour Cray, who worked on the 6600 and the 7600 at CDC, founded Cray
Research and introduced the Cray-1 in 1976 (see Russell [1978]). The Cray-1 used
a vector-register architecture to lower start-up overhead significantly and to reduce
memory bandwidth requirements. He also had efficient support for non-unit stride
and invented chaining. Most importantly, the Cray-1 was the fastest scalar proces-
sor in the world at that time. This matching of good scalar and vector performance
was probably the most significant factor in making the Cray-1 a success. Some
customers bought the processor primarily for its outstanding scalar performance.
Many subsequent vector processors are based on the architecture of this first
commercially successful vector processor. Baskett and Keller [1977] provided a
good evaluation of the Cray-1.

In 1981, CDC started shipping the CYBER 205 (see Lincoln [1982]). The 205
had the same basic architecture as the STAR but offered improved performance all
around as well as expandability of the vector unit with up to four lanes, each with
multiple functional units and a wide load-store pipe that provided multiple words
per clock. The peak performance of the CYBER 205 greatly exceeded the perfor-
mance of the Cray-1; however, on real programs, the performance difference was
much smaller.

In 1983, Cray Research shipped the first Cray X-MP (see Chen [1983]). With
an improved clock rate (9.5 ns versus 12.5 ns on the Cray-1), better chaining
support (allowing vector operations with RAW dependencies to operate in paral-
lel), and multiple memory pipelines, this processor maintained the Cray Research
lead in supercomputers. The Cray-2, a completely new design configurable with up
to four processors, was introduced later. A major feature of the Cray-2 was the use
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of DRAM, which made it possible to have very large memories at the time. The
first Cray-2, with its 256M word (64-bit words) memory, contained more memory
than the total of all the Cray machines shipped to that point! The Cray-2 had amuch
faster clock than the X-MP, but also much deeper pipelines; however, it lacked
chaining, had enormous memory latency, and had only one memory pipe per pro-
cessor. In general, the Cray-2 was only faster than the Cray X-MP on problems that
required its very large main memory.

That same year, processor vendors from Japan entered the supercomputer mar-
ketplace. First were the Fujitsu VP100 and VP200 (see Miura and Uchida [1983]),
and later came the Hitachi S810 and the NEC SX/2 (see Watanabe [1987]). These
processors proved to be close to the Cray X-MP in performance. In general, these
three processors had much higher peak performance than the Cray X-MP. How-
ever, because of large start-up overhead, their typical performance was often lower
than that of the Cray X-MP. The Cray X-MP favored a multiple-processor
approach, first offering a two-processor version and later a four-processor version.
In contrast, the three Japanese processors had expandable vector capabilities.

In 1988, Cray Research introduced the Cray Y-MP—a bigger and faster ver-
sion of the X-MP. The Y-MP allowed up to eight processors and lowered the cycle
time to 6 ns. With a full complement of eight processors, the Y-MP was generally
the fastest supercomputer, though the single-processor Japanese supercomputers
could be faster than a one-processor Y-MP. In late 1989, Cray Research was split
into two companies, both aimed at building high-end processors available in the
early 1990s. Seymour Cray headed the spin-off, Cray Computer Corporation, until
its demise in 1995. Their initial processor, the Cray-3, was to be implemented in
gallium arsenide, but they were unable to develop a reliable and cost-effective
implementation technology. Shortly before his tragic death in a car accident in
1996, Seymour Cray started yet another company to develop high-performance
systems but this time using commodity components.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
In 1993, Cray Research introduced their first highly parallel processor, the
T3D, employing up to 2048 Digital Alpha21064 microprocessors. In 1995, they
announced the availability of both a new low-end vector machine, the J90, and
a high-end machine, the T90. The T90 was much like the C90, but with a clock
that was twice as fast (460 MHz), using three-dimensional packaging and optical
clock distribution.

In 1995, Cray Research was acquired by Silicon Graphics. In 1998, it released
the SV1 system, which grafted considerably faster CMOS processors onto the J90
memory system. It also added a data cache for vectors to each CPU to help meet the
increased memory bandwidth demands. Silicon Graphics sold Cray Research to
Tera Computer in 2000, and the joint company was renamed Cray Inc.

The Japanese supercomputer makers continued to evolve their designs. In
2001, the NEC SX/5 was generally held to be the fastest available vector super-
computer, with 16 lanes clocking at 312 MHz and with up to 16 processors sharing
the same memory. The NEC SX/6, released in 2001, was the first commercial
single-chip vector microprocessor, integrating an out-of-order quad-issue
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superscalar processor, scalar instruction and data caches, and an eight-lane vector
unit on a single die [Kitagawa et al. 2003]. The Earth Simulator is constructed from
640 nodes connected with a full crossbar, where each node comprises eight SX-6
vector microprocessors sharing a local memory. The SX-8, released in 2004,
reduces the number of lanes to four but increases the vector clock rate to 2
GHz. The scalar unit runs at a slower 1 GHz clock rate, a common pattern in vector
machines where the lack of hazards simplifies the use of deeper pipelines in the
vector unit.

In 2002, Cray Inc. released the X1 based on a completely new vector ISA. The
X1 SSP processor chip integrates an out-of-order superscalar with scalar caches
running at 400 MHz and a two-lane vector unit running at 800 MHz. When four
SSP chips are ganged together to form an MSP, the resulting peak vector perfor-
mance of 12.8 GFLOPS is competitive with the contemporary NEC SX machines.
The X1E enhancement, delivered in 2004, raises the clock rates to 565 and 1130
MHz, respectively. Many of the ideas were borrowed from the Cray T3E design,
which is a MIMD (Multiple Instruction, Multiple Data) computer that uses off-the-
shelf microprocessors. X1 has a new instruction set with a larger number of reg-
isters and with memory distributed locally with the processor in shared address
space. The out-of-order scalar unit and vector units are decoupled, so that the scalar
unit can get ahead of the vector unit. Vectors become shorter when the data are
blocked to utilize the MSP caches, which is not a good match to an eight-lane vec-
tor unit. To handle these shorter vectors, each processor with just two vector lanes
can work on a different loop.

The Cray X2 was announced in 2007, and it may prove to be the last Cray vec-
tor architecture to be built, as it’s difficult to justify the investment in new silicon
given the size of the market. The processor has a 1.3 GHz clock rate and 8 vector
lanes for a processor peak performance of 42 GFLOP/sec for single precision. It
includes both L1 and L2 caches. Each node is a 4-way SMP with up to 128 GBytes
of DRAM, and the maximum size is 8K nodes.

The NEC SX-9 has up to 16 processors per node, with each processor having
8 lanes and running at 3.2 GHz. It was announced in 2008. The peak double pre-
cision vector performance is 102 GFLOP/sec. The 16 processor SMP can have
1024 GBytes of DRAM. The maximum size is 512 nodes.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University of
Illinois. Padua and Wolfe [1986] gave a good overview of vectorizing compiler
technology.

Multimedia SIMD Instruction Extensions

What could a computer hardware company … possibly have in common with
disco dancing. A lot, if one goes by an advertisement campaign released by
the world’s largest microprocessor company … Intel, in 1997.

IBS Center for Management Research
“Dancing Its Way Towards Leadership,” 2002
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Going through the history books, the 1957 TX-2 had partitioned ALUs to support
media of the time, but these ideas faded away to be rediscovered 30 years later in
the personal computer era. Since every desktop microprocessor by definition has
its own graphical displays, as transistor budgets increased it was inevitable that
support would be added for graphics operations. Many graphics systems use 8 bits
to represent each of the 3 primary colors plus 8 bits for a transparency of a pixel.
The addition of speakers and microphones for teleconferencing and video games
suggested support of sound as well. Audio samples need more than 8 bits of pre-
cision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and half words take up
less space when stored in memory, but due to the infrequency of arithmetic oper-
ations on these data sizes in typical integer programs, there is little support
beyond data transfers. The Intel i860 was justified as a graphical accelerator
within the company. Its architects recognized that many graphics and audio appli-
cations would perform the same operation on vectors of these data [Atkins 1991;
Kohn 1989]. Although a vector unit was beyond the transistor budget of the i860
in 1989, by partitioning the carry chains within a 64-bit ALU, it could perform
simultaneous operations on short vectors of eight 8-bit operands, four 16-bit oper-
ands, or two 32-bit operands. The cost of such partitioned ALUs was small.
Applications that lend themselves to such support include MPEG (video), video
games (3D graphics), digital photography, and teleconferencing (audio and image
processing).

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include
such support, but soon every other manufacturer had their own take on the idea
in the 1990s.

These extensions were originally called subword parallelism or vector. Since
Intel marketing used SIMD to describe the MMX extension of the 80x86
announced in 1996, that became the popular name, due in part to a successful tele-
vision advertising campaign involving disco dancers wearing clothing modeled
after the cleansuits worn in semiconductor fabrication lines.

Graphical Processor Units

It’s been almost three years since GPU computing broke into the mainstream of
HPC with the introduction of NVIDIA’s CUDA API in September 2007. Adoption of
the technology since then has proceeded at a surprisingly strong and steady
pace. Many organizations that began with small pilot projects a year or two
ago have moved on to enterprise deployment, and GPU accelerated machines
are now represented on the TOP500 list starting at position two. The relatively
rapid adoption of CUDA by a community not known for the rapid adoption of
much of anything is a noteworthy signal. Contrary to the accepted wisdom that
GPU computing is more difficult, I believe its success thus far signals that it is no
more complicated than good CPU programming. Further, it more clearly and
succinctly expresses the parallelism of a large class of problems leading to code
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that is easier to maintain, more scalable and better positioned to map to future
many-core architectures.

Vincent Natol
“Kudos for CUDA,” HPCwire (2010)

3D graphics pipeline hardware evolved from the large expensive systems of the
early 1980s to small workstations and then to PC accelerators in the mid- to late
1990s. During this period, three major transitions occurred:

■ Performance-leading graphics subsystems declined in price from $50,000 to
$200.

■ Performance increased from 50 million pixels per second to 1 billion pixels per
second and from 100,000 vertices per second to 10 million vertices per second.

■ Native hardware capabilities evolved from wireframe (polygon outlines) to
flat-shaded (constant color) filled polygons, to smooth-shaded (interpolated
color) filled polygons, to full-scene anti-aliasing with texture mapping and
rudimentary multitexturing.

Scalable GPUs

Scalability has been an attractive feature of graphics systems from the beginning.
Workstation graphics systems gave customers a choice in pixel horse-power by vary-
ing the number of pixel processor circuit boards installed. Prior to the mid-1990s PC
graphics scalingwas almost nonexistent.Therewas oneoption—theVGAcontroller.
As 3D-capable accelerators appeared, the market had room for a range of offerings.
3dfx introduced multiboard scaling with the original SLI (Scan Line Interleave) on
their Voodoo2, which held the performance crown for its time (1998). Also in
1998, NVIDIA introduced distinct products as variants on a single architecture with
Riva TNTUltra (high-performance) andVanta (low-cost), first by speed binning and
packaging, then with separate chip designs (GeForce 2 GTS and GeForce 2MX). At
present, for a given architecturegeneration, four or five separateGPUchipdesigns are
needed to cover the range of desktop PC performance and price points. In addition,
there are separate segments in notebook and workstation systems. After acquiring
3dfx, NVIDIA continued the multi-GPU SLI concept in 2004, starting with GeForce
6800—providing multi-GPU scalability transparently to the programmer and to the
user. Functional behavior is identical across the scaling range;oneapplicationwill run
unchanged on any implementation of an architectural family.

Graphics Pipelines

Early graphics hardware was configurable, but not programmable by the applica-
tion developer. With each generation, incremental improvements were offered;
however, developers were growing more sophisticated and asking for more new
features than could be reasonably offered as built-in fixed functions. The NVIDIA
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GeForce 3, described by Lindholm et al. [2001], took the first step toward true gen-
eral shader programmability. It exposed to the application developer what had been
the private internal instruction set of the floating-point vertex engine. This coin-
cided with the release ofMicrosoft’s DirectX 8 and OpenGL’s vertex shader exten-
sions. Later GPUs, at the time of DirectX 9, extended general programmability and
floating-point capability to the pixel fragment stage and made texture available at
the vertex stage. The ATI Radeon 9700, introduced in 2002, featured a program-
mable 24-bit floating-point pixel fragment processor programmed with DirectX 9
and OpenGL. The GeForce FX added 32-bit floating-point pixel processors. This
was part of a general trend toward unifying the functionality of the different stages,
at least as far as the application programmer was concerned. NVIDIA’s GeForce
6800 and 7800 series were built with separate processor designs and separate hard-
ware dedicated to the vertex and to the fragment processing. The XBox 360 intro-
duced an early unified processor GPU in 2005, allowing vertex and pixel shaders to
execute on the same processor.

GPGPU: An Intermediate Step

As DirectX 9-capable GPUs became available, some researchers took notice of the
raw performance growth path of GPUs and began to explore the use of GPUs to
solve complex parallel problems. DirectX 9 GPUs had been designed only to
match the features required by the graphics API. To access the computational
resources, a programmer had to cast their problem into native graphics operations.
For example, to run many simultaneous instances of a pixel shader, a triangle had
to be issued to the GPU (with clipping to a rectangle shape if that was what was
desired). Shaders did not have the means to perform arbitrary scatter operations to
memory. The only way to write a result to memory was to emit it as a pixel color
value and configure the framebuffer operation stage to write (or blend, if desired)
the result to a two-dimensional framebuffer. Furthermore, the only way to get a
result from one pass of computation to the next was to write all parallel results
to a pixel framebuffer, then use that framebuffer as a texture map as input to
the pixel fragment shader of the next stage of the computation. Mapping general
computations to a GPU in this era was quite awkward. Nevertheless, intrepid
researchers demonstrated a handful of useful applications with painstaking efforts.
This field was called “GPGPU” for general-purpose computing on GPUs.

GPU Computing

While developing the Tesla architecture for the GeForce 8800, NVIDIA realized
its potential usefulness would be much greater if programmers could think of the
GPU as a processor. NVIDIA selected a programming approach in which program-
mers would explicitly declare the data-parallel aspects of their workload.

For the DirectX 10 generation, NVIDIA had already begun work on a highef-
ficiency floating-point and integer processor that could run a variety of
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simultaneous workloads to support the logical graphics pipeline. This processor
was designed to take advantage of the common case of groups of threads executing
the same code path. NVIDIA added memory load and store instructions with inte-
ger byte addressing to support the requirements of compiled C programs. It intro-
duced the thread block (cooperative thread array), grid of thread blocks, and barrier
synchronization to dispatch and manage highly parallel computing work. Atomic
memory operations were added. NVIDIA developed the CUDA C/C++ compiler,
libraries, and runtime software to enable programmers to readily access the new
data-parallel computation model and develop applications.

To create a vendor-neutral GPU programming language, a large number of com-
panies are creating compilers for the OpenCL language, which has many of the fea-
tures of CUDA but which runs onmanymore platforms. In 2011, the performance is
much higher if you write CUDA code for GPUs than if you write OpenCL code.

AMD’s acquisition of ATI, the second leading GPU vendor, suggests a spread
of GPU computing. The AMD Fusion architecture, announced just as this edition
was being finished, is an initial merger between traditional GPUs and traditional
CPUs. NVIDIA also announced Project Denver, which combines an ARM scalar
processor with NVIDIA GPUs in a single address space. When these systems are
shipped, it will be interesting to learn just how tightly integrated they are and the
impact of integration on performance and energy of both data parallel and graphics
applications.
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M.7 The History of Multiprocessors and Parallel Processing
(Chapter 5 and Appendices F, G, and I)

There is a tremendous amount of history in multiprocessors; in this section, we
divide our discussion by both time period and architecture. We start with the SIMD
approach and the Illiac IV. We then turn to a short discussion of some other early
experimental multiprocessors and progress to a discussion of some of the great
debates in parallel processing. Next we discuss the historical roots of the present
multiprocessors and conclude by discussing recent advances.

SIMD Computers: Attractive Idea, Many Attempts,
No Lasting Successes

The cost of a general multiprocessor is, however, very high and further design
options were considered which would decrease the cost without seriously
degrading the power or efficiency of the system. The options consist of recen-
tralizing one of the three major components. … Centralizing the [control unit]
gives rise to the basic organization of [an] … array processor such as the
Illiac IV.

Bouknight et al. [1972]
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The SIMD model was one of the earliest models of parallel computing, dating
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that mul-
tiprocessor, as in more recent SIMDmultiprocessors, is to have a single instruction
that operates on many data items at once, using many functional units.

The earliest ideas on SIMD-style computers are from Unger [1958] and Slot-
nick, Borck, and McReynolds [1962]. Slotnick’s Solomon design formed the basis
of the Illiac IV, perhaps the most infamous of the supercomputer projects.
Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the planned
multiprocessor. Actual performance was at best 15 MFLOPS versus initial predic-
tions of 1000MFLOPS for the full system [Hord 1982]. Delivered to NASAAmes
Research in 1972, the computer took three more years of engineering before it was
usable. These events slowed investigation of SIMD, but Danny Hillis [1985] resus-
citated this style in the Connection Machine, which had 65,636 1-bit processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions.
There is an SISD host computer to perform operations such as branches and
address calculations that do not need parallel operation. The SIMD instructions
are broadcast to all the execution units, each of which has its own set of registers.
For flexibility, individual execution units can be disabled during an SIMD instruc-
tion. In addition, massively parallel SIMDmultiprocessors rely on interconnection
or communication networks to exchange data between processing elements.

SIMDworks best in dealing with arrays in for loops; hence, to have the opportu-
nity for massive parallelism in SIMD there must be massive amounts of data, or data
parallelism. SIMDis at itsweakest in case statements,where eachexecutionunitmust
perform adifferent operation on its data, depending onwhat data it has. The execution
units with the wrong data are disabled so that the proper units can continue. Such sit-
uations essentially run at 1/nth performance, where n is the number of cases.

The basic trade-off in SIMD multiprocessors is performance of a processor
versus number of processors. Recent multiprocessors emphasize a large degree
of parallelism over performance of the individual processors. The Connection
Multiprocessor 2, for example, offered 65,536 single-bit-wide processors, while
the Illiac IV had 64 64-bit processors.

After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMDmodel has once again been put to bed as a general-purpose mul-
tiprocessor architecture, for two main reasons. First, it is too inflexible. A number
of important problems cannot use such a style of multiprocessor, and the architec-
ture does not scale down in a competitive fashion; that is, small-scale SIMD
multiprocessors often have worse cost-performance compared with that of the
alternatives. Second, SIMD cannot take advantage of the tremendous performance
and cost advantages of microprocessor technology. Instead of leveraging this low-
cost technology, designers of SIMDmultiprocessors must build custom processors
for their multiprocessors.

Although SIMD computers have departed from the scene as general-purpose
alternatives, this style of architecture will continue to have a role in special-purpose
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designs. Many special-purpose tasks are highly data parallel and require a limited
set of functional units. Thus, designers can build in support for certain operations,
as well as hardwired interconnection paths among functional units. Such organi-
zations are often called array processors, and they are useful for such tasks as
image and signal processing.

Other Early Experiments

It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first
computer from the Eckert-Mauchly Corporation, for example, had duplicate units
to improve availability. Holland [1959] gave early arguments for multiple proces-
sors. Two of the best-documented multiprocessor projects were undertaken in the
1970s at CarnegieMellon University. The first of these was C.mmp [Wulf and Bell
1972; Wulf and Harbison 1978], which consisted of 16 PDP-11s connected by a
crossbar switch to 16 memory units. It was among the first multiprocessors with
more than a few processors, and it had a shared-memory programming model.
Much of the focus of the research in the C.mmp project was on software, especially
in the OS area. A later multiprocessor, Cm* [Swan et al. 1977], was a cluster-based
multiprocessor with a distributed memory and a nonuniform access time. The
absence of caches and a long remote access latency made data placement critical.
This multiprocessor and a number of application experiments are well described by
Gehringer, Siewiorek, and Segall [1987]. Many of the ideas in these multiproces-
sors would be reused in the 1980s when the microprocessor made it much cheaper
to build multiprocessors.

Great Debates in Parallel Processing

The turning away from the conventional organization came in the middle 1960s,
when the law of diminishing returns began to take effect in the effort to increase
the operational speed of a computer.… Electronic circuits are ultimately limited in
their speed of operation by the speed of light … and many of the circuits were
already operating in the nanosecond range.

Bouknight et al. [1972]

… sequential computers are approaching a fundamental physical limit on their
potential computational power. Such a limit is the speed of light …

Angel L. DeCegama
The Technology of Parallel Processing, Vol. I (1989)

… today’s multiprocessors … are nearing an impasse as technologies approach
the speed of light. Even if the components of a sequential processor could bemade
to work this fast, the best that could be expected is no more than a few million
instructions per second.

David Mitchell
The Transputer: The Time Is Now (1989)
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The quotes above give the classic arguments for abandoning the current form
of computing, and Amdahl [1967] gave the classic reply in support of continued
focus on the IBM 360 architecture. Arguments for the advantages of parallel exe-
cution can be traced back to the 19th century [Menabrea 1842]! Yet, the effective-
ness of the multiprocessor for reducing latency of individual important programs is
still being explored. Aside from these debates about the advantages and limitations
of parallelism, several hot debates have focused on how to build multiprocessors.

It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions for
1995. We included these predictions in the first edition of the book, when the out-
come was completely unclear. We discuss them in this section, together with an
assessment of the accuracy of the prediction.

The first was that a computer capable of sustaining a teraFLOPS—one million
MFLOPS—would be constructed by 1995, using either a multicomputer with 4K
to 32K nodes or a Connection Multiprocessor with several million processing ele-
ments [Bell 1989]. To put this prediction in perspective, each year the Gordon Bell
Prize acknowledges advances in parallelism, including the fastest real program
(highest MFLOPS). In 1989, the winner used an eight-processor Cray Y-MP to
run at 1680 MFLOPS. On the basis of these numbers, multiprocessors and pro-
grams would have to have improved by a factor of 3.6 each year for the fastest
program to achieve 1 TFLOPS in 1995. In 1999, the first Gordon Bell prize winner
crossed the 1 TFLOPS bar. Using a 5832-processor IBM RS/6000 SST system
designed specially for Livermore Laboratories, they achieved 1.18 TFLOPS on
a shock-wave simulation. This ratio represents a year-to-year improvement of
1.93, which is still quite impressive.

What has become recognized since the 1990s is that, although wemay have the
technology to build a TFLOPS multiprocessor, it is not clear that the machine is
cost effective, except perhaps for a few very specialized and critically important
applications related to national security. We estimated in 1990 that to achieve 1
TFLOPS would require a machine with about 5000 processors and would cost
about $100 million. The 5832-processor IBM system at Livermore cost $110 mil-
lion. As might be expected, improvements in the performance of individual micro-
processors both in cost and performance directly affect the cost and performance of
large-scale multiprocessors, but a 5000-processor system will cost more than 5000
times the price of a desktop system using the same processor. Since that time, much
faster multiprocessors have been built, but the major improvements have increas-
ingly come from the processors in the past five years, rather than fundamental
breakthroughs in parallel architecture.

The second Bell prediction concerned the number of data streams in supercom-
puters shipped in 1995. Danny Hillis believed that, although supercomputers with
a small number of data streams may be the best sellers, the biggest multiprocessors
would be multiprocessors with many data streams, and these would perform the
bulk of the computations. Bell bet Hillis that in the last quarter of calendar year
1995 more sustained MFLOPS would be shipped in multiprocessors using few
data streams (�100) rather than many data streams (�1000). This bet concerned
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only supercomputers, defined as multiprocessors costing more than $1 million and
used for scientific applications. Sustained MFLOPS was defined for this bet as the
number of floating-point operations per month, so availability of multiprocessors
affects their rating.

In 1989, when this bet was made, it was totally unclear who would win. In
1995, a survey of the current publicly known supercomputers showed only six
multiprocessors in existence in the world with more than 1000 data streams,
so Bell’s prediction was a clear winner. In fact, in 1995, much smaller
microprocessor-based multiprocessors (�20 processors) were becoming domi-
nant. In 1995, a survey of the 500 highest-performance multiprocessors in use
(based on Linpack ratings), called the TOP500, showed that the largest number
of multiprocessors were bus-based shared-memory multiprocessors! By 2005,
various clusters or multicomputers played a large role. For example, in the top
25 systems, 11 were custom clusters, such as the IBM Blue Gene system or the
Cray XT3; 10 were clusters of shared-memory multiprocessors (both using distrib-
uted and centralized memory); and the remaining 4 were clusters built using PCs
with an off-the-shelf interconnect.

More Recent Advances and Developments

With the primary exception of the parallel vector multiprocessors (see Appendix
G) and more recently of the IBM Blue Gene design, all other recent MIMD
computers have been built from off-the-shelf microprocessors using a bus and log-
ically central memory or an interconnection network and a distributed memory. A
number of experimental multiprocessors built in the 1980s further refined and
enhanced the concepts that form the basis for many of today’s multiprocessors.

The Development of Bus-Based Coherent Multiprocessors

Although very large mainframes were built with multiple processors in the 1960s
and 1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggested that the key was that the smaller size of the microprocessor
allowed the memory bus to replace the interconnection network hardware and that
portable operating systems meant that multiprocessor projects no longer required
the invention of a new operating system. In his paper, Bell defined the terms mul-
tiprocessor and multicomputer and set the stage for two different approaches to
building larger scale multiprocessors.

The first bus-based multiprocessor with snooping caches was the Synapse
N+1 described by Frank [1984]. Goodman [1983] wrote one of the first papers
to describe snooping caches. The late 1980s saw the introduction of many commer-
cial bus-based, snooping cache architectures, including the Silicon Graphics
4D/240 [Baskett, Jermoluk, and Solomon 1988], the Encore Multimax [Wilson
1987], and the Sequent Symmetry [Lovett and Thakkar 1988]. The mid-1980s
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saw an explosion in the development of alternative coherence protocols, and
Archibald and Baer [1986] provided a good survey and analysis, as well as refer-
ences to the original papers. Figure M.2 summarizes several snooping cache coher-
ence protocols and shows some multiprocessors that have used or are using that
protocol.

The early 1990s saw the beginning of an expansion of such systems with the
use of very wide, high-speed buses (the SGI Challenge system used a 256-bit,
packet-oriented bus supporting up to 8 processor boards and 32 processors) and
later the use of multiple buses and crossbar interconnects—for example, in the
Sun SPARCCenter and Enterprise systems (Charlesworth [1998] discussed the
interconnect architecture of these multiprocessors). In 2001, the Sun Enterprise
servers represented the primary example of large-scale (>16 processors), symmet-
ric multiprocessors in active use. Today, most bus-based machines offer only four
or so processors and switches, or alternative designs are used for eight or more.

Toward Large-Scale Multiprocessors

In the effort to build large-scale multiprocessors, two different directions were
explored: message-passing multicomputers and scalable shared-memory multipro-
cessors. Although there had been many attempts to build mesh and hypercube-
connected multiprocessors, one of the first multiprocessors to successfully bring
together all the pieces was the Cosmic Cube built at Caltech [Seitz 1985]. It intro-
duced important advances in routing and interconnect technology and substantially

Name
Protocol
type Memory write policy Unique feature Multiprocessors using

Write
Once

Write
invalidate

Write-back after first
write

First snooping protocol
described in literature

Synapse
N+1

Write
invalidate

Write-back Explicit state where memory is
the owner

Synapse multiprocessors; first
cache-coherent multiprocessors
available

Berkeley
(MOESI)

Write
invalidate

Write-back Owned shared state Berkeley SPUR multiprocessor;
Sun Enterprise servers

Illinois
(MESI)

Write
invalidate

Write-back Clean private state; can supply
data from any cache with a
clean copy

SGI Power and Challenge series

“Firefly” Write
broadcast

Write-back when
private, write through
when shared

Memory updated on broadcast No current multiprocessors;
SPARCCenter 2000 closest

Figure M.2 Five snooping protocols summarized. Archibald and Baer [1986] use these names to describe the five
protocols, and Eggers [1989] summarizes the similarities and differences as shown in this figure. The Firefly protocol
was named for the experimental DEC Firefly multiprocessor, in which it appeared. The alternative names for protocols
are based on the states they support: M¼Modified, E¼Exclusive (private clean), S¼Shared, I¼ Invalid, O¼Owner
(shared dirty).
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reduced the cost of the interconnect, which helped make the multicomputer viable.
The Intel iPSC 860, a hypercube-connected collection of i860s, was based on these
ideas. More recent multiprocessors, such as the Intel Paragon, have used networks
with lower dimensionality and higher individual links. The Paragon also employed
a separate i860 as a communications controller in each node, although a number of
users have found it better to use both i860 processors for computation as well as
communication. The Thinking Multiprocessors CM-5 made use of off-the-shelf
microprocessors and a fat tree interconnect (see Appendix F). It provided user-
level access to the communication channel, thus significantly improving commu-
nication latency. In 1995, these two multiprocessors represented the state of the art
in message-passing multicomputers.

Early attempts at building a scalable shared-memorymultiprocessor include the
IBMRP3 [Pfister et al. 1985], the NYUUltracomputer [Elder et al. 1985; Schwartz
1980], the University of Illinois Cedar project [Gajksi et al. 1983], and the BBN
Butterfly and Monarch [BBN Laboratories 1986; Rettberg et al. 1990]. These
multiprocessors all provided variations on a nonuniformdistributed-memorymodel
and, hence, are distributed shared-memory (DSM) multiprocessors, but they did
not support cache coherence, which substantially complicated programming.
The RP3 and Ultracomputer projects both explored new ideas in synchronization
(fetch-and-operate) as well as the idea of combining references in the network.
In all four multiprocessors, the interconnect networks turned out to be more
costly than the processing nodes, raising problems for smaller versions of the
multiprocessor. The Cray T3D/E (see Arpaci et al. [1995] for an evaluation of
theT3DandScott [1996] for a description of theT3E enhancements) builds on these
ideas, using a noncoherent shared address space but building on the advances in
interconnect technology developed in the multicomputer domain (see Scott and
Thorson [1996]).

Extending the shared-memory model with scalable cache coherence was done
by combining a number of ideas. Directory-based techniques for cache coherence
were actually known before snooping cache techniques. In fact, the first cache
coherence protocols actually used directories, as described by Tang [1976] and
implemented in the IBM 3081. Censier and Feautrier [1978] described a directory
coherence scheme with tags in memory. The idea of distributing directories with
the memories to obtain a scalable implementation of cache coherence was first
described by Agarwal et al. [1988] and served as the basis for the Stanford DASH
multiprocessor (see Lenoski et al. [1990, 1992]), which was the first operational
cache-coherent DSM multiprocessor. DASH was a “plump” node cc-NUMA
machine that used four-processor SMPs as its nodes, interconnecting them in a
style similar to that of Wildfire but using a more scalable two-dimensional grid
rather than a crossbar for the interconnect.

The Kendall Square Research KSR-1 [Burkhardt et al. 1992] was the first com-
mercial implementation of scalable coherent shared memory. It extended the basic
DSM approach to implement a concept called cache-only memory architecture
(COMA), which makes the main memory a cache. In the KSR-1, memory blocks
could be replicated in the main memories of each node with hardware support to
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handle the additional coherence requirements for these replicatedblocks. (TheKSR-1
was not strictly a pure COMA because it did not migrate the home location of a data
item but always kept a copy at home. Essentially, it implemented only replication.)
Manyother research proposals [Falsafi andWood1997;Hagersten, Landin, andHar-
idi 1992; Saulsbury et al. 1995; Stenstr€om, Joe, and Gupta 1992] for COMA-style
architectures and similar approaches that reduce the burden of nonuniform memory
access throughmigration [Chandra et al. 1994; Soundararajan et al. 1998]weredevel-
oped, but there have been no further commercial implementations.

The Convex Exemplar implemented scalable coherent shared memory using a
two-level architecture: At the lowest level, eight-processor modules are built using
a crossbar. A ring can then connect up to 32 of these modules, for a total of 256
processors (see Thekkath et al. [1997] for an evaluation). Laudon and Lenoski
[1997] described the SGI Origin, which was first delivered in 1996 and is closely
based on the original Stanford DASH machine, although including a number of
innovations for scalability and ease of programming. Origin uses a bit vector
for the directory structure, which is either 16 or 32 bits long. Each bit represents
a node, which consists of two processors; a coarse bit vector representation allows
each bit to represent up to 8 nodes for a total of 1024 processors. As Galles [1996]
described, a high-performance fat hypercube is used for the global interconnect.
Hristea, Lenoski, and Keen [1997] have provided a thorough evaluation of the
performance of the Origin memory system.

Several research prototypes were undertaken to explore scalable coherence
with and without multithreading. These include the MIT Alewife machine
[Agarwal et al. 1995] and the Stanford FLASH multiprocessor [Gibson et al.
2000; Kuskin et al. 1994].

Clusters

Clusters were probably “invented” in the 1960s by customers who could not fit
all their work on one computer or who needed a backup machine in case of failure
of the primary machine [Pfister 1998]. Tandem introduced a 16-node cluster in
1975.Digital followedwithVAXclusters, introduced in 1984.Theywere originally
independent computers that shared I/O devices, requiring a distributed operating
system to coordinate activity. Soon they had communication links between com-
puters, in part so that the computers could be geographically distributed to
increase availability in case of a disaster at a single site. Users log onto the cluster
and are unaware of which machine they are running on. DEC (now HP) sold
more than 25,000 clusters by 1993. Other early companies were Tandem (now
HP) and IBM (still IBM). Today, virtually every company has cluster products.
Most of these products are aimed at availability, with performance scaling as a
secondary benefit.

Scientific computing on clusters emerged as a competitor toMPPs. In 1993, the
Beowulf project started with the goal of fulfilling NASA’s desire for a 1 GFLOPS
computer for under $50,000. In 1994, a 16-node cluster built from off-the-shelf
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PCs using 80486s achieved that goal [Bell and Gray 2001]. This emphasis led to a
variety of software interfaces to make it easier to submit, coordinate, and debug
large programs or a large number of independent programs.

Efforts were made to reduce latency of communication in clusters as well as to
increase bandwidth, and several research projects worked on that problem.
(One commercial result of the low-latency research was the VI interface standard,
which has been embraced by Infiniband, discussed below.) Low latency then
proved useful in other applications. For example, in 1997 a cluster of 100 Ultra-
SPARC desktop computers at the University of California–Berkeley, connected by
160 MB/sec per link Myrinet switches, was used to set world records in database
sort—sorting 8.6 GB of data originally on disk in 1 minute—and in cracking an
encrypted message—taking just 3.5 hours to decipher a 40-bit DES key.

This research project, called Network of Workstations [Anderson, Culler, and
Patterson 1995], also developed the Inktomi search engine, which led to a startup
company with the same name. Google followed the example of Inktomi to build
search engines from clusters of desktop computers rather large-scale SMPs, which
was the strategy of the leading search engine Alta Vista that Google overtook [Brin
and Page 1998]. In 2011, nearly all Internet services rely on clusters to serve their
millions of customers.

Clusters are also very popular with scientists. One reason is their low cost, so
individual scientists or small groups can own a cluster dedicated to their programs.
Such clusters can get results faster than waiting in the long job queues of the shared
MPPs at supercomputer centers, which can stretch to weeks. For those interested in
learning more, Pfister [1998] wrote an entertaining book on clusters.

Recent Trends in Large-Scale Multiprocessors

In the mid- to late 1990s, it became clear that the hoped for growth in the market for
ultralarge-scale parallel computing was unlikely to occur. Without this market
growth, it became increasingly clear that the high-end parallel computing market
could not support the costs of highly customized hardware and software designed
for a small market. Perhaps the most important trend to come out of this observa-
tion was that clustering would be used to reach the highest levels of performance.
There are now four general classes of large-scale multiprocessors:

■ Clusters that integrate standard desktop motherboards using interconnection
technology such as Myrinet or Infiniband.

■ Multicomputers built from standard microprocessors configured into proces-
sing elements and connectedwith a custom interconnect. These include theCray
XT3 (which used an earlier version of Cray interconnect with a simple cluster
architecture) and IBM Blue Gene (more on this unique machine momentarily).

■ Clusters of small-scale shared-memory computers, possibly with vector
support, which includes the Earth Simulator (which has its own journal
available online).
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■ Large-scale shared-memory multiprocessors, such as the Cray X1 [Dunigan
et al. 2005] and SGI Origin and Altix systems. The SGI systems have also been
configured into clusters to provide more than 512 processors, although only
message passing is supported across the clusters.

The IBM Blue Gene is the most interesting of these designs since its rationale par-
allels the underlying causes of the recent trend toward multicore in uniprocessor
architectures. Blue Gene started as a research project within IBM aimed at the pro-
tein sequencing and folding problem. The Blue Gene designers observed that
power was becoming an increasing concern in large-scale multiprocessors and
that the performance/watt of processors from the embedded space was much better
that those in the high-end uniprocessor space. If parallelism was the route to high
performance, why not start with the most efficient building block and simply have
more of them?

Thus, Blue Gene is constructed using a custom chip that includes an embedded
PowerPC microprocessor offering half the performance of a high-end PowerPC,
but at a much smaller fraction of the area of power. This allows more system func-
tions, including the global interconnect, to be integrated onto the same die. The
result is a highly replicable and efficient building block, allowing Blue Gene to
reach much larger processor counts more efficiently. Instead of using stand-alone
microprocessors or standard desktop boards as building blocks, Blue Gene uses
processor cores. There is no doubt that such an approach provides much greater
efficiency. Whether the market can support the cost of a customized design and
special software remains an open question.

In 2006, a Blue Gene processor at Lawrence Livermore with 32K processors
(and scheduled to go to 65K in late 2005) holds a factor of 2.6 lead in Linpack
performance over the third-place system consisting of 20 SGI Altix 512-processor
systems interconnected with Infiniband as a cluster.

Blue Gene’s predecessor was an experimental machine, QCDOD, which pio-
neered the concept of a machine using a lower-power embedded microprocessor
and tightly integrated interconnect to drive down the cost and power consumption
of a node.

Developments in Synchronization and Consistency Models

A wide variety of synchronization primitives have been proposed for shared-
memory multiprocessors. Mellor-Crummey and Scott [1991] provided an over-
view of the issues as well as efficient implementations of important primitives,
such as locks and barriers. An extensive bibliography supplies references to other
important contributions, including developments in spin locks, queuing locks, and
barriers. Lamport [1979] introduced the concept of sequential consistency and
what correct execution of parallel programs means. Dubois, Scheurich, and Briggs
[1988] introduced the idea of weak ordering (originally in 1986). In 1990, Adve
and Hill provided a better definition of weak ordering and also defined the concept
of data-race-free; at the same conference, Gharachorloo and his colleagues [1990]
introduced release consistency and provided the first data on the performance of
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relaxed consistency models. More relaxed consistency models have been widely
adopted in microprocessor architectures, including the Sun SPARC, Alpha, and
IA-64. Adve andGharachorloo [1996] have provided an excellent tutorial onmem-
ory consistency and the differences among these models.

Other References

The concept of using virtual memory to implement a shared address space among
distinctmachines was pioneered inKai Li’s Ivy system in 1988. There have been sub-
sequent papers exploring hardware support issues, software mechanisms, and pro-
gramming issues. Amza et al. [1996] described a system built on workstations using
a new consistency model, Kontothanassis et al. [1997] described a software shared-
memory scheme using remote writes, and Erlichson et al. [1996] described the use
of shared virtual memory to build large-scale multiprocessors using SMPs as nodes.

There isanalmostunboundedamountof informationonmultiprocessorsandmul-
ticomputers: Conferences, journal papers, and even books seem to appear faster than
any single person can absorb the ideas. No doubt many of these papers will go unno-
ticed—not unlike the past.Most of themajor architecture conferences contain papers
on multiprocessors. An annual conference, Supercomputing XY (where X and Y are
the last two digits of the year), brings together users, architects, software developers,
and vendors, and the proceedings are published in book, CD-ROM, and online (see
www.scXY.org) form. Twomajor journals, Journal of Parallel andDistributedCom-
puting and the IEEE Transactions on Parallel and Distributed Systems, contain
papers on all aspects of parallel processing. Several books focusing on parallel pro-
cessing are included in the following references,withCuller, Singh, andGupta [1999]
being the most recent, large-scale effort. For years, Eugene Miya of NASA Ames
Research Center has collected an online bibliography of parallel-processing papers.
The bibliography,which nowcontainsmore than35,000 entries, is available online at
liinwww.ira.uka.de/bibliography/Parallel/Eugene/index.html.

In addition to documenting the discovery of concepts now used in practice,
these references also provide descriptions of many ideas that have been explored
and found wanting, as well as ideas whose time has just not yet come. Given the
move toward multicore and multiprocessors as the future of high-performance
computer architecture, we expect that many new approaches will be explored in
the years ahead. A few of them will manage to solve the hardware and software
problems that have been the key to using multiprocessing for the past 40 years!
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M.8 The Development of Clusters (Chapter 6)

In this section, we cover the development of clusters that were the foundation of
warehouse-scale computers (WSCs) and of utility computing. (Readers interested
in learning more should start with Barroso and H€olzle [2009] and the blog postings
and talks of James Hamilton at http://perspectives.mvdirona.com.)

Clusters, the Forerunner of WSCs

Clusters were probably “invented” in the 1960s by customers who could not fit
all their work on one computer or who needed a backup machine in case of failure
of the primary machine [Pfister 1998]. Tandem introduced a 16-node cluster in
1975.Digital followedwithVAXclusters, introduced in 1984.Theywere originally
independent computers that shared I/O devices, requiring a distributed operating
system to coordinate activity. Soon they had communication links between com-
puters, in part so that the computers could be geographically distributed to increase
availability in case of a disaster at a single site. Users log onto the cluster and are
unaware of which machine they are running on. DEC (now HP) sold more than
25,000 clusters by 1993. Other early companies were Tandem (now HP) and
IBM(still IBM). Today, virtually every companyhas cluster products.Most of these
products are aimed at availability, with performance scaling as a secondary benefit.

Scientific computing on clusters emerged as a competitor toMPPs. In 1993, the
Beowulf project started with the goal of fulfilling NASA’s desire for a 1 GFLOPS
computer for under $50,000. In 1994, a 16-node cluster built from off-the-shelf
PCs using 80486s achieved that goal [Bell and Gray 2001]. This emphasis led
to a variety of software interfaces to make it easier to submit, coordinate, and debug
large programs or a large number of independent programs.

Efforts were made to reduce latency of communication in clusters as well as to
increase bandwidth, and several research projects worked on that problem. (One
commercial result of the low-latency research was the VI interface standard, which
has been embraced by Infiniband, discussed below.) Low latency then proved use-
ful in other applications. For example, in 1997 a cluster of 100 UltraSPARC desk-
top computers at the University of California–Berkeley, connected by 160 MB/sec
per link Myrinet switches, was used to set world records in database sort—sorting
8.6 GB of data originally on disk in 1 minute—and in cracking an encrypted mes-
sage—taking just 3.5 hours to decipher a 40-bit DES key.

This research project, called Network of Workstations [Anderson, Culler, and
Patterson 1995], also developed the Inktomi search engine, which led to a start-up
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company with the same name. Eric Brewer led the Inktomi effort at Berkeley and
then at the company to demonstrate the use of commodity hardware to build com-
puting infrastructure for Internet services. Using standardized networks within a
rack of PC servers gave Inktomi better scalability. In contrast, the strategy of
the prior leading search engine Alta Vista was to build from large-scale SMPs.
Compared to the high-performance computing work in clusters, the emphasis
was on a relatively large number of low-cost nodes and a clear programming
model. Hence, the NOW project and Inktomi are considered the foundation of
WSCs and Cloud Computing. Google followed the example of Inktomi technology
when it took the leading search engine mantle from Inktomi just as Inktomi had
taken it from Alta Vista [Brin and Page 1998]. (Google’s initial innovation was
search quality; the WSC innovations came much later.) For many years now,
all Internet services have relied on cluster technology to serve their millions of
customers.

Utility Computing, the Forerunner of Cloud Computing

As stated in the text, the earliest version of utility computing was timesharing.
Although timesharing faded away over time with the creation of smaller and
cheaper personal computers, in the last decade there have been many less than fully
successful attempts to resuscitate utility computing. Sun began selling time on Sun
Cloud at $1 per hour in 2000, HP offered a Utility Data Center in 2001, and Intel
tried selling time on internal supercomputers in the early 2000s. Although they
were commercially available, few customers used them.

A related topic is grid computing, which was originally invented so that scien-
tific programs could be run across geographically distributed computing facilities.
At the time, some questioned the wisdom of this goal, setting aside how difficult it
would be to achieve. Grid computing tended to require very large systems running
very large programs, using multiple datacenters for the tasks. Single applications
did not really run well when geographically distributed, given the long latencies
inherent with long distance. This first step eventually led to some conventions
for data access, but the grid computing community did not develop APIs that were
useful beyond the high-performance computing community, so the cloud comput-
ing effort shares little code or history with grid computing.

Armbrust et al [2009] argued that, once the Internet service companies solved
the operational problems to work at large scale, the significant economies of scale
that they uncovered brought their costs down below those of smaller datacenters.
Amazon recognized that if this cost advantage was true then Amazon should be
able to make a profit selling this service. In 2006, Amazon announced Elastic
Cloud Computing (EC2) at $0.10 per hour per instance. The subsequent popularity
of EC2 led other Internet companies to offer cloud computing services, such as
Google App Engine and Microsoft Azure, albeit at higher abstraction levels than
the x86 virtual machines of Amazon Web Services. Hence, the current popularity
of pay-as-you go computing isn’t because someone recently came up with the idea;
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it’s because the technology and business models have aligned so that companies
can make money offering a service that many people want to use. Time will tell
whether there will be many successful utility computing models or whether the
industry will converge around a single standard. It will certainly be interesting
to watch.

Containers

In the fall of 2003, many people were thinking about using containers to hold
servers. Brewster Kahle, director and founder of the Internet Archive, gave talks
about how he could fit the whole archive in a single 40-foot container. His interest
was making copies of the Archive and distributing it around the world to ensure its
survivability, thereby avoiding the fate of the Library of Alexandria that was
destroyed by fire in 48 B.C.E. People working with Kahle wrote a white paper
based on his talk in November 2003 to get more detail about what a container
design would look like.

That same year, engineers at Google were also looking at building datacenters
using containers and submitted a patent on aspects of it in December 2003. The
first container for a datacenter was delivered in January 2005, and Google received
the patent in October 2007. Google publicly revealed the use of containers in
April 2009.

Greg Papadopolous of Sun Microsystems and Danny Hillis of Applied Minds
heard Kahle’s talk and designed a product called the Sun Modular Datacenter that
debuted in October 2006. (The project code name was Black Box, a term many
people still use.) This half-length (20-foot) container could hold 280 servers. This
product release combined with Microsoft’s announcement that they were building
a datacenter designed to hold 220 40-foot containers inspired many other compa-
nies to offer containers and servers designed to be placed in them.

In a nice turn of events, in 2009 the Internet Archive migrated its data to a Sun
Modular Datacenter. A copy of the Internet Archive is now at the New Library of
Alexandria in Egypt, near the site of the original library.
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M.9 Historical Perspectives and References

As architects experiment with DSAs, knowing architecture history may help.
There are likely older architecture ideas that were unsuccessful for general-purpose
computing that could nevertheless make eminent sense for domain-specific archi-
tectures. After all, they probably did some things well, and either they might match
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your domain, or, conversely, your domain might omit features that were challenges
for these architectures. For example, both the Illiac IV (Barnes et al., 1968) from
the 1960s and the FPS 120a (Charlesworth, 1981) from the 1970s had two-
dimensional arrays of processing elements, so they are proper ancestors to the
TPU and Paintbox. Similarly, while VLIW architectures of the Multiflow (Rau
and Fisher, 1993) and Itanium (Sharangpani and Arora, 2000) were not commer-
cial successes for general-purpose computing, Paintbox does not have the erratic
data cache misses, unpredictable branches, or large code footprint that were diffi-
cult for VLIW architectures.

Two survey articles document that custom neural network ASICs go back at
least 25 years (Ienne et al., 1996; Asanovi�c, 2002). For example, CNAPS chips
contained a 64 SIMD array of 16-bit by 8-bit multipliers, and several CNAPS chips
could be connected together with a sequencer (Hammerstrom, 1990). The
Synapse-1 system was based on a custom systolic multiply-accumulate chip called
the MA-16, which performed sixteen 16-bit multiplications at a time (Ramacher
et al., 1991). The system concatenated MA-16 chips and had custom hardware
to do activation functions.

Twenty-five SPERT-II workstations, accelerated by the T0 customASIC, were
deployed starting in 1995 to do both NN training and inference for speech recog-
nition (Asanovi�c et al., 1998). The 40-MHz T0 added vector instructions to the
MIPS instruction set architecture. The eight-lane vector unit could produce up
to sixteen 32-bit arithmetic results per clock cycle based on 8-bit and 16-bit inputs,
making it 25 times faster at inference and 20 times faster at training than a SPARC-
20 workstation. They found that 16 bits were insufficient for training, so they used
two 16-bit words instead, which doubled training time. To overcome that draw-
back, they introduced “bunches” (batches) of 32–1000 data sets to reduce time
spent updating weights, which made it faster than training with one word but
no batches.

We use the phrase Image Processing Unit for Paintbox to identify this emerg-
ing class of processor, but this is not the first use of the term. The earliest use we can
find is 1999, when the Sony Playstation put the name on a chip that was basically
an MPEG2 decoder (Sony/Toshiba, 1999). In 2006, Freescale used IPU to name
part of the i.MX31 Applications Processor, which is closer to the more generic way
we interpret it (Freescale as part of i.MX31 Applications Processor, 2006).
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M.10 The History of Magnetic Storage, RAID, and I/O Buses
(Appendix D)

Mass storage is a term used there to imply a unit capacity in excess of one million
alphanumeric characters …

Hoagland [1963]

The variety of storage I/O and issues leads to a varied history for the rest of
the story. (Smotherman [1989] explored the history of I/O in more depth.) This
section discusses magnetic storage, RAID, and I/O buses and controllers.
Jain [1991] and Lazowska et al. [1984] are books for those interested in learning
more about queuing theory.
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Magnetic Storage

Magnetic recording was invented to record sound, and by 1941 magnetic tape was
able to compete with other storage devices. It was the success of the ENIAC in
1947 that led to the push to use tapes to record digital information. Reels of mag-
netic tapes dominated removable storage through the 1970s. In the 1980s, the IBM
3480 cartridge became the de facto standard, at least for mainframes. It can transfer
at 3 MB/sec by reading 18 tracks in parallel. The capacity is just 200 MB for this 1/
2-inch tape. The 9840 cartridge, used by StorageTek in the Powder-Horn, transfers
at 10 MB/sec and stores 20,000 MB. This device records the tracks in a zigzag
fashion rather than just longitudinally, so that the head reverses direction to follow
the track. This technique is called serpentine recording. Another 1/2-inch tape is
Digital Linear Tape; the DLT7000 stores 35,000 MB and transfers at 5 MB/sec. Its
competitor is helical scan, which rotates the head to get the increased recording
density. In 2001, the 8-mm helical-scan tapes contain 20,000 MB and transfer
at about 3 MB/sec. Whatever their density and cost, the serial nature of tapes cre-
ates an appetite for storage devices with random access.

In 1953, Reynold B. Johnson of IBM picked a staff of 15 scientists with the
goal of building a radically faster random access storage system than tape. The goal
was to have the storage equivalent of 50,000 standard IBM punch cards and to
fetch the data in a single second. Johnson’s disk drive design was simple but
untried: The magnetic read/write sensors would have to float a few thousandths
of an inch above the continuously rotating disk. Twenty-four months later the team
emerged with the functional prototype. It weighed 1 ton and occupied about 300
cubic feet of space. The RAMAC-350 (Random Access Method of Accounting
Control) used 50 platters that were 24 inches in diameter, rotated at 1200 RPM,
with a total capacity of 5 MB and an access time of 1 second.

Starting with the RAMAC, IBM maintained its leadership in the disk industry,
with its storage headquarters in San Jose, California, where Johnson’s team did its
work. Many of the future leaders of competing disk manufacturers started their
careers at IBM, and many disk companies are located near San Jose.

Although RAMAC contained the first disk, a major breakthrough in magnetic
recording was found in later disks with air-bearing read/write heads, where
the head would ride on a cushion of air created by the fast-moving disk surface.
This cushion meant the head could both follow imperfections in the surface and
yet be very close to the surface. Subsequent advances have come largely from
improved quality of components and higher precision. In 2001, heads flew 2 to
3 microinches above the surface, whereas in the RAMAC drive they were 1000
microinches away.

Moving-head disks quickly became the dominant high-speed magnetic stor-
age, although their high cost meant that magnetic tape continued to be used
extensively until the 1970s. The next important development for hard disks was
the removable hard disk drive developed by IBM in 1962; this made it possible
to share the expensive drive electronics and helped disks overtake tapes as the pre-
ferred storage medium. The IBM 1311 disk in 1962 had an areal density of 50,000
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bits per square inch and a cost of about $800 per megabyte. IBM also invented the
floppy disk drive in 1970, originally to hold microcode for the IBM 370 series.
Floppy disks became popular with the PC about 10 years later.

The second major disk breakthrough was the so-called Winchester disk design
in about 1973. Winchester disks benefited from two related properties. First, inte-
grated circuits lowered the costs of not only CPUs but also of disk controllers and
the electronics to control disk arms. Reductions in the cost of the disk electronics
made it unnecessary to share the electronics and thus made nonremovable disks
economical. Since the disk was fixed and could be in a sealed enclosure, both
the environmental and control problems were greatly reduced. Sealing the system
allowed the heads to fly closer to the surface, which in turn enabled increases
in areal density. The first sealed disk that IBM shipped had two spindles, each
with a 30 MB disk; the moniker “30-30” for the disk led to the name Winchester.
(America’s most popular sporting rifle, the Winchester 94, was nicknamed the
“30-30” after the caliber of its cartridge.) Winchester disks grew rapidly in popu-
larity in the 1980s, completely replacing removable disks by the middle of that
decade. Before this time, the cost of the electronics to control the disk meant that
the media had to be removable.

As mentioned in Appendix D, as DRAMs started to close the areal density gap
and appeared to be catching up with disk storage, internal meetings at IBM called
into question the future of disk drives. Disk designers concluded that disks must
improve at 60% per year to forestall the DRAM threat, in contrast to the historical
29% per year. The essential enabler was magnetoresistive heads, with giant
magnetoresistive heads enabling the current densities. Because of this competition,
the gap in time between when a density record is achieved in the lab and when a
disk is shipped with that density has closed considerably.

The personal computer created a market for small form factor (SFF) disk
drives, since the 14-inch disk drives used in mainframes were bigger than
the PC. In 2006, the 3.5-inch drive was the market leader, although the smaller
2.5-inch drive required for laptop computers was significant in sales volume. It
remains to be seen whether handheld devices such as iPODs or video cameras,
which require even smaller disks, will remain significant in sales volume. For
example, 1.8-inch drives were developed in the early 1990s for palmtop com-
puters, but that market chose Flash instead and 1.8-inch drives disappeared.

RAID

The SFF hard disks for PCs in the 1980s led a group at Berkeley to propose redun-
dant arrays of inexpensive disks (RAID). This group had worked on the reduced
instruction set computer effort and so expected much faster CPUs to become avail-
able. They asked: What could be done with the small disks that accompanied their
PCs? and What could be done in the area of I/O to keep up with much faster pro-
cessors? They argued to replace one mainframe drive with 50 small drives to gain
much greater performance from that many independent arms. The many small
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drives even offered savings in power consumption and floor space. The downside
of many disks was much lower mean time to failure (MTTF). Hence, on their own
they reasoned out the advantages of redundant disks and rotating parity to address
how to get greater performance with many small drives yet have reliability as high
as that of a single mainframe disk.

The problem they experienced when explaining their ideas was that some
researchers had heard of disk arrays with some form of redundancy, and they didn’t
understand the Berkeley proposal. Hence, the first RAID paper [Patterson, Gibson,
and Katz 1987] is not only a case for arrays of SFF disk drives but also something
of a tutorial and classification of existing work on disk arrays. Mirroring (RAID 1)
had long been used in fault-tolerant computers such as those sold by Tandem.
Thinking Machines had arrays with 32 data disks and 7 check disks using ECC
for correction (RAID 2) in 1987, and Honeywell Bull had a RAID 2 product even
earlier. Also, disk arrays with a single parity disk had been used in scientific com-
puters in the same time frame (RAID 3). Their paper then described a single parity
disk with support for sector accesses (RAID 4) and rotated parity (RAID 5). Chen
et al. [1994] surveyed the original RAID ideas, commercial products, and more
recent developments.

Unknown to the Berkeley group, engineers at IBM working on the AS/400
computer also came up with rotated parity to give greater reliability for a collection
of large disks. IBM filed a patent on RAID 5 before the Berkeley group wrote their
paper. Patents for RAID 1, RAID 2, and RAID 3 from several companies predate
the IBM RAID 5 patent, which has led to plenty of courtroom action.

The Berkeley paper was written before the World Wide Web, but it captured
the imagination of many engineers, as copies were faxed around the world. One
engineer at what is now Seagate received seven copies of the paper from friends
and customers. EMC had been a supplier of DRAM boards for IBM computers, but
around 1988 new policies from IBM made it nearly impossible for EMC to con-
tinue to sell IBM memory boards. Apparently, the Berkeley paper also crossed the
desks of EMC executives, and they decided to go after the market dominated by
IBM disk storage products instead. As the paper advocated, their model was to use
many small drives to compete with mainframe drives, and EMC announced a
RAID product in 1990. It relied on mirroring (RAID 1) for reliability; RAID 5
products came much later for EMC. Over the next year, Micropolis offered a RAID
3 product, Compaq offered a RAID 4 product, and Data General, IBM, and NCR
offered RAID 5 products.

The RAID ideas soon spread to the rest of the workstation and server industry.
An article explaining RAID in Byte magazine (see Anderson [1990]) led to RAID
products being offered on desktop PCs, which was something of a surprise to the
Berkeley group. They had focused on performance with good availability, but
higher availability was attractive to the PC market.

Another surprise was the cost of the disk arrays. With redundant power sup-
plies and fans, the ability to “hot swap” a disk drive, the RAID hardware controller
itself, the redundant disks, and so on, the first disk arrays cost many times the cost
of the disks. Perhaps as a result, the “inexpensive” in RAID morphed into
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“independent.”Many marketing departments and technical writers today know of
RAID only as “redundant arrays of independent disks.”

The EMC transformation was successful; in 2006, EMC was the leading
supplier of storage systems, and NetApp was the leading supplier of Network-
Attached Storage systems. RAIDwas a $30 billion industry in 2006, and more than
80% of the non-PC drive sales were found in RAIDs. In recognition of their role, in
1999 Garth Gibson, Randy Katz, and David Patterson received the IEEE Reynold
B. Johnson Information Storage Award “for the development of Redundant Arrays
of Inexpensive Disks (RAID).”

I/O Buses and Controllers

The ubiquitous microprocessor inspired not only the personal computers of the
1970s but also the trend in the late 1980s and 1990s of moving controller functions
into I/O devices. I/O devices have continued this trend by moving controllers into
the devices themselves. These devices are called intelligent devices, and some bus
standards (e.g., SCSI) have been created specifically for them. Intelligent devices
can relax the timing constraints by handling many low-level tasks themselves and
queuing the results. For example, many SCSI-compatible disk drives include a
track buffer on the disk itself, supporting read ahead and connect/disconnect. Thus,
on a SCSI string some disks can be seeking and others loading their track buffer
while one is transferring data from its buffer over the SCSI bus. The controller in
the original RAMAC, built from vacuum tubes, only needed to move the head over
the desired track, wait for the data to pass under the head, and transfer data with
calculated parity. SCSI, which stands for small computer systems interface, is an
example of one company inventing a bus and generously encouraging other com-
panies to build devices that would plug into it. Shugart created this bus, originally
called SASI. It was later standardized by the IEEE.

There have been several candidates to be the successor to SCSI, with the cur-
rent leading contender being Fibre Channel Arbitrated Loop (FC-AL). The SCSI
committee continues to increase the clock rate of the bus, giving this standard a
new life, and SCSI is lasting much longer than some of its proposed successors.
With the creation of serial interfaces for SCSI (“Serial Attach SCSI”) and ATA
(“Serial ATA”), they may have very long lives.

Perhaps the first multivendor bus was the PDP-11 Unibus in 1970 from DEC.
Alas, this open-door policy on buses is in contrast to companies with proprietary
buses using patented interfaces, thereby preventing competition from plug-
compatible vendors. Making a bus proprietary also raises costs and lowers the
number of available I/O devices that plug into it, since such devices must have
an interface designed just for that bus. The PCI bus pushed by Intel represented
a return to open, standard I/O buses inside computers. Its immediate successor
is PCI-X, with Infiniband under development in 2000. Both were standardized
by multicompany trade associations.
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The machines of the RAMAC era gave us I/O interrupts as well as storage
devices. The first machine to extend interrupts from detecting arithmetic abnor-
malities to detecting asynchronous I/O events is credited as the NBS DYSEAC in
1954 [Leiner and Alexander 1954]. The following year, the first machine with
DMA was operational, the IBM SAGE. Just as today’s DMA has, the SAGE
had address counters that performed block transfers in parallel with CPU
operations.

The early IBM 360s pioneered many of the ideas that we use in I/O systems
today. The 360 was the first commercial machine to make heavy use of DMA,
and it introduced the notion of I/O programs that could be interpreted by the device.
Chaining of I/O programs was an important feature. The concept of channels intro-
duced in the 360 corresponds to the I/O bus of today.

Myer and Sutherland [1968] wrote a classic paper on the trade-off of complex-
ity and performance in I/O controllers. Borrowing the religious concept of the
“wheel of reincarnation,” they eventually noticed they were caught in a loop
of continuously increasing the power of an I/O processor until it needed its own
simpler coprocessor. Their quote in Appendix D captures their cautionary tale.

The IBM mainframe I/O channels, with their I/O processors, can be thought of
as an inspiration for Infiniband, with their processors on their Host Channel
Adaptor cards.

References

Anderson, D. [2003]. “You don’t know jack about disks,” Queue 1:4 (June),
20–30.

Anderson, D., J. Dykes, and E. Riedel [2003]. “SCSI vs. ATA—more than an
interface,” Proc. 2nd USENIX Conf. on File and Storage Technology (FAST
’03), March 31–April 2, 2003, San Francisco.

Anderson, M. H. [1990]. “Strength (and safety) in numbers (RAID, disk storage
technology),” Byte 15:13 (December), 337–339.

Anon. et al. [1985]. A Measure of Transaction Processing Power, Tandem Tech.
Rep. TR 85.2. Also appeared in Datamation, 31:7 (April), 112–118.

Bashe, C. J., W. Buchholz, G. V. Hawkins, J. L. Ingram, and N. Rochester [1981].
“The architecture of IBM’s early computers,” IBM J. Research and Develop-
ment 25:5 (September), 363–375.

Bashe, C. J., L. R. Johnson, J. H. Palmer, and E. W. Pugh [1986]. IBM’s Early
Computers, MIT Press, Cambridge, Mass.

Blaum, M., J. Brady, J. Bruck, and J. Menon [1994]. “EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectures,” Proc. 21st
Annual Int’l. Symposium on Computer Architecture (ISCA), April 18–21,
1994, Chicago, 245–254.

Blaum, M., J. Brady, J. Bruck, and J. Menon [1995]. “EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectures,” IEEE Trans.
on Computers 44:2 (February), 192–202.

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-89



Blaum, M., J. Brady, J., Bruck, J. Menon, and A. Vardy [2001]. “The EVENODD
code and its generalization,” in H. Jin, T. Cortes, and R. Buyya, eds., High Per-
formance Mass Storage and Parallel I/O: Technologies and Applications, IEEE
& Wiley Press, New York, 187–208.

Blaum, M., J. Bruck, and A. Vardy [1996]. “MDS array codes with independent
parity symbols,” IEEE Trans. on Information Theory, IT-42 (March),
529–542.

Brady, J. T. [1986]. “A theory of productivity in the creative process,” IEEE
CG&A (May), 25–34.

Brown, A., and D. A. Patterson [2000]. “Towards maintainability, availability, and
growth benchmarks: A case study of software RAID systems.” Proc. 2000 USE-
NIX Annual Technical Conf., June 18–23, San Diego, Calif.

Bucher, I. V., and A. H. Hayes [1980]. “I/O performance measurement on Cray-1
and CDC 7000 computers,” Proc. Computer Performance Evaluation Users
Group, 16th Meeting, October 20–23, 1980, Orlando, Fl., 245–254.

Chen, P. M., G. A. Gibson, R. H. Katz, and D. A. Patterson [1990]. “An evaluation
of redundant arrays of inexpensive disks using an Amdahl 5890,” Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, May
22–25, 1990, Boulder, Colo.

Chen, P. M., and E. K. Lee [1995]. “Striping in a RAID level 5 disk array,” Proc.
ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, May 15–19, 1995, Ottawa, Canada, 136–145.

Chen, P. M., E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson [1994].
“RAID: High-performance, reliable secondary storage,” ACM Computing Sur-
veys 26:2 (June), 145–188.

Corbett, P., B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar
[2004]. “Row-diagonal parity for double disk failure correction,” Proc. 3rd
USENIX Conf. on File and Storage Technology (FAST ’04), March 31–April
2, 2004, San Francisco.

Denehy, T. E., J. Bent, F. I. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau [2004]. “Deconstructing storage arrays,” Proc. 11th Int’l. Conf. on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 7–13, 2004, Boston, Mass., 59–71.

Doherty, W. J., and R. P. Kelisky [1979]. “Managing VM/CMS systems for user
effectiveness,” IBM Systems J. 18:1, 143–166.

Douceur, J. R., and W. J. Bolosky [1999]. “A large scale study of file-system con-
tents,” Proc. ACM SIGMETRICS Conf. on Measurement and Modeling of Com-
puter Systems, May 1–9, 1999, Atlanta, Ga., 59–69.

Enriquez, P. [2001]. “What happened to my dial tone? A study of FCC service
disruption reports,” poster, Richard Tapia Symposium on the Celebration of
Diversity in Computing, October 18–20, 2001, Houston, Tex.

Friesenborg, S. E., and R. J. Wicks [1985]. DASD Expectations: The 3380, 3380-
23, and MVS/XA, Tech. Bulletin GG22-9363-02, IBM Washington Systems
Center, Gaithersburg, Md.

M-90 ■ Appendix M Historical Perspectives and References



Gibson, G. A. [1992]. Redundant Disk Arrays: Reliable, Parallel Secondary Stor-
age, ACM Distinguished Dissertation Series, MIT Press, Cambridge, Mass.

Goldstein, S. [1987]. Storage Performance—An Eight Year Outlook, Tech. Rep.
TR 03.308-1, IBM Santa Teresa Laboratory, San Jose, Calif.

Gray, J. [1990]. “A census of Tandem system availability between 1985 and
1990,” IEEE Trans. on Reliability, 39:4 (October), 409–418.

Gray, J. (ed.) [1993]. The Benchmark Handbook for Database and Transaction
Processing Systems, 2nd ed., Morgan Kaufmann, San Francisco.

Gray, J., and A. Reuter [1993]. Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann, San Francisco.

Gray, J., and D. P. Siewiorek [1991]. “High-availability computer systems.” Com-
puter 24:9 (September), 39–48.

Gray, J., and C. van Ingen [2005]. Empirical Measurements of Disk Failure Rates
and Error Rates,” MSR-TR-2005-166, Microsoft Research, Redmond, Wash.

Gurumurthi, S., A. Sivasubramaniam, and V. Natarajan [2005]. Disk Drive Road-
map from the Thermal Perspective: A Case for Dynamic Thermal Management,
Proceedings of the International Symposium on Computer Architecture (ISCA),
June, 38–49.

Henly, M., and B. McNutt [1989]. DASD I/O Characteristics: A Comparison of
MVS to VM, Tech. Rep. TR 02.1550, IBM General Products Division, San
Jose, Calif.

Hewlett-Packard. [1998]. “HP’s ‘5NINES:5MINUTES’ vision extends leadership
and re-defines high availability in mission-critical environments,” February 10,
www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html.

Hoagland, A. S. [1963]. Digital Magnetic Recording, Wiley, New York.
Hospodor, A. D., and A. S. Hoagland [1993]. “The changing nature of disk con-

trollers.” Proc. IEEE 81:4 (April), 586–594.
IBM. [1982]. The Economic Value of Rapid Response Time, GE20-0752-0, IBM,

White Plains, N.Y., 11–82.
Imprimis. [1989]. Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2

Interface 1.2 GB, Document No. 64402302, Imprimis, Dallas, Tex.
Jain, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for

ExperimentalDesign,Measurement, Simulation, andModeling,Wiley,NewYork.
Katz, R. H., D. A. Patterson, and G. A. Gibson [1989]. “Disk system architectures

for high performance computing,” Proc. IEEE 77:12 (December), 1842–1858.
Kim, M. Y. [1986]. “Synchronized disk interleaving,” IEEE Trans. on Computers

C-35:11 (November), 978–988.
Kuhn, D. R. [1997]. “Sources of failure in the public switched telephone network,”

IEEE Computer 30:4 (April), 31–36.
Lambright, D. [2000]. “Experiences in measuring the reliability of a cache-based

storage system,” Proc. of First Workshop on Industrial Experiences with Sys-
tems Software (WIESS 2000), Co-Located with the 4th Symposium on Operating
Systems Design and Implementation (OSDI), October 22, 2000, San
Diego, Calif.

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-91

http://www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html


Laprie, J.-C. [1985]. “Dependable computing and fault tolerance: Concepts and
terminology,” Proc. 15th Annual Int’l. Symposium on Fault-Tolerant Comput-
ing, June 19–21, 1985, Ann Arbor, Mich., 2–11.

Lazowska, E. D., J. Zahorjan, G. S. Graham, and K. C. Sevcik [1984].Quantitative
System Performance: Computer System Analysis Using Queueing Network
Models, Prentice Hall, Englewood Cliffs, N.J. (Although out of print, it is avail-
able online at www.cs.washington.edu/homes/lazowska/qsp/.)

Leiner, A. L. [1954]. “System specifications for the DYSEAC,” J. ACM 1:2
(April), 57–81.

Leiner, A. L., and S. N. Alexander [1954]. “System organization of the DYSEAC,”
IRE Trans. of Electronic Computers EC-3:1 (March), 1–10.

Maberly, N. C. [1966]. Mastering Speed Reading, New American Library,
New York.

Major, J. B. [1989]. “Are queuing models within the grasp of the unwashed?”
Proc. Int’l. Conf. on Management and Performance Evaluation of Computer
Systems, December 11–15, 1989, Reno, Nev., 831–839.

Mueller, M., L. C. Alves, W. Fischer, M. L. Fair, and I. Modi [1999]. “RAS strat-
egy for IBM S/390 G5 and G6,” IBM J. Research and Development, 43:5–6
(September–November), 875–888.

Murphy, B., and T. Gent [1995]. “Measuring system and software reliability using
an automated data collection process,” Quality and Reliability Engineering
International, 11:5 (September–October), 341–353.

Myer, T. H., and I. E. Sutherland [1968]. “On the design of display processors,”
Communications of the ACM, 11:6 (June), 410–414.

National Storage Industry Consortium. [1998]. “Tape Roadmap,” www.nsic.org.
Nelson, V. P. [1990]. “Fault-tolerant computing: Fundamental concepts,” Com-

puter 23:7 (July), 19–25.
Nyberg, C. R., T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet [1994]. “Alpha-

Sort: A RISC machine sort,” Proc. ACM SIGMOD, May 24–27, 1994,
Minneapolis, Minn.

Okada, S., S. Okada, Y. Matsuda, T. Yamada, and A. Kobayashi [1999].
“System on a chip for digital still camera,” IEEE Trans. on Consumer Electron-
ics 45:3 (August), 584–590.

Patterson, D. A., G. A. Gibson, and R. H. Katz [1987]. A Case for Redundant
Arrays of Inexpensive Disks (RAID), Tech. Rep. UCB/CSD 87/391, University
of California, Berkeley. Also appeared in Proc. ACM SIGMOD, June 1–3, 1988,
Chicago, 109–116.

Pavan, P., R. Bez, P. Olivo, and E. Zanoni [1997]. “Flash memory cells—an over-
view,” Proc. IEEE 85:8 (August), 1248–1271.

Robinson, B., and L. Blount [1986]. The VM/HPO 3880-23 Performance Results,
IBM Tech. Bulletin GG66-0247-00, IBM Washington Systems Center,
Gaithersburg, Md.

Salem, K., and H. Garcia-Molina [1986]. “Disk striping,” Proc. 2nd Int’l. IEEE
Conf. on Data Engineering, February 5–7, 1986, Washington, D.C., 249–259.

M-92 ■ Appendix M Historical Perspectives and References

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.nsic.org


Scranton, R. A., D. A. Thompson, and D. W. Hunter [1983]. The Access Time
Myth, Tech. Rep. RC 10197 (45223), IBM, Yorktown Heights, N.Y.

Seagate. [2000]. Seagate Cheetah 73 Family: ST173404LW/LWV/LC/LCV Prod-
uct Manual, Vol. 1, Seagate, Scotts Valley, Calif. (www.seagate.com/support/
disc/manuals/scsi/29478b.pdf).

Smotherman, M. [1989]. “A sequencing-based taxonomy of I/O systems and
review of historical machines,” Computer Architecture News 17:5 (September),
5–15. Reprinted in Computer Architecture Readings, M. D. Hill, N. P. Jouppi,
and G. S. Sohi, eds., Morgan Kaufmann, San Francisco, 1999, 451–461.

Talagala, N. [2000]. “Characterizing Large Storage Systems: Error Behavior and
Performance Benchmarks,” Ph.D. dissertation, Computer Science Division,
University of California, Berkeley.

Talagala, N., and D. Patterson [1999]. An Analysis of Error Behavior in a Large
Storage System, Tech. Report UCB//CSD-99-1042, Computer Science Divi-
sion, University of California, Berkeley.

Talagala, N., R. Arpaci-Dusseau, and D. Patterson [2000]. Micro-Benchmark
Based Extraction of Local and Global Disk Characteristics, CSD-99-1063,
Computer Science Division, University of California, Berkeley.

Talagala, N., S. Asami, D. Patterson, R. Futernick, and D. Hart [2000]. “The art of
massive storage: A case study of a Web image archive,” IEEE Computer
(November), 22–28.

Thadhani, A. J. [1981]. “Interactive user productivity,” IBM Systems J. 20:4, 407–
423.

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-93

http://www.seagate.com/support/disc/manuals/scsi/29478b.pdf
http://www.seagate.com/support/disc/manuals/scsi/29478b.pdf


References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., 2016. TensorFlow: A System for Large-Scale
Machine Learning. In: OSDI (November), vol. 16, pp. 265–283.

Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D., 2016. Fathom: reference workloads
for modern deep learning methods. In: IEEE International Symposium on Workload
Characterization (IISWC).

Adve, S.V., Gharachorloo, K., 1996. Shared memory consistency models: a tutorial. IEEE
Comput. 29 (12), 66–76.

Adve, S.V., Hill, M.D., 1990. Weak ordering: a new definition. In: Proceedings of 17th
Annual International Symposium on Computer Architecture (ISCA), May 28–31,
1990, Seattle, Washington, pp. 2–14.

Agarwal, A., 1987. Analysis of Cache Performance for Operating Systems and Multipro-
gramming (Ph.D. thesis). Tech. Rep. No. CSL-TR-87-332. Stanford University, Palo
Alto, CA.

Agarwal, A., 1991. Limits on interconnection network performance. IEEE Trans. Parallel
Distrib. Syst. 2 (4), 398–412.

Agarwal, A., Pudar, S.D., 1993. Column-associative caches: a technique for reducing the
miss rate of direct-mapped caches. In: 20th Annual International Symposium on Com-
puter Architecture (ISCA), May 16–19, 1993, San Diego, California. Also appears in
Computer Architecture News 21:2 (May), 179–190, 1993.

Agarwal, A., Hennessy, J.L., Simoni, R., Horowitz, M.A., 1988. An evaluation of directory
schemes for cache coherence. In: Proceedings of 15th International Symposium on
Computer Architecture (June), pp. 280–289.

Agarwal, A., Kubiatowicz, J., Kranz, D., Lim, B.-H., Yeung, D., D’Souza, G., Parkin, M.,
1993. Sparcle: an evolutionary processor design for large-scale multiprocessors. IEEE
Micro 13, 48–61.

Agarwal, A., Bianchini, R., Chaiken, D., Johnson, K., Kranz, D., 1995. The MIT Alewife
machine: architecture and performance. In: International Symposium on Computer
Architecture (Denver, CO), June, 2–13.

Agerwala, T., Cocke, J., 1987. High Performance Reduced Instruction Set Processors. IBM
Tech. Rep. RC12434, IBM, Armonk, NY.

Akeley, K., Jermoluk, T., 1988. High-performance polygon rendering. In: Proceedings of
15th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1988), August 1–5, 1988, Atlanta, GA, pp. 239–246.

Alexander, W.G., Wortman, D.B., 1975. Static and dynamic characteristics of XPL
programs. IEEE Comput. 8 (11), 41–46.

Alles, A., 1995. ATM Internetworking. White Paper (May). Cisco Systems, Inc., San Jose,
CA. www.cisco.com/warp/public/614/12.html.

Alliant, 1987. Alliant FX/Series: Product Summary. Alliant Computer Systems Corp,
Acton, MA.

Almasi, G.S., Gottlieb, A., 1989. Highly Parallel Computing. Benjamin/Cummings,
Redwood City, CA.

R-1

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0025
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0025
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0035
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0035
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0035
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0045
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0045
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0045
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0055
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0055
http://www.cisco.com/warp/public/614/12.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0070


Alverson, G., Alverson, R., Callahan, D., Koblenz, B., Porterfield, A., Smith, B., 1992.
Exploiting heterogeneous parallelism on a multithreaded multiprocessor.
In: Proceedings of ACM/IEEE Conference on Supercomputing, November 16–20,
1992, Minneapolis, MN, pp. 188–197.

Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of AFIPS Spring Joint Computer Conference,
April 18–20, 1967, Atlantic City, NJ, pp. 483–485.

Amdahl, G.M., Blaauw, G.A., Brooks Jr., F.P., 1964. Architecture of the IBM System 360.
IBM J. Res. Dev. 8 (2), 87–101.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper,
J., Catanzaro, B., Cheng, Q., Chen, G., Chen, J., 2016. Deep speech 2: End-
to-end speech recognition in english and mandarin. In: International Conference on
Machine Learning (June), pp. 173–182.

Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W., 1996. Treadmarks: shared memory computing on networks of work-
stations. IEEE Comput. 29 (2), 18–28.

Anderson, M.H., 1990. Strength (and safety) in numbers (RAID, disk storage technology).
Byte 15 (13), 337–339.

Anderson, D., 2003. You don’t know jack about disks. Queue 1 (4), 20–30.
Anderson, D.W., Sparacio, F.J., Tomasulo, R.M., 1967. The IBM 360 Model 91: processor

philosophy and instruction handling. IBM J. Res. Dev. 11 (1), 8–24.
Anderson, T.E., Culler, D.E., Patterson, D., 1995. A case for NOW (networks of worksta-

tions). IEEE Micro 15 (1), 54–64.
Anderson, D., Dykes, J., Riedel, E., 2003. SCSI vs. ATA—more than an interface.

In: Proceedings of 2nd USENIX Conference on File and Storage Technology
(FAST’03), March 31–April 2.

Ang, B., Chiou, D., Rosenband, D., Ehrlich, M., Rudolph, L., Arvind, A., 1998. StarT-
Voyager: a flexible platform for exploring scalable SMP issues. In: Proceedings of
ACM/IEEE Conference on Supercomputing, November 7–13, 1998, Orlando, FL.

Anjan, K.V., Pinkston, T.M., 1995. An efficient, fully-adaptive deadlock recovery scheme:
Disha. In: Proceedings of 22nd Annual International Symposium on Computer Archi-
tecture (ISCA), June 22–24, 1995, Santa Margherita, Italy.

Anon. et al., 1985. A Measure of Transaction Processing Power. Tandem Tech. Rep.
TR85.2. Also appears in Datamation 31:7 (April), 112–118, 1985.

Apache Hadoop, 2011. http://hadoop.apache.org.
Archibald, J., Baer, J.-L., 1986. Cache coherence protocols: evaluation using a multiproces-

sor simulation model. ACM Trans. Comput. Syst. 4 (4), 273–298.
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patter-

son, D., Rabkin, A., Stoica, I., Zaharia, M., 2009. Above the Clouds: A Berkeley View
of Cloud Computing, Tech. Rep. UCB/EECS-2009-28, University of California, Berke-
ley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M., 2010. A view of cloud computing.
Commun. ACM. 53 (4), 50–58.

Arpaci, R.H., Culler, D.E., Krishnamurthy, A., Steinberg, S.G., Yelick, K., 1995. Empirical
evaluation of the CRAY-T3D: a compiler perspective. In: 22nd Annual International
Symposium on Computer Architecture (ISCA), June 22–24, 1995, Santa Margherita,
Italy.

Asanovic, K., 1998. Vector Microprocessors (Ph.D. thesis). Computer Science Division,
University of California, Berkeley.

Asanovi�c, K., 2002. Programmable neurocomputing. In: Arbib, M.A. (Ed.), The Handbook
of Brain Theory and Neural Networks, second ed. MIT Press, Cambridge, MA. ISBN:
0-262-01197-2. https://people.eecs.berkeley.edu/�krste/papers/neurocomputing.pdf.

R-2 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0085
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0085
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0120
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0125
http://hadoop.apache.org
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0130
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf98800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf98800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf98800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0135
https://people.eecs.berkeley.edu/~krste/papers/neurocomputing.pdf
https://people.eecs.berkeley.edu/~krste/papers/neurocomputing.pdf


Asanovi�c, K., Beck, A., Johnson, J., Wawrzynek, J., Kingsbury, B., Morgan, N., 1998.
Training neural networks with Spert-II. In: Sundararajan, N., Saratchandran, P.
(Eds.), Parallel Architectures for Artificial Networks: Paradigms and Implementations.
IEEE Computer Society Press, California, USA. ISBN: 0-8186-8399-6. (Chapter 11)
https://people.eecs.berkeley.edu/�krste/papers/annbook.pdf.

Associated Press, 2005. Gap Inc. shuts down two Internet stores for major overhaul. USA-
TODAY.com, August 8, 2005.

Atanasoff, J.V., 1940. Computing Machine for the Solution of Large Systems of Linear
Equations. Internal Report. Iowa State University, Ames.

Atkins, M., 1991. Performance and the i860 microprocessor. IEEE Micro 11 (5), 24–27.
72–78.

Austin, T.M., Sohi, G., 1992. Dynamic dependency analysis of ordinary programs.
In: Proceedings of 19th Annual International Symposium on Computer Architecture
(ISCA), May 19–21, 1992, Gold Coast, Australia, pp. 342–351.

Azizi, O., Mahesri, A., Lee, B.C., Patel, S.J., Horowitz, M., 2010. Energy-performance
tradeoffs in processor architecture and circuit design: a marginal cost analysis.
In: Proceedings of the International Symposium on Computer Architecture, pp. 26–36.

Babbay, F., Mendelson, A., 1998. Using value prediction to increase the power of specu-
lative execution hardware. ACM Trans. Comput. Syst. 16 (3), 234–270.

Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R., Wawrzynek, J.,
Asanovi�c, K., 2012. Chisel: constructing hardware in a Scala embedded language.
In: Proceedings of the 49th Annual Design Automation Conference, pp. 1216–1225.

Baer, J.-L., Wang, W.-H., 1988. On the inclusion property for multi-level cache hierarchies.
In: Proceedings of 15th Annual International Symposium on Computer Architecture,
May 30–June 2, 1988, Honolulu, Hawaii, pp. 73–80.

Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K., 1991. The NAS parallel benchmarks. Int.
J. Supercomput. Appl. 5, 63–73.

Bakoglu, H.B., Grohoski, G.F., Thatcher, L.E., Kaeli, J.A., Moore, C.R., Tattle, D.P.,
Male, W.E., Hardell, W.R., Hicks, D.A., Nguyen Phu, M., Montoye, R.K.,
Glover, W.T., Dhawan, S., 1989. IBM second-generation RISC processor organization.
In: Proceedings of IEEE International Conference on Computer Design, September
30–October 4, 1989, Rye, NY, pp. 138–142.

Balakrishnan, H., Padmanabhan, V.N., Seshan, S., Katz, R.H., 1997. A comparison of
mechanisms for improving TCP performance over wireless links. IEEE/ACM Trans.
Netw. 5 (6), 756–769.

Ball, T., Larus, J., 1993. Branch prediction for free. In: Proceedings of ACM SIGPLAN’93
Conference on Programming Language Design and Implementation (PLDI), June
23–25, 1993, Albuquerque, NM, pp. 30 0–313.

Banerjee, U., 1979. Speedup of Ordinary Programs (Ph.D. thesis). Department of Computer
Science, University of Illinois at Urbana-Champaign.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., 2003.
Xen and the art of virtualization. In: Proceedings of the 19th ACMSymposium on Oper-
ating Systems Principles, October 19–22, 2003, Bolton Landing, NY.

Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick, D.L., Stokes, R., 1968. The
ILLIAC IV computer. IEEE Trans. Comput. 100 (8), 746–757.

Barroso, L.A., 2010. Warehouse scale computing [keynote address]. In: Proceedings of
ACM SIGMOD, June 8–10, 2010, Indianapolis, IN.

Barroso, L.A., H€olzle, U., 2007. The case for energy-proportional computing. IEEE
Comput. 40 (12), 33–37.

Barroso, L.A., H€olzle, U., 2009. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan & Claypool, San Rafael, CA.

References ■ R-3

https://people.eecs.berkeley.edu/~krste/papers/annbook.pdf
https://people.eecs.berkeley.edu/~krste/papers/annbook.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0155
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0160
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0160
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0160
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf201708121815178973
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf201708121815178973
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf201708121815178973
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0215
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0215
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0215
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0220
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0220
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0220


Barroso, L.A., Gharachorloo, K., Bugnion, E., 1998. Memory system characterization of
commercial workloads. In: Proceedings of 25th Annual International Symposium on
Computer Architecture (ISCA), July 3–14, 1998, Barcelona, Spain, pp. 3–14.

Barroso, L.A., Clidaras, J., H€olzle, U., 2013. The datacenter as a computer: An introduction to
the design of warehouse-scale machines. Synth. Lect. Comput. Architect. 8 (3), 1–154.

Barroso, L.A., Marty, M., Patterson, D., Ranganathan, P., 2017. Attack of the killer micro-
seconds. Commun. ACM 56(2).

Barton, R.S., 1961.Anewapproach to the functional design of a computer. In: Proceedings of
Western Joint Computer Conference, May 9–11, 1961, Los Angeles, CA, pp. 393–396.

Bashe, C.J., Buchholz, W., Hawkins, G.V., Ingram, J.L., Rochester, N., 1981. The architec-
ture of IBM’s early computers. IBM J. Res. Dev. 25 (5), 363–375.

Bashe, C.J., Johnson, L.R., Palmer, J.H., Pugh, E.W., 1986. IBM’s Early Computers. MIT
Press, Cambridge, MA.

Baskett, F., Keller, T.W., 1977. An evaluation of the Cray-1 processor. In: Kuck, D.J.,
Lawrie, D.H., Sameh, A.H. (Eds.), High Speed Computer and Algorithm Organization.
Academic Press, San Diego, pp. 71–84.

Baskett, F., Jermoluk, T., Solomon, D., 1988. The 4D-MP graphics superworkstation:
Computing + graphics¼ 40 MIPS + 40 MFLOPS and 10,000 lighted polygons per sec-
ond. In: Proceedings of IEEE COMPCON, February 29–March 4, 1988, San Francisco,
pp. 468–471.

BBN Laboratories, 1986. Butterfly Parallel Processor Overview, Tech. Rep. 6148. BBN
Laboratories, Cambridge, MA.

Bell, C.G., 1984. The mini and micro industries. IEEE Comput. 17 (10), 14–30.
Bell, C.G., 1985. Multis: a new class of multiprocessor computers. Science 228 (6), 462–467.
Bell, C.G., 1989. The future of high performance computers in science and engineering.

Commun. ACM 32 (9), 1091–1101.
Bell, G., Gray, J., 2001. Crays, Clusters and Centers, Tech. Rep. MSR-TR-2001-76. Micro-

soft Research, Redmond, WA.
Bell, C.G., Gray, J., 2002. What’s next in high performance computing? CACM 45 (2),

91–95.
Bell, C.G., Newell, A., 1971. Computer Structures: Readings and Examples. McGraw-Hill,

New York.
Bell, C.G., Strecker, W.D., 1976. Computer structures: what have we learned from the PDP-

11? In: Third Annual International Symposium on Computer Architecture (ISCA), Jan-
uary 19–21, 1976, Tampa, FL, pp. 1–14.

Bell, C.G., Strecker, W.D., 1998. Computer structures: what have we learned from the PDP-
11? In: 25 Years of the International Symposia on Computer Architecture (Selected
Papers), ACM, New York, pp. 138–151.

Bell, C.G., Cady, R., McFarland, H., DeLagi, B., O’Laughlin, J., Noonan, R., Wulf, W.,
1970. A new architecture for mini-computers: The DEC PDP-11. In: Proceedings of
AFIPS Spring Joint Computer Conference, May 5–May 7, 1970, Atlantic City, NJ,
pp. 657–675.

Bell, C.G., Mudge, J.C., McNamara, J.E., 1978. A DEC View of Computer Engineering.
Digital Press, Bedford, MA.

Benes, V.E., 1962. Rearrangeable three stage connecting networks. Bell Syst. Tech. J.
41, 1481–1492.

Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., De
Micheli, G., 2005. NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Trans. Parallel Distrib. Syst. 16 (2), 113–130.

Bhandarkar, D.P., 1995. Alpha Architecture and Implementations. Digital Press, Newton,
MA.

R-4 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0225
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0225
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0225
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0230
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0230
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0230
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0235
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0235
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0240
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0240
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0245
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0245
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0260
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0260
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0260
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0260
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0260
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0265
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0270
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0275
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0275
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0280
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0280
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0285
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0285
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0290
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0290
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0290
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0300
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0300
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0300
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0300
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0310
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0310
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0320
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0320


Bhandarkar, D.P., Clark, D.W., 1991. Performance from architecture: comparing a RISC
and a CISCwith similar hardware organizations. In: Proceedings of Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 8–11, 1991, Palo Alto, CA, pp. 310–319.

Bhandarkar, D.P., Ding, J., 1997. Performance characterization of the Pentium Pro proces-
sor. In: Proceedings of Third International Symposium on High-Performance Computer
Architecture, February 1–February 5, 1997, San Antonio, TX, pp. 288–297.

Bhattacharya, S., Lane, N.D., 2016. Sparsification and separation of deep learning layers for
constrained resource inference on wearables. In: Proceedings of the 14th ACM Confer-
ence on Embedded Network Sensor Systems CD-ROM, pp. 176–189.

Bhuyan, L.N., Agrawal, D.P., 1984. Generalized hypercube and hyperbus structures for a
computer network. IEEE Trans. Comput. 32 (4), 322–333.

Bienia, C., Kumar, S., Jaswinder, P.S., Li, K., 2008. The Parsec Benchmark Suite: Charac-
terization and Architectural Implications, Tech. Rep. TR-811-08. Princeton University,
Princeton, NJ.

Bier, J., 1997. The evolution of DSP processors. In: Presentation at University of California,
Berkeley, November 14.

Bird, S., Phansalkar, A., John, L.K., Mericas, A., Indukuru, R., 2007. Characterization of
performance of SPEC CPU benchmarks on Intel’s Core Microarchitecture based pro-
cessor. In: Proceedings of 2007 SPEC Benchmark Workshop, January 21, 2007,
Austin, TX.

Birman, M., Samuels, A., Chu, G., Chuk, T., Hu, L., McLeod, J., Barnes, J., 1990. Devel-
oping the WRL3170/3171 SPARC floating-point coprocessors. IEEE Micro 10 (1),
55–64.

Blackburn, M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur, R.,
Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B., 2006. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In: ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), October 22–26,
2006, pp. 169–190.

Blaum, M., Brady, J., Bruck, J., Menon, J., 1994. EVENODD: an optimal scheme for tol-
erating double disk failures in RAID architectures. In: Proceedings of 21st Annual Inter-
national Symposium on Computer Architecture (ISCA), April 18–21, 1994, Chicago,
IL, pp. 245–254.

Blaum, M., Brady, J., Bruck, J., Menon, J., 1995. EVENODD: an optimal scheme for
tolerating double disk failures in RAID architectures. IEEE Trans. Comput. 44 (2),
192–202.

Blaum, M., Bruck, J., Vardy, A., 1996. MDS array codes with independent parity symbols.
IEEE Trans. Inf. Theory 42, 529–542.

Blaum, M., Brady, J., Bruck, J., Menon, J., Vardy, A., 2001. The EVENODD code and its
generalization. In: Jin, H., Cortes, T., Buyya, R. (Eds.), High PerformanceMass Storage
and Parallel I/O: Technologies and Applications. Wiley-IEEE, NewYork, pp. 187–208.

Bloch, E., 1959. The engineering design of the Stretch computer. In: 1959 Proceedings of
the Eastern Joint Computer Conference, December 1–3, 1959, Boston, MA, pp. 48–59.

Boddie, J.R., 2000. History of DSPs, www.lucent.com/micro/dsp/dsphist.html.
Boggs, D., Baktha, A., Hawkins, J., Marr, D.T., Miller, J.A., Roussel, P., et al., 2004. The

Microarchitecture of the Intel Pentium 4 processor on 90 nm technology. Intel Technol.
J. 8 (1), 7–23.

Bolt, K.M., 2005. Amazon sees sales rise, profit fall. Seattle Post-Intelligencer. http://
seattlepi.nwsource.com/business/245943_techearns26.html.

References ■ R-5

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0325
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0325
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0325
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0325
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0335
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0335
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0335
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0345
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0345
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0375
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0375
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0385
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0385
http://www.lucent.com/micro/dsp/dsphist.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8000
http://seattlepi.nwsource.com/business/245943_techearns26.html
http://seattlepi.nwsource.com/business/245943_techearns26.html


Bordawekar, R., Bondhugula, U., Rao, R., 2010. Believe it or not!: multi-core CPUs can
match GPU performance for a FLOP-intensive application! In: 19th International
Conference on Parallel Architecture and Compilation Techniques (PACT 2010).
Vienna, Austria, September 11–15, 2010, pp. 537–538.

Borg, A., Kessler, R.E., Wall, D.W., 1990. Generation and analysis of very long address
traces. In: 19th Annual International Symposium on Computer Architecture (ISCA),
May 19–21, 1992, Gold Coast, Australia, pp. 270–279.

Bouknight, W.J., Deneberg, S.A., McIntyre, D.E., Randall, J.M., Sameh, A.H.,
Slotnick, D.L., 1972. The Illiac IV system. Proc. IEEE 60 (4), 369–379. Also appears
in Siewiorek, D.P., Bell, C.G., Newell, A. 1982. Computer Structures: Principles and
Examples. McGraw-Hill, New York, pp. 306–316.

Brady, J.T., 1986. A theory of productivity in the creative process. IEEE Comput. Graph.
Appl. 6 (5), 25–34.

Brain, M., 2000. Inside a Digital Cell Phone. www.howstuffworks.com/-inside-cellphone.
htm.

Brandt, M., Brooks, J., Cahir, M., Hewitt, T., Lopez-Pineda, E., Sandness, D., 2000. The
Benchmarker’s Guide for Cray SV1 Systems. Cray Inc., Seattle, WA.

Brent, R.P., Kung, H.T., 1982. A regular layout for parallel adders. IEEE Trans. Comput.
C-31, 260–264.

Brewer, E.A., Kuszmaul, B.C., 1994. How to get good performance from the CM-5 data
network. In: Proceedings of Eighth International Parallel Processing Symposium, April
26–27, 1994, Cancun, Mexico.

Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual Web search engine.
In: Proceedings of 7th International World Wide Web Conference, April 14–18,
1998, Brisbane, Queensland, Australia, pp. 107–117.

Brown, A., Patterson, D.A., 2000. Towards maintainability, availability, and growth bench-
marks: a case study of software RAID systems. In: Proceedings of 2000 USENIX
Annual Technical Conference, June 18–23, 2000, San Diego, CA.

Brunhaver, J.S., 2015. Design and optimization of a stencil engine (Ph.D. dissertation).
Stanford University.

Bucher, I.Y., 1983. The computational speed of supercomputers. In: Proceedings of Inter-
national Conference onMeasuring andModeling of Computer Systems (SIGMETRICS
1983), August 29–31, 1983, Minneapolis, MN, pp. 151–165.

Bucher, I.V., Hayes, A.H., 1980. I/O performance measurement on Cray-1 and CDC 7000
computers. In: Proceedings of Computer Performance Evaluation Users Group, 16th
Meeting, NBS 500-65, pp. 245–254.

Bucholtz, W., 1962. Planning a Computer System: Project Stretch. McGraw-Hill,
New York.

Burgess, N., Williams, T., 1995. Choices of operand truncation in the SRT division algo-
rithm. IEEE Trans. Comput. 44 (7), 933–938.

Burkhardt III, H., Frank, S., Knobe, B., Rothnie, J., 1992. Overview of the KSR1
Computer System, Tech. Rep. KSR-TR-9202001. Kendall Square Research,
Boston, MA.

Burks, A.W., Goldstine, H.H., von Neumann, J., 1946. Preliminary discussion of the logical
design of an electronic computing instrument. Report to the U.S. Army Ordnance
Department, p. 1; also appears in Papers of John von Neumann, Aspray, W., Burks,
A. (Eds.), MIT Press, Cambridge, MA, and Tomash Publishers, Los Angeles, CA,
1987, pp. 97–146.

Calder, B., Grunwald, D., Jones, M., Lindsay, D., Martin, J., Mozer, M., Zorn, B., 1997.
Evidence-based static branch prediction using machine learning. ACM Trans. Program.
Lang. Syst. 19 (1), 188–222.

R-6 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0395
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0395
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0395
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0395
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0410
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0410
http://www.howstuffworks.com/-inside-cellphone.htm
http://www.howstuffworks.com/-inside-cellphone.htm
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0430
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0430
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0430
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0435
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0435
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0435
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0440
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0440
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0440
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0445
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0445
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0445
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0455
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0455
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0460
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0460
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0465
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0465
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0465


Calder, B., Reinman, G., Tullsen, D.M., 1999. Selective value prediction. In: Proceedings of
26th Annual International Symposium on Computer Architecture (ISCA), May 2–4,
1999, Atlanta, GA.

Callahan, D., Dongarra, J., Levine, D., 1988. Vectorizing compilers: a test suite and results.
In: Proceedings of ACM/IEEE Conference on Supercomputing, November 12–17,
1988, Orland, FL, pp. 98–105.

Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Czajkowski, T., Brown, S.D.,
Anderson, J.H., 2013. LegUp: an open-source high-level synthesis tool for FPGA-based
processor/accelerator systems. ACM Trans. Embed. Comput. Syst. 13(2).

Canny, J., et al., 2015. Machine learning at the limit. In: IEEE International Conference on
Big Data.

Cantin, J.F., Hill, M.D., 2001. Cache performance for selected SPEC CPU2000 bench-
marks. www.jfred.org/cache-data.html.

Cantin, J.F., Hill, M.D., 2003. Cache performance for SPEC CPU2000 benchmarks, version
3.0. www.cs.wisc.edu/multifacet/misc/spec2000cache-data/index.html.

Carles, S., 2005. Amazon reports record Xmas season, top game picks. Gamasutra,
December 27. http://www.gamasutra.com/php-bin/news_index.php?story¼7630.

Carter, J., Rajamani, K., 2010. Designing energy-efficient servers and data centers. IEEE
Comput. 43 (7), 76–78.

Case, R.P., Padegs, A., 1978. The architecture of the IBM System/370. Commun. ACM
21 (1), 73–96. Also appears in Siewiorek, D.P., Bell, C.G., Newell, A., 1982. Computer
Structures: Principles and Examples. McGraw-Hill, New York, pp. 830–855.

Caulfield, A.M., Chung, E.S., Putnam, A., Haselman, H.A.J.F.M., Humphrey, S.H.M.,
Daniel, P.K.J.Y.K., Ovtcharov, L.T.M.K., Lanka, M.P.L.W.S., Burger, D.C.D.,
2016. A cloud-scale acceleration architecture. In: MICRO Conference.

Censier, L., Feautrier, P., 1978. A new solution to coherence problems in multicache
systems. IEEE Trans. Comput. C-27 (12), 1112–1118.

Chandra, R., Devine, S., Verghese, B., Gupta, A., Rosenblum, M., 1994. Scheduling and
page migration for multiprocessor compute servers. In: Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 4–7, 1994, San Jose, CA, pp. 12–24.

Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J., Hwu, W.W., 1991. IMPACT: an
architectural framework for multiple-instruction-issue processors. In: 18th Annual
International Symposium on Computer Architecture (ISCA), May 27–30, 1991,
Toronto, Canada, pp. 266–275.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E., 2006. Bigtable: a distributed storage system for structured data.
In: Proceedings of 7th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’06), November 6–8, 2006, Seattle, WA.

Chang, J., Meza, J., Ranganathan, P., Bash, C., Shah, A., 2010. Green server design: beyond
operational energy to sustainability. In: Proceedings of Workshop on Power Aware Com-
puting and Systems (HotPower’10), October 3, 2010, Vancouver, British Columbia.

Charlesworth, A.E., 1981. An approach to scientific array processing: the architectural
design of the AP-120B/FPS-164 family. Computer 9, 18–27.

Charlesworth, A., 1998. Starfire: extending the SMP envelope. IEEE Micro 18 (1), 39–49.
Chen, T.C., 1980. Overlap and parallel processing. In: Stone, H. (Ed.), Introduction to

Computer Architecture. Science Research Associates, Chicago, pp. 427–486.
Chen, S., 1983. Large-scale and high-speed multiprocessor system for scientific applica-

tions. In: Proceedings of NATO Advanced Research Workshop on High-Speed Com-
puting, June 20–22, 1983, J€ulich, West Germany. Also appears in Hwang, K. (Ed.),
1984. Superprocessors: design and applications, IEEE (August), 602–609.

References ■ R-7

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0470
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0470
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0470
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0480
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0480
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0480
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0485
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0485
http://www.jfred.org/cache-data.html
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/index.html
http://www.gamasutra.com/php-bin/news_index.php?story=7630
http://www.gamasutra.com/php-bin/news_index.php?story=7630
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0510
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0510
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0510
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0515
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0515
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0515
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0540
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0540
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0540
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0545
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0545
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0550
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0555
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0555
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0560
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0560
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0560
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0560
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0560


Chen, P.M., Lee, E.K., 1995. Striping in a RAID level 5 disk array. In: Proceedings of ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May
15–19, 1995, Ottawa, Canada, pp. 136–145.

Chen, P.M., Gibson, G.A., Katz, R.H., Patterson, D.A., 1990. An evaluation of redundant
arrays of inexpensive disks using an Amdahl 5890. In: Proceedings of ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems, May
22–25, 1990, Boulder, CO.

Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A., 1994. RAID: high-
performance, reliable secondary storage. ACM Comput. Surv. 26 (2), 145–188.

Chow, F.C., 1983. A Portable Machine-Independent Global Optimizer—Design and
Measurements (Ph.D. thesis). Stanford University, Palo Alto, CA.

Chrysos, G.Z., Emer, J.S., 1998. Memory dependence prediction using store sets.
In: Proceedings of 25th Annual International Symposium on Computer Architecture
(ISCA), July 3–14, 1998, Barcelona, Spain, pp. 142–153.

Clark, W.A., 1957. The Lincoln TX-2 computer development. In: Proceedings of Western
Joint Computer Conference, February 26–28, 1957, Los Angeles, pp. 143–145.

Clark, D.W., 1983. Cache performance of the VAX-11/780. ACM Trans. Comput. Syst.
1 (1), 24–37.

Clark,D.W., 1987. Pipelining and performance in theVAX8800 processor. In: Proceedings of
Second International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 5–8, 1987, Palo Alto, CA, pp. 173–177.

Clark, J., 2014. Five Numbers That Illustrate the Mind-Bending Size of Amazon's Cloud.
Bloomberg. https://www.bloomberg.com/news/2014-11-14/5-numbersthat-illustrate-
the-mind-bending-size-of-amazon-s-cloud.html.

Clark, J., October 26, 2015. Google Turning Its LucrativeWeb Search Over to AIMachines.
Bloomberg Technology, www.bloomberg.com.

Clark, D.W., Emer, J.S., 1985. Performance of the VAX-11/780 translation buffer: simula-
tion and measurement. ACM Trans. Comput. Syst. 3 (1), 31–62.

Clark, D., Levy, H., 1982. Measurement and analysis of instruction set use in the VAX-11/
780. In: Proceedings of Ninth Annual International Symposium on Computer Architec-
ture (ISCA), April 26–29, 1982, Austin, TX, pp. 9–17.

Clark, D., Strecker, W.D., 1980. Comments on ‘the case for the reduced instruction set com-
puter’. Comput. Architect. News 8 (6), 34–38.

Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlayson, M., Herne, J., Neefe Matthews, J.,
2004. Xen and the art of repeated research. In: Proceedings of USENIX Annual Tech-
nical Conference, June 27–July 2, 2004, pp. 135–144.

Clidaras, J., Johnson, C., Felderman, B., 2010. Private communication.
Climate Savers Computing Initiative, 2007. Efficiency Specs. http://www.climatesavers

computing.org/.
Clos, C., 1953. A study of non-blocking switching networks. Bell Syst. Tech. J. 32 (2),

406–424.
Cloud, Bloomberg, n.d. https://www.bloomberg.com/news/2014-11-14/5-numbersthat-

illustrate-the-mind-bending-size-of-amazon-s-cloud.html.
Cody, W.J., Coonen, J.T., Gay, D.M., Hanson, K., Hough, D., Kahan, W., Karpinski, R.,

Palmer, J., Ris, F.N., Stevenson, D., 1984. A proposed radix- and word-length indepen-
dent standard for floating-point arithmetic. IEEE Micro 4 (4), 86–100.

Colwell, R.P., Steck, R., 1995. A 0.6 μm BiCMOS processor with dynamic execution.
In: Proceedings of IEEE International Symposium on Solid State Circuits (ISSCC),
February 15–17, 1995, San Francisco, pp. 176–177.

Colwell, R.P., Nix, R.P., O’Donnel, J.J., Papworth, D.B., Rodman, P.K., 1987. A VLIW
architecture for a trace scheduling compiler. In: Proceedings of Second International

R-8 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0565
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0565
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0565
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0570
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0570
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0570
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0570
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0575
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0575
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0585
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0585
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0590
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0590
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0595
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0595
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0595
https://www.bloomberg.com/news/2014-11-14/5-numbersthat-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
https://www.bloomberg.com/news/2014-11-14/5-numbersthat-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
http://www.bloomberg.com
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0600
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0600
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0605
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0605
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0605
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0615
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0615
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0615
http://www.climatesaverscomputing.org/
http://www.climatesaverscomputing.org/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0625
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0625
https://www.bloomberg.com/news/2014-11-14/5-numbersthat-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
https://www.bloomberg.com/news/2014-11-14/5-numbersthat-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0630
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0630
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0630
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0640
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0640


Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 5–8, 1987, Palo Alto, CA, pp. 180–192.

Comer, D., 1993. Internetworking with TCP/IP, second ed. Prentice Hall, Englewood
Cliffs, NJ.

Compaq Computer Corporation, 1999. Compiler Writer’s Guide for the Alpha 21264, Order
Number EC-RJ66A-TE, June, www1.support.compaq.com/alpha-tools/-documentation/
current/21264_EV67/ec-rj66a-te_comp_writ_gde_for_alpha21264.pdf.

Conti, C., Gibson, D.H., Pitkowsky, S.H., 1968. Structural aspects of the System/360Model
85. Part I. General organization. IBM Syst. J. 7 (1), 2–14.

Coonen, J., 1984. Contributions to a Proposed Standard for Binary Floating-Point
Arithmetic (Ph.D. thesis). University of California, Berkeley.

Corbett, P., English, B., Goel, A., Grcanac, T., Kleiman, S., Leong, J., Sankar, S., 2004.
Row-diagonal parity for double disk failure correction. In: Proceedings of 3rd USENIX
Conference on File and Storage Technology (FAST’04), March 31–April 2, 2004, San
Francisco.

Crawford, J., Gelsinger, P., 1988. Programming the 80386. Sybex Books, Alameda, CA.
Culler, D.E., Singh, J.P., Gupta, A., 1999. Parallel Computer Architecture: A Hardware/

Software Approach. Morgan Kaufmann, San Francisco.
Curnow, H.J., Wichmann, B.A., 1976. A synthetic benchmark. Comput. J. 19 (1), 43–49.
Cvetanovic, Z., Kessler, R.E., 2000. Performance analysis of the Alpha 21264-based

Compaq ES40 system. In: Proceedings of 27th Annual International Symposium on
Computer Architecture (ISCA), June 10–14, 2000, Vancouver, Canada, pp. 192–202.

Dally, W.J., 1990. Performance analysis of k-ary n-cube interconnection networks. IEEE
Trans. Comput. 39 (6), 775–785.

Dally, W.J., 1992. Virtual channel flow control. IEEE Trans. Parallel Distrib. Syst. 3 (2),
194–205.

Dally, W.J., 1999. Interconnect limited VLSI architecture. In: Proceedings of the Interna-
tional Interconnect Technology Conference, May 24–26, 1999, San Francisco.

Dally,W.J., 2002. Computer architecture is all about interconnect. In: Proceedings of the 8th
International Symposium High Performance Computer Architecture.

Dally, W.J., 2016. High Performance Hardware for Machine Learning. Cadence Embedded
Neural Network Summit, February 9, 2016. http://ip.cadence.com/uploads/
presentations/1000AM_Dally_Cadence_ENN.pdf.

Dally, W.J., Seitz, C.I., 1986. The torus routing chip. Distrib. Comput. 1 (4), 187–196.
Dally, W.J., Towles, B., 2001. Route packets, not wires: on-chip interconnection networks.

In: Proceedings of 38th Design Automation Conference, June 18–22, 2001, Las Vegas.
Dally, W.J., Towles, B., 2003. Principles and Practices of Interconnection Networks.

Morgan Kaufmann, San Francisco.
Darcy, J.D., Gay, D., 1996. FLECKmarks: measuring floating point performance using a

full IEEE compliant arithmetic benchmark. CS 252 class project, University of
California, Berkeley. See http.CS.Berkeley.EDU/�darcy/Projects/cs252/.

Darley, H.M., et al., 1989. Floating Point/Integer Processor with Divide and Square Root
Functions, U.S. Patent 4,878,190, October 31.

Davidson, E.S., 1971. The design and control of pipelined function generators.
In: Proceedings of IEEE Conference on Systems, Networks, and Computers, January
19–21, 1971, Oaxtepec, Mexico, pp. 19–21.

Davidson, E.S., Thomas, A.T., Shar, L.E., Patel, J.H., 1975. Effective control for pipelined
processors. In: Proceedings of IEEE COMPCON, February 25–27, 1975, San
Francisco, pp. 181–184.

Davie, B.S., Peterson, L.L., Clark, D., 1999. Computer Networks: A Systems Approach,
second ed. Morgan Kaufmann, San Francisco.

References ■ R-9

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0640
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0640
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0645
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0645
http://www1.support.compaq.com/alpha-tools/-documentation/current/21264_EV67/ec-rj66a-te_comp_writ_gde_for_alpha21264.pdf
http://www1.support.compaq.com/alpha-tools/-documentation/current/21264_EV67/ec-rj66a-te_comp_writ_gde_for_alpha21264.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0650
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0650
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0660
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0665
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0665
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0670
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0675
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0675
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0675
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0685
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0685
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0695
http://ip.cadence.com/uploads/presentations/1000AM_Dally_Cadence_ENN.pdf
http://ip.cadence.com/uploads/presentations/1000AM_Dally_Cadence_ENN.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0700
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0710
http://http.CS.Berkeley.EDU/~darcy/Projects/cs252/
http://http.CS.Berkeley.EDU/~darcy/Projects/cs252/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0720
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0720
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0720
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0725


Dean, J., 2009. Designs, lessons and advice from building large distributed systems [key-
note address]. In: Proceedings of 3rd ACM SIGOPS International Workshop on
Large-Scale Distributed Systems and Middleware, Co-located with the 22nd
ACM Symposium on Operating Systems Principles, October 11–14, 2009, Big
Sky, Mont.

Dean, J., Barroso, L.A., 2013. The tail at scale. Commun. ACM 56 (2), 74–80.
Dean, J., Ghemawat, S., 2004. MapReduce: simplified data processing on large clusters.

In: Proceedings of Operating Systems Design and Implementation (OSDI), December
6–8, 2004, San Francisco, CA, pp. 137–150.

Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large clusters.
Commun. ACM 51 (1), 107–113.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W., 2007. Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of 21st ACM Symposium on Operating Systems
Principles, October 14–17, 2007, Stevenson, WA.

Dehnert, J.C., Hsu, P.Y.-T., Bratt, J.P., 1989. Overlapped loop support on the Cydra 5.
In: Proceedings of Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 3–6, 1989, Boston,
MA, pp. 26–39.

Demmel, J.W., Li, X., 1994. Faster numerical algorithms via exception handling. IEEE
Trans. Comput. 43 (8), 983–992.

Denehy, T.E., Bent, J., Popovici, F.I., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., 2004.
Deconstructing storage arrays. In: Proceedings of 11th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
October 7–13, 2004, Boston, MA, pp. 59–71.

Desurvire, E., 1992. Lightwave communications: the fifth generation. Sci. Am. (Int. Ed.)
266 (1), 96–103.

Diep, T.A., Nelson, C., Shen, J.P., 1995. Performance evaluation of the PowerPC 620
microarchitecture. In: Proceedings of 22nd Annual International Symposium on
Computer Architecture (ISCA), June 22–24, 1995, Santa Margherita, Italy.

Digital Semiconductor, 1996. Alpha Architecture Handbook, Version 3. Digital Press,
Maynard, MA.

Ditzel, D.R., McLellan, H.R., 1987. Branch folding in the CRISP microprocessor: reducing
the branch delay to zero. In: Proceedings of 14th Annual International Symposium on
Computer Architecture (ISCA), June 2–5, 1987, Pittsburgh, PA, pp. 2–7.

Ditzel, D.R., Patterson, D.A., 1980. Retrospective on high-level language computer archi-
tecture. In: Proceedings of Seventh Annual International Symposium on Computer
Architecture (ISCA), May 6–8, 1980, La Baule, France, pp. 97–104.

Doherty, W.J., Kelisky, R.P., 1979. Managing VM/CMS systems for user effectiveness.
IBM Syst. J. 18 (1), 143–166.

Doherty,W.J., Thadhani, A.J., 1982. The economic value of rapid response time. IBMReport.
Dongarra, J.J., 1986. A survey of high performance processors. In: Proceedings of IEEE

COMPCON, March 3–6, 1986, San Francisco, pp. 8–11.
Dongarra, J.J., Luszczek, P., Petitet, A., 2003. The LINPACK benchmark: past, present and

future. Concurr. Comput. Pract. Exp. 15 (9), 803–820.
Dongarra, J., Sterling, T., Simon, H., Strohmaier, E., 2005. High-performance computing: clus-

ters, constellations, MPPs, and future directions. Comput. Sci. Eng. 7 (2), 51–59.
Douceur, J.R., Bolosky, W.J., 1999. A large scale study of file-system contents.

In: Proceedings of ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, May 1–9, 1999, Atlanta, GA, pp. 59–69.

Douglas, J., 2005. Intel 8xx series and Paxville Xeon-MP microprocessors. In: Paper
Presented at Hot Chips 17, August 14–16, 2005, Stanford University, Palo Alto, CA.

R-10 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0735
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0740
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0740
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0740
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0760
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0760
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0765
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0765
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0765
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0765
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0770
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0770
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0775
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0775
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0775
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0780
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0780
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0805
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0805
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0810
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0810
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0820
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0820


Duato, J., 1993. A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Trans. Parallel Distrib. Syst. 4 (12), 1320–1331.

Duato, J., Pinkston, T.M., 2001. A general theory for deadlock-free adaptive routing using a
mixed set of resources. IEEE Trans. Parallel Distrib. Syst. 12 (12), 1219–1235.

Duato, J., Yalamanchili, S., Ni, L., 2003. Interconnection Networks: An Engineering
Approach, 2nd printing Morgan Kaufmann, San Francisco.

Duato, J., Johnson, I., Flich, J., Naven, F., Garcia, P., Nachiondo, T., 2005a. A new scalable
and cost-effective congestion management strategy for lossless multistage interconnec-
tion networks. In: Proceedings of 11th International Symposium on High-Performance
Computer Architecture, February 12–16, 2005, San Francisco.

Duato, J., Lysne, O., Pang, R., Pinkston, T.M., 2005b. Part I: a theory for deadlock-free
dynamic reconfiguration of interconnection networks. IEEE Trans. Parallel Distrib.
Syst. 16 (5), 412–427.

Dubois, M., Scheurich, C., Briggs, F., 1988. Synchronization, coherence, and event order-
ing. IEEE Comput. 21 (2), 9–21.

Dunigan, W., Vetter, K., White, K., Worley, P., 2005. Performance evaluation of the Cray
X1 distributed shared memory architecture. IEEE Micro, 30–40.

Eden, A., Mudge, T., 1998. The YAGS branch prediction scheme. In: Proceedings of the
31st Annual ACM/IEEE International Symposium on Microarchitecture, November
30–December 2, 1998, Dallas, TX, pp. 69–80.

Edmondson, J.H., Rubinfield, P.I., Preston, R., Rajagopalan, V., 1995. Superscalar instruc-
tion execution in the 21164 Alpha microprocessor. IEEE Micro 15 (2), 33–43.

Eggers, S., 1989. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors
(Ph.D. thesis). University of California, Berkeley.

Elder, J., Gottlieb, A., Kruskal, C.K., McAuliffe, K.P., Randolph, L., Snir, M., Teller, P.,
Wilson, J., 1985. Issues related to MIMD shared-memory computers: the NYU ultra-
computer approach. In: Proceedings of 12th Annual International Symposium on Com-
puter Architecture (ISCA), June 17–19, 1985, Boston, MA, pp. 126–135.

Ellis, J.R., 1986. Bulldog: ACompiler for VLIWArchitectures.MIT Press, Cambridge,MA.
Emer, J.S., Clark, D.W., 1984. A characterization of processor performance in the VAX-11/

780. In: Proceedings of 11th Annual International Symposium on Computer Architec-
ture (ISCA), June 5–7, 1984, Ann Arbor, MI, pp. 301–310.

Enriquez, P., 2001. What happened to my dial tone? A study of FCC service disruption
reports. In: Poster, Richard Tapia Symposium on the Celebration of Diversity in
Computing, October 18–20, Houston, TX.

Erlichson, A., Nuckolls, N., Chesson, G., Hennessy, J.L., 1996. SoftFLASH: analyzing the
performance of clustered distributed virtual shared memory. In: Proceedings of Seventh
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 1–5, 1996, Cambridge, MA, pp. 210–220.

Esmaeilzadeh, H., Cao, T., Xi, Y., Blackburn, S.M., McKinley, K.S., 2011. Looking back
on the language and hardware revolution: measured power, performance, and scaling.
In: Proceedings of 16th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), March 5–11, 2011, Newport
Beach, CA.

Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K., Burger, D., 2012. Power lim-
itations and dark silicon challenge the future of multicore. ACM Trans. Comput. Syst.
30 (3), 115–138.

Evers, M., Patel, S.J., Chappell, R.S., Patt, Y.N., 1998. An analysis of correlation and
predictability: what makes two-level branch predictors work. In: Proceedings of 25th
Annual International Symposium on Computer Architecture (ISCA), July 3–14,
1998, Barcelona, Spain, pp. 52–61.

Fabry, R.S., 1974. Capability based addressing. Commun. ACM 17 (7), 403–412.

References ■ R-11

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0830
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0830
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0835
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0835
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0840
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0840
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0840
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0840
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0845
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0845
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0845
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0855
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0855
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0865
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0865
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0875
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0900
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0900
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0900
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0900
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0905


Falsafi, B., Wood, D.A., 1997. Reactive NUMA: a design for unifying S-COMA and CC-
NUMA. In: Proceedings of 24th Annual International Symposium on Computer Archi-
tecture (ISCA), June 2–4, 1997, Denver, CO, pp. 229–240.

Fan, X., Weber, W., Barroso, L.A., 2007. Power provisioning for a warehouse-sized com-
puter. In: Proceedings of 34th Annual International Symposium on Computer Architec-
ture (ISCA), June 9–13, 2007, San Diego, CA.

Farkas, K.I., Jouppi, N.P., 1994. Complexity/performance trade-offs with non-blocking
loads. In: Proceedings of 21st Annual International Symposium on Computer Architec-
ture (ISCA), April 18–21, 1994, Chicago.

Farkas, K.I., Jouppi, N.P., Chow, P., 1995. How useful are non-blocking loads, stream
buffers and speculative execution in multiple issue processors? In: Proceedings of First
IEEE Symposium on High-Performance Computer Architecture, January 22–25, 1995,
Raleigh, NC, pp. 78–89.

Farkas, K.I., Chow, P., Jouppi, N.P., Vranesic, Z., 1997. Memory-system design consider-
ations for dynamically-scheduled processors. In: Proceedings of 24th Annual Interna-
tional Symposium on Computer Architecture (ISCA), June 2–4, 1997, Denver, CO,
pp. 133–143.

Fazio, D., 1987. It’s really much more fun building a supercomputer than it is simply invent-
ing one. In: Proceedings of IEEE COMPCON, February 23–27, 1987, San Francisco,
pp. 102–105.

Fikes, A., 2010. Storage architecture and challenges. In: Google Faculty Summit.
Fisher, J.A., 1981. Trace scheduling: a technique for global microcode compaction. IEEE

Trans. Comput. 30 (7), 478–490.
Fisher, J.A., 1983. Very long instruction word architectures and ELI-512. In: 10th Annual

International Symposium on Computer Architecture (ISCA), June 5–7, 1982, Stock-
holm, Sweden, pp. 140–150.

Fisher, J.A., Freudenberger, S.M., 1992. Predicting conditional branches from previous runs
of a program. In: Proceedings of Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), October 12–15,
1992, Boston, MA, pp. 85–95.

Fisher, J.A., Rau, B.R., 1993. J. Supercomput., January (special issue).
Fisher, J.A., Ellis, J.R., Ruttenberg, J.C., Nicolau, A., 1984. Parallel processing: a smart

compiler and a dumb processor. In: Proceedings of SIGPLAN Conference on Compiler
Construction, June 17–22, 1984, Montreal, Canada, pp. 11–16.

Flemming, P.J., Wallace, J.J., 1986. How not to lie with statistics: the correct way to sum-
marize benchmarks results. Commun. ACM 29 (3), 218–221.

Flynn, M.J., 1966. Very high-speed computing systems. Proc. IEEE 54 (12), 1901–1909.
Forgie, J.W., 1957. The Lincoln TX-2 input-output system. In: Proceedings of Western Joint

ComputerConference (February), InstituteofRadioEngineers,LosAngeles, pp. 156–160.
Foster, C.C., Riseman, E.M., 1972. Percolation of code to enhance parallel dispatching and

execution. IEEE Trans. Comput. C-21 (12), 1411–1415.
Frank, S.J., 1984. Tightly coupled multiprocessor systems speed memory access time. Elec-

tronics 57 (1), 164–169.
Freescale as part of i.MX31 Applications Processor, 2006. http://cache.freescale.com/files/

32bit/doc/white_paper/IMX31MULTIWP.pdf.
Freiman, C.V., 1961. Statistical analysis of certain binary division algorithms. Proc. IRE

49 (1), 91–103.
Friesenborg, S.E., Wicks, R.J., 1985. DASD Expectations: The 3380, 3380-23, and

MVS/XA, Tech. Bulletin GG22-9363-02. IBM Washington Systems Center, Gaithers-
burg, MD.

R-12 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0910
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0910
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0910
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0915
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0915
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0915
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0935
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0935
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0935
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0940
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0945
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0945
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0970
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0975
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0975
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0980
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0980
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0985
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0985
http://cache.freescale.com/files/32bit/doc/white_paper/IMX31MULTIWP.pdf
http://cache.freescale.com/files/32bit/doc/white_paper/IMX31MULTIWP.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0990
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0990


Fuller, S.H., Burr, W.E., 1977. Measurement and evaluation of alternative computer archi-
tectures. Computer 10 (10), 24–35.

Furber, S.B., 1996. ARM System Architecture. Addison-Wesley, Harlow, England. www.
cs.man.ac.uk/amulet/publications/books/ARMsysArch.

Gagliardi, U.O., 1973. Report of workshop 4—software-related advances in computer hard-
ware. In: Proceedings of Symposium on the High Cost of Software, September 17–19,
1973, Monterey, CA, pp. 99–120.

Gajski, D., Kuck, D., Lawrie, D., Sameh, A., 1983. CEDAR—a large scale multiprocessor.
In: Proceedings of International Conference on Parallel Processing (ICPP), August,
Columbus, Ohio, pp. 524–529.

Galal, S., Shacham, O., Brunhaver II, J.S., Pu, J., Vassiliev, A., Horowitz, M., 2013. FPU
generator for design space exploration. In: 21st IEEE Symposium on Computer Arith-
metic (ARITH).

Gallagher, D.M., Chen, W.Y., Mahlke, S.A., Gyllenhaal, J.C., Hwu, W.W., 1994.
Dynamic memory disambiguation using the memory conflict buffer. In: Proceedings of
Sixth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 4–7, Santa Jose, CA, pp. 183–193.

Galles, M., 1996. Scalable pipelined interconnect for distributed endpoint routing: the SGI
SPIDER chip. In: Proceedings of IEEE HOT Interconnects’96, August 15–17, 1996,
Stanford University, Palo Alto, CA.

Game, M., Booker, A., 1999. CodePack code compression for PowerPC processors. Micro-
News. 5 (1). www.chips.ibm.com/micronews/vol5_no1/codepack.html.

Gao, Q.S., 1993. The Chinese remainder theorem and the prime memory system. In: 20th
Annual International Symposium on Computer Architecture (ISCA), May 16–19, 1993,
San Diego, CA (Computer Architecture News 21:2 (May), pp. 337–340.

Gap, 2005. Gap Inc. Reports Third Quarter Earnings. http://gapinc.com/public/documents/
PR_Q405EarningsFeb2306.pdf.

Gap, 2006. Gap Inc. Reports Fourth Quarter and Full Year Earnings. http://-gapinc.com/
public/documents/Q32005PressRelease_Final22.pdf.

Garner, R., Agarwal, A., Briggs, F., Brown, E., Hough, D., Joy, B., Kleiman, S.,
Muchnick, S., Namjoo, M., Patterson, D., Pendleton, J., Tuck, R., 1988. Scalable pro-
cessor architecture (SPARC). In: Proceedings of IEEE COMPCON, February
29–March 4, 1988, San Francisco, pp. 278–283.

Gebis, J., Patterson, D., 2007. Embracing and extending 20th-century instruction set archi-
tectures. IEEE Comput. 40 (4), 68–75.

Gee, J.D., Hill, M.D., Pnevmatikatos, D.N., Smith, A.J., 1993. Cache performance of the
SPEC92 benchmark suite. IEEE Micro 13 (4), 17–27.

Gehringer, E.F., Siewiorek, D.P., Segall, Z., 1987. Parallel Processing: The Cm* Experi-
ence. Digital Press, Bedford, MA.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.L., 1990.
Memory consistency and event ordering in scalable shared-memory multiprocessors.
In: Proceedings of 17th Annual International Symposium on Computer Architecture
(ISCA), May 28–31, 1990, Seattle, WA, pp. 15–26.

Gharachorloo, K., Gupta, A., Hennessy, J.L., 1992. Hiding memory latency using dynamic
scheduling in shared-memory multiprocessors. In: Proceedings of 19th Annual Interna-
tional Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast,
Australia.

Ghemawat, S., Gobioff, H., Leung, S.-T., 2003. The Google file system. In: Proceedings of
19th ACM Symposium on Operating Systems Principles, October 19–22, 2003, Bolton
Landing, NY.

References ■ R-13

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf0995
http://www.cs.man.ac.uk/amulet/publications/books/ARMsysArch
http://www.cs.man.ac.uk/amulet/publications/books/ARMsysArch
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1025
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1025
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1025
http://www.chips.ibm.com/micronews/vol5_no1/codepack.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1035
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1035
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1035
http://gapinc.com/public/documents/PR_Q405EarningsFeb2306.pdf
http://gapinc.com/public/documents/PR_Q405EarningsFeb2306.pdf
http://-gapinc.com/public/documents/Q32005PressRelease_Final22.pdf
http://-gapinc.com/public/documents/Q32005PressRelease_Final22.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1055
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1055
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1060
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1060
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1080


Gibson, D.H., 1967. Considerations in block-oriented systems design. AFIPS Conf. Proc.
30, 75–80.

Gibson, J.C., 1970. The Gibson mix, Rep. TR. 00.2043. IBM Systems Development Divi-
sion, Poughkeepsie, NY (research done in 1959).

Gibson, G.A., 1992. In: Redundant Disk Arrays: Reliable, Parallel Secondary Storage.
ACM Distinguished Dissertation Series, MIT Press, Cambridge, MA.

Gibson, J., Kunz, R., Ofelt, D., Horowitz, M., Hennessy, J., Heinrich, M., 2000.
FLASH vs. (simulated) FLASH: Closing the simulation loop. In: Proceedings of
Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), November 12–15, Cambridge,
MA, pp. 49–58.

Glass, C.J., Ni, L.M., 1992. The Turn Model for adaptive routing. In: 19th Annual Interna-
tional Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast,
Australia.

Goldberg, I.B., 1967. 27 bits are not enough for 8-digit accuracy. Commun. ACM 10 (2),
105–106.

Goldberg, D., 1991. What every computer scientist should know about floating-point arith-
metic. Comput. Surv. 23 (1), 5–48.

Goldstein, S., 1987. Storage Performance—An Eight Year Outlook, Tech. Rep. TR 03.308-
1. Santa Teresa Laboratory, IBM Santa Teresa Laboratory, San Jose, CA.

Goldstine, H.H., 1972. The Computer: From Pascal to von Neumann. Princeton University
Press, Princeton, NJ.

González, A., Day, M., 2016. Amazon, Microsoft invest billions as computing shifts to
cloud. The Seattle Times. http://www.seattletimes.com/business/technology/amazon-
microsoft-invest-billions-as-computing-shifts-to-cloud/.

González, J., González, A., 1998. Limits of instruction level parallelism with data specula-
tion. In: Proceedings of Vector and Parallel Processing (VECPAR) Conference, June
21–23, 1998, Porto, Portugal, pp. 585–598.

Goodman, J.R., 1983. Using cache memory to reduce processor memory traffic.
In: Proceedings of 10th Annual International Symposium on Computer Architecture
(ISCA), June 5–7, 1982, Stockholm, Sweden, pp. 124–131.

Goralski, W., 1997. SONET: A Guide to Synchronous Optical Network. McGraw-Hill,
New York.

Gosling, J.B., 1980. Design of Arithmetic Units for Digital Computers. Springer-Verlag,
New York.

Gray, J., 1990. A census of Tandem system availability between 1985 and 1990. IEEE
Trans. Reliab. 39 (4), 409–418.

Gray, J. (Ed.), 1993. The Benchmark Handbook for Database and Transaction Processing
Systems, second ed. Morgan Kaufmann, San Francisco.

Gray, J., 2006. Sort benchmark home page. http://sortbenchmark.org/.
Gray, J., Reuter, A., 1993. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Francisco.
Gray, J., Siewiorek, D.P., 1991. High-availability computer systems. Computer 24 (9),

39–48.
Gray, J., van Ingen, C., 2005. Empirical Measurements of Disk Failure Rates and Error

Rates, MSR-TR-2005-166. Microsoft Research, Redmond, WA.
Greenberg, A., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D., Patel, P., Sengupta, S.,

2009. VL2: a scalable and flexible data center network. In: Proceedings of ACM SIG-
COMM, August 17–21, 2009, Barcelona, Spain.

Grice, C., Kanellos, M., 2000. Cell phone industry at crossroads: go high or low? CNET
News.technews.netscape.com/news/0-1004-201-2518386-0.html?tag¼st.ne.1002.tgif.sf.

Groe, J.B., Larson, L.E., 2000. CDMA Mobile Radio Design. Artech House, Boston.

R-14 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1085
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1085
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1115
http://www.seattletimes.com/business/technology/amazon-microsoft-invest-billions-as-computing-shifts-to-cloud/
http://www.seattletimes.com/business/technology/amazon-microsoft-invest-billions-as-computing-shifts-to-cloud/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1140
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1140
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1150
http://sortbenchmark.org/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1160
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1160
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1185


Gunther, K.D., 1981. Prevention of deadlocks in packet-switched data transport systems.
IEEE Trans. Commun. 29 (4), 512–524.

Hagersten, E., Koster, M., 1998. WildFire: a scalable path for SMPs. In: Proceedings of
Fifth International Symposium on High-Performance Computer Architecture, January
9–12, 1999, Orlando, FL.

Hagersten, E., Landin, A., Haridi, S., 1992. DDM—a cache-only memory architecture.
IEEE Comput. 25 (9), 44–54.

Hamacher, V.C., Vranesic, Z.G., Zaky, S.G., 1984. Computer Organization, second ed.
McGraw-Hill, New York.

Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B.C.,
Richardson, S., Kozyrakis, C., Horowitz, M., 2010. Understanding sources of ineffi-
ciency in general-purpose chips. ACM SIGARCH Comput. Architect. News 38 (3),
37–47.

Hamilton, J., 2009. Data center networks are in my way. In: Paper Presented at the
Stanford Clean Slate CTO Summit, October 23, 2009. http://mvdirona.com/jrh/-
TalksAndPapers/JamesHamilton_CleanSlateCTO2009.pdf.

Hamilton, J., 2010. Cloud computing economies of scale. In: Paper Presented at the AWS
Workshop on Genomics and Cloud Computing, June 8, 2010, Seattle, WA. http://
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf.

Hamilton, J., 2014. AWS Innovation at Scale, AWS Re-invent conference. https://www.
youtube.com/watch?v¼JIQETrFC_SQ.

Hamilton, J., 2015. The Return to the Cloud. http://perspectives.mvdirona.com/2015/05/
the-return-to-the-cloud//.

Hamilton, J., 2017. How Many Data Centers Needed World-Wide. http://perspectives.
mvdirona.com/2017/04/how-many-data-centers-needed-worldwide/.

Hammerstrom, D., 1990. A VLSI architecture for high-performance, low-cost, on-chip
learning. In: IJCNN International Joint Conference on Neural Networks.

Handy, J., 1993. The Cache Memory Book. Academic Press, Boston.
Hauck, E.A., Dent, B.A., 1968. Burroughs’ B6500/B7500 stack mechanism.

In: Proceedings of AFIPS Spring Joint Computer Conference, April 30–May 2,
1968, Atlantic City, NJ, pp. 245–251.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Identity mappings in deep residual networks. Also
in arXiv preprint arXiv:1603.05027.

Heald, R., Aingaran, K., Amir, C., Ang, M., Boland, M., Das, A., Dixit, P.,
Gouldsberry, G., Hart, J., Horel, T., Hsu, W.-J., Kaku, J., Kim, C., Kim, S.,
Klass, F., Kwan, H., Lo, R., McIntyre, H., Mehta, A., Murata, D., Nguyen, S.,
Pai, Y.-P., Patel, S., Shin, K., Tam, K., Vishwanthaiah, S., Wu, J., Yee, G.,
You, H., 2000. Implementation of third-generation SPARC V9 64-b microprocessor.
In: ISSCC Digest of Technical Papers, pp. 412–413.

Heinrich, J., 1993. MIPS R4000 User’s Manual. Prentice Hall, Englewood Cliffs, NJ.
Henly, M., McNutt, B., 1989. DASD I/O Characteristics: A Comparison of MVS to VM,

Tech. Rep. TR 02.1550 (May). IBM General Products Division, San Jose, CA.
Hennessy, J., 1984. VLSI processor architecture. IEEETrans. Comput. C-33 (11), 1221–1246.
Hennessy, J., 1985. VLSI RISC processors. VLSI Syst. Des. 6 (10), 22–32.
Hennessy, J., Jouppi, N., Baskett, F., Gill, J., 1981. MIPS: a VLSI processor architecture.

In: CMU Conference on VLSI Systems and Computations. Computer Science Press,
Rockville, MD.

Hewlett-Packard, 1994. PA-RISC 2.0 Architecture Reference Manual, third ed. Hewlett-
Packard, Palo Alto, CA.

Hewlett-Packard, 1998. HP’s ‘5NINES:5MINUTES’ Vision Extends Leadership
and Redefines High Availability in Mission-Critical Environments. www.future.
enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html.

References ■ R-15

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1210
http://mvdirona.com/jrh/-TalksAndPapers/JamesHamilton_CleanSlateCTO2009.pdf
http://mvdirona.com/jrh/-TalksAndPapers/JamesHamilton_CleanSlateCTO2009.pdf
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
http://perspectives.mvdirona.com/2015/05/the-return-to-the-cloud//
http://perspectives.mvdirona.com/2015/05/the-return-to-the-cloud//
http://perspectives.mvdirona.com/2017/04/how-many-data-centers-needed-worldwide/
http://perspectives.mvdirona.com/2017/04/how-many-data-centers-needed-worldwide/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1240
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1240
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1245
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1260
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1265
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1270
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1275
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1275
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1275
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1280
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1280
http://www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html
http://www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html


Hill, M.D., 1987. Aspects of Cache Memory and Instruction Buffer Performance (Ph.D.
thesis). Tech. Rep. UCB/CSD 87/381. Computer Science Division, University of
California, Berkeley.

Hill, M.D., 1988. A case for direct mapped caches. Computer 21 (12), 25–40.
Hill, M.D., 1998. Multiprocessors should support simple memory consistency models.

IEEE Comput. 31 (8), 28–34.
Hillis, W.D., 1985. The Connection Multiprocessor. MIT Press, Cambridge, MA.
Hillis, W.D., Steele, G.L., 1986. Data parallel algorithms. Commun. ACM 29 (12),

1170–1183.
Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., Roussel, P., 2001.

The microarchitecture of the Pentium 4 processor. Intel Technol. J.
Hintz, R.G., Tate, D.P., 1972. Control data STAR-100 processor design. In: Proceedings of

IEEE COMPCON, September 12–14, 1972, San Francisco, pp. 1–4.
Hirata, H., Kimura, K., Nagamine, S., Mochizuki, Y., Nishimura, A., Nakase, Y.,

Nishizawa, T., 1992. An elementary processor architecture with simultaneous instruction
issuing from multiple threads. In: Proceedings of 19th Annual International Symposium
on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia,
pp. 136–145.

Hitachi, 1997. SuperH RISC Engine SH7700 Series Programming Manual. Hitachi, Santa
Clara, CA. www.halsp.hitachi.com/tech_prod/.

Ho, R., Mai, K.W., Horowitz, M.A., 2001. The future of wires. In: Proc. of the IEEE, 89. 4,
pp. 490–504.

Hoagland, A.S., 1963. Digital Magnetic Recording. Wiley, New York.
Hockney, R.W., Jesshope, C.R., 1988. Parallel Computers 2: Architectures, Programming

and Algorithms. Adam Hilger, Ltd., Bristol, England.
Holland, J.H., 1959. A universal computer capable of executing an arbitrary number of

subprograms simultaneously. Proc. East Joint Comput. Conf. 16, 108–113.
Holt, R.C., 1972. Some deadlock properties of computer systems. ACM Comput. Surv.

4 (3), 179–196.
H€olzle, U., 2010. Brawny cores still beat wimpy cores, most of the time. IEEE Micro 30, 4

(July/August).
Hopkins, M., 2000. A critical look at IA-64: massive resources, massive ILP, but can it

deliver? Microprocessor Rep. February.
Hord, R.M., 1982. The Illiac-IV, The First Supercomputer. Computer Science Press,

Rockville, MD.
Horel, T., Lauterbach, G., 1999. UltraSPARC-III: designing third-generation 64-bit perfor-

mance. IEEE Micro 19 (3), 73–85.
Hospodor, A.D., Hoagland, A.S., et al., 1993. The changing nature of disk controllers. Proc.

IEEE 81 (4), 586–594.
Hristea, C., Lenoski, D., Keen, J., 1997. Measuring memory hierarchy performance of

cache-coherent multiprocessors using micro benchmarks. In: Proceedings of ACM/
IEEE Conference on Supercomputing, November 16–21, 1997, San Jose, CA.

Hsu, P., 1994. Designing the TFP microprocessor. IEEE Micro 18(2).
Huang, M., Wu, D., Yu, C.H., Fang, Z., Interlandi, M., Condie, T., Cong, J., 2016. Program-

ming and runtime support to blaze FPGA accelerator deployment at datacenter scale.
In: Proceedings of the Seventh ACM Symposium on Cloud Computing. ACM,
pp. 456–469.

Huck, J., et al., 2000. Introducing the IA-64 Architecture. IEEE Micro 20 (5), 12–23.
Hughes, C.J., Kaul, P., Adve, S.V., Jain, R., Park, C., Srinivasan, J., 2001. Variability in the

execution of multimedia applications and implications for architecture. In: Proceedings

R-16 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1290
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1300
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1310
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1310
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1320
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1320
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1320
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1320
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1320
http://www.halsp.hitachi.com/tech_prod/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1335
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1345
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1345
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1375
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1375
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1385
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1390
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1390
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1390
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1390
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1395
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1400


of 28th Annual International Symposium on Computer Architecture (ISCA), June
30–July 4, 2001, Goteborg, Sweden, pp. 254–265.

Hwang, K., 1979. Computer Arithmetic: Principles, Architecture, and Design. Wiley,
New York.

Hwang, K., 1993. Advanced Computer Architecture and Parallel Programming.
McGraw-Hill, New York.

Hwu, W.-M., Patt, Y., 1986. HPSm, a high performance restricted data flow architecture
having minimum functionality. In: Proceedings of 13th Annual International Sympo-
sium on Computer Architecture (ISCA), June 2–5, 1986, Tokyo, pp. 297–307.

Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A.,
Ouellette, R.O., Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., Lavery, D.M.,
1993. The superblock: an effective technique for VLIW and superscalar compilation.
J. Supercomput. 7 (1), 229–248.

Iandola, F., 2016. Exploring the Design Space of Deep Convolutional Neural Networks at
Large Scale (Ph.D. dissertation). UC Berkeley.

IBM, 1982. The Economic Value of Rapid Response Time, GE20-0752-0. IBM, White
Plains, NY, pp. 11–82.

IBM, 1990. The IBM RISC System/6000 processor. IBM J. Res. Dev. 34(1).
IBM, 1994. The PowerPC Architecture. Morgan Kaufmann, San Francisco.
IBM, 2005. Blue Gene. IBM J. Res. Dev. 49 (2/3) (Special issue).
IEEE, 1985. IEEE standard for binary floating-point arithmetic. SIGPLAN Notices 22 (2),

9–25.
IEEE, 2005. Intel virtualization technology, computer. IEEE Comput. Soc. 38 (5),

48–56.
IEEE 754-2008 Working Group, 2006. DRAFT Standard for Floating-Point Arithmetic

754-2008, https://doi.org/10.1109/IEEESTD.2008.4610935.
Ienne, P., Cornu, T., Kuhn, G., 1996. Special-purpose digital hardware for neural networks: an

architectural survey. J. VLSI Signal Process. Syst. Signal Image Video Technol. 13(1).
Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2 GB, Document

No. 64402302, Imprimis, Dallas, TX.
InfiniBand Trade Association, 2001. InfiniBand Architecture Specifications Release 1.0.a.

www.infinibandta.org.
Inoue, K., Ishihara, T., Murakami, K., 1999. Way-predicting set-associative cache for high

performance and low energy consumption. In: Proc. 1999 International Symposium on
Low Power Electronics and Design, ACM, pp. 273–275.

Intel, 2001. Using MMX Instructions to Convert RGB to YUV Color Conversion. cedar.
intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey¼Legacy::irtm_AP548_9996&
cntType¼IDS_EDITORIAL.

Internet Retailer, 2005. The Gap launches a new site—after two weeks of downtime. Inter-
net Retailer. http://www.internetretailer.com/2005/09/28/the-gap-launches-a-new-site-
after-two-weeks-of-downtime.

Jain, R., 1991. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, New York.

Jantsch, A., Tenhunen, H. (Eds.), 2003. Networks on Chips. Kluwer Academic Publishers,
The Netherlands.

Jimenez, D.A., Lin, C., 2001. Dynamic branch prediction with perceptrons. In: Proceedings
of the 7th International Symposium on High-Performance Computer Architecture
(HPCA '01). IEEE, Washington, DC, pp. 197–206.

Jimenez, D.A., Lin, C., 2002. Neural methods for dynamic branch prediction. ACM Trans.
Comput. Syst. 20 (4), 369–397.

References ■ R-17

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1410
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1410
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1415
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1415
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1415
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1430
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1435
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1440
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1445
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1445
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1450
https://doi.org/10.1109/IEEESTD.2008.4610935
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1455
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1455
http://www.infinibandta.org
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8010
http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_AP548_9996&%20cntType=IDS_EDITORIAL
http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_AP548_9996&%20cntType=IDS_EDITORIAL
http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_AP548_9996&%20cntType=IDS_EDITORIAL
http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_AP548_9996&%20cntType=IDS_EDITORIAL
http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_AP548_9996&%20cntType=IDS_EDITORIAL
http://www.internetretailer.com/2005/09/28/the-gap-launches-a-new-site-after-two-weeks-of-downtime
http://www.internetretailer.com/2005/09/28/the-gap-launches-a-new-site-after-two-weeks-of-downtime
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1480
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1480
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1485
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1485


Johnson, M., 1990. Superscalar Microprocessor Design. Prentice Hall, Englewood Cliffs,
NJ.

Jordan, H.F., 1983. Performance measurements on HEP—a pipelined MIMD computer.
In: Proceedings of 10th Annual International Symposium on Computer Architecture
(ISCA), June 5–7, 1982, Stockholm, Sweden, pp. 207–212.

Jordan,K.E., 1987. Performance comparisonof large-scale scientific processors: scalarmain-
frames, mainframes with vector facilities, and supercomputers. Computer 20 (3), 10–23.

Jouppi, N.P., 1990. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In: Proceedings of 17th Annual Interna-
tional Symposium on Computer Architecture (ISCA), May 28–31, 1990, Seattle,
WA, pp. 364–373.

Jouppi,N.P., 1998.Retrospective: Improvingdirect-mappedcacheperformanceby theaddition
of a small fully-associative cache and prefetch buffers. In: 25 Years of the International
Symposia on Computer Architecture (Selected Papers). ACM, New York, pp. 71–73.

Jouppi, N., 2016. Google supercharges machine learning tasks with TPU custom chip.
https://cloudplatform.googleblog.com.

Jouppi, N.P., Wall, D.W., 1989. Available instruction-level parallelism for super-scalar and
superpipelined processors. In: Proceedings of Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS), April
3–6, 1989, Boston, pp. 272–282.

Jouppi, N.P., Wilton, S.J.E., 1994. Trade-offs in two-level on-chip caching. In: Proceedings
of 21st Annual International Symposium on Computer Architecture (ISCA), April 18–
21, 1994, Chicago, pp. 34–45.

Jouppi, N., Young, C., Patil, N., Patterson, D., Agrawal, G., et al., 2017. Datacenter perfor-
mance analysis of a matrix processing unit. In: 44th International Symposium on
Computer Architecture.

Kaeli, D.R., Emma, P.G., 1991. Branch history table prediction of moving target branches
due to subroutine returns. In: Proceedings of 18th Annual International Symposium on
Computer Architecture (ISCA), May 27–30, 1991, Toronto, Canada, pp. 34–42.

Kahan, W., 1968. 7094-II system support for numerical analysis, SHARE Secretarial
Distribution SSD-159. Department of Computer Science, University of Toronto.

Kahan, J., 1990. On the advantage of the 8087’s stack, unpublished course notes. Computer
Science Division, University of California, Berkeley.

Kahaner, D.K., 1988. Benchmarks for ‘real’ programs. SIAM News. November.
Kahn, R.E., 1972. Resource-sharing computer communication networks. Proc. IEEE

60 (11), 1397–1407.
Kane, G., 1986. MIPS R2000 RISC Architecture. Prentice Hall, Englewood Cliffs, NJ.
Kane, G., 1996. PA-RISC 2.0 Architecture. Prentice Hall, Upper Saddle River, NJ.
Kane, G., Heinrich, J., 1992. MIPS RISC Architecture. Prentice Hall, Englewood Cliffs, NJ.
Kanev, S., Darago, J.P., Hazelwood, K., Ranganathan, P., Moseley, T., Wei, G.Y.,

Brooks, D., 2015. Profiling a warehouse-scale computer. In: ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA).

Karpathy, A., et al., 2014. Large-scale video classification with convolutional neural
networks. CVPR.

Katz, R.H., Patterson, D.A., Gibson, G.A., 1989. Disk system architectures for high perfor-
mance computing. Proc. IEEE 77 (12), 1842–1858.

Keckler, S.W., Dally, W.J., 1992. Processor coupling: integrating compile time and runtime
scheduling for parallelism. In: Proceedings of 19th Annual International Symposium on
Computer Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia, pp. 202–213.

Keller, R.M., 1975. Look-ahead processors. ACM Comput. Surv. 7 (4), 177–195.

R-18 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1490
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1490
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1495
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1495
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1495
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1500
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1500
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1510
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1510
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1510
https://cloudplatform.googleblog.com
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1540
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1545
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1545
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1550
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1555
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1560
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1565
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1565
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1565
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1570
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1570
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1575
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1575
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1585


Keltcher, C.N., McGrath, K.J., Ahmed, A., Conway, P., 2003. The AMDOpteron processor
for multiprocessor servers. IEEE Micro 23 (2), 66–76.

Kembel, R., 2000. Fibre channel: a comprehensive introduction. Internet Week. April.
Kermani, P., Kleinrock, L., 1979. Virtual cut-through: a new computer communication

switching technique. Comput. Netw. 3, 267–286.
Kessler, R., 1999. The Alpha 21264 microprocessor. IEEE Micro 19 (2), 24–36.
Kilburn, T., Edwards, D.B.G., Lanigan, M.J., Sumner, F.H., 1962. One-level storage sys-

tem. IRE Trans. Electron. Comput. EC-11, 223–235. Also appears in Siewiorek, D.P.,
Bell, C.G., Newell, A. 1982. Computer Structures: Principles and Examples. McGraw-
Hill, New York. pp. 135–148.

Killian, E., 1991. MIPS R4000 technical overview–64 bits/100 MHz or bust. In: Hot Chips
III Symposium Record, August 26–27, 1991, Stanford University, Palo Alto, CA.
pp. 1.6–1.19.

Kim, M.Y., 1986. Synchronized disk interleaving. IEEE Trans. Comput. 35 (11),
978–988.

Kim, K., 2005. Technology for sub-50nmDRAM and NAND flash manufacturing. In: Elec-
tron Devices Meeting Technical Digest (December), pp. 323–326.

Kissell, K.D., 1997. MIPS16: High-density for the embedded market. In: Proceedings of
Real Time Systems’97, June 15, 1997, Las Vegas, Nev. www.sgi.com/MIPS/arch/
MIPS16/MIPS16.whitepaper.pdf.

Kitagawa, K., Tagaya, S., Hagihara, Y., Kanoh, Y., 2003. A hardware overview of SX-6
and SX-7 supercomputer. NEC Res. Dev. J. 44 (1), 2–7.

Knuth, D., 1981. second ed. The Art of Computer Programming, vol. II. Addison-Wesley,
Reading, MA.

Kogge, P.M., 1981. The Architecture of Pipelined Computers. McGraw-Hill, New York.
Kohn, L., Fu, S.-W., 1989. A 1,000,000 transistor microprocessor. In: Proceedings of IEEE

International Symposium on Solid State Circuits (ISSCC), February 15–17, 1989,
New York, pp. 54–55.

Kohn, L., Margulis, N., 1989. Introducing the Intel i860 64-Bit Microprocessor. IEEEMicro
9 (4), 15–30.

Kontothanassis, L., Hunt, G., Stets, R., Hardavellas, N., Cierniak, M., Parthasarathy, S.,
Meira, W., Dwarkadas, S., Scott, M., 1997. VM-based shared memory on low-latency,
remote-memory-access networks. In: Proceedings of 24th Annual International
Symposium on Computer Architecture (ISCA), June 2–4, 1997, Denver, CO.

Koren, I., 1989. Computer Arithmetic Algorithms. Prentice Hall, Englewood Cliffs, NJ.
Kozyrakis, C., 2000. Vector IRAM: a media-oriented vector processor with embedded

DRAM. In: Paper Presented at Hot Chips 12, August 13–15, 2000, Palo Alto, CA,
pp. 13–15.

Kozyrakis, C., Patterson, D., 2002. Vector vs. superscalar and VLIW architectures for
embedded multimedia benchmarks. In: Proceedings of 35th Annual International
Symposium on Microarchitecture (MICRO-35), November 18–22, 2002, Istanbul,
Turkey.

Krizhevsky, A., Sutskever, I., Hinton, G., 2012. Imagenet classification with deep convolu-
tional neural networks. Adv. Neural Inf. Process. Syst.

Kroft, D., 1981. Lockup-free instruction fetch/prefetch cache organization. In: Proceedings
of Eighth Annual International Symposium on Computer Architecture (ISCA), May
12–14, 1981, Minneapolis, MN, pp. 81–87.

Kroft, D., 1998. Retrospective: lockup-free instruction fetch/prefetch cache organization.
In: 25 Years of the International Symposia on Computer Architecture (Selected Papers),
ACM, New York, pp. 20–21.

References ■ R-19

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1590
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1590
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1595
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1600
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1600
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1605
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1615
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1615
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1615
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1620
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1620
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9710
http://www.sgi.com/MIPS/arch/MIPS16/MIPS16.whitepaper.pdf
http://www.sgi.com/MIPS/arch/MIPS16/MIPS16.whitepaper.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1630
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1630
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1640
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1645
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1645
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1645
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1650
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1650
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1660
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1665
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1665
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1665
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1670
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1670
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1670
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1670
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1675
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1675
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1685
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1685
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1685


Kuck, D., Budnik, P.P., Chen, S.-C., Lawrie, D.H., Towle, R.A., Strebendt, R.E.,
Davis Jr., E.W., Han, J., Kraska, P.W.,Muraoka, Y., 1974.Measurements of parallelism
in ordinary FORTRAN programs. Computer 7 (1), 37–46.

Kuhn, D.R., 1997. Sources of failure in the public switched telephone network. IEEE
Comput. 30 (4), 31–36.

Kumar, A., 1997. The HP PA-8000 RISC CPU. IEEE Micro 17 (2), 27–32.
Kung, H.T., Leiserson, C.E., 1980. Algorithms for VLSI processor arrays. Introduction to

VLSI systems.
Kunimatsu, A., Ide, N., Sato, T., Endo, Y., Murakami, H., Kamei, T., Hirano, M.,

Ishihara, F., Tago, H., Oka, M., Ohba, A., Yutaka, T., Okada, T., Suzuoki, M.,
2000. Vector unit architecture for emotion synthesis. IEEE Micro 20 (2), 40–47.

Kunkel, S.R., Smith, J.E., 1986. Optimal pipelining in supercomputers. In: Proceedings of
13th Annual International Symposium on Computer Architecture (ISCA), June 2–5,
1986, Tokyo, pp. 404–414.

Kurose, J.F., Ross, K.W., 2001. Computer Networking: A Top-Down Approach Featuring
the Internet. Addison-Wesley, Boston.

Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K., Chapin, J.,
Nakahira, D., Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M., Hennessy, J.L.,
1994. The Stanford FLASH multiprocessor. In: Proceedings of 21st Annual
International Symposium onComputerArchitecture (ISCA), April 18–21, 1994, Chicago.

Lam, M., 1988. Software pipelining: an effective scheduling technique for VLIW proces-
sors. In: SIGPLAN Conference on Programming Language Design and Implementa-
tion, June 22–24, 1988, Atlanta, GA, pp. 318–328.

Lam, M.S., Wilson, R.P., 1992. Limits of control flow on parallelism. In: Proceedings of
19th Annual International Symposium on Computer Architecture (ISCA), May
19–21, 1992, Gold Coast, Australia, pp. 46–57.

Lam, M.S., Rothberg, E.E., Wolf, M.E., 1991. The cache performance and optimizations of
blocked algorithms. In: Proceedings of Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), April
8–11, 1991, Santa Clara, CA. (SIGPLAN Notices 26:4 (April), 63–74).

Lambright, D., 2000. Experiences in measuring the reliability of a cache-based storage
system. In: Proceedings of First Workshop on Industrial Experiences with Systems
Software (WIESS 2000), Co-Located with the 4th Symposium on Operating Systems
Design and Implementation (OSDI), October 22, 2000, San Diego, CA.

Lamport, L., 1979. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Comput. C-28 (9), 241–248.

Landstrom, B., 2014. The Cost of Downtime. http://www.interxion.com/blogs/2014/07/the-
cost-of-downtime/.

Lang, W., Patel, J.M., Shankar, S., 2010. Wimpy node clusters: what about non-wimpy
workloads? In: Proceedings of Sixth International Workshop on Data Management
on New Hardware (DaMoN), June 7, Indianapolis, IN.

Laprie, J.-C., 1985. Dependable computing and fault tolerance: concepts and terminology.
In: Proceedings of 15th Annual International Symposium on Fault-Tolerant Computing,
June 19–21, 1985, Ann Arbor, Mich, pp. 2–11.

Larabel, M., 2016. Google Looks To Open Up StreamExecutor ToMake GPGPU Program-
ming Easier. Phoronix, March 10. https://www.phoronix.com/.

Larson, E.R., 1973. Findings of fact, conclusions of law, and order for judgment,
File No. 4-67, Civ. 138, Honeywell v. Sperry-Rand and Illinois Scientific Develop-
ment, U.S. District Court for the State of Minnesota, Fourth Division (October 19).

Laudon, J., Lenoski, D., 1997. The SGI Origin: a ccNUMA highly scalable server.
In: Proceedings of 24th Annual International Symposium on Computer Architecture
(ISCA), June 2–4, 1997, Denver, CO, pp. 241–251.

R-20 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1700
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1720
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1720
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1735
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1735
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1735
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1740
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1740
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1740
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1740
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1750
http://www.interxion.com/blogs/2014/07/the-cost-of-downtime/
http://www.interxion.com/blogs/2014/07/the-cost-of-downtime/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1760
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1760
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1760
https://www.phoronix.com/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1765
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1765
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1765


Laudon, J., Gupta, A., Horowitz, M., 1994. Interleaving: a multithreading technique target-
ing multiprocessors and workstations. In: Proceedings of Sixth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 4–7, San Jose, CA, pp. 308–318.

Lauterbach, G., Horel, T., 1999. UltraSPARC-III: designing third generation 64-bit perfor-
mance. IEEE Micro 19, 3 (May/June).

Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C., 1984. Quantitative System
Performance: Computer System Analysis Using Queueing Network Models. Prentice
Hall, Englewood Cliffs, NJ (Although out of print, it is available online at www.cs.
washington.edu/homes/lazowska/qsp/).

Lebeck, A.R., Wood, D.A., 1994. Cache profiling and the SPEC benchmarks: a case study.
Computer 27 (10), 15–26.

Lee, R., 1989. Precision architecture. Computer 22 (1), 78–91.
Lee, W.V., et al., 2010. Debunking the 100X GPU vs. CPU myth: an evaluation of

throughput computing on CPU and GPU. In: Proceedings of 37th Annual Interna-
tional Symposium on Computer Architecture (ISCA), June 19–23, 2010, Saint-
Malo, France.

Lee, Y., Waterman, A., Cook, H., Zimmer, B., Keller, B., Puggelli, A., Kwak, J., Jevtic, R.,
Bailey, S., Blagojevic, M., Chiu, P.-F., Avizienis, R., Richards, B., Bachrach, J.,
Patterson, D., Alon, E., Nikolic, B., Asanovic, K., 2016. An agile approach to building
RISC-V microprocessors. IEEE Micro 36 (2), 8–20.

Leighton, F.T., 1992. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann, San Francisco.

Leiner, A.L., 1954. System specifications for the DYSEAC. J. ACM 1 (2), 57–81.
Leiner, A.L., Alexander, S.N., 1954. System organization of the DYSEAC. IRE Trans.

Electron. Comput. 3 (1), 1–10.
Leiserson, C.E., 1985. Fat trees: universal networks for hardware-efficient supercomputing.

IEEE Trans. Comput. C-34 (10), 892–901.
Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., Hennessy, J.L., 1990. The Stanford

DASH multiprocessor. In: Proceedings of 17th Annual International Symposium on
Computer Architecture (ISCA), May 28–31, 1990, Seattle, WA, pp. 148–159.

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta, A., Hennessy, J.L.,
Horowitz, M.A., Lam, M., 1992. The Stanford DASH multiprocessor. IEEE Comput.
25 (3), 63–79.

Levy, H., Eckhouse, R., 1989. Computer Programming and Architecture: The VAX. Digital
Press, Boston.

Lewis-Kraus, G., 2016. The Great A.I. Awakening. New York Times Magazine..
Li, K., 1988. IVY: a shared virtual memory system for parallel computing. In: Proceedings

of 1988 International Conference on Parallel Processing. Pennsylvania State University
Press, University Park, PA.

Li, S., Chen, K., Brockman, J.B., Jouppi, N., 2011. Performance Impacts of Non-blocking
Caches in Out-of-order Processors. HP Labs Tech Report HPL-2011-65 (full text avail-
able at http://Library.hp.com/techpubs/2011/Hpl-2011-65.html).

Lim, K., Ranganathan, P., Chang, J., Patel, C., Mudge, T., Reinhardt, S., 2008. Understand-
ing and designing new system architectures for emerging warehouse-computing
environments. In: Proceedings of 35th Annual International Symposium on Computer
Architecture (ISCA), June 21–25, 2008, Beijing, China.

Lincoln, N.R., 1982. Technology and design trade offs in the creation of a modern super-
computer. IEEE Trans. Comput. C-31 (5), 363–376.

Lindholm, T., Yellin, F., 1999. The Java Virtual Machine Specification, 2nd ed. Addi-
son-Wesley, Reading, MA (Also available online at java.sun.com/docs/books/
vmspec/).

References ■ R-21

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1770
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1770
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1770
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1770
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1775
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1775
http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1805
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1805
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1810
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1820
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1820
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1830
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1830
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1830
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1835
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1835
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1840
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1845
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1845
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1845
http://Library.hp.com/techpubs/2011/Hpl-2011-65.html)
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1855
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1855
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1860


Lipasti, M.H., Shen, J.P., 1996. Exceeding the dataflow limit via value prediction.
In: Proceedings of 29th International Symposium on Microarchitecture, December
2–4, 1996, Paris, France.

Lipasti, M.H., Wilkerson, C.B., Shen, J.P., 1996. Value locality and load value prediction.
In: Proceedings of Seventh Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), October 1–5, 1996, Cambridge, MA,
pp. 138–147.

Liptay, J.S., 1968. Structural aspects of the System/360 Model 85, Part II: The cache. IBM
Syst. J. 7 (1), 15–21.

Lo, J., Eggers, S., Emer, J., Levy, H., Stamm, R., Tullsen, D., 1997. Converting thread-level
parallelism into instruction-level parallelism via simultaneous multithreading. ACM
Trans. Comput. Syst. 15 (2), 322–354.

Lo, J., Barroso, L., Eggers, S., Gharachorloo, K., Levy, H., Parekh, S., 1998. An analysis of
database workload performance on simultaneous multithreaded processors.
In: Proceedings of 25th Annual International Symposium on Computer Architecture
(ISCA), July 3–14, 1998, Barcelona, Spain, pp. 39–50.

Lo, D., Cheng, L., Govindaraju, R., Barroso, L.A., Kozyrakis, C., 2014. Towards energy
proportionality for large-scale latency-critical workloads. In: ACM/IEEE 41st Annual
International Symposium on Computer Architecture (ISCA).

Loh, G.H., Hill, M.D., 2011. Efficiently enabling conventional block sizes for very large
die-stacked DRAM caches. In: Proc. 44th Annual IEEE/ACM International Symposium
on Microarchitecture, ACM, pp. 454–464.

Lovett, T., Thakkar, S., 1988. The symmetry multiprocessor system. In: Proceedings of
1988 International Conference of Parallel Processing, University Park, PA,
pp. 303–310.

Lubeck, O., Moore, J., Mendez, R., 1985. A benchmark comparison of three supercom-
puters: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2. Computer 18 (12),
10–24.

Luk, C.-K., Mowry, T.C., 1999. Automatic compiler-inserted prefetching for pointer-based
applications. IEEE Trans. Comput. 48 (2), 134–141.

Lunde, A., 1977. Empirical evaluation of some features of instruction set processor archi-
tecture. Commun. ACM 20 (3), 143–152.

Luszczek, P., Dongarra, J.J., Koester, D., Rabenseifner, R., Lucas, B., Kepner, J., McCalpin,
J., Bailey, D., Takahashi, D., 2005. Introduction to the HPC challenge benchmark suite.
Lawrence Berkeley National Laboratory, Paper LBNL-57493 (April 25), repositories.
cdlib.org/lbnl/LBNL-57493.

Maberly, N.C., 1966. Mastering Speed Reading. New American Library, New York.
Magenheimer, D.J., Peters, L., Pettis, K.W., Zuras, D., 1988. Integer multiplication and

division on the HP precision architecture. IEEE Trans. Comput. 37 (8), 980–990.
Mahlke, S.A., Chen, W.Y., Hwu, W.-M., Rau, B.R., Schlansker, M.S., 1992. Sentinel

scheduling for VLIW and superscalar processors. In: Proceedings of Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 12–15, 1992, Boston, pp. 238–247.

Mahlke, S.A., Hank, R.E., McCormick, J.E., August, D.I., Hwu,W.W., 1995. A comparison
of full and partial predicated execution support for ILP processors. In: Proceedings of
22nd Annual International Symposium on Computer Architecture (ISCA), June 22–24,
1995, Santa Margherita, Italy, pp. 138–149.

Major, J.B., 1989. Are queuing models within the grasp of the unwashed? In: Proceedings of
International Conference on Management and Performance Evaluation of Computer
Systems, December 11–15, 1989, Reno, Nev, pp. 831–839.

Markstein, P.W., 1990. Computation of elementary functions on the IBM RISC System/
6000 processor. IBM J. Res. Dev. 34 (1), 111–119.

R-22 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1865
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1865
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1865
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1870
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1875
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1875
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1900
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1900
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1905
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1905
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1910
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1915
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1915
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1935
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1935


Mathis, H.M., Mercias, A.E., McCalpin, J.D., Eickemeyer, R.J., Kunkel, S.R., 2005. Char-
acterization of the multithreading (SMT) efficiency in Power5. IBM J. Res. Dev.
49 (4/5), 555–564.

McCalpin, J., 2005. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. www.cs.virginia.edu/stream/.

McCalpin, J., Bailey, D., Takahashi, D., 2005. Introduction to the HPC Challenge Bench-
mark Suite, Paper LBNL-57493. Lawrence Berkeley National Laboratory, University
of California, Berkeley, repositories.cdlib.org/lbnl/LBNL-57493.

McCormick, J., Knies, A., 2002. A brief analysis of the SPEC CPU2000 benchmarks on the
Intel Itanium 2 processor. In: Paper Presented at Hot Chips 14, August 18–20, 2002,
Stanford University, Palo Alto, CA.

McFarling, S., 1989. Program optimization for instruction caches. In: Proceedings of Third
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), April 3–6, 1989, Boston, pp. 183–191.

McFarling, S., 1993. Combining Branch Predictors, WRL Technical Note TN-36, Digital
Western Research Laboratory, Palo Alto, CA.

McFarling, S., Hennessy, J., 1986. Reducing the cost of branches. In: Proceedings of 13th
Annual International Symposium on Computer Architecture (ISCA), June 2–5, 1986,
Tokyo, pp. 396–403.

McGhan, H., O’Connor, M., 1998. PicoJava: a direct execution engine for Java bytecode.
Computer 31 (10), 22–30.

McKeeman, W.M., 1967. Language directed computer design. In: Proceedings of AFIPS
Fall Joint Computer Conference, November 14–16, 1967, Washington, DC, pp. 413–417.

McMahon, F.M., 1986. The Livermore FORTRANKernels: A Computer Test of Numerical
Performance Range, Tech. Rep. UCRL-55745. Lawrence Livermore National Labora-
tory, University of California, Livermore.

McNairy, C., Soltis, D., 2003. Itanium 2 processor microarchitecture. IEEE Micro 23 (2),
44–55.

Mead, C., Conway, L., 1980. Introduction to VLSI Systems. Addison-Wesley, Reading, MA.
Mellor-Crummey, J.M., Scott, M.L., 1991. Algorithms for scalable synchronization on

shared-memory multiprocessors. ACM Trans. Comput. Syst. 9 (1), 21–65.
Menabrea, L.F., 1842. Sketch of the analytical engine invented by Charles Babbage.

Bibliothèque Universelle de Genève. 82.
Menon, A., Renato Santos, J., Turner, Y., Janakiraman, G., Zwaenepoel, W., 2005. Diag-

nosing performance overheads in the xen virtual machine environment. In: Proceedings
of First ACM/USENIX International Conference on Virtual Execution Environments,
June 11–12, 2005, Chicago, pp. 13–23.

Merlin, P.M., Schweitzer, P.J., 1980. Deadlock avoidance in store-and-forward networks.
Part I. Store-and-forward deadlock. IEEE Trans. Commun. 28 (3), 345–354.

Metcalfe, R.M., 1993. Computer/network interface design: lessons from Arpanet and Ether-
net. IEEE J. Sel. Area. Commun. 11 (2), 173–180.

Metcalfe, R.M., Boggs, D.R., 1976. Ethernet: distributed packet switching for local
computer networks. Commun. ACM 19 (7), 395–404.

Metropolis, N., Howlett, J., Rota, G.C. (Eds.), 1980. A History of Computing in the
Twentieth Century. Academic Press, New York.

Meyer, R.A., Seawright, L.H., 1970. A virtual machine time sharing system. IBM Syst. J.
9 (3), 199–218.

Meyers, G.J., 1978. The evaluation of expressions in a storage-to-storage architecture.
Comput. Architect. News 7 (3), 20–23.

Meyers, G.J., 1982. Advances in Computer Architecture, second ed. Wiley, New York.
Micron, 2004. Calculating Memory System Power for DDR2. http://download.micron.com/

pdf/pubs/designline/dl1Q04.pdf.

References ■ R-23

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1940
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1940
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1940
http://www.cs.virginia.edu/stream/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1970
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1970
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1975
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1975
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1980
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1985
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1985
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1990
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1990
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf1995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2005
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2010
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2025
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2025
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2030
http://download.micron.com/pdf/pubs/designline/dl1Q04.pdf
http://download.micron.com/pdf/pubs/designline/dl1Q04.pdf


Micron, 2006. The Micron System-Power Calculator. http://www.micron.com/-systemcalc.
MIPS, 1997. MIPS16 Application Specific Extension Product Description. www.sgi.com/

MIPS/arch/MIPS16/mips16.pdf.
Miranker, G.S., Rubenstein, J., Sanguinetti, J., 1988. Squeezing a Cray-class supercomputer

into a single-user package. In: Proceedings of IEEE COMPCON, February 29–March 4,
1988, San Francisco, pp. 452–456.

Mitchell, D., 1989. The transputer: the time is now. Comput. Des. (RISC suppl.) 40–41.
Mitsubishi, 1996. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family Software

Manual. Mitsubishi, Cypress, CA.
Miura, K., Uchida, K., 1983. FACOM vector processing system: VP100/200.

In: Proceedings of NATO Advanced Research Workshop on High-Speed Computing,
June 20–22, 1983, J€ulich, West Germany. Also appears in Hwang, K. (Ed.), 1984.
Superprocessors: Design and Applications. IEEE (August), pp. 59–73.

Miya, E.N., 1985. Multiprocessor/distributed processing bibliography. Comput. Architect.
News 13 (1), 27–29.

Money, M.S.N., 2005. Amazon Shares Tumble after Rally Fizzles. http://moneycentral.
msn.com/content/CNBCTV/Articles/Dispatches/P133695.asp.

Montoye, R.K., Hokenek, E., Runyon, S.L., 1990. Design of the IBM RISC System/6000
floating-point execution. IBM J. Res. Dev. 34 (1), 59–70.

Moore, G.E., 1965. Crammingmore components onto integrated circuits. Electronics 38 (8),
114–117.

Moore, B., Padegs, A., Smith, R., Bucholz, W., 1987. Concepts of the System/370 vector
architecture. In: 14th Annual International Symposium on Computer Architecture
(ISCA), June 2–5, 1987, Pittsburgh, PA, pp. 282–292.

Morgan, T., 2014. A rare peek into themassive scale of AWS. Enterprise Tech. https://www.
enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/.

Morgan, T., 2016. How long can AWS keep climbing its steep growth curve? https://www.
nextplatform.com/2016/02/01/how-long-can-aws-keep-climbingits-steep-growth-curve/.

Morse, S., Ravenal, B., Mazor, S., Pohlman, W., 1980. Intel microprocessors—8080 to
8086. Computer 13, 10.

Moshovos, A., Sohi, G.S., 1997. Streamlining inter-operation memory communication
via data dependence prediction. In: Proceedings of 30th Annual International
Symposium on Microarchitecture, December 1–3, Research Triangle Park, NC,
pp. 235–245.

Moshovos, A., Breach, S., Vijaykumar, T.N., Sohi, G.S., 1997. Dynamic speculation and
synchronization of data dependences. In: 24th Annual International Symposium on
Computer Architecture (ISCA), June 2–4, 1997, Denver, CO.

Moussouris, J., Crudele, L., Freitas, D., Hansen, C., Hudson, E., Przybylski, S., Riordan, T.,
Rowen, C., 1986. A CMOS RISC processor with integrated system functions.
In: Proceedings of IEEE COMPCON, March 3–6, 1986, San Francisco, p. 191.

Mowry, T.C., Lam, S., Gupta, A., 1992. Design and evaluation of a compiler algorithm for
prefetching. In: Proceedings of Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), October 12–15, 1992,
Boston (SIGPLAN Notices 27:9 (September), pp. 62–73.

Muchnick, S.S., 1988. Optimizing compilers for SPARC. Sun Technol. 1 (3), 64–77.
Mueller, M., Alves, L.C., Fischer, W., Fair, M.L., Modi, I., 1999. RAS strategy for IBM S/

390 G5 and G6. IBM J. Res. Dev. 43 (5-6), 875–888.
Mukherjee, S.S., Weaver, C., Emer, J.S., Reinhardt, S.K., Austin, T.M., 2003. Measuring

architectural vulnerability factors. IEEE Micro 23 (6), 70–75.
Murphy, B., Gent, T., 1995. Measuring system and software reliability using an automated

data collection process. Qual. Reliab. Eng. Int. 11 (5), 341–353.

R-24 ■ References

http://www.micron.com/-systemcalc
http://www.sgi.com/MIPS/arch/MIPS16/mips16.pdf
http://www.sgi.com/MIPS/arch/MIPS16/mips16.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2055
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2060
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2060
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2070
http://moneycentral.msn.com/content/CNBCTV/Articles/Dispatches/P133695.asp
http://moneycentral.msn.com/content/CNBCTV/Articles/Dispatches/P133695.asp
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2085
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2085
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2090
https://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/
https://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2120
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2135


Myer, T.H., Sutherland, I.E., 1968. On the design of display processors. Commun. ACM
11 (6), 410–414.

Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., Rowstron, A., 2009. Migrating
server storage to SSDs: analysis of trade-offs. In: Proceedings of 4th ACM European
Conference on Computer Systems, April 1–3, 2009, Nuremberg, Germany.

National Research Council, 1997. The Evolution of Untethered Communications. Computer
Science and Telecommunications Board, National Academy Press, Washington, DC.

National Storage Industry Consortium, 1998. Tape Roadmap. www.nsic.org.
Nelson, V.P., 1990. Fault-tolerant computing: fundamental concepts. Computer 23 (7), 19–25.
Ngai, T.-F., Irwin, M.J., 1985. Regular, area-time efficient carry-lookahead adders.

In: Proceedings of Seventh IEEE Symposium on Computer Arithmetic, June 4–6,
1985, University of Illinois, Urbana, pp. 9–15.

Nicolau, A., Fisher, J.A., 1984. Measuring the parallelism available for very long instruction
word architectures. IEEE Trans. Comput. C33 (11), 968–976.

Nielsen, M., 2016. Neural Networks and Deep Learning. http://neuralnetwork
sanddeeplearning.com/.

Nikhil, R.S., Papadopoulos, G.M., Arvind, 1992. *T: a multithreaded massively parallel
architecture. In: Proceedings of 19th Annual International Symposium on Computer
Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia, pp. 156–167.

Noordergraaf, L., van der Pas, R., 1999. Performance experiences on Sun’s WildFire
prototype. In: Proceedings of ACM/IEEE Conference on Supercomputing, November
13–19, 1999, Portland, Ore.

Nvidia, 2016. Tesla GPU Accelerators For Servers. http:// www.nvidia.com/object/tesla-
servers.html.

Nyberg, C.R., Barclay, T., Cvetanovic, Z., Gray, J., Lomet, D., 1994. AlphaSort: a RISC
machine sort. In: Proceedings ofACMSIGMOD,May24–27, 1994,Minneapolis,Minn.

Oka, M., Suzuoki, M., 1999. Designing and programming the emotion engine. IEEE Micro
19 (6), 20–28.

Okada, S., Okada, S., Matsuda, Y., Yamada, T., Kobayashi, A., 1999. System on a chip for
digital still camera. IEEE Trans. Consum. Electron. 45 (3), 584–590.

Oliker, L., Canning, A., Carter, J., Shalf, J., Ethier, S., 2004. Scientific computations on
modern parallel vector systems. In: Proceedings of ACM/IEEE Conference on
Supercomputing, November 6–12, 2004, Pittsburgh, Penn, p. 10.

Olofsson, A., 2011. Debunking the myth of the $100M ASIC. EE Times. http://www.
eetimes.com/author.asp?section_id¼36&doc_id¼1266014.

Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S., 2015a. Accel-
erating deep convolutional neural networks using specialized hardware.Microsoft Research
Whitepaper. https://www.microsoft.com/en-us/research/publication/accelerating-deep-
convolutional-neural-networks-using-specialized-hardware/.

Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S., 2015b. Toward
accelerating deep learning at scale using specialized hardware in the datacenter. In: 2015
IEEE Hot Chips 27 Symposium.

Pabst, T., 2000. Performance Showdown at 133 MHz FSB—The Best Platform for
Coppermine. www6.tomshardware.com/mainboard/00q1/000302/.

Padua, D., Wolfe, M., 1986. Advanced compiler optimizations for supercomputers.
Commun. ACM 29 (12), 1184–1201.

Palacharla, S., Kessler, R.E., 1994. Evaluating stream buffers as a secondary cache replace-
ment. In: Proceedings of 21st Annual International Symposium on Computer Architec-
ture (ISCA), April 18–21, 1994, Chicago, pp. 24–33.

Palmer, J., Morse, S., 1984. The 8087 Primer. John Wiley & Sons, New York, p. 93.

References ■ R-25

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2140
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2140
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2150
http://www.nsic.org
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2160
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2170
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2185
http://%20www.nvidia.com/object/tesla-servers.html
http://%20www.nvidia.com/object/tesla-servers.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2210
http://www.eetimes.com/author.asp?section_id=36&doc_id=1266014
http://www.eetimes.com/author.asp?section_id=36&doc_id=1266014
http://www.eetimes.com/author.asp?section_id=36&doc_id=1266014
http://www.eetimes.com/author.asp?section_id=36&doc_id=1266014
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2225
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2225
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2225
http://www6.tomshardware.com/mainboard/00q1/000302/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2235
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2235
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2240
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2240
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2240
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2245


Pan, S.-T., So, K., Rameh, J.T., 1992. Improving the accuracy of dynamic branch prediction
using branch correlation. In: Proceedings of Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), October
12–15, 1992, Boston, pp. 76–84.

Partridge, C., 1994. Gigabit Networking. Addison-Wesley, Reading, MA.
Patterson, D., 1985. Reduced instruction set computers. Commun. ACM 28 (1), 8–21.
Patterson, D., 2004. Latency lags bandwidth. Commun. ACM 47 (10), 71–75.
Patterson, D.A., Ditzel, D.R., 1980. The case for the reduced instruction set computer. ACM

SIGARCH Comput. Architect. News 8 (6), 25–33.
Patterson, D.A., Hennessy, J.L., 2004. Computer Organization and Design: The Hardware/

Software Interface, third ed. Morgan Kaufmann, San Francisco.
Patterson, D., Nikoli�c, B., 7/25/2015, Agile Design for Hardware, Parts I, II, and III. EE

Times, http://www.eetimes.com/author.asp?doc_id¼1327239.
Patterson, D.A., Garrison, P., Hill, M., Lioupis, D., Nyberg, C., Sippel, T., Van Dyke, K.,

1983. Architecture of a VLSI instruction cache for a RISC. In: 10th Annual International
Conference on Computer Architecture Conf. Proc., June 13–16, 1983, Stockholm,
Sweden, pp. 108–116.

Patterson, D.A., Gibson, G.A., Katz, R.H., 1987. A Case for Redundant Arrays of Inexpen-
sive Disks (RAID), Tech. Rep. UCB/CSD 87/391, University of California, Berkeley.
Also appeared in Proc. ACM SIGMOD, June 1–3, 1988, Chicago, pp. 109–116.

Pavan, P., Bez, R., Olivo, P., Zanoni, E., 1997. Flash memory cells—an overview. Proc.
IEEE 85 (8), 1248–1271.

Peh, L.S., Dally, W.J., 2001. A delay model and speculative architecture for pipe-lined
routers. In: Proceedings of 7th International Symposium on High-Performance Com-
puter Architecture, January 22–24, 2001, Monterrey, Mexico.

Peng, V., Samudrala, S., Gavrielov, M., 1987. On the implementation of shifters, multi-
pliers, and dividers in VLSI floating point units. In: Proceedings of 8th IEEE Sympo-
sium on Computer Arithmetic, May 19–21, 1987, Como, Italy, pp. 95–102.

Pfister, G.F., 1998. In Search of Clusters, second ed. Prentice Hall, Upper Saddle River, NJ.
Pfister, G.F., Brantley, W.C., George, D.A., Harvey, S.L., Kleinfekder, W.J.,

McAuliffe, K.P., Melton, E.A., Norton, V.A., Weiss, J., 1985. The IBM research
parallel processor prototype (RP3): introduction and architecture. In: Proceedings of
12th Annual International Symposium on Computer Architecture (ISCA), June
17–19, 1985, Boston, MA, pp. 764–771.

Pinheiro, E., Weber, W.D., Barroso, L.A., 2007. Failure trends in a large disk drive popu-
lation. In: Proceedings of 5th USENIX Conference on File and Storage Technologies
(FAST ’07), February 13–16, 2007, San Jose, CA.

Pinkston, T.M., 2004. Deadlock characterization and resolution in interconnection net-
works. In: Zhu, M.C., Fanti, M.P. (Eds.), Deadlock Resolution in Computer-Integrated
Systems. CRC Press, Boca Raton, FL, pp. 445–492.

Pinkston, T.M., Shin, J., 2005. Trends toward on-chip networked microsystems. Int. J. High
Perform. Comput. Netw. 3 (1), 3–18.

Pinkston, T.M., Warnakulasuriya, S., 1997. On deadlocks in interconnection networks.
In: 24th Annual International Symposium on Computer Architecture (ISCA), June
2–4, 1997, Denver, CO.

Pinkston, T.M., Benner, A., Krause, M., Robinson, I., Sterling, T., 2003. InfiniBand: the ‘de
facto’ future standard for system and local area networks or just a scalable replacement
for PCI buses?”. Cluster Comput. 6 (2), 95–104 (Special issue on communication archi-
tecture for clusters).

Postiff, M.A., Greene, D.A., Tyson, G.S., Mudge, T.N., 1999. The limits of instruction level
parallelism in SPEC95 applications. Comput. Architect. News 27 (1), 31–40.

R-26 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2250
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2255
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2260
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2265
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2270
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2270
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2275
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2275
http://www.eetimes.com/author.asp?doc_id=1327239
http://www.eetimes.com/author.asp?doc_id=1327239
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2280
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2280
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2280
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2280
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2285
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2285
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2290
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2290
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2290
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2295
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2300
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2305
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2310
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2310
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2310
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2315
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2320
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2320
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2325
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2325
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2325
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2330
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2335
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2335


Prabhakar, R., Koeplinger, D., Brown, K.J., Lee, H., De Sa, C., Kozyrakis, C., Olukotun, K.,
2016. Generating configurable hardware from parallel patterns. In: Proceedings of the
Twenty-First International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. ACM, pp. 651–665.

Prakash, T.K., Peng, L., 2008. Performance characterization of spec cpu2006 benchmarks
on intel core 2 duo processor. ISAST Trans. Comput. Softw. Eng. 2 (1), 36–41.

Przybylski, S.A., 1990. Cache Design: A Performance-Directed Approach. Morgan Kauf-
mann, San Francisco.

Przybylski, S.A., Horowitz, M., Hennessy, J.L., 1988. Performance trade-offs in cache
design. In: 15th Annual International Symposium on Computer Architecture, May
30–June 2, 1988, Honolulu, Hawaii, pp. 290–298.

Puente, V., Beivide, R., Gregorio, J.A., Prellezo, J.M., Duato, J., Izu, C., 1999. Adaptive
bubble router: a design to improve performance in torus networks. In: Proceedings
of the 28th International Conference on Parallel Processing, September 21–24, 1999,
Aizu-Wakamatsu, Fukushima, Japan.

Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme, J.,
Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., Haselman, M., Hauck, S., Heil, S.,
Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A.,
Thong, J., Xiao, P.Y., Burger, D., 2014. A reconfigurable fabric for accelerating large-
scale datacenter services. In: 41st International Symposium on Computer Architecture.

Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme, J.,
Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., Haselman, M., Hauck, S.,
Heil, S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S.,
Smith, A., Thong, J., Xiao, P.Y., Burger, D., 2015. A reconfigurable fabric for accel-
erating large-scale datacenter services. IEEE Micro. 35(3).

Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme, J.,
Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., Haselman, M., Hauck, S., Heil, S.,
Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A.,
Thong, J.,Xiao,P.Y.,Burger,D., 2016.A reconfigurable fabric for accelerating large-scale
datacenter services. Commun. ACM. 59 (11), 114–122.

Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis, C., Horowitz, M.A.,
2015. Convolution engine: balancing efficiency & flexibility in specialized computing.
Commun. ACM 58(4).

Qureshi, M.K., Loh, G.H., 2012. Fundamental latency trade-off in architecting dram caches:
Outperforming impractical sram-tags with a simple and practical design. In: Proc. 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE Com-
puter Society, pp. 235–246.

Radin, G., 1982. The 801 minicomputer. In: Proceedings of Symposium Architectural
Support for Programming Languages and Operating Systems (ASPLOS), March
1–3, 1982, Palo Alto, CA, pp. 39–47.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S., 2013.
Halide: a language and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Not. 48 (6), 519–530.

Ramacher, U., Beichter, J., Raab, W., Anlauf, J., Bruels, N., Hachmann, A., Wesseling, M.,
1991. Design of a 1st generation neurocomputer. VLSI Design of Neural Networks.
Springer, USA.

Ramamoorthy, C.V., Li, H.F., 1977. Pipeline architecture. ACM Comput. Surv. 9 (1),
61–102.

Ranganathan, P., Leech, P., Irwin, D., Chase, J., 2006. Ensemble-level power management
for dense blade servers. In: Proceedings of 33rd Annual International Symposium on
Computer Architecture (ISCA), June 17–21, 2006, Boston, MA, pp. 66–77.

References ■ R-27

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2340
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2345
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2345
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2350
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2355
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2360
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2365
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2370
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2375
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2375
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2375
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf8040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2380
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2385
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2385
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2385
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2390
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2390
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2390
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2395
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2395
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2400
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2400


Rau, B.R., 1994. Iterative modulo scheduling: an algorithm for software pipelining loops.
In: Proceedings of 27th Annual International Symposium on Microarchitecture,
November 30–December 2, 1994, San Jose, CA, pp. 63–74.

Rau, B.R., Fisher, J.A., 1993. Instruction-level parallelism. J. Supercomput. 235, Springer
Science & Business Media.

Rau, B.R., Glaeser, C.D., Picard, R.L., 1982. Efficient code generation for horizontal
architectures: compiler techniques and architectural support. In: Proceedings of Ninth
Annual International Symposium on Computer Architecture (ISCA), April 26–29,
1982, Austin, TX, pp. 131–139.

Rau, B.R., Yen, D.W.L., Yen, W., Towle, R.A., 1989. The Cydra 5 departmental
supercomputer: design philosophies, decisions, and trade-offs. IEEE Comput. 22 (1),
12–34.

Reddi, V.J., Lee, B.C., Chilimbi, T., Vaid, K., 2010. Web search using mobile cores:
quantifying and mitigating the price of efficiency. In: Proceedings of 37th Annual Inter-
national Symposium on Computer Architecture (ISCA), June 19–23, 2010, Saint-Malo,
France.

Redmond, K.C., Smith, T.M., 1980. Project Whirlwind—The History of a Pioneer
Computer. Digital Press, Boston.

Reinhardt, S.K., Larus, J.R., Wood, D.A., 1994. Tempest and typhoon: user-level shared
memory. In: 21st Annual International Symposium on Computer Architecture (ISCA),
April 18–21, 1994, Chicago, pp. 325–336.

Reinman, G., Jouppi, N.P., 1999. Extensions to CACTI. research.compaq.com/wrl/people/
jouppi/CACTI.html.

Rettberg, R.D., Crowther, W.R., Carvey, P.P., Towlinson, R.S., 1990. TheMonarch parallel
processor hardware design. IEEE Comput. 23 (4), 18–30.

Riemens, A., Vissers, K.A., Schutten, R.J., Sijstermans, F.W., Hekstra, G.J., La Hei, G.D.,
1999. Trimedia CPU64 application domain and benchmark suite. In: Proceedings of
IEEE International Conference on Computer Design: VLSI in Computers and Proces-
sors (ICCD’99), October 10–13, 1999, Austin, TX, pp. 580–585.

Riseman, E.M., Foster, C.C., 1972. Percolation of code to enhance parallel dispatching and
execution. IEEE Trans. Comput. C-21 (12), 1411–1415.

Robin, J., Irvine, C., 2000. Analysis of the Intel Pentium’s ability to support a secure virtual
machine monitor. In: Proceedings of USENIX Security Symposium, August 14–17,
2000, Denver, CO.

Robinson, B., Blount, L., 1986. The VM/HPO 3880-23 Performance Results, IBM Tech.
Bulletin GG66-0247-00. IBM Washington Systems Center, Gaithersburg, MD.

Ropers, A., Lollman, H.W., Wellhausen, J., 1999. DSPstone: Texas Instruments
TMS320C54x, Tech. Rep. IB 315 1999/9-ISS-Version 0.9. Aachen University of Tech-
nology, Aachen, Germany (www.ert.rwth-aachen.de/Projekte/Tools/coal/dspstone_
c54x/index.html).

Rosenblum,M., Herrod, S.A.,Witchel, E., Gupta, A., 1995. Complete computer simulation:
the SimOS approach. IEEE Parallel Distrib. Technol. 4 (3), 34–43.

Rowen, C., Johnson, M., Ries, P., 1988. The MIPS R3010 floating-point coprocessor. IEEE
Micro 8 (3), 53–62.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A.C., 2015. Imagenet large scale visual recognition
challenge. Int. J. Comput. Vis. 115(3).

Russell, R.M., 1978. The Cray-1 processor system. Commun. ACM 21 (1), 63–72.
Rymarczyk, J., 1982. Coding guidelines for pipelined processors. In: Proceeding of Sym-

posium Architectural Support for Programming Languages and Operating Systems
(ASPLOS), March 1–3, 1982, Palo Alto, CA, pp. 12–19.

R-28 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2405
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2410
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2410
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2415
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2415
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2415
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2415
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2420
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2425
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2430
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2430
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2435
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2435
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2435
http://research.compaq.com/wrl/people/jouppi/CACTI.html
http://research.compaq.com/wrl/people/jouppi/CACTI.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2445
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2445
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2450
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2455
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2455
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2460
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2460
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2460
http://www.ert.rwth-aachen.de/Projekte/Tools/coal/dspstone_c54x/index.html
http://www.ert.rwth-aachen.de/Projekte/Tools/coal/dspstone_c54x/index.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2465
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2465
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2470
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2470
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2475
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2480
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2485
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2485
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2485


Saavedra-Barrera, R.H., 1992. CPU Performance Evaluation and Execution Time Predic-
tion Using Narrow Spectrum Benchmarking (Ph.D. dissertation). University of Califor-
nia, Berkeley.

Salem, K., Garcia-Molina, H., 1986. Disk striping. In: Proceedings of 2nd International
IEEE Conference on Data Engineering, February 5–7, 1986, Washington, DC,
pp. 249–259.

Saltzer, J.H., Reed, D.P., Clark, D.D., 1984. End-to-end arguments in system design. ACM
Trans. Comput. Syst. 2 (4), 277–288.

Samples, A.D., Hilfinger, P.N., 1988. Code Reorganization for Instruction Caches, Tech.
Rep. UCB/CSD 88/447, University of California, Berkeley.

Santoro, M.R., Bewick, G., Horowitz, M.A., 1989. Rounding algorithms for IEEE multi-
pliers. In: Proceedings of Ninth IEEE Symposium on Computer Arithmetic, September
6–8, Santa Monica, CA, pp. 176–183.

Satran, J., Smith, D., Meth, K., Sapuntzakis, C., Wakeley, M., Von Stamwitz, P., Haagens,
R., Zeidner, E., Dalle Ore, L., Klein, Y., 2001. “iSCSI,” IPS Working Group of IETF,
Internet draft. www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt.

Saulsbury, A., Wilkinson, T., Carter, J., Landin, A., 1995. An argument for simple COMA.
In: Proceedings of First IEEE Symposium on High-Performance Computer Architec-
tures, January 22–25, 1995, Raleigh, NC, pp. 276–285.

Schneck, P.B., 1987. Superprocessor Architecture. Kluwer Academic Publishers, Norwell,
MA.

Schroeder, B., Gibson, G.A., 2007. Understanding failures in petascale computers. J. Phys.
Conf. Ser. 78 (1), 188–198.

Schroeder, B., Pinheiro, E., Weber, W.-D., 2009. DRAM errors in the wild: a large-scale
field study. In: Proceedings of Eleventh International Joint Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS), June 15–19, 2009, Seat-
tle, WA.

Schurman, E., Brutlag, J., 2009. The user and business impact of server delays.
In: Proceedings of Velocity: Web Performance and Operations Conference, June 22–
24, 2009, San Jose, CA.

Schwartz, J.T., 1980. Ultracomputers. ACM Trans. Program. Lang. Syst. 4 (2), 484–521.
Scott, N.R., 1985. Computer Number Systems and Arithmetic. Prentice Hall, Englewood

Cliffs, NJ.
Scott, S.L., 1996. Synchronization and communication in the T3E multiprocessor.

In: Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 1–5, 1996, Cambridge, MA.

Scott, S.L., Goodman, J., 1994. The impact of pipelined channels on k-ary n-cube networks.
IEEE Trans. Parallel Distrib. Syst. 5 (1), 1–16.

Scott, S.L., Thorson, G.M., 1996. The Cray T3E network: adaptive routing in a high per-
formance 3D torus. In: Proceedings of IEEE HOT Interconnects ’96, August 15–17,
1996, Stanford University, Palo Alto, CA, pp. 14–156.

Scranton, R.A., Thompson, D.A., Hunter, D.W., 1983. The Access Time Myth. Tech. Rep.
RC 10197 (45223). IBM, Yorktown Heights, NY.

Seagate, 2000. Seagate Cheetah 73 Family: ST173404LW/LWV/LC/LCV Product Manual,
vol. 1. Seagate, Scotts Valley, CA. www.seagate.com/support/disc/manuals/scsi/
29478b.pdf.

Seitz, C.L., 1985. The Cosmic Cube (concurrent computing). Commun. ACM28 (1), 22–33.
Senior, J.M., 1993. Optical Fiber Communications: Principles and Practice, second ed.

Prentice Hall, Hertfordshire, UK.
Sergio Guadarrama, 2015. BVLC googlenet. https://github.com/BVLC/caffe/tree/ master/

models/bvlc_googlenet.

References ■ R-29

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2490
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2490
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2490
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2495
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2495
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2500
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2500
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2500
http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2505
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2510
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2510
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2515
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2515
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2520
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2525
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2530
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2535
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2540
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2540
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2540
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2545
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2545
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2550
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2550
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2550
http://www.seagate.com/support/disc/manuals/scsi/29478b.pdf
http://www.seagate.com/support/disc/manuals/scsi/29478b.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2560
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2565
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2565
https://github.com/BVLC/caffe/tree/%20master/%20models/bvlc_googlenet
https://github.com/BVLC/caffe/tree/%20master/%20models/bvlc_googlenet


Seznec, A., Michaud, P., 2006. A case for (partially) TAgged GEometric history length
branch prediction. J. Instruction Level Parallel. 8, 1–23.

Shao, Y.S., Brooks, D., 2015. Research infrastructures for hardware accelerators. Synth.
Lect. Comput. Architect. 10 (4), 1–99.

Sharangpani, H., Arora, K., 2000. Itanium processor microarchitecture. IEEE Micro 20 (5),
24–43.

Shurkin, J., 1984. Engines of the Mind: A History of the Computer. W.W. Norton,
New York.

Shustek, L.J., 1978. Analysis and Performance of Computer Instruction Sets (Ph.D. disser-
tation). Stanford University, Palo Alto, CA.

Silicon Graphics, 1996. MIPS V Instruction Set. http://www.sgi.com/MIPS/arch/ISA5/
#MIPSV_indx.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
2016. Mastering the game of Go with deep neural networks and tree search. Nature
529(7587).

Singh, J.P., Hennessy, J.L., Gupta, A., 1993. Scaling parallel programs for multiprocessors:
methodology and examples. In: Computer, 2. 7, pp. 22–33.

Singh, A., Ong, J., Agarwal, A., Anderson, G., Armistead, A., Bannon, R., Boving, S.,
Desai, G., Felderman, B., Germano, P., Kanagala, A., Provost, J., Simmons, J., Eiichi
Tanda, E., Wanderer, J., H€olzle, U., Stuart, S., Vahdat, A., 2015. Jupiter rising: a decade
of CLOS topologies and centralized control in Google’s datacenter network. ACM SIG-
COMM Comput. Commun. Rev. 45 (4), 183–197.

Sinharoy, B., Koala, R.N., Tendler, J.M., Eickemeyer, R.J., Joyner, J.B., 2005. POWER5
system microarchitecture. IBM J. Res. Dev. 49 (4–5), 505–521.

Sites, R., 1979. Instruction Ordering for the CRAY-1 Computer, Tech. Rep. 78-CS-023.
Dept. of Computer Science, University of California, San Diego.

Sites, R.L. (Ed.), 1992. Alpha Architecture Reference Manual. Digital Press, Burlington,
MA.

Sites, R.L., Witek, R. (Eds.), 1995. Alpha Architecture Reference Manual, second ed. Dig-
ital Press, Newton, MA.

Skadron, K., Clark, D.W., 1997. Design issues and tradeoffs for write buffers.
In: Proceedings of Third International Symposium on High-Performance Computer
Architecture, February 1–5, 1997, San Antonio, TX, pp. 144–155.

Skadron, K., Ahuja, P.S., Martonosi, M., Clark, D.W., 1999. Branch prediction, instruction-
window size, and cache size: performance tradeoffs and simulation techniques. IEEE
Trans. Comput. 48(11).

Slater, R., 1987. Portraits in Silicon. MIT Press, Cambridge, MA.
Slotnick, D.L., Borck, W.C., McReynolds, R.C., 1962. The Solomon computer.

In: Proceedings of AFIPS Fall Joint Computer Conference, December 4–6, 1962,
Philadelphia, PA, pp. 97–107.

Smith, B.J., 1978. A pipelined, shared resource MIMD computer. In: Proceedings of Inter-
national Conference on Parallel Processing (ICPP), August, Bellaire, MI, pp. 6–8.

Smith, B.J., 1981a. Architecture and applications of the HEP multiprocessor system. Real
Time Signal Process. IV 298, 241–248.

Smith, J.E., 1981b. A study of branch prediction strategies. In: Proceedings of Eighth
Annual International Symposium on Computer Architecture (ISCA), May 12–14,
1981, Minneapolis, MN, pp. 135–148.

Smith, A.J., 1982a. Cache memories. Comput. Surv., 14, 3, pp. 473–530.
Smith, J.E., 1982b. Decoupled access/execute computer architectures. In: Proceedings of

the 11th International Symposium on Computer Architecture.

R-30 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf9030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2575
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2575
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2580
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2585
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2585
http://www.sgi.com/MIPS/arch/ISA5/#MIPSV_indx
http://www.sgi.com/MIPS/arch/ISA5/#MIPSV_indx
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2595
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2595
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2595
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2595
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2600
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2600
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2605
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2605
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2610
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2615
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2615
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2620
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2620
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2620
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2625
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2625
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2625
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2630
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2635
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2640
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2640
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2645
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2645
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2650
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2650
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2650
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2655
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2660
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2660


Smith, J.E., 1984. Decoupled access/execute computer architectures. ACM Trans. Comput.
Syst. 2 (4), 289–308.

Smith, J.E., 1988. Characterizing computer performance with a single number. Commun.
ACM 31 (10), 1202–1206.

Smith, J.E., 1989. Dynamic instruction scheduling and the Astronautics ZS-1. Computer
22 (7), 21–35.

Smith, J.E., Goodman, J.R., 1983. A study of instruction cache organizations and replace-
ment policies. In: Proceedings of 10th Annual International Symposium on Computer
Architecture (ISCA), June 5–7, 1982, Stockholm, Sweden, pp. 132–137.

Smith, A., Lee, J., 1984. Branch prediction strategies and branch-target buffer design. Com-
puter 17 (1), 6–22.

Smith, J.E., Pleszkun, A.R., 1988. Implementing precise interrupts in pipelined processors.
IEEE Trans. Comput. 37 (5), 562–573. (This paper is based on an earlier paper that
appeared in Proceedings of the 12th Annual International Symposium on Computer
Architecture (ISCA), June 17–19, 1985, Boston, MA.

Smith, J.E., Dermer, G.E., Vanderwarn, B.D., Klinger, S.D., Rozewski, C.M.,
Fowler, D.L., Scidmore, K.R., Laudon, J.P., 1987. The ZS-1 central processor.
In: Proceedings of Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October 5–8, 1987,
Palo Alto, CA, pp. 199–204.

Smith, M.D., Johnson, M., Horowitz, M.A., 1989. Limits on multiple instruction issue.
In: Proceedings of Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 3–6, 1989, Boston,
pp. 290–302.

Smith, M.D., Horowitz, M., Lam, M.S., 1992. Efficient superscalar performance through
boosting. In: Proceedings of Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), October 12–15,
1992, Boston, pp. 248–259.

Smotherman, M., 1989. A sequencing-based taxonomy of I/O systems and review of
historical machines. Comput. Architect. News 17 (5), 5–15. Reprinted in Computer
Architecture Readings, Hill, M.D., Jouppi, N.P., Sohi, G.S. (Eds.), 1999. Morgan
Kaufmann, San Francisco, pp. 451–461.

Sodani, A., Sohi, G., 1997. Dynamic instruction reuse. In: Proceedings of 24th Annual Inter-
national Symposium on Computer Architecture (ISCA), June 2–4, 1997, Denver, CO.

Sohi, G.S., 1990. Instruction issue logic for high-performance, interruptible, multiple
functional unit, pipelined computers. IEEE Trans. Comput. 39 (3), 349–359.

Sohi, G.S., Vajapeyam, S., 1989. Tradeoffs in instruction format design for horizontal archi-
tectures. In: Proceedings of Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 3–6, 1989, Boston,
pp. 15–25.

Sony/Toshiba, 1999. ‘Emotion Engine’ in PS2 (“IPU is basically an MPEG2 decoder…”).
http://www.cpu-collection.de/?l0¼co&l1¼Sony&l2¼Emotion+Engine http://arstechnica.
com/gadgets/2000/02/ee/3/.

Soundararajan, V., Heinrich, M., Verghese, B., Gharachorloo, K., Gupta, A.,
Hennessy, J.L., 1998. Flexible use of memory for replication/migration in cache-
coherent DSM multiprocessors. In: Proceedings of 25th Annual International Sympo-
sium on Computer Architecture (ISCA), July 3–14, 1998, Barcelona, Spain,
pp. 342–355.

SPEC, 1989. SPEC Benchmark Suite Release 1.0 (October 2).
SPEC, 1994. SPEC Newsletter (June).

References ■ R-31

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2665
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2665
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2670
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2670
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2675
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2675
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2680
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2685
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2685
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2690
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2695
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2700
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2700
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2700
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2700
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2705
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2710
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2715
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2720
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2720
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2725
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2725
http://www.cpu-collection.de/?l0=co&l1=Sony&l2=Emotion+Engine
http://www.cpu-collection.de/?l0=co&l1=Sony&l2=Emotion+Engine
http://www.cpu-collection.de/?l0=co&l1=Sony&l2=Emotion+Engine
http://www.cpu-collection.de/?l0=co&l1=Sony&l2=Emotion+Engine
http://arstechnica.com/gadgets/2000/02/ee/3/
http://arstechnica.com/gadgets/2000/02/ee/3/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2730
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2730


Sporer, M.,Moss, F.H.,Mathais, C.J., 1988. An introduction to the architecture of the Stellar
Graphics supercomputer. In: Proceedings of IEEE COMPCON, February 29–March 4,
1988, San Francisco, p. 464.

Spurgeon, C., 2001. Charles Spurgeon’s Ethernet Web Site. www.host.ots.utexas.edu/
ethernet/ethernet-home.html.

Steinberg, D., 2015. Full-Chip Simulations, Keys to Success. In: Proceedings of the
Synopsys Users Group (SNUG) Silicon Valley 2015.

Stenstr€om, P., Joe, T., Gupta, A., 1992. Comparative performance evaluation of cache-
coherent NUMA and COMA architectures. In: Proceedings of 19th Annual Interna-
tional Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast,
Australia, pp. 80–91.

Sterling, T., 2001. Beowulf PC Cluster Computing with Windows and Beowulf PC Cluster
Computing with Linux. MIT Press, Cambridge, MA.

Stern, N., 1980. Who invented the first electronic digital computer? Ann. Hist. Comput.
2 (4), 375–376.

Stevens, W.R., 1994–1996. TCP/IP Illustrated (three volumes). Addison-Wesley, Reading,
MA.

Stokes, J., 2000. Sound and Vision: A Technical Overview of the Emotion Engine.
arstechnica.com/reviews/1q00/playstation2/ee-1.html.

Stone, H., 1991. High Performance Computers. Addison-Wesley, New York.
Strauss, W., 1998. DSP Strategies 2002. www.usadata.com/market_research/spr_05/

spr_r127-005.htm.
Strecker, W.D., 1976. Cache memories for the PDP-11? In: Proceedings of Third Annual

International Symposium on Computer Architecture (ISCA), January 19–21, 1976,
Tampa, FL, pp. 155–158.

Strecker, W.D., 1978. VAX-11/780: a virtual address extension of the PDP-11 family.
In: Proceedings of AFIPS National Computer Conference, June 5–8, 1978, Anaheim,
CA. vol. 47, pp. 967–980.

Sugumar, R.A., Abraham, S.G., 1993. Efficient simulation of caches under optimal replace-
ment with applications to miss characterization. In: Proceedings of ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems, May
17–21, 1993, Santa Clara, CA, pp. 24–35.

Sun Microsystems, 1989. The SPARC Architectural Manual, Version 8, Part No. 8001399-
09. Sun Microsystems, Santa Clara, CA.

Sussenguth, E., 1999. IBM’s ACS-1 machine. IEEE Comput. 22, 11.
Swan, R.J., Bechtolsheim, A., Lai, K.W., Ousterhout, J.K., 1977a. The implementation of

the Cm* multi-microprocessor. In: Proceedings of AFIPS National Computing Confer-
ence, June 13–16, 1977, Dallas, TX, pp. 645–654.

Swan, R.J., Fuller, S.H., Siewiorek, D.P., 1977b. Cm*—a modular, multi-microprocessor.
In: Proceedings of AFIPS National Computing Conference, June 13–16, 1977, Dallas,
TX, pp. 637–644.

Swartzlander, E. (Ed.), 1990. Computer Arithmetic. IEEE Computer Society Press, Los
Alamitos, CA.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Takagi, N., Yasuura, H., Yajima, S., 1985. High-speed VLSI multiplication algorithmwith a
redundant binary addition tree. IEEE Trans. Comput. C-34 (9), 789–796.

Talagala, N., 2000. Characterizing Large Storage Systems: Error Behavior and Performance
Benchmarks (Ph.D. dissertation). Computer Science Division, University of California,
Berkeley.

R-32 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2735
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2735
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2735
http://www.host.ots.utexas.edu/ethernet/ethernet-home.html
http://www.host.ots.utexas.edu/ethernet/ethernet-home.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2745
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2750
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2755
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2760
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2760
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2765
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2765
http://arstechnica.com/reviews/1q00/playstation2/ee-1.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2775
http://www.usadata.com/market_research/spr_05/spr_r127-005.htm
http://www.usadata.com/market_research/spr_05/spr_r127-005.htm
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2785
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2790
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2795
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2800
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2805
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2810
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2810
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2810
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2815
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2820
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2820
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2825
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2830
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2830


Talagala, N., Patterson, D., 1999. An Analysis of Error Behavior in a Large Storage System,
Tech. Report UCB//CSD-99-1042. Computer Science Division, University of Califor-
nia, Berkeley.

Talagala, N., Arpaci-Dusseau, R., Patterson, D., 2000a. Micro-Benchmark Based Extraction
of Local and Global Disk Characteristics, CSD-99-1063. Computer Science Division,
University of California, Berkeley.

Talagala, N., Asami, S., Patterson, D., Futernick, R., Hart, D., 2000b. The art of massive
storage: a case study of a Web image archive. Computer 33 (11), 22–28.

Tamir, Y., Frazier, G., 1992. Dynamically-allocated multi-queue buffers for VLSI commu-
nication switches. IEEE Trans. Comput. 41 (6), 725–734.

Tanenbaum, A.S., 1978. Implications of structured programming for machine architecture.
Commun. ACM 21 (3), 237–246.

Tanenbaum, A.S., 1988. Computer Networks, second ed. PrenticeHall, Englewood Cliffs, NJ.
Tang, C.K., 1976. Cache design in the tightly coupled multiprocessor system.

In: Proceedings of AFIPS National Computer Conference, June 7–10, 1976, New York,
pp. 749–753.

Tanqueray, D., 2002. The Cray X1 and supercomputer road map. In: Proceedings of 13th
Daresbury Machine Evaluation Workshop, December 11–12, 2002, Daresbury Labora-
tories, Daresbury, Cheshire, UK.

Tarjan, D., Thoziyoor, S., Jouppi, N., 2005. HPL Technical Report on CACTI 4.0. www.
hpl.hp.com/techeports/2006/HPL¼2006+86.html.

Taylor, G.S., 1981. Compatible hardware for division and square root. In: Proceedings of
5th IEEE Symposium on Computer Arithmetic, May 18–19, 1981, University of Mich-
igan, Ann Arbor, MI, pp. 127–134.

Taylor, G.S., 1985. Radix 16 SRT dividers with overlapped quotient selection stages.
In: Proceedings of Seventh IEEE Symposium on Computer Arithmetic, June 4–6,
1985, University of Illinois, Urbana, IL, pp. 64–71.

Taylor, G., Hilfinger, P., Larus, J., Patterson, D., Zorn, B., 1986. Evaluation of the SPUR
LISP architecture. In: Proceedings of 13th Annual International Symposium on Com-
puter Architecture (ISCA), June 2–5, 1986, Tokyo.

Taylor, M.B., Lee, W., Amarasinghe, S.P., Agarwal, A., 2005. Scalar operand networks.
IEEE Trans. Parallel Distrib. Syst. 16 (2), 145–162.

Tendler, J.M., Dodson, J.S., Fields Jr., J.S., Le, H., Sinharoy, B., 2002. Power4 system
microarchitecture. IBM J. Res. Dev. 46 (1), 5–26.

TensorFlow Tutorials, 2016. https://www.tensorflow.org/versions/r0.12/tutorials/index.html.
Texas Instruments, 2000. History of Innovation: 1980s. www.ti.com/corp/docs/company/

history/1980s.shtml.
Tezzaron Semiconductor, 2004. Soft Errors in Electronic Memory, White Paper. Tezzaron

Semiconductor, Naperville, IL http://www.tezzaron.com/about/papers/soft_errors_1_
1_secure.pdf.

Thacker, C.P., McCreight, E.M., Lampson, B.W., Sproull, R.F., Boggs, D.R., 1982. Alto: a
personal computer. In: Siewiorek, D.P., Bell, C.G., Newell, A. (Eds.), Computer Struc-
tures: Principles and Examples. McGraw-Hill, New York, pp. 549–572.

Thadhani, A.J., 1981. Interactive user productivity. IBM Syst. J. 20 (4), 407–423.
Thekkath, R., Singh, A.P., Singh, J.P., John, S., Hennessy, J.L., 1997. An evaluation of a

commercial CC-NUMA architecture—the CONVEX Exemplar SPP1200.
In: Proceedings of 11th International Parallel Processing Symposium (IPPS), April
1–7, 1997, Geneva, Switzerland.

Thorlin, J.F., 1967. Code generation for PIE (parallel instruction execution) computers.
In: Proceedings of Spring Joint Computer Conference, April 18–20, 1967, Atlantic City,
NJ, p. 27.

References ■ R-33

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2835
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2835
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2835
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2840
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2840
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2845
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2845
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2850
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2855
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2860
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2865
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2865
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2865
http://www.hpl.hp.com/techeports/2006/HPL=2006+86.html
http://www.hpl.hp.com/techeports/2006/HPL=2006+86.html
http://www.hpl.hp.com/techeports/2006/HPL=2006+86.html
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2875
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2875
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2875
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2880
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2885
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2890
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2895
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2895
https://www.tensorflow.org/versions/r0.12/tutorials/index.html
http://www.ti.com/corp/docs/company/history/1980s.shtml
http://www.ti.com/corp/docs/company/history/1980s.shtml
http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf
http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2910
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2910
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2910
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2915
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2920
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2925
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2925


Thornton, J.E., 1964.Parallel operation in theControlData6600. In:ProceedingsofAFIPSFall
Joint Computer Conference, Part II, October 27–29, 1964, San Francisco. 26, pp. 33–40.

Thornton, J.E., 1970. Design of a Computer, the Control Data 6600. Scott Foresman,
Glenview, IL.

Tjaden, G.S., Flynn, M.J., 1970. Detection and parallel execution of independent instruc-
tions. IEEE Trans. Comput. C-19 (10), 889–895.

Tomasulo, R.M., 1967. An efficient algorithm for exploiting multiple arithmetic units. IBM
J. Res. Dev. 11 (1), 25–33.

Torrellas, J., Gupta, A., Hennessy, J., 1992. Characterizing the caching and synchroniza-
tion performance of a multiprocessor operating system. In: Proceedings of Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 12–15, 1992, Boston (SIGPLAN Notices
27:9 (September), pp. 162–174.

Touma, W.R., 1993. The Dynamics of the Computer Industry: Modeling the Supply of
Workstations and Their Components. Kluwer Academic, Boston.

Tuck, N., Tullsen, D., 2003. Initial observations of the simultaneous multithreading Pentium
4 processor. In: Proceedings of 12th International Conference on Parallel Architectures
and Compilation Techniques (PACT’03), September 27–October 1, 2003,
New Orleans, LA, pp. 26–34.

Tullsen, D.M., Eggers, S.J., Levy, H.M., 1995. Simultaneous multithreading: Maximizing
on-chip parallelism. In: Proceedings of 22nd Annual International Symposium on
Computer Architecture (ISCA), June 22–24, 1995, Santa Margherita, Italy,
pp. 392–403.

Tullsen, D.M., Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L., 1996. Exploiting
choice: instruction fetch and issue on an implementable simultaneous multithreading
processor. In: Proceedings of 23rd Annual International Symposium on Computer
Architecture (ISCA), May 22–24, 1996, Philadelphia, PA, pp. 191–202.

Tung, L., 2016. Google Translate: ‘This landmark update is our biggest single leap in
10 years’, ZDNet. http://www.zdnet.com/article/google-translate-this-landmark-
update-is-our-biggest-single-leap-in-10years/.

Ungar, D., Blau, R., Foley, P., Samples, D., Patterson, D., 1984. Architecture of SOAR:
Smalltalk on a RISC. In: Proceedings of 11th Annual International Symposium on
Computer Architecture (ISCA), June 5–7, 1984, Ann Arbor, MI, pp. 188–197.

Unger, S.H., 1958. A computer oriented towards spatial problems. Proc. Inst. Radio Eng.
46 (10), 1744–1750.

Vahdat, A., Al-Fares,M., Farrington,N.,NiranjanMysore, R., Porter, G., Radhakrishnan, S.,
2010. Scale-out networking in the data center. IEEE Micro 30 (4), 29–41.

Vaidya, A.S., Sivasubramaniam, A., Das, C.R., 1997. Performance benefits of virtual chan-
nels and adaptive routing: an application-driven study. In: Proceedings of ACM/IEEE
Conference on Supercomputing, November 16–21, 1997, San Jose, CA.

Vajapeyam, S., 1991. Instruction-Level Characterization of the Cray Y-MP Processor
(Ph.D. thesis). Computer Sciences Department, University of Wisconsin-Madison.

van Eijndhoven, J.T.J., Sijstermans, F.W., Vissers, K.A., Pol, E.J.D., Tromp, M.I.A.,
Struik, P., Bloks, R.H.J., van der Wolf, P., Pimentel, A.D., Vranken, H.P.E., 1999.
Trimedia CPU64 architecture. In: Proceedings of IEEE International Conference on
Computer Design: VLSI in Computers and Processors (ICCD’99), October 10–13,
1999, Austin, TX, pp. 586–592.

Van Vleck, T., 2005. The IBM 360/67 and CP/CMS. http://www.multicians.org/thvv/
360-67.html.

Vanhoucke, V., Senior, A., Mao, M.Z., 2011. Improving the speed of neural networks
on CPUs. https://static.googleusercontent.com/media/research.google.com/en//pubs/
archive/37631.pdf.

R-34 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2930
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2935
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2935
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2940
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2940
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2945
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2945
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2950
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2955
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2960
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2965
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2970
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2970
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2970
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2970
http://www.zdnet.com/article/google-translate-this-landmark-update-is-our-biggest-single-leap-in-10years/
http://www.zdnet.com/article/google-translate-this-landmark-update-is-our-biggest-single-leap-in-10years/
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2980
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2980
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2980
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2985
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2985
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2990
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2990
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf2995
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3000
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3000
http://www.multicians.org/thvv/360-67.html
http://www.multicians.org/thvv/360-67.html
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37631.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37631.pdf


von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E., 1992. Active messages: a
mechanism for integrated communication and computation. In: Proceedings of 19th
Annual International Symposium on Computer Architecture (ISCA), May 19–21,
1992, Gold Coast, Australia.

Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M.,
Finch, P., Barua, R., Babb, J., Amarasinghe, S., Agarwal, A., 1997. Baring it all to soft-
ware: raw machines. IEEE Comput. 30, 86–93.

Wakerly, J., 1989. Microcomputer Architecture and Programming. Wiley, New York.
Wall, D.W., 1991. Limits of instruction-level parallelism. In: Proceedings of Fourth

International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), April 8–11, 1991, Palo Alto, CA, pp. 248–259.

Wall, D.W., 1993. Limits of Instruction-Level Parallelism, Research Rep. 93/6, Western
Research Laboratory. Digital Equipment Corp., Palo Alto, CA.

Walrand, J., 1991. Communication Networks: A First Course. Aksen Associates/Irwin,
Homewood, IL.

Wang, W.-H., Baer, J.-L., Levy, H.M., 1989. Organization and performance of a two-
level virtual-real cache hierarchy. In: Proceedings of 16th Annual International
Symposium on Computer Architecture (ISCA), May 28–June 1, 1989, Jerusalem,
pp. 140–148.

Watanabe, T., 1987. Architecture and performance of the NEC supercomputer SX system.
Parallel Comput. 5, 247–255.

Waters, F. (Ed.), 1986. IBMRT Personal Computer Technology, SA 23-1057. IBM, Austin,
TX.

Watson, W.J., 1972. The TI ASC—a highly modular and flexible super processor architec-
ture. In: Proceedings of AFIPS Fall Joint Computer Conference, December 5–7, 1972,
Anaheim, CA, pp. 221–228.

Weaver, D.L., Germond, T., 1994. The SPARC Architectural Manual, Version 9. Prentice
Hall, Englewood Cliffs, NJ.

Weicker, R.P., 1984. Dhrystone: a synthetic systems programming benchmark. Commun.
ACM 27 (10), 1013–1030.

Weiss, S., Smith, J.E., 1984. Instruction issue logic for pipelined supercomputers.
In: Proceedings of 11th Annual International Symposium on Computer Architecture
(ISCA), June 5–7, 1984, Ann Arbor, MI, pp. 110–118.

Weiss, S., Smith, J.E., 1987. A study of scalar compilation techniques for pipelined super-
computers. In: Proceedings of Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), October
5–8, 1987, Palo Alto, CA, pp. 105–109.

Weiss, S., Smith, J.E., 1994. Power and PowerPC. Morgan Kaufmann, San Francisco.
Wendel, D., Kalla, R., Friedrich, J., Kahle, J., Leenstra, J., Lichtenau, C., Sinharoy, B.,

Starke,W., Zyuban,V., 2010. The Power7 processor SoC. In: Proceedings of International
Conference on IC Design and Technology, June 2–4, 2010, Grenoble, France, pp. 71–73.

Weste, N., Eshraghian, K., 1993. Principles of CMOSVLSI Design: A Systems Perspective,
2nd ed. Addison-Wesley, Reading, MA.

Wiecek, C., 1982. A case study of the VAX 11 instruction set usage for compiler execution.
In: Proceedings of Symposium on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), March 1–3, 1982, Palo Alto, CA, pp. 177–184.

Wilkes, M., 1965. Slave memories and dynamic storage allocation. IEEE Trans. Electron.
Comput. EC-14 (2), 270–271.

Wilkes, M.V., 1982. Hardware support for memory protection: capability implementa-
tions. In: Proceedings of Symposium on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 1–3, 1982, Palo Alto, CA,
pp. 107–116.

References ■ R-35

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3015
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3020
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3025
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3030
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3035
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3035
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3040
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3045
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3045
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3045
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3045
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3050
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3055
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3055
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3060
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3060
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3060
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3065
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3070
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3075
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3080
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3085
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3090
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3095
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3100
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3105
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3110
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3110


Wilkes, M.V., 1985. Memoirs of a Computer Pioneer. MIT Press, Cambridge, MA.
Wilkes, M.V., 1995. Computing Perspectives. Morgan Kaufmann, San Francisco.
Wilkes, M.V., Wheeler, D.J., Gill, S., 1951. The Preparation of Programs for an Electronic

Digital Computer. Addison-Wesley, Cambridge, MA.
Williams, T.E., Horowitz, M., Alverson, R.L., Yang, T.S., 1987. A self-timed chip for divi-

sion. In: Losleben, P. (Ed.), 1987 Stanford Conference on Advanced Research in VLSI.
MIT Press, Cambridge, MA.

Williams, S., Waterman, A., Patterson, D., 2009. Roofline: an insightful visual performance
model for multicore architectures. Commun. ACM 52 (4), 65–76.

Wilson Jr., A.W., 1987. Hierarchical cache/bus architecture for shared-memory multipro-
cessors. In: Proceedings of 14th Annual International Symposium on Computer
Architecture (ISCA), June 2–5, 1987, Pittsburgh, PA, pp. 244–252.

Wilson, R.P., Lam, M.S., 1995. Efficient context-sensitive pointer analysis for C programs.
In: Proceedings of ACM SIGPLAN’95 Conference on Programming Language Design
and Implementation, June 18–21, 1995, La Jolla, CA, pp. 1–12.

Wolfe, A., Shen, J.P., 1991. A variable instruction stream extension to the VLIW architec-
ture. In: Proceedings of Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 8–11, 1991, Palo
Alto, CA, pp. 2–14.

Wood, D.A.,Hill,M.D., 1995. Cost-effective parallel computing. IEEEComput. 28 (2), 69–72.
Wu, Y., Schuster, M., Chen, Z., Le, Q., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,

Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł.,
Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N.,
Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G.,
Hughes, M., Dean, J., 2016. Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. http://arxiv.org/abs/1609.08144.

Wulf, W., 1981. Compilers and computer architecture. Computer 14 (7), 41–47.
Wulf,W., Bell, C.G., 1972. C.mmp—a multi-mini-processor. In: Proceedings of AFIPS Fall

Joint Computer Conference, December 5–7, 1972, Anaheim, CA, pp. 765–777.
Wulf, W., Harbison, S.P., 1978. Reflections in a pool of processors—an experience report

on C.mmp/Hydra. In: Proceedings of AFIPS National Computing Conference, June 5–
8, 1978, Anaheim, CA, pp. 939–951.

Wulf, W.A., McKee, S.A., 1995. Hitting the memory wall: implications of the obvious.
ACM SIGARCH Comput. Architect. News 23 (1), 20–24.

Wulf, W.A., Levin, R., Harbison, S.P., 1981. Hydra/C.mmp: An Experimental Computer
System. McGraw-Hill, New York.

Yamamoto, W., Serrano, M.J., Talcott, A.R., Wood, R.C., Nemirosky, M., 1994. Perfor-
mance estimation of multistreamed, superscalar processors. In: Proceedings of 27th
Annual Hawaii International Conference on System Sciences, January 4–7, 1994, Maui,
pp. 195–204.

Yang, Y., Mason, G., 1991. Nonblocking broadcast switching networks. IEEE Trans.
Comput. 40 (9), 1005–1015.

Yeager, K., 1996. The MIPS R10000 superscalar microprocessor. IEEEMicro 16 (2), 28–40.
Yeh, T., Patt, Y.N., 1993a. Alternative implementations of two-level adaptive branch

prediction. In: Proceedings of 19th Annual International Symposium on Computer
Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia, pp. 124–134.

Yeh, T., Patt, Y.N., 1993b. A comparison of dynamic branch predictors that use two levels
of branch history. In: Proceedings of 20th Annual International Symposium on Com-
puter Architecture (ISCA), May 16–19, 1993, San Diego, CA, pp. 257–266.

R-36 ■ References

http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3115
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3120
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3125
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3130
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3135
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3140
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3140
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3140
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3145
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3150
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3155
http://arxiv.org/abs/1609.08144
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3165
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3170
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3175
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3180
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3185
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3190
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3195
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3200
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3205
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3210
http://refhub.elsevier.com/B978-0-12-811905-1.09994-6/rf3210


Index

Page references in bold represent
figures, tables and boxes.

A
Absolute addressing mode, K-34
Accelerated Strategic Computing

Initiative (ASCI)
ASCI Red, F-104–105
ASCI White, F-71, F-105

Access 1/Access 2 stages, TI 320C55
DSP, E-7

Access bit, B-52
Access time. See alsoAverage memory

access time (AMAT)
DRAM/magnetic disk, D-3
DSM, 372–373
memory hierarchy design, 85
slowdown causes, B-3, B-3
SMPs, 371

Access time gap, D-3
Accumulator, 557–558

architecture, A-3
extended, A-3

Acknowledgment, packets, F-17
ACM. See Association for Computing

Machinery (ACM)
ACS project, M-29–30
Activation hardware, 557–558
Ada language, integer division/

remainder, J-12
Adaptive routing

definition, F-47–48
vs. deterministic routing,

F-53–56
network fault tolerance, F-98
and overhead, F-97

Adders
carry-lookahead, J-37–41
chip comparison, J-61
full, J-2–3, J-3
half, J-2–3
integer division speedup, J-54–57
integer multiplication speedup

even/odd array, J-52
many adders, J-50–54, J-50
multipass array multiplier, J-51
signed-digit addition table, J-54
single adder, J-47–49, J-48–49
Wallace tree, J-53

radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
ripple-carry, J-3, J-3
time/space requirements, J-44

Addition operations
chip comparison, J-61
floating point

denormals, J-26–27
overview, J-21–25
rules, J-24
speedup, J-25–26

integer, speedup
carry-lookahead, J-37–41
carry-lookahead circuit, J-38
carry-lookahead tree, J-40
carry-lookahead tree adder,

J-41
carry-select adder, J-43–44,

J-43–44
carry-skip adder, J-41–43, J-42
overview, J-37

ripply-carry addition, J-2–3, J-3
Address aliasing prediction, 239–240

Address fault, B-42
Addressing modes

absolute, K-34
based indexed addressing, K-34
base plus scaled indexed, K-34
for control flow instructions,

A-17–18
data addressing modes, K-32–35
displacement, A-11–12
and instruction formats, K-6–9
instruction set architecture, 13
memory addressing, A-8–11, A-10
register indirect, K-34
RISC-V, A-36

Address offset, B-55–56
Address space

global, B-52
local, B-52
memory hierarchy, B-57
shared memory, 373
virtual memory, B-12, B-40, B-41,

B-44, B-55
Address specifier, A-21, K-54
Address stage, TI 320C55 DSP, E-7
Address trace, B-4
Address translation, B-42

AMD64 paged virtual memory,
B-55

during indexing, B-36–40, 83
Opteron data TLB, B-47
translation lookaside buffers, B-37,

B-46, B-47
virtual memory, B-46, B-47, 120

Advanced load address table (ALAT)
IA-64 ISA, H-40
vector sparse matrices, G-12–13

Advanced loads, IA-64 ISA, H-40

I-1



Advanced mobile phone service
(AMPS), cell phones,
E-25

Advanced Research Project Agency
(ARPA), F-102–103

Advanced RISC Machine (ARM), 12
architecture, K-22
GPU computing history, M-53

Advanced Simulation and Computing
(ASC) program, F-106

Advanced Switching Interconnect
(ASI), F-107

Advanced Switching SAN, F-71
Advanced Technology Attachment

(ATA) disks
Berkeley’s Tertiary Disk project,

D-12–13
disk power, D-5
disk storage, D-4
historical background, M-88
RAID 6, D-8–9

Advanced vector extensions (AVX),
282, 305, 306

Affine, loop-level parallelism
dependences, H-6

After rounding rule, J-36
Aggregate bandwidth

definition, F-13
effective bandwidth calculations,

F-18–19
shared- vs. switched-media

networks, F-23, F-25
switched-media networks, F-24–25
switch microarchitecture, F-56

AI. See Artificial intelligence (AI)
Aiken, Howard, M-3–4
ALAT. See Advanced load address

table (ALAT)
Alewife machine, M-62
ALGOL, M-17–18
Aliases, address translation, B-38
Allen, Fran, M-29–30
Alliant processors, G-26
Alloy cache, 115
Alloyed predictors, 184
Alpha 21164

cache hierarchy, characteristics,
395

L1 caches, 395
AlphaServer, 395–396
AlphaServer 4100, 395

AltaVista search, cluster history, M-63,
M-74–75

ALUs. See Arithmetic-logical units
(ALUs)

AMAT. See Average memory access
time (AMAT)

Amazon
Dynamo key-value storage system,

485–486
Elastic Computer Cloud, 491–492
Simple Storage Service, 491–492
warehouse-scale computers, 10

Amazon Elastic Computer Cloud
(EC2), utility
computing, M-75–76

Amazon Web Services (AWS)
availability zones, 497–501, 497
cloud computing, 491–497
EC2 computer unit, 493–494
growth, 500
guarantee of service, 492
low cost, 492
reliance on open source software,

492
virtual machines, 491
Xen virtual machine, 126

Amdahl, Gene, M-29–30
Amdahl’s Law, 5

computer design principles, 49–52
computer system power

consumption case study,
69–71

execution time, 50
multicore scaling, 436, 438, 442
parallel processing calculations,

373–377
pitfall, 61
software overhead, F-96
speedup, 374–375
VMIPS on Linpack, G-18

AMD Athlon 64, Itanium 2
comparison, H-43

AMD Fusion, M-53
AMD K-5, M-35
AMD Opteron, 387–388

address translation, B-38
data cache example, B-12–15, B-13
implementation, 391
microprocessor, 27
misses per instruction, B-15
NetApp FAS6000 filer, D-42

paged virtual memory example,
B-54–57

vs. Pentium protection, B-57
processors, 403
TLB during address translation,

B-47
tournament predictors, 185–187

AMD processors
GPU computing history, M-53
power consumption, F-89
recent advances, M-35
RISC history, M-23

Amortization of overhead, D-64–67
Ample parallelism, 467
Andreessen, Marc, F-102
Andrew benchmark, 399
Annual failure rate, 62
Antenna, radio receiver, E-23
Antialiasing, B-38
Antidependence

compiler history, M-32
definition, 172
finding, H-7–8
register renaming, 196

Apollo DN 10000, M-32
Application layer, F-84
Applied Minds, M-76
Arbitration algorithm

collision detection, F-23–24
commercial interconnection

networks, F-57
interconnection networks, F-21–22,

F-49–51
network impact, F-52–53
SAN characteristics, F-76–77
switched-media networks, F-24–25
switch microarchitecture, F-56

pipelining, F-65–66
system area network, F-104–105

Architecturally visible registers, 234
Architectural Support for Compilers

and Operating Systems
(ASPLOS), M-12

Architecture. See also Computer
architecture; Instruction
set architecture (ISA)

and compiler writer, A-30–31
microarchitecture, 266–273

Areal density, D-2
Argument pointer, K-57
Arithmetic intensity, 307–308

I-2 ■ Index



Arithmetic-logical units (ALUs)
data forwarding, C-36–37
data hazards stall minimization,

C-14–17
DSP media extensions, E-10
effective address cycle, C-5
IA-64 instructions, H-35
integer division, J-54
integer multiplication, J-48
integer operations, C-46–48
integer shifting over zeros, J-45
latency, C-46–48
load interlocks, C-35
micro-op fusion, 254
MIPS R4000 pipeline, C-59
multicycle implementation, C-29
operation, C-27–28
pipeline branch issues, C-35–36
RISC classic pipeline, C-8
RISC instruction set, C-5
RISC pipeline, C-31–32, C-35
TX-2, M-50

ARM. See Advanced RISC Machine
(ARM)

ARM AMBA, OCNs, F-3
ARM Cortex-A53

characteristics, 259
clock cycles per instruction,

251–252, 252
data miss rate, 132
memory hierarchy design,

129–131, 130
misprediction rate, 250
multiple-issue processors, 247–252
pipeline performance, 249,

250–252
virtual address, physical and data

blocks, 131
ARMv8, K-4, K-9, 13, K-15, K-16,

K-22
ARPANET, F-102
Array

FFT kernel, I-7
ocean application, I-9–10
recurrences, H-12

Array multiplier
example, J-50
integers, J-50
multipass system, J-51

Artificial intelligence (AI), 546
ASC Purple, F-71, F-105

ASPLOS. See Architectural Support
for Compilers and
Operating Systems
(ASPLOS)

Assembly language, 2
Association for Computing Machinery

(ACM), M-3
Associativity. See also Set associativity

Opteron data cache, B-13–14, B-13
sizes and, B-10

Astronautics ZS-1, M-31
Asynchronous events, exception, C-39
Asynchronous I/O, D-35–36
Asynchronous Transfer Mode (ATM)

interconnection networks,
F-102–103

LAN, F-93–94
packet format, F-79
total time statistics, F-94
VOQs, F-60–61
WANs, F-4, F-84–85, F-102–103

ATA disks. See Advanced Technology
Attachment (ATA) disks

Atanasoff Berry Computer (ABC), M-5
Atanasoff, John, M-5
ATI Radeon 9700, M-51–52
Atlas computer, M-9
ATM system, TP benchmarks, D-18
Atom 230, 258, 259
Atomic exchange, 413
Atomic instructions, barrier

synchronization, I-14
Atomic operations, 386
Attributes field, B-52
Autoincrement deferred addressing,

K-52–53
Autonet, F-49
Autonomous instruction fetch units, 127
Availability

computer systems, D-43
I/O system design/evaluation,

D-36–37
Average instruction execution time,

M-6
Average memory access time (AMAT)

block size calculations, B-26–28,
B-28

cache optimizations, B-22,
B-26–28

cache performance, B-15–17, B-22
memory hierarchy design, 82

miss rate, B-29–30, B-30
out-of-order computer, B-21
and processor performance,

B-17–20
using miss rates, B-30

Average reception factor
centralized switched networks,

F-33
multi-device interconnection

networks, F-26–27
AWS. See Amazon Web Services

(AWS)

B
Back-off time, shared-media networks,

F-103
Backpressure, congestion

management, F-69
Backpropagation, 548
Backside bus, 377
Balanced systems, D-64–67
Balanced tree, MINs with nonblicking,

F-34
Bandwidth. See also Cache bandwidth;

Throughput
arbitration, F-49–50
bisection, F-39–40, F-93, 478
and cache miss, B-2
communication mechanism, I-3
compute, 350
congestion management, F-68
Cray Research T3D, F-91
definition, F-13
disparity, F-29
FP arithmetic, J-62
gap, disk storage, D-3
instruction fetch, 228–232,

229–230
latency and effective, F-25–30
log-log plot, 21
memory, 350, 356
network performance and topology,

F-41
over latency, 20
point-to-point links and switches,

D-34
shared- vs. switched-media

networks, F-23, F-25
snooping, 389–390
two-device networks, F-13–20
for vector load/store units, 298–299

Index ■ I-3



Banerjee, Uptal, M-32
Bank busy time, vector memory

systems, G-9
Banked memory, 346

vector architectures, G-10
Barcelona Supercomputer Center, F-80
Barnes

characteristics, I-8–9
distributed-memory

multiprocessor, I-32
symmetric shared-memory

multiprocessors,
I-21–22, I-23, I-25–26

Barnes-Hut n-body algorithm, I-8–9
Barriers

Cray X1, G-23
fetch-and-increment, I-20–21
large-scale multiprocessor

synchronization,
I-20–21

large-scale multiprocessor,
synchronization,
I-13–16, I-14, I-16,
I-19, I-20

Based indexed addressing mode,
K-34

Base field, B-52
Base plus scaled indexed addressing

mode, K-34–35
Base station, E-22–23
Batches, DNNs, 556
Batch processing workloads, 467
Bay Area Research Network

(BARRNet), F-83
BBN Butterfly, M-61
BBN Monarch, M-61
Before rounding rule, J-36
Benchmarks. See also Thread Block;

specific benchmark
desktop benchmarks, 41–43
distribution of data accesses by,

A-14
EEMBC, E-12, E-12
embedded applications

basic considerations, E-12
power consumption and

efficiency, E-13,
E-13–14

fallacy, 61
performance measurement,

40–45

response time restrictions, D-18
sorting case study, D-64–67
suite, 41

Beneŝ topology, F-33, F-34
Berkeley’s Tertiary Disk project

failures of components, D-12
overview, D-12–13
system log, D-43

Berners-Lee, Tim, F-102
Bertram, Jack, M-29–30
Best-case lower bounds, F-26
Best-case upper bounds, F-26
Between instructions exception, C-39,

C-45
Biased exponent, J-15–16
Bidirectional multistage

interconnection
networks, F-33–34

Bidirectional rings, F-36
Big Endian

byte order, A-7
interconnection networks, F-12

BINAC, M-5
Binary code compatibility, embedded

systems, E-15
Binary-coded decimal, A-14
Binary-to-decimal conversion, FP

precisions, J-33–34
Bing search engine

negative impact, 486
WSCs, 485

Bisection bandwidth, 478
as network cost constraint, F-93
network performance and topology,

F-93
NEWS communication, F-42
topology, F-39

Bisection traffic fraction, F-41–42
Bit error rate (BER), wireless networks,

E-21
Bit rot, case study, D-61–64
Bit selection, B-8
Black box network

basic concept, F-5–6
effective bandwidth, F-18
performance, F-13
switched-media networks, F-24–25
switched network topologies, F-41

Block. See also Cache block
addressing, B-7–9
cache optimization, 107–109

centralized switched networks,
F-33

definition, B-2
disk array deconstruction,

D-51–54
disk deconstruction case study,

D-48–50
factor, 108
global code scheduling, H-15–16
head-of-line, F-59–60
identification

memory hierarchy, B-8–9
virtual memory, B-44–45

LU kernel, I-8
memory hierarchy, 81
multithreading, M-35–36
network performance and topology,

F-41
offset, B-8–9

block identification, B-8–9
cache optimization, B-38
Opteron data cache, B-13, B-14

placement
memory hierarchy, B-7–8, B-7
virtual memory, B-44

RAID performance prediction,
D-57–59

replacement
memory hierarchy, B-9–10
virtual memory, B-45

size, miss rate and, B-26–28,
B-27

TI TMS320C55 DSP, E-8
Blocked floating point arithmetic, DSP,

E-6
Block servers, vs. filers, D-34–35
Block transfer engine (BLT), F-91
Boggs, David, F-103
BOMB, M-4
Booth recoding, J-8–10, J-9, J-17

integer multiplication, J-49
Bose-Einstein formula, 34
Bounds checking, B-52
Branch(es)

completion cycle, C-28
delayed, C-20, C-20
folding, 231
history table, C-23
RISC instruction set, C-5
VAX, K-57
WCET, E-4

I-4 ■ Index



Branch byte, K-57
Branch hazards, C-18–22

penalty reduction, C-19–20
pipeline issues, C-35–37
scheme performance, C-21–22,

C-22
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Burroughs B5000, M-17–18
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Sony PlayStation 2 Emotion

Engine, E-18
vector processors, G-25
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state diagram, 385, 387
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Carry-lookahead adder (CLA)

chip comparison, J-61
circuit, J-38
early computer arithmetic, J-63

example calculations, J-39
integer addition speedup,

J-37–41
with ripple-carry adder, J-42
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integer multiplication, J-48, J-51
multipass array multiplier, J-51

Carry-save adder (CSA)
integer division, J-54–55
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example, J-42, J-44
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wireless communication
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Clusters, 9–10, 369, 478
characteristics, I-45
containers, M-76
Cray X1, G-22
history background, M-62–65
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programming, 302–304
RV64V extension, 283–287,

284
sparse matrices, 301–302
vector-length registers,

294–296
WSCs, 467

Data link layer
definition, F-84
interconnection networks, F-10

Data parallelism, M-56
Data-race-free, 419
Data races, 419
Data transfers

cache miss rate calculations, B-16
RISC-V, A-36

Data trunks, C-70
Data types, dependence analysis, H-10
Dauber, Phil, M-29–30
DAXPY loop

chained convoys, G-16
on enhanced VMIPS, G-19–21
vector performance measures, G-16
VMIPS, G-19–21

calculations, G-18
on Linpack, G-18
peak performance, G-17

D-cache, way prediction, 98–99
DDR. See Double data rate (DDR)
DDR3 memory systems, 153–155
Deadlock, F-45–46, 386

avoidance, F-46
large-scale multiprocessor cache

coherence, I-34–35,
I-38–40

recovery, F-46
Dead time, vector pipeline, G-8, G-8
DEC Alpha processor, K-3
Decoder, radio receiver, E-23
Decode stage, TI 320C55 DSP, E-7
DEC PDP-11, address space,

B-57–58
DECstation 5000, F-73
DEC VAX

address space, B-57–58
cluster history, M-62, M-74
computer architecture definition,

M-19
early computer arithmetic,

J-63–64
early pipelined CPUs, M-28
failures, D-13–15
integer overflow, J-11
RISC history, M-20

DEC VAX-11/780, M-6–7, M-11,
M-19

DEC VAX 8700
vs. MIPS M2000, M-22
RISC history, M-22

Dedicated link network
black box network, F-5–6
effective bandwidth, F-18
example, F-6

Deep neural networks (DNNs)
acceleration, 606–613
activation, 546
applications, 547, 595
batches, 556
convolutional neural network,

550–552
CPUs and GPUs vs., 595–602
multilayer perceptron, 549–550
neurons of, 546–547
performance summary, 603
quantization, 556
recurrent neural network,

553–555
training set sizes/time, 548
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Deep neural networks (DNNs)
(Continued)

training vs. inference, 547–549
weights/parameters, 546

Defect tolerance, 67–68
Delayed branch

behavior, C-20
compiler history, M-33
definition, C-20

Dell PowerEdge servers, 55–58, 56
Dell Poweredge Thunderbird, F-80
Demand access, memory hierarchy

design, 138
Demodulator, radio receiver, E-23
Dennard scaling, 4–5, 58, 368–369,

442
Denormals, J-14–15, J-20–21

floating point addition, J-26–27
floating-point underflow, J-36

Dense matrix multiplication, LU
kernel, I-8

Density-optimized processors, vs.
SPEC-optimized, F-89

Dependability
benchmark examples, D-21–23
definition, D-10–11
disk operators, D-13–15
integrated circuits, 36–38
Internet Archive Cluster, D-38–40
in memory systems, 93–94
via redundancy, 467

Dependence analysis
basic approach, H-5
example calculations, H-7
limitations, H-8–9

Dependence distance, loop-carried
dependences, H-6

Dependences
control, 174–176
data, 170–172
finding, H-6–10
loop-level parallelism, H-3
name, 172–173
sparse matrices, G-12–13
types, 170–171

Dependent computations, H-10–12,
344–345

Descriptor privilege level (DPL), B-53
Descriptor tables, B-52
Design faults, D-11
Desktop benchmarks, 41–43

Desktop computers
interconnection networks, F-72
multimedia support, E-11
RAID history, M-87
RISC architectures survey for,

K-3–29
system characteristics, E-4

Desktop computing, A-2, 8
Desktop/server RISC architectures,

instruction formats for,
K-8

Destination offset, IA-32 segment, B-53
Deterministic routing algorithm,

F-46–47
DF. See Data fetch (DF)
Dies, 31

embedded systems, E-15
Intel Core i7 microprocessor, 32
RISC-V, 33
yield, 33–34

Digital Alpha
conditional instructions, H-27
Digital Alpha 21064, M-48
processors

MAX, multimedia support,
E-11

recent advances, M-35
synchronization history, M-64–65

Digital Equipment Vax, 2
Digital Linear Tape, M-85
Digital signal processor (DSP)

cell phones, E-23–24, E-23
definition, E-3
desktop multimedia support, E-11
embedded RISCs, K-28
examples and characteristics, E-6
media extensions, E-10–11
overview, E-5–7
TI TMS320C55, E-6–7, E-7–8
TI TMS320C6x, E-8–10
TI TMS320C64x, E-9
TI TMS320C6x instruction packet,

E-10
Dimension-order routing (DOR),

F-46–47
Direct attached disks, D-35
Directed acyclic graph (DAG), 582
Direct-mapped cache, B-7, B-8

address translation, B-38
early work, M-11
memory hierarchy, B-48, 81

Direct memory access (DMA)
historical background, M-89
network interface functions, F-7
Sanyo VPC-SX500 digital camera,

E-19
Sony PlayStation 2 Emotion

Engine, E-18
TI TMS320C55 DSP, E-8
zero-copy protocols, F-95

Direct networks, F-35, F-37, F-96
Directory-based cache coherence, 380,

391–392
case study, 451–452
home node, 406
large-scale multiprocessors history,

M-61
local node, 406
operations, 406
protocol example, 408–412
remote node, 406–407
state transition diagram, 408,

409–410
Directory-based multiprocessor

characteristics, I-31
scientific workloads, I-26, I-29
synchronization, I-16, I-19–20

Directory controller, cache coherence,
I-40–41

Directory protocol, 404
DirectX 9, M-51–52
DirectX 10 generation, M-52–53
Dirty bit, B-11, B-46, D-61–64
Dirty block, B-11, B-36
Discrete cosine transform, DSP, E-5
Disk arrays

deconstruction case study, D-51–54
RAID 6, D-8–9
RAID levels, D-6–10

Disk layout, RAID performance
prediction, D-57–59

Disk power, D-5
Disk storage, D-2–10, D-48–50
Disk system

performance milestones, 22
subsystem, failure rates of,

51–52
workload measurements, 400

Dispatch stage, 266–273
Displacement addressing, K-52
Displacement-style addressing mode,

A-11–12
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Display lists, Sony PlayStation 2
Emotion Engine, E-17

Distributed routing, F-49
Distributed shared memory (DSM),

371, 373
access time, 372–373
architecture, 373
characteristics, I-45
directory-based cache coherence,

404–412, 405
disadvantages, 372–373
multicore processor, 373, 405, 452

Distributed shared-memory
multiprocessors

cache coherence implementation,
I-36–37

scientific application performance,
I-26–32, I-28–32

Distributed switched networks,
F-35–40

Divide operations
chip comparison, J-61
floating-point iterative, J-27–31
integer shifting over zeros, J-45
integers, speedup

radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
with single adder, J-54–57
SRT division, J-45–47, J-46,

J-55–57
language comparison, J-12
n-bit unsigned integers, J-4
Radix-2, J-4–7, J-4
restoring/nonrestoring, J-5, J-6
SRT division, J-45–47, J-46

DLP. See Data-level parallelism (DLP)
DLX, integer arithmetic, J-11–12
DNNs. See Deep neural networks

(DNNs)
Domain-specific architectures (DSAs),

5
architecture renaissance, 605–606
cost-performance, 600–601
CPUs and GPUs vs. DNN

accelerators, 595–602
custom chip, 602
deep neural networks

activation, 546
applications, 547
batches, 556

convolutional neural network,
550–552

multilayer perceptron, 549–550
neurons of, 546–547
quantization, 556
recurrent neural network,

553–555
training set sizes/time, 548
training vs. inference, 547–549
weights/parameters, 546

designing, 604
guidelines for, 543–544, 543
heterogeneity, 592–594
Intel Crest, 579
ISPs, 580–582
Microsoft Catapult

board design, 568
CNNs on, 570–572, 571–572
evaluating, 601–602
guidelines, 577–579
implementation and

architecture, 568–569
search acceleration on, 573–574
software, 569
version 1 deployment, 574
version 2 deployment, 575–577,

576–577
open instruction set, 594
performance counters, 603
performance/watt, 600–601
Pixel Visual Core

architecture philosophy,
583–584

evaluating, 601–602
example, 588
floor plan, 592
Halo, 584–585
implementation, 590–591
instruction set architecture,

587–588
line buffers in, 590
processing element, 588–589
processor, 585–587
software, 582
two-dimensional array, 586
two-dimensional line buffers,

589–590
response time, 596–600
rooflines, 596–600
system on a chip, 592–594
systolic array, 561

TCO, 600–601
tensor processing unit

architecture, 557–558
block diagram, 558
case study, 606–617
die, 562
guidelines, 566–567
implementation, 560–563
improving, 564–566
instruction set architecture, 559
microarchitecture, 559–560
origin, 557
printed circuit board, 563
software, 563
TensorFlow program, 564

throughput, 596–600
Double data rate (DDR), 87, 399

IBM Blue Gene/L, I-43
InfiniBand, F-81

Double-extended floating-point
arithmetic, J-33–34

Double failures, RAID reconstruction,
D-55–57

Double-precision floating point, C-63,
329

chip comparison, J-58
DSP media extensions, E-10

Double rounding
FP precisions, J-34
FP underflow, J-36–37

Double words, A-7, A-8, A-14, K-35,
300

DPL. See Descriptor privilege level
(DPL)

DRAM. See Dynamic random-access
memory (DRAM)

DRDRAM, Sony PlayStation 2,
E-16

Driver domains, Xen virtual machine,
126

DSAs. See Domain-specific
architectures (DSAs)

DSM. See Distributed shared memory
(DSM)

DSP. See Digital signal processor
(DSP)

Dual inline memory modules
(DIMMs), F-74, 89

Dynamically allocatable multi-queues
(DAMQs), F-56

Dynamically shared libraries, A-18
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Dynamic branch prediction, C-23–25
Dynamic energy, 25
Dynamic network reconfiguration,

F-71–73
Dynamic power, 80
Dynamic programming feature (DPF),

577
Dynamic random-access memory

(DRAM)
arithmetic operations and energy

cost, 29
clock rates, bandwidth, and names,

89
cost vs. access time, D-3
Cray X1, G-22
dependability, 516
die stacking, 91
disk storage, D-3
embedded benchmarks, E-13
errors and faults, D-11
first vector computers, M-47–49
IBM Blue Gene/L, I-43–44
internal organization, 86
magnetic storage history, M-86
memory hierarchy design, 85–87
memory performance

improvement, 87–90
PlayStation 2, E-16, E-17
price pressures, 34
semiconductor, 19
stacked/embedded, 91
timing parameters, 153–155
vector memory systems, G-9–10
vector processor, G-9–10, G-25

Dynamic register typing, 287
Dynamic scheduling

advantages, 191–192
data hazards, 191–201
definition, C-65–66
first use, M-28–29
out-of-order execution,

193–194
with scoreboard, C-66–70,

C-68
Tomasulo’s algorithm, 195–204

loop-based example, 204–208,
206

steps, 205
unoptimized code, C-70

Dynamic voltage-frequency scaling
(DVFS), 27

E
Early restart, cache optimization,

104–105
Earth Simulator, M-48–49, M-63
ECC. See Error-Correcting Code

(ECC)
Eckert, J. Presper, M-2–5, M-20
Eckert-Mauchly Computer

Corporation, M-5, M-57
ECL minicomputer, M-20
EEMBC. See Electronic Design News

Embedded
Microprocessor
Benchmark Consortium
(EEMBC)

Effective address, A-8–9
RISC classic pipeline, C-8
RISC instruction set, C-5
simple RISC implementation, C-27
TLB, B-49

Effective bandwidth
definition, F-13
example calculations, F-18–19
vs. packet size, F-19
two-device networks, F-13–20

Efficiency factor, F-53, F-55–56
Eight-way set associativity

cache optimization, B-28–29
conflict misses, B-23
data cache misses, B-10

Elapsed time, 39
Electronically erasable programmable

read-only memory
(EEPROM), 92

Electronic Design News Embedded
Microprocessor
Benchmark Consortium
(EEMBC), 41

benchmark classes, E-12
kernel suites, E-12
power consumption and efficiency

metrics, E-13,
E-13–14

Electronic Discrete Variable Automatic
Computer (EDVAC),
M-2–3

Electronic Numerical Integrator and
Calculator (ENIAC),
M-2–3, M-85

Embedded applications, A-2
Embedded computer, 6–7

RISC architectures survey for,
K-3–29

Embedded DRAM, 91
Embedded multiprocessors,

characteristics, E-14–15
Embedded systems

benchmarks
basic considerations, E-12
power consumption and

efficiency, E-13,
E-13–14

cell phone case study
block diagram, E-23
characteristics, E-22–24
Nokia circuit board, E-24
overview, E-20
radio receiver, E-23
standards and evolution, E-25
wireless networks, E-21–22

characteristics, E-4
digital signal processor

cell phones, E-23–24, E-23
definition, E-3
desktop multimedia support,

E-11
examples and characteristics,E-6
media extensions, E-10–11
overview, E-5–7
TI TMS320C55, E-6–7, E-7–8
TI TMS320C6x, E-8–10
TI TMS320C64x, E-9
TI TMS320C6x instruction

packet, E-10
EEMBC benchmark suite, E-12
overview, E-2
performance, E-13–14
real-time processing, E-3–4
Sanyo digital cameras, SOC, E-20
Sanyo VPC-SX500 digital camera

case study, E-19
Sony PlayStation 2 case study,

E-15–18
block diagram, E-16
organization, E-18

EMC, M-87–88
Emotion Engine

organization modes, E-18
Sony PlayStation 2 case study,

E-15–18
empowerTel Networks, MXP

processor, E-14–15
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Enclaves, instruction set extensions,
125

Encore Multimax, M-59–60
End-to-end flow control, F-69
Energy

and DLP, 345
limits of, 28–29
within microprocessor, 25–28
proportionality, 503
systems perspective, 23–24

Energy efficiency, 434–437, 467.
See also Power
consumption

embedded benchmarks, E-13
Engineering Research Associates

(ERA), M-4–5
ENIAC. See Electronic Numerical

Integrator and Calculator
(ENIAC)

Enigma coding machine, M-4
Entry time, transactions, D-16, D-17
Environmental faults, storage systems,

D-11
EPIC approach

historical background, M-33
IA-64, H-33

E-24 RF. See Register fetch (RF)
Error correcting codes (ECCs),

93–94
disk storage, D-11
hardware dependability, D-15
RAID 2, D-6

Error handling, interconnection
networks, F-9–12

Errors, definition, D-10
Escape resource set, F-47–48
ETA processor, G-26–27
Ethernet, 478

and bandwidth, F-82, F-93
LANs, F-4, F-82–84, F-103–104
packet format, F-79
shared-media networks, F-23–24
shared- vs. switched-media

networks, F-23
switch vs. NIC, F-90
system area networks, F-76–77
total time statistics, F-94
WAN, F-84–85

Eugene, Miya, M-65
European Center for Particle Research

(CERN), F-102

Even/odd array
example, J-52
integer multiplication, J-51–52

EVEN-ODD scheme development,
D-10

Exception
arithmetic-logical units, C-5
categories, C-40
control dependence, 174–175
floating-point, C-41–42
floating-point arithmetic, J-34–35
imprecise, 194
memory protection, 175
precise, C-41–44
preservation via hardward support,

H-28–32
RISC V, C-42–43, C-42
stopping/restarting, C-41–42
types and requirements, C-38–41,

C-40
unexpected sequences, C-70

Execute step
Itanium 2, H-42
TI 320C55 DSP, E-7

Execution, C-69, 198, 211
Execution address cycle (EX)

data hazards requiring stalls, C-18
data hazards stall minimization,

C-14
dynamic scheduling pipelines, C-66
exception stopping/restarting, C-41
floating point pipeline, C-46
longer latency pipelines, C-51
MIPS R4000 pipeline, C-58–59
pipeline branch issues, C-35–36
RISC exception, C-42–43, C-43
RISC instruction set, C-5, C-6
RISC pipeline, C-32–35
simple RISC implementation, C-27

Execution time, 39
Amdahl’s law, 50
application/OS misses, B-59
cache performance, B-3
central processing unit, B-3, B-5,

B-22
components, 400
multiprocessor, 438
multiprogrammed parallel “make”

workload, 400
pipelining performance, C-3,

C-8–10

second-level cache size, B-32, B-34
and stall time, B-21
vector length, G-7

Expand-down field, B-53
Explicit parallelism, H-34–37
Explicit unit-stride, 333
Exponential back-off

large-scale multiprocessor
synchronization,
I-17–18

spin lock, I-17
Exponential distribution, D-27
Extended accumulator, A-3, K-30
Extended stack architecture, K-30

F
Fabrication cost, 67–68
Fabrication yield, 67–68
Failure. See also Mean time between

failures (MTBF); Mean
time to failure (MTTF)

Berkeley’s Tertiary Disk project,
D-12

definition, D-10
dependability, 37–38
dirty bits, D-61–64
RAID

reconstruction, D-55–57
row-diagonal parity, D-9

rates of disk subsystem, 51–52
storage system, D-6–10

components, D-43
Tertiary Disk, D-13

Failures in time (FIT), 37
False sharing, 393–394, 398
Fast Fourier transformation (FFT)

characteristics, I-7
distributed-memory

multiprocessor, I-32
example calculations, I-27–29
symmetric shared-memory

multiprocessors, I-22,
I-23, I-25–26

Fat trees, F-34, F-38
Fault, 111

definition, D-10
dependability benchmarks, D-21
programming mistakes, D-11
Tandem Computers, D-13

Fault detection, 64
Fault-induced deadlock, F-45–46
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Fault tolerance, F-70–72, F-98
dependability benchmarks, D-21
RAID, D-7

Fault-tolerant routing, F-70–71,
F-98–99

FC. See Fibre Channel (FC)
FC-AL. See Fibre Channel Arbitrated

Loop (FC-AL)
Feature Extraction, 573, 574
Feature functional unit (FFU), 576
Feature maps, two-dimensional, 550
Feature size, 21
FEC. See Forward error correction

(FEC)
Federal Communications Commission

(FCC), D-15
FENCE in RISC V, 420–422
Fetch-and-increment, 413–414

large-scale multiprocessor
synchronization, I-20–21

sense-reversing barrier, I-21
Fetch stage, TI 320C55 DSP, E-7
FFT. See Fast Fourier transformation

(FFT)
Fibre Channel (FC), F-106

file system benchmarking, D-20
NetApp FAS6000 filer, D-41–42

Fibre Channel Arbitrated Loop (FC-
AL), M-88, F-106

block servers vs. filers, D-35
Fibre Channel Switched (FC-SW),

F-106
Filers

vs. block servers, D-34–35
NetApp FAS6000 filer, D-41–43
servers, SPEC benchmarking,

D-20–21
Filters, radio receiver, E-23
Fine-grained multithreading, 243–244
Fingerprint, storage system, D-48
Finite-state machine, F-49, F-56–58
Firmware, network interfaces, F-7–8
First-in first-out (FIFO), B-9,B-10, 197

definition, D-26
First-level caches

cache optimization, B-30–35
hit time/power reduction, 95–98
interconnection network, F-74
Itanium 2, H-41
memory hierarchy, B-48–49, B-48
parameter ranges, B-42

First-reference misses, B-23
Fixed-field decoding, C-5
Fixed length, 14
Fixed-point arithmetic, DSP, E-5–6
Flash memory

disk storage, D-3–4
embedded benchmarks, E-13
memory hierarchy design, 92–93
technology trends, 19

FLASH multiprocessor, M-62
Flexible chaining, 290–291

vector processor, G-11
Flex point, 579
Floating-point (FP) operations,

K-38–40
addition

denormals, J-26–27
overview, J-21–25
rules, J-24
speedup, J-25–26

chip comparison, J-58
CPI, C-64
data dependences, 171
denormals, J-14–15, J-20–21,

J-26–27
double-precision, C-63
DSP media extensions, E-10–11
early computer arithmetic, J-64–65
exceptions, J-34–35, C-41–42
fused multiply-add, J-32–33
IEEE 754, J-16
integer conversions, J-62
Itanium 2, H-41
iterative division, J-27–31
latency, C-61, C-63, 177
and memory bandwidth, J-62
micro-op fusion, 254
MIPS R4000 pipeline, C-60–61,

C-60
mispeculation, 239
multiplication

denormals, J-20–21
examples, J-19
overview, J-17–20
rounding, J-18, J-19

multiplication precision, J-21
multiply and add operation, C-62
number representation, J-15–16
overflow, J-11
overview, J-13–14
performance, 308

pipeline scheduling, 178
precisions, J-33–34
programs, 101–102
register file, C-50
remainder, J-31–32
result stalls, C-61, C-64
RISC exception, C-43
RISC multicycle operations,

C-45–55
RISC pipeline, C-45–55, C-47–48,

C-57
RISC-V, A-40–41
special values, J-14–15, J-16
square root, 51
static branch prediction, C-23
structural stalls, C-61, C-64
Tomasulo’s algorithm, 198
underflow, J-36–37, J-62
vector chaining, G-11

Floating-point registers (FPRs)
IA-64, H-34
IBM Blue Gene/L, I-42

Floating Point Systems AP-120B,
M-30

Floppy disks, M-85–86
Flow-balanced state, D-24
Flow control

and arbitration, F-22
interconnection networks, F-9–12

Fluent, F-80–81
Flush, branch penalty reduction, C-19
Forget gate, 553
Form factor, interconnection networks,

F-9–10
FORTRAN

compiler vectorization, G-14, G-15
dependence analysis, H-6
integer division/remainder, J-12
performance measurement history,

M-6
Forward error correction (FEC), E-5–7
Forwarding, C-14

arithmetic-logical units, C-36–37
data hazards stall minimization,

C-14–15, C-15–16
load instruction, C-17
longer latency pipelines, C-49–52
table, F-56–58

Forward path, cell phones, E-24
Fourier-Motzkin algorithm, M-32
Fourier transform, DSP, E-5
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Four-way set associativity, B-23
FPGA, 568–569

Catapult, 567
Feature Extraction, 574

FP operations. See Floating-point (FP)
operations

Fragmentation problem, 114
Frame pointer, K-57
Free-form expressions, 573–574
Freeze, branch penalty reduction, C-19
Frequency modulation (FM), wireless

neworks, E-21
Front-end stage, Itanium 2, H-42
FU. See Functional unit (FU)
Fujitsu Primergy BX3000 blade server,

F-89
Fujitsu SPARC64 X+, 389, 426, 429

feature, 427
performance, 429–431, 432

Fujitsu VP100, M-48
Fujitsu VP200, M-48
Full access

dimension-order routing, F-47–48
interconnection network topology,

F-30
Full adders, J-2–3, J-3
Full-duplex mode, F-23
Fully associative cache, B-7–9, B-12,

81
Fully connected layer, 549
Fully connected topology, F-35–36,

F-35–36
Functional hazards, 266–273
Functional unit (FU), C-46

execution slots, superscalar
processors, 244–245, 244

Itanium 2, H-41–43
latency, C-47, 177
OCNs, F-3

Function pointers, A-18
Fused multiply-add, floating point,

J-32–33
Future file approach, C-54

G
Gates, 553
Gateways, Ethernet, F-83
Gather-scatter, A-31–32, 301–302, 352

sparse matrices, G-13–14
GE 645, M-9–10
GeForce 8800, M-52

General-Purpose Computing on GPUs
(GPGPU), M-52

General-purpose electronic computers,
M-2–4

General-purpose registers (GPRs)
architectures, A-3
IA-64, H-38

Geometric mean, 46
Gibson mix, M-6
Global address space, B-52
Global code scheduling

example, H-16
parallelism, H-15–23
superblock scheduling, H-21–23,

H-22
trace scheduling, H-19–21, H-20

Global common subexpression
elimination, A-26

Global data area, A-29
Global Environment for Network

Innovation (GENI),
F-102

Global miss rate, B-31
Global optimizations, A-26
Global Positioning System, CDMA,

E-25
Global predictors, 184–188
Global scheduling algorithms, 219–220
Global system for mobile

communication (GSM),
cell phones, E-25

Goldschmidt’s division algorithm,
J-29–30

Goldstine, Herman, M-2–3
Google

clusters history, M-63
containers, M-76

Google App Engine, M-75–76
Google Clusters, 94

power consumption, F-89
Google File System (GFS), 474
Google Translate, 4, 7, 40–45
Google WSCs

airflow, 506
availability zones, 498
cooling, 506–508
generators, 505
networking, 510–511
network switches, 502
network traffic, 501
on-site substation, 504

power distribution, 504–506
power utilization efficiency of, 485
racks, 509–510, 509, 512
servers, 505, 512–513, 513
switch gear, 505
transformers, 505

Gordon Bell Prize, M-58
GPGPU. See General-Purpose

Computing on GPUs
(GPGPU)

GPRs. See General-purpose registers
(GPRs)

Gradual underflow, J-15, J-36
Grain size, 370
Grant phase, arbitration, F-49–50
Graph coloring, A-27
Graphical Processor Units (GPUs)

computing history, M-52–53
historical background, M-50–51
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floating-point operation, 198
instruction set, 195

Reductions, 344–345
Redundancy

chip fabrication cost case study,
67–68
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computer system power
consumption case study,
69–71

index checks, B-9
simple RISC implementation, C-29

Redundant array of inexpensive disks
(RAID)

dependability benchmarks,
D-21–23

disk array deconstruction case
study, D-51–54

disk deconstruction case study,
D-48–50

hardware dependability, D-15
historical background, M-86–88
I/O subsystem design, D-59–61
logical units, D-35
NetApp FAS6000 filer, D-41–43
overview, D-6–8
performance prediction, D-57–59
RAID 0, D-6
RAID 1, D-6, M-87
RAID 2, D-6, M-87
RAID 3, D-6, M-87
RAID 4, D-7, M-87
RAID 5, D-8, M-87
RAID 6, D-8–10
RAID 10, D-8
row-diagonal parity, D-9–10, D-9,

D-41–42
Redundant multiplication, integers,

J-47
Reference bit, B-45, B-52
Regional explicit congestion

notification (RECN),
F-70

Register(s)
DSP examples, E-6
IA-64, H-33–34
instructions and hazards, C-13
network interface functions, F-7
pipe stage, C-31
tag, 202

Register addressing, K-52
Register allocation, A-26–27
Register deferred addressing,

K-52–53
Register fetch (RF)

cycle, C-5
MIPS R4000 pipeline, C-56
simple RISC implementation, C-27

Register file, C-27, 200–201
data hazards, C-16–17
floating-point operations, C-50
OCNs, F-3
precise exceptions, C-54
RISC instruction set, C-5, C-7–8
simple RISC implementation, C-29

Register indirect addressing mode,
K-34

Register management software-
pipelined loops, H-14

Register-memory
architecture, A-3
ISAs, 12

Register prefetch, 111
Register pressure, 182
Register renaming

antidependence, 196
deallocating registers, 235
definition, 173, 195–196
expected output, 269
initial state table, 270
microarchitectural techniques case

study, 266–273
name dependences, 196
vs. reorder buffers, 234–236
reservation stations, 196–197,

199–200
sample code, 269–270

Register stack engine, IA-64, H-34
Register Transfer Level (RTL) code,

569
Regularity, bidirectional MINs,

F-33–34
Reinforcement learning (RL), 549
Relaxed consistency models, 419–422,

421
Release consistency (RC), 420–422,

421, 457
Reliability

commercial interconnection
networks, F-37

I/O subsystem design, D-59–61
storage systems, D-44

Relocation, virtual memory, B-41–42
Remainder, floating point, J-31–32
Remington-Rand, M-5
Remote direct memory access

(RDMA), F-80
Remote node, 406–407
Renaming map, 235

Reorder buffer (ROB)
compiler-based speculation,

H-31–32
hardware-based speculation,

209–212, 214–215
issue with, 236
register renaming vs., 234–236

Replication
definition, 377, 379
virtual memory, B-49

Reply, messages, F-6
Reproducibility, 45
Request

messages, F-6
switch microarchitecture,

F-58–59
Requested protection level, B-54
Request-level parallelism (RLP)

definition, 5, 10–11, 369
WSCs, 467

Request phase, F-49–50
Request-reply deadlock, F-45–46
Reservation stations

common data bus, 202
fields, 199–200
register renaming, 196–197,

199–200
Reserved register, 414
Resource sparing, F-70–71
Response time. See also Latency

definition, 20, 39
DNN applications, 596–600
I/O benchmarks, D-18
producer-server model, D-16
vs. throughput, D-16–18, D-17

Restartable pipeline
definition, C-40–41
exception, C-41–42

Restorations, dependability, 37
Restoring division, J-5, J-6
Resume event, exception, C-40
Return address, predictors, 232–234
Returns, cache coherence, 378–379
Reverse path, cell phones, E-24
RF. See Register fetch (RF)
Rings, F-43

protection processes, B-50
Ripple-carry adder, J-2–3, J-3

carry-lookahead adder with, J-42
chip comparison, J-61

Ripply-carry addition, J-2–3
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RISC. See Reduced Instruction Set
Computer (RISC)

ROB. See Reorder buffer (ROB)
Role code, 569, 570
Roofline model, 349

CPUs vs. GPUs, 355
DNN applications, 596–600, 597

Round digit, J-18
Rounding modes, J-14, J-17–20, J-18,

J-20
FP precisions, J-34
fused multiply-add, J-33

Round-robin (RR), F-49
Routers, F-64, F-83
Routing algorithm, F-21–22, F-45–49
Row access strobe (RAS), memory

hierarchy design, 85–86
Row-diagonal parity, D-9–10, D-9,

D-41–42
Row major order, blocking, 107
RV64c, 16-bit instruction formats, K-7
RV32E, K-4
RV64GC, K-3

ALU instructions in, K-17
16-bit instructions, K-10
core 16-bit instructions, K-16–17
register encodings, K-7

RV64G core instructions, K-11
RV64G, extensions beyond, K-18–19
RV64G instruction, K-12
RV64V extension

data sizes, 287
vector architecture, 283–287, 284
vector instructions, 286

RV64V instruction set, 293

S
Sanyo digital cameras, SOC, E-20
Sanyo VPC-SX500 digital camera,

embedded system case
study, E-19

SASI, M-88
SATA disks. See Serial Advanced

Technology Attachment
(SATA) disks

Saturating arithmetic, DSP media
extensions, E-11

Scalability
computer design principles, 48
server systems, 9

Scalable GPUs, M-51

Scalar lane (SCL), 586–588
Scalar processors, 310, 326, 332, 334.

See also Superscalar
processors

early pipelined CPUs, M-28
vs. vector, G-19

Scalar registers
Cray X1, G-21–22
set of, 285

Scaled speedup. See Weak scaling
Scaling

CMOS, 442–443
computation-to-communication

ratios, I-11
instruction-level parallelism, 442
multicore processor, 432,

442–444
scientific applications on parallel

processing, I-34
SPECintRate benchmarks,

429–431, 431
strong, 439
weak, 439

Scan Line Interleave (SLI), M-51
Scatter store, 301–302
Schorr, Herb, M-29–30
Scientific applications

Barnes, I-8–9
characteristics, I-6–12
cluster history, M-62–63
distributed-memory

multiprocessors,
I-26–32, I-28–32

FFT kernel, I-7
LU kernel, I-8
ocean, I-9–10
parallel processors, I-33–34
parallel program computation/

communication,
I-10–12, I-11

parallel programming, I-2
symmetric shared-memory

multiprocessor, I-21–26,
I-23–26

Scoreboarding
definition, 194–195
dynamic scheduling with, C-66–70,

C-68
SCSI. See Small Computer System

Interface (SCSI)
SDRWAVE, J-62

Second-level caches
cache optimization, B-30–35, B-34
execution time, B-32, B-34
interconnection network, F-74
Itanium 2, H-41
memory hierarchy, B-48–49, B-48
miss rate calculations, B-30–35,

B-34
Secure Virtual Machine (SVM), 146
Seek distance, D-46, D-46–47
Seek time, storage disks, D-45–46,D-46
Segment descriptor, B-52, B-53
Segmented virtual memory

bounds checking, B-52
Intel Pentium processors, B-51–54
memory mapping, B-52
safe calls, B-54
sharing and protection, B-52–53

Segments
definition, B-43
pages vs., B-43

Self-correction, Newton’s algorithm,
J-28–30

Self-draining pipelines, M-30
Self-routing, MINs, F-48–49
Semiconductor

DRAM, 19
flash, 19
ITRS, 58–59, 59
manufacturing, 4

Sending overhead
OCNs vs. SANs, F-27–29
time of flight, F-14

Sending overhead, communication
latency, I-3

Sense-reversing barrier
code example, I-15, I-21
large-scale multiprocessor,

synchronization, I-14–16
Sequency number, packet header, F-8
Sequential consistency (SC), 417, 421,

457
implementation, 418, 423
programmer’s view, 418–419

Sequential interleaving, 100
Sequent Symmetry, M-59–60
Serial Advanced Technology

Attachment (SATA)
disks

NetApp FAS6000 filer, D-42
power consumption, D-5
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RAID 6, D-8–9
vs. SAS drives, D-5, D-5

Serial Attach SCSI (SAS) drive
historical background, M-88
power consumption, D-5
vs. SATA drives, D-5

Serialization
barrier synchronization, I-16
cache coherence, 378–381
definition, 380–382, 413
DSM multiprocessor cache

coherence, I-37
Serpentine recording, M-85
Serve-longest-queue (SLQ) scheme

arbitration, F-49
Server(s), A-2, 8–9.

See also Warehouse-
scale computer (WSC)

benchmarks, 43–45
CPU utilization, 475
definition, D-25
Google WSCs, 512–513, 513
single-server model, D-25
system characteristics, E-4

Server computer, RISC architectures
survey for, K-3–29

Serverless Computing, 496
ServerNet interconnection network,

F-70–71
Server utilization, D-25, D-28–29
Service accomplishment, 36
Service interruption, 36
Service level agreements (SLAs), 36–37
Service level objectives (SLOs), 36,

485–486
Session layer, F-84
Set associativity, 81

AMD Opteron data cache, B-13
cache block, B-8, B-8
cache misses, B-10

Set, definition, B-8
Settle time, D-46
SFS benchmark, NFS, D-20–21
Shadow page table, 123
Sharding, 480–482
Shared data, 377
Shared-media networks, F-23–25
Shared memory, 373, 379, 406

address space, 373
distributed (see Distributed shared

memory (DSM))

Shared-memory communication, large-
scale multiprocessors,
I-4–5

Shared-memory multiprocessors
(SMPs), 371, 373

access time, 371
definition, M-64
history background, M-61
snooping coherence protocols, 380

Shared state
cache block, 386
definition, 383–384

Sharing addition, segmented virtual
memory, B-52–53

Shear algorithms, disk array,
D-51–54

Sheet Generator (SHG), 585
Shell code, 569, 570
Shifting over zeros, integer

multiplication/division,
J-45–47

SiFive, 33
Signals, definition, E-2
Signal-to-noise ratio (SNR), wireless

networks, E-21
Signed-digit representation

example, J-54
integer multiplication, J-53

Signed number arithmetic, J-7–10
Sign-extended offset, RISC, C-5
Significand, J-15
Sign magnitude, J-7–8
Silicon Graphics Altix, M-64
Silicon Graphics Challenge, M-60
Silicon Graphics 4D/240, M-59–60
Silicon Graphics Origin, M-62, M-64
Silicon Graphics systems (SGI), vector

processor history, G-27
Simultaneous multithreading (SMT),

424–426, 425, 435
definition, 244
historical background, M-35–36
implementations, 245
Java and PARSEC benchmark

without, 435–437, 435,
437

multicore processor and, 436–437
superscalar processors, 245–247

Single chip multicore processor, 382,
391, 446–451

Single-event upsets (SEUs), 569

Single-extended precision floating-
point arithmetic, J-33–34

Single instruction multiple data
(SIMD), 11, 170, 282

historical overview, M-55–57
instruction

DSP media extensions, E-10
IBM Blue Gene/L, I-42
Sony PlayStation 2, E-16

Intel Core i7 920 multicore
computer, 309

loop-level parallelism, 170
multimedia extensions

256-bit-wide operations, 304
data-level parallelism, 304–310
GPU and MIMD vs., 347–353
vs. GPUs, 335, 335
Intel Core i7 920 multicore

computer, 309
NEC SX-9 vector processor,

309
programming, 307
RISC-V, 306–307
roofline visual performance

model, 307–310
NEC SX-9 vector processor, 309
processors

multithreaded, 311, 315, 317
Pascal GPU architecture, 330
RISC V, 306–307

supercomputer development,
M-45–46

system area network history, F-104
thread instructions, 315–317, 316,

319
thread schedule, 315–317
TI 320C6x DSP, E-9

Single instruction, multiple thread
(SIMT), 311

Single instruction stream, single data
stream (SISD), 11, M-56

SIMD, M-46
Single-precision floating point

arithmetic, J-33–34
representation, J-15

Single-precision floating-point
arithmetic, 329

Single-Streaming Processor (SSP)
Cray X1, G-21–24
Cray X1E, G-24

Skippy algorithm, D-49, D-50

Index ■ I-39



Small Computer System Interface
(SCSI)

Berkeley’s Tertiary Disk project,
D-4

dependability benchmarks, D-21
disk storage, D-4
historical background, M-88
I/O subsystem design, D-59–61
RAID reconstruction, D-56
storage area network history,

F-106–107
Small form factor (SFF) disk, M-86
Smalltalk, K-21–22
Smart interface cards, vs. smart

switches, F-90
Smart switches, vs. smart interface

cards, F-90
SMPs. See Shared-memory

multiprocessors (SMPs)
SMT. See Simultaneous multithreading

(SMT)
Snooping bandwidth, 389–390
Snooping cache coherence, 380, 381

example protocol, 383–387, 384
implementation, 392–393
invalidate protocol, 381
large-scale multiprocessors,

I-34–35, M-61
latencies, 447, 448
limitations, 389–392
maintenance, 380–381
sample types, M-60

SoC. See System-on-chip (SoC)
Soft cores, 130
Soft errors, 93
Soft real-time, 7–8

definition, E-3–4
Software as a service (SaaS)

growth of, 9
WSCs, 467

Software guard extensions (SGX), 125
Software pipelining

example calculations, H-13–14
loops, execution pattern, H-15
technique, H-12–15, H-13

Software prefetching, 148–164
Software speculation

definition, 176
hardware-based vs., 240–241

Software technology
large-scale multiprocessor, I-6

synchronization, I-17–18
network interfaces, F-7–8

Solaris, RAID benchmarks, D-21,
D-22, D-23

Sonic Smart Interconnect, OCNs, F-3
Sony PlayStation 2

block diagram, E-16
embedded multiprocessors,

E-14–15
Emotion Engine case study,

E-15–18
Emotion Engine organization, E-18

Sort procedure, VAX
code example, K-62–64
full procedure, K-65
register allocation, K-62
register preservation, K-64–65

Source routing, F-49
SPARC “annulling” branch, K-18–19
SPARCLE processor, M-35–36
SPARC v.9

additional instructions, K-22
fast traps, K-20–21
integer arithmetic, K-21
LISP, K-21–22
misaligned trap, K-21
register windows, K-20
Smalltalk, K-21–22

SPARC VIS, K-25–26, K-27
SPARC64 X+, 389, 426, 429

feature, 427
performance, 429–431, 432

Sparse matrices, vector architecture,
G-12–14, 301–302

Spatial locality, B-26
coining of term, M-11
computer design principles, 49
definition, B-2

SPEC benchmark
active benchmarks, 44
correlating predictors, 182
desktop performance, 41–43, 42
early performance measures, M-7
organization, 433–434
server performance, 43–45
static branch prediction, C-22,C-23
storage systems, D-20–21
vector processor history, G-27–28

SPEC89 benchmark, 41
branch-prediction buffer, C-24–25,

C-25

misprediction rate, 187
mispredictions rate, C-26
tournament predictors, 187

SPEC92 benchmarks
CPI, C-64
stalls, C-61–62

SPEC95 benchmarks
procedure returns, 232
return address buffer, 232, 233

SPEC2000 benchmarks
compulsory miss rate, B-23
perl benchmark, 144
speculation, 238–239

SPEC2006Cint execution times, 47
SPECCPU2006 benchmark

Intel Core i7 920/6700, 192
nonblocking caches, 101–102
virtual machine, 121

SPEC CPU95 benchmark, return
address buffer, 232, 233

SPECCPUint2006 benchmark, clock
cycles per instruction,
256, 257

SPECfp benchmark
Intel Core i7, 253
interconnection network, F-91–92
Itanium 2, H-43
stalls, C-55, C-56–57

SPECfpRate benchmark
cost-performance, 440, 441
speedup, 440, 440

SPEChpc96 benchmark, G-27–28
Special instruction caches, 128
Special-purpose machines

historical background, M-4–5
SIMD computer history, M-56–57

Special-purpose register computer, A-3
Special values, floating point, J-14–15,

J-16
SPECInt2006 benchmark

ARM Cortex-A53, 132, 132–133,
250

L1 data cache miss rate, 139
SPECINT92 benchmark, nonblocking

caches, 101–102
SPECINT benchmarks

interconnection network, F-91–92
Itanium 2, H-43

SPECint95 benchmarks, F-92
SPECintRate benchmarks

cost-performance, 440, 441
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performance scaling, 429–431, 431
speedup, 440, 440

SPEC Mail benchmark, D-20–21
SPEC-optimized processors, vs.

density-optimized,
F-89

SPECpower benchmark, WSCs,
475–476

SPECRate benchmark, 439
for memory-intensive benchmarks,

116, 116
server performance, 43

SPECRatios, 46–47
SPEC SFS benchmarks, D-20
Speculation

address aliasing prediction,
239–240

advanced techniques, 228–240
advantages, 237–238
challenge of issues per clock,

236–237
concept origins, M-31
control dependence, 175–176
cross-cutting issues, 127–128
disadvantages, 238
and energy efficiency, 238–239
exception handling, 199
execution, 241
hardware-based, 208–217

data flow execution, 209
definition, 208
disadvantage, 241
instruction execution step,

211–212
key ideas, 208
reorder buffer, 209–212,

214–215
vs. software speculation,

240–241
write result, 217

IA-64, H-38–40
ILP studies, M-33–34
memory reference, hardware

support, H-32
microarchitectural techniques case

study, 266–273
multiple branches, 238
register renaming vs. ROB,

234–236
software, 176, 240–241

SPEC Web benchmarks, D-20–21

Speedup
Amdahl’s Law, 374–375
computer design principles, 49–52
floating-point addition, J-25–26
integer addition

carry-lookahead, J-37–41
carry-lookahead circuit, J-38
carry-lookahead tree, J-40
carry-lookahead tree adder,

J-41
carry-select adder, J-43–44,

J-43–44
carry-skip adder, J-41–43, J-42
overview, J-37

integer division
radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
with single adder, J-54–57
SRT division, J-45–47, J-46,

J-55–57
integer multiplication

array multiplier, J-50
Booth recoding, J-49
even/odd array, J-52
many adders, J-50–54, J-50
multipass array multiplier, J-51
signed-digit addition table, J-54
with single adder, J-47–49,

J-48–49
Wallace tree, J-53

integer multiplication/division,
shifting over zeros, J-45

integer SRT division, J-45–47, J-46
linear, 438–439, 440
from multithreading, 248
pipeline with stalls, C-11–12
SPECfpRate benchmarks, 440, 440
SPECintRate benchmarks, 440, 440
switch buffer organizations,

F-59–60
TPC-C benchmarks, 440, 440

Sperry-Rand, M-4–5
Spin locks, 414–416

large-scale multiprocessor
synchronization

barrier synchronization, I-16
exponential back-off, I-17

SPRAM, Sony PlayStation 2 Emotion
Engine organization,
E-18

Sprowl, Bob, F-103
Squared coefficient of variance, D-27
SRAM. See Static random-access

memory (SRAM)
SRT division

chip comparison, J-61
complications, J-45–47
early computer arithmetic, J-65
example, J-46
historical background, J-63
integers, with adder, J-55–57
radix-4, J-56–57, J-57

Stack, A-3, A-28
architecture, historical background,

M-17–18
Stacked DRAM, 91
Stack frame, K-57
Stack pointer, K-57
Stale copy, cache coherency, 128
Stall

control dependences, 176
cycles

average memory access time,
B-18

branch scheme performance,
C-21

definition, B-3–4, B-6, B-22
miss rate calculation, B-6
out-of-order execution, B-20

data hazards minimization, C-13,
C-14–15

data hazards requiring, C-16–17
longer latency pipelines, C-49,

C-50
pipelining performance with,

C-11–12
RAW, C-49, C-50, C-51
SPEC92 benchmarks, C-61–62
SPECfp benchmarks, C-55,

C-56–57
Standardization, commercial

interconnection
networks, F-67–68

Standard Performance Evaluation
Corporation (SPEC), 41

Start-up time
DAXPY on VMIPS, G-20–21
definition, 292
page size selection, B-47
vector architectures, G-4, G-4, G-8
vector convoys, G-4
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Start-up time (Continued)
vector performance, G-2–4, G-16
vector processor, G-7–9, G-25
VMIPS, G-5

Statically based exploitation, ILP, H-2
Static power, 80
Static random-access memory (SRAM)

arithmetic operations and energy
cost, 29

memory hierarchy design, 85
price pressures, 34
vector memory systems, G-9–10
vector processor, G-9–10, G-25

Static scheduling
definition, C-65
instruction-level parallelism,

218–222
unoptimized code, C-70

Stencil computation, 550
Sticky bit, J-18
Stochastic gradient descent, 548
Storage area networks, F-77–81,

F-106–108
dependability benchmarks,

D-21–23
Storage systems

Amazon, Dynamo key-value,
485–486

asynchronous I/O and operating
systems, D-35–36

Berkeley’s Tertiary Disk project,
D-12–13

block servers vs. filers, D-34–35
bus replacement, D-34
component failure, D-43
computer system availability, D-43
dependability benchmarks,

D-21–23
dirty bits, D-61–64
disk array deconstruction, D-51–54
disk arrays, D-6–10
disk deconstruction, D-48–50
disk power, D-5
disk seeks, D-45
disk storage, D-2–10
file system benchmarking, D-20–21
Internet Archive Cluster

(see Internet Archive
Cluster)

I/O performance, D-15–23
I/O system design/evaluation,

D-59–61

mail server benchmarking,
D-20–21

NetApp FAS6000 filer, D-41–43
operator dependability, D-13–15
OS-scheduled disk access, D-44
point-to-point links, D-34
queuing theory, D-23–34
RAID performance prediction,

D-57–59
RAID reconstruction case study,

D-55–57
real faults and failures, D-10–15
reliability, D-15–23
response time restrictions for

benchmarks, D-18
seek distance comparison, D-47
seek time vs. distance, D-46
server utilization calculation,

D-28–29
sorting case study, D-64–67
Tandem Computers, D-13
throughput vs. response time,

D-16–18
TP benchmarks, D-18–20
transactions components, D-17
web server benchmarking, D-20–21
WSCs, 478

Store-and-forward packet switching,
F-51

Store conditional
advantage, 414, 416
definition, 413–414

Store instructions, C-5–6, 199.
See also Load-store
instruction set
architecture

Store unit
bandwidth for, 298–299
definition, 285

Streaming SIMDExtensions (SSE), 305
Stride, 300

vector memory systems, G-10–11
Strided accesses, 346
Strided addressing, A-31–32.

See also Unit stride
addressing

Striping, D-51
disk arrays, D-6
RAID, D-8

Strip-mined vector loop
convoys, G-5
DAXPY on VMIPS, G-20–21

Strip mining, 180, 296, 297
DAXPY on VMIPS, G-20–21

Strong scaling, 439
Structural hazards

check for, C-52
definition, C-11

Subblocking, cache optimization, 114
Subset property, 423
Sun Microsystems, B-38
Sun Microsystems Enterprise, M-60
Sun Microsystems Niagara (T1/T2),

multithreading history,
M-35

Sun Microsystems SPARC
conditional instructions, H-27
integer arithmetic, J-11–12
integer overflow, J-11
RISC history, M-21
synchronization history, M-64–65

Sun Microsystems SPARCCenter,
M-60

Sun Microsystems SPARCstation-2,
F-92

Sun Microsystems SPARCstation-20,
F-92

Sun Microsystems SPARC V8,
floating-point precisions,
J-33

Sun Microsystems SPARC VIS,
multimedia support,
E-11

Sun Microsystems UltraSPARC,
M-63, M-74

Sun Microsystems UltraSPARC T1
processor, F-78

Sun Modular Datacenter, M-76
SUN servers, 94
Sun Ultra 5, 47
Superblock scheduling

basic process, H-21–23, H-22
compiler history, M-33

Supercomputers, 10
clusters, F-80
commercial interconnection

networks, F-37
direct network topology, F-37
SAN characteristics, F-30–31
SIMD, development, M-45–46

Superpipelining, C-55
Superscalar processors, 223

announcement, M-35
coarse-grained multithreading, 245
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coining of term, M-31, M-34
dynamically scheduled, M-36, 224
functional unit execution slots,

244–245, 244
ILP, M-33–34
recent advances, M-35
simultaneous multithreading,

245–247
Supervised learning, 547–548
Supervisor process, virtual memory,

119
Sussenguth, Ed, M-29–30
Sutherland, Ivan, M-35
Swap procedure, VAX, K-57

code example, K-59–60
full procedure, K-61
register allocation for, K-59
register preservation, K-60–61

Switched-media networks, F-2,
F-24–25

Switched networks
centralized, F-31–35
distributed, F-35–40

Switches
context, B-49
early LANs and WANs, F-29
interconnecting node calculations,

F-32–33
vs. NIC, F-90
process switch, B-49
statements, A-17
storage systems, D-34
switched-media networks, F-24–25

Switch fabric, switched-media
networks, F-24–25

Switching, F-21–22, F-44–56
Switch microarchitecture, basic

microarchitecture
Switch ports, F-30
Syllable, IA-64, H-35
Symbolic loop unrolling, software

pipelining, H-12–15,
H-13

Symmetric multiprocessors (SMP),
F-106

characteristics, I-45
first vector computers, M-49

Symmetric shared-memory
multiprocessors, 371

limitations, 389–392
performance, 393–404

commercial workload, 394–399

multiprogramming and OS
workload, 399–404

scientific workloads, I-21–26,
I-23–26

Synapse N+1, M-59–60
Synchronization, 352, 412

Cray X1, G-23
fetch-and-increment, 413–414
hardware primitives, 412–414
historical background, M-64–65
large-scale multiprocessors

barrier synchronization,
I-13–16, I-14, I-16, I-19,
I-20

hardware primitives, I-18–21
performance challenges,

I-12–16
sense-reversing barrier, I-21
software implementations,

I-17–18
tree-based barrier, I-19

locks using coherence, 414–417,
416

message-passing communication,
I-5

Synchronous dynamic random-access
memory (SDRAM)

capacity and access times, 88
IBM Blue Gene/L, I-42–43
memory hierarchy design, 87–90
power consumption reduction,

89–90
Synchronous events, exception, C-39
Synchronous I/O, definition, D-35
Synonyms, address translation, B-38
Synthetic benchmarks, 40
System area networks, F-76–77, F-80,

F-104–106
System call, virtual memory, 119
System interface controller (SIF), F-74
System-on-chip (SoC)

cell phone, E-24
cost trends, 31
cross-company interoperability,

F-23
DSAs, 592–594
embedded systems, E-3
Sanyo digital cameras, E-20
Sanyo VPC-SX500 digital camera,

E-19
System response time, D-16
Systems software, 503

System/storage area networks (SANs)
characteristics, F-3
communication protocols, F-8
congestion management, F-68–70
cross-company interoperability,

F-67–68
effective bandwidth, F-19
fat trees, F-34–35
fault tolerance, F-71
InfiniBand, F-77–81
interconnection network domain

relationship, F-4, F-5
latency and effective bandwidth,

F-29–30
packet latency, F-13, F-14–16
time of flight, F-14

System virtual machines, 120–121
Systolic array, 560

T
Tag, 383

AMD Opteron data cache, B-13–14
memory hierarchy, 81
registers, 202
virtual memory fast address

translation, B-46
write strategy, B-10

Tag check
MIPS R4000 pipeline, C-58–59
write strategy, B-10

Tag field, B-8–9
Tagged hybrid predictors, 188–190,

188, 190
Tail duplication, superblock

scheduling, H-21
Tailgating, G-20–21
Tail latency, 473
Tail tolerant systems, 486
Tandem Computers, D-13

cluster history, M-62, M-74, M-87
Target address

branch hazards, C-18–19
branch penalty reduction, C-19–20
branch-target buffers, 231
pipeline branch issues, C-35–36
RISC instruction set, C-5

Target channel adapters (TCAs), F-90
Target instructions

branch-target buffers, 231
GPU conditional branching, 323

Task-level parallelism (TLP), 10
TB-80 VME rack, D-38, D-41
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Technology trends
bandwidth over latency, 20
implementation technologies,

19–20
scaling of transistor performance

and wires, 21–23
Temporal locality, B-26

coining of term, M-11
computer design principles, 49
definition, B-2

Tensor processing unit (TPU)
architecture, 557–558
block diagram, 558
case study, 606–617
die, 562
factors limiting, 598
guidelines, 566–567
implementation, 560–563
improving, 564–566
instruction set architecture, 559
microarchitecture, 559–560
origin, 557
printed circuit board, 563
software, 563
TensorFlow program, 564

TERA processor, M-35
Terminate event, exception, C-40
Tertiary Disk project, D-12–13
Tesla, M-52
Test-and-set operation,

synchronization, 413
Texas Instruments 8847

arithmetic functions, J-57–62
chip comparison, J-58
chip layout, J-59–60

Texas Instruments ASC, first vector
computers, M-47

TFLOPS, parallel processing debates,
M-58

Thacker, Chuck, F-103
Thermal design power (TDP), 24
Thin-film transistor (TFT), Sanyo

VPC-SX500 digital
camera, E-19

Thinking Machines, M-46, M-56, M-87
Thinking Multiprocessors CM-5,

M-60–61
Think time, D-16
Third-level caches, 166, 262

interconnection network, F-91–92
Thrash, B-25–26

Thread Block, 311, 315
Thread Block Scheduler, 315, 316
Thread-level parallelism (TLP), 5,

10–11, 369
centralized shared-memory

multiprocessor, 371, 377
basic schemes for enforcing

coherence, 379–380
cache coherence protocol,

377–379, 378, 383–387,
384

extensions to coherence
protocol, 388

implementation techniques,
382–383

SMP and snooping limitations,
389–392

snooping coherence protocols,
380–381, 381, 392–393

structure, 372
definition, 242
directory-based cache coherence,

380
case study, 451–452
protocol example, 408–412

distributed shared memory, 371,
373

access time, 372–373
architecture, 373
directory-based cache

coherence, 404–412, 405
disadvantages, 372–373

embedded systems, E-15
memory consistency, 379, 417–422

case study, 456–458
compiler optimization, 422
programmer’s view, 418–419
relaxed consistency models,

419–422, 421
speculation to hide latency,

422–423
multicore processor, 369, 371–372,

382, 387, 408
approaches, 389
architecture, 430
coherence, 387
development, 404
DSM, 373, 405, 452
Intel i7 920 performance and

energy efficiency,
434–437

on multiprogrammed workload,
426–432

performance, 426–437, 432
scalability in Xeon E7 with

different workloads,
433–434

scaling, 432, 442–444
single chip, 382, 391, 446–451
and SMT, 436–437

multiprocessor architecture,
370–373

vs. multithreading, M-36
parallel processing challenges,

373–377
single-chip multicore processor,

446–451
synchronization, 412

hardware primitives, 412–414
locks using coherence,

414–417, 416
Thread of SIMD instructions

GPU programming, 315–317, 316
scheduling, 319

Three-dimensional space, direct
networks, F-39

Throttling packets, F-10
Throughput, 20, 39.

See also Bandwidth
computing kernel, 350, 351
definition, C-3, F-13
disk storage, D-4
DNN applications, 596–600
producer-server model, D-15–16,

D-16
vs. response time, D-16–18
routing comparison, F-54
uniprocessor, 242–247

Thumb-2, K-3
16-bit instructions, K-7, K-10
register encodings, K-7

Tilera TILE-Gx processors, OCNs, F-3
Time, and cost, 30–31
Time-constrained scaling, I-33–34
Time division multiple access

(TDMA), cell phones,
E-25

Time of flight
communication latency, I-3
interconnection networks, F-14

Time-sharing, B-49–50
Timing independent, M-18
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TI TMS320C55 DSP
architecture, E-7
characteristics, E-7–8
data operands, E-6

TI TMS320C6x DSP
architecture, E-9
characteristics, E-8–10
instruction packet, E-10

TLB. See Translation lookaside buffer
(TLB)

TLP. See Thread-level parallelism
(TLP)

Tomasulo’s algorithm
advantages, 201
definition, 194–195
dynamic scheduling, 195–201
RAW, 217
RISC-V floating-point unit, 198
steps in, 216

TOP500, M-59
Top of Rack (ToR) switch, 477–478
Topology, F-21–22, F-30–44
Torus networks, F-53–56, F-76–77
Total cost of ownership (TCO), 577

case study, 519–521
DSAs, 600–601, 601
resource allocation, 521–522

Total store ordering (TSO), 420, 421
Tournament predictors, 184–188, 186

advantage, 185–187
branch address, 186
early schemes, M-29
local/global predictors, 184–188,

186
Toy programs, 40
TPC-C benchmarks

definition, 44, 439
speedup, 440, 440

TPC-C, file system benchmarking,
D-18–20

TPU. See Tensor processing unit (TPU)
Trace compaction, H-19
Trace scheduling, H-19–21, H-20
Trace selection, definition, H-19
Traffic intensity, queuing theory,

D-26
Trailer

messages, F-6
packet format, F-7

Transaction components, D-16,
I-38–39

Transaction-processing (TP)
benchmarks, server performance,

43–44
storage system benchmarks,

D-18–20
Transaction Processing Council (TPC),

43–45
benchmarks overview, D-18–20

Transfers, A-16. See alsoData transfers
Transforms, DSP, E-5
Transient failure, F-70
Transient faults, D-11, 93
Transistor performance, scaling, 21–23
Translation lookaside buffer (TLB)

address translation, B-37, B-46,
B-47

ARM Cortex-A53, 251–252
coining of term, M-9
interconnection network protection,

F-91
misses, 346
Opteron, B-47, B-56–57
speculation, 237–238

Transmission Control Protocol (TCP),
congestion management,
F-69

Transmission Control Protocol/Internet
Protocol (TCP/IP), F-86

ATM, F-102–103
headers, F-88
internetworking, F-85–89
reliance on, F-99
WAN, F-102

Transmission speed, interconnection
network performance,
F-13

Transmission time, F-14
communication latency, I-3

Transport latency
time of flight, F-14
topology, F-25–26

Transport layer, F-84
Transputer, F-105
Trap-handling routines, C-54
Tree-based barrier, large-scale

multiprocessor
synchronization, I-19

Tree height reduction, H-11
Trellis codes, definition, E-6–7
TRIPS Edge processor, F-67
Trojan horses, B-51–53

True dependence, finding, H-7–8
True sharing misses, 393–394, 397,

398
TSMC, Stratton, F-3
TSO. See Total store ordering (TSO)
TSS operating system, M-9
Turbo mode in 2008, 28
Turing, Alan, M-4, M-20
Turn Model routing algorithm, F-48
Two-dimensional line buffer, 589–590
Two-level predictors, 183, 191
Two’s complement, J-7–8
Two-way set associativity, B-8

average memory access time, B-19
conflict misses, B-23
Opteron data cache, B-13–14, B-13
2:1 cache rule of thumb, B-29

TX-2, M-35, M-50

U
Ultrix, DECstation 5000 reboots, F-73
UMA. See Uniform memory access

(UMA)
Unbiased exponent, J-15
Uncached state, 406
Underflow

floating-point arithmetic, J-36–37,
J-62

gradual, J-15, J-36
Unicasting, shared-media networks,

F-24
Unified buffer, 558
Unified cache

AMD Opteron example, B-15,
B-15

miss rate, B-16
Unified virtual memory, 330
Uniform memory access (UMA), 371
Uninterruptible power supply (UPS),

504
Uniprocessor, 377–378

cache coherence mechanism, 384,
386

throughput, 242–247
Unit stride addressing, A-31–32
UNIVAC I, M-5, M-17
UNIX systems, B-38

block servers vs. filers, D-34
floating point remainder, J-32
miss statistics, B-59
seek distance comparison, D-47
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UNIX systems (Continued)
vector processor history, G-26
workload, 399

Unoptimized code, C-70
Unpacked decimal, A-14, J-16
Unshielded twisted pair (UTP), F-104
Up*/down* routing, F-49
USB, Sony PlayStation 2 Emotion

Engine case study, E-15
Use bit, B-45–46, B-52
User-level communication, F-8
User maskable events, exception, C-39
User nonmaskable events, exception,

C-39
User requested events, exception, C-39
User Space Driver, 563
Utility computing, M-75–76
Utilization

I/O system calculations, D-26
queuing theory, D-25

V
Valid bit, B-8, 383, 393–394

address translation, B-46
AMD Opteron data cache, B-14
page table entry, B-52

Value prediction, 228, 234
VAPI, InfiniBand, F-81
Variable length, 14
Variables, random, distribution,

D-26–34
VAX architecture

fallacies and pitfalls, K-65–67
instructions encoding, K-54–55
operands and addressing modes,

K-51–54
operations, K-56–57
sort, K-62–65
swap, K-59–61

Vector architecture, 10, A-31, 282
computer development, M-45–46
execution time, 290–293
fallacy, 356
vs. graphics processing units,

331–334
memory banks, 298–299
memory systems, G-9–11
multidimensional arrays, 299–301
multiple lanes, 293–294
pitfall, 355–356
predicate registers, 296–298

processor example, 288–290
programming, 302–304
RV64V extension, 283–287, 284
sparse matrices, 301–302
start-up latency and dead time, G-8
vector-length registers, 294–296
vector-register characteristics, G-3

Vector array, 585
Vector element, 289
Vector functional units, 285
Vector instruction

definition, 289
instruction-level parallelism, 170

Vectorized code, 289
Vectorizing compilers

effectiveness, G-14
FORTRAN test kernels, G-15
sparse matrices, G-12–13

Vector kernel implementation, case
study, 357–359

Vector-length register (VLR), 294–296
performance, G-4–5

Vector load
bandwidth for, 298–299
definition, 285

Vector-mask control, 297
Vector-mask registers

Cray X1, G-21–22
Vector processor

Cray X1, G-21–24, G-22–23
Cray X1E, G-24
DAXPY on VMIPS, G-17,

G-19–21
definition, 370
DSP media extensions, E-10
execution time, G-7
historical background, G-26–28
measures, G-15–16
NEC SX-9 vector processor, 309
overview, G-25–26
performance, G-2–9

chaining, G-11–12, G-12
DAXPY on VMIPS, G-17
sparse matrices, G-12–14
start-up and multiple lanes,

G-7–9
unchaining, G-12

vs. scalar processor, G-19
Sony PlayStation 2 Emotion

Engine, E-17–18
start-up overhead, G-4

vector kernel implementation,
357–359

VMIPS on DAXPY, G-17,
G-19–21

VMIPS on Linpack, G-17–19
Vector registers, 284
Very-large-scale integration (VLSI)

early computer arithmetic, J-63
interconnection network topology,

F-30
RISC history, M-21
Wallace tree, J-52–53

Very long instruction word (VLIW)
compiler history, M-32
EPIC approach, M-33
IA-64, H-33
instruction set, 587, 587
multiple issue processors, 218–222,

220, 271
multiple-issue processors, M-30
multithreading history, M-36
TI 320C6x DSP, E-8–10

VGA controller, M-51
VI interface, M-63, M-74
Virtual address

AMD Opteron data cache,
B-12–13

memory hierarchy, B-39
miss rate vs. cache size, B-37
Opteron mapping, B-55
Opteron memory management,

B-54–57, B-55
and page size, B-58
physical address, B-45
translation, B-36–40
virtual memory, B-41, B-42, B-44

Virtual cache, B-36–38
Virtual channels (VCs), F-47–48

HOL blocking, F-60
switching, F-52
switch microarchitecture

pipelining, F-66
system area network, F-105–106
and throughput, F-97

Virtual cut-through switching, F-52
Virtual functions, A-17
Virtual instruction set architecture

(VISA), 587–588
Virtualization

Intel 80x86 instruction, 145
memory hierarchy design, 126–127
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Virtual Machine Control State
(VMCS), 146

Virtual machine monitor (VMM), 121
instruction set extension, 124–125
laissez faire attitude, 145
pitfall, 145
requirements, 122
Xen virtual machine, 126

Virtual machines (VMs), 491
early IBM work, M-10
hardware management, 121
impact on virtual memory, 123–124
instruction set architecture for,

122–123
protection via, 120–122
software management, 121

Virtual memory, B-2–3, B-40–49
address space, B-12, B-41, B-44,

B-55
address translation, B-46, B-47
caches and, B-42–43, B-42,

B-48–49, B-48
classes, B-43
instruction set extension, 124–125
Intel Pentium vs. AMD Opteron,

B-57
paged example, B-54–57
page size selection, B-46–47
parameter ranges, B-42
Pentium vs. Opteron protection,

B-57
protection, B-49–50, 119–120
questions, B-44–46
segmented example, B-51–54
virtual machine, 123–124

Virtual output queues (VOQs),
F-60–61

VLIW. See Very Long Instruction
Word (VLIW)

VLR. SeeVector-length register (VLR)
VLSI. See Very-large-scale integration

(VLSI)
VME rack, D-37–38, D-38
VMIPS

DAXPY, G-18–21
enhanced, DAXPY performance,

G-19–21
peak performance on DAXPY,

G-17
performance, G-4

on Linpack, G-17–19

sparse matrices, G-13
start-up penalties, G-5
vector execution time, G-6–7
vector performance measures, G-16

Voltage regulator controller (VRC),
F-74

Volume, and cost, 30–31
Von Neumann computer, M-2–3
Von Neumann, John, M-2–5
Voodoo2, M-51

W
Wafer

definition, 31
RISC-V dies, 33
yield, 34

Waiting line, D-25
Wallace tree

example, J-52–53, J-53
historical background, J-63

Wall-clock time, 39
scientific applications on parallel

processors, I-33
WAR. See Write after read (WAR)
Warehouse-scale computer (WSC),

4–5, 9–10, 369–370, 466
active vs. inactive low power

modes, 516
average memory latency, 480
capital costs, 516
case study, 487
cloud computing

advantages, 490
AWS (see Amazon Web

Services (AWS))
economies of scale, 491
fallacy, 514

cluster history, M-74–75
computer architecture of, 477–482
cost, 486–490
cost-performance, 515, 517
cost trends, 36
efficiency

and cost, 482–490
energy, 503
measuring, 483–486

fault tolerance, 516
Google

cooling, 506–508
networking, 510–511
power distribution, 504–506

racks, 509–510
servers, 512–513

hierarchy of switches, 477
Layer 3 network, 481
low-power servers, 519–521
memory hierarchy, 479–482
microsecond delays, 517
opportunities/problems, 468
performance, 514
power utilization effectiveness,

483, 484
preventing, 501–503
programming models and

workloads, 471–476
resource allocation, 521–522
server cost and power, 519–521
storage, 478
total cost of ownership, 519–521

Warp, M-32
Water-side economization, 508
Wavelength division multiplexing

(WDM), F-103
WAW. See Write after write (WAW)
Way prediction, hit time, 98–99
WB cycle. See Write-back (WB) cycle
WCET. See Worst-case execution time

(WCET)
Weak ordering, 420, 421
Weak scaling, 439
Web servers

benchmarking, D-21
WAN, F-102

Weighted arithmetic mean time, D-27
Weight FIFO, 558
Weight memory, 558
Weitek 3364

arithmetic functions, J-57–61
chip comparison, J-58
chip layout, J-59–60

West-first routing, F-48
Wet-bulb temperature, 508
Whirlwind project, M-4
Wide area networks (WANs)

ATM, F-4
characteristics, F-4
cross-company interoperability,

F-68
effective bandwidth, F-19
fault tolerance, F-71–73
historical overview, F-102–103
InfiniBand, F-77–78
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Wide area networks (WANs)
(Continued)

interconnection network domain
relationship, F-4, F-5

latency and effective bandwidth,
F-27–29

offload engines, F-8
packet latency, F-13, F-14–16
switching, F-51
time of flight, F-14

Wilkes, Maurice, M-3
Winchester disk design, M-86
Window, F-69

TCP/IP headers, F-88
Wireless networks

basic challenges, E-21
and cell phones, E-21–22

Wires, scaling of, 21–23
Within instructions exception, C-39

instruction set complications, C-45
stopping/restarting exception,

C-41
Word(s)

AMD Opteron data cache, B-14–15
double, A-7, A-8, A-14, A-44, 300
DSP, E-6
half, A-8, A-8, A-14, A-44

Word count, B-53
Word displacement addressing, K-52
Word offset, C-28
Working set effect, I-24
Workload, 39–40

commercial, 394–399
measurements, 400
multiprogramming and OS,

399–404
phases, 399–400
RAID performance prediction,

D-57–59
scalability in Xeon E7 with,

433–434
symmetric shared-memory

multiprocessors,
I-21–26, I-23–26

warehouse-scale computers,
471–476

Wormhole switching, F-52, F-97,
F-105

Worst-case execution time (WCET),
E-4

Write after read (WAR)
dynamic scheduling, 193
hazard, C-12, C-69
multiple-issue processors, M-30
program order, 174
register renaming, 196
TI TMS320C55 DSP, E-8
Tomasulo’s algorithm, 195, 207

Write after write (WAW), C-12
check for, C-52
dynamic scheduling, 193
longer latency pipelines, C-49,

C-51
multiple-issue processors, M-30
program order, 173
register renaming, 196
Tomasulo’s algorithm, 195

Write allocate, B-11–12
Write-back cache, B-11–12

cache coherence protocol, 385, 385
directory-based cache coherence

protocol, 411
memory hierarchy, 81
snooping coherence, 380–384, 381
uniprocessor, 386

Write-back (WB) cycle
data hazards stall minimization,

C-13–14
MIPS R4000 pipeline, C-58–59
multicycle FP operations, C-52
RISC classic pipeline, C-8
RISC exception, C-43
RISC instruction set, C-5, C-6
RISC pipeline, C-33
RISC pipeline control, C-35, C-36
simple RISC implementation, C-29

Write broadcast protocol, 381
Write buffer, B-11, B-14, 382

memory hierarchy, 81
merging, 105–106, 106

Write hit
cache coherence, 384–385, 386,

387
definition, B-11

Write invalidate protocol, 380
example, 385, 385
implementation, 382–383
snooping coherence, 381

Write miss, 411, 418
AMD Opteron data cache, B-12

cache coherence, 384–385, 385,
387

directory-based cache coherence
protocol, 411

memory stall clock cycles, B-4
miss penalty reduction, B-35–36
operation, 408
Opteron data cache, B-12, B-14
options, B-11

Write result, 199
dynamic scheduling with

scoreboard, C-69
hardware-based speculation, 217
instruction step, 211

Write serialization
cache coherence, 378–379
definition, 380–382, 413

Write stall, B-11
Write strategy

memory hierarchy, B-45–46
virtual memory, B-45–46

Write-through cache, B-11–12
average memory access time,

B-16–17
coherence protocol, 378, 382–384
memory hierarchy, 81

Write update protocol, 381

X
XALANCBMK benchmarks, 138
XBox, M-51–52
Xen virtual machine, 126
Xeon E7, 389, 426–429

feature, 427
on-chip organizations, 428
performance, 431, 432
QuickPath Interconnect, 429
scalability, 433–434, 434

Xerox Palo Alto Research Center,
F-103

XIMD architecture, M-36
Xon/Xoff, interconnection networks,

F-10–11, F-18

Z
Zero-copy protocols, F-8
Zero-load latency, F-75
Z-80 microcontroller, cell phones, E-24
Zuse, Konrad, M-4–5
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Translation between GPU terms in book and official NVIDIA and OpenCL terms.

Type

More Descriptive
Name used in
this Book

Official CUDA/
NVIDIA Term Book Definition and OpenCL Terms Official CUDA/NVIDIA Definition

Pr
og

ra
m

A
b
st
ra
ct
io
ns

Vectorizable
Loop

Grid A vectorizable loop, executed on the GPU, made
up of 1 or more “Thread Blocks” (or bodies of
vectorized loop) that can execute in parallel.
OpenCL name is “index range.”

A Grid is an array of Thread Blocks that can
execute concurrently, sequentially, or a mixture.

Body of
Vectorized

Loop

Thread Block A vectorized loop executed on a “Streaming
Multiprocessor” (multithreaded SIMD
processor), made up of 1 or more “Warps” (or
threads of SIMD instructions). These “Warps”
(SIMD Threads) can communicate via “Shared
Memory” (Local Memory). OpenCL calls a
thread block a “work group.”

AThread Block is an array of CUDA threads that
execute concurrently together and can cooperate
and communicate via Shared Memory and
barrier synchronization. A Thread Block has a
Thread Block ID within its Grid.

Sequence of
SIMD Lane
Operations

CUDA Thread A vertical cut of a “Warp” (or thread of SIMD
instructions) corresponding to one element
executed by one “Thread Processor” (or SIMD
lane). Result is stored depending on mask.
OpenCL calls a CUDA thread a “work item.”

A CUDA Thread is a lightweight thread that
executes a sequential program and can cooperate
with other CUDA threads executing in the same
Thread Block. A CUDA thread has a thread ID
within its Thread Block.

M
ac
hi
ne

O
b
je
ct

A Thread of
SIMD

Instructions

Warp A traditional thread, but it contains just SIMD
instructions that are executed on a “Streaming
Multiprocessor” (multithreaded SIMD
processor). Results stored depending on a per
element mask.

A Warp is a set of parallel CUDA Threads (e.g.,
32) that execute the same instruction together in
a multithreaded SIMT/SIMD processor.

SIMD
Instruction

PTX Instruction A single SIMD instruction executed across the
“Thread Processors” (SIMD lanes).

A PTX instruction specifies an instruction
executed by a CUDA Thread.

Pr
oc

es
si
ng

H
ar
d
w
ar
e

Multithreaded
SIMD Processor

Streaming
Multiprocessor

Multithreaded SIMD processor that executes
“Warps” (thread of SIMD instructions),
independent of other SIMD processors. OpenCL
calls it a “Compute Unit.” However, CUDA
programmer writes program for one lane rather
than for a “vector” of multiple SIMD lanes.

A Streaming Multiprocessor (SM) is a
multithreaded SIMT/SIMD processor that
executes Warps of CUDA Threads. A SIMT
program specifies the execution of one CUDA
thread, rather than a vector of multiple SIMD
lanes.

Thread Block
Scheduler

Giga Thread
Engine

Assigns multiple “Thread Blocks” (or body of
vectorized loop) to “Streaming Multiprocessors”
(multithreaded SIMD processors).

Distributes and schedules Thread Blocks of a
Grid to Streaming Multiprocessors as resources
become available.

SIMD Thread
Scheduler

Warp
Scheduler

Hardware unit that schedules and issues “Warps”
(threads of SIMD instructions) when they are
ready to execute; includes a scoreboard to track
“Warp” (SIMD thread) execution.

A Warp Scheduler in a Streaming
Multiprocessor schedules Warps for execution
when their next instruction is ready to execute.

SIMD Lane Thread
Processor

Hardware SIMD Lane that executes the
operations in a “Warp” (thread of SIMD
instructions) on a single element. Results stored
depending on mask. OpenCL calls it a
“Processing Element.”

A Thread Processor is a datapath and register file
portion of a Streaming Multiprocessor that
executes operations for one or more lanes of a
Warp.

M
em

or
y
H
ar
d
w
ar
e

GPU Memory Global Memory DRAM memory accessible by all “Streaming
Multiprocessors” (or multithreaded SIMD
processors) in a GPU. OpenCL calls it “Global
Memory.”

Global Memory is accessible by all CUDA
Threads in any Thread Block in any Grid.
Implemented as a region of DRAM, and may be
cached.

Private
Memory

Local Memory Portion of DRAM memory private to each
“Thread Processor” (SIMD lane). OpenCL calls
it “Private Memory.”

Private “thread-local” memory for a CUDA
Thread. Implemented as a cached region of
DRAM.

Local Memory Shared
Memory

Fast local SRAM for one “Streaming
Multiprocessor” (multithreaded SIMD
processor), unavailable to other Streaming
Multiprocessors. OpenCL calls it “Local
Memory.”

Fast SRAM memory shared by the CUDA
Threads composing a Thread Block, and private
to that Thread Block. Used for communication
among CUDA Threads in a Thread Block at
barrier synchronization points.

SIMD Lane
Registers

Registers Registers in a single “Thread Processor” (SIMD
lane) allocated across full “Thread Block” (or
body of vectorized loop).

Private registers for a CUDAThread. Implemented
as multithreaded register file for certain lanes of
several warps for each thread processor.



RV64G Instruction Subset

Mnemonic Function

Data transfer Move data to/from GPRs and FPRs

lb,lbu,lh,lhu,lw,lwu Load byte, half word, or word to lower portion of  GPR  with/without sign extension

ld,sd

sb,sh,sw

fld,flw,fsd,fsw

Load or store a double word to GPR

Store a byte, half word, or word from lowest portion of GPR to memory

Load or store a double word or word to/from the FPRs

ALU Operations Register-register and register immediate ALU operations
add, addi,addw,addiw Add, add immediate, add word, or add word immediate. Word version affects 

lower 32 bits. 

and,andi,or,ori,xor,xori AND, AND immediate, or OR immediate, exclusive OR, exclusive OR immediate

auipc Add upper immediate to PC; puts sum of a shifted immediate and PC in a register

lui Loads an immediate value into the upper portion of a word.

mul,mulw,mulh,mulhsu,
mulhu

Multiply, multiply word, multiply halfword,  multiply upper half, signed and unsigned. 
Word affects lower 32 bits.

div,diw,divu Divide, divide word, divide unsigned. 

rem,remw,remu,remuw Remainder, remainder word, remainder unsigned. 

sll,slli,srl,srli,sra,srai Shift left /right logical, right arithmetic, immediate and with shift amount in a GPR. 

sllw,sllwi,srlw,srlwi,

sraw, sraiw

Word shifts: affect only the lower 32-bits or a GPR. 

slt,slti,sltiu,sltu Set Less then: if first operand less than the second, set destination to 1 else 0; 
immediate form and signed/unsigned.

sub,subi,subw,subwi Subtract, subtract immediate. Word version affects lower 32 bits. 

Control Transfer Branches, jumps, procedure calls
beq,bge,bgeu,blt,bltu,bne Compare two registers if condition is true branch to PC + offset

jal,jalr Jump, Jump to register contents. The address of the next instruction is saved in designated 
register. Unconditional jump without link by setting destination register to x0. 

Floating Point Operations Floating point instructions operating of FPRs.
fadd.*,fsub.*,fmul.*,
fdiv.* ,fsrt.*

FP add, subtract, multiply,  divide, and square root; single (.s) and double (.d) precision 
versions.

fmadd.*,fmsub.*,fmnadd.*, 
fmnsub.*

Multiply-add, multiply-subtract, negte multiply-add, negate multiply-subtract; single (.s) 
and double (.d) precision versions.

fsgnj.*,sgnjn.*,fsgnjx.* Copy sign, inverse sign, or XOR of sign to first operand; single (.s) and double (.d) 
precision versions.

fmin.*,fmax.* Minimum and maximum of two values; single (.s) and double (.d) precision versions.

feq.*,flt.*,fle.* Floating point compares; single (.s) and double (.d) precision versions.

fclass.* Classify type of FP value; single (.s) and double (.d) precision versions.

fmv.*.x,fmv.x.* Move from/to GPRs; single (.s) and double (.d) precision versions.

fcvt.d.s,fcvt.s.d Convert SP to DP or DP to SP

fcvt.*.w,fcvt.*.wu,

fcvt.*.i,fct.*.lu

fcvt.i.*,fcvt.lu.*

Convert from word or double word, signed or unsigned to DP or DP. 

fcvt.w.*,fcvt.wu.*, Convert to word or double word, signed or unsigned. 
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