ARING

COCKPIT DISPLAY SYSTEM INTERFACES TO
USER SYSTEMS

ARINC SPECIFICIATION 661-3

PUBLISHED: November 15, 2007

an ARINIC bocumvent

Prepared by

AIRLINES ELECTRONIC ENGINEERING COMMITTEE
Published by

AERONAUTICAL RADIO, INC.

2551 RIVA ROAD, ANNAPOLIS, MARYLAND 21401-7435

DISCLAIMER

THIS DOCUMENT IS BASED ON MATERIAL SUBMITTED BY VARIOUS PARTICIPANTS
DURING THE DRAFTING PROCESS. NEITHER AEEC NOR ARINC HAS MADE ANY
DETERMINATION WHETHER THESE MATERIALS COULD BE SUBJECT TO VALID
CLAIMS OF PATENT, COPYRIGHT OR OTHER PROPRIETARY RIGHTS BY THIRD
PARTIES, AND NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, IS
MADE IN THIS REGARD.

AEEC USES REASONABLE EFFORTS TO DEVELOP AND MAINTAIN THESE
DOCUMENTS. HOWEVER, NO CERTIFICATION OR WARRANTY IS MADE AS TO THE
TECHNICAL ACCURACY OR SUFFICIENCY OF THE DOCUMENTS, THE ADEQUACY,
MERCHANTABILITY, FITNESS FOR INTENDED PURPOSE OR SAFETY OF ANY
PRODUCTS, COMPONENTS, OR SYSTEMS DESIGNED, TESTED, RATED, INSTALLED
OR OPERATED IN ACCORDANCE WITH ANY ASPECT OF THIS DOCUMENT OR THE
ABSENCE OF RISK OR HAZARD ASSOCIATED WITH SUCH PRODUCTS,
COMPONENTS, OR SYSTEMS. THE USER OF THIS DOCUMENT ACKNOWLEDGES
THAT IT SHALL BE SOLELY RESPONSIBLE FOR ANY LOSS, CLAIM OR DAMAGE
THAT IT MAY INCUR IN CONNECTION WITH ITS USE OF OR RELIANCE ON THIS
DOCUMENT, AND SHALL HOLD ARINC, AEEC, AND ANY PARTY THAT
PARTICIPATED IN THE DRAFTING OF THE DOCUMENT HARMLESS AGAINST ANY
CLAIM ARISING FROM ITS USE OF THE STANDARD.

THE USE IN THIS DOCUMENT OF ANY TERM, SUCH AS SHALL OR MUST, IS NOT
INTENDED TO AFFECT THE STATUS OF THIS DOCUMENT AS A VOLUNTARY
STANDARD OR IN ANY WAY TO MODIFY THE ABOVE DISCLAIMER. NOTHING
HEREIN SHALL BE DEEMED TO REQUIRE ANY PROVIDER OF EQUIPMENT TO
INCORPORATE ANY ELEMENT OF THIS STANDARD IN ITS PRODUCT. HOWEVER,
VENDORS WHICH REPRESENT THAT THEIR PRODUCTS ARE COMPLIANT WITH
THIS STANDARD SHALL BE DEEMED ALSO TO HAVE REPRESENTED THAT THEIR
PRODUCTS CONTAIN OR CONFORM TO THE FEATURES THAT ARE DESCRIBED AS
MUST OR SHALL IN THE STANDARD.

ANY USE OF OR RELIANCE ON THIS DOCUMENT SHALL CONSTITUTE AN
ACCEPTANCE THEREOF “AS I1S” AND BE SUBJECT TO THIS DISCLAIMER.

This document is published information as defined by 15 CFR Section 734.7 of the Export Administration Regulations (EAR). As publicly available technology under 15 CFR 74.3(b)(3), it is not
subject to the EAR and does not have an ECCN. It may be exported without an export license.

©2007 BY
AERONAUTICAL RADIO, INC.
2551 RIVA ROAD ANNAPOLIS, MARYLAND
21401-7435 USA

ARINC SPECIFICATION 661-3

COCKPIT DISPLAY SYSTEM INTERFACES TO USER SYSTEMS

Published: November 15, 2007

Prepared by the AEEC

Specification 661 Adopted by the Airlines Electronic Engineering Executive Committee November 12, 2001
Summary of Document Supplements

Supplement Adoption Date Published

Specification 661-1 March 6, 2003 June 26, 2003

Specification 661-2 October 27, 2004 June 30, 2005

Specification 661-3 September 26, 2007 November 15, 2007

A description of the changes introduced by each supplement is included on Goldenrod paper at the end of this document.

FOREWORD
Aeronautical Radio, Inc., the AEEC and ARINC Standards

Aeronautical Radio, Inc. (ARINC) was incorporated in 1929 by four fledgling airlines in the
United States as a privately-owned company dedicated to serving the communications needs of
the air transport industry.

ARINC sponsors aviation industry committees and participates in related industry activities that
benefit aviation at large by providing technical leadership and guidance and frequency
management. These activities directly support airline goals: promote safety, efficiency,
regularity, and cost-effectiveness in aircraft operations.

The AEEC is an international body of airline technical professionals that leads the development
of technical standards for airborne electronic equipment-including avionics and in-flight
entertainment equipment-used in commercial, military, and business aviation. The AEEC
establishes consensus-based, voluntary form, fit, function, and interface standards that are
published by ARINC and are known as ARINC Standards. The use of ARINC Standards results
in substantial benefits to airlines by allowing avionics interchangeability and commonality and
reducing avionics cost by promoting competition.

There are three classes of ARINC Standards:

a) ARINC Characteristics — Define the form, fit, function, and interfaces of avionics and
other airline electronic equipment. ARINC Characteristics indicate to prospective
manufacturers of airline electronic equipment the considered and coordinated
opinion of the airline technical community concerning the requisites of new
equipment including standardized physical and electrical characteristics to foster
interchangeability and competition.

b) ARINC Specifications — Are principally used to define either the physical packaging
or mounting of avionics equipment, data communication standards, or a high-level
computer language.

c) ARINC Reports — Provide guidelines or general information found by the airlines to
be good practices, often related to avionics maintenance and support.

The release of an ARINC Standard does not obligate any airline or ARINC to purchase
equipment so described, nor does it establish or indicate recognition or the existence of an
operational requirement for such equipment, nor does it constitute endorsement of any
manufacturer’s product designed or built to meet the ARINC Standard.

In order to facilitate the continuous product improvement of this ARINC Standard, two items are
included in the back of this volume:

An Errata Report solicits any corrections to the text or diagrams in this ARINC Standard.

An ARINC IA Project Initiation/Modification (APIM) form solicits any recommendations for
addition of substantive material to this volume which would be the subject of a new supplement.

ARINC REPORT 661
TABLE OF CONTENTS

1.0 INTRODUGCTION ...ttt e ettt e e e e e e e bbbt e e e e e e e e e e nnnneaes 1
1.1 PUrpose and SCOPEcooviiiiiieee e 1
1.2 Relationship to Other DOCUMENLScccoiieiiiieiecee e 1
1.3 INtEropPerabIilityccooeeeeeee e 2
1.3.1 L= =T - | S 2
1.3.2 Interface Standards.............cooooiiiiii 2
1.3.3 (o To (U1 = 4 PP P P PP PPPPPPPPPPPPPPP 3
1.4 Integrity and Availability ... 3
1.5 R 1F= o114V PPTT R SPUPPPPPN 3
1.6 Use of “Specification Language”...........cccooi i 4
1.7 Regulatory APProval ... 4
1.8 Reference DOCUMENTS ... e e e e e e e e e e e eeeeennnns 4
1.9 Y o] o] To7=1 o111 V2SRRI 4
2.0 CONCEPT OF OPERATION ...ttt e e e e e 5
21 1] (oo 11 o (o o [PPSR 5
2.2 Overview of Interface Level Between UA and CDS...........ccoooiiiiiiiiiieeeeeeen 5
2.21 Definition PRasecooooii e 6
222 RUN-TIME PRASE ... e e e e e e e e e e e e eeeennes 7
223 Special CONAILIONSiii e e e e s 7
2.2.31 INIGTALIZALION ... 7
2232 Need for Re-initializationccooo oo 7
2233 Suppression of a Layer from Displaycoooiieeiiiiiiiieei e 8
224 ARINC 661 COoNfOrMANCE........coeeiieeiiiiie e eeeeeeeeees 8
225 ARINC 661 Library EVOIULION.........coooiiieeeeeeeeeee 8
2.3 Window/Layer and General CONCEPLSuueiiiiiiiiiiiiiiiiieee e 9
2.31 WiINdoW DefiNitioNoooi e 9
23.2 Layer Definitionoooiiiiiiiiiiiiiiiiiiie e 9
2.3.21 Layer Graphical Definition................uuuiiiiiiiiiiiiiiii 10
23.2.2 Layer Content Management..............uuuuuuuiiiieiiiiiiiiiiiiiiiiees 10
23.23 Layer Priority Managementuuuuiiiiiiiiiiiiiiii 11
2324 Layer Activity/Visibility Managementcccoooiiiiiiiiiiie 11
2.3.241 VISIDIIEY et 11
23242 ACHIVITY ..t 11
23.2.5 Layer Context Management.............oooi i 12
233 ConfiIQUration ISSUEScooiiiiiiiiiii e 12
234 Positioning and Size Within WINAOWooiiiiiiiiiiiiieeeeee e 13
2341 L@ 4T 1[0 = TP PETRR 13
234.2 ANGIES ... 13

2343
235

2.3.51
2352

3.0

3.1
3.1.1
3.1.2
3.1.21
3.1.2.2
3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.1.34
3.1.3.5
3.1.4
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.24
3.2.5
3.2.51
3.25.2
3.2.5.3
3.2.54
3.2.5.5
3.2.6
3.2.7
3.2.8
3.2.8.1
3.2.8.1.1

3.2.8.1.2
3.2.8.2
3.2.8.3

ARINC REPORT 661
TABLE OF CONTENTS

Screen Units of Measurements ... 13
CUrsor ManagemeENtcoooi i 13
From UA 10 CDS ... 14
From CDS 10 UA .. 14
WIDGET LIBRARY ...ttt et e e e e e e et e e e e e e e e s e nnnneees 16
INtroducCtion t0 WIdGEtS ... 16
Widget 1dentifiCcation.............ooo i 16
WidGet States ...coooiiiee s 16
Widget States Definition ... 16
Inner State Management: “Race Condition”.............cccuuieieiiiiiiiiiiiiiiieeeeeees 18
Commonly Used Parameters ... 19
Identification of the Widget ... 19
States of @ WIdget 19
Look and Feel Characteristics of a Widget: “StyleSet” Parameter 20
Positioning/Size of @ Widget ... 21
Parameters Related to Focus Navigation..............ccccccvviiiiiiiiiiiiiinnn, 21
WidGet EVENES ... 22
HMI Widget Library SUMMary ... 24
WidQEts SUMMAIY.. ... e e e 24
Widget ClassifiCation...........cooooeeiiiieeeee e 27
(70T ¢= 11 0[] ST PPTRTRPPPRPRPIN 29
Possible Children of Container Widgets...........ccovvvviiiiiiiiiiiiiiiiiiiiiiiie 30
Graphical Representation............ oo 32
TOXE SHINGS .. 32
Available Character Setooooiiiiiiiiiiiiiiii 32
[N [o] 2= 1 To] T == 1o 4 o] (=T PSSP 34
Change Style Capabilitiesccoooiii 34
Default Graphic Properti€s.........ccoo oo 35
Escape Sequences DescCriptionoooiiiiiiii e 35
INTEraCtIVE ... 37
DynamiC MOLIONcoooiiii 37
Y= To R =T g F=To (=T 0 4 1= o AP P PP P PP PPPPPPPPPPPPPPP 37
Horizontal Map Managementooooviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 37

Link Between MapHorz, MapHorz_Source, MapHorz_ItemList
=Y o 1Y, =1 o1 € T [SRP 39
Parameter Definition for MapHorz and MapHorz_Source.ccvceieeeeenee. 40
Vertical Map Management............ooooiii 41
Priority Management ... 41

ARINC REPORT 661
TABLE OF CONTENTS

3.2.8.4 Map Synchronization NUMDET ... 41
3.2.9 UAValidation . 42
3.3 WiAGET LISt ... i 44
3.3.1 ACHVEATICQA. ...ttt e ettt e e e e e e e e e et e e e e eeeeeees 46
3.3.2 TS (ol @031 =11 1= PRSP 48
3.3.3 BliNKINGCONTAINETcoiiiiii e 50
3.34 BUFfErFOIMAL.......oiiiiiiiiieeeeeeeeeee ettt nennesnnnnnne 51
3.3.4.1 Buffer Format Alignment.............oeeiiiiiii e 53
3.3.5 (07 0= o1 1q = 011 (o] o KOS 54
3.3.6 (07071 41 0 o] =10) QR RRRRRRRPRPRN 56
3.3.7 (@70 0] 0 1=To1 (o) SRR 59
3.3.8 CUISOrPOSOVEIAY ...t e e e e 61
3.3.9 EditBOXMASKEQ ...t eeeaes 62
3.3.10 [T L1270)1 18 1= o TSP 66
3.3.11 EdItBOX TeXt. oo 71
3.3.12 (€T LN o] = 1o 7= TR 74
3.3.13 L€ YN o] O3 L= TSRS 77
3.3.14 L€ 0107 o 1Y o H SRR 79
3.3.15 LT N = 81
3.3.16 (] o IR =Y o= | P 82
3.3.17 GPRECIANGIE ...ttt 84
3.3.18 GPTHANGIE ...ttt n e nnnnnne 86
3.3.19 o7 (1 = YRR 88
3.3.20 0= o= PP PPPPPPPPPPPPR 89
3.3.21 =] o T=1 (07 0] o] o] 1= PSR 92
3.3.22 =T o] o To] A 1 (=T o o] PR 95
3.3.22.1 MapHorz_ItemList Standard Items Descriptionccooooeiiiiiiiiiiieeeees 97
3.3.22.2 MapHorz_ItemList A661_Parameter Structure Specifics..........ccccceeeeieeii 98
3.3.22.21 HEM SErUCKUMES ... 99
3.3.22.2.1.1 1T g TS 47 (TP PPRPRRRRRRPRRRPN: 99
3.3.22.2.1.2 LegEeNA_ANCROT ... 100
3.3.22.21.3 Legend and Legend _Pop_Up ..o 100
3.3.22.2.14 LN _SHaI. ... 101
3.3.22.2.1.5 LiNE_SegmMENt 101
3.3.22.2.1.6 LINE AT s 101
3.3.22.2.1.7 I [0 G £ =Y o 103
3.3.22.2.1.8 SYMDOI_GENETIC....cciieeeeeeeeee e 103
3.3.22.2.1.9 Symbol_CirCle ..o 104
3.3.22.2.1.10 Symbol_Rotated ... 105

ARINC REPORT 661
TABLE OF CONTENTS

3.3.22.2.1.11 SYMDOI_RUNWAYcooiiiiiiiiiii e 105
3.3.22.2.1.12 Filled_Poly _Start........ ... 106
3.3.22.2.1.121 Fill Style INdeX Values..........ccoooiiiiiiiiiiiiiieeieee e 106
3.3.22.2.1.13 Symbol_Oval ... 106
3.3.22.2.1.14 [tem_Synchronization ... 107
3.3.22.2.1.15 SYMDOI TArget ... 108
3.3.22.2.1.16 Triangle Strip Start..........oooi 109
3.3.22.2.1.17 Triangle Segmentcooo i 110
3.3.22.2.1.18 Triangle Segment Double ... 110
3.3.22.2.1.19 Triangle ENdoooooiiiiiieeeeeeeeeeeeeeeeee e 110
3.3.22.2.1.20 Triangle ENd Double.............ooooviiiiiiiiiiiiiiiiiiieeeeeeee 111
3.3.22.2.1.21 Triangle Fan Start.........cooo e 111
3.3.22.2.2 A661_ParameterStructure_BufferOfltems..............evvvivviiiiiiiiiiiiiiiiiinnns 113
3.3.22.3 MapHorz ItemList Interactive Items.........oooeiiiii i 113
3.3.23 MEPLEGACY ...ttt n e nnnne 117
3.3.24 1 F=T o) o] A To 1U | o T 118
3.3.25 1Y/ F=T o] o o P 121
3.3.26 [E= TS @7 1 €= T 1= R 124
3.3.27 PANEI ...ttt aattatttatatttnnntnnnnnnnnnnnnnnnnnnnnns 125
3.3.28 PicturePUShBULION ... 127
3.3.29 PictureToggleBULIONoeiieieieeeee e 129
3.3.30 POPUPPANELo 132
3.3.31 POPUPMENU. ...t e et e e e e e e e e e e e e e eeeeees 133
3.3.311 PopUp Specific A661_ParameterStructurecccccoeeeiiiiiiiiiiiiiccenee, 136
3.3.32 PopUPMENUBULION ... 137
3.3.33 PUSHBUHON. ...t e e e e eeeees 140
3.3.34 =T (o] = To) SR PSUSSUPUSPPRRRPRRPRIN 143
3.3.35 (2001 7= Yi{o] 0T @7 0] | ¢= 1 o 1= PP 144
3.3.36 SCIOIIPANEL ... s 145
3.3.37 SCIOIILIST. .. 149
3.3.37.1 ScrollList Specific A661_ParameterStructure............ccooeeeeeiiieeieeeeeeeeeee. 155
3.3.38 SYMDON . 156
3.3.39 TabbedPanelcooo oo 157
3.3.40 TabbedPanelGroupccooei i 160
3.3.41 TOGGIEBUON ... 162
3.3.42 TranslationContainer ... 164
3.4 Widget Library EXPanSIONuuuuuueiiiiiiiii s 165
3.4.1 1Y/ F= T 1] o [PPSR 165
3.4.11 MapGrid A661_ParameterStructure Specifics.........ccccovveeeiiiiiiiiiiiiiiiee 169

\'

ARINC REPORT 661
TABLE OF CONTENTS

3.4.1.2 Fill Style INdeX ValUES.........cooiiiiiiiiiiiie e 170
3.4.2 EXIErnalSource. ... 171
343 =T 0 =Y o T 173
3.4.4 Y E= T oAV =T o S To 10 o= SRR 176
3.4.5 MapVert_IemList ... e 179
3.4.51 MapVert_ItemList Standard Items Descriptioncccccvvvveeeiiiiiiiinninnnnns 181
3.45.2 MapVert_ItemList A661_ParameterStructure Specificsccccuvvvrnnnnnnns 182
3.4.5.2.1 Item StruCtUreS ... 182
3.45.21.1 REM_SHYlE....eeeeeeie e 183
3.4.5.2.1.2 Legend_ANCRON ... 183
345213 Legend and Legend_Pop_Up ... 183
345214 LN _Starto 184
3.4.5.2.1.5 Line_Segment ... 184
3.4521.6 NOE_USEA.....ceeeeeeeee e 184
3.4.5.21.7 SYMDOI_GENEIIC ...ceeiiiiiiiieeee e 185
3.4.5.2.1.8 SYymbol_RUNWAY ... 185
3.45.21.9 Filled_Poly_Start...........oooiiiiii e 186
3.4.5.2.1.10 [tem_Synchronization ... 186
3.4.5.2.1.11 Symbol_Rotated ... 187
3.4.5.2.1.12 Triangle Strip Start.........oooo 187
3.4.5.2.1.13 Triangle SEegmMEeNtoooiiiiiiiiiieiieieeee e 188
3.4.5.2.1.14 Triangle Segment Doublecoooiiiiiii e 189
3.4.5.2.1.15 Triangle ENdoooooiiiiiiieeeeeeeeee e 189
3.4.5.2.1.16 Triangle ENd Double.............coooviiiiiiiiiiiiiiiiiiieiieeeeee 189
3.4.5.2.1.17 Triangle Fan Start..........ooo e 190
3.45.22 A661_ParameterStructure_BufferOfltemsoooovvviviiiiiiiiiiiiiiiiiiee 191
3.45.3 MapVert_ItemList Interactive ltems ... 191
3.4.6 EdItBOXMUIILING......coiiiiii et 192
3.4.7 (70T 1 41 0To] =10) =l | SRR PRRRRRTRPRRN 196
3.4.8 LY T] = 2 200
3.5 Widget Extension (SUpplement 2) ... 202
3.5.1 MutuallyEXCIUSIVECONTAINETceiiiiiiiiiiiieeee e 202
3.5.2 ProxXyBUIONcooiiiiiiiiii i 205
3.5.3 WatchdogCONTAINETeiiiiie e e e e 207
3.54 RS [To = TP ERPP T RPPPPIPRRRRN 21
3.5.5 PictureANIMated........oouiii e 214
3.5.6 SYMDBOIANIMALEA ... 215
3.5.7 SeleCtionLiStBULION ... 218
3.6 Widget Extension (Supplement 3) ... 221

ARINC REPORT 661
TABLE OF CONTENTS

3.6.1 EditBOXNUMENCBCD ... 221
3.6.2 L@ =70) 4 = 231
3.6.3 L1070] 1 @ 17/=] LSRR 232
3.6.4 Focus Navigation WIidgetsoeuiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 236
3.6.4.1 o Yo U= N | GO 236
3.6.4.2 o o1 1= 1 o PR 238
3.6.4.3 FOCUSOUL ...ttt eannsneennnnnnes 240
3.6.5 SIZETOFIHCONTAINETeeiiiiiiiieii e nssensnnsnnnnnes 242
3.6.6 Shuffle TOFItCONTAINETeiiiiieiiiiiiiiee et eeeeanennennees 248
4.0 COMMUNICATION PROTOGCOL ...ttt 252
4.1 0] (oo 18 o 1o o PR 252
4.2 Definition Phase EXChange...........oooo i 252
421 Definition File and UALDoooiiiii e 252
422 Binary FOrMatooooiiiiiiiiiiieeee e 252
4.3 Run-time CommuNicationcoooiiiiiii e 253
4.3.1 (1= a1t =TI o T o Vo] o] = T 253
4.3.2 LTS 1 PRI 254
4.3.3 Assumption on Communication Reliability.............coooooiieiii 254
43.4 Layer Data Management...........oouiiiiiiiiiiiiiiiiiiiieieeeeeee ettt 254
4.4 ARINC 661 COMMANGSooiiiiiiii et e e e e et e e e e e e e e eeennnnaaeeeaaeeeees 254
4.41 Type Of COMMANGS.......uuiiiii s 254
442 Error NOtfICation ..o 255
443 ARINC 661 Request/Notification ..o 257
4431 Request from AU to CDS ... 257
4432 Request/Notification from CDS to UAoooiiiiiiiiiiiiiiieeeeeeeeeee 257
4.5 ARINC 661 Command StruCtUre........ccooiiiiiie e 258
4.5.1 [N [=1 oo T 258
452 BIOCK STTUCKUIE ... nannnnnnnnnes 258
453 Definition Time Exchanged Structure ... 258
4.5.3.1 UADF Loading STrUCKUFE..........uuiiiiiiieee e 258
453.2 Definition File (DF) StruCtUreooooiiiiii e 258
453.2.1 Definition Time Block COMMANASuuuuuiiiiiiiiiiiiiiiiiiiiiiieeneennnnnes 260
4533 ComMmMANd STIUCTUIEueeiiiiii s 260
4534 Constraints Inside @ UALD BIOCK...........uuuuuumuiuiiiiiiiiiiiiiiiiiiiiiiiineees 261
453.5 Definition Time Symbol Block Commands.............oocoiiiiiiiiiiiiiiiiiiceeeeeee 261
453.6 Symbol Command StrUCIUMESeeiiiiiiiiiie e 261
453.7 Constrains Inside a Symbol Definition BIOCK............ccoooiiiiiiiiiiiiie. 262
454 Run-Time Exchange StruCtureeooiiiiiiii e 262

ARINC REPORT 661
TABLE OF CONTENTS

4541 Run-Time Block Commands...........cooovviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 262
4542 Command Structure — Run-Time Commands...............uuueuermmmemmmmenneiinnnninnnnnnns 263
4543 REQUESE STIUCIUIE ..ottt annnsssnnnnnnes 264
4544 Notification StrUCIUIEoooiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 265
4545 ARINC 661 Parameter Structure ... 265
45451 A661_ParameterStructure_1Byteoooovvvviiiiiiiiiiie 265
45452 A661_ParameterStructure_2BytesS.........coovvvvviiiiiiiiiiiiiiiiee 266
45453 A661_ParameterStructure_4Bytes.........ooovvvvviviiiiiiiiiiiii 266
45454 A661_ParameterStructure_Stringcooovvvviiiiiiiiiiiiee 266
45455 A661_ParameterStructure_String/Array..........cccccooiiiiiiiieeeieeeeeiieeeenn 266
45456 AB61_String/Array_Cell Structurec.uviiiiiiiiiieee e 266
45457 A661_Parameter_Enable Arraycccooooeoiiiiiiiii e 267
45458 A661_ParameterStructure_8BytesS.........ooovvvviiviiiiiiiiiiiieie 267
45459 A661_ParameterStructure_BufferOfitems............oooovvviviiiiiiiiiiiiiiiiiiieeee 267
454510 A661_ParameterStructure_Buffer..........ccccoovvvvviiiiiiii 267
454511 A661_ParameterStructureEntryPopUpPAITayccovvvvvviiiiiiiiiiiiiiieeeeeeee 267
4.6 ARINC 661 Keyword ValUEScoooiiiiie i 267
5.0 SYMBOL GRAPHICAL DEFINITION ...cooiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee et 277
5.1 OVEIVIBW.....ceeieiiiieeeeeeeeeee ettt ettt ettt st s ssssssssnssssssnnssssnssnnnnnnnnnnnnnn 277
5.2 Symbol Definition ComMM@aNdS..........ooeviiiiiiiiiiiiiiiiiiieiee e 277
5.2.1 Top Level COMMANASuuuiiiii e 278
5211 o o 1= USSR 278
5.2.1.2 [e 11T | o | PP SUSRUPUSPPRPPPRPPPIN 278
5213 SENSITIVE AT ... s 278
5.2.2 Symbol Attribute Setting Commands..............uueiiiiiiiiiiii e 279
5.2.21 R T=Y 7] [279
5.2.2.2 St LINE StYIE oo 279
5.2.2.3 =Y o] | 280
5.2.2.4 SEEHAIO. .. 280
5.2.3 Graphic Primitive COMMANAS...........uuuuuiiiiiiiiiiiiiiiiiiiiieeeieeeennneneneneeeneennennnnne 280
5.2.3.1 LEGENA ANCRON ...ttt 280
5.23.2 APC EHlIPSE .. 280
5.2.3.3 ArC CiIrCle .. 281
5234 L7 0 1 o 282
5.2.3.5 TR 283
5.2.3.6 I = o] = PRI 283
5.2.3.7 POIYIING ettt taaanaaanaanaaana 283
5.2.3.8 RECtANGIE ... 284

ARINC REPORT 661
TABLE OF CONTENTS

5.2.3.9 THANGIE <. 284
5.2.3.10 TraNgle Fan ..o 285
5.2.3.11 THANGIE SEFP e 286
5.2.3.12 LI PP 286
5.2.3.13 T4 287
6.0 XML DEFINITION FILE SPECIFICATIONoiiiiiiiiiiiiiiiiieeee e 288
6.1 1] (oo 18 o 1o o PR 288
6.2 L= od 0] 1T o T 288
6.2.1 Picture and Symbol Graphical Definitionsccccuiiiiiiiiiiiii 290
6.2.2 Layers and WiIdgetsoooiiiiiiiiiiiiiiiiiiiiii et 295
6.2.3 0T 01T 11U SURERPPURRIN 296
6.3 Document Type Definition (DTD) Specification ... 299
6.4 (=] (=T (= o = PR 301
7.0 PICTURE GRAPHICAL DEFINITION ...coiiiiiiiiiiieieee et 302
71] (oo 18 o 1o o SRR 302
7.2 Picture Definition Structures ... 302
7.3 L0701 (o gl IF=T o] L= 305
APPENDICES

A GIOSSAIY ..ttt et n e e e nnnnnnne 306
B Acronyms and AbDreviations ..o 310
C Example of @ Definition File ... 312
D 7= =1 (=T o T 333
E Map Management Tutorial ... 334
F Communication Transport ProtoCols..........ooouueiii i 339
G New Widget GUIAElINESoooiiiiiiiiiiiiiiiieeeeeeeeee e 348

ARINC SPECIFICATION 661 — Page 1
1.0 INTRODUCTION

11 Purpose and Scope

This document defines a standard Cockpit Display System (CDS) interface intended
for all types of aircraft installations. The primary objective is to minimize the cost to
the airlines, directly or indirectly by accomplishing the following:

o Minimize the cost of acquiring new avionic systems to the extent it is driven
by the cost of CDS development

e Minimize the cost of adding new display function to the cockpit during the life
of an aircraft

e Minimize the cost of managing hardware obsolescence in an area of rapidly
evolving technology

e Introduce interactivity to the cockpit, thus providing a basis for airframe
manufacturers to standardize the Human Machine Interface (HMI) in the
cockpit

This document defines two external interfaces between the CDS and the aircraft
systems. The first is the interface between the avionics equipment (user systems)
and the display system graphics generators. The second is a means by which
symbology and its related behavior is defined. A user application is defined as a
system that transmits data to the CDS, which, in turn can be displayed as visual
graphical information to the flight deck crew. A user application can also include
software or hardware that receives input from interactive graphics managed by the
CDS.

The CDS provides graphical and interactive services to user applications within the
flight deck environment. When combined with data from user applications, it should
display graphical images to the flight deck crew.

This document defines an interface between the CDS and user applications (UA).
The application that controls the interface is defined to be within the CDS.

This document does not specify the “look and feel” of any graphical information.
1.2 Relationship to Other Documents

ARINC Specification 661 defines an interface protocol intended to facilitate

communication between the cockpit display system and user equipment. This

document does not specify electrical parameters.

This document refers to user application data formats that are specified in existing
ARINC 700-series documents:

ARINC Characteristic 702A: Advanced Flight Management Computer System

ARINC Characteristic 708A: Airborne Weather Radar with Forward Looking
Windshear Detection Capability

ARINC Characteristic 735A: Traffic Alert and Collision Avoidance System (TCAS)

ARINC Characteristic 762: Terrain Awareness and Warning System (TAWS)

ARINC SPECIFICATION 661 — Page 2
1.0 INTRODUCTION

Communication between user applications and the cockpit display system may be
implemented over a physical data bus defined in system-level standards, such as:

ARINC Specification 429: Mark 33 Digital Information Transfer System (DITS)
AEEC Project Paper 453: Very High Speed (VHS) Bus
ARINC Specification 664: Aircraft Data Network

1.3 Interoperability

1.3.1 General

One of the primary objectives of this document is to define interface protocols that
can be met by any equipment manufacturer. This level of interface standardization is
different from a typical form, fit, and function standard.

This document emphasizes the need for standardized communication between the
CDS and user applications. This approach is expected to facilitate the development
of standardized subsystems that can easily interface with the CDS.

COMMENTARY

It is not the intention of this Specification to specify a bus structure,
either physically or electrically. However, airlines encourage display
system providers and aircraft system integrators to use industry
standard buses. Manufacturers should recognize the practical
advantages of developing equipment in accordance with the
standards set forth in this document.

This document is not intended to define CDS packaging or physical configuration. It
is noted, however, that some designs may be more suitable than others for use in a
flight deck.

Avionics user systems should connect to the cockpit display system using interfaces
based upon industry standards. This allows flexibility in the installation with the wide
variety of display systems.

The desire for interoperability makes it necessary to standardize input and output
interface parameters. The CDS interfaces should be capable of exchanging data in
the form of input/output messages as defined in this Specification.

1.3.2 Interface Standards

In recognition of the widely varying cockpit layouts and configurations,
standardization of equipment is not included within this standard.

This Specification defines a set of logical interfaces that support change containment
and preserve investment across both aircraft types and hardware generations.

ARINC SPECIFICATION 661 — Page 3
1.0 INTRODUCTION

COMMENTARY

It is widely recognized that software qualification and system
certification costs dwarf all other aspects of developing, installing, and
updating a CDS.

1.3.3 Modularity

Architecturally, the CDS should be an integrated system comprised of modular
hardware and software components. It should be possible to include optional
features to individual units, as determined by airline user requirements, with
minimum impact on the existing functions.

This Specification emphasizes that software necessary to add or change display
functionality of the display system should be contained within the user application
(e.g., FMS). Thus, during system upgrade or modification, only the user application
software should need to change.

COMMENTARY

Airlines, airframe manufacturers, display system providers and user
application developers contributed to the development of this
Specification. The application developers advocated strict adherence
to the preceding paragraph. However, others express caution that this
proposal is not feasible from a certification standpoint. The writers of
this document supported a compromise, which are detailed in later
sections of this document.

User application developers should consider the role of a Cursor Control Device
(CCD) in their equipment design. Application software should be structured in a
manner that allows addition or modification of ARINC 661 input in general and
cursor-based commands in particular. Software should be capable of adapting the
HMI to fit different cockpit philosophies. This is expected to evolve as airline crews
gain experience with existing and evolving levels of interactivity.

1.4 Integrity and Availability

The CDS is a significant portion of the flight deck crew interface. Therefore, the
equipment design should contribute positively to overall aircraft system performance,
operational integrity and availability goals for all types of aircraft operations.

1.5 Reliability

The airlines desire reliability in all phases in the design, production, installation and
operation of a display system.

COMMENTARY

This document does not specify reliability goals. As a general rule,
users want all they can get within the bounds of reasonable
equipment complexity and cost.

ARINC SPECIFICATION 661 — Page 4
1.0 INTRODUCTION

1.6 Use of “Specification Language”

The vast majority of military and government standards are usually written in terms
of “shall” and “shall not.” However, it is often difficult to describe airline operator
preferences that have grown out of experience over time. For this reason, this
Specification is written to express airline desires in the form of guidance material.
Designers should interpret this document in terms of the “need” for specific design
practices rather than practices that “must” be met under all circumstances.

1.7 Regulatory Approval

ARINC 661 display equipment should meet all applicable regulatory requirements.
This Specification should not and does not define the specific requirements that an
equipment manufacturer must follow to be assured of approval. Such information
should be obtained from the appropriate regulatory authority.

1.8 Reference Documents
The latest versions of the following documents apply to the development of a CDS:
ARINC Specification 429: Mark 33 Digital Information Transfer System (DITS)
ARINC Specification 664: Aircraft Data Network

1.9 Applicability

The CDS architecture should be robust with sufficient integrity, availability, reliability,
and capacity to support any or all of the display types listed below. Also, it should
enable growth to support other features that may be required in the future, as
constrained only by what will physically fit in the cockpit. This CDS is not intended for
cabin use.

Display types include, but are not limited to:
e Primary Flight Display (PFD)
¢ Navigation Display (ND)
e Head-Up Display (HUD)
e Multi-Purpose Control Display Unit (MCDU)
e Engine Indication and Crew Alerting System (EICAS)
e Multi-Function Display (MFD)
e Side Displays
e Data Link Control Display Unit (DCDU)

ARINC SPECIFICATION 661 — Page 5
2.0 CONCEPT OF OPERATION

2.1 Introduction

This section describes the concept of operation for the standard protocol used
between avionic equipment User Applications (UA) and the Cockpit Display System
(CDS). This approach segregates the interactive event management and rendering
details from the functional context displayed. The interface defined in this standard
relies on a basic set of graphical user interface objects, hereafter referred to as
“‘widgets.”

The list of widgets is referred to as the ARINC 661 Human Machine Interface (HMI)
Widget Library. It is described in detail in Section 3.2, HMI Widget Library. In
general, these widgets correspond to a displayable entity. Some of these widgets
are “interactive widgets” because they support crew member interaction using cursor
control devices and keyboards. Crew member actions on interactive widgets are
generally associated with event reports sent to the UA. The non-interactive widgets
do not have any associated event.

This Specification defines a list of standardized widgets. CDS providers should
include the widget library defined by this Specification in their display products. This
is the interface between UA and CDS, and describes the widget interface to the UA,
i.e., and widget parameters accessible to the UA.

The CDS should manage the actual rendering of the widgets as well as monitoring
the flight deck crew interaction via display system input devices.

The UA should specify through the Definition File (DF), the characteristics of all the
instances of each widget it uses in the initial design or expects to use. This is
described in detail in Section 4.1.1, Definition File and User Application Layer
Definition (UALD). These widgets are allocated inside the CDS.

The UA addresses its widgets through a run-time protocol. This is described in detail
in Section 4.2, Run-time Communications. The UA animates the display format by
setting the accessible parameters of the widgets, in order to reflect its functional
context. The run-time protocol serves the purpose of the CDS reporting the crew
events to the UA.

Characteristics and capabilities are the focus of this document, not the
implementation of these capabilities.

2.2 Overview of Interface Level Between UA and CDS

The general approach for the widget interface is to segregate the UA functional
description from the “look and feel” of HMI pages. The “look and feel” description
refers to graphical characteristics such as color and border properties.

UAs should manage the widget interface in order to illustrate their functional state.
Consequently, they should only manage functional states of widgets. UAs have no
need to directly interact with “look and feel” characteristics.

The “look and feel” characteristics of a widget are linked with its functional
characteristics. Thus, UAs may have to use a reference to a set of “look and feel”
references in order to reflect their functional context. This service is provided by the
widget parameter, “StyleSet.” Refer to Section 3.1.3, Commonly Used Parameters,
which defines a set of characteristics that should be defined by the airframe

ARINC SPECIFICATION 661 — Page 6
2.0 CONCEPT OF OPERATION

manufacturer and stored inside the CDS. The airframe manufacturer specification
task consists of defining the widget behavior implemented in the CDS, as well as the
graphical characteristics associated with each particular functional state of the
widget. UAs should refer to these pre-defined characteristics to manage the “look
and feel” of their images, according to the airframe manufacturer-specified HMI
rules.

This approach provides segregation between functional behavior managed by UAs
and graphical behavior managed by the CDS. This provides a common look across
all aircraft, and common implementation of behavior consistent with that airframe
manufacturer’s cockpit philosophy. The style guide defined by the airframe
manufacturer describes the “look and feel” inside the cockpit, and thus, provides the
necessary information to UAs for their HMI interface design.

e There are two categories of widget interface definition, (1) specification or
compile-time information and (2) run-time interface, described as follows: the
compile time definition is static information stored inside the CDS that sets
some parameters of the widget. The main objectives of this phase are to
allow deterministic widget allocation in CDS memory, avoid heap memory
utilization, and reduce system bus bandwidth requirements.

¢ Run-time interfaces enable UAs to control and change certain characteristics
of the widgets during operation.

Figure 2.1-1 illustrates ARINC 661 protocol principles applied in a typical CDS
system architecture. Higher values in the stacks take precedence over the lower
modifiable values.

2.2.1 Definition Phase

The definition phase consists of loading and interpreting Definition Files (DF) in the

CDS.
A661 PROTOCOL SYSTEM LEVEL RESPONSIBILITY
‘A661 Dynamic commands speciﬁcationi @ 74‘ User applications / CDS ‘
‘ A661Definition commands speciﬁcationi h‘ AG61 _ definition file 77‘ User applications ‘
‘A661 Library interface specification } >} A661 library }4———{ Aircraft specification / CDS‘

Figure 2.1-1 — ARINC 661 Protocol Principles
A DF is a loadable standard format file inside the CDS.

The DF specifies the creation of widgets that describe User Application (UA)
interface pages.

The DF describes widget hierarchical structures.

ARINC SPECIFICATION 661 — Page 7
2.0 CONCEPT OF OPERATION

The interpretation of the DF by the CDS results in the creation (instantiation and first
setting of all parameters) of widgets.

All widgets should be created at this definition time to enable deterministic allocation
of memory. The necessary memory size should be reserved at definition time for the
allocation of the widgets. ltems should be specified at run-time inside their container
widget. Refer to Section 3.2.8, Map Management.

Some parameters can only be set at definition time. Among these parameters are all
the parameters which have an impact on the memory size allocation.

The definition phase should be closed for a DF before the beginning of the run-time
phase for that DF (i.e., the run-time data exchange for widgets defined inside the
DF).

COMMENTARY

Defining the end of the definition phase and the beginning of the run-
time phase is beyond the scope of this document. It is CDS
integrator’s choice to implement one global definition phase or an
individual definition phase for each DF.

2.2.2 Run-Time Phase

The run-time phase consists of dynamic data transfers between UA and CDS using
ARINC 661 run-time commands. These exchanges cover the following needs:
From UA to CDS:

e Updating the run-time widget parameters.
e Requests to the CDS for changes on entities managed by the CDS, for
example layer visibility and direct focus motion.

From CDS to UA:

¢ Notification of event occurrence for application event processing.

e CDS configuration commands, for example, notification of application layer
activation.

2.2.3 Special Conditions

2.2.31

Initialization

The CDS is the master of display configurations. The CDS determines the formats to
be displayed and the UA Layers that will appear. Therefore, a UA should not
transmit any data to the CDS before the CDS has notified the UA that its layer is
ACTIVE (refer to Section 4 for such notification format).

After receiving such a natification, it becomes the UA’s responsibility to update, as
necessary, the parameters of the corresponding layer widgets AND to request the
visibility of the layer. The CDS will not display the layer before this request is
received in a message block.

ARINC SPECIFICATION 661 — Page 8
2.0 CONCEPT OF OPERATION

2.2.3.2 Need for Re-initialization

In some conditions, the CDS may lose its image of the widget parameters as the UA
has set them. In this event, the CDS can transmit a request for Layer Re-
initialization. The UA should then update, as necessary, the layer widget parameters
AND request the visibility of the layer. The CDS will not display the layer before this
request is received in a message block.

2233 Suppression of a Layer from Display

External conditions may lead the CDS to remove a layer from the display. In such a
case, the CDS may notify the UA that the layer is INACTIVE. Upon such a
notification, the UA should stop its update of the layer widget parameters.

2.2.4 ARINC 661 Conformance

A CDS conforms to ARINC 661 when: (a) it implements the prescribed CDS-UA
communication mechanism (Section 4) including DF files and run-time
messaging model, and (b) all widgets and widget parameters/capabilities that
the CDS does implement are compliant with this standard.

An ARINC 661 CDS may implement some, but not necessarily all widgets
defined herein. If the full possible range of widget attributes or behaviors is
not supported, the CDS must at least behave in a robust and graceful manner
with respect to unsupported requests by UA.

It is specifically counter to ARINC 661 to use non-standard widgets that are
similar to standard widgets defined herein, without a justified change or
improvement in capability. Those who wish to propose a new ARINC 661
widget are directed to Appendix G, which contains guidelines for addition of
new widgets to the standard.

2.2.5 ARINC 661 Library Evolution

The ARINC 661 library should evolve in a manner that is compatible with the library
defined herein. For example, if optional parameters were to be added to an existing
widget, default values should be defined such that existing equipment can continue
to use the older data block format. A new WidgetType ID should be created, defined,
and used to indicate that the new size and format definition parameter block is in
use.

ARINC SPECIFICATION 661 — Page 9
2.0 CONCEPT OF OPERATION

Display Unit Window m@\
(Managed

by the CDS)

Layer
(Owned by One

User Application) Widget

Figure 2.3-1 — Window/Layer lllustration
2.3 Window/Layer and General Concepts

This Specification uses a windowing concept, which can be compared to a desktop
computer system windowing, but with many restrictions due to the aircraft
environment constraints. Each format on a Display Unit (DU), shown in Figure 2.3-1,
consists in a set of windows, defined by the current configuration of the CDS. A
window is subdivided in layers. These layers are connected to the user applications
and provide an area to display their widgets.

2.3.1 Window Definition

Windows are owned and managed by the CDS. In particular the CDS manages the
visibility of the window. The UA may have no knowledge of the window set-up.
Therefore, this section is provided as guidance and not considered a requirement for
the interface between UA and CDS. Windows have the following characteristics:

o A format image rendered to a display unit surface is constructed from one or
more windows.

e The windows included in a format image of a DU are fully defined in the
configuration definition. The window visibility is managed by the CDS according
to the current configuration.

¢ A window defines a rectangular physical area of the display surface.
e A window may not be resized.

o Windows cannot overlap each other.

e A window consists of one or more layers.

2.3.2 Layer Definition

A layer is the highest level entity of the CDS that is known by the UA. From the UA
point of view, the Layer is the highest level container in the hierarchical structure of
the UA widgets. From the CDS point of view, the layer is a graphical layer
associated with an application inside a window. The definition of layer layout within a
window is beyond the scope of this standard.

ARINC SPECIFICATION 661 — Page 10

2.3.21

2.3.2.2

2.0 CONCEPT OF OPERATION

Layers provide the mechanism to combine information from several UAs inside one
window.

COMMENTARY

Within an aircraft system, there is a need to place information from
multiple client systems as well as information from the CDS itself
within a single window. For example, the navigation display may
require:

¢ Graphical information such as the compass rose

e Control widgets such as a PopUpMenu for changing the range

¢ Flight Management (FM) map

e TCAS information

Layer Graphical Definition

An ARINC 661 layer graphical definition has the following characteristics:

e ltis a graphical layer inside a window

e Alayer has an origin that is defined with respect to the origin of its window.
For a special case, refer to Section 3.3.7, Connector

o All rendering within a layer is clipped by the bounding window definition
e Layers may overlap

In the hierarchical structure of the DU format image definition, the layers are
containers just under the window level.

Layer Content Management
Layer content management has the following characteristics:
An ARINC 661 Layer is associated with a UALD. Thus, each layer has only one
owner, that is, the owner of its associated UALD. A layer contains the hierarchical
structure of widgets defined inside its associated UALD.
COMMENTARY
A layer can be displayed in several windows at the same time. If the
duplicated layer is interactive, it could lead to interactive widget

identification confusion.

One proposal could be to allow the interactivity by the CDS only on
one of these layers.

The UA, as well as the CDS itself, may be an owner of a layer.

The UA has only knowledge of its layer, and does not have knowledge of the
containing window, which is defined by current CDS configuration.

A UA or the CDS itself, possibly, may own several layers within a window.

2.3.23

2.3.24

2.3.241

2.3.2.4.2

ARINC SPECIFICATION 661 — Page 11
2.0 CONCEPT OF OPERATION

The owner of a layer is responsible for managing the parameters of all
widgets contained in that layer. The owner UA should know the complete
set of run-time parameters for widgets contained inside the layer.

A crew-member input through an interactive widget contained within a layer
transmits an event to the owning UA.

Layer Priority Management

Layer content management has the following characteristics:

e Layers are assigned a static priority that defines the order of visibility, e.g.,
which layer appears on top of other layers. A UA knows the relative priority of
its own layers, while the CDS manages absolute priority between layers of
different UAs. Priority between layers of different UAs is not accessible to
UAs.

o Widgets are drawn in the order they are defined in the UALD, so that the last
defined is drawn on top of the others. Note that if container C1 is defined
before container C2, then all widgets included in C2 will be drawn on top of
all widgets defined in C1.

Some widgets should always be drawn on top of the other widgets, for example,
ComboBox, PopUp Menu.

Layer Activity/Visibility Management

A layer has two properties: Active/lnactive and Visible/ Invisible. For definition of
commands to manage these properties, refer to Section 4.4.3.2, Request/Notification
from CDS to UA.

Visibility
The layer visibility is managed by the UA through a visibility parameter.
All objects within a layer should become invisible when the layer becomes invisible

by control of the layer visibility parameter. This does not affect the current value of
each widget visibility parameter.

Activity

The activity of the layer is controlled by the CDS. When a layer is active, the CDS
should update the data from the UA that owns the layer, even if the layer is not
visible. Refer to Section 4.4.3, ARINC 661 Request/Naotification for
A661_REQ_LAYER_ACTIVE.

The CDS sends the A661_NOTE_LAYER_IS_ACTIVE request to the UA when CDS
activates the layer.

The CDS sends a A661_NOTE_LAYER _IS_INACTIVE request to the UA when CDS
de-activates the layer.

When a layer becomes inactive, its visibility is turned off by the CDS. When the layer
becomes active, it is the responsibility of the UA to turn on the visibility of its layer.
Also, when a layer becomes active, the UA should reinitialize the layer’s data.

ARINC SPECIFICATION 661 — Page 12

2.3.2.5

2.0 CONCEPT OF OPERATION
COMMENTARY

The specific use of the Activity / Inactivity property on a layer of the
CDS is outside the scope of this standard. This should be defined by
the airframe manufacturer, except at initialization, the CDS should
send A661_NOTE_LAYER _IS_ACTIVE notification.

When the layer is inactive, the CDS has only to consider the
A661_REQ_LAYER_ACTIVE request command from the UA owning
the layer.

Layer Context Management

Context management covers the notion of correlation between the data exchanged
and the data displayed at a given time.

A “context number” is attached to each layer. The value management of this
parameter is the responsibility of the UA owning the layer. The application will modify
the context number through the context number parameter of the block structure.

The CDS sends the current context number of the layer containing the interacted
widget inside the block structure.

The initial value of the context number is set inside the layer definition block (UALD).

Context number allows the UA to manage the internal state of its display in the CDS.

2.3.3 Configuration Issues

The CDS controls the configuration of the cockpit by defining the following:

e The correct window to go on the specific DU.

e The correct application layer to go in the specific window. The CDS notifies
the UA that a window containing layers of this UA is displayed and the UA
has to be ready for widget management through notification
A661_NOTE_LAYER_IS_ACTIVE.

A UA can send the CDS a request to display one of its layers. The CDS may accept
or reject this request depending on the configuration logic that is implemented at that
time. Refer to Section 4.4.3, ARINC 661 Request/Notification for
A661_REQ_LAYER_ACTIVE.

ARINC SPECIFICATION 661 — Page 13
2.0 CONCEPT OF OPERATION

2.3.4 Positioning and Size Within Window

2341

2.34.2

2343

Figure 2.3.4 illustrates graphic references for widget positioning.

YA<\G‘>

>X

@

Figure 2.3.4 — Graphic references for widget positioning
Origins

All origins are in the lower left-hand corner of the object. Origin of widgets within
containers is relative to the immediate container.

Any exception to these provisions will be clearly stated in the detailed description of
the widgets.

Angles

All angles are measured in degrees. All rotation is around the Z-axis. The ZERO
degree is along the X-axis in the positive direction. The positive direction of rotation
is in the counter-clockwise direction from the X-axis. When specifying an arc, the arc
becomes a complete circle when the StartAngle and EndAngle represent the
minimum and maximum possible values of fr(180).

Any exception to these provisions will be clearly stated in the detailed description of
the widgets.

Screen Units of Measurements

All screen units should be measured in units of millimeters with a resolution of 0.01
millimeters. Therefore, the position and size of widgets are expressed with a
resolution of 0.01 millimeters. Widget position parameters are signed integer and
widget size parameters are unsigned integer. Refer to Section 3.2, HMI Widget
Library Summary. Any exception to these provisions is clearly stated in the detailed
description of the widgets.

2.3.5 Cursor Management

The cursor is controlled by the CDS. The cursor shape is defined by the CDS. The
cursor shape is an element of the “look and feel” of the cockpit and is managed in a
homogeneous way throughout the different formats. The cursor shape depends on
the type of the widget that holds the cursor (e.g., button, text editor) and the current
state of this widget (e.g., editing mode). Nevertheless, some information related to
the cursor may be exchanged between the CDS and the UAs.

ARINC SPECIFICATION 661 — Page 14

2.3.5.1

2.3.5.2

2.0 CONCEPT OF OPERATION

Two key terms are most important to the understanding of the cursor management in
ARINC 661. They are respectively: Focus and Highlight.

¢ An interactive widget is focused when it receives the events triggered by a
crew member through non-CCD input devices (such as keyboard).

¢ An interactive widget is highlighted when the cursor passes over its
interactive area. Depending on the implementation, the click may select
and/or focus the widget.

Focus and highlight are defined as two independent characteristics of an object;
however, the relationship between them is implementation dependent. Focus and
Highlight may change the graphical look of a widget.

From UA to CDS

An example of cursor management from the UA to the CDS is to request the focus
be put on a particular widget. This request may or may not move the cursor
according to the CDS implementation. Refer to Section 4.4.3.1, Request from UA to
CDS.

Another example is the ability to inform the CDS at definition time of widget
navigation order, which supports CDS management of focus navigation. Refer to
Section 3.1.3.5, Parameters Relative to Focus Navigation.

From CDS to UA

An example of cursor management from CDS to UA is the identification of which
cursor, i.e., pilot or co-pilot, has been used to interact with a widget in addition to the
other information related to the event.

COMMENTARY

Some cursor characteristics are outside the scope of this
Specification. They should be defined by the airframe manufacturer
for the display system provider including the following features:

e Interactivity features
¢ Movement rules between DUs
¢ Movement rules between windows

o Link between the cursor shape and the window characteristics,
for example frozen window

o Response to cursor events involving overlapping widgets

Determination of all cases where cursor snaps might occur. For example, when the
cursor is on a widget owned by a UA that suddenly fails, the placement of the cursor
should be defined. The cursor could go to another widget in such a case. Another
case to consider is where to put the cursor when a window or layer is first initialized
and displayed. The definition and use of default locations for such cases should be
considered.

Precise response time requirements depend on user system operational
requirements. Table 2.3.5.2 provides guidelines that should be considered by
system designers in determining computer processing requirements and software
architecture necessary to support this interface.

ARINC SPECIFICATION 661 — Page 15
2.0 CONCEPT OF OPERATION

The CDS provides the ability to perform the first four of these tasks within itself,
drastically reducing the processing load on the user system, if used properly.

Table 2.3.5.2 — Guidelines for Cursor-Control Timing

Task Description Time
Time between cursor collision
with display object and 50 ms max

indication of collision (cursor
shape change or object

highlight)

Time between object selection | 180 ms max
and indication of selection. 150 ms avg
Time between crew movement | 100 ms max
of the CCD and cursor 80 ms avg

movement on the display.
Time between cursor
command for paging and 300 ms max
menu selection and resulting
user system display.

Time between cursor
command action and resulting 1s max
action of the command being
processed (for commands
other than paging or menu
selection).

COMMENTARY

System integrators and designers are reminded that the flight deck is
not an office desk-top environment. Thus, common desk-top practices
such as “double click” may be difficult to implement successfully.
Turbulence may produce an unintended double click. Data
transmission rates may make it difficult for the display system to
recognize a double click. Therefore, if a double click feature is used in
the system design, the CCD should bear the responsibility for
recognizing this situation and transmit it as a discrete event to the
display system.

COMMENTARY

In cases where the active areas of two interactive widgets
overlap, if the pilot makes a selection in the overlap area, it is
recommended the CDS send the applicable event associated
with the widget on top. A widget is defined to be on top of
another widget if the widget is listed after the other widget in the
DF and shares at least a portion of the display space with the
other widget. This may not be applicable to all widget types (e.g.,
CursorOver).

In cases where the active areas of one or more interactive
Mapltem or MapSource widgets overlap, the sending of one or
more events will be CDS dependent.

ARINC SPECIFICATION 661 — Page 16
3.0 WIDGET LIBRARY

3.1 Introduction to Widgets

Communication between the CDS and UA is defined based on the identification of
widgets defined in this section, Widget Library.

3.1.1 Widget Identification

A widget is defined with respect to the UA to which it belongs. Widget identifiers are
assigned and managed by the UA. A widget identifier, referred to as [Widgetldent], is
unique in one User Application Layer Definition (UALD).

Since the CDS manages layers and their priorities, the CDS needs to know at
definition time to which layer a widget belongs. Therefore, the CDS also needs a
relative [Layerldent] from the UA. A [Layerldent] referenced by the “User Application
A” could be identical to a [Layerldent] referenced by the “User Application B.”
Internally the CDS resolves its internal Layer Identification by using the [User
Application Ident].

At definition time, the interface between CDS and UA should uniquely define widgets
by the combination: [UserApplicationldent].[Layerldent].[Widgetident]

COMMENTARY

At run-time, [UserApplicationldent] is resolved by the CDS using
information from the system bus.

3.1.2 Widget States
3.1.21 Widget States Definition

Four different levels, illustrated in Figure 3.1.2 define widget states:
o Visibility level: widget is visible or not
e Inner level: specific states of a widget. This level represents the core of the
widget behavior as well as its functional objectives. Examples of inner states:
o for a basic PushButton, there is one stable inner state

o for a CheckButton, there are two stable inner states, which are “selected”
and "unselected”

o Ability level: widget is enabled or disabled. This level exists for interactive
widgets. An enabled widget is ready to receive input from crew member
interaction

o Visual level (visual representation): internal behavior of the widget inside the
CDS. Examples of visual representation are Normal and Focus. Refer to the
glossary in Appendix A for the definitions of the visual states listed below.

ARINC SPECIFICATION 661 — Page 17
3.0 WIDGET LIBRARY

State levels 1, 2 and 3 describe the possible combinations of states accessible to a
UA in order to interact with a widget. These states affect the behavior of the widget.
These widget states can be managed through run-time parameters, specifically:

e Visible

o Specific parameter related to the inner states (like “CheckButtonStates” for a
CheckButton)

e Enable

W idget states

V isible Invisible D State level 1

Inner state 1 @ state n State level 2

State level 3

Enable \ D isable D isable

HE § N

Normal Focus Normal Focus oo State level 4

Figure 3.1.2 — Example of Widget States Levels

State level 4 is the visual representation. In the ARINC 661 CDS interface, the
complete definition of the visual representations might freeze the widget behavior
internal to the CDS. To avoid this, visual representation should be part of the aircraft
original equipment manufacturers (OEM) specification and implemented by the CDS
supplier in the CDS Widget Library.

A UA should not have any direct access to the visual representations. Therefore,
visual presentations do not have to be defined within the ARINC 661 interface
protocol. Only the ARINC 661 parameter effects on graphical representation should
be described in the ARINC 661 interface. The style guide defined by the OEM
should describe the “look and feel” and thus, provide necessary information to UAs
for their HMI interface design.

ARINC SPECIFICATION 661 — Page 18

3.1.2.2

3.0 WIDGET LIBRARY
Inner State Management: “Race Condition”

Both CDS and the owner UA of a widget can manage the inner states of a
widget. For instance, considering a CheckButton:

a. Upon selection by a crew member, the CDS will change the widget inner
state from SELECTED to UNSELECTED or from UNSELECTED to
SELECTED.

b. The UA may change the inner state to initialize or refresh the interface.

When the CDS changes the state of a widget based upon crew member
interaction, it sends an event to inform the UA of the interaction. In this case,
the widget is considered as an IN widget.

If the Widget is non-interactive (e.g. CheckBox with Enable=F), then the inner
state is only controlled by the UA and the widget is an OUT widget.

But the inner state may represent an actual system state of the UA and the UA
will need to update the inner state based upon its knowledge of the state as
well as accept modification from the pilot. For example, a CheckButton that is
selectable by either the Capt or FO. In this case, when either pilot changes the
inner state, the UA will need to update the state of that widget on the off-side
display.

In the case of an IN/OUT widget, a “race condition” can occur that may need to
be addressed by the CDS and/or UA. The issue that can occur is that shortly
after the CDS sends a notify widget event to the UA that an inner state has
changed, the CDS may receive from the UA a set parameter command to
change the inner state which was sent prior to the UA receiving the notify
event. In this case the CDS does not know if the set parameter command was
sent prior or after the UA received the notify widget event and the commanded
state may not be consistent with the newly updated widget state. The result
may be a momentary reversion of the displayed inner state after the widget is
selected.

This same condition can also occur with “entry” widgets such as EditBoxText.
In general, EditBoxText widgets would be IN/OUT since the format of the entry
into the widget is often different than the format of the displayed entry. For
example, if the EditBoxText contains weight represented as “XXX.X”, and the
pilot wishes to enter a new value, the allowed entry may be “XX” which the UA
would then convert to “ XX.X” and update the content of the EditBoxText. In
this case, the race condition would result in the widget reverting back to the
XXX.X value prior to the pilot entry, until the UA response with the updated
entry value.

Widgets which potentially have his issue include: CheckButton, ComboBox,
EditBoxMasked, EditBoxNumeric, EditBoxText, PictureToggleButton,
ToggleButton, ComboBoxEdit, EditBoxMultiline.

A number of approaches can be taken by the UA and/or CDS to address this
issue. The following approaches are possible methods that could be used by a
system design. The specific approach used (one of these or others) used by a
specific system design is outside the scope of this specification.

ARINC SPECIFICATION 661 — Page 19
3.0 WIDGET LIBRARY

The race condition can be mitigated to some degree by minimizing the
update of IN/OUT widget by the UA. Care must be taken to insure that
the CDS inner state of the widget is consistent with the UA state of the
widget.

For “EditBox” Widgets, the race could also be minimized by the UA
using the EditBox_Open and EditBox_Close event to restrict sending
A661_String to the Widget while it is actively being edited.

For those widgets with an inner state, the CDS implementation could
delay application of received parameters (subject to a timeout) to the
Widget for which it has sent an A661_EVT_STATE_CHANGE until it
receives a Set Parameter command from the UA which reflects the
notified inner state.

The CDS implementation could also mitigate the race condition by
applying a “timeout” period after sending a notify event to the UA
during which it will delay application of Set Parameter messages to the
widget until the timeout expires. The UA is then required to respond to
the notify event with updated Parameters prior to the timeout expiring.

3.1.3 Commonly Used Parameters

This section includes tables that identify the parameters commonly used by all
widgets of the ARINC 661 library.

3.1.31 Identification of the Widget

Widget Identification Parameters are defined in Table 3.1.3.1.

Table 3.1.3.1 — Widget Identification Parameters

Parameter Description
WidgetType | Type of widget
Widgetldent | Identifier of the widget (refer to Section 3.1.1,)

Widgetldent is a non-null positive value ([Widgetldent] >0). NULL is reserved
for referring to the layer level (e.g., Parentldent)

Parentldent

Identifier of the immediate container of the widget. Only a special category of
widgets called “Container” can be the parent of other widgets.

At the highest level of the widget hierarchy within a layer, the Parentldent
value is 0 (NULL). This means that the parent of the widget is the layer.

3.1.3.2 States of a Widget

Widget State Parameters are defined in Table 3.1.3.2.

ARINC SPECIFICATION 661 — Page 20

3.0 WIDGET LIBRARY

Table 3.1.3.2 — Widget States Parameters

Parameter Description

InnerState Holds the specific functional state (if any) of a widget.
The set of possible values depends on widget type.

Visible A661_FALSE:
The widget will not be rendered.
A661_TRUE:
e [f all its parents are visible, the widget will be rendered.
e [f any one of its parents are invisible, the widget will not be
rendered, whatever the value of its visible parameter.
Enable AB661_FALSE:
The widget will not be interactive.
A661_TRUE or A661_TRUE_WITH_VALIDATION:
e |If all its parents are enabled, the widget will be interactive.
e If any one of its parents are disabled, the widget will not be
interactive, whatever the value of its Enable parameter.

An invisible widget is not interactive, independent of the value of its Enable
parameter.

Anonymous | A661_FALSE: run-time accessible.
Widget can be modified at run-time, if it has some run-time accessible
parameters.
A661_TRUE: anonymous.
Widget can not be modified at run-time by UA. CDS behavior when a UA
attempts to SetParameter on an anonymous widget is undefined.

3.1.3.3 Look and Feel Characteristics of a Widget : “StyleSet” Parameter

Widget State Parameters are defined in Table 3.1.3.3.

Table 3.1.3.3 — Widget StyleSet Parameter

Parameter

Description

StyleSet

StyleSet allows the UA to select from a predefined set of graphical
characteristics to be applied to a widget. This serves two purposes. First, many
graphical capabilities (color depth, halo, fill styles, line weights/patterns,
blinking, transparency, fonts, character highlighting, kerning, rotation, etc.) are
inherently a function of CDS architecture. Guidance requiring or disallowing
any of these characteristics is beyond the scope of this document.

Second, the application of these characteristics is usually intended by the
aircraft OEM to be consistent across all UAs for common state conditions.
Indexing among predefined styles supports this goal. Common state conditions
can be defined as conditions that impact more than one user application in the
same way (e.g., Alert, Caution). It can also be used by a single application for
convenience and control of hidden characteristics.

Thus, any graphical characteristics set by StyleSet that match individually
accessible graphical characteristics will be overridden by the values specified

ARINC SPECIFICATION 661 — Page 21
3.0 WIDGET LIBRARY

Parameter Description

in the StyleSet. All other parameters take on their default values. Hidden

graphical characteristics used for representing common state conditions are

only accessible via StyleSet commands.

This Specification defines one default SyleSet value:

STYLE_SET_DEFAULT

meaning that default graphical characteristics will be used.

Aircraft OEM (or CDS supplier) defines the list of StyleSet values.

Examples of possible StyleSet values:

STYLE_SET_NOMINAL STYLE_SET _SELECTED

STYLE_SET_ADVISORY STYLE_SET_PRESELECTED

STYLE_SET_CAUTION STYLE_SET_ENGAGED

STYLE_SET_WARNING STYLE_SET_ARMED
STYLE_SET _NOT_ENGAGED

3134 Positioning/Size of a Widget

Widget Position/Size Parameters are defined in Table 3.1.3.4.

Table 3.1.3.4 — Widget Position/Size Parameters

Parameter Description
PosX The X position of the widget reference point is an offset with respect to the absolute
X position of the reference point of the widget container (parent).
PosY The Y position of the widget reference point is an offset with respect to the absolute
Y position of the reference point of the widget container (parent).
SizeX The X dimension size (width) of the widget.
SizeY The Y dimension size (height) of the widget.

The PosX, PosY, SizeX and SizeY parameters define a clipping area for the widget.
Graphical characteristics must not be rendered outside this area.

This area defines the static area of the widget. For widgets containing a “Pop Up
part” such as ComboBox, only the static part is constrained by these parameters.

3.1.3.5 Parameters Related to Focus Navigation

Management of directional motion of the focus, e.g., through arrow keys, is internal
to CDS, and therefore does not require interface level parameters.

However, it is possible for the UA to specify a “logical” navigation order through the
use of a given key (for example, tabulation). This can be done using the
“‘NextFocusedWidget” parameter.

To allow automatic motion of the focus after a selection or a confirmation event, a
Boolean parameter “AutomaticFocusMotion” will be used in combination with the
“‘NextFocusedWidget” parameter.

Widget Common Structure is defined in Table 3.1.3.5.

ARINC SPECIFICATION 661 — Page 22

3.0 WIDGET LIBRARY

Table 3.1.3.5 — Widget Common Structure

Parameter Description

NextFocusedWidget Widget ident of next widget to be focused upon crew member
validation.

AutomaticFocusMotion A661_FALSE:

No automatic motion: after a crew member validation, the focus
remains on the widget until an explicit move of the focus.

A661_TRUE:
Move automatically the focus after a crew member validation to the
next widget according to the NextFocusedWidget parameter

Focus can be moved among widgets residing in a layer, but can also be moved
among widgets residing in different layers, even if those layers are owned by
different User Applications. Focus navigation between widgets in different
layers is discussed in Section 3.6.4.

3.1.4 Widget Events

Widgets notify User Applications of events caused by crew actions. More precisely,
when the human operator uses the CDS to act on an interactive widget, and the
action generates an event, the CDS notifies the UA owning the layer that contains
the widget, according to the structure defined in Table 4.5.4.2-3.

The events that each widget can generate are listed in tables that appear with the
widget definition, generally shown between the Creation Structure Table and the
Runtime Modifiable Parameters Table for that widget.

Widget events (A661_NOTIFY_WIDGET_EVENT) are the result of human actions.
Events are not the result of a CDS-UA interaction where the resulting event is either
redundant, or represents a state change that can be easily determined by the UA.

An example of events resulting from human actions: assume a RadioBox containing
two ToggleButtons (and/or CheckButtons), one of them currently selected. If a
person selects the other button, the newly selected button sends an
A661_EVT_STATE_CHANGE event with the state field set to A661_SELECTED.
The CDS is required to set the other button to the unselected state, so that button
does not send an event to the UA. Sending an “unselected” event is redundant
(wastes resources), and dealing with it may complicate the UA by forcing it to discern
the difference between an required CDS behavior and a race condition (see

Section 3.1.2.2).

An example of a redundant event: if a UA uses A661_CMD_SET PARAMETER to
deselect a button in the previous example, or to put a different button in the selected
state, no A661_NOTIFY_WIDGET_EVENT(s) would be generated, for the reasons
stated above. It may seem desirable in some cases to have an “acknowledge” of the
command, but most SetParameter commands do not accommodate such an
acknowledge. Some solution to that problem (which might be a lossless
communication path or a lower-level communication protocol) must exist, and that
solution makes this “acknowledge” event redundant.

Widgets that trigger events are listed in Table 3.1.4.

ARINC SPECIFICATION 661 — Page 23
3.0 WIDGET LIBRARY

Table 3.1.4 — Widget Event Cross Reference

w [m]
o E T}
Z 3 =) o o
g § L |<_3 7 o Z al <
Events z ol O < 3 & 2 a S w <
< | 2 N | = =) X =
T 9 > < = ol < w| w| = o| X
¢ | w ol W x|l al = % w o o 2w %o
w | a | Z| E| © Ol w| o X I o =l o
z | 2 2ol &l w ol | E QS 2! | & L | 3| €| <
"‘|Z|”‘|°'|°|m'°Z‘z’—'<E§§::££80-::88
¥ |l e XS WU SO EEOS a9 g8
00009 Jw=waaaol G oo w 2 2 92 uwZIZ
o oo o o= s W S S Yook 222 a3 90
X\ x g Edg S San oo TR
S| 2220 e QlWolouwuwmeFEE<I IS
<"l ol ol o| M S |:l o wl w| B B e >| ;I =
Widgets S5 55 &5 5555 E5EEEEEEEEELESE
w ml W ml W W))Wl ml LIJI W Wl i w LIJI W w LIJI W W) w
© | © © o © ©f © © © © © © © o © © © © © © © ©
© O O O © ©O O O O Y| W O ©f O Y YW V| YV Y © v ©
< | € € € € € € € € € € € € € € <« € € < < « <
ActiveArea X
CheckButton (0]
ComboBox X
ComboBoxEdit X X X|X|X
CursorOver X | X|X
CursorPosOverlay X
EditBoxMasked X X | XX
EditBoxMultiLine X XX | X
EditBoxNumeric X X | XX
EditBoxNumericBC X X[X|X
D
EditBoxText X X| XX
MapHorz X
MapHorz_ltemList X
MapHorz_Source X X
MapVert X
MapVert_ItemList X
MapVert_Source X
PicturePushButton X
PictureToggleButto X
n
PopUpMenu X
PopUpMenuButton X
PopUpPanel X
ProxyButton X
PushButton X
ScrollList X X
ScrollPanel X
SelectionListButton X
Slider X
TabbedPanelGroup X
ToggleButton X
WatchdogContainer X|X

O - Event has the same name as used in other widgets but contains different
values.

ARINC SPECIFICATION 661 — Page 24

3.0 WIDGET LIBRARY

3.2 HMI Widget Library Summary

3.2.1 Widget Summary

Table 3.2.1 summarizes the Widget Library.

Table 3.2.1 — Widget Library Summary

Widget Type

Description

ActiveArea

The Active Area widget is a transparent rectangular area defining an interactive
area. Selection of this area will send an event to the owner application.

BasicContainer

The BasicContainer widget manages the visibility and the interactivity of a
group of widgets.

BlinkingContainer

The purpose of the BlinkingContainer widget is to apply blinking behavior to a
group of widgets.

BufferFormat

This widget provides a means for compressing data from different widgets (in
the same layer) in one buffer. Use for this widget could be initialization of a
page, or refresh of big widget. The bufferFormat format is defined at definition
phase. The content of the buffer is exchanged at run-time from the UA to the
CDS.

CheckButton

A CheckButton allows the crew-member to select or not an option. (other
names: Radio/Toggle box).

ComboBox

A ComboBox is a widget providing a means to select one item among a list.
This widget is composed of a static part displaying the selected item and a pop
up part displaying the ScrollList of items.

Connector

The purpose of this widget is to connect a layer to a container of another layer.
In this way it provides the means for a master application to interact on widgets
owned by another UA. Typical use cases are for TabbedPanelGroup, MapHorz
which can mix data from several user applications.

CursorPosOverlay

A CursorPosOverlay consists of a transparent rectangular area of the display.
The distinguishing characteristic of a CursorPos Overlay is that the reportable
event is the current cursor pointer position relative to the CursorPosOverlay
position.

EditBoxMasked

The Masked edit box is an extension of the Text edit box.

The difference with the basic Text edit box is that some characters are not
modifiable by the crew member. Those Characters non-modifiable are
specified by the user application by setting to 0 the “alpha mask” parameter
and the “numeric mask.”

EditBoxNumeric

The numeric edit box allows editing a numeric value. A crew member can
modify this value using its input devices. As it is a numeric value, CDS is able
to increment itself the value. The widget can receive a number of increment or
a numeric key value.

EditBoxText A text edit box allows to display a string, which can be modified by the crew
member (other names: Text field, Text entry box).

GpArcEllipse The graphical primitive GpArcEllipse allows the definition of an arc (portion of
an ellipse or a circle).

GpArcCircle The graphical primitive GpArcCircle allows the definition of a circular arc.

GpCrown The graphical primitive GpCrown allows the definition of a circular filled region.

GpLine The graphical primitive GpLine allows the definition of a line.

GpLinePolar The graphical primitive GpLinePolar allows the definition of a line using a polar
definition.

GpRectangle The graphical primitive GpRectangle allows the definition of a rectangle.

GpTriangle The graphical primitive GpTriangle allows the definition of a triangle.

Picture A picture is a reference to an image available in the CDS. The picture

reference can be modified by the user application. Picture may have different

ARINC SPECIFICATION 661 — Page 25
3.0 WIDGET LIBRARY

Widget Type Description
color not modifiable (unlike characters). Picture has no rotation capability.
Label A Label consists of a non-editable text field at a defined display location.

LabelComplex

A Complex Label consists of a non-editable text field at a defined display
location. The graphical representation is managed through an escape
sequence.

MapHorz_ltemList

MapHorz_ltemList represents a group of related graphics. Example use of the
widget is the creation of flight plan, map background symbols and TCAS
intruders.

MapLegacy

Map Legacy widget provides a means for being compatible with currently use
data format, such as ARINC 702 format for FMS, AEEC 453 format for weather
radar.

MapHorz_Source

MapHorz_Source is a specialized container. It contains widgets expressed in a
common coordinate system. It describes characteristics of the common
coordinate system.

MapHorz

MapHorz consists of a rectangular region on the display, which contains
reference information to allow the display of map features in the cockpit. It
allows multiple sources of information with different coordinate systems to be
fused into a composite map image.

MaskContainer

MaskContainer is intended to apply a referenced mask to a group of widgets.

Panel

A panel groups several widgets together in a rectangular area and has clipping
capabilities.

PicturePushButton

Momentary switched button with Picture, which allows the crew-member to
launch an action (to send an event to the owner user application).

PictureToggleButton Two stable states button with Picture.

PopUpPanel PopUpPanel is a container displayed on the top of other layers. PopUpPanel
visibility can be managed by the CDS using logic defined by the OEM.
Because PopUpPanel is displayed on the top, it should not be used as a
regular container.

PopUpMenu PopUpMenu is a set of selectable items. This menu is displayed on the top of
other layer, but it is affected by clipping area of it parents. PopUpMenu visibility
is managed by the CDS.

PopUpMenuButton PopUpMenuButton is a button providing the ability to display a PopUpMenu.
This mechanism is internal to the CDS.

PushButton Momentary switched button, which allows the crew-member to launch an
action (to send an event to the owner user application).

RadioBox Manages the visibility and the interactivity of a group of CheckButtons or

ToggleButtons. The selection of one of the CheckButtons or the ToggleButtons
is exclusive.

RotationContainer

A RotationContainer has the same capabilities of a BasicContainer. It allows a
rotation transformation to be applied to the children of the container.

ScrollPanel A ScrollPanel is a “sheet container widget”, for which only a subpart is visible
called the “frame”. Scroll controls provide the capability to scroll the visible part
inside the whole sheet.

ScrollList A ScrollList is a list of items, for which only a subpart is visible. Scroll controls
provide the capability to scroll the visible part of items inside the whole list.

Symbol Symbol has rotation and color capability. Symbol widget has a reference to a
table.

TabbedPanel A TabbedPanel widget is a Panel associated with a selection button. This
widget is only for use within a TabbedPanelGroup widget.

TabbedPanelGroup A TabbedPanelGroup groups several TabbedPanel widgets. A

TabbedPanelGroup allows the user application or a crew member using a
selection button to display one of the TabbedPanel widgets. All of the panels
inside the TabbedPanel widgets occupy the same display space. Only one may
be displayed at a time.

ARINC SPECIFICATION 661 — Page 26

3.0 WIDGET LIBRARY

Widget Type

Description

ToggleButton

Two stable states button with text.

TranslationContainer

A TranslationContainer is similar to a BasicContainer. It allows a translation
transformation to be applied to the children of the container.

WIDGET EXPANSION SUPPLEMENT 1

ComboBoxEdit Like ComboBox, ComboBoxEdit provides a means to select one item in a list of
items. This widget is composed of a static part displaying the selected item and
a pop up part displaying possible items.

EditBoxMultiLine EditBoxMultiLine is a text edit box for displaying text across several lines in a

scrolling area.

ExternalSource

The function of the ExternalSource widget is to specify to the CDS where an
external input should appear on the display. For example, an external input
may be a video signal input or a bitmap image.

MapGrid MapGrid provides a means for conveying arrays of data to the CDS that are
rendered as area fills. The intended use is for filling areas on background
layers of the NAV window with colors and/or patterns that indicate terrain
topography, precipitation intensity, or other irregular, dynamic data.

MapVert The MapVert widget is the counterpart of the MapHorz widget for a vertical

display made of a slice presentation. It is based on Cartesian coordinate
system.

MapVert_ltemList

The MapVert_ItemList is equivalent to the MapHorz_ItemList for vertical
displays. A MapVert_ltemList contains a list of Items to be drawn.

MapVert_Source

The MapVert_Source is the equivalent of the MapHorz_Source for vertical
displays. The MapVert_Source widget is a specialized container. It contains
some MapVert_ItemList widgets to display Items expressed in a common
coordinate system.

MenuBar

A MenuBar is a widget containing PushButtons, PicturePushButtons and
PopUpMenuButtons. It implements specific behaviors to move from one button
to another.

WIDGET EXPANSION SUPPLEMENT 2

MutuallyExclusive

The MutuallyExclusiveContainer groups children widgets and provides control

Container to assure that only one child is visible at the same time. The
MutuallyExclusiveContainer has no graphical representation.

ProxyButton The ProxyButton directs select event from physical keys present in the CDS to
any widget with a select event.

WatchdogContainer This widget is used to assure certain sets of parameters are refreshed at a
defined rate. If the timer is not refreshed at the required rate the CDS sends an
event to the UA and sets automatically displays a predefined child widget.

Slider A Slider allows the crewmember to select a value between the range of

MIN_VALUE and MAX VALUE. The Slider can be displayed in either the
horizontal or vertical axis.

PictureAnimated

A PictureAnimated is a reference to a set of images available in the CDS that
can not be modified by the user application. By displaying this set of pictures
successively at a frequency defined as a parameter of the widget, the CDS
performs an animation.

SymbolAnimated

The SymbolAnimated, widget is defined by a sequence of symbol references,
along with orientations and relative movements for each cycle of the animation.

SelectionListButton

The SelectionListButton allows a crew member to select one entry within a list.
This widget is composed of a fixed label and a pop up part displaying the
ScrollList of items.

WIDGET EXPANSION SUPPLEMENT 3

EditBoxNumericBCD

The EditBoxNumericBCD is very similar to EditBoxNumeric and has the
same general features except that it allows the entry of non base 10
values such as latitude or time.

ARINC SPECIFICATION 661 — Page 27
3.0 WIDGET LIBRARY

Widget Type Description

CursorRef This widget is used to define a screen or map location that can be used
with the A661_REQ_CURSOR_ON_WIDGET command.

CursorOver This widget is similar to the ActiveArea widget, but generates events as
soon as the cursor enters the widgets active area.

FocusLink This widget is used to define a sequence of NextFocusedWidgets that
crosses between one layer and another.

Focusin Together with FocusOut, this widget is used to define a sequence of
NextFocusedWidgets that crosses between one layer and another.

FocusOut Together with Focusln, this widget is used to define a sequence of

NextFocusedWidgets that crosses between one layer and another.

SizeToFitContainer

This widget is used to dynamically size a set of child widgets so that they
are all the same size. The function can be applied in the vertical or
horizontal axis.

ShuffleToFit Container

This widget is used to arrange a set of child widgets so that there is no
unused space between them. If a child is made invisible all of the
remaining children are moved to close up the space.

3.2.2 Widget Classification

Table 3.2.2-1 describes the categories of widgets in the Widget Library. Table 3.2.2-
2 defines the widget classifications. These categories are not exclusive, and a
widget may belong to several categories.

Table 3.2.2-1 — Widget Library Categories

Widget Category

Description

Container

Container is a widget that can be referenced as a parent.

A Container groups several widgets together. This category of widget is
used to design the hierarchical structure of the widget inside the HMI
pages.

Graphical Representation

Category of widgets which have a graphical representation.

Text string

Category of widget that displays a string of text.

Interactive

Category of widgets on which the crew member can interact. An
Interactive widget has an Event Structure table attached (refer to Section
3.0, Widget Library).

Map management

Category of widgets related to the management of the Dynamic widget
inside map. Typical use case for this symbol is Navigation Display format.

Dynamic motion

Category of widgets which can change of position at run-time.

Utility Category of widgets that are not containers, do not have graphical
representation and that are not interactive. These widgets have
specific functionality in order to extend or optimize the ARINC 661
defined principles.

UA Validation Category of widgets which may have their events (if applicable)

validated by the UA. The codes are defined as follows:

A = Supports A661_ENABLE but UA Validation is not applicable for
this widget type
B = Supports A661_ENABLE and uses A661_ENTRY_VALID

See Section 3.2.9 for more information.

ARINC SPECIFICATION 661 — Page 28
3.0 WIDGET LIBRARY

Table 3.2.2-2 — Widget Classification Table

Widget Categories/Widgets 5| 4 o |88 2 g S
5| 8| §51[58¢ 2 s z| 3
5888 | 558|882 3 2 E| <5
O == E O= 0 s — £ =] o>
3.3.1 ActiveArea X X B
3.3.2 BasicContainer X A
3.3.3 BlinkingContainer X
3.34 BufferFormat
3.35 CheckButton X X X B
3.3.6 ComboBox X X X B
3.3.7 Connector A
3.3.8 CursorPosOverlay X A
3.3.9 EditBoxMasked X X X B
3.3.10 EditBoxNumeric X X X B
3.3.11 EditBoxText X X X B
3.3.12 GpArcEllipse X X
3.3.13 GpArcCircle X X
3.3.14 GpCrown X X
3.3.15 GpLine X X
3.3.16 GpLinePolar X X
3.3.17 GpRectangle X X
3.3.18 GpTriangle X X
3.3.19 Picture X
3.3.20 Label X X X
3.3.21 LabelComplex X X
3.3.22 MapHorz_ItemList X X X X B
3.3.23 MapLegacy X X
3.3.24 MapHorz_Source X X X A
3.3.25 MapHorz X X A
3.3.26 MaskContainer X
3.3.27 Panel X X A
3.3.28 PicturePushButton X X X B
3.3.29 PictureToggleButton X X X B
3.3.30 PopUpPanel X X X
3.3.31 PopUpMenu X X X
3.3.32 PopUpMenuButton X X X B
3.3.33 PushButton X X X B
3.3.34 RadioBox X A
3.3.35 RotationContainer X
3.3.36 ScrollPanel X X X B
3.3.37 ScrollList X X X B
3.3.38 Symbol X X
3.3.39 TabbedPanel X X X A
3.3.40 TabbedPanelGroup X X X B
3.3.41 ToggleButton X X X B
3.3.42 TranslationContainer X
WIDGET EXPANSION
SUPPLEMENT 1
3.4.1 MapGrid X X

ARINC SPECIFICATION 661 — Page 29
3.0 WIDGET LIBRARY

Widget Categories/Widgets ? IS o E $ g fz: .§
S| .| 551[58¢ 2 8 2| 5
S|1855| =5 (8§82 % 2 z| <%
O == E Oz O s — £ =] o>
34.2 ExternalSource X
3.4.3 MapVert X X A
3.4.4 MapVert_Source X X X A
3.4.5 MapVert_ItemList X X X X B
3.4.6 EditBoxMultiLine X X X B
3.4.7 ComboBoxEdit X X X B
3.4.8 MenuBar X X A
WIDGET EXPANSION
SUPPLEMENT 2
3.5.1 MutuallyExclusive Container X A
3.5.2 ProxyButton X A
3.5.3 WatchdogContainer X
3.5.4 Slider X X B
3.5.5 PictureAnimated X
3.5.6 SymbolAnimated X X
3.5.7 SelectionListButton X X X B
WIDGET EXPANSION
SUPPLEMENT 3
3.6.1 EditBoxNumeric BCD X X X B
3.6.2 CursorRef X
3.6.3 CursorOver X X A
3.6.4.1 | FocusLink X
3.6.4.2 | Focuslin X
3.6.4.3 | FocusOut X
3.6.5 SizeToFitContainer X X X A
3.6.6 ShuffleToFit Container X X X A

3.2.3 Container

A Container is a widget that can be referenced as a parent. A Container groups
several widgets together. This category of widget is used to design the hierarchical
structure of the widget inside the HMI pages.

All objects within a Container become invisible when the Container becomes
invisible, as controlled by the Container visible parameter. This should not
automatically affect the current value of each widget parameters. The UA is
responsible for insuring the coherence of its HMI, for instance the management of
EditBoxText inner state. When a container becomes invisible, a contained EditBox
cannot stay in its EDIT inner state.

All objects within a container become non-interactive when the Container becomes
non-interactive, controlled by the Container enable parameter. This will not
automatically affect the current value of each widget parameters.

Widgets placed within Container widgets have their coordinates referenced to the
PosX, PosY reference point of the Container. If the Container has no reference
point, widgets placed within the Container have their coordinates referenced to the
PosX, PosY of the first parent containing a reference point.

ARINC SPECIFICATION 661 — Page 30

3.0 WIDGET LIBRARY

Table 3.2.3.1 describes the possible children of Container widgets. Although an

ARINC 661 Layer is not a widget, it has been listed with the Containers because of

its capability to be the parent of widgets.

3.2.3.1

Possible Children of Container Widgets

Possible Children of Container Widgets is defined in Table 3.2.3.1.

Table 3.2.3.1 — Possible Children of Container Widgets

Parents

Children

BlinkingContainer

MapHorz

MapHorz_Source
MapVert
MapVert_Source
MaskContainer
MenuBar

RadioBox

RotationContainer

ShuffleToFitContainer

TabbedPanel

TabbedPanelGroup

TranslationContainer

ActiveArea

X | sizeToFitContainer

x

BasicContainer

BlinkingContainer

X|X|X| BasicContainer

XXX MutuallyExclusiveContainer

X|X|X| panel

X|X|X| PopUpPanel

X |X|X| scrollPanel

XXX

X | X|X] WatchdogContainer

BufferFormat

CheckButton

ComboBox

XX

| > || || x [| ayer

XX

XX

XX

X| X

x| X

XX

Connector

CursorPosOverlay

EditBoxMasked

EditBoxNumeric

EditBoxText

x| X | X

x| X| X

GpArcCircle

GpArcEllipse

GpCrown

GpLine

GpLinePolar

GpRectangle

GpTriangle

Label

XXX XXX XX

XXX XXX XX

XXX XXX XX

XXX XXX XX

LabelComplex

MapHorz

XXX XXX X XX X XX X X [X

XXX XXX XXX X X[X | X | X

XXX XXX X XXX X[X | X | X

XXX XXX X XX XXX X X[X[X | X

XXX XXX XXX X X[X X | X

XXX XXX XXX XXX | X | X

XXX XXX X XX XXX X X[X[X | X

XXX XXX XXX X X[X | X | X

MapHorz_ltemList

MapHorz_Source

X

MapLegacy

MaskContainer

Panel

Picture

PicturePushButton

PictureToggleButton

X| X[X[X

X| X[X[X

PopUpMenu

PopUpMenuButton

XXX X X[X[X

x

x

PopUpPanel

XXX XXX XX

XXX XXX X | X

XXX XXX X | X

XXX XXX X | X

XXX XXX X | X

XXX XXX X | X

XXX XXX X | X

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 31

Parents

Children

BlinkingContainer

MapHorz

MapHorz_Source
MapVert

MapVert_Source

MaskContainer

RadioBox

RotationContainer

ShuffleToFitContainer

TabbedPanelGroup

TranslationContainer

PushButton

> | MenuBar

X | sizeToFitContainer

x

RadioBox

RotationContainer

ScrollList

ScrollPanel

x| X

x| X

Symbol

X|X|X|X|X|X] BasicContainer

XXX X| XX MutuallyExclusiveContainer

x| || >|>|>| panel

XXX XXX PopUpPanel

X|X|X|X|X|X| scrollPanel

XX X|X|X|X| TabbedPanel

X[X[X| X[X|X| watchdogContainer

TabbedPanel

TabbedPanelGroup

ToggleButton

TranslationContainer

XX [X

| > || || ||| || Layer

X([X|X

XXX

X([X|X

X([X| X

X([X| X

X([X| X

WIDGET EXPANSION
SUPPLEMENT 1

ComboBoxEdit

EditBoxMultiLine

ExternalSource

XXX

XXX

XXX

XXX

x| X| X

x| X| X

XXX

XXX

MapGrid

MapVert

MapVert_ItemList

MapVert_Source

MenuBar

WIDGET EXPANSION
SUPPLEMENT 2

MutuallyExclusive
Container

x

X

X

X

X

X

x

X

ProxyButton

WatchdogContainer

Slider

PictureAnimated

SymbolAnimated

SelectionListButton

XXX XXX

XXX X[XX

XXX X[XX

XXX X[X[X

XXX X[XX

XXX X[XX

XXX X[XX

XXX XXX

WIDGET EXPANSION
SUPPLEMENT 3

EditBoxNumericBCD

x

CursorRef

CursorOver

FocusLink

Focuslin

FocusOut

SizeToFitContainer

ShuffleToFitContainer

XX X[XX | X[X| X

XX XXX | X[X[X

XX X[X[X | X[X]| X

XX XXX | X[X[X

XXX XXX | X[X[X

X XXX X | X[X[X

XX | X[X[X| X

XX X[XX | X|X| X

ARINC SPECIFICATION 661 — Page 32

3.0 WIDGET LIBRARY

3.2.4 Graphical Representation

Most widgets have a graphical representation. Those that do manifest different
appearance aspects according to their StyleSet parameter value. For a given
StyleSet, non-interactive widgets have one graphical representation, while
interactive widgets may have several graphical representations based on internal
state.

3.2.5 Text Strings

3.2.5.1

Some widgets and symbols can contain a string of text (digits, characters, and
related symbols). This section describes the available character set for
concatenation into a text string.

It also describes the escape sequences principles. The escape capabilities are only
available for the following widgets:

e LabelComplex
e ScrollList

The escape sequences may be embedded in a text string to allow special formatting
to occur. The default graphic properties for the text are defined through the
“DefaultStyleText” parameter.

For widgets containing a text string, the “MaxStringLength” parameter defines the
maximum size of the string; the size is expressed in bytes. This size includes the
NULL character that ends the string. For strings containing escape sequences, this
size includes all characters, plus the escape sequences, plus the NULL character
that ends the string. If several NULL characters end the string (for padding), only the
first one is counted inside this length.

Concerning the SetParameter command for modifying a text string, in the
A661_ParameterStructure_String or the StringArray_CellStructure, the command
structure includes a “StringSize” parameter. This parameter follows the same rule as
“MaxStringLength” parameter.

Available Character Set

Table 3.2.5.1 defines the characters available for all text strings defined in this
specification, (except for the ESC char whose use is described elsewhere). The
characters in this table are representative of the shapes. It is not intended to define a
font. ARINC 661 characters are stored in a single byte, having codes between
0 and 255 inclusive. Characters labeled “ASCIl / UNICODE” correspond both
to ASCIl and UNICODE. Characters labeled “A661 Extensions” are ARINC 661
specific and correspond to neither ASCIl nor UNICODE. ARINC 661 characters
not defined in this section are OEM dependent.

ARINC SPECIFICATION 661 — Page 33
3.0 WIDGET LIBRARY

Table 3.2.5.1 — Available Character Set

Control Characters (ASCIl / UNICODE)
Hex | Char | Description

hOO | NULL | Null character, character for ending a text string.

hOA | LF Line Feed

hOD | CR Carriage Return

h1B | ESC Escape Character, character beginning all escape sequences.

Printing Characters (ASCII/UNICODE)

Hex | Char | Description Hex | Char | Description Hex | Char | Description
h20 space h4A | J h74 |t

h21 | ! h4B | K h75 | u

h22 | “ h4C | L h76 | v

h23 | # h4aD | M h77 | w

h24 | $ h4E | N h78 | x

h25 | % h4F | O Letter O h79 |y

h26 | & h50 | P h7A |z

h27 |’ apostrophe h51 | Q h7B | {

h28 | (h52 | R h7C | |

h29 |) h53 | S h7D 1}

h2A |~ h54 | T h7E_| ~

h2B | + h55 | U Printing Characters
h2C |, comma hs56 |V

h2D | - dash (minus) h57 | W (A661 Extensions)
h2E | . point h58 | X

h2F |/ slash h59 | Y Hex | Char | Description
h30 | 0 digit zero h5A | Z h80 | A overfly triangle
h31 |1 h5B | [h81 o degrees
h32 |2 h5C |\ hg2 | O diamond
h33 |3 h5D |] h83 |[| box

h34 |4 h5E | A h84 | « Left arrow
h35 |5 h5F | _ underscore h8s | — Right arrow
h36 |6 h60 |- hgé | 1 Up arrow
h37 |7 h6é1 | a hg7 | | Down arrow
h38 |8 hé2 |b

h39 |9 hé3 |c

h3A | : colon h64 | d

h3B | ; semicolon h65 | e

h3C | < heé | f

h3D | = hé7 | g

h3E | > hé8 | h

h3F | ? h69 | i

h40 | @ h6A | j

h41 | A h6B | k

h42 | B heC | |

h43 | C héD | m

h44 | D h6E | n

h45 | E h6F | o

h46 | F h70 | p

h47 | G h71 | q

h48 | H h72 | r

h49 |1 h73 | s

ARINC SPECIFICATION 661 — Page 34

3.0 WIDGET LIBRARY

3.2.5.2 Notation Examples
For example, a text code is designated by ‘G’ or h47
A text string is designated by, as an example: ‘GH12’. This string is the
concatenation of the following text codes: ‘G’, ‘H’, ‘1’, ‘2'.
Kxxx : describes a constant value (code or string).
Txxx : describes a type of element. It represents a set of text values (code or string).
“®“ is the concatenation symbol.
Examples of concatenation follow:
Concatenation of strings -
If Kyyy = ‘0’ and Kxxx = ‘abc’ then Kyyy®Kxxx = ‘Oabc’
Concatenation of sets -
If Kyyy ='0"and Txxx = {'a’, ‘b’, ‘c’} then Kyyy®Txxx = {‘0a’, ‘Ob’, ‘0c’}
3.25.3 Change Style Capabilities
Table 3.2.5.3 lists the available change style capabilities through escape sequence.
Table 3.2.5.3 — Escape Sequence Types

Escape Escape Sequence | Description

Capabilities Type

Foreground Color | TForeColor Sets the text color. Setting this Escape sequence in the middle
of the string will cause all following text to be the new color.

Background TBackColor Sets the background fill color. Setting this Escape sequence in

Color the middle of the string will cause all following text to have the
new background color.

Font TFont Sets the font of the text. Setting this Escape sequence in the
middle of the string will cause all following text to use the new
font.

Videolnv TVideolnv Inverse video between the current foreground and background
color. The inverse video is applied to characters between this
two escape sequences: a Start and an End sequence.

Animation TAnimation Animation of text is applied to characters between two escape
sequences: Start and End sequence.

Underline TUnderline Underline characters capability. Underlining is applied to
characters between this two escape sequences: a Start and an
End sequence.

Outline TOutline An Outline capability. It is the border definition around text.

Bold TBold Bold characters capability. It is applied to characters between
this two escape sequences: a Start and an End sequence.

Crossed TCrossed Crossed-characters capability. It is applied to characters
between this two escape sequences: a Start and an End
sequence.

Framed TFramed IFramed characters| capability. It is applied to characters
between this two escape sequences: a Start and an End
sequence.

Repeat Character | TRepeat Repetition of a set of characters for a specified number of

times. It is applied to characters between two escape

ARINC SPECIFICATION 661 — Page 35
3.0 WIDGET LIBRARY

Escape Escape Sequence | Description
Capabilities Type
sequences: Start and End sequence. The repetition number is
the first hex value after the start sequence. It is a hex value
from 0 to 255 representing the integer number of times to
repeat the set of characters.
3.254 Default Graphic Properties
The “DefaultStyleText” parameter, described in Table 3.3.21-1 (LabelComplex) and
Table 3.3.37-1 (ScrollList), indicates if escape sequences are used inside string of
the widget. In the case of escape sequence use, it also describes the default
background color, foreground color and font for the widget strings.
3.2.5.5 Escape Sequences Description
All escape sequences begin with an “ESC” character, shown in Table 3.2.5.5-1,
Escape Sequences Description. An Escape Identifier follows the ESC character
(values from h40 to h51 as defined in Table 3.2.5.5-2) and any specific parameters
required by the sequence (designated by Tvalue). Some escape sequence will apply
to the following characters, for instance TForeColor, while some escape sequences
will apply between the start and end sequences, for instance TVideolnv.
Escape Sequences Descriptions are defined in Table 3.2.5.5-1.
Table 3.2.5.5-1 — Escape Sequences Description
Type Starting Sequence Ending Sequence Escape Sequence Size (bits)
TOutline - - ESC®Koutline®Tvalue0 24
TBackColor - - ESC®KbackColor®Tvalue1 24
TForeColor - - ESC®KforeColor®Tvalue1 24
TFont - - ESC®Kfont®Tvalue2 24
TVideolnv ESC®Kvideolnv_B ESC®Kvideolnv_E 16
TAnimation ESC®Kanimation B ESC®Kanimation E 16
TUnderline ESC®Kunderline B ESC®Kunderline_E 16
TBold ESC®Kbold B ESC®Kbold E 16
TCrossed ESC®Kcrossed B ESC®Kcrossed E 16
TFramed ESC®Kframed B ESC®Kframed_E 16
TRepeat ESC®Krepeat B®P1 | ESC®Krepeat E 24 and 16

Where:

P1: is a hex value from 0 to 255 representing the integer number of times to repeat
the set of characters embedded between the escape sequences:
“‘ESC®KRepeat B®P1” and “ESC®KRepeat_E”

TvalueO: Standard for Outline

Bit 1 =T (line on Top)

Bit 2 = B (line on Bottom)
Bit 3 =L (line on Left)

Bit 4 = R (line on Right)

ARINC SPECIFICATION 661 — Page 36

3.0 WIDGET LIBRARY

Binary value Hex code Description
0011 0000 h30 No Line
0011 0001 h31 T

0011 0010 h32 B

0011 0011 h33 B+T

0011 0100 h34 L

0011 0101 h35 T+L

0011 0110 h36 B+L

0011 0111 h37 T+L+B
0011 1000 h38 R

0011 1001 h39 T+R

0011 1010 h3A R+B

0011 1011 h3B B+T+R
0011 1100 h3C L+R

0011 1101 h3D L+R+T
0011 1110 h3E L+B+R
0011 1111 h3F B+T+L+R (frame)

Tvalue1 = {airframe manufacturer/system integrator-dependent list}

Tvalue2 = {airframe manufacturer/system integrator-dependent list}

Escape Identifers are defined in Table 3.2.5.5-2.

Table 3.2.5.5-2 — Escape Identifier

Escape ldentifiers Value
Koutline h40
KforeColor h41
KbackColor h42
Kfont h43
Kvideolnv_B h44
Kvideolnv_E h45
Kanimation_B h46
Kanimation_E h47
Kunderline_B h48
Kunderline_E h49
Kbold_B h4A
Kbold_E h4B
Kcrossed B h4C
Kcrossed E h4D
Kframed_ B h4E
Kframed_E h4F
Krepeat B h50
Krepeat E h51

3.2.6

ARINC SPECIFICATION 661 — Page 37
3.0 WIDGET LIBRARY

Interactive

Interactive widgets are widgets that have the ability to send an event to their UA. An
interactive widget has an Event Structure table attached. Some interactions on these
widgets induce an event transmitted to the UA. These widgets will implement
different graphical representations according to their state. Refer to Section 3.1.2,
Widget States.

3.2.7 Dynamic Motion

UAs have the ability to move dynamic motion widgets at run-time. The parameters
PosX, PosY are modifiable at run-time for a dynamic motion widget.

3.2.8 Map Management

3.2.8.1

The map management category of widgets relates to the management of the
symbology inside a map. This section describes a collaboration between widgets
fulfilling a map functionality.

There are two types of map: Horizonal and Vertical. In both cases interaction
between widgets composing a Map is similar. Following widgets are considered as a
part of Map Management group:

For Horizontal Map:

e MapHorz
MapHorz_Source
MapHorz_ItemList
MapGrid

For Vertical Map:

o MapVert
MapVert_Source
MapVert_ItemList
e MapGrid

For more detailed information about a specific widget refer to the corresponding
paragraph in Section 3.3. Widgets as well as a set of predefined symbols are defined
at definition time. Number and position of symbols vary at runtime.

Horizontal maps have been used in avionics systems for a considerable amont of
time. More recently, vertical maps have been introduced. For this reason more in
depth analysis is performed for the horizontal map.

Horizontal Map Management

A typical example of horizontal map management widgets is the navigation display
format.

A MapHorz_ltemList contains a list of items to be drawn. The type of each item
inside the MapHorz_ItemList can be modified at run-time, which makes the list
dynamic. A set of parameters is associated with each type of item.

ARINC SPECIFICATION 661 — Page 38

3.0 WIDGET LIBRARY
COMMENTARY

MapHorz_ItemList could be used in the creation of flight plan or map
background symbols from FM Application, and identification of TCAS
intruders from TCAS application.

Addressing of a Item inside a MapHorz_ItemList is described Section 3.3.22,
MapHorz_ItemList and illustrated in Appendix E, Map Management Tutorial.

MapGrid widget draws map background as a series of rectangles. More details
about MapGrid can be found in Section 3.4.1.

Any Item in MapHorz_ItemList has its position expressed in a local coordinate
systems, as opposed to the display unit or screen coordinate system. Thus, to
display a MapHorz_ltemList in a format image, a transformation into a window
reference system is necessary. This transformation is defined in two steps. First,
information about type of local coordinate system is contained in MapHorz_Source.
Data in MapHorz_ItemList is meaningless without MapHorz_Source
MapDataFormat.

Similar in case of MapGrid, IncrementX and IncrementY are in real-world units
defined in MapHorz_Source. As a result, each MapGrid and MapHorz_ltemList has
to be a child of MapHorz_Source. Second step is to convert known world coordinate
system to screen coordinate system. MapHorz allows to convert from real-world
units to screen coordinate system. Rationale behind splitting transformation between
MapHorz and MapHorz_Source was to allow objects to merge from multiple world
coordinate system into one Map Image. As such, several MapHorz_ltemList and
MapGrids can be merged in one Map even if they use different world coordinate
systems.

MapHorz_ItemList
MapHorz_Source MapHorz
X/LatRange - Coord 1 World coord system Screen Coord system
Y/Lng/Range —> Coord 2
MapDataFormat || Size X/Y
Range
- ScreenRange
MapGrid . . .
Reference(Position/Orientation)
IncrementX
IncrementY

Figure 3.2.8.1 — Coordinate System for MapHorz Widget Management

The UA, which provides MapHorz_ItemList to the CDS, is called a Map User
Application. To allow display of the MapHorz_ltemLists in the display area, the Map
User Application also provides to the CDS characteristics its MapHorz_ItemLists
coordinate system through a widget called MapHorz_Source.

A UA is responsible for passing to the CDS, required reference information for the
CDS to perform the merger. In this way, this UA federates all MapHorz_Source data

3.2.8.1.1

ARINC SPECIFICATION 661 — Page 39
3.0 WIDGET LIBRARY

to enable CDS to perform the merger. This application is called the master
application. The master application provides reference information to the CDS
through a widget called MapHorz widget.

COMMENTARY

In the ND window case, possible implementation would be ND as the
master application while the Map User Applications might be the FMS
User Application, TCAS User Application, or other UA.

Different kinds of UAs could be developed to merge data. The description of such
UAs is beyond the scope of this document.

Link Between MapHorz, MapHorz_Source, MapHorz_IltemList and
MapGrid

From a hierarchical point of view, illustrated in Figure 3.2.8.1.1, MapHorz widget is a
container of MapHorz_Source widgets. It defines reference information for all
MapHorz_Sources that it contains. MapHorz_Sources and MapHorz widget are
defined by different UAs. Thus, MapHorz_Sources and MapHorz widget are defined
in different UALDs or layers. The link between the MapHorz widget and its contained
MapHorz_Source will be insured by a Connector widget (refer to Section 3.3.7,
Connector). The MapHorz widget can specifically contain only Connector(s) and/or
MapHorz_Source(s).

The MapHorz_Source parent can only be the MapHorz widget or the layer. The layer
only contains the MapHorz_Source (one or several). One MapHorz_Source can be
shared between several MapHorz widgets by using the Connector widget.

The master application manages the visibility of MapHorz_Source from other layers
through the connector widget. Indeed the Connector widget has a visibility
parameter.

ARINC SPECIFICATION 661 — Page 40

3.0 WIDGET LIBRARY

The MapHorz_Source is a container of MapHorz_ItemLists and MapGrid. The
MapHorz_Source defines coordinate system characteristics for all its contained
MapHorz_ItemLists and MapGrids.

MapHorz

Connector widget MapHorz Source Connector widget
Master Application ——»/ to MapHorz_Source 1 to MapHorz_Source 2

N /
N \MapHorziltemList Map Grid _'/
~ /
S /
N /
/

L. MapHorz_Source 1 /
Map User Application | ——» /
’
MapHorz_ItemListl 1 MapHorz_ItemList¥2
’

4
Vi

/

C MapHorz_Source 2
Map User Application 2 ——» 4 ~

MapHorz_ItemList21 ~ MapGrid

LEGEND:
E : Layer . .
: Tree of Widgets inside one layer
>) .
:Owner of the Layer = = — — — —. : Connection of one layer to another layer

3.2.8.1.2

Figure 3.2.8.1.1 — Hierarchical Structure For MapHorz Widget Management

Parameter Definition for MapHorz and MapHorz_Source

MapHorz and MapHorz_Source widgets hold parameters to assure that, when it is
time to draw the map, the CDS will have all the required information.

To define the parameters for MapHorz and MapHorz_Source, the system integrator
should review the possible Map User Applications and the kind of display a master
application may require. Several examples of master applications are described in
the Appendix E, Map Management Tutorial.

The MAPHORZ widget is defined by the following parameters:

MAPHORZ:

- MAPHORZ X, Y: Position of the MapHorz widget.

- PRP lat/long: PRP latitude and longitude.

-PRP X, Y : PRP position on the display. Value relative to MAPHORZ X.Y.
- True North Angle : Angle between True North and the Up direction of the display.
- Range Geo referenced; Range in nm.

- Display equivalent Range : | Range in screen unit.

MAPHORZ_SOURCE:
- Coordinate System : Enumerated value. Lat/long is one of these values.

3.2.8.2

3.2.8.3

3.2.84

ARINC SPECIFICATION 661 — Page 41
3.0 WIDGET LIBRARY

Vertical Map Management

A typical example of vertical map management widgets is vertical situation display
format. In previous section we described Horizontal map. Vertical map management
is similar to horizontal with following substitution for Horz to Vert widgets :

e MapHorz> MapVert

e MapHorz_Source-> MapVert_Source
e MapHorz_ltemList> MapVert_ItemList
e MapGrid> MapGrid

Priority Management

The drawing priority between widgets is defined as follows:

o Level 1. The drawing priority between the layer

e Level 2. The drawing priority between the widget inside a layer, as discussed
in Section 2.3. The definition order of the widget inside the UALD defines the
drawing priority. The last defined widget is the higher priority widget

e Level 3. Then inside a MapHorz_ItemList, the drawing priority is defined by
the item order specified by their “ItemIindex” parameter. The higher Itemindex
value has the higher drawing priority

The level 1 and 2 drawing priority are defined statically. The level 3 drawing priority,
which is the drawing priority for the item, is defined dynamically at run-time.

The MapHorz_ItemList introduces the notion of container, which is beneficial for
managing independently groups of items.

COMMENTARY

The FMS could set in different MapHorz_ItemLists different flight
plans, different kinds of background data, etc. The MapHorz_ItemList
allows the FMS to group items with different graphical priorities, which
correspond to different functional groups.

Correlation between items addressing order and drawing order is developed in
Appendix E, Map Management Tutorial.

Map Synchronization Number

MapSynchronizationNumber is a parameter of the Map, MapltemList and
MapGrid widgets (both horizontal and vertical). The parameter can be set at
run-time only. While an initial value cannot be specified in widget creation
structures, the initial value for all MapSynchronizationNumber parameters is
defined as zero.

As the CDS processes a MapHorz widget, it looks at the map synchronization
number. If the MapHorz widget has received a map synchronization number
other than zero, then only those MapHorz_ltemList widgets that have the same
map synchronization number as the parent MapHorz widget are drawn. The
same concept applies to the MapGrid widget, as well as the vertical map
widgets.

ARINC SPECIFICATION 661 — Page 42
3.0 WIDGET LIBRARY

The value zero is used as a “don’t care”, both at the MapHorz and the
MapHorz_ltemList level. If the MapHorz’s map synchronization number is zero
(or if a map synchronization number has not been received from the UA), all
MapHorz_IltemList widgets are processed, regardless of their map
synchronization numbers. Likewise, a MapHorz_IltemList with a map
synchronization number of zero will be processed regardless of the number
set in the parent MapHorz widget.

The idea is that whenever the map configuration changes (for example range
or mode changes), the master ND application can assign and send (through
communications independent of ARINC 661) a new map synchronization
number to applications controlling item lists that are affected by the change.
Once those applications have new map items (matching the new
configuration) available, they send a map item list with the assigned map
synchronization number. The CDS uses the numbers to determine when item
lists are ready to be displayed on a modified map.

A typical (but certainly not the only allowed) sequence of events would look
like this:

1. The Map Master internally decides to update range, scale, rotation,
position, etc. of a map and does all necessary related computations and
preparations.

2. The Map Master increments the Map Synchronization Number in the
MapHorz widget for the affected window (this suppresses rendering of
any incompatible MapHorz_ltemList) and then sends any updated
control parameters to the MapHorz as applicable.

3. Then Map Master notifies the UAs of updated control parameters as
applicable, through unspecified means (e.g. AFDX broadcast
parameters).

4. The UA detects the changes in window control parameters and does all
necessary related computations and preparations. There is no hurry,
because the incompatible MapHorz_IltemLists are no longer being
rendered due to the mismatch of the synchronization numbers.

5. UA sends an updated map item list to CDS (using 661 run-time
messages) and then increments Map Synchronization Number for the
updated MapHorz_ltemList widgets to match (thus allowing the widget
to be drawn). The UA repeats update/increment sequence for other
widgets or widget groups if multiple update cycles are needed for full
refresh.

3.2.9 UA Validation

After the CDS sends a pilot interaction event to the UA, the CDS may suspend
further pilot interactions (exact scope is CDS-dependent) to allow the UA time
to validate the event. In order for this to occur, all of the following are required:

1. CDS will need to know which specific widget instances contain events
which will need to be validated by the UA. To support this the UA must
set the Enable (A661_ENABLE) parameter to

ARINC SPECIFICATION 661 — Page 43
3.0 WIDGET LIBRARY
A661_TRUE_WITH_VALIDATION for each applicable widget instance in
either the DF and/or during run-time.

2. The UA will need to send a notification to let the CDS know when the
UA has completed validating the event. This is accomplished when the
UA sends the Run-time Modifiable Parameter A661_ENTRY_VALID.

See Figure 3.2.9 for an example of this UA validation handshake protocol.

CDS UA

UA sets
AB61_ENABLE = A661_TRUE_WITH_VALIDATION
for PicturePushButton Widget A

A

The pilot selects
PicturePushButton CDS sends A661_EVT_SELECTION to the UA. The UA begins

Widget A. validating the
selection event.

A 4

The CDS prevents
further pilot actions
in the layer to allow
the UA to validate
selection. The UA completes
The UA sends A661_ENTRY_VALID to the CDS. validating the
selection event.

A

CDS allows pilot
actions again.

Figure 3.2.9 — Example of UA Validation of a Pilot Selection

Since not all widget types with A661_ENABLE require UA validation, the codes
in the UA Validation column in Table 3.2.2-2 indicate the following:

A: This widget type does not support UA validation. Thus, the setting of
A661_ENABLE = A661_TRUE_WITH_VALIDATION will be interpreted by the
CDS the same as A661_ENABLE = A661_TRUE. This widget type does not
support A661_ENTRY_VALID.

B: This widget type supports UA validation and, when the UA has completed
validation, the UA will send A661_ENTRY_VALID to the CDS. If during
validation the UA determined the pilot action was valid, then
A661_ENTRY_VALID will be set to TRUE; if invalid, then set to FALSE.

COMMENTARY

CDS implementations based on versions of this specification
prior to Supplement 3 may have been implemented with the
assumption that a value of true (A661_TRUE) in the Enable
parameter (A661_ENABLE) indicates that the UA has activated
the entry validation function. While this is no longer the preferred
usage of the Enable parameter, it should be recognized that such
implementations exist in the field. The widgets for which this
applies are as follows (not an exhaustive list): EditBoxText,

ARINC SPECIFICATION 661 — Page 44

3.3 Widget List

3.0 WIDGET LIBRARY

EditBoxMask, EditBoxNumeric, EditBoxNumericBCD,
EditBoxMultiline and ComboBoxEdit.

This section describes the characteristics and the interface of ARINC 661widgets.
For each widget the definition is divided into parts as follows:

Definition section

Widget parameters table

Creation structure table: CreateParameterBuffer
Event Structure table

Run-time modifiable parameter tables

Specific sections are described as follows:

1.

2.

This section states the categories of the widget, functional description of the
widget and any restrictions to ARINC 661 principles.

This section presents the Parameters Table which describes all parameters
of the object. These parameters are divided into two categories: “Commonly
used parameters” with a reduced description and “Specific parameters” with
a complete description. For “commonly used parameter” full descriptions,
refer to Section 3.1.3. Also, for “commonly used parameters”, additional
information and differences from the norm are underlined.

For each parameter, the following information is presented:

Name of the parameter
Possible modifications of parameter by the UA (“change” column)

o D: parameter set at definition time only through A661_CMD_CREATE
command

o DR : parameter set at definition time through A661_CMD_CREATE and
modifiable at run time through A661_CMD_SET PARAMETER command

o R : parameter modifiable only at run time through
A661 CMD_SET PARAMETER command

Description of the parameter

This section describes the format of the exchanges at definition-time, the Create
command, as well as at run-time, Widget Event notifications and SetParameter
commands for each widget. This description is completed in Section 4.

The coding format is Big Endian. The types are defined by Table 3.3-1. Fields in the
table appear on the bus in the order they are listed.

ARINC SPECIFICATION 661 — Page 45
3.0 WIDGET LIBRARY

Table 3.3-1 — Type of Parameters

Type Standardized Format
uchar unsigned char coded on 8 bits (used for strings, too)
string array of uchar
Ended by NULL character
long long integer coded on 32 bits
ushort unsigned short integer coded on 16 bits
ulong unsigned long integer coded on 32 bits
float IEEE 754 format floating point coding on 32 bits (single precision).
fr(x) Scaled Integer, number of significant bits specified in table. LSB is value
in parenthesis (i.e. X’), divided by 2-raised-to-the-number-of-bits minus
1. Used for angles. Signed.
For example, fr(180) in 16 bits is LSB 0.00549316
fr(180) in 32 bits is LSB 8.381903175442¢e-8.
fr(32768) in 32 bits is LSB 0.0000152587890625.
N/A Non Applicable

All signed numbers are two’s complement form.

In the different structure tables, the structures are built so that:

3.

4Bytes and 8Bytes parameters are aligned on 32 bits
2Bytes parameters are aligned on 16 bits
Any UnusedPads are positioned after parameters within a 32 bit word

This section presents the “Creation Structure Table” which describes the
format of the creation structure: CreateParameterBuffer.

In the Creation Structure Tables, as well as the Event Structure Tables, parameters
are grouped together to form words of 32 bits. Each word is separated from other
words by a full line. When one word of 32 bits is composed of several parameters,
the parts are separated in the table by a dashed line. Refer to the

examples in Table 3.3-2.

Table 3.3-2 — Example of Creation Structure

32 bits Size Value/Range
Words Name Type (bits) When Necessary
1 Param1 | ushort | 16 |]
Param?2 ushort 16
2 Param3 ulong 32
3 Param4 | uchar | 16 |]
Param5 | uchar | 8
Param6 uchar 8

ARINC SPECIFICATION 661 — Page 46
3.0 WIDGET LIBRARY

The parameter order in this table may be different from the order in the Widget
parameter table. Indeed, the Widget parameter table describes parameter functional
aspect, while the Creation structure table describes the parameter buffer coding
aspect.

4. This section presents the “Event Notification Structure” which describes the
structure of the events associated with the widget. It describes the events
that are able to be sent to the UA by the CDS initiated by a crew member
interaction.

5. This section describes the table of parameters modifiable at run time. This
table refers to some parameterStructure. This table describes the accessible
commands to the UA that manages the widget at run-time.

Some widgets have additional sections to define dedicated data structures.
The following sections define widgets in the Widget Library.
3.3.1 ActiveArea

Categories:
Graphical representation
Interactive

Description:

The ActiveArea is transparent rectangular widget. The ActiveArea may have a
graphical representation when this widget is highlighted or when it has the focus. A
selection of this widget by a crew member initiates an event notification sent to the
owner UA of the widget.

Restriction:
None

ActiveArea Parameters are defined in Table 3.3.1-1.

ARINC SPECIFICATION 661 — Page 47

3.0 WIDGET LIBRARY

Table 3.3.1-1 — ActiveArea Parameters

Parameters Change | Description

Commonly used parameters

WidgetType D A661_ACTIVE_AREA

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

EntryValidation R Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.
A661_FALSE
A661_TRUE

ActiveArea Creation Structures are defined in Table 3.3.1-2.

Table 3.3.1-2 — ActiveArea Creation Structure

Size

CreateParameterBuffer Type (bits) | Value/Range When Necessary
WidgetType [ushort | 16 | A661_ACTIVE AREA |
Widgetldent ushort 16
Parentident | ushort | 18 |]
Enable uchar 8 A661_FALSE

A661_TRUE
L] | AGB1_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | 18]
NextFocusedWidget ushort 16
AutomaticFocusMotion uchar 8 A661_FALSE
o | AGBITRUE
UnusedPad N/A 24 10

Table 3.3.1-3 defines the specific event sent by the ActiveArea to the owner

application.

ARINC SPECIFICATION 661 — Page 48
3.0 WIDGET LIBRARY

Table 3.3.1-3 — ActiveArea Event Structures: A661_EVT_SELECTION

Size
EventStructure Type (bits) | Value/Description
Eventident | ushort | 16___| A661_EVT SELECTION
UnusedPad N/A 16 0

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.1-4.

Table 3.3.1-4 — ActiveArea Runtime Modifiable Parameters

Parameterldent Used in
Name of the Size | the ParameterStructure | Type of Structure Used
Parameter to Set Type (bits) (Refer to 4.5.4.5)
Enable uchar 8 A661 _ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure 1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

3.3.2 BasicContainer

Categories:
Container

Description:

The BasicContainer has no graphical representation. Its purpose is to group children
widgets and to provide a means for managing the visibility and the interactivity of this
set of widgets. The contained widgets are positioned with respect to the PosX, PosY
of the BasicContainer. It has no clipping capabilities. The position of the
BasicContainer can be changed at run-time.

COMMENTARY

BasicContainer is different from a TranslationContainer because it can
not be the child of a RotationContainer. BasicContainer can be used
to define, at run-time, the position of a button. Translation/Rotation
containers are used to translate and rotate graphical primitives or
symbols.

Restriction:
N/A

BasicContainer Parameters are defined in Table 3.3.2-1.

ARINC SPECIFICATION 661 — Page 49

3.0 WIDGET LIBRARY

Table 3.3.2-1 — BasicContainer Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_BASIC_CONTAINER

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

PosX DR The X position of the widget reference point
PosY DR The Y position of the widget reference point

BasicContainer Creation Structure is defined in Table 3.3.2-2.

Table 3.3.2-2 — BasicContainer Creation Structure

Size
CreateParameterBuffer Type (bits) | Value/Description
WidgetType [1 ushort | 16 [A661_BASIC_CONTAINER
Widgetldent ushort 16
Parentldent | ushort | 16
Enable uchar 8 A661_FALSE
A661_TRUE
___ A661_TRUE_WITH VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32

The BasicContainer widget does not send any event.

Available SetParameter identifiers and associated data structure are:

Basic Container Runtime Modifiable Parameters are defined in
Table 3.3.2-3.

Table 3.3.2-3 — BasicContainer Runtime Modifiable Parameters

Parameterldent
Name of the Size Used in the Type of Structure Used
Parameter to Set Type (bits) ParameterStructure | (Refer to 4.5.4.5)
Enable uchar 8 A661 _ENABLE A661_ ParameterStructure_1Byte
Visible uchar 8 A661 VISIBLE A661_ParameterStructure 1Byte
PosX long x 2 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY
PosX long 32 A661 POS X A661_ParameterStructure 4Bytes
PosY long 32 A661 POS Y A661 ParameterStructure 4Bytes

ARINC SPECIFICATION 661 — Page 50

3.3.3 BlinkingContainer

Categories:
Container

Description:
A BlinkingContainer is intended to apply blinking behavior to a group of widgets.

Restriction:

N/A

3.0 WIDGET LIBRARY

BlinkingContainer Parameters are defined in Table 3.3.3-1.

Table 3.3.3-1 — BlinkingContainer Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_BLINKING CONTAINER

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

Specific parameters

BlinkingType DR Type of blinking (appearance to be defined by the aircraft OEM).
Value of zero means no blinking. The definition of all other 255 values is
determined by OEM.

BlinkingContrainer Creation Structures is defined in Table 3.3.3-2.

Table 3.3.3-2 — BlinkingContainer Creation Structure Table

CreateParameterBuffer

Size | Value/Range
Type (bits) | When Necessary

WidgetType] . ushort | 16 | A661_BLINKING_CONTAINER
Widgetldent ushort 16

Parentldent] .. ushort | 16 .
BlinkingType] ___ uchar | 8 | .
Visible uchar 8 AB61_FALSE

A661_TRUE

The BlinkingContainer widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in

Table 3.3.3-3.

Table 3.3.3-3 — BlinkingContainer Runtime Modifiable Parameters Table

Name of the

Size Parameterldent Used in Type of Structure Used

Parameter to Set Type (bits) | the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
BlinkingType uchar 8 A661_ BLINKING_TYPE A661_ ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 51
3.0 WIDGET LIBRARY

3.3.4 BufferFormat

Categories:
None

Description:

The objective of this widget is to provide a means for grouping data from different
widgets (but one layer) in one buffer to reduce overhead. For example, rather than
sending <layer id><widget id><parameter id><value><layer id><widget
id><parameter id><value><layer id><widget id><parameter id><value><layer
id><widget id><parameter id><value>, a supplier can instead define the structure:

<widget id><parameter id>
<widget id><parameter id>
<widget id><parameter id>

and at run-time provide just <layer id><widget id><value><value><value>, which is
much more compact. The <widget id> is that of the “BufferFormat” widget.

The buffer structure is fixed at definition time through the BufferStructure parameter.
The maximum size of the buffer of values is a function of the number and the nature
of the parameters. This buffer structure contains a set of parameter modifiable at
run-time. The CDS will perform a set on each parameter identified in the structure.

The widgets referenced in this BufferFormat widget must be defined in the Definition
File before the BufferFormat widget. Uses for the BufferFormat include initialization
of a layer, and refresh of a large number of widgets at the same time.

Restrictions:
e The BufferFormat can only be the child of a layer
e The BufferFormat can not contain “Definition Only” parameters

e The BufferFormat can not contain parameters which are used inside one of
the following structures

A661_ParameterStructure_Buffer
A661_ParameterStructure_BufferOfltems
A661_ParameterStructure_EnableArray
A661_ParameterStructure_EntryPopUpArray
A661_ParameterStructure_StringArray

Indeed, this list corresponds to variable size parameters.

e The BufferFormat can only contain parameters which are used inside one of
the following structures

A661_ParameterStructure_1Byte
A661_ParameterStructure_2Bytes
A661_ParameterStructure_4Bytes
A661_ParameterStructure_String
A661_ParameterStructure_8Bytes

Variable-size structures cannot be used inside the Buffer parameter of the
BufferFormat. The Buffer parameter of the BufferFormat can only be composed of
simple parameter values. One exception is the String, which is preceded by two

ARINC SPECIFICATION 661 — Page 52

3.0 WIDGET LIBRARY

bytes describing the size of the string in bytes (including the NULL character
terminating the string).

BufferFormat Parameters are defined in Table 3.3.4-1.

Table 3.3.4-1 — BufferFormat Parameters Table

Parameters

| Change

Description

Commonly used parameters

WidgetType D A661_BUFFER_FORMAT

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.
The only possible parent of the bufferFormat is the layer, therefore
Parentldent Value: 0

Specific parameters

NumberOf Fields D Number of fields in the buffer

BufferStructure D Pairs of widgetldent / Parameterldent for the value to be sent by the
UA through the bufferFormat. The number of pairs is defined by the
NumberOfFields.
The size of this parameter, in bytes, is
(widgetldent_Size + Parameterldent_Size)* NumberOfFields

BufferOfParameter R Buffer containing the values corresponding to each pair widgetldent /

Parameterldent.

BufferFormat Creation Structure is defined in Table 3.3.4-2.

Table 3.3.4-2 — BufferFormat Creation Structure Table

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType | ushot | 16 | A661_BUFFER_FORMAT |
Widgetldent ushort 16
Parentident | ushort | 16 10]
NumberOfFields ushort 16
BufferStructure N/A 32*Number | Pairs of :

of Fields Widgetldent (16 bits)

Parameterldent (16 bits)

The BufferFormat widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.4-3.

Table 3.3.4-3 — BufferFormat Runtime Modifiable Parameters Table

Name of the Size Parameterldent Used Type of Structure Used
Parameter to Set Type (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
BufferOfParameter N/A {32}+ A661 BUFFER_OF PARAM | A661_ParameterStructure_Buffer

3.3.4.1

ARINC SPECIFICATION 661 — Page 53
3.0 WIDGET LIBRARY

BufferFormat Alignment

The alignment and padding of data in the BufferFormat is as follows:

e Parameters with size of 4Bytes and 8Bytes are on 32 bits, thus beginning of
the value is at the beginning of 32 bits

o Parameters with 2Bytes or String are aligned on 16 bits, thus beginning of the
value is at the beginning of 16 bits (beginning of 32 bits or middle of 32 bits).

e No constraint on 1 byte parameters
Figure 3.3.4.1-1 provides examples to illustrate alignment and padding.

The string parameter is defined with the following structure and an alignment on 16
bits:

e 1 *2Bytes (StringLength) + StringLength * 1Byte + PAD (0 or 8 bits
unusedPad to align on 16 bits)

o The stringLength is expressed in Bytes, it describes the number of characters
in the string (including the NULL ending the string)

/ 32 bits boundary /

] | |
SENEEEN

\

_

Unused Pad

End of previous value in buffer (A661_BUFFER) of the BufferFormat
Position of next value if its size = 4 Bytes (For 8 Bytes value same beginning position)

Position of next value if its size = 2 Bytes (For string value same beginning position)

JERL

Position of next value if its size = 1 Byte

Figure 3.3.4.1-1 — BufferFormat Alignment

ARINC SPECIFICATION 661 — Page 54

3.3.5 CheckButton

Categories:

3.0 WIDGET LIBRARY

e Graphical representation

e Interactive
e Text string

Description:

A CheckButton allows the crew member to select or not select an option.

Restriction:

N/A

CheckButton Parameters are defined in Table 3.3.5-1.

Table 3.3.5-1 — CheckButton Parameters

Parameters

| Change

Description

Commonly used parameters

WidgetType D A661_CHECK_BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
CheckButtonState DR Inner state of the CheckButton:
SELECTED
UNSELECTED
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation
AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter
Specific parameters
LabelString DR Label of the CheckButton
MaxStringLength D Maximum length of the label text
Alignment D Alignment of the text within the label area of the widget
Left
Right
Center
PicturePosition D Position of the CheckBox (picture) with respect to the label within
the CheckButton
Left
Right
EntryValidation R

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also indicates
the results of that processing.

A661_FALSE
A661_TRUE

ARINC SPECIFICATION 661 — Page 55

3.0 WIDGET LIBRARY

CheckButton Creation Structure is defined in Table 3.3.5-2.

Table 3.3.5-2 — CheckButton Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType | ushort [16 | A661_CHECK BUTTON
Widgetldent ushort 16
Parentident | | ushort | 16
Enable uchar 8 A661_FALSE

A661_TRUE
___ A661_TRUE WITH_VALIDATION
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet] ushort | . 16
NextFocusedWidget ushort 16
MaxStringLength | | ushort | 16
CheckButtonState uchar 8 A661_SELECTED
___ A661_UNSELECTED
Alignment uchar 8 A661_LEFT

A661_CENTER

A661_RIGHT
AutomaticFocusMotion uchar 8 A661_FALSE
,,, ABG1TRUE
PicturePosition uchar 8 A661_LEFT
e |Ae8tRIGHT
UnusedPad N/A 16 0
LabelString string 8 * string Followed by zero, one, two or three extra NULL for

length + alignment of 32 bits.
Pad

The specific event sent by the CheckButton to the owner application is defined in

Table 3.3.

5-3.

Table 3.3.5-3 — CheckButton Event Structures: A661_EVT_STATE_CHANGE

Size
EventStructure Type | (bits) | Value/Description
Eventldent | ushort | 16 | A661_EVT STATE CHANGE .
CheckButtonState uchar 8 A661_SELECTED
]| AGB1_UNSELECTED
UnusedPad N/A 8 0

ARINC SPECIFICATION 661 — Page 56
3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.5-4.

Table 3.3.5-4 — CheckButton Runtime Modifiable Parameters

Name of the Size | Parameterldent Used Type of Structure Used
Parameter to Set Type | (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)
CheckButtonState uchar 8 A661 INNER STATE CHECK | A661 ParameterStructure 1Byte
StyleSet ushort 16 | A661 STYLE SET A661_ ParameterStructure 2Bytes
Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
LabelString string | {32}+ | A661_STRING A661_ParameterStructure String
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
3.3.6 ComboBox

Categories:

e Graphical representation
e Interactive
e Text string

Description:

The ComboBox allows a crew member to select one entry within a list. Only the
current choice is displayed in the ComboBox area. The number of the current
selected entry is held in the SelectedEntry parameter. The complete list of possible
Entries is held in a string array (parameter EntryList). The list is displayed upon crew
member selection. For example, click on the arrow button associated with the
Selected Entry.

Note that SelectingAreaHeight and the SelectingAreaWidth represent the Y and X
size of the PopUp part of the ComboBox.

OpeningMode of the ComboBox determines how the ComboBox opens.

The pop-up part of the ComboBox is displayed on top of its containing window and is
affected by the clipping area of its containing window.

Restriction:
N/A

ARINC SPECIFICATION 661 — Page 57

3.0 WIDGET LIBRARY

ComboBox Parameters are defined in Table 3.3.6-1.

Table 3.3.6-1 — ComboBox Parameters

Parameters

| Change

Description

Commonly used parameters

WidgetType D A661_COMBO_BOX

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the ComboBox (in the closed
mode)

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

SelectingAreaHeight D Size of the area available to display the entry list

SelectingAreaWidth D Size of the area available to display the entry list

OpeningMode D Way of combo opening:
UP
CENTERED
DOWN

MaxStringLength D Maximum string length for the entries of the list.

Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER

MaxNumberOfEntries D Maximum number of entries in the list

NumberOfEntries DR Total number of entries in the list (must be less than or equal to
MaxNumberOfEntries)

SelectedEntry DR Current selected entry number in the list.

OpeningEntry DR Entry number which is ensured to be visible when the ComboBox is
opened.
Opening entry is in the range [0; NumberOfEntries]
OpeningEntry will be set to 0, if not used.

EntryList DR String array holding the list of entries.

[MaxEntryNumber]

EntryValidation R

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE
A661_TRUE

ARINC SPECIFICATION 661 — Page 58

3.0 WIDGET LIBRARY

ComboBox Creation Structure is defined in Table 3.3.6-2.

Table 3.3.6-2 — ComboBox Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType] ushort | 16 | A661_COMBO BOX |
Widgetldent ushort 16
Parentident] ushort | 6]
Enable uchar 8 A661_FALSE
A661_TRUE
__ A661_TRUE WITH _VALIDATION |
Visible uchar 8 AB61_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
SelectingAreaWidth ulong 32
SelectingAreaHeight ulong 32
StyleSet] ushort | 16]
NextFocusedWidget ushort 16
_MaxNumberOfEntries | | ushort | 16
NumberOfEntries ushort 16
SelectedEntry] . ushort | 16]
MaxStringLength ushort 16
OpeningEntry ushort 16
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
OpeningMode uchar 8 A661_OPEN_UP
A661_OPEN_CENTERED
A661_OPEN_DOWN
AutomaticFocusMotion uchar 8 A661_FALSE
,, A61TRUE |
UnusedPad N/A 24 0
EntryList [NumberOfEntries] {string}+ {32}+ Each string terminating NULL is used as
string separator.
The complete string list is followed by
zero, one, two or three NULL character(s)
to be 32 bits aligned

The specific event sent by the ComboBox to the owner application is defined by

Table 3.3.6-3.

Table 3.3.6-3 — ComboBox Event Structures: A661_EVT_SEL_ENTRY_CHANGE

Size
EventStructure Type (bits) | Value/Description
Eventldent | ushort | 16 | A661_EVT_SEL_ENTRY _CHANGE
EntryNumber ushort 16 Number of the entry chosen by the crew member

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 59

Available SetParameter identifiers and associated data structure are defined in

Table 3.3.6-4.

Table 3.3.6-4 — ComboBox Runtime Modifiable Parameters

Name of the Size | Parameterident Used Type of Structure Used
Parameter to Set Type (bits) | in the ParameterStructure (Refer to 4.5.4.5)

Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
StyleSet ushort 16 | A661 _STYLE SET A661_ ParameterStructure 2Bytes
SelectedEntry ushort 16 | A661 SELECTED_ ENTRY A661_ ParameterStructure 2Bytes
NumberOfEntries ushort 16 | A661_ NUMBER_OF ENTRIES | A661_ ParameterStructure 2Bytes
EntryList string[] | {32}+ | A661_ STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfEntries]

OpeningEntry ushort 16 | A661_OPENING_ENTRY A661_ ParameterStructure 2Bytes
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

3.3.7 Connector

Categories:
None

Description:

The purpose of this widget is to connect a layer to the container of a different layer.
Examples of the use of the Connector widget include TabbedPanelGroup and
MapHorz, both of which mix data from several UAs. The action of the Connector
widget is functionally like a call to a library routine, or similar reference to a
preceding definition. The Connector widget allows another UA to get an image of the
referenced widgets. The Connector widget does not imply ownership, copying of the
data, or write access. All events associated with the image are handled by the
owning application.

Restriction:
The Connector widget capability across physical display surfaces is dependent on
system architecture.

Each layer has one priority defined by the current configuration, it does not inherit
the priority of its parent layer. In this way, L3 will not inherit the priority of L1 nor L2.
Indeed, one UA, for instance, the owner of the L3, can not draw in the graphical
layer of another UA in L1 or L2.

The connected layer rendering is affected by the properties of the Container of the
connector including: Position, Clipping area, Visible, Enable. Thus, the connected
layer has an origin that is defined with respect to the origin of Connector widget
parent.

COMMENTARY

If each layer L1 and L2 owns a Connector widget in their UALD
reference, the same layer L3, then L1 and L2 should not be interactive
at the same time in one given configuration.

Use of the Connector widget may have impact on certification
demonstration. Indeed, the Connector widget provides one means for

ARINC SPECIFICATION 661 — Page 60
3.0 WIDGET LIBRARY

an UA 1 to manage widgets from an UA 2. For instance, if the UA 1 is
level C, then UA 1 it should not manage widgets from UA 2, which is
level B.

Connector Parameters are defined in Table 3.3.7-1.

Table 3.3.7-1 — Connector Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_CONNECTOR

Widgetldent D Unique identifier of the connector

Parentldent D Identifier of the immediate container of the connector

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

Specific parameters

Connector D Reference of the Connector. It is used to resolve the link with the

Reference connected layer.
The resolution of the link between the connector and the layer is a
configuration issue.
All events generated by the widgets of the child layer are still handled by
the owning application of this layer.

ConnectorCreation Structure is defined in Table 3.3.7-2.

Table 3.3.7-2 — Connector Creation Structure

Size
CreateParameterBuffer Type (bits) | Value/Description
‘WidgetType | ushort | 16 | AB61_CONNECTOR
Widgetldent ushort 16
_Parentldent | ushort | 16 |]
Connector Reference ushort 16
Visible uchar 8 A661_FALSE
,,, A661_TRUE]
Enable uchar 8 A661_FALSE

A661_TRUE

bl | A661_TRUE_WITH_VALIDATION
UnusedPad N/A 16 0

Note: the order of the Visible and Enable parameters for this widget are
reversed compared to most other widgets.

The Connector widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.7-3.

Table 3.3.7-3 — Connector Runtime Modifiable Parameters

Parameterident

Name of the Size | Used in the Type of Structure Used
Parameter to Set Type | (bits) | ParameterStructure | (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte

Enable uchar 8 A661 ENABLE A661_ ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 61
3.0 WIDGET LIBRARY

3.3.8 CursorPosOverlay

Categories:
Interactive

Description:

A CursorPosOverlay widget consists of a defined area of the display. The
distinguishing characteristic of a CursorPosOverlay is that the reportable event is the
current cursor pointer position relative to the CursorPosOverlay. The event is
reported on upon selection by a crewmember with a click or keyboard selection.

Restriction:
N/A

CursorPosOverlay Parameters are defined in Table 3.3.8-1.

Table 3.3.8-1 — CursorPosOverlay Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_CURSOR_POS_OVERLAY

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.
Enable DR Ability of the widget to generate events.

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

CursorPosOverlay Creation is defined in Table 3.3.8-2.

Table 3.3.8-2 — CursorPosOverlay Creation Structure

Size
CreateParameterBuffer Type (bits) Value/Description
| WidgetType [ushort | 16 [A661_CURSOR_POS_OVERLAY
Widgetldent ushort 16
| Parentldent | wshort | 16 |\ .
Enable uchar 8 A661_FALSE
A661_TRUE
|| A661_TRUE_WITH_VALIDATION
UnusedPad N/A 8 0
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32

The specific event sent by the CursorPosOverlay to the owner application is defined
in Table 3.3.8-3.

ARINC SPECIFICATION 661 — Page 62

3.0 WIDGET LIBRARY

Table3.3.8-3 — CursorPosOverlay Event Structure Tables:
A661_EVT_CURSOR_POS_CHANGE

Size

EventStructure Type (bits) | Value/Description

Eventldent ushort 16 A661_EVT_CURSOR_POS_CHANGE

UnusedPad N/A 16 0

X long 32 X position of the cursor with respect to the PosX of the
widget

Y long 32 Y position of the cursor with respect to the PosY of the
widget

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.8-4.

Table 3.3.8-4 — CursorPosOverlay Runtime Modifiable Parameters

Parameterldent Used
Name of the Size | inthe Type of Structure Used
Parameter to Set Type (bits) | ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte

3.3.9 EditBoxMasked

Categories:

e Graphical representation
e Interactive
e Text string

Description:

The Masked edit box is an extension of the Text edit box. The difference with the
basic Text edit box is that some characters are not modifiable by the crew member.
The characters that are not able to be modified are specified by the UA by setting
the “alpha mask” parameter and the “numeric mask” parameters to 0.

If a character is only numerical [0..9] , the masks for this character are 1 for numeric
mask and 0 for alpha mask. If a character is only alphabetic, i.e., all the printable
characters defined in Table 3.2.5.3-1 - Available Character Set excepted [0..9] and
SPACE, the masks for this character are 0 for numeric mask and 1 for alpha mask. If
a character is alpha-numeric, the masks for this character are 1 for numeric mask
and 1 for alpha mask. The size of this string is limited to 32 characters.

COMMENTARY

When the EditBoxMasked is in edit mode, the CDS may report
all modifications done on the value of the edited string and the
final confirmed string, or only report the confirmed string (after
a crew member validation). This option may be set by the UA
through the ReportAllChanges parameter. If ReportAliChanges
is True and, after having entered text, the crew member aborts
the edit, the CDS should send a specific event to the UA with
the former validated LabelString as parameter of the event.

EditBoxMasked Parameters are defined in Table 3.3.9-1.

ARINC SPECIFICATION 661 — Page 63
3.0 WIDGET LIBRARY

Table 3.3.9-1 — EditBoxMasked Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_EDIT_BOX MASKED

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

LabelString DR Text of the edit box, this string is limited to 32 characters

StartCursorPos DR Start position of cursor in the field when entering edit mode

Alignment D Justification of the label text within the edit box area
CENTER
LEFT
RIGHT

ReportAllChanges D A661_EDB_CHANGE_CONFIRMED

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

A661_EDB_ALL_CHANGE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED

CDS will report each update from the crew member while in edit
mode
(A661_EVT_STRING_CHANGE)

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

A661_EDB_OPEN_CLOSE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

ARINC SPECIFICATION 661 — Page 64

3.0 WIDGET LIBRARY

Parameters Chang_]e Description

EntryValidation R Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.
A661_FALSE
A661_TRUE

AlphaMask DR Mask for Alpha character

NumericMask DR Mask for Numeric character

EditBoxMasked Creation is defined in Table 3.3.9-2.

Table 3.3.9-2 — EditBoxMasked Creation Structure

Size Value/Range
CreateParameterBuffer Type (bits) When Necessary
| WidgetType [ushort | 16 | A661_EDIT_BOX_MASKED
Widgetldent ushort 16
| Parentldent] 1 ushort | 16 | .
Enable uchar 8 A661_FALSE
A661_TRUE
___ A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
[StyleSet [ushot | 16 |
NextFocusedWidget ushort 16
AlphaMask ulong 32
NumericMask ulong 32
StartCursorPos ushort 16
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
ReportAllChanges uchar 8 A661_EDB_CHANGE_CONFIRMED
A661_EDB_ALL_CHANGE
A661_EDB_OPEN_CLOSE
Alignment uchar 8 A661_LEFT
A661_CENTER
___ A661T RIGHT
UnusedPad N/A 24 0
LabelString string 8 * string | Followed by zero, one, two or three extra
length + | NULL for alignment of 32 bits.
Pad

ARINC SPECIFICATION 661 — Page 65
3.0 WIDGET LIBRARY

EditBoxMasked Event Structures: A661_EVT_STRING _CHANGE_ABORTED is
defined in Table 3.3.9-3.

Table 3.3.9-3 — EditBoxMasked Event Structures:
A661_EVT_STRING_CHANGE_ABORTED

Size
EventStructure Type | (bits) | Value/Description
Eventldent | ushort | 16 | A661_EVT_STRING_CHANGE _ABORTED
StringLength ushort 16
String string | {32}+ | Followed by zero, one, two or three extra NULL for
alignment of 32 bits

EditBoxMasked Event Structures: A661_EVT _STRING_CHANGE is defined in Table

3.3.94.
Table 3.3.9-4 — EditBoxMasked Event Structures: A661_EVT_STRING_CHANGE
Size
EventStructure Type (bits) | Value/Description
Eventident | ushortt | 16 | A661_EVT STRING CHANGE
StringLength ushort 16
String string {32}+ | Followed by zero, one, two or three extra NULL for alignment
of 32 bits
EditBoxMasked Event Structures: A661_EVT_STRING_CONFIRMED is defined in
Table 3.3.9-5.
Table 3.3.9-5 — EditBoxMasked Event Structures:
A661_EVT_STRING_CONFIRMED
Size
EventStructure Type (bits) | Value/Description
| Eventldent | ushort | 16 | A661_EVT _STRING_ CONFIRMED
StringLength ushort 16
String string {32}+ | Followed by zero, one, two or three extra NULL for
alignment of 32 bits
Table 3.3.9-6 — EditBoxMasked Event Structures:
A661_EVT_EDITBOX_OPENED
Size
EventStructure Type (bits) | Value/Description
_Eventldent]\ ushort | 16 | A661_EVT_EDITBOX OPENED
UnusedPad ushort 16 0

ARINC SPECIFICATION 661 — Page 66
3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.9-7.

Table 3.3.9-7 — EditBoxMasked Runtime Modifiable Parameters

Name of the Parameterldent
Parameter to Size | Used in the Type of Structure Used
Set Type | (bits) | ParameterStructure | (Refer to 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string | {32}+ | A661_STRING A661_ParameterStructure String
StartCursorPos ushort 16 A661_CURSOR_POS A661_ ParameterStructure 2Bytes
StyleSet ushort 16 | A661_STYLE_SET A661_ParameterStructure_2Bytes
AlphaMask ulong 32 | A661_ALPHA_ MASK A661_ ParameterStructure_4Bytes
NumericMask ulong 32 | A661_NUMERIC_MASK | A661_ParameterStructure_4Bytes
EntryValidation | uchar 8 A661 ENTRY VALID | A661 ParameterStructure 1Byte
3.3.10 EditBoxNumeric
Categories:
e Graphical representation
e Interactive

o Text string

Description:

The EditBoxNumeric widget enables editing a numeric value. A crew member can
modify the numeric value using input devices. Since a numeric value is used, the
CDS is able to increment the value. The widget can receive a number of incremental

values or a numeric key value.

EditBoxNumeric Parameters are defined in Table 3.3.10-1.

Table 3.3.10-1 — EditBoxNumeric Parameters

Parameters

| Change | Description

Commonly used parameters

WidgetType D A661_EDIT_BOX NUMERIC

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

Value | DR | Value displayed by the edit box in normal mode

ARINC SPECIFICATION 661 — Page 67
3.0 WIDGET LIBRARY

Parameters Chang_]e Description

FormatString DR String describing the format of the numeric field. The string is
composed of any authorized characters. Some of them will be
interpreted to format the value.
FormatString is on the form:
TIHLIHICHILD”
[A] means a set of 0 or more of A
where:
(A)means asetof0or1of A
A|Bmeans AorB
‘ ’ indicates an optional display of the digit extracted from the
value. If not defined in the value, a blank character will be displayed.
‘# indicates a display of the digit extracted from the value or of the
character “0”
‘.’ indicates the separator between integer part and decimal part of
the value. Must be unique inside StringFormat.
‘+’ forces the sign character to be present in the final string at the
defined position. Note that if this sign character is not present in the
FormatString, the final string will be one character longer than the
FormatString when the value is negative. In that case, the sign will
be added at the beginning of the displayed string.
“* Any other characters (any except one of ‘+’, * ', ‘#, *.”) will be
interpreted as a mask character.
Note: ' is not allowed between ‘# and “’
Examples:
FormatString Value Displayed string
+ -123.40 -123.4
+ L ## 123.40 +123.40
L H# -123.45 -123.45
HHE#HH #HH#® 402318 040°23'18”

123.40

MaxFormatStringLength D Maximum size of the FormatString

Tics coarse DR Coarse increment step for modification of the value with main
wheel.

Tics fine DR Fine increment step for modification of the value with secondary
wheel.

StartCursorPos DR Start position of cursor in field when entering edit mode

Alignment D Justification of the label text within the edit box area:
CENTER
LEFT
RIGHT

ReportAllChanges D A661_EDB_CHANGE_CONFIRMED

CDS will report the value change after crew member validation

(A661_EVT_STRING_CONFIRMED)
A661_EDB_ALL_CHANGE

CDS will report the edit mode opening

A661_EVT_EDITBOX_OPENED

CDS will report each update from the crew member while in edit
mode

(A661_EVT_STRING_CHANGE)

CDS will report the value change after crew member validation

(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit

(A661_EVT_STRING_CHANGE_ABORTED)

ARINC SPECIFICATION 661 — Page 68

3.0 WIDGET LIBRARY

Parameters

Chang_]e

Description

A661_EDB_OPEN_CLOSE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED
CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)
CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

EntryValidation

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also indicates
the results of that processing.

A661_FALSE

A661_TRUE

NumericKeyFlag

Ability to change the value with the numerical key
TRUE
FALSE

MaxLegendStringLength

Max string size for the legend (MaxLegendStringLength > 0)

LegendAreaSizeX

The X dimension (size) of the legend.

LegendString

DR

Legend associated to the numeric value

LegendPosition

DR

Position of the legend in comparison with the numeric value:
Left

Right

Top

Bottom

LegendRemoved

The flag defining if the legend is to be removed on entry in the
editing mode.

MinValue

DR

Minimum value of the entry

MaxValue

DR

Maximum value of the entry

CyclicFlag

Possibility for cyclic modification (or wraparound) of the value
TRUE
FALSE

EditBoxNumeric Creation Structure is defined in Table 3.3.10-2.

Table 3.3.10-2 — EditBoxNumeric Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType [~ ushort | 16| A661_EDIT_BOX NUMERIC
Widgetldent ushort 16
Parentldent | ushort | 8
Enable uchar 8 AB61_FALSE

A661_TRUE
__ A661_TRUE_WITH_VALIDATION
Visible uchar 8 AB61_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet ushort 16
NextFocusedWidget ushort 16
Value float 32
Tics coarse float 32

ARINC SPECIFICATION 661 — Page 69

3.0 WIDGET LIBRARY

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
Tics fine float 32
MinValue float 32
MaxValue float 32
LegendAreaSizeX ulong 32
StartCursorPosByte | uchar | 8 | .
MaxFormatStringlength | uchar | 8 | .
MaxLegendStringlength | uchar | 8 | .
LegendPosition uchar 8 A661_LEFT

A661_RIGHT

A661_TOP

A661_BOTTOM
AutomaticFocusMotion uchar 8 A661_FALSE
__ A661 TRUE
ReportAllChanges uchar 8 A661_EDB_CHANGE_CONFIRMED

A661_EDB_OPEN_CLOSE
,, A661_EDB ALL CHANGE
Alignment uchar 8 A661_CENTER

A661_LEFT
,, A661 RIGHT
LegendRemoved uchar 8 A661_FALSE

A661_TRUE
NumerickeyFlag | uchar | 8 | O
CyclicFlag uchar 8
UnusedPad NA 16
FormatString string 8 * string

length
LegendString string 8 * string Followed by zero, one, two or three extra
length + NULL for alignment on 32 bits.
PAD
EditBoxNumeric Event Structures: A661_EVT_STRING_CHANGE_ABORTED are
defined in Table 3.3.10-3.
Table 3.3.10-3 — EditBoxNumeric Event Structures:
A661_EVT_STRING_CHANGE_ABORTED

EventStructure Type Size (bits) | Value/Description
Eventldent ushort A661_EVT_STRING_CHANGE_ABORTED
StringLength ushort
String string {32}+ Followed by zero, one, two or three extra NULL for

alignment of 32 bits

ARINC SPECIFICATION 661 — Page 70

3.0 WIDGET

LIBRARY

EditBoxNumeric Event Structures: A661_EVT_STRING_CHANGE are defined in

Table 3.3.10-4.

Table 3.3.10-4 — EditBoxNumeric Event Structures:
A661_EVT_STRING_CHANGE

EventStructure Type Size (bits) | Value/Description

Eventldent || ushort | 16 _____[ABB1_EVT _STRING_CHANGE |

StringLength ushort 16

String string {32}+ Followed by zero, one, two or three extra NULL for
alignment of 32 bits

EditBoxNumeric Event Structures: A661_EVT_STRING_CONFIRMED are defined in

Table 3.3.10-5.

Table 3.3.10-5 — EditBoxNumeric Event Structures:
A661_EVT_STRING_CONFIRMED

Size
EventStructure Type (bits) | Value/Description
Eventldent | ushort | 16 | A661_EVT_STRING_CONFIRMED |
StringLength ushort 16
String string {32}+ | Followed by zero, one, two or three extra NULL for
alignment of 32 bits
Table 3.3.10-6 — EditBoxNumeric Event Structures:
A661_EVT_EDITBOX_ OPENED
EventStructure Type Size | Value/Description
(bits)
Eventident] ushort | 16 | A661_EVT _EDITBOX OPENED
UnusedPad ushort 16 0

Available SetParameter identifiers and associated data structure are defined in

Table 3.3.10-7.

Table 3.3.10-7 — EditBoxNumeric Runtime Modifiable Parameters

Parameterident
Name of the Size | Used in the Type of Structure Used
Parameter to Set | Type | (bits) | ParameterStructure | (Refer to 4.5.4.5)
Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
Value float 32 A661 VALUE A661_ParameterStructure_4Bytes
MinValue Floatx | 32x2 | A661_MINMAX_VALU | A661_ParameterStructure_8Bytes
MaxValue 2 ES
Tics coarse float 32 A661_TICS_COARSE | A661_ParameterStructure_4bytes
Tics fine float 32 A661_TICS_FINE A661_ParameterStructure_4bytes
StartCursorPosByte | ushort 8 A661_CURSOR _ A661_ParameterStructure_1Byte
POS_BYTE
StyleSet ushort 16 A661 STYLE_SET A661_ParameterStructure 2Bytes
LegendString string {32} A661_STRING A661_ParameterStructure_String
FormatString String {32} A661_FORMAT _ A661_ParameterStructure_String
STRING
LegendPosition uchar 8 A661 LEGEND A661_ParameterStructure_1Byte

ARINC SPECIFICATION 661 — Page 71
3.0 WIDGET LIBRARY

I |
3.3.11 EditBoxText

| POSITION | |

Categories:

e Graphical representation
e Interactive
o Text string

Description:

EditBoxText widget enables displaying a string, which can be modified by a crew-
member.

The CDS is responsible to perform the following changes of state:

From NORMAL to EDIT

From ERROR to EDIT

The UA is responsible to perform the other transitions.

EditBox Text Parameters are defined in Table 3.3.11-1.

Table 3.3.11-1 — EditBoxText Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_EDIT_BOX_TEXT
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation
AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter
Specific parameters
MaxStringLength D Maximum length of the text
LabelString DR Text of the edit box
StartCursorPos DR Start position of cursor in field when entering edit mode.
Alignment D Justification of the label text within the edit box area
CENTER
LEFT
RIGHT
ReportAllChanges D A661_EDB_CHANGE_CONFIRMED
CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)
A661_EDB_ALL_CHANGE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED
CDS will report each update from the crew member while in edit

ARINC SPECIFICATION 661 -

Page 72

3.0 WIDGET LIBRARY

Parameters

Change

Description

mode
(A661_EVT_STRING_CHANGE)
CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)
CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)
A661_EDB_OPEN_CLOSE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED
CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)
CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

EntryValidation

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE

A661_TRUE

EditBoxTextCreation Structure is defined in Table 3.3.11-2.

Table 3.3.11-2 — EditBoxText Creation Structure

Size Value/Range
CreateParameterBuffer | Type (bits) | When Necessary
WidgetType [uhort | 16 [A661 EDIT BOX TEXT]
Widgetldent ushort 16
_Parentldent | | ushort | 16]
Enable uchar 8 A661_FALSE
A661_TRUE
___ A661_TRUE_WITH_VALIDATION |
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet ushort 16
NextFocusedWidget ushort 16
StartCursorPos | | ushort | 16
MaxStringLength ushort 16
AutomaticFocusMotion uchar 8 A661_FALSE
___ M661 TRUE]
ReportAllChanges uchar 8 A661_EDB_CHANGE_CONFIRMED
A661_EDB_ALL_CHANGE
A661_EDB_OPEN_CLOSE
Alignment uchar 8 A661_CENTER
A661_LEFT
___ ABGTRIGHT]
UnusedPad N/A 8 0
LabelString string 8* Followed by zero, one, two or three extra NULL for
string | alignment of 32 bits.

length

ARINC SPECIFICATION 661 — Page 73
3.0 WIDGET LIBRARY
| | +Pad | |

EditBoxText Event Structures: A661_EVT_STRING_CHANGE_ABORTED is defined
in Table 3.3.11-3.

Table 3.3.11-3 — EditBoxText Event Structures:
A661_EVT_STRING_CHANGE_ABORTED

Size
EventStructure Type (bits) | Value/Description
Eventldent ushort 16 A661_EVT_STRING_CHANGE_ABORTED
StringLength ushort 16
String string {32}+ | Followed by zero, one, two or three extra NULL for alignment
of 32 bits
EditBoxText Event Structures: A661_EVT_STRING_CHANGE are defined in
Table 3.3.11-4.
Table 3.3.11-4 — EditBoxText Event Structures: A661_EVT_STRING_CHANGE
Size
EventStructure Type (bits) | Value/Description
Eventldent | | ushort | 16 | A661_EVIT_STRING CHANGE
StringLength ushort 16
String string 8* Followed by zero, one, two or three extra NULL for alignment
string | of 32 bits
length +
Pad
EditBoxText Event Structures: A661_EVT_STRING_CONFIRMED are defined in
Table 3.3.11-5.
Table 3.3.11-5 — EditBoxText Event Structures:
A661_EVT_STRING_CONFIRMED
Size
EventStructure Type (bits) | Value/Description
Eventldent | ushort | 16 | A661_EVT_STRING CONFIRMED
StringLength ushort 16
String string 8* Followed by zero, one, two or three extra NULL for alignment
string | of 32 bits
length +
Pad

Table 3.3.11-6 — EditBoxText Event Structures: A661_EVT_EDITBOX_OPENED

Size
EventStructure Type (bits) | Value/Description

Eventldent _ushort | 16 | A661_EVT EDITBOX OPENED

UnusedPad ushort 16 0

ARINC SPECIFICATION 661 — Page 74
3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.11-7.

Table 3.3.11-7 — EditBoxText Runtime Modifiable Parameters

Name of the Parameterident

Parameter to Size Used in the Type of Structure Used

Set Type | (bits) | ParameterStructure | (Refer to 4.5.4.5)

Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

EntryValidation | uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

LabelString string {32}+ | A661_STRING A661_ParameterStructure_String

StartCursorPos | ushort 16 A661 _CURSOR_POS | A661_ParameterStructure 2Bytes

StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure_2Bytes
3.3.12 GpArcEllipse

Categories:

e Graphical Representation
e Dynamic motion

Description:

The graphical primitive GpArcEllipse widget enables the definition of an arc. The arc
may be a portion of an ellipse or circle. The arc is defined by a bounding box where
a rectangle is specified and the ellipse is drawn touching the rectangle. When the
bounding box is a square, the arc will be a circle. The major and minor axes of the
ellipse are implicitly along the cardinal directions of the bounding box.

ThRe . w

Restriction:
None

GpArcEllipse Parameters are defined in Table 3.3.12-1.

ARINC SPECIFICATION 661 — Page 75
3.0 WIDGET LIBRARY

Table 3.3.12-1 — GpArcEllipse Parameters

Parameters |

Change

| Description

Commonly used parameters

WidgetType D A661_GP_ARC_ELLIPSE

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS.

PosX DR The X start position of the bounding box (lower left corner).

PosY DR The Y start position of the bounding box (lower left corner).

SizeX DR The width of the bounding box.

SizeY DR The height of the bounding box.

Anonymous D Ability to be modified at run-time by the UA.

Specific parameters

ColorIindex DR Color index of the boundary line, used if StyleSet allows color to be set.

Halo D If set to True, Halo is present. Halo is a full outline in a contrasting color
(typically black) to enhance readability.

Filled D If set to True, interior of Arc will be filled.

Fillindex DR Fill Pattern index, used if StyleSet allows fill color to be set.

StartAngle DR The angle (referenced from the center of the ellipse) that defines the
start position of the arc.

EndAngle DR The angle (referenced from the center of the ellipse) that defines the end
position of the arc.

ARINC SPECIFICATION 661 — Page 76
3.0 WIDGET LIBRARY

GpArcEllipse Creation Structure is defined in Table 3.3.12-2.

Table 3.3.12-2 — GpArcEllipse Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType [1 ushort [16 | A661_GP_ARC ELLIPSE |
Widgetldent ushort 16
_Parentident | 1 ushort | 16
Anonymous uchar 8 A661_FALSE
,,, A6B1TRUE
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StartAngle fr(180) 32
EndAngle fr(180) 32
 StyleSet] ushort | 18
Colorindex | __ uchar | 8 |(validpaletteindex)
Filled uchar 8 A661_FALSE

A661_TRUE
Filindex | uchar | 8 | (validFillPattenindex)
Halo uchar 8 A661_FALSE
,,, A661_TRUE
UnusedPad N/A 16 0

The GpArcEllipse widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.12-3.

Table 3.3.12-3 — GpArcEllipse Runtime Modifiable Parameters

Name of the

parameter Size | Parameterident Used in Type of Structure Used

to set Type | (bits) | the ParameterStructure | (Refer to Section 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure _1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
PosX long 32x2 | A661_POS XY A661_ParameterStructure_8Bytes
PosY X 2

PosX long 32 A661 POS X A661_ ParameterStructure_4Bytes
PosY long 32 A661 POS Y A661_ParameterStructure 4Bytes
SizeX ulong 32 A661_ SIZE X A661_ ParameterStructure_4Bytes
SizeY ulong 32 A661_SIZE_Y A661_ParameterStructure 4Bytes
SizeX long | 32x2 | A661_SIZE_XY A661_ParameterStructure_8Bytes
SizeY x 2

Colorindex uchar 8 A661 COLOR_INDEX A661_ParameterStructure_1Byte
Fillindex uchar 8 A661_ FILL_INDEX A661_ParameterStructure _1Byte
StartAngle fr(180) 32 A661 START_ ANGLE A661_ ParameterStructure_4Bytes
EndAngle fr(180) 32 A661_END_ANGLE A661_ParameterStructure_4Bytes

3.3.13

GpArcCircle

Categories:

Description:
The graphical primitive GpArcCircle widget enables the definition of a circular arc.
The circle is defined by a center and radius.

Restriction:

none

ARINC SPECIFICATION 661 — Page 77
3.0 WIDGET LIBRARY

Graphical Representation
Dynamic motion

GpArcCircle Parameters are defined in Table 3.3.13-1.

Table 3.3.13-1 — GpArcCircle Parameters

Parameters

| Change

Description

Commonly used parameters

WidgetType D A661_GP_ARC_CIRCLE

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS. Refer to
section 3.1.3.3.

PosX DR The center X position of the circle.

PosY DR The center Y position of the circle.

Anonymous D Ability to be modified at run-time by the UA

Specific parameters

Colorindex DR Color index of the boundary line, used if StyleSet allows color to be set.

Halo D If set to True, Halo is present

Filled D If set to True, interior of Arc will be filled.

Fillindex DR Fill Pattern index, used if StyleSet allows fill color to be set.

Radius DR The radius of the circle

StartAngle DR The angle (referenced from the center of the circle) that defines the start
position of the arc.

EndAngle DR The angle (referenced from the center of the circle) that defines the end
position of the arc.

ARINC SPECIFICATION 661 — Page 78
3.0 WIDGET LIBRARY

GpArcCircle Creation Structure is defined in Table 3.3.13-2.

Table 3.3.13-2 — GpArcCircle Creation Structure

Size

CreateParameterBuffer Type (bits) Value/Range When Necessary
WidgetType | ushort | 16 [A661 GP_ ARCCIRCLE
Widgetldent ushort 16
 Parentldent | _ushort | ° 16
Anonymous uchar 8 A661_FALSE
___ AB61TRUE
Visible uchar 8 AB61_FALSE

A661_TRUE
PosX long 32
PosY long 32
StartAngle fr(180) 32
EndAngle fr(180) 32
Radius ulong 32
| StyleSet | _ushort | - 16
| Colorindex] | uchar | 8 | (valid palette index)
Filled uchar 8 AB61_FALSE

A661_TRUE
[Filindex || uchar | 8 |[(validfilindex)
Halo uchar 8 A661_FALSE

A661_TRUE
UnusedPad N/A 16 |0

The GpArcCircle widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.13-3.

Table 3.3.13-3 — GpArcCircle Runtime Modifiable Parameters

Name of

the

Parameter Size Parameterident Used Type of Structure Used

to Set Type (bits) | in the ParameterStructure | (Refer to Section 4.5.4.5)

Visible uchar 8 A661 VISIBLE A661 ParameterStructure 1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY X2

PosX long 32 A661 POS X A661_ ParameterStructure 4Bytes
PosY long 32 A661 POS Y A661_ ParameterStructure_4Bytes
Colorindex | uchar 8 A661_COLOR_INDEX A661_ParameterStructure 1Byte
Fillindex uchar 8 A661_FILL_INDEX A661_ ParameterStructure_1Byte
Radius ulong 32 A661_RADIUS A661_ ParameterStructure 4Bytes
StartAngle | fr(180) 32 A661 START_ ANGLE A661_ ParameterStructure_4Bytes
EndAngle fr(180) 32 A661_END_ANGLE A661_ParameterStructure_4Bytes

3.3.14

GpCrown

Categories:

Description:
The graphical primitive GpCrown widget enables the definition of a circular filled
region. The circle is defined by a center and two radii. The filled area is the area
between the radii.

Restriction:

None

ARINC SPECIFICATION 661 — Page 79
3.0 WIDGET LIBRARY

Graphical Representation
Dynamic motion

GpCrown Parameters are defined in Table 3.3.14-1.

Table 3.3.14-1 — GpCrown Parameters

Parameters

| Change

| Description

Commonly used parameters

WidgetType D A661_GP_CROWN

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS.

PosX DR The center X position of the circle.

PosY DR The center Y position of the circle.

Anonymous D Ability to be modified at run-time by the UA

Specific parameters

Colorindex DR Color index of the boundary line, used if StyleSet allows color to be set.

Halo D If set to True, Halo is present

Filled D If set to True, interior of Crown will be filled.

Fillindex DR Fill Pattern index, used if StyleSet allows color to be set.

InnerRadius DR The radius of the inner circle

OuterRadius DR The radius of the outer circle

StartAngle DR The angle (referenced from the center of the circle) that defines the start
position of the filled arc to be drawn.

EndAngle DR The angle (referenced from the center of the circle) that defines the end
position of the filled arc to be drawn.

ARINC SPECIFICATION 661 — Page 80

3.0 WIDGET LIBRARY

GpCrown Creation Structure is defined in Table 3.3.14-2.

Table 3.3.14-2 — GpCrown Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType ushort 16 A661 GP_CROWN
Widgetldent ushort 16
Parentldent ushort 16
Anonymous uchar 8 A661_FALSE
A661_TRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
StartAngle fr(180) 32
EndAngle fr(180) 32
InnerRadius ulong 32
OuterRadius ulong 32
| StyleSet]! ushort | 16
| Colorlndex | . uchar | 8 | (valid palette index)
Filled uchar 8 A661_FALSE
A661_TRUE
[Filindex [uchar | 8 [(validfilinde)
Halo uchar 8 A661_FALSE
,,, A6B1TRUE
UnusedPad N/A 16 0

The GpCrown widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.14-3.

Table 3.3.14-3 — GpCrown Runtime Modifiable Parameters

Name of the Parameterident Used

Parameter to Size | inthe Type of Structure Used

Set Type (bits) | ParameterStructure (Refer to 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY X2

PosX long 32 A661 POS X A661_ ParameterStructure_4Bytes
PosY long 32 A661 POS Y A661_ ParameterStructure 4Bytes
Colorindex uchar 8 A661 COLOR_INDEX A661_ ParameterStructure_1Byte
Filllndex uchar 8 A661_ FILL_INDEX A661_ ParameterStructure 1Byte
InnerRadius ulong 32 A661_INNER RADIUS A661_ ParameterStructure_4Bytes
OuterRadius ulong 32 A661_ OUTER _RADIUS | A661_ ParameterStructure 4Bytes
StartAngle fr(180) 32 A661 START_ ANGLE A661_ ParameterStructure_4Bytes
EndAngle fr(180) 32 A661_END_ANGLE A661_ParameterStructure_4Bytes

ARINC SPECIFICATION 661 — Page 81
3.0 WIDGET LIBRARY

3.3.15 GpLine

Categories:

Graphical Representation
Dynamic motion

Description:

The graphical primitive GpLine widget enables the definition of a line. The line is

defined in rectangular coordinates by two pairs of X,Y coordinates that define the

end points of the line.

Restriction:

None

GpLine Parameters are defined in Table 3.3.15-1.

Table 3.3.15-1 — GpLine Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_GP_LINE
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
StyleSet DR Reference to predefined graphical characteristics inside CDS.
Anonymous D Ability to be modified at run-time by the UA
Specific parameters
Colorlndex DR Color index of the line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present
PosXStart DR The starting X position of the line.
PosYStart DR The starting Y position of the line.
PosXEnd DR The ending X position of the line.
PosYEnd DR The ending Y position of the line.

GpLine Creation Structure is defined in Table 3.3.15-2.

Table 3.3.15-2 — GpLine Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType [ushort [- 16| AB6T GPLINE
Widgetldent ushort 16
Parentident | ushort | 16 .
Anonymous uchar 8 A661_FALSE
,, A661TRUE
Visible uchar 8 A661_FALSE

A661_TRUE
PosXStart long 32
PosYStart long 32
PosXEnd long 32
PosYEnd long 32
StyleSet [ushortt | - N
Colorindex______ _________________|._._.__uchar | _____ 8 .| (validpaletteindex) . .|
Halo uchar 8 A661 FALSE

A661_TRUE

ARINC SPECIFICATION 661 — Page 82
3.0 WIDGET LIBRARY

The GpLine widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.15-3.

Table 3.3.15-3 — GpLine Runtime Modifiable Parameters

Name of the Parameterident Used

Parameter to Size | inthe Type of Structure Used

Set Type (bits) | ParameterStructure (Refer to Section 4.5.4.5)

Visible uchar 8 A661 VISIBLE A661 ParameterStructure 1Byte

StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes

PosXStart long 32x2 | A661_POS XY A661_ParameterStructure_8Bytes

PosYStart X2

PosXStart long 32 A661 POS X A661_ParameterStructure 4Bytes

PosYStart long 32 A661 POS Y A661_ ParameterStructure_4Bytes

PosXEnd long 32x2 | A661_POS XY2 A661_ParameterStructure_8Bytes

PosYEnd X2

PosXEnd long 32 A661 POS X2 A661_ParameterStructure_4Bytes

PosYEnd long 32 A661 POS Y2 A661_ ParameterStructure_4Bytes

Colorlndex uchar 8 A661_COLOR_INDEX A661_ParameterStructure_1Byte
3.3.16 GpLinePolar

Categories:

e Graphical Representation
e Dynamic motion

Description:

The graphical primitive GpLinePolar widget enables the definition of a line. The line
is defined by polar coordinates with an X,Y coordinate start position, a line length,
and a draw angle.

Restriction:
None

GpLinePolar Parameters are defined in Table 3.3.16-1.

Table 3.3.16-1 — GpLinePolar Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_GP_LINE_POLAR

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS.
Anonymous D Ability to be modified at run-time by the UA

Specific parameters

Colorlndex DR Color index of the line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present

PosXStart DR The starting X position of the line.

PosYStart DR The starting Y position of the line.

RotationAngle DR Angle at which the line is drawn.

LineLength DR The length of the line in millimeters.

ARINC SPECIFICATION 661 — Page 83
3.0 WIDGET LIBRARY

GpLinePolar Creation Structure is defined in Table 3.3.16-2.

Table 3.3.16-2 — GpLinePolar Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType ushort 16 A661_GP_LINE_POLAR
Widgetldent ushort 16
 Parentldent | ushort | 16 .
Anonymous uchar 8 A661_FALSE
ol |Me®ITRE
Visible uchar 8 A661_FALSE
A661_TRUE
PosXStart long 32
PosY Start long 32
RotationAngle fr(180) 32
LineLength ulong 32
StyleSet ... ushort | 16
Colorindex | uchar | 8 ____|(validpaletteindex)
Halo uchar 8 A661_FALSE
A661_TRUE

The GpLinePolar widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.16-3.

Table 3.3.16-3 — GpLinePolar Runtime Modifiable Parameters

Name of the
Parameter to Parameterident Used
Set Size | in the ParameterStructure | Type of Structure Used

Type | (bits) (Refer to 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
PosXStart long | 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosYStart X2
PosXStart long 32 A661 POS X A661_ParameterStructure 4Bytes
PosY Start long 32 A661 POS_ Y A661_ ParameterStructure_4Bytes
RotationAngle | fr(180) 32 A661_ROTATION_ANGLE A661_ParameterStructure_4Bytes
LineLength ulong 32 A661 LINE LENGTH A661_ ParameterStructure_4Bytes
Colorindex uchar 8 A661_COLOR_INDEX A661_ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 84

3.0 WIDGET LIBRARY

3.3.17 GpRectangle
Categories:
e Graphical Representation
e Dynamic motion
Description:
The graphical primitive GpRectangle widget enables the definition of a rectangle.
The primitive defines the start position and the width and height of the rectangle.
Restriction:
None
GpRectangle Parameters are defined in Table 3.3.17-1.
Table 3.3.17-1 — GpRectangle Parameters
Parameters | Change | Description
Commonly used parameters
WidgetType D A661_GP_RECTANGLE
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
StyleSet DR Reference to predefined graphical characteristics inside CDS.
PosX DR The X start position of the rectangle (lower left corner).
PosY DR The Y start position of the rectangle (lower left corner).
SizeX DR The width of the rectangle.
SizeY DR The height of the rectangle.
Anonymous D Ability to be modified at run-time by the UA.
Specific parameters
Colorlindex DR Color index of the boundary line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present.
Filled D If set to True, interior of Rectangle will be filled.
Fillindex DR Fill pattern index, used if StyleSet allows fill color to be set.

ARINC SPECIFICATION 661 — Page 85
3.0 WIDGET LIBRARY

GpRectangle Creation Structure is defined in Table 3.3.17-2.

Table 3.3.17-2 — GpRectangle Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary

| WidgetType | 1 ushort | - 16 [A661_GP_RECTANGLE
Widgetldent ushort 16

| Parentldent || ushort | - 6
Anonymous uchar 8 A661_FALSE
. |meetTRE
Visible uchar 8 A661_FALSE

A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StyleSet]! ushort | L
Colorlndex] uchar | 8 | (valid palette index)
Filled uchar 8 A661_FALSE

A661_TRUE

Fillndex [uchar | 8 | (valid Fill Patternindex)
Halo uchar 8 A661_FALSE
e | ABG1_TRUE
UnusedPad N/A 16 0

The GpRectangle widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.17-3.

Table 3.3.17-3 — GpRectangle Runtime Modifiable Parameters

Name of the Parameterident Used

Parameter to Size in the Type of Structure Used

Set Type (bits) | ParameterStructure (Refer to 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure 1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
PosX long x 2 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY

PosX long 32 A661 POS X A661_ParameterStructure 4Bytes
PosY long 32 A661 POS Y A661_ ParameterStructure_4Bytes
SizeX ulong 32 A661 SIZE X A661_ParameterStructure 4Bytes
SizeY ulong 32 A661 SIZE Y A661_ ParameterStructure_4Bytes
SizeX long x 2 32x2 | A661_SIZE_XY A661_ParameterStructure_8Bytes
SizeY

Colorlndex uchar 8 A661_COLOR_INDEX A661_ParameterStructure 1Byte
Fillindex uchar 8 A661_ FILL_INDEX A661 ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 86
3.0 WIDGET LIBRARY

3.3.18 GpTriangle

Categories:
e Graphical Representation

e Dynamic motion

Description:

The graphical primitive GpTriangle widget enables the definition of a triangle. The
primitive defines the three XY coordinate pairs that specify three points of the
triangle.

Restriction:
None

GpTriangle Parameters are defined in Table 3.3.18-1.

Table 3.3.18-1 — GpTriangle Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_GP_TRIANGLE

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS.
PosX DR The X start position of the triangle (lower left corner).

PosY DR The Y start position of the triangle (lower left corner).
Anonymous D Ability to be modified at run-time by the UA

Specific parameters

Colorlndex DR Color index of the boundary line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present

Filled D If set to True, interior of Triangle will be filled.

Fillindex DR Fill Pattern index, used if StyleSet allows fill color to be set.
PosX2 DR The X position of the second point of the triangle

PosY2 DR The Y position of the second point of the triangle

PosX3 DR The X position of the third point of the triangle

PosY3 DR The Y position of the third point of the triangle

ARINC SPECIFICATION 661 — Page 87
3.0 WIDGET LIBRARY

GpTriangle Creation Structure is defined in Table 3.3.18-2.

Table 3.3.18-2 — GpTriangle Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType | ushort | - 16 |A661 GP_TRIANGLE
Widgetldent ushort 16
Parentldent | ushort | 16
Anonymous uchar 8 A661_FALSE
,, A661 TRUE
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
PosX2 long 32
PosY2 long 32
PosX3 long 32
PosY3 long 32
StyleSet | ushort | - L R
Colorindex] uchar | 8 | (valid paletteindex)
Filled uchar 8 A661_FALSE

A661_TRUE
Fillindex] uchar | 8 | (validfilindex)
Halo uchar 8 A661_FALSE
,, A661_TRUE
UnusedPad N/A 16 0

The GpTriangle widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.18-3.

Table 3.3.18-3 — GpTriangle Runtime Modifiable Parameters

Parameterident Used
Name of the in the Type of Structure Used
Parameter to Set Type Size (bits) | ParameterStructure | (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure _1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
PosX long x 2 32x2 A661_POS_XY A661_ParameterStructure_8Bytes
PosY
PosX long 32 A661 POS X A661_ ParameterStructure_4Bytes
PosY long 32 A661 POS Y A661_ParameterStructure 4Bytes
PosX2 long x 2 32x2 A661_POS_XY2 A661_ParameterStructure_8Bytes
PosY2
PosX2 long 32 A661 POS X2 A661_ ParameterStructure_4Bytes
PosY2 long 32 A661 POS Y2 A661_ParameterStructure_4Bytes
PosX3 long x 2 32x2 A661_POS_XY3 A661_ParameterStructure_8Bytes
PosY3
PosX3 long 32 A661 POS X3 A661_ ParameterStructure_4Bytes
PosY3 long 32 A661 POS Y3 A661_ParameterStructure_4Bytes
Colorindex uchar 8 A661 COLOR_INDEX | A661_ ParameterStructure 1Byte
Fillindex uchar 8 A661 FILL INDEX A661_ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 88
3.0 WIDGET LIBRARY

3.3.19 Picture

Categories:
Graphical representation

Description:

A Picture widget is a reference to an image available in the CDS. The Picture
reference can be modified by the UA. Unlike symbols, a picture can not move or
rotate.

Restriction:
N/A

Picture Parameters are defined in Table 3.3.19-1.

Table 3.3.19-1 — Picture Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_PICTURE

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget

Anonymous D Ability to be modified at run-time by the UA
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget
Specific parameters

PictureReference | DR | Reference of a picture stored in the CDS

ARINC SPECIFICATION 661 — Page 89
3.0 WIDGET LIBRARY

Picture Creation Structure is defined in Table 3.3.19-2.

Table 3.3.19-2 — Picture Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
‘WidgetType [ushort | 16 [A661_PICTURE
Widgetldent ushort 16
_Parentldent | ushort | 16 | .
Anonymous uchar 8 A661_FALSE
,,, A6E1TRUE
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | . L
PictureReference ushort 16

The Picture widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.19-3.

Table 3.3.19-3 — Picture Runtime Modifiable Parameters

Name of the Size | Parameterldent Used Type of Structure Used
Parameter to Set | Type | (bits) | in the ParameterStructure (Refer Section to 4.5.3)
Visible uchar 8 A661_ VISIBLE A661 ParameterStructure 1Byte
PictureReference | ushort 16 | A661 PICTURE_REFERENCE | A661 ParameterStructure 2Bytes
StyleSet ushort 16 | A661 STYLE SET A661_ ParameterStructure 2Bytes
3.3.20 Label
Categories:

e Graphical representation
e Dynamic Motion
e Text string

Description:

A Label widget consists of a non-editable text field at a defined display location. If
the label is anonymous, it is not editable (i.e., it can not be modified at runtime by the
UA). If it is not anonymous, it can be modified by the UA. However, a label can not
be modified by a crew member.

Restriction:
None

ARINC SPECIFICATION 661 — Page 90

3.0 WIDGET LIBRARY

Label Parameters are defined in Table 3.3.20-1.

Table 3.3.20-1 — Label Parameters

Parameters

| Change | Description

Commonly used parameters

WidgetType D A661_LABEL

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Anonymous D Ability to be modified at run-time by the UA

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX DR The X position of the widget reference point

PosY DR The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

Specific parameters

LabelString DR Text of the label

MaxStringLength D Maximum number of character

MotionAllowed D Capability to change PosX, PosY, RotationAngle at runtime

RotationAngle DR Angle at which symbol is displayed relative to its origin
Refer to Angles defined in Section 2.3.4.2)

Font DR Font of the displayed string, if StyleSet allows font to be set

Colorindex DR Applicable color index for the displayed string, if StyleSet allows
color to be set

Alignment D Justification of the label text within the label area

BottomCenter
BottomLeft
BottomRight
Center

Left

Right
TopCenter
TopLeft
TopRight

ARINC SPECIFICATION 661 — Page 91

3.0 WIDGET LIBRARY

Label Creation Structure is defined in Table 3.3.20-2.

Table 3.3.20-2 — Label Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType [ushort [16 . A661_LABEL
Widgetldent ushort 16
Parentident | ushort | 16
Anonymous uchar 8 A661_FALSE
,, A6B1TRUE
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
RotationAngle fr(180) 32
StyleSet]! ushort | 16
MaxStringLength ushort 16
MotionAllowed uchar 8 A661_FALSE
,, A661_TRUE .
Fonmt] uchar | S
Colorindex | uchar | i N
Alignment uchar 8 A661 BOTTOM_CENTER

A661_BOTTOM_LEFT

A661_BOTTOM_RIGHT

A661_CENTER

AB61_LEFT

A661_RIGHT

A661_TOP_CENTER

A661_TOP_LEFT

A661_TOP_RIGHT
LabelString string 8 * string Followed by zero, one, two or three extra NULL

length + Pad | for alignment of 32 bits.

The Label widget does not send any event.

ARINC SPECIFICATION 661 — Page 92
3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.20-3.

Table 3.3.20-3 — Label Runtime Modifiable Parameters

Parameterident Used
Name of the Size in the Type of Structure Used
Parameter to Set Type (bits) ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string {32}+ A661_STRING A661_ParameterStructure String
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY X2
PosX long 32 A661 POS X A661_ ParameterStructure_4Bytes
PosY long 32 A661 POS Y A661_ParameterStructure 4Bytes
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
RotationAngle fr(180) 32 A661_ORIENTATION | A661_ParameterStructure_4Bytes
Colorindex uchar 8 A661 COLOR_INDEX | A661 ParameterStructure 1Byte
Font uchar 8 A661_FONT A661_ParameterStructure_1Byte
3.3.21 LabelComplex
Categories:

e Graphical representation
e Text string

Description:

A LabelComplex widget consists of a non-editable text field at a defined display
location. If the LabelComplex is anonymous, it is not editable (i.e., it can not be
modified at runtime by the UA). If it is not anonymous, it can be modified by the UA.
However, a LabelComplex can not be modified by a crew member.

The text string can contain embedded escape sequences, refer to Section 3.2.5.5,
Escape Sequences Description.

Restriction:
N/A

ARINC SPECIFICATION 661 — Page 93
3.0 WIDGET LIBRARY

LabelComplex Parameters are defined in Table 3.3.21-1.

Table 3.3.21-1 — LabelComplex Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_LABEL_COMPLEX
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Anonymous D Ability to be modified at run-time by the UA
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
Specific parameters
DefaultStyleText D NULL character: Escape sequence not used, default value from the
CDS used.
“TOutLine®TBackColor®TForeColor®TFont”
LabelString DR Text of the label
MaxStringLength D Maximum number of character
Alignment D Justification of the label text within the label area
BottomCenter
BottomLeft
BottomRight
Center
Left
Right
TopCenter
TopLeft
TopRight

ARINC SPECIFICATION 661 — Page 94

3.0 WIDGET LIBRARY

LabelComplex Creation Structure is defined in Table 3.3.21-2.

Table 3.3.21-2 — LabelComplex Creation Structure

CreateParameterBuffer | Type Size (bits) | Value/Range When Necessary
| WidgetType [ushort [16 | A661 _LABEL COMPLEX
Widgetldent ushort 16
| Parentldent] ushort | 16 |
Anonymous uchar 8 A661_FALSE
o\l |MeeITRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
| StyleSet | ushort | A6
MaxStringLength ushort 16
Alignment uchar 8 A661 BOTTOM_CENTER
A661_BOTTOM_LEFT
A661_BOTTOM_RIGHT
A661_CENTER
A661_LEFT
A661_RIGHT
A661_TOP_CENTER
A661_TOP_LEFT
__ AB61 TOPRIGHT
UnusedPad N/A 24 0
DefaultStyleText uchar 96
LabelString string 8 * string Followed by zero, one, two or three extra NULL for
length + alignment of 32 bits.
Pad

No event is associated with the LabelComplex widget.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.21-3.

Table 3.3.21-3 — LabelComplex Runtime Modifiable Parameters

Parameterident Used

Name of the Size in the Type of Structure Used
Parameter to Set Type (bits) ParameterStructure (Refer to 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string {32}+ A661_STRING A661_ParameterStructure String

StyleSet

ushort

16

A661 STYLE SET A661_ ParameterStructure 2Bytes

3.3.22

ARINC SPECIFICATION 661 — Page 95
3.0 WIDGET LIBRARY

MapHorz_ltemList

Categories:

e Map management

e Graphical Representation
e Interactive

e Text string

Description:

A MapHorz_ltemList widget represents a group of related graphics. Examples of the
use of the MapHorz_ltemList widget is the creation of flight plan, map background
symbols, TCAS intruders, etc.

A MapHorz_ItemList must be in a MapHorz_Source container.

A MapHorz_ltemList contains a list of Items to be drawn. This list is of fixed size
specified through the maximum number of Items. The type of each ltem inside the
MapHorz_ItemList can be modified at run-time, which makes the list dynamic. A set
of parameters is associated with each type of Item (refer to the “ltem Structure”
subsection, 3.3.22.2.1, below).

MapHorz_ItemList is different from BufferFormat in that the latter is a list of
parameter values for any pre-defined list of widgets, and the former is a list from a
limited set of widgets, as well as their parameter values.

One or several items can be modified through a SetParameter command with
“BufferOfltems” as Parameter_Ident. An Item should be modified in their entirety, for
instance, the latitude of a symbol can not be changed by itself.

Insert and delete operations are not allowed on the list. However, one specific type
of Item is NOT_USED. The Item with the NOT_USED type will be ignored, i.e., is
they will have no effect on the processing of following items.

Note: This section includes two additional subordinate sections as
follows:

Section 3.3.22.1 describes the standardized items and their
functionality.

Section 3.3.22.2 describes the A661_ParameterStructure to
address the Items.

Restriction:
A MapHorz_ItemList must be in a MapHorz_Source container.
MapHorz_ItemList Parameters are defined in Table 3.3.22-1.

ARINC SPECIFICATION 661 — Page 96

3.0 WIDGET LIBRARY

Table 3.3.22-1 — MapHorz_ItemList Parameters

Parameters

| Change | Description

Commonly used parameters

WidgetType D A661_MAPHORZ_ITEMLIST

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

Specific parameters

MaxNumberOfltem D Maximum number of items that the UA can address under the
MapHorz_ItemList.

BufferOfltems R Buffer of the Map ltems

MapSynchronizationNumber R See section 3.2.8.4

EntryValidation R

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also

indicates the results of that processing.

A661_FALSE
A661_TRUE

MapHorz_ItemList Creation Structure is defined in Table 3.3.22-2.

Table 3.3.22-2 — MapHorz_IltemList Creation Structure

CreateParameterBuff Type Size (bits) | Value/Range When Necessary
er
WidgetType | ushort | 16 | A661_MAPHORZ ITEMLIST |
Widgetldent ushort 16
Parentldent | ushort | 8]
Enable uchar 8 A661_FALSE
A661_TRUE
,,, A661_TRUE_WITH_VALIDATION |
Visible uchar 8 A661_FALSE
A661_TRUE
_MaxNumberOfitem | ushort | 16
UnusedPad N/A 16 0
MapHorz_ItemList Event Structures: A661_EVT_SELECTION are defined in Table
3.3.22-3.
Table 3.3.22-3 — MapHorz_ItemList Event Structures: A661_EVT_SELECTION
EventStructure Type Size (bits) | Value/Description
Eventident | ushort | 16 | A661_EVT SELECTION |
Item Index ushort 16 Index of the item that has been selected. Index from 1 to
MaxNumberOfltem.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.22-4.

ARINC SPECIFICATION 661 — Page 97

3.0 WIDGET LIBRARY

Table 3.3.22-4 — MapHorz_ltemList Runtime Modifiable Parameters

Parameterldent Used

Name of the in the ParameterStructure Type of Structure Used
Parameter to Set |Type Size (Refer to Section 4.5.4.5)
(bits)

Enable uchar 8 |A661 ENABLE A661 ParameterStructure 1Byte

Visible uchar 8 |A661_VISIBLE A661_ParameterStructure_1Byte

BufferOfMapltems N/A {32} |A661_BUFFER_OF_MAPITEM |A661_ParameterStructure_BufferOfltems
Refer to “MapHorz_ltemList
A661_ParameterStructure Specifics”,
Section 3.3.22.2 and especially Section
3.3.22.2.2 below.

MapSynchronizati ushort 16 |A661_MAP_SYNCHRONIZATI |A661_ParameterStructure_2Bytes

onNumber ON_NUMBER See section 3.2.8.4

EntryValidation uchar 8 |A661_ENTRY_VALID A661_ParameterStructure_1Byte

3.3.22.1 MapHorz_ltemList Standard Items Description

This section describes the MapHorz_ltemList item structures.

Table 3.3.22.1 — MapHorz_ltemList Standard Items Description

Name of Item

Function

FILLED_POLY_START

This ltem is used to signify the start of a closed, filled polygon definition. It
holds X/Y parameters, like LINE_START, and a Fill Style Index. The X/Y
parameters of this ltem and the following LINE_SEGMENT Items (up to the
EndFlag) define the vertices and edges of a polygon that is closed and filled
with the indicated fill style.

ITEM_STYLE For drawing any symbol or line the CDS must apply the last defined
ITEM_STYLE in the list. If no ITEM_STYLE has been defined, the CDS will
apply a default ITEM_STYLE.

LEGEND This Item is used to store Legend Strings.

Some symbols may contain logic to automatically position legends. LEGEND
Items will then follow the SYMBOL Item and carry this legend.

Each LEGEND Item can only hold 16 characters including the NULL
character. Several LEGEND Item can be used to carry longer strings.

CRis recognized as either NextField (For symbols with automatic legend
positioning) or as a normal Carriage Return / Line Feed if LEGEND follows a
LEGEND_ANCHOR.

The last LEGEND ltem of a group must have its EndFlag set.

LEGEND_ANCHOR

This Item is used to specify the position of a LEGEND not attached to a
symbol.

LEGEND_POP_UP

This Item is a basic LEGEND, but it will appear only when the crew member
selects the associated SYMBOL_x Item.

Disappearance of the LEGEND_POP_UP is airframe manufacturer/system
integrator specification dependent.

LINE_START

This ltem is used to signify the start of a line. It holds only X/Y parameters,
interpreted by the CDS depending on the MapHorz_Source DataFormat

LINE_SEGMENT

This Item is used to draw a line, using the last defined style in the list, from
the previous LINE_xxx End position, to the specified X/Y coordinates.
This Item holds EndFlag, set if it is the last item of a line.

LINE_ARC

This Item is used to draw an arc, using the last defined style in the list, from
the previous LINE_xxx End position, to the point specified by the three data :
(InboundCourse, Radius, CourseChange).

ARINC SPECIFICATION 661 — Page 98

3.0 WIDGET LIBRARY

Name of Item

Function

This ltem holds a EndFlag, set if it is the last item of a line.

ITEM_
SYNCHRONIZATION

This item has been defined to attach frame data to symbology expressing
the context of the computation or the rendering for the symbology frame. This
data is sent in A661 in order to avoid synchronization issues between the
symbology frame and the attached information (e.g. mode, range; MRP ...).
This item can be used to pass synchronization information from the
application owning a MapHorz Item List and the application owning the parent
MapHorz.

NOT_USED

This Item is used when the Item is to be discarded by the CDS. There is no
effect on subsequent Iltems interpretation.

SYMBOL_GENERIC

This ltem represent the basic symbol which holds X/Y parameters along with
a type of symbol and possibly an EndFlag.

Some of these types may include an Automatic Legend positioning. In this
case, and provided the EndFlag is not set on the symbol, the CDS will
interpret the following LEGEND Items as part of the symbol legend. When
multiple Fields exist on the symbol, “Carriage Return” will signify to the CDS
that a field end is reached.

SYMBOL_ROTATED

Same than SYMBOL_GENERIC except an orientation parameter is added

SYMBOL_CIRCLE

Specific Symbol. It represent a circle of specific radius. Radius is expressed in
nm.

SYMBOL_OVAL

Specific symbol. It represents an oval, filled with the indicated fill style, which
may be “no fill”.

SYMBOL_RUNWAY

Same as SYMBOL_GENERIC, except orientation and Length parameters are
added.

SYMBOL_TARGET

Same as SYMBOL_GENERIC except part of the symbol can be rotated
and part of the symbol has variable length illustrating Velocity / Distance
/ Altitude.

TRIANGLE_STRIP
START

This Item is used to signify the start of a closed, filled polygon defined
by a series of triangle strips.

TRIANGLE_FAN
START

This Item is used to signify the start of a closed, filled polygon defined
by a series of triangle arranged in a fan.

TRIANGLE_SEGMENT

Defines a single vertex of a Triangle Strip or Triangle Fan.

TRIANGLE_SEGMENT
DOUBLE

Defines two vertices of a Triangle Strip or Triangle Fan.

TRIANGLE_END

Defines the last vertex of a Triangle Strip or Triangle Fan.

TRIANGLE_END
_DOUBLE

Defines the last two vertices of a Triangle Strip or Triangle Fan.

3.3.22.2

MapHorz_ltemList A661_ParameterStructure Specifics

This section describes the A661_ParameterStructure BufferOfltems for
MapHorz_ItemList.

Placement of map items is generally determined using a real world coordinate
system. In order to support decoration of symbols positioned on the map in real
world coordinates relative positioning is also available for several item types. As
symbology is placed on a map many times there are other items positioned around it
in screen coordinates. The positioning of these relative elements does not change
based on the parameters used to calculate coordinate transformations. A relative
positioned map item would be used to position symbology using screen coordinates
relative to a map item. Symbology that have the RelativePosition parameter
associated with them are capable of this relative placement.

ARINC SPECIFICATION 661 — Page 99

3.0 WIDGET LIBRARY

In cases where the active areas of two interactive MapHorz_Item widgets
overlap, the sending of one or two events will be CDS dependent.

Example of symbol placement using relative screen coordinates:

Legend

Relative

Legend_Anchor

05

Symbol_Generic

Real world
coordinate

Relative

Symbol_Generic

Legend_Anchor

Relative
Symbol_Generic

Legend

W134

Relative Legend

s

Relative
Legend_Anchor

3.3.22.21 Item Structures
All the structures include the same format: three fields for the first 4-byte word. One
field is not used on all Items, however it is maintained for consistency.
3.3.22.2.1.1 Item_Style
Item_Style is defined in Table 3.3.22.2.1.1.
Table 3.3.22.2.1.1 — Iltem_Style
Name Type Size (bits) | Value/Range When Necessary
ltemindex | . ushort | A6]
temType | .. _.uchar | 8 | AGB1ITEM_STYLE]
UnusedPad N/A 8 0
temStyleSet | . ushort | A6
UnusedPad N/A 16 0

ARINC SPECIFICATION 661 — Page 100

3.3.22.2.1.2 Legend_Anchor

3.0 WIDGET LIBRARY

Legend_Anchor is defined in Table 3.3.22.2.1.2.

Table 3.3.22.2.1.2 — Legend_Anchor

Name

Size (bits)

Value/Range When Necessary

ltemIndex

RelativePosition

A661_FALSE

A661_TRUE

When RelativePosition is true then X and Y
correspond to a position in screen units relative to
the last symbol defined in the MapSource
coordinate system.

X/ Lat/ Range

Scaled Integer

32 First coordinate of symbol, MapHorz_Source
coordinate system (fixed real LSB depends on
MapHorz_Source MapDataFormat and

RelativePosition)

Y / Lng / Bearing

Scaled Integer

32 Second coordinate of symbol, MapSource
coordinate system (fixed real LSB depends on

MapHorz_Source and RelativePosition)

3.3.22.2.1.3 Legend and Legend_Pop_Up

This Item must follow a XXX_SYMBOL, a LEGEND_ANCHOR or another LEGEND
Item. The LegendString can contain special characters, line feed and carriage return.
The type of symbol attached to this legend defines the position and the format of this
String under control of the CDS. If a LEGEND is followed by other LEGENDSs, they
should be considered as one unique Legend, possibly including some carriage
return and linefeed characters. The full entire LegendString (possibly across multiple
Legend Mapltems) must have a NULL terminator.

Legend and Legend _Pop_Up is defined in Table 3.3.22.2.1.3.

Table 3.3.22.2.1.3 — Legend and Legend_Pop_Up

Name Type Size (bits) | Value/Range When Necessary

ItemIndex ushort 16

ltemType uchar 8 A661_LEGEND
A661_LEGEND_POP_UP

EndFlag uchar 8 A661_TRUE
A661_FALSE

LegendString {uchar}+ {32}+ Max 16 characters including NULL and pad

(not ‘string’) Followed by zero, one, two or three extra NULL for

alignment of 32 bits. The paragraph above defines the
proper string termination.

3.3.22.2.1.4 Line_Start

ARINC SPECIFICATION 661 — Page 101

3.0 WIDGET LIBRARY

Line_Start is defined in Table 3.3.22.2.1.4.

Table 3.3.22.2.1.4 — Line_Start
Name Type Size (bits) | Value/Range When Necessary
 temindex | _ushort | - 16
| ltemType | .. uchar | 8 | AB61_LINE START
UnusedPad N/A 8 0
X/ Lat/ Range Scaled 32 First coordinate of symbol, MapHorz_Source
Integer coordinate system (fixed real LSB depends on
MapDataFormat)
Y /Lng / Bearing Scaled 32 Second coordinate of symbol, MapHorz_Source
Integer coordinate system (fixed real LSB depends on
MapDataFormat)

3.3.22.2.1.5 Line_Segment

Line_Segment is defined in Table 3.3.22.2.1.5.

Table 3.3.22.2.1.5 — Line_Segment
Name Type Size (bits) | Value/Range When Necessary
ltemindex | ushort | (L
dtemType [uchar | "8 [A661_LINE_SEGMENT "
EndFlag uchar 8 A661_TRUE
A661_FALSE
X/ Lat/ Range Scaled 32 First coordinate of symbol, MapHorz_Source
Integer coordinate system (fixed real LSB depends on
MapDataFormat)
Y / Lng / Bearing Scaled 32 Second coordinate of symbol, MapHorz_Source
Integer coordinate system (fixed real LSB depends on

MapDataFormat)

3.3.22.2.1.6 Line_Arc

Line_Arc is defined in Table 3.3.22.2.1.6.

Table 3.3.22.2.1.6 — Line_Arc

Name Type Size (bits) Value/Range When Necessary
Mtemindex | ushort | 16
temType | uchar | .. 8 .| AB61 _LINE ARC]
EndFlag uchar 8 A661_TRUE
A661_FALSE
InboundCourse fr(180) 32 A positive InboundCourse indicates a clockwise

inbound course with respect to true north (anglee
[0;180)).

A negative InboundCourse indicates a counter
clockwise inbound course with respect to true
north (angle= |InboundCourse| € [0;180]).

See figure that follows this table for more

ARINC SPECIFICATION 661 — Page 102
3.0 WIDGET LIBRARY

Name Type Size (bits) Value/Range When Necessary
information.
Radius fr(32768) 32 Turn radius Positive for clockwise turn (turn right),

Negative for anticlockwise turn (turn left) in
nautical miles.

CourseChange fr(180) 32 A positive CourseChange indicates a turn (Right
or left depending of radius sign) of less than 180
degrees : the resulting angle is equal to :
CourseChange € [0;180].

A negative CourseChange indicates a turn (Right
or left depending of radius sign) of more than 180
degrees : the resulting angle is equal to :

(360 + CourseChange) € [0;180].

Inbound course Inbound course

0<CbxrseChange <180
—~ -180 <CourseChange < 0

D

Inbound course
"~ Inbound course

0<CourseChange < 180 -180 <C0urseﬁ<_0\

~

To specify a complete circle, set the CourseChange to the negative LSB represented
by fr(180) or OXFFFFFFFF.

ARINC SPECIFICATION 661 — Page 103
3.0 WIDGET LIBRARY

3.3.22.2.1.7 Not_Used

Not Used is defined in Table 3.3.22.2.1.7.

Table 3.3.22.2.1.7 — Not_Used

Size
Name Type (bits) Value/Range When Necessary
Itemindex | ushort | - LA S
ItemType | ___uchar | _ 8 _|AB61_NOT USED
UnusedPad N/A 8 0

3.3.22.2.1.8 Symbol_Generic

Symbol_Generic is defined in Table 3.3.22.2.1.8.

Table 3.3.22.2.1.8 — Symbol_Generic

Name Type Size (bits) | Value/Range When Necessary
[ltemindex | ushort | 6 .
| temType | uchar | 8 | AB61_SYMBOL GENERIC
EndFlag uchar 8 A661_TRUE
A661_FALSE
SymbolType ushort 16 EXAMPLES:

SYMBOL_WAYPOINT
SYMBOL_AIRPORT

SYMBOL_VOR
,,, SYMBOL VORDME

RelativePosition uchar 8 A661_FALSE
A661_TRUE

When RelativePosition is true then X and Y
correspond to a position in screen units
relative to the last symbol defined in the
MapSource coordinate system.

UnusedPad N/A 8 0
X/ Lat/ Range Scaled 32 First coordinate of symbol center,
Integer MapHorz_Source coordinate system (fixed

real LSB depends on MapDataFormat and
RelativePosition)

Y / Lng / Bearing Scaled 32 Second coordinate of symbol center,
Integer MapHorz_Source coordinate system (fixed
real LSB depends on MapDataFormat and
RelativePosition)

ARINC SPECIFICATION 661 — Page 104
3.0 WIDGET LIBRARY

3.3.22.2.1.9 Symbol_Circle

Symbol_Circle is defined in Table 3.3.22.2.1.9.

Table 3.3.22.2.1.9 — Symbol_Circle

Name Type Size (bits) | Value/Range When Necessary
Itemindex | _ushort | 16
ltemType | ... uchar | .8 | AB61_SYMBOL CIRCLE .
EndFlag uchar 8 A661_TRUE
A661_FALSE
X/ Lat/ Range Scaled 32 First coordinate of symbol, MapHorz_Source
Integer coordinate system (fixed real LSB depends on
MapDataFormat)
Y / Lng / Bearing Scaled 32 Second coordinate of symbol, MapHorz_Source
Integer coordinate system (fixed real LSB depends on
MapDataFormat)
Radius fr(32768) 32 in nautical miles.

ARINC SPECIFICATION 661 — Page 105

3.0 WIDGET LIBRARY

3.3.22.21.10 Symbol_Rotated

Symbol_Rotated is defined in Table 3.3.22.2.1.10.

Table 3.3.22.2.1.10 — Symbol Rotated

Name Type Size (bits) | Value/Range When Necessary
| Itemindex] ushort | 16 | .
ftemType | uchar | 8 . A661_SYMBOL ROTATED
EndFlag uchar 8 A661_TRUE
A661_FALSE
SymbolType ushort 16 EXAMPLES:
SYMBOL_HOLD_LEFT
SYMBOL_HOLD_RIGHT
SYMBOL_PROCEDURE_TURN_LEFT
SYMBOL_PROCEDURE_TURN_RIGHT
SYMBOL_LONG_RANGE_AIRPORT_WITH_RU
__ N AY
RelativePosition uchar 8 A661_FALSE
A661_TRUE
When RelativePosition is true then X and Y
correspond to a position in screen units relative to
the last symbol defined in the MapSource
coordinate system.
UnusedPad N/A 8 0
X /Lat/ Range Scaled 32 First coordinate of symbol, MapHorz_Source
Integer coordinate system
(fixed real LSB depends on MapDataFormat and
RelativePosition)
Y /Lng / Bearing Scaled 32 Second coordinate of symbol, MapHorz_Source
Integer coordinate system (fixed real LSB depends on
MapDataFormat and RelativePosition)
Orientation fr(180) 32 Orientation of Symbol relative to True North
3.3.22.21.11 Symbol_Runway
Symbol_ Runway is defined in Table 3.3.22.2.1.11.
Table 3.3.22.2.1.11 — Symbol_Runway
Name Type Size (bits) | Value/Range When Necessary
Itemindex | ____ushort | = 18]
MtemType | ... uchar | 8 | A661_SYMBOL_RUNWAY |
EndFlag uchar 8 A661_TRUE
A661_FALSE
X/ Lat/ Range Scaled Integer 32 First coordinate of runway threshold,
MapHorz_Source coordinate system (fixed
real LSB depends on MapDataFormat)
Y / Lng / Bearing Scaled Integer 32 Second coordinate of symbol center,
MapHorz_Source coordinate system (fixed
real LSB depends on MapDataFormat)
Length fr(32768) 32 Length of runway (in feet)
Orientation fr(180) 32 Orientation of Symbol relative to True North

ARINC SPECIFICATION 661 — Page 106
3.0 WIDGET LIBRARY

3.3.22.21.12 Filled_Poly_Start

There are restrictions on the polygons to be filled. In particular, the number of line
segments is limited to three segments (triangle) or four segments (quadrilateral). The
vertices must be specified in counter-clockwise order. The polygon must be convex.

If any error is found in the polygon definition, the CDS should send an

A661_ERR _SET_ABORTED exception event. The airframe manufacturer/system
integrator free data field may include, for example, the Itemindex to identify the error.
Filled_Poly Start is defined in Table 3.2.22.2.1.12.

Table 3.2.22.2.1.12 — Filled_Poly_Start

Name Type Size (bits) | Value/Range When Necessary
| ltemindex | ushort | A6 | ..
ftemType | uchar | 8 | A661 FILLED POLY START
FillStylelndex uchar 8 See paragraph below
X/ Lat/ Range Scaled 32 First coordinate of symbol
Integer (LSB and units defined by MapHorz_Source)
Y /Lng / Angle / Alt Scaled 32 Second coordinate of symbol
Integer (LSB and units defined by MapHorz_Source)

3.3.22.2.1.12.1 Fill Style Index Values

A Fill Style Index is an unsigned 8-bit value that is used to select a graphic
representation (fill style) from a pre-defined table for use in filling an area on a layer.
Because fill styles depend heavily on CDS hardware capabilities, and because they
are look-and-feel related, they are not further defined in this specification.

COMMENTARY
The actual fill styles used will depend on both the CDS hardware
capability and the supplier/airframe manufacturer/system
integrator/customer preference for look-and-feel. A fill style may be a
solid color fill, a patterned fill, an alpha blend, or other visual attribute.
3.3.22.2.1.13 Symbol_Oval
Symbol_Oval is defined in Table 3.3.22.2.1.13.

Table 3.3.22.2.1.13 — Symbol_Oval

Name Type Size (bits) | Value/Range When Necessary
Itemindex | _wshort | 16 | .
ltemType ... uchar | . 8 . AB61_SYMBOL OVAL .
FillStylelndex uchar 8 airframe manufacturer/system integrator
dependent

X/ Lat/ Range Scaled 32 First coordinate of symbol center

Integer (LSB and units defined by MapHorz_Source)
Y / Lng / Bearing Scaled 32 Second coordinate of symbol center

Integer (LSB and units defined by MapHorz_Source)
Radius fr(32768) 32 Half the Major Axis in nautical miles
AdsRatio | f(1) | 16 | Minor Axis divided by Major Axis
Orientation fr(180) 16 Orientation of Major Axis relative to True North

ARINC SPECIFICATION 661 — Page 107
3.0 WIDGET LIBRARY

3.3.22.2.1.14 Item_Synchronization

Table 3.3.22.2.1.14 - Iltem_Synchronization

Name Type Size (bits) | Value/Range When Necessary
Mtemindex | ushort | 16]
MtemType . |._.uchar | 8 .| A661_ITEM_SYNCHRONIZATION |
DataType uchar 8 ND_MODE_RANGE
MRP latitude / longitude
SynchronizationData 32 Values are implementation dependent.
1st word
SynchronizationData 32 Values are implementation dependent.
2nd word

This item has been defined to attach to a symbology frame data that expressed the
symbology computation context or the rendering context. The functional data is
attached to the symbology frame though A661 in order to avoid synchronization
issue between the symbology frame and the computation contextual information
(e.g., mode, range; MRP, etc).

Thus, the Item_synchronization allows the User Application displaying symbology to
transmit functional data to the Master Application through ARINC 661. The functional
data will be sent through MapHorzltemList/MapVertltemList by the User Application
and will be received by Master Application through MapHorz/MapVert Event.

As an illustration, consider the case of a Master Application having the responsibility
to turn on/off the visibility of the connector on a User Application symbology layer,
when the Mode/Range context is correct/incorrect.

Upon context change (Range/Mode), the Master Application is responsible for
checking the contextual data used by the User Application for computing the
symbology frame.

AB661 Items buffer
(FPLN ..))

Delay in symbology
displaying
(FPLN ..)

New functional - 4 , toxt

unctional contex

context use for symbology
computation

(Range, Mode...)

I

UA data visibility flag
linked to information coherency

Figure 3.3.22.2.1.14-1 — Map Management Without Item Synchronization

Due to different ways of data transmission, and potential delay on symbology
projection before displaying, a de-synchronization may exist between the symbology
displaying and the check by the Master Application of the functional context used by
the User Application. This de-synchronization has a potential effect on the display.

ARINC SPECIFICATION 661 — Page 108
3.0 WIDGET LIBRARY

To avoid cockpit effect due to de-synchronization, Item_Synchronization allows
contextual data transmission attached to a symbology frame (like for A702).

A661 Items buffer
(FPLN ...)

ItemSynchronization
(Range, Mode...)

Ddglayll insymbology
isplaying
(FBL?\G)

New functional

context Event from MapHorz or MapVert

when Synchronization is received

I

UA data visibility flag
linked to information coherency

Figure 3.3.22.2.1.14-2 — Map Management With Item Synchronization

Iltem_synchronization data is sent to the Master Application through a

MapHorz/MapVert widget event, when the symbology frame is ready for displaying in

order to avoid the de-synchronization effect.

3.3.22.2.1.15 Symbol Target

Table 3.3.22.2.1.15 — Symbol Target

Name Type Size (bits) | Value/Range When Necessary
ltemindex | ushort | 18
ltemType | uchar | 8 | A661_SYMBOL TARGET .
EndFlag uchar 8 A661_TRUE
A661_FALSE
SymbolType ushort 16 EXAMPLES:
AIR_FRIEND_TRACK
___ AIR_SUSPECT TRACK
Length ushort 16 Velocity / Distance / Altitude illustrated by
variable length part of the symbol (Knots /
Nautical Miles / Feet)
X/ Lat / Range Scaled 32 First coordinate of symbol center,
Integer MapHorz_Source coordinate system (fixed real
LSB depends on MapDataFormat)
Y / Lng / Bearing Scaled 32 Second coordinate of symbol center,
Integer MapHorz_Source coordinate system (fixed real
LSB depends on MapDataFormat)
Orientation fr(180) 32 Orientation of rotated part relative to True North

3.3.22.2.1.16

ARINC SPECIFICATION 661 — Page 109
3.0 WIDGET LIBRARY

Triangle Strip Start

The Triangle Strip Start, Triangle Segment, Triangle Segment Double, Triangle
End, and Triangle End Double MapltemList Items are meant to define triangle
strips, similar to those defined in SDL Symbols.

Each Triangle Strip is made up of one Triangle Strip Start, any number of
Triangle Segment and Triangle Segment Double items, and one Triangle End
or Triangle End Double. The Triangle Segment Double and Triangle End
Double items exist to minimize MapltemList size and should be used whenever
possible. See the illustration below for more details.

NOTE: Lines shown for illustration only
v

v3

V2 v4

Red Triangle:
Triangle Strip Start(v0, v1)
Triangle Segment(v2)
Green Triangles:
Triangle Segment Double(v3, v4)
Blue Triangle:
Triangle End(v5)

Figure 3.3.22.2.1.16 — Triangle Strip

Table 3.3.22.2.1.16 — Triangle Strip Start

Parameter Type Size (bits) Description

Item Index ushort 16

Iltem Type uchar 8 A661_TRIANGLE_STRIP_START
Pad NA 8 Unused Pad

X/Lat/Rng 1 long 32 First coordinate of first vertex
Y/Lng/Brg 1 long 32 Second coordinate of first vertex
X/Lat/Rng 2 long 32 First coordinate of second vertex
Y/Lng/Brg 2 long 32 Second coordinate of second vertex

ARINC SPECIFICATION 661 — Page 110

3.3.22.2.1.17

Triangle Seg

3.0 WIDGET LIBRARY

ment

The color of the triangle completed by this item shall be defined by the
FillStyleIndex parameter.

Table 3.3.22.2.1.17 - Triangle Segment

Parameter Type Size (bits) Description
Item Index ushort 16
Item Type uchar 8 A661_TRIANGLE_SEGMENT
FillStyleIndex uchar 8 Color for the triangle completed by this point
X/Lat/Rng long 32 First coordinate of vertex
Y/Lng/Brg long 32 Second coordinate of vertex
3.3.22.2.1.18 Triangle Segment Double
The color of the triangles completed by this item shall be defined by the
FillStyleIndex parameter.

Table 3.3.22.2.1.18 — Triangle Segment Double
Parameter Type Size (bits) Description
Item Index ushort 16
Item Type uchar 8 A661_TRIANGLE_SEGMENT_ DOUBLE
FillStyleIndex uchar 8 Color for the triangles completed by these

points

X/Lat/Rng 1 long 32 First coordinate of first vertex
Y/Lng/Brg 1 long 32 Second coordinate of first vertex
X/Lat/Rng 2 long 32 First coordinate of second vertex
Y/Lng/Brg 2 long 32 Second coordinate of second vertex
3.3.22.2.1.19 Triangle End

The color of the triangle completed by this item shall be defined by the
FillStyleIndex parameter.

Table 3.3.22.2.1.19 — Triangle End

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_END

FillStyleIndex uchar 8 Color for the triangle completed by this point
X/Lat/Rng long 32 First coordinate of vertex

Y/Lng/Brg long 32 Second coordinate of vertex

ARINC SPECIFICATION 661 — Page 111
3.0 WIDGET LIBRARY

3.3.22.2.1.20 Triangle End Double

The color of the triangles completed by this item shall be defined by the
FillStyleIndex parameter.

Table 3.3.22.2.1.20 — Triangle End Double

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_END_DOUBLE

FillStyleIndex uchar 8 Color for the triangles completed by these
points

X/Lat/Rng 1 long 32 First coordinate of first vertex

Y/Lng/Brg 1 long 32 Second coordinate of first vertex

X/Lat/Rng 2 long 32 First coordinate of second vertex

Y/Lng/Brg 2 long 32 Second coordinate of second vertex

3.3.22.2.1.21 Triangle Fan Start

The Triangle Fan Start (along with Triangle Segment, Triangle Segment
Double, Triangle End, and Triangle End Double) MapltemList item is meant to
define triangle fans, similar to those defined in SDL Symbols. Each Triangle
Fan is made up of one Triangle Fan Start, any number of Triangle Segment and
Triangle Segment Double items, and one Triangle End or Triangle End Double.
The Triangle Segment Double and Triangle End Double items exist to minimize
MapltemList size and should be used whenever possible.

ARINC SPECIFICATION 661 — Page 112
3.0 WIDGET LIBRARY

NOTE: Black lines shown for illustration only
V2

v3

A v4

v5

Red Triangle:
Triangle Fan Start(v0, v1)
Triangle Segment(v2)
Green Triangles:
Triangle Segment Double(v3, v4)
Blue Triangle:
Triangle End(v5)

Figure 3.3.22.2.1.21 — Triangle Fan

Note: If a triangle is defined as three co-linear points, nothing
will be drawn. However, the next triangle will be defined
using the first and third points of the previous triangle, as
usual.

Table 3.3.22.2.1.21 — Triangle Fan Start

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_FAN_START

Pad NA 8 Unused Pad

X/Lat/Rng 1 long 32 First Coordinate of first vertex
Y/Lng/Brg 1 long 32 Second Coordinate of first vertex
X/Lat/Rng 2 long 32 First Coordinate of second vertex
Y/Lng/Brg 2 long 32 Second Coordinate of second vertex

Triangle Segment, Triangle Segment Double, Triangle End, and Triangle End
Double are already defined (this was done in conjunction with Triangle Strip
Start).

The CDS will process subsequent Triangle Segment, Triangle Segment
Double, Triangle End, and Triangle End Double items appropriately based on
the type of triangle start item that preceded them. That is, if a Triangle Fan

ARINC SPECIFICATION 661 — Page 113
3.0 WIDGET LIBRARY

Start item begins a sequence of triangle items, the first and third vertex of the
previous triangle is used as the base for the triangle that follows. If a Triangle
Strip Start item begins a sequence of triangle items, the second and third

vertex of the previous triangle is used as the base for the triangle that follows.

3.3.22.2.2 A661_ParameterStructure_BufferOfltems
A661_ParameterStructure_BufferOfltems as used for MapHorz_ItemList is defined
in Table 3.3.22.2.2.
Table 3.3.22.2.2 — A661_ParameterStructure_BufferOfltems
A661_ParameterStructure Size (bits) | Description
| Parameterident | 16 | AB61_BUFFER OF MAPITEM
ClearFlag 1 If Set, All Items will be set to NOT_USED by CDS
__ before setting the specified Items.
Number of Items 15 Number of Items modified by the command
{ltemStructures}+ {32}+
3.3.22.3 MapHorz ItemList Interactive Items

This section describes how display applications can specify interactive map items.
The CDS highlights interactive items on the map that are close to the cursor. If the
user depresses the select button while the interactive item is highlighted, an event is
sent by the CDS to the UA. This section covers both MapVert and MapHorz
interactive items.

The interactive items available are a subset of those listed in Table 3.3.22.1-1. The
constant values for the interactive map items have the same lower seven bits as
those listed in Table 3.3.22.1-1 with the eighth bit set. The interactive map items are
listed below with their constant values listed in Table 4.6-11.

LINE_ARC_INTERACTIVE
LINE_SEGMENT_INTERACTIVE
LINE_START_INTERACTIVE
SYMBOL_CIRCLE_INTERACTIVE
SYMBOL_GENERIC_INTERACTIVE
SYMBOL_ROTATED_INTERACTIVE
SYMBOL_TARGET_INTERACTIVE
SYMBOL_RUNWAY_INTERACTIVE
FILLED_POLY_START_INTERACTIVE
SYMBOL_OVAL_INTERACTIVE

In cases where the active areas of two interactive Mapltem or MapSource
widgets overlap, the sending of one or two events will be CDS dependent.

Recommended Behavior:

ARINC SPECIFICATION 661 — Page 114
3.0 WIDGET LIBRARY

For line sequences that consist of more than one segment, the application can
choose whether highlighting and event reporting is based on individual segments or
the entire sequence.

X

(Point 2)

(Point 3)

SFO FFM

Figure 3.3.22.3-1 — A Line Sequence With Four Straight Line Segments

Figure 3.3.22.3-1 shows a very long line, and for this example it is assumed that the
application splits the line into four segments. This could serve the purpose of helping
the CDS draw an accurate image of a great-circle line.

If the application intends each line segment to be individually selectable, it can
encode the example through the following map item lists (Table 3.3.22.3-1):

Table 3.3.22.3-1 — Map Item List Example for Highlighting and Event Reporting
of Individual Segments

Index | Item Type Data

1 Symbol_Generic Coordinates of SFO, waypoint symbol
2 Legend String “SFO”

3 Symbol_Generic Coordinates of FFM, waypoint symbol
4 Legend String “FFM”

5 Line_Start Coordinates of FFM

6 Line_Segment_Interactive Coordinates of Point 1

7 Line_Segment_Interactive Coordinates of Point 2

8 Line_Segment_Interactive Coordinates of Point 3

9 Line_Segment _Interactive Coordinates of FFM

When the cursor is within highlighting distance of a line segment, only that segment
is highlighted (Figure 2). If the pilot clicks on a segment, the
A661_EVT_SELECTION event that is sent to the application carries the item index
of the segment that was highlighted at the time of the click (item 8 in

Table 3.3.22.3-1).

ARINC SPECIFICATION 661 — Page 115
3.0 WIDGET LIBRARY

(Poin

(Point 1) k

—

2)

l

(Point 3)

SFO FFM

Figure 3.3.22.3-2 — Highlighting and Event Reporting Based on Individual Line
Segments

If the application would like to treat the sequence of line segments as a single entity
(that just happens to be drawn as separate lines), it may want the entire sequence to
be highlighted whenever the cursor is within highlighting distance of any of the line
segments, as shown in Figure 3.3.22.3-3 below:

(Point 2)

(Point 1) k

(Point 3)

SFO FFM

Figure 3.3.22.3-3 — The Entire Segment is Highlighted

As far as event reporting (upon a mouse click) goes, the application can ask the
CDS to do one of two things:

1. to send the item index of the individual segment that was highlighted at the
time of the click, or

2. to send the item index of the LINE_START_INTERACTIVE item (i.e. the
same item regardless of which of its line segments was clicked on).

The application makes this choice by using the LINE_ SEGMENT _INTERACTIVE
item type if it wants event information for the individual segment, as opposed to the
LINE_SEGMENT item type if it wants an event for the overall line sequence. In
either case, the line begins with a map item of type LINE_START_INTERACTIVE.

ARINC SPECIFICATION 661 — Page 116

Table 3.3.22.3-2 below shows an example of a line where event reporting is based
on the line segment. A click with the cursor as shown in Figure 3.3.22.3-3 would
store an item index of 8 in the event structure, as was the case in the previous

3.0 WIDGET LIBRARY

example (Table 3.3.22.3-1):

Table 3.3.22.3-2 — Map Item List Example for Highlighting Entire Sequence With

Event Reporting of Individual Line Segments

Index | Item Type Data
1 Symbol_Generic Coordinates of SFO, waypoint symbol
2 Legend String “SFO”
3 Symbol_Generic Coordinates of FFM, waypoint symbol
4 Legend String “FFM”
5 Line_ Start_Interactive Coordinates of FFM
6 Line_Segment Interactive | Coordinates of Point 1
7 Line_Segment_Interactive | Coordinates of Point 2
8 Line_Segment Interactive | Coordinates of Point 3
9 Line_Segment_Interactive | Coordinates of FFM

The example in Table 3.3.22.3-3 does not look any different to the pilot. However,
when a click on any of the flight plan segment occurs, the item index field in the
event message is set to 5 (the index of the LINE_START_INTERACTIVE item)

regardless of the particular segment that was clicked on:

Table 3.3.22.3-3 — Map Item List Example for Highlighting and Event Reporting

Based on the Entire Line Sequence

Index Item Type Data
1 Symbol_Generic Coordinates of SFO, waypoint symbol
2 Legend String “SFO”
3 Symbol_Generic Coordinates of FFM, waypoint symbol
4 Legend String “FFM”
5 Line_Start_Interactive Coordinates of FFM
6 Line_Segment Coordinates of Point 1
7 Line_Segment Coordinates of Point 2
8 Line_Segment Coordinates of Point 3
9 Line_Segment Coordinates of FFM

ARINC SPECIFICATION 661 — Page 117
3.0 WIDGET LIBRARY

The following table (Table 3.3.22.3-4) summarizes the CDS behavior. For each line
segment, its type (interactive or non-interactive) as well as the type of the beginning
of the current line (interactive or non-interactive) determines the highlighting and
event behavior.

Table 3.3.22.3-4 — Summary of CDS highlighting and Event Generation

Start of sequence Current segment Behavior

Line_Start Line_Segment No highlighting, segment is not interactive

Line_Start_Interactive | Line_Segment Highlight entire sequence; upon click report event
for Line_Start_Interactive map item index

Line_Start Line_Segment_Interactive | Highlighting and event reporting based on individual

line segments only

Line_Start_Interactive | Line_Segment_Interactive | Highlight entire sequence; upon click report event
for the Line_Segment_Interactive map item that
corresponds to the line that the click occurred on

Note: Straight lines were used in the examples. The concept applies to arcs
(LINE_ARC and LINE_ARC_INTERACTIVE) the same way.

3.3.23 MapLegacy

Categories:

e Map management
e Graphical Representation

Description:

The MapLegacy widget provides a means for the CDS to be compatible with legacy
data formats used with display systems prior to the introduction of ARINC 661. The
purpose is to define the means by which the visibility of this kind of data will be
managed in relation with other Map UAs. The format of the data and the link to
transmit the data depends on the legacy type. Therefore, the data buffer should not
be sent through ARINC 661 commands. The CDS and UAs that exchange this type
of widget should define together how the CDS processes this data. The MapLegacy
is not an interactive widget.

Restriction:
A MapLegacy should be in a MapHorz_Source container.

MapLegacy Parameters are defined in Table 3.3.23-1.

Table 3.3.23-1 — MapLegacy Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MAP_LEGACY

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget
Specific parameters

ChannellD | D | Identifier of the input stream source reference

ARINC SPECIFICATION 661 — Page 118

3.0 WIDGET LIBRARY

MapLegacy Creation Structure is defined in Table 3.3.23-2.

Table 3.3.23-2 — MapLegacy Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Description
WidgetType | | ushort | 16 | ABB1_MAP LEGACY |
Widgetldent ushort 16
_Parentldent | ushort | e]
Channelld | __. uchar | .8 | CDSspecific |
Visible uchar 8 A661_FALSE
A661_TRUE

3.3.24

The MapLegacy widget does not send any event.

The MapLegacy is not modifiable through the A661_CMD_SET_PARAMETER
command.

MapHorz_Source

Categories:

e Map management
e Container
e |[nteractive

Description:

The MapHorz_Source widget is a specialized container. It contains some
MapHorz_ItemList widgets to display Items expressed in a common coordinate
system.

MapHorz_Source is a widget directly contained by a MapHorz or by a Layer, which
is directly under the layer in the widget tree. One MapHorz_Source can be shared
between several MapHorz widgets using a Connector widget. The format of the data
contained by the MapHorz_Source is specified at design time, but the data itself is
only available at run time.

MapHorz_Source is an interactive widget. The display area of the MapHorz_Source
is the same as the MapHorz. The UA may need to receive the cursor position on a
crew member validation with CCD on the MapHorz_Source display area. The
MapHorz_Source “EventFlag” parameter provides a means to the Map UA to control
the CDS sending this event. The X,Y position sent by the CDS is expressed in
MapHorz_Source coordinates.

Restriction:

The MapHorz_Source should be directly under a MapHorz or a Layer widget. When
directly attached to a Layer, the layer should not be attached to a window displayed
alone.

ARINC SPECIFICATION 661 — Page 119
3.0 WIDGET LIBRARY

MapHorz_Source Parameter are defined in Table 3.3.24-1.

Table 3.3.24-1 — MapHorz_Source Parameters

Parameters | Change

Description

Commonly used parameters

WidgetType D A661_MAPHORZ_SOURCE

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

Specific Parameters

MapDataFormat D Format of the data contained by this MapHorz_Source. This parameter
defines the coordinate system as well as the kind of transformation to
apply on dynamic widgets contained by the MapHorz_Source. See values
in the table below.

EventFlag DR Type of Event to return:

A661_EVENT_NONE: no event will be sent

A661_VALIDATION: only SELECTION event will be sent
A661_VALIDATION_AND_WHEEL: SELECTION and INCREMENT
events will be sent

A661_WHEEL: only INCREMENT event will be sent

VALIDATION ; it is to indicate if the UA wants to receive the cursor position
upon click, expressed in its coordinate system.

INCREMENT ; it is to indicate if the user application wants to receive the
number of increments upon crew member interaction .

MapHorz_Source Creation Structure is defined in Table 3.3.24-2a.

Table 3.3.24-2a — MapHorz_Source Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary

WidgetType ushort 16 A661_MAPHORZ_SOURCE

Widgetldent ushort 16

Parentldent ushort 16

Enable uchar 8 A661_FALSE
A661_TRUE
A661_TRUE_WITH_VALIDATION

Visible uchar 8 A661_FALSE
A661_TRUE

MapDataFormat uchar 8 A661_MDF _BRG _DIST_ACHDG
A661_MDF_DIST_DIST
A661_MDF_LAT_LONG
A661_MDF_LEGACY

EventFlag uchar 8 A661_EVENT_NONE
A661_VALIDATION
A661_VALIDATION_AND_WHEEL
A661_WHEEL

UnusedPad N/A 16 0

ARINC SPECIFICATION 661 — Page 120

3.0 WIDGET LIBRARY

MapData Format values are defined in Table 3.3.24-2b.

Table 3.3.24-2b — MapDataFormat Values:

Value Projectio Alignment | Origin Positive Units of LSB
n Applied of +Y Axis Orientati Measure
on
A661_MDF_BRG_DIST_ACHDG No aircraft body | aircraft clockwise | X nautical | X: fr(32768)
longitudinal | lat/Ing miles Y: fr(180)
axis defined Y degrees
in
MapHorz
A661_MDF_DIST_DIST No Various aircraft N/A Xand: X: fr(32768)
lat/Ing nautical Y: fr(32768)
defined miles
in
MapHorz
A661_MDF_LAT_LONG Yes True North | lat/Ing clockwise | XandY X: fr(180)
degrees Y: fr(180)
A661_MDF_LEGACY various various various N/A various various

MapHorz_Source Event Structures: A661_EVT_SELECTION_MAP are defined in
Table 3.3.24-3.

Table 3.3.24-3 — MapHorz_Source Event Structures:
A661_EVT_SELECTION_MAP

EventStructure Type Size (bits) | Value/Description
Eventident [ushot [16 | A661 EVT_SELECTION.MAP
UnusedPad N/A 16 0

X/ Lat/ Range Scaled Integer 32 expressed in map source coordinate system

Y / Lng / Bearing Scaled Integer 32 expressed in map source coordinate system

Table 3.3.24-4a — MapHorz_Source Event Structures: A661_EVT_INCREMENT

EventStructure Type Size | Value/Description
(bits)
Eventldent | _ushort | - 16| A661_EVT_INCREMENT
UnusedPad N/A 16 0
NbOflncrements long 32

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.24-4.

Table 3.3.24-4b - MapHorz_Source Runtime Modifiable Parameters

Parameterldent Used
Name of the in the Type of Structure Used
Parameter to Set Type Size (bits) | ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar A661 VISIBLE A661_ParameterStructure 1Byte
EventFlag uchar A661 EVENT FLAG A661 ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 121
3.0 WIDGET LIBRARY

3.3.25 MapHorz

Categories:

e Container
¢ Map management

Description:

A MapHorz widget consists of a rectangular region on the display, which contains
reference information to enable the display of map features in the cockpit. The
MapHorz widget enables multiple sources of information with different coordinate
systems to be merged into a composite map image.

MapHorz provides information for resolving coordinate system disparities among the
map sources. MapHorz also has the responsibility for containing multiple map
sources such that the data is merged properly into a composite representation.

Restriction:
None

MapHorz Parameters are defined in Table 3.3.25-1.

Table 3.3.25-1 — MapHorz Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MAPHORZ

Widgetldent D Unique identifier of the widget

Parent Identifier D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

X Pos D The X position of the widget reference point (screen coordinate
system)

Y Pos D The Y position of the widget reference point (screen coordinate
system)

SizeX D Area size X

SizeY D Area size Y

MapSynchronizatio R See section 3.2.8.4

nNumber

Reference coordinate system

Projection Reference R This point is used by the CDS to know what reference should be used

Point Latitude to run the projection algorithm.

Projection Reference R The CDS converts dynamic widget coordinate data into the MapHorz

Point Longitude coordinate system. The MapHorz coordinate system is defined by:

Reference point: PRP with lat/Ing coordinate
Reference direction: True North

Commentary: For the ND, PRP is the aircraft position for ARC and
ROSE mode. For PLAN mode the PRP is a waypoint of the FPLN. In
mode PLAN, the PRP can be populated by the FMS through the ND.
Equivalence between “MapHorz coordinate system” and “MapHorz Screen Coordinate system”

Screen Reference DR X and Y Position of the PRP on the screen. This position is expressed
Point X in MapHorz Screen Coordinate System refer to (X Pos, Y Pos)
Screen Reference DR

Point Y

ARINC SPECIFICATION 661 — Page 122
3.0 WIDGET LIBRARY

Parameters Change Description
Range DR Geo-referenced range
ScreenRange DR Distance in screen unit (0.01 mm) equivalent to range

Orientation parameters for latitude/longitude and TCAS coordinate like systems

Orientation R Angle of the True North relative to the up-direction of display at the
PRP. (see Reference coordinate system, positive direction:
anticlockwise). If PRP Latitude is at a pole, the up-direction of the
display should be the meridian identified by PRP Longitude.

AircraftOrientation R Orientation of the aircraft relative to the True North (positive direction:
clockwise)

AircraftLatitude R Latitude of the aircraft

AircraftLongitude R Longitude of the aircraft

ProjectionType D Indicate which kind of projection will be applied on lat/Ing coordinate of
dynamic widget. For example:
LAMBERT
POLAR

MapHorz Creation is defined in Table 3.3.25-2a.

Table 3.3.25-2a — MapHorz Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType | ushort | 16 [A661_MAPHORZ
Widgetldent ushort 16
Parentldent | _ushort | 16
Enable uchar 8 A661_FALSE
A661_TRUE
| AG61_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
Screen Reference Point X long 32
Screen Reference Point Y long 32
Range fr(32768) 32
ScreenRange ulong 32
 ProjectionType | | uchar | 8
UnusedPad N/A 24 0

MapHorz Event Structures: the structure of A661_ EVT_ITEM _
SYNCHRONIZATION is defined in Table 3.3.25-2b. This event is initiated by the
transmission of an Item_Synchronization in a MapHorz_ltemList. See the definition
of the Item_Synchronization in the MapHorz_ItemList for more details.

ARINC SPECIFICATION 661 — Page 123

3.0 WIDGET LIBRARY

Table 3.3.25-2b — MapHorz Event Structures: A661_EVT_ITEM_

SYNCHRONIZATION
EventStructure Type Size (bits) | Value/Description
| Eventldent | . ushort | 16 | A661_EVT_ITEM_SYNCHRONIZATION
Linkedldent ushort 16 Identifier of the connector identifier link to the layer
containing the MapltemList which has received the
Item Synchronization.
If no connector is used to connect the layer containing
the MapltemList with the MapHorz, this field is to be set
to identifier of the MapltemList.
DataType uchar 8 Data type coming from the item synchronization:
From MapHorzltemList:
| ND_MODE_RANGE (forexample)
UnusedPad N/A 24 0
SynchronizationData 32 Data is implementation dependent.
1st word
SynchronizationData 32 Data is implementation dependent.
2nd word

Available SetParameter identifiers and associated data structure are defined in

Table 3.3.25-3.

Table 3.3.25-3 — MapHorz Runtime Modifiable Parameters

Name of the Parameter Size Parameterident Used Type of Structure Used

to Set Type (bits) in the ParameterStructure (Refer to Section 4.5.4.5)

Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure _1Byte

Projection Reference fr(180) 32 A661_PRP_LAT A661_ParameterStructure_4Bytes

Point Latitude

Projection Reference fr(180) 32x2 | A661_PRP_LAT_LONG A661_ParameterStructure_8Bytes

Point Latitude and X2

Longitude

Projection Reference fr(180) 32 A661_PRP_LONG A661_ParameterStructure_4Bytes

Point Longitude

Screen Reference Point X long 32 A661 PRP_SCREEN X A661_ParameterStructure_4Bytes

Screen Reference Point X | longx2 | 32x2 | A661_PRP_SCREEN_XY A661_ParameterStructure_8Bytes

Screen Reference Point Y

Screen Reference Point Y long 32 A661 PRP _SCREEN_Y A661_ParameterStructure _4Bytes

Range fr(3276 32 A661_RANGE A661_ParameterStructure_4Bytes
8)

ScreenRange ulong 32 A661_SCREEN_RANGE A661_ParameterStructure 4Bytes

Orientation fr(180) 32 A661 ORIENTATION A661_ ParameterStructure_4Bytes

AircraftLatitude fr(180) 32 A661_AC LAT A661_ParameterStructure_4Bytes

AircraftLongitude fr(180) 32 A661_AC LONG A661_ ParameterStructure_4Bytes

AircraftLatitude fr(180) 32x2 | A661_AC_LAT_LONG A661_ParameterStructure_8Bytes

AircraftLongitude X 2

AircraftOrientation fr(180) 32 A661 AC ORIENTATION A661_ ParameterStructure_4Bytes

MapSynchronizationNu ushort 16 A661_MAP_SYNCHRONIZAT | A661_ParameterStructure_2Bytes

mber

ION_NUMBER

See section 3.2.8.4

3.3.26 MaskContainer

Categories:
Container

Description:

ARINC SPECIFICATION 661 — Page 124

3.0 WIDGET LIBRARY

A MaskContainer widget applies a mask to a group of widgets to implement non-
rectangular clipping. A mask should be referenced and placed by the Container.
Widgets placed within this Container will be affected by the referenced mask.

Restriction:
None

MaskContainer Parameters are defined in Table 3.3.26-1.

Table 3.3.26-1 — MaskContainer Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MASK_CONTAINER

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

PosX D X position of the mask. Note that this does not reposition widgets
contained within the MaskContainer, only the mask itself.

PosY D Y position of the mask. Note that this does not reposition widgets
contained within the MaskContainer, only the mask itself.

Specific parameters

MaskReference DR Index to a Mask stored in the CDS. See definition of Mask in the
Glossary.

MaskEnabled DR If set to True, the mask is active and all the widgets contained within
the MaskContainer will be affected by the referenced mask.
If set to False, the mask is not active and the widgets contained
within the MaskContainer will not be affected by the referenced
masKk.

MaskContainer Creation Structure is defined in Table 3.3.26-2.

Table 3.3.26-2 — MaskContainer Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgefType [ushort [16 [A661_MASK CONTAINER
Widgetldent ushort 16
Parentident | ushort | - L
MaskEnabled uchar 8 A661_FALSE
| MeBTTRUE
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
MaskReference | ushort | 16
UnusedPad N/A 16 0

The MaskContainer widget does not send any event.

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 125

Available SetParameter identifiers and associated data structure are defined in

Table 3.3.26-3.

Table 3.3.26-3 — MaskContainer Runtime Modifiable Parameters

Name of the Size | Parameterldent Used Type of Structure Used
Parameter to Set | Type | (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661 VISIBLE A661 ParameterStructure 1Byte
MaskReference ushort 16 | A661_MASK REFERENCE | A661 ParameterStructure 2Bytes
MaskEnabled uchar 8 A661_MASK ENABLED A661_ParameterStructure_1Byte
3.3.27 Panel
Categories:
Container

Graphical representation

Description:
A Panel widget groups several widgets together in a rectangular area with clipping

capabilities. Widgets placed within a Panel widget have their coordinates referenced
to the PosX, PosY reference point of the Panel.

Restriction:
None

Panel Parameters are defined in Table 3.3.27-1.

Table 3.3.27-1 — Panel Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_PANEL

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS
MotionAllowed D Capability to change PosX, PosY, SizeX, SizeY at run time
PosX DR The X position of the widget reference point

PosY DR The Y position of the widget reference point

SizeX DR The X dimension size (width) of the widget

SizeY DR The Y dimension size (height) of the widget

ARINC SPECIFICATION 661 — Page 126

3.0 WIDGET LIBRARY

Panel Creation Structure is defined in Table 3.3.27-2.

Table 3.3.27-2 — Panel Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
| WidgetType | ushort | 16 |A661TPANEL
Widgetldent ushort 16
| Parentldent] | ushort | 16
Enable uchar 8 A661_FALSE

A661_TRUE
,,, A661_TRUE_WITH_ VALIDATION
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
| StyleSet | ushort | 18
MotionAllowed uchar 8 A661_FALSE
___ A661 TRUE
UnusedPad N/A 8 0

No event is associated with the Panel widget.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.27-3.

Table 3.3.27-3 — Panel Runtime Modifiable Parameters

Parameterident Used

Name of the Type Size | in the Type of Structure Used
Parameter to Set (bits) | ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY X 2
PosX long 32 A661_POS_X A661_ParameterStructure_4Bytes
PosY long 32 A661_POS_Y A661_ParameterStructure_4Bytes
SizeX ulong 32 A661_SIZE_X A661_ParameterStructure_4Bytes
SizeY ulong 32 A661_SIZE_Y A661_ParameterStructure_4Bytes
SizeXY long 32x2 | A661_SIZE_XY A661_ParameterStructure_8Bytes

X 2

ARINC SPECIFICATION 661 — Page 127
3.0 WIDGET LIBRARY

3.3.28 PicturePushButton

Categories:
e Interactive
e Graphical representation
e Text string

Description:
A PicturePushButton widget is a PushButton including a picture and possibly a
string.

Restriction:

None

PicturePushButton Parameters are defined in Table 3.3.28-1.

Table 3.3.28-1 — PicturePushButton Parameters

Parameters

| Change

Description

Commonly used parameters

WidgetType D A661_PICTURE_PUSH_BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation
AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter
Specific parameters
MaxStringLength D Maximum length of the label text
Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER
LabelString DR Label of the PicturePushButton
Picture Reference DR Reference of the picture
PicturePosition D The string position depends on the picture position:
CENTER
LEFT
RIGHT
TOP
BOTTOM
EntryValidation R

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE
A661_TRUE

ARINC SPECIFICATION 661 — Page 128

3.0 WIDGET LIBRARY

Picture PushButton Creation Structure is defined in Table 3.3.28-2.

Table 3.3.28-2 — Picture PushButton Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType | ushot [16 . A661_PICTURE_PUSH_BUTTON
Widgetldent ushort 16
Parentident | _ushort | 16
Enable uchar 8 A661_FALSE

A661_TRUE
e] A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661 FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | _ushort | 16
NextFocusedWidget ushort 16
PictureReference ushort 16
MaxStringLength ushort 16
PicturePosition uchar 8 A661_LEFT

A661_CENTER

A661_RIGHT

A661_TOP
___ A661 BOTTOM
AutomaticFocusMotion uchar 8 A661_FALSE

A661_TRUE
Alignment uchar 8 A661_LEFT

A661_CENTER

A661_RIGHT
UnusedPad N/A 8 0
LabelString string 8 * string Followed by zero, one, two or three

length + Pad | extra NULL for alignment of 32 bits.

Picture PushButton Event Structures: A661_EVT_SELECTION is defined in Table

3.3.28-3.

Table 3.3.28-3 — Picture PushButton Event Structures: A661_EVT_SELECTION

EventStructure Type Size (bits) | Value/Description
Eventldent ushort 16 A661 EVT SELECTION
UnusedPad N/A 16 0

ARINC SPECIFICATION 661 — Page 129
3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.28-4.

Table 3.3.28-4 — Picture PushButton Runtime Modifiable Parameters

Name of the
Parameter to Set Size | Parameterldent Used Type of Structure Used
Type | (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure _1Byte
LabelString string | {32}+ | A661_STRING A661_ParameterStructure String
PictureReference ushort 16 A661_ PICTURE_REFERENCE | A661 ParameterStructure 2Bytes
StyleSet ushort 16 A661 STYLE_SET A661_ ParameterStructure 2Bytes
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
3.3.29 PictureToggleButton
Categories:
e Graphical representation
e Interactive
e Text string
Description:
A PictureToggleButton widget is a button with two stable states with a picture and
possibly text.
Restriction:
None
PictureToggleButton Parameters is defined in Table 3.3.29-1.
Table 3.3.29-1 — PictureToggleButton Parameters
Parameters | Change | Description
Commonly used parameters
WidgetType D A661_PICTURE_TOGGLE BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
ToggleState DR Inner state of the ToggleButton
SELECTED
UNSELECTED
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation
AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

ARINC SPECIFICATION 661 — Page 130

3.0 WIDGET LIBRARY

Parameters

Change

Description

MaxStringLength

D

Maximum length of the label text

AlternateFlag

D

True: Use of the two string (and two picture) according to the inner
state. CDS will change the string if the inner state change

False: “AlternateString” (and AlternatePicture) is not used. Only
parameter “string” (and Picture) is used for the two inner state

LabelString

DR

Label of the ToggleButton
Label used for UNSELECTED state

AlternateLabelString

DR

Label of the ToggleButton
Label used for SELECTED state

PictureReference

DR

Picture on the ToggleButton
Picture used for UNSELECTED state

AlternatePictureReference

DR

Picture on the ToggleButton
Picture used for SELECTED state

Alignment

Alignment of the text within the label area of the widget:
LEFT

RIGHT

CENTER

PicturePosition

The string position depends on the picture position:
CENTER

LEFT

RIGHT

TOP

BOTTOM

EntryValidation

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE
A661_TRUE

PictureToggleButton Creation Structure is defined in Table 3.3.29-2.

Table 3.3.29-2 — PictureToggleButton Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType [ushort | 16| A661_PICTURE TOGGLE BUTTON
Widgetldent ushort 16
Parentident | ushort | 16
Enable uchar 8 A661_FALSE

A661_TRUE
___ A661_TRUE WITH VALIDATION
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | 16
NextFocusedWidget ushort 16
MaxStringlength | ushort | 16 .
AlternateFlag uchar 8 A661_FALSE
___ A661 TRUE
AutomaticFocusMotion uchar 8 A661_FALSE

A661_TRUE
PictureReference [ushort | L

ARINC SPECIFICATION 661 — Page 131
3.0 WIDGET LIBRARY

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
AlternatePictureReference ushort 16
PicturePosition uchar 8 A661 LEFT

A661_CENTER

A661_RIGHT

A661_TOP
___ A661 BOTTOM
ToggleState uchar 8 A661_UNSELECTED
___ A661 SELECTED
Alignment uchar 8 A661_LEFT

A661_CENTER
,,, A6G1RIGHT
UnusedPad N/A 8 0
LabelString string 8 * string1 The string terminating NULL is used as string
,, length | separator.
AlternateLabelString string 8 * string2 Followed by zero, one, two or three extra NULL

length + Pad | for alignment of 32 bits.

PictureToggleButton Event Structures: A661_EVT_STATE_CHANGE are defined in
Table 3.3.29-3.

Table 3.3.29-3 - PictureToggleButton Event Structures:
A661_EVT_STATE_CHANGE

EventStructure Type Size (bits) | Value/Description
| Eventldent | __ushort | 16 | A661_EVT STATE CHANGE
ToggleState uchar 8 A661_UNSELECTED
___ A661_SELECTED .
UnusedPad N/A 8 0

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.29-4.

Table 3.3.29-4 — PictureToggleButton Runtime Modifiable Parameters

Name of the Size | Parameterldent Used Type of Structure Used
Parameter to Set Type | (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)

Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
ToggleState uchar 8 A661 INNER STATE_TOGGLE | A661_ ParameterStructure_1Byte
StyleSet ushort 16 | A661 STYLE SET A661_ ParameterStructure 2Bytes
PictureReference ushort 16 A661 PICTURE_REFERENCE A661_ ParameterStructure 2Bytes
AlternatePicture ushort 16 | A661_ALTERN_PICTURE_ A661_ParameterStructure_2Bytes
Reference REFERENCE

LabelString string | {32}+ | A661_STRING A661_ ParameterStructure_String
AlternateLabelString | string | {32}+ | A661 _STRING ALTERNATE A661_ParameterStructure String
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

ARINC SPECIFICATION 661 — Page 132

3.3.30 PopUpPanel

Categories:

e Container

3.0 WIDGET LIBRARY

e Graphical representation

e |[nteractive

Description:

PopUpPanel widget should be displayed on top of other layers, but it is affected by

clipping area of its parents.

PopUpPanel widget visibility should be managed by the CDS through logic defined

by the airframe manufacturer/system integrator.

PopUpPanel widget should not be used as a regular Container. The UA or CDS can

define the position of the Container according to the PositionFlag value.

PopUpPanel widget has clipping capability.

Restriction:

PopUpPanel Parameters are defined in Table 3.3.30-1.

Table 3.3.30-1 — PopUpPanel Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_POP_UP_PANEL
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible R Visibility of the widget:
A661_FALSE
A661_TRUE
Note: Widget is not visible at creation time.
StyleSet DR Reference to graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
Specific parameters
UAPositionFlag D TRUE: UA defined position
FALSE: Position defined by CDS using MouseClick location
AutomaticClosure D TRUE: with the automatic closure upon a click outside the
PopUpPanel
FALSE: without the automatic closure upon a click outside the
PopUpPanel

ARINC SPECIFICATION 661 — Page 133
3.0 WIDGET LIBRARY

PopUpPanel Creation Structure is defined in Table 3.3.30-2.

Table 3.3.30-2 — PopUpPanel Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType |] ushort | 16 1. AB61T POP UP PANEL
Widgetldent ushort 16
Parentident | ushort | A6 .
UAPositionFlag uchar 8 A661_FALSE
___ AB61 TRUE
AutomaticClosure uchar 8 A661_FALSE
A661_TRUE
PosX long 32 Set to 0 when UAPositionFlag is FALSE.
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet] ushort | A6 .
UnusedPad N/A 16 0
The specific event sent by the PopUpPanel to the owner application is defined in
Table 3.3.30-3.
Table 3.3.30-3 — PopUpPanel Event Structures:
A661_EVT_POPUP_PANEL_CLOSED
EventStructure Type Size (bits) | Value/Description
Eventldent | ushort | - 16 | A661_EVT_POPUP_PANEL CLOSED |
UnusedPad N/A 16 0

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.30-4.

Table 3.3.30-4 — PopUpPanel Runtime Modifiable Parameters

Parameterident used
Name of the Size in the Type of Structure Used
parameter to set Type (bits) | ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_ VISIBLE A661 ParameterStructure 1Byte
StyleSet ushort 16 A661 STYLE SET A661 ParameterStructure 2Byte
3.3.31 PopUpMenu
Categories:

e Graphical representation
e Interactive
e Text string

Description:

The PopUpMenu widget should be displayed on top of other layers, but it is affected
by the clipping area of its parents. PopUpMenu is not a Container.

PopUpMenu visibility should be managed by the CDS using logic defined by the
airframe manufacturer/system integrator. The UA or CDS can define the position of
the Container according to the OpeningMode value.

ARINC SPECIFICATION 661 — Page 134

Restriction:

None

3.0 WIDGET LIBRARY

PopUpMenu Parameters are defined in Table 3.3.31-1.

Table 3.3.31-1 — PopUpMenu Parameters

Parameters

| Change

Description

Commonly used parameters

WidgetType D A661_POP_UP_MENU

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible R Visibility of the widget:

A661_FALSE
A661_TRUE
Note: Widget is not visible at creation time.

StyleSet DR Referenced to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

Specific parameters

OpeningMode D OPEN_UP:
the position (X,Y) is given according to bottom/left point
OPEN_DOWN:
the position (X,Y) is given according to top/Left point
CDS_DEPENDENT:

Position defined by CDS using CCD Click location

NumberOfEntries D Number of entries in the PopUpMenu. It also includes the graphical separators.

MaxStringLength D Maximum length of the text of any one entry including the first NULL character
ending the string (in bytes).

StringArray DR String attached to one entry
Strings composed by only one NULL character will be interpreted as “graphical
separator”. The NULL string at the end of the array will be not interpreted.

PictureArray DR Picture attached to each entry (if value is NULL, no picture is attached to the
corresponding entry).

PopUpldentArray D Widgetldent for the PopUpMenu attached to one string. Widgetldent can only
refer to another PopUpMenu. If Widgetldent is NULL, no PopUpMenu is
attached to this Entry.

EnableArray DR Ability for each Entry on the PopUpMenu:

ENABLE
DISABLE

ARINC SPECIFICATION 661 — Page 135
3.0 WIDGET LIBRARY

PopUpMenu Creation Structure is defined in Table 3.3.31-2.

Table 3.3.31-2 — PopUpMenu Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
 WidgetType] ushort | 16 | A661_POP_UP_MENU
Widgetldent ushort 16
Parentldent | ushort | A6
OpeningMode uchar 8 A661 _OPEN_UP

A661_OPEN_DOWN
A661_CDS_DEPENDENT

NumberOfEntries uchar 8

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

MaxStringLength ushort 16 Maximum length of the text of one
,, entry .

StyleSet ushort 16

PopUpldentArray[NumberOfEntries] {ushort}+ 16 * NumberOf
,,, Entries |

PictureArray {ushort}+ 16~
 [NumberOfEntries] |]! NumberOfEntries |

EnableArray[NumberOfEntries] {uchar}+ 8 * NumberOf
,,, Entries | .

StringArray[NumberOfEntries] {string}+ 8 * string There are “NumberOfEntries”

lengths + Pad strings.

Each string is ended by character
NULL (part of the string used as
string separator).

The complete string list is followed
by zero, one, two or three NULL
character(s) so that the creation
buffer will be 32 bits aligned

Each array is not necessarily aligned on 32 bits. The alignment is provided by adding
zero, one, two or three NULL character(s) at the end of the last array (StringArray).

The specific event sent by the PopUpMenu to the owner application is defined in
Table 3.3.31-3.

Table 3.3.31-3 — PopUpMenu Event Structures: A661_EVT_POPUP_CLOSED

EventStructure Type Size (bits) | Value/Description
| Eventldent | | ushort | 16 | A661_EVT POPUP_CLOSED
SelectedEntry uchar 8 0 when the pop up is closed without any selection

‘n’” in [1; NumberOfEntries] else.

UnusedPad N/A 8 0

ARINC SPECIFICATION 661 — Page 136

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.31-4.

Table 3.3.31-4 — PopUpMenu Runtime Modifiable Parameters

Name of the Size | Parameterldent Used in the Type of Structure Used

Parameter to Set | Type | (bits) | ParameterStructure (Refer to Section 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes

StringArray N/A {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray

[NumberOfEntries]

EnableArray N/A {32}+ | A661_ENABLE_ARRAY A661_ParameterStructure_EnableArray

[NumberOfEntries] Refer to definition in table 4.5.4.5.7-1 .

PictureArray N/A {32}+ | A661_PICTURE_ARRAY A661_ParameterStructure_PictureArray

[NumberOfEntries] Refer to definition in table 3.3.31.1-1
below.

StringArray N/A {32}+ | A661_ENTRY_POP_UP_ARRAY | A661_ParameterStructure_EntryPopUp

[NumberOfEntries] Array

and Refer to definition in table 3.3.31.1-2

EnableArray below.

[NumberOfEntries]

3.3.311 PopUp Specific A661_ParameterStructure

A661_ParameterStructure_PictureArray is defined in Table 3.3.31.1-1.

Table 3.3.31.1-1 — A661_ParameterStructure_PictureArray

A661_ParameterStructure_PictureArray Size (bits) Description
Parameter_ident 16 A661_PICTURE_ARRAY

Entrylndex 8]
UnusedPad 8 0

Picture . _|_....1 | Picturereference |
UnusedPad 16 0

A661_ParameterStructure_EntryPopUpArray is defined in Table 3.3.31.1-2.

Table 3.3.31.1-2 — A661_ParameterStructure_EntryPopUpArray

A661_ParameterStructure_EntryPopUpArray Size (bits) Description
Parameter ident [16 | AB61_ENTRY_POP_UP_ARRAY |
Number Of Entries Updated 16

{ EntryPopUp_Structure }+ {32}+ Refer to table 3.3.31.1-3.

ARINC SPECIFICATION 661 — Page 137

3.0 WIDGET LIBRARY

Table 3.3.31.1-3 — EntryPopUp_Structure

EntryPopUp_Structure Size (bits) Description
Entrylndex 8
Enable 8 A661_FALSE
A661_TRUE
Picture 16
StringLength 16
String 8 * string Followed by zero, one, two or three NULL
length + PAD | character(s) to be 32 bits aligned.
3.3.32 PopUpMenuButton
Categories:
e Graphical representation
e Interactive
e Text string
Description:
The PopUpButton widget contains a Button widget that displays a PopUpMenu,
which is internal to the CDS.
This widget contains a PopUpMenu widget. The UA has the responsibility to define
the position of the PopUpMenu.
Restriction:
None
PopUpMenuButton Parameters are defined in Table 3.3.32-1.
Table 3.3.32-1 — PopUpMenuButton Parameters
Parameters | Change | Description

Commonly used parameters

WidgetType D A661_POP_UP_MENU_BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
NextFocusedWidget D Widget ident of next widget to be focused upon crew member validation
AutomaticFocusMotion D Automatic motion of the focus on widget specified in NextFocusedWidget
parameter
Specific parameters for the button
MaxStringLength D Maximum length of the label text
Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT

ARINC SPECIFICATION 661 — Page 138

3.0 WIDGET LIBRARY

Parameters Change | Description
CENTER
LabelString DR Label of the menu button
Picture Reference DR Reference of the picture to be displayed on the button
PicturePosition D The string position depends on the picture position:

CENTER
LEFT
RIGHT
TOP
BOTTOM

Specific Parameters of PopUp

PopupPosX D The X position of the PopUpMenu reference point

PopupPosY D The Y position of the PopUpMenu reference point

PopupSizeX D The X dimension size (width) of the PopUpMenu

PopupSizeY D The Y dimension size (height) of the PopUpMenu

OpeningMode D OPEN_UP: the position (X,Y) is given according to bottom/left point
OPEN_DOWN: the position (X,Y) is given according to top/left point

NumberOfEntries D Number of entries in the PopUpMenu. It also includes the graphical
separators.

MaxStringLengthPopUp D Maximum string length for the entries on the popup, including the first
NULL character ending the string (in bytes).

StringArray DR String attached to one entry
Strings composed by only one NULL character will be interpreted as a
graphical separator. The NULL string at the end of the array will not be
interpreted.

PictureArray DR Picture attached to each entry (if value is NULL, no picture is attached to
the corresponding entry).

PopUpldent Array D ushort for the PopUpMenu attached to one string. Widgetldent can only
refer to another PopUpMenu. If Widgetldent is NULL, no PopUpMenu is
attached to this Entry.

EnableArray DR Ability for each Entry on the PopUpMenu:

Refer to table 4.5.4.5.7-1.

EntryValidation R

Indicator notifying the CDS that the UA has completed processing
the entry or selection event. This flag also indicates the results of
that processing.

A661_FALSE

A661_TRUE

PopUpMenuButton Creation Structure is defined in Table 3.3.32-2.

Table 3.3.32-2 — PopUpMenuButton Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
[WidgetType whort [16 . A661_POP_UP_MENU BUTTON
Widgetldent ushort 16
| Parentldent]] ushort | A6 .
Enable uchar 8 AB61_FALSE
A661_TRUE
,, A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32

ARINC SPECIFICATION 661 — Page 139
3.0 WIDGET LIBRARY

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
SizeY ulong 32
StyleSet] ushort | 16 | .
NextFocusedWidget ushort 16
PopupPosX long 32
PopupPosY long 32
PopupSizeX ulong 32
PopupSizeY ulong 32
MaxStringlLength |] ushort | 16 |
MaxStringLengthPopUp ushort 16
PictureReference | ushort | 16 .
NumberOfentries | uchar | 8
PicturePosition uchar 8 A661 _CENTER
A661_LEFT
A661_RIGHT
A661_TOP
A661_BOTTOM
OpeningMode uchar 8 A661 _OPEN_UP
A661_OPEN_DOWN
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
UnusedPad N/A 8 0
LabelString string 8 * string length + | Followed by zero, one, two or three
Pad NULL character(s) to be 32 bits
aligned
PopUpldentArray[NumberOfEntries] {ushort}+ 16 * NumberOf
Entries
PictureArray {ushort}+ 16~
| [NumberOfEntries] | || NumberOfEntries | .
EnableArray[NumberOfEntries] {uchar}+ 8 * NumberOf
,,, Entries | ..
StringArray[NumberOfEntries] {string}+ | 8 * string length + | There are “NumberOfEntries” strings.
Pad Each string is ended by character
NULL (part of the string used as string
separator).
The complete string list is followed by
zero, one, two or three NULL
character(s) so that the creation buffer
will be 32 bits aligned

Each array is not necessary aligned on 32 bits. The alignment is provided by adding
zero, one, two or three NULL character(s) at the end of the last array only
(StringArray)

ARINC SPECIFICATION 661 — Page 140

3.0 WIDGET LIBRARY

The specific event sent by the PopUpMenuButton to the owner application is defined
in Table 3.3.32-3.

Table 3.3.32-3 — PopUpMenuButton Event Structures:
A661_EVT_POPUP_CLOSED

EventStructure Type Size (bits) | Value/Description
Eventident | ushort | 16 |A661_ EVT POPUP CLOSED
SelectedEntry uchar 8 0 when the pop up is closed without any selection else
,,, n'in [1; NumberOfEntries].
UnusedPad N/A 8 0
Available SetParameter identifiers and associated data structure are defined in
Table 3.3.32-4.
Table 3.3.32-4 — PopUpMenuButton Runtime Modifiable Parameters
Name of the Type | Size | Parameterldent Used in the Type of Structure Used
Parameter to Set (bits) | ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_ VISIBLE A661 ParameterStructure 1Byte
Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE SET A661_ParameterStructure 2Bytes
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String
PictureReference ushort 16 A661 PICTURE _REFERENCE A661_ParameterStructure 2Bytes
StringArray N/A | {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfEntries]
EnableArray N/A | {32}+ | A661_ENABLE_ARRAY A661_ParameterStructure_EnableArray
[Entries] Refer to definition in Table 4.5.4.5.7-1
PictureArray N/A | {32}+ | A661_PICTURE_ARRAY A661_ParameterStructure_PictureArray
[Entries] Refer to definition in table 3.3.31.1-1.
StringArray N/A | {32}+ | A661_ENTRY_POP_UP_ARRAY | A661_ParameterStructure_EntryPopUpArray
[NumberOfEntries] Refer to definition in Table 3.3.31.1-2
And
EnableArray
[NumberOfEntries]
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
3.3.33 PushButton
Categories:

e Graphical representation
e Interactive
e Text string

Description:

A PushButton widget is a momentary switched Button, which enables the crew to
launch an action.

A PushButton has only one inner state, so there is no need for an inner state

parameter.

Restriction:
None

ARINC SPECIFICATION 661 — Page 141
3.0 WIDGET LIBRARY

PushButton Parameters are defined in Table 3.3.33-1.

Table 3.3.33-1 — PushButton Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_PUSH_BUTTON

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER

LabelString DR String of the PushButton

MaxStringLength D Maximum length of the label text

EntryValidation R Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.
A661_FALSE
A661_TRUE

ARINC SPECIFICATION 661 — Page 142
3.0 WIDGET LIBRARY

PushButton Creation Structure is defined in Table 3.3.33-2.

Table 3.3.33-2 — PushButton Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType | ushort | 16 | AB61_PUSH BUTTON
Widgetldent ushort 16
Parentident | ushort | 16
Enable uchar 8 A661_FALSE

A661_TRUE
___ A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | 16
NextFocusedWidget ushort 16
MaxStringlength | ushort | 16
AutomaticFocusMotion uchar 8 A661_FALSE
___ A661 TRUE
Alignment uchar 8 A661_LEFT

A661_RIGHT

A661_CENTER
LabelString string 8 * string Followed by zero, one, two or three NULL

length + Pad | character(s) to be 32 bits aligned

This event indicates to the UA that a crew member has interacted with the widget.

PushButton Event Structures: A661_EVT_SELECTION is defined in
Table 3.3.33-3.

Table 3.3.33-3 — PushButton Event Structures: A661_EVT_SELECTION

EventStructure Type Size (bits) | Value/Description
| Eventldent | | ushort | 16 | A661_EVT SELECTION .
UnusedPad N/A 16 0

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.33-4.

ARINC SPECIFICATION 661 — Page 143
3.0 WIDGET LIBRARY

Table 3.3.33-4 — PushButton Runtime Modifiable Parameters

Parameterident Used
in the
Name of the Size | ParameterStructure Type of Structure Used
Parameter to Set Type (bits) (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ ENABLE A661_ ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure 1Byte
LabelString string {32}+ | A661_STRING A661_ ParameterStructure_String
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
3.3.34 RadioBox
Categories:
Container
Description:
A RadioBox widget manages the visibility and the interactivity of a group of Buttons
(CheckButtons or ToggleButtons). It enables a crew member to select one Button
out of “n” exclusive ones. At a given time one item maximum can be SELECTED. A
selection of a selected item by a crew member is without effect. Nevertheless, the
UA can deselect the selected item (through setParameter command) to create a
RadioBox without selection. The Buttons contained in the RadioBox should be
individually defined with the RadioBox as a parent widget. RadioBox does not have
any graphical representation.
Restriction:
The children of the RadioBox will be positioned relative to the parent of the
RadioBox. A RadioBox has only children types:
1. ToggleButton
2. PictureToggleButton
3. CheckButton
Only one type can be used in a given RadioBox at a time. The CDS assures that
internal state of the children is consistent (no more than one is selected) at all times,
including when the user changes the state of the children.
RadioBox Parameters are defined in Table 3.3.34-1.
Table 3.3.34-1 — RadioBox Parameters
Parameters | Change | Description
Commonly used parameters
WidgetType D A661 RADIO_BOX
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated

ARINC SPECIFICATION 661 — Page 144
3.0 WIDGET LIBRARY

RadioBox Creation Structure is defined in Table 3.3.34-2.

Table 3.3.34-2 — RadioBox Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
 WidgetType | _ushort | 16 | AB61_RADIO_ BOX
Widgetldent ushort 16
Parentldent | _.ushort | 16
Enable uchar 8 A661_FALSE

A661_TRUE
,,, A661_TRUE_WITH_VALIDATION
Visible uchar 8 AB61_FALSE

A661_TRUE

The RadioBox widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.34-3.

Table 3.3.34-3 — RadioBox Runtime Modifiable Parameters

Parameterident Used
Name of the Size | inthe Type of Structure Used
Parameter to Set Type (bits) | ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte
Visible uchar 8 A661 VISIBLE A661 ParameterStructure 1Byte
3.3.35 RotationContainer

Categories:

Container

Description:

A RotationContainer widget applies a rotation transformation to a group of widgets.
Widgets placed within RotationContainer have their coordinates referenced to the
first parent with a PosX, PosY reference point.

Restriction:
For RotationContainer restriction refer to Table 3.2.3.1 for children/parents.

RotationContainerParameters are defined in Table 3.3.35-1.

Table 3.3.35-1 — RotationContainerParameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_ROTATION_CONTAINER

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget

Specific parameters

CenterX DR X position of the center of the rotation

CenterY DR Y position of the center of the rotation
RotationAngle DR Rotation angle to be applied to the children widgets

ARINC SPECIFICATION 661 — Page 145
3.0 WIDGET LIBRARY

RotationContainer Creation Structure is defined in Table 3.3.35-2.

Table 3.3.35-2 — RotationContainer Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
[WidgetType [ushort | 16| A661_ROTATION CONTAINER
Widgetldent ushort 16
| Parentldent | ushort | - 16
[visibe | uchar | 8 |A661 FALSE
ol |AeBITRUE
UnusedPad N/A 8 0
CenterX long 32
CenterY long 32
RotationAngle fr(180) 32
The RotationContainer widget does not send any event.
Available SetParameter identifiers and associated data structure are defined in
Table 3.3.35-3.
Table 3.3.35-3 — RotationContainer Runtime Modifiable Parameters
Name of the Type Size | Parameterldent Used Type of Structure Used
Parameter to Set (bits) | in the ParameterStructure | (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
CenterX long 32x2 | A661_CENTER XY A661_ParameterStructure_8Bytes
CenterY X2
CenterX long 32 A661 CENTER X A661_ParameterStructure_4Bytes
CenterY long 32 A661 CENTER_Y A661_ ParameterStructure_4Bytes
RotationAngle fr(180) 32 A661_ROTATION_ANGLE | A661 ParameterStructure_4Bytes
3.3.36 ScrollPanel
Categories:

e Container
e Graphical representation

Description:
A scroll container is composed of two elements:

Frame, at fixed location. This location is the position of the widget (as already
known), defined by the parameters PosX, PosY, SizeX, SizeY.

Sheet, larger than the Frame, at a variable location with respect to the Frame. This
location is defined by the variables FrameX, FrameY, SizeXsheet, SizeYsheet. Note
that X/Y coordinates of the sheet are called FrameX and FrameY.

Indeed, the sheet X/Y coordinates should in fact be interpreted as the offset of the
sheet relative to the frame according to standard coordinate system, shown in Figure
3.3.36.

The scrolling function is allowed by DeltaX, DeltaY parameters, which provide to the
CDS the displacement of the sheet to apply when a crew member initiates an action

ARINC SPECIFICATION 661 — Page 146
3.0 WIDGET LIBRARY

with the scroll controls. The type of scroll controls provided are CDS OEM
dependent.

The scrolling function is also subject to boundaries specified through BoundX,
BoundY, SizeXbound, SizeYbound parameters accessible by the UA at run time.
These coordinates refer to the sheet location.

The CDS should provide scroll controls (scroll bars and/or scroll buttons, according
to the airframe manufacturer/system integrator style guide). Typically, this is based
on the relative size of the frame and the sheet. For instance, if X size of the frame is
smaller than the X size of the sheet, the CDS should set a horizontal scroll control.
Two parameters are available to allow the UA to choose from a variety of positions
according to the airframe manufacturer/system integrator style guide.

Note: Orientation of arrows make a difference. _

Xbound

Xframe

y
Yframe

Ybound

Figure 3.3.36 — Frame Standard Coordinate System

Restriction: The reference position for the children of the ScrollPanel is the FrameX
and FrameY.

ARINC SPECIFICATION 661 — Page 147
3.0 WIDGET LIBRARY

ScrollPanel Parameters are defined in Table 3.3.36-1.

Table 3.3.36-1 — ScrollPanel Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_SCROLL_PANEL

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Style Set DR Reference to predefined graphical characteristics inside CDS

Enable DR Ability of the widget to be activated

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

Specific parameters

LineDeltaX D Increment/Decrement to apply to FrameX when line scroll
controls are activated.

LineDeltaY D Increment/Decrement to apply to FrameY when line scroll
controls are activated.

PageDeltaX D Increment/Decrement to apply to FrameX when page scroll
controls are activated.

PageDeltaY D Increment/Decrement to apply to FrameY when page scroll
controls are activated.

HomeX D X predefined position for the frame

HomeY D Y predefined position for the frame

FrameX DR Frame Origin co-ordinate on x axis.

FrameY DR Frame Origin co-ordinate on y axis.

SizeXsheet D X dimension size of the sheet

SizeYsheet D Y dimension size of the sheet

BoundX DR Scroll Boundary Origin co-ordinate on x axis.

BoundY DR Scroll Boundary Origin co-ordinate on y axis.

SizeXbound DR X dimension size of the Scroll boundary

SizeYbound DR Y dimension size of the Scroll boundary

FlagReportFramePos D If True, CDS will report change on the frame position following
crew member actions.

Horizontal Scroll D Absent/Top/Bottom/Left/Right

Vertical Scroll D Absent/Left/Right/Top/Bottom

EntryValidation R Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.
A661_FALSE
A661_TRUE

ARINC SPECIFICATION 661 — Page 148

3.0 WIDGET LIBRARY

ScrollPanel Creation Structure is defined in Table 3.3.36-2.

Table 3.3.36-2 — ScrollPanel Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType T ushortt [16 [AB61_SCROLL PANEL
Widgetldent ushort 16
Parentident] ushort | A6
Enable uchar 8 A661_FALSE

A661_TRUE
,,, A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE

A661_ TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
LineDeltaX ulong 32
LineDeltaY ulong 32
PageDeltaX ulong 32
PageDeltaY ulong 32
HomeX long 32
HomeY long 32
FrameX long 32
FrameY long 32
SizeXsheet ulong 32
SizeYsheet ulong 32
BoundX long 32
BoundY long 32
SizeXbound ulong 32
SizeYbound ulong 32
Styleset [ushort | 16 [
UnusedPad N/A 16 0
Horizontal Scroll uchar 8 A661_TOP

A661_BOTTOM

A661_LEFT

A661_RIGHT
,, A661_ABSENT
Vertical Scroll uchar 8 A661_TOP

A661_BOTTOM

A661_LEFT

A661_RIGHT
,, AB61_ABSENT
FlagReportFramePos uchar 8 A661_FALSE
,, A661TRUE
UnusedPad N/A 8 0

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 149

ScrollPanel Event Structures: A661_EVT_FRAME_POS_CHANGE are defined in

Table 3.3.36-3.
Table 3.3.36-3 — ScrollPanel Event Structures:
A661_EVT_FRAME_POS_CHANGE
EventStructure Type Size (bits) | Value/Description
Eventldent | ushort | 16| A661_EVT_FRAME POS_CHANGE
UnusedPad ushort 16 0
FrameX long 32
FrameY long 32

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.36-4.

Table 3.3.36-4 — ScrollPanel Runtime Modifiable Parameters

Name of the Type Size Parameterident Used Type of Structure Used
Parameter to Set (bits) | in the ParameterStructure | (Refer to Section 4.5.4.5)
Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
FrameX long 32 A661_FRAME_X A661_ ParameterStructure_4Bytes
FrameY long 32 A661_FRAME_ Y A661_ ParameterStructure 4Bytes
FrameX long 32x2 | A661_FRAME_XY A661_ParameterStructure_8Bytes
FrameY X2
BoundX long 32 A661 BOUND_ X A661_ ParameterStructure_4Bytes
BoundY long 32 A661 BOUND Y A661_ParameterStructure 4Bytes
BoundX long 32x2 | A661_BOUND_XY A661_ParameterStructure_8Bytes
BoundY X 2
SizeXbound ulong 32 A661 BOUND_SIZE X A661_ ParameterStructure_4Bytes
SizeYbound ulong 32 A661 BOUND SIZE Y A661_ParameterStructure_4Bytes
SizeXbound ulong 32x2 | A661_BOUND_SIZE XY AB661_ParameterStructure_8Bytes
SizeYbound X2
EntryValidation uchar | 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
3.3.37 ScrollList

Categories:

e Graphical Representation
e Interactive

e Text string

Description:

A ScrollList widget enables the display of a list of entries and selection of one entry
from among this list. Entries are text strings, possibly including escape sequences.
This is specified through the DefaultStyleText Definition Time Only parameter, if set
to null, all labels can be considered by the CDS as being like normal Labels. As a
consequence of the use of escape sequences, one entry in the ScrollList can
correspond to several lines.

ARINC SPECIFICATION 661 — Page 150

3.0 WIDGET LIBRARY

Scroll controls are provided by the CDS. For example, these controls could allow for
scrolling by single items or by page. The type of scroll controls provided are CDS
OEM dependent.

The FirstVisibleEntry parameter is generally only managed by the CDS and is
used to define which LabelStringArray/EnableArray entry is positioned as the
first entry in the visible area of the ScrollArray. Although the UA can update
this parameter, doing so during normal operation can cause a race condition
(as described in Section 3.1.2.2). If the UA needs to update the list of
accessible entries such that the LabelStringArray entry containing the
currently FirstVisibleEntry has moved, the UA should use the parameter
ShiftFirstVisibleEntry to perform a one-time adjustment of the FirstVisibleEntry
parameter. The usage of ShiftFirstVisibleEntry is shown in Figure 3.3.37-1.

With the ScrollList widget the UA can maintain a large list of items external to CDS
and provide a subset to the ScrollList widget. The subset managed by the ScrollList
(1 through MaxNumberOfEntries) includes the items that are visible and can also
include data within the immediate vicinity of the visible area to provide for rapid
scrolling. The UA uses FirstAccessibleEntry and NumberOfEntries to specify
which subset of LabelStringArray and EnableArray contains accessible entries
(those which can be made visible by the CDS). Entries not in the range
specified by FirstAccessibleEntry and NumberOfEntries (for example, stale
data) are not allowed to become visible. An illustration of an update to the
accessible entries by the UA is shown in Figure 3.3.37-2.

Update of ScrollList by UA: Shift of 8 elements in the functional List

CDS management of ScrollList update
ScrollList with 5 visible entries among 16

. . N FirstVisibleEntry =10 FirstVisibleEntry =

/ User Application Functional List * AA

List with 676 elements AB Al

AJ

AA StringArray: Element Al to:AX AC AK

AB ShiftFirstVisibleEntry=-8 AD AL

AC AE AM

AD AF AN

AH AP
Al

A g

W AK NS

AP AX

Figure 3.3.37-1 — Scroll List update using ShiftFirstVisibleEntry and
LabelStringArray

2

O©CoOo~NOOGOLWN-=

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 151

Update of ScrollList by UA without affecting the displayed first Visible Entry:
: Change in content of the UA List
Change in the list of Accessible entries in the CDS

User Application Functional List

CDS management of ScrollList

676 elements with the first 3 ScrollList with 5 visible fentiies of 9
elements deleted from the List MaxNumberOfEntries=16
AA 1 AD 1) FirstAccessibIeEntr%lg1 FirstAccessibleEntry=4
AB |2 AE |2 FirstVisibleEntry= FirstVisibleEntry=6
A 3 A 3 NumberOfEntries=16 NumberOfEntries=9
AD 4 AG 4 UA UPDATE Stale
AA |1 AA 1)
AE 5 FlrstAoc:sslbleU —» AH 5 A5 2 Set_Parameer: A6 | 2 Unacce_55|b|e
AF 6 Entry=5 Al 6 i i V=4 AC Entries
AG_| 7 ’ AT |7 AC_13 hii V= 3
AT 8 A 8 AD |4 NumberOfEntries= AH |4
A 9 Visible T 9 AE 5 LabelStringArray[4-12] Al 5
Entries AF |6 AJ 6
AJ 10 AM 10 AG 7 - AK 7
AK | 11 » AN] 11 A Visible AL 8 Accessible
AT 12 Visible A0] 12 | Number 8 Entries A
Entries ofUA Al 19 AM |9 Entries
AM 13 AP 13 Entries AJ
10 AN 10
AN 14 AQ 14 =673 AR | 11 AO 1
AO_| 15 A 15 AT 12 Visible =+ 12
AP |16 A 16 Entries
A 13 AM |13 Stale
A 14 AN |14 Unaccessible
AO 15 A0 |15 Entries
AP_ |16 AP 116
ZS_ 1673 ZT l670
Z1_ 1674 ZU_l671
ZU 1675 ZV 672
AV__|676 AW 1673 |
Update of ScrollList by UA without affecting the displayed first Visible Entry:
. Add to the list of Accessible entries in the CDS
User Application Functional List CDS management of ScrollList
ScrollList with 5 visible entries of 16
673 elements MaxNumberOfEntries=16
AD 1) FirstAccessibleEntry=4 FirstAccessibleEntry=1
Firsthees ' ! AE 2 FirstVisibleEntry=6 FirstVisibleEntry=6
Entry=2 AF 3 NumberOfEnties=9 NumberOfEntries=16
AG 4 AA 1 UA UPDATE AE 1
AH 5 AB | 2 : AF 2
A ¢ R — e
AJ 7 AH | 4 LabelStingAttay1-3] AH 4
Visible AK 8 Al 5 LabelStringArray[13-16] Al 5
Entries AL 9 AJ 6 AJ 6
AM 10 AK 7 - - AK 7
AN 1 AL 8 V|5|l?le Visible AL 8
0 12 gflijrzbe. ya 9 Entries Entries AM 9 Acces§ible
A 13 [Envies AN_] 19] 0 Entries
14 | =673 AO_| 11 1
A 15 AP 12 AP_] 12
A 16 AM_] 13 A 13
AN _| 14 Al 14
A0 | 15 A 15
AP | 16 AT | 16 _
ZT 670
ZU 671
ZV | 672
ZW] 673 |

Figure 3.3.37-2 — Scroll List update using ShiftFirstVisibleEntry and
FirstAccessibleEntry

Restriction:

SelectedEntry, FirstVisibleEntry and FirstAccessibleEntry assume the first Entry
index to be 1. If SelectedEntry is 0, it is interpreted as none.

ARINC SPECIFICATION 661 — Page 152
3.0 WIDGET LIBRARY

ScrollList Parameters are defined in Table 3.3.37-1.

Table 3.3.37-1 — ScrollList Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661 SCROLL_LIST

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the
widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical
characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

NextFocusedWidget D Widget ident of next widget to be focused upon
crew member validation

AutomaticFocusMotion D Automatic motion of the focus on widget
specified in NextFocusedWidget parameter

Specific parameters

NumberOfEntries DR Number of accessible entries

MaxNumberOfEntries D Max number of accessible entries to be
managed by the CDS

FirstVisibleEntry DR Index into LabelStringArray/EnableArray of
the entry appearing as the first entry in the
visible area of the ScrollList

ShiftFirstVisibleEntry R Index shift to be applied to the current
FirstVisibleEntry value. That is, when a UA
wants to add or delete entries above the
FirstVisibleEntry, this parameter allows the
UA to cause the CDS to change the value of
FirstVisibleEntry by the number of
deleted/inserted entries. FirstVisibleEntry is
updated each time the ShirtFirstVisibleEntry
parameter is received.

FirstAccessibleEntry DR The Entry number of the first entry in the
LabelStringArray/EnableArray which the
CDS manages as part of the scrollable items
in the ScroliList.

NumberOfUAEntries R Number of entries in the UA managed list of
Items.

FirstAccessibleUAEntry R Index into the UA managed list of items that
corresponds to the FirstAccessibleEntry
parameter. This parameter combined with
NumberOfUAEntries allows the CDS to
display the positioning of the visible entries
in the ScroliList relative to the UA managed
list. Note that not all CDS implementations
display this information and may ignore
these parameters.

FlagReportVisibleEntry D If True, CDS will report change on first visible
entry following crew member actions.

SelectedEntry DR Currently selected Entry index

ARINC SPECIFICATION 661 — Page 153
3.0 WIDGET LIBRARY

Parameters Change Description

DefaultStyleText D NULL character: Escape sequence not used,
entries in the ScrollList are simple labels.

“ToutLine®TBackColor®TForeColor®TFont”

MaxStringLength D Maximum string length able to be received by
the object including the first NULL character
ending the string (in bytes), MaxStringLength >
1 (at least one significant character).

Alignment D Alignment of the text within the label area of the
widget

LEFT

RIGHT

CENTER

LabelStringArray[MaxNumberOfEntries] DR Label array of the ScrollList

EnableArray[MaxNumberOfEntries] DR Ability for each Entry on the ScrollList to be
selected :

TRUE

FALSE

Vertical Scroll D ABSENT
LEFT
RIGHT
TOP
BOTTOM

EntryValidation R Indicator notifying the CDS that the UA has
completed processing the entry or selection
event. This flag also indicates the results of
that processing.

A661_FALSE

A661_TRUE

ScrollListCreation Structure is defined in Table 3.3.37-2.

Table 3.3.37-2 — ScrollList Creation Structure

CreateParameterBuffer | Type Size (bits) | Value/Range When Necessary
WidgetType [| ushort [- 16 . A661_SCROLL LIST
Widgetldent ushort 16
Parentident | | ushort | - 16
Enable uchar 8 A661_FALSE
A661_TRUE
___ A661_TRUE_WITH VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StyleSet] ushort | - 16
NextFocusedWidget ushort 16

MaxNumberOfEntries | | ushort | - 16
NumberOfEntries ushort 16

SelectedEntry ushort 16

MaxStringLength ushort 16

FirstAccessibleEntry | | ushort | - 16
FirstVisibleEntry ushort 16

ARINC SPECIFICATION 661 — Page 154

3.0 WIDGET LIBRARY

CreateParameterBuffer | Type Size (bits) | Value/Range When Necessary
Vertical Scroll uchar 8 A661_TOP

A661_BOTTOM

A661_LEFT

A661_RIGHT
,, A661_ ABSENT
Alignment uchar 8 A661_LEFT

A661_RIGHT
__ A661 CENTER
FlagReportVisibleEntry uchar 8 A661_FALSE

A661_ TRUE
AutomaticFocusMotion uchar 8 A661_FALSE

A661_TRUE
DefaultStyleText uchar 96
EnableArray {uchar} 8* Enable status of ‘NumberOfEntries’ Entries
[NumberOfEntries] + NumberOf | from FirstAccessibleEntry

Entries
LabelStringArray {string}+ 8 * string There are “NumberOfEntries” strings.
lengths + Each string terminating NULL is used as string
Pad separator.

The complete string list is followed by zero,

one, two or three NULL character(s) to be 32

bits aligned.

ScrollList Event Structures: A661_EVT_SEL_ENTRY_CHANGE are defined Table

3.3.37-3.

Table 3.3.37-3 — ScroliList Event Structures: A661_EVT_SEL_ENTRY_CHANGE

EventStructure Type Size Value/Description

(bits)
Eventldent | ushort | - 16| A661_EVT_SEL ENTRY CHANGE
SelectedEntry ushort 16 Index of the new selected entry

ScrollList Event Structures: A661_EVT_FIRST_VIS_ENTRY_CHANGE are defined

in Table 3.3.

37-4.

Table 3.3.37-4 — ScrollList Event Structures:
A661_EVT_FIRST_VIS_ENTRY_CHANGE

EventStructure

Type

Size
(bits)

Value/Description

Eventldent

FirstVisibleEntry

A661 EVT FIRST VIS ENTRY_CHANGE

Index of the first visible entry

ARINC SPECIFICATION 661 — Page 155

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.37-5.

Table 3.3.37-5 — ScrollList Runtime Modifiable Parameters

Parameterident Used
Name of the Size | in the ParameterStructure Type of Structure Used
Parameter to Set Type (bits) (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
NumberOfEntries ushort 16 A661_NUMBER_OF_ENTRIES A661_ParameterStructure_2Bytes
NumberOfUAEntries ushort 16 A661_NUMBER_OF_UA_ENTRIES A661_ParameterStructure_2Bytes
FirstAccessibleEntry ushort 16 A661 FIRST ACCESS ENTRY A661_ParameterStructure 2Bytes
FirstAccessibleUAEntry | ushort 16 A661_FIRST_ACCESS_UA_ENTRY A661_ParameterStructure_2Bytes
FirstVisibleEntry ushort 16 A661_FIRST VISIBLE_ENTRY A661_ParameterStructure_2Bytes
ShiftFirstVisibleEntry short 16 A661_SHIFT FIRST VISIBLE_ENTRY | A661_ ParameterStructure 2Bytes
SelectedEntry ushort 16 A661_SELECTED_ENTRY A661_ParameterStructure_2Bytes
LabelStringArray[Max N/A {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray
NumberOfEntries]
EnableArray [Entry] N/A {32}+ | A661_ENABLE_ARRAY A661_ParameterStructure_EnableArray
Refer to Table 4.5.4.5.7-1
LabelStringArray N/A {32}+ | A661_ENTRY_ARRAY A661_ParameterStructure_EntryArray
[MaxNumberOfEntries] Refer to Definition Below
and EnableArray
[MaxNumberOfEntries]
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
3.3.371 ScrollList Specific A661_ParameterStructure

A661_ParameterStructure_EntryArray is defined in Table 3.3.37.1-1.

Table 3.3.37.1-1 — A661_ParameterStructure_EntryArray

A661_ParameterStructure_Entry | Size (bits) | Description

Array

Parameter_ident 16 A661_ENTRY_ARRAY
Number Of Entries Updated 16

{ EntryScrollList_Structure }+ Reference table 3.3.37.1-2

Table 3.3.37.1-2 — EntryScrollList_Structure

EntryScrollList_Structure Size (bits) Description
StringLength 16
Entrylndex 16
Enable 8 A661_FALSE

A661_TRUE
UnusedPad 8 0
String 8 * string Followed by zero, one, two or three NULL

length + character(s) to be 32 bits aligned
PAD

ARINC SPECIFICATION 661 — Page 156
3.0 WIDGET LIBRARY

3.3.38 Symbol

Categories:
e Graphical Representation
e Dynamic Motion

Description:

The Symbol widget is similar to the Label widget, except it does not have a Max-
String-Length parameter and the string parameter is replaced by a Symbol-
Reference parameter (outside reference).

Restriction:
None

Symbol Parameters are defined in Table 3.3.38-1.

Table 3.3.38-1 — Symbol Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_SYMBOL
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
StyleSet DR Reference to predefined graphical characteristics inside CDS.
PosX DR The X position of the widget reference point
PosY DR The Y position of the widget reference point
Specific parameters
MotionAllowed D Capability to change PosX, PosY, Rotation Angle at runtime
RotationAngle DR Angle at which symbol is displayed relative to its origin
Refer to Angles defined in Section 2.3.4.2
Colorindex DR Color index of the symbol, used if StyleSet allows color to be set.
SymbolReference DR Reference of the symbol stored in the CDS

Symbol Creation Structure is defined in Table 3.3.38-2.

Table 3.3.38-2 — Symbol Creation Structure

CreateParameterBuffer | Type Size (bits) | Value/Range When Necessary
| WidgetType [ushort | 16 |AestSsywsOL
Widgetldent ushort 16
| Parentldent | ushort | 16
Motion Allowed uchar 8 A661_FALSE
,, A661_TRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
RotationAngle fr(180) 32
[StyleSet [ushort | I
SymbolReference ushort 16
| Colorlndex | | uchar | 8 | (valid paletteindex)
UnusedPad N/A 24 0

ARINC SPECIFICATION 661 — Page 157
3.0 WIDGET LIBRARY

Symbol does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.38-3.

Table 3.3.38-3 — Symbol Runtime Modifiable Parameters

Name of the Size Parameterident Used Type of Structure Used
Parameter to Set Type (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY X2
PosX long 32 A661 POS X A661_ ParameterStructure_4Bytes
PosY long 32 A661 POS Y A661_ ParameterStructure 4Bytes
RotationAngle fr(180) 32 A661 ORIENTATION A661_ ParameterStructure_4Bytes
Colorindex uchar 8 A661_COLOR_INDEX A661_ParameterStructure 1Byte
SymbolReference ushort 16 A661 SYMBOL REFERENCE | A661_ ParameterStructure 2Bytes
3.3.39 TabbedPanel
Categories:
o Container
e Graphical Representation
e Text string
Description:

The TabbedPanel widget is functionally composed of a Panel associated with a
Button. This widget can be created only inside a TabbedPanelGroup widget. The
size of the panel part of the TabbedPanel widget is identical for all the TabbedPanels
inside a TabbedPanelGroup and is therefore described by the TabbedPanelGroup
widget. Connectors can be used to move the definition of the TabbedPanel to a
different definition file so that the owning application can control the parameters of
the TabbedPanel.

The TabbedPanel widget is not interactive, however it contains a
NextFocusedWidget parameter used by the parent TabbedPanelGroup to shift
focus from one tab to another.

Restriction:

The TabbedPanel widget should only be used under a TabbedPanelGroup or a
Layer. When directly attached to a layer, this layer should not be attached to a
window to be displayed alone.

ARINC SPECIFICATION 661 — Page 158
3.0 WIDGET LIBRARY

TabbedPanel Parameters are defined in Table 3.3.39-1.

Table 3.3.39-1 — TabbedPanel Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_TABBED_ PANEL

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to graphical characteristics defined inside CDS.
The StyleSet will influence only the label or picture displayed on
the button associated with the TabbedPanel

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

LabelString DR Label of the tab

Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER

MaxStringLength D Maximum string length of the label

InsetSize D Size of the button associated with the TabbedPanel, in the
direction of the text writing, in screen units (millimeters).

Picture Reference DR Picture reference among available picture inside CDS

PicturePosition D The string position depends on the picture position:
CENTER
LEFT
RIGHT
TOP
BOTTOM

COMMENTARY

TabbedPanel and TabbedPanelGroup widgets are defined as
separate widgets to provide the UA the ability to change the
characteristics of each TabbedPanel when it is necessary. This
implies that there will be one identifier for the TabbedPanelGroup and
one identifier per TabbedPanel child widget.

ARINC SPECIFICATION 661 — Page 159

3.0 WIDGET LIBRARY

TabbedPanel Creation Structures are defined in Table 3.3.39-2.

Table 3.3.39-2 — TabbedPanel Creation Structure

CreateParameterBuffer | Type Size (bits) | Value/Range When Necessary
‘WidgetType [ushort | 16 [A661 TABBED PANEL |
Widgetldent ushort 16
_Parentldent | ushort | 8
Enable uchar 8 A661_FALSE
A661_TRUE
el | M661_TRUE_WITH VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
StyleSet | ushort | 16
NextFocusedWidget ushort 16
MaxStringlength | ushort | 16
PictureReference ushort 16
PicturePosition uchar 8 A661_CENTER
A661_LEFT
A661_RIGHT
A661_TOP
|\ . |mestBOTTOM
AutomaticFocusMotion uchar 8 A661_FALSE
o |mestTRE
Alignment uchar 8 A661_LEFT
A661_RIGHT
__ A661 CENTER]
UnusedPad N/A 8 0
InsetSize ulong 32
LabelString string 8 * string | Followed by zero, one, two or three extra NULL for alignment
length + of 32 bits.
Pad

The TabbedPanel widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.39-3.

Table 3.3.39-3 — TabbedPanel Runtime Modifiable Parameters

Name of the Size Parameterident Used Type of Structure Used
Parameter to Set Type | (bits) in the ParameterStructure (Refer to Section 4.5.4.5)

Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure _1Byte
StyleSet ushort 16 A661 STYLE_SET A661_ ParameterStructure 2Bytes
LabelString string {32}+ | A661_STRING A661_ParameterStructure String
PictureReference ushort 16 A661 PICTURE_REFERENCE | A661 ParameterStructure 2Bytes

ARINC SPECIFICATION 661 — Page 160
3.0 WIDGET LIBRARY

3.3.40 TabbedPanelGroup
Categories:
e Container
e Graphical representation
e Interactive
Description:
A TabbedPanelGroup widget groups several TabbedPanel widgets. A
TabbedPanelGroup enables the UA or a crew member to select one of the
TabbedPanel widgets for display. All of the TabbedPanels inside the
TabbedPanelGroup widget occupy the same display space, and only one may be
displayed at a time. The displayed TabbedPanel is the one referenced by the
“Active TabbedPanel ID” parameter.
The TabbedPanelGroup has clipping capabilities.
Restriction:
A TabbedPanelGroup can only contain TabbedPanel or Connector widgets.
TabbedPanel Group Parameters are defined in Table 3.3.40-1.
Table 3.3.40-1 — TabbedPanelGroup Parameters
Parameters | Change | Description
Commonly used parameters
WidgetType D A661_TABBED_PANEL_GROUP
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
Specific parameters
TabPosition D Display and position of optional tab:
ABSENT no tab will be used
TOP automatic tab will be set up
BOTTOM automatic tab will be set down
LEFT automatic tab will be set left
RIGHT automatic tab will be set right
AutomaticlnsetSizeFlag D If TabPosition is Top/Bottom:
TRUE: CDS defines the button size according to the
TabbedPanelGroup and the number of button.
FALSE: The button size is defined by the TabbedPanel
parameter ButtonSize. If this size is incoherent, it is set by the
CDS automatically
If TabPosition is Right/Left:
TRUE: CDS defines the button size according to the StyleSet
FALSE: The CDS use the maximum of the sizes defined

ARINC SPECIFICATION 661 — Page 161

3.0 WIDGET LIBRARY

Parameters Change Description
inside the TabbedPanel

ActiveTabbedPanellD DR Identifier of the active TabbedPanel or the associated
Connector reference

EntryValidation R

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE

A661_TRUE

TabbedPanelGroup Creation Structure is defined in Table 3.3.40-2.

Table 3.3.40-2 — TabbedPanelGroup Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType [ushort | 16| A661_TABBED PANEL GROUP
Widgetldent ushort 16
Parentident | ushort | 16
Enable uchar 8 A661_FALSE
A661_TRUE
,,, A661_TRUE WITH VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | - 16
ActiveTabbedPanellD ushort 16
TabPosition uchar 8 A661_ABSENT
A661_TOP
A661_BOTTOM
A661_LEFT
,,, A6GTRIGHT
AutomaticlnsetSizeFlag uchar 8 A661_FALSE
,,, ABG1TRUE
UnusedPad N/A 16 0
TabbedPanelGroup Event Structures: A661_EVT_TABBED_ PANEL_CHANGE are
defined in Table 3.3.40-3.
Table 3.3.40-3 — TabbedPanelGroup Event Structures:
A661_EVT_TABBED_PANEL_CHANGE
EventStructure Type Size (bits) Value/Description
| Eventldent | ushort | 16 | A661_EVT_TABBED_PANEL_CHANGE
ActiveTabbedPanellD ushort 16 Identifier of the selected TabbedPanel or the associated
Connector reference

Available SetParameter identifiers and associated data structure are defined in

Table 3.3.

40-4.

ARINC SPECIFICATION 661 — Page 162

3.0 WIDGET LIBRARY

Table 3.3.40-4 — TabbedPanelGroup Runtime Modifiable Parameters

Name of the Size Parameterident Used Type of Structure Used
Parameter to Set Type (bits) in the ParameterStructure (Refer to Section 4.5.4.5)

Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure 1Byte
StyleSet ushort 16 A661 STYLE_SET A661_ ParameterStructure 2Bytes
ActiveTabbedPanellD | ushort 16 A661 _ACTIVE_TABBED PANEL | A661 ParameterStructure 2Bytes
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

3.3.41 ToggleButton
Categories:
e Graphical representation
e Interactive
e Text string
Description:
A ToggleButton widget is a two, stable-states Button with text.
Restriction:
None
ToggleButton Parameters are defined in Table 3.3.41-1.
Table 3.3.41-1 — ToggleButton Parameters
Parameters | Change | Description
Commonly used parameters
WidgetType D A661_TOGGLE_BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
ToggleState DR Inner state of the ToggleButton
UNSELECTED
SELECTED
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation
AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter
Specific parameters
MaxStringLength D Maximum length of the label text
AlternateFlag D True: Use of the two strings according to the inner state. CDS will
change the string if the inner state change
False: “AlternateString” is not used. Only parameter “string” is used
for the two inner state
Alignment D Alignment of the text within the label area of the widget

ARINC SPECIFICATION 661 — Page 163

3.0 WIDGET LIBRARY

Parameters

Change

Description

LEFT
RIGHT
CENTER

String

DR

Label of the ToggleButton
Label used for UNSELECTED state

AlternateString

DR

Label of the ToggleButton
Label used for SELECTED state

EntryValidation

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE
A661_TRUE

ToggleButton Creation Structure is defined in Table 3.3.41-2.

Table 3.3.41-2 — ToggleButton Creation Structure

CreateParameterBuffer | Type Size (bits) Value/Range When Necessary
WidgetType [ushot [16 | A661_TOGGLE BUTTON
Widgetldent ushort 16
Parentldent | ushott | 16 | .
Enable uchar 8 A661_FALSE

A661_TRUE
___ A661_TRUE WITH_VALIDATION
Visible uchar 8 A661_FALSE

A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | wshot [6 [
NextFocusedWidget ushort 16
MaxStringlength | ushort | 16 |
InnerState uchar 8 A661_UNSELECTED

A661_SELECTED
AlternateFlag uchar 8 A661_FALSE

A661_TRUE
AutomaticFocusMotion uchar 8 A661_FALSE

A661_TRUE
Alignment uchar 8 A661_LEFT

A661_RIGHT
___ A661 _CENTER
UnusedPad N/A 16 0
LabelString string 8 * string String terminator NULL is used as string
,, length | separator.
AlternateLabelString string 8 * string Followed by zero, one, two or three extra

length + Pad | NULL for alignment of 32 bits.

ARINC SPECIFICATION 661 — Page 164

3.0 WIDGET LIBRARY

ToggleButton Event Structures: A661_EVT _STATE_CHANGE are defined in Table

3.3.41-3.

Table 3.3.41-3 — ToggleButton Event Structures: A661_EVT_STATE_CHANGE

EventStructure Type Size (bits) Value/Description
Eventident | ushort | 16 | A661_EVT _STATE CHANGE .
InnerState uchar 8 A661_UNSELECTED
___ AB61_SELECTED .
UnusedPad N/A 8 0

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.41-4.

Table 3.3.41-4 — ToggleButton Runtime Modifiable Parameters

Name of the Size Parameterident Used Type of Structure Used
Parameter to Set Type | (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
ToggleState uchar 8 A661 INNER STATE TOGGLE | A661 ParameterStructure 1Byte
Enable uchar 8 A661_ENABLE A661_ ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure 1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
LabelString string {32}+ | A661_STRING A661_ParameterStructure_String
AlternatelLabelString | string {32}+ | A661_STRING ALTERNATE A661_ ParameterStructure_String
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

3.3.42 TranslationContainer
Categories:
Container
Description:
A TranslationContainer widget applies a translation transformation to a group of
widgets. Widgets placed within TranslationContainer have their coordinates
referenced to the first parent with a PosX, PosY reference point.
Restriction:
For TranslationContainer restriction refer to Table 3.2.3.1 regarding children/parents.
TranslationContainer Parameters are defined in Table 3.3.42-1.
Table 3.3.42-1 — TranslationContainerParameters Table
Parameters | Change | Description
Commonly used parameters
WidgetType D AB61_TRANSLATION_CONTAINER
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
Specific parameters
TranslationX DR X Translation of the child widgets
TranslationY DR Y Translation of the child widgets

ARINC SPECIFICATION 661 — Page 165
3.0 WIDGET LIBRARY

TranslationContainer Creation Structure is defined in Table 3.3.42-2.

Table 3.3.42-2 — TranslationContainer Creation Structure Table

CreateParameterBuffer | Type Size (bits) | Value/Range When Necessary
WidgetType | ushort | 16 | A661_TRANSLATION_CONTAINER |
Widgetldent ushort 16

Parentldent | ushort | 16]
Visible uchar 8 A661_FALSE
| AGB1_TRUE
UnusedPad N/A 8 0

TranslationX long 32

TranslationY long 32

The TranslationContainer widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in
Table 3.3.42-3.

Table 3.3.42-3 — TranslationContainer Runtime Modifiable Parameters

Name of the

Parameter to Parameterident Used in Type of Structure Used

Set Type | Size (bits) | the ParameterStructure (Refer to Section 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
TranslationX long 32x2 AB661_TRANSLATION_XY | A661_ParameterStructure_8Bytes
TranslationY X2

TranslationX long 32 A661_TRANSLATION_X A661_ParameterStructure 4Bytes
TranslationY long 32 A661 TRANSLATION Y A661_ ParameterStructure 4Bytes

3.4

Widget Library Expansion

This section was added in Supplement 1. It introduces new widgets to ARINC 661.

3.4.1 MapGrid

Categories:

e Map Management
e Graphical Representation

Description:

MapGrid provides a means for conveying arrays of data to the CDS that are
rendered as area fills. The intended use is for filling areas on background layers of
the NAV window with colors and/or patterns that indicate terrain topography,
precipitation intensity, or other irregular, dynamic data.

The fill is defined by the number of cells in the horizontal and vertical, the size of
each cell in nautical miles or equivalent, the offset of the grid’s (0,0) cell from the
display origin, and the Fill Style Index for each cell. Distances are described in real-
world units, which decouples the UA from the specific display technology. The entire
area defined by each cell boundary is to be filled with the color or pattern or other
graphical attribute as selected by the Fill Style Index. Typically, slightly more data is
supplied than is displayed. The amount of excess depends on several factors:

ARINC SPECIFICATION 661 — Page 166
3.0 WIDGET LIBRARY

e If the CDS or UA implements motion compensation (update the origin or
rotation independently of color data)

o If the background data is masked around the edges

o |f the application is aware of the current display mode (arc, rose, plan, center,
etc.)

o |If there is sufficient bandwidth between UA and CDS for an oversized array
o If there is sufficient memory allocated in the CDS for an oversized array

AN
>
V4
OrigX offset
DrigY| offset IDY M
O ~
grid N x M cells DX nM display J x K pixels
origin origin
MapGrid widget ND window

Figure 3.4.1-1 — Example MapGrid rendering in ND window

The UA may need to update the MapGrid color data periodically. Since the array
may be large relative to the bandwidth available, provision is made for just a few (or
one) rows or columns at a time. The UA can change the size of a cell, in real-world
units, at run-time to support a balance between range and resolution. The size of a
MapGrid array, in cells, is fixed at Definition Time.

Restriction:

A MapGrid must be in a MapHorz_Source or MapVert_Source container.

Support for the various MapData Format Values (table 3.3.24-2b) and
MapVert_MapData Format Values (table 3.4.4-2b) depends on the implementation.

MapGrid Parameters are defined in Table 3.4.1-1.

ARINC SPECIFICATION 661 — Page 167
3.0 WIDGET LIBRARY

Table 3.4.1-1 — MapGrid Parameters

Parameters |_Change | Description

Commonly used parameters

WidgetType D A661_MAP_GRID

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Specific parameters

CountX D Number of cells along the X axis in the array.

CountY D Number of cells along the Y axis in the array.

OffsetX DR Horizontal offset, in (fractional) cells, between the display reference
point and the grid origin. If translation/rotation is done by the UA, this
number is constant (typically one-half of CountX).

(OffsetX, OffsetY) defines the point in the grid to be placed at the
display origin (typically, the aircraft current location). The point may or
may not be at a cell boundary, depending on the ratio of cell size to
pixel size, chosen aircraft mock-up location, and whether translation for
aircraft motion is implemented in the CDS or the UA.

OffsetY DR Vertical offset, in (fractional) cells, between the display reference point
and the grid origin.

IncrementX DR Size of each individual cell in the X axis, in the real-world units defined
by the containing Map Source. Support for the various Map Source Data
Formats depends on the implementation.

MapHorz_Source:
A661_MDF_LAT_LONG: See table 3.3.24-2b.
A661_MDF_DIST_DIST: See table 3.3.24-2b.
A661_MDF_BRG_DIST_ACHDG: See table 3.3.24-2b.
A661_MDF_LEGACY See table 3.3.24-2b.
MapVert_Source:
A661_MDF_X_DIST See table 3.4.4-2b
A661_MDF_RELATIVE See table 3.4.4-2b
A661_MDF_ABSOLUTE See table 3.4.4-2b

IncrementY DR Size of each individual cell in the Y axis, in the real-world units defined
by the containing Map Source. Support for the various Map Source Data
Formats depends on the implementation.

MapHorz_Source:
A661_MDF_LAT_LONG: See table 3.3.24-2b.
A661_MDF_DIST_DIST: See table 3.3.24-2b.
A661_MDF_BRG_DIST_ACHDG: See table 3.3.24-2b.
A661_MDF_LEGACY See table 3.3.24-2b.
MapVert_Source:
A661_MDF_Y_ALT See table 3.4.4-2b.
A661_MDF_RELATIVE See table 3.4.4-2b
A661_MDF_ABSOLUTE See table 3.4.4-2b

BufferOfFillStyles R Buffer of Fill Style Indices. Buffer can be updated row-at-a-time or
column-at-a-time.

MapSynchronizat R See section 3.2.8.4

ionNumber

ARINC SPECIFICATION 661 — Page 168

3.0 WIDGET LIBRARY

MapGrid Creation Structure is defined in Table 3.4.1-2.

Table 3.4.1-2 — MapGrid Creation Structure

CreateParameterBuffer Type Size (bits) | Value / Range When Necessary

WidgetType ushort 16 A661_MAP_GRID

Widgetldent ushort 16

Parentldent ushort 16

Visible uchar 8 A661 FALSE
A661_TRUE

UnusedPad N/A 8

OffsetX float 32 range is 0 to CountX

OffsetY float 32 range is 0 to CountY

IncrementX float 32 units defined by containing MapHorz_Source widget
(degrees or nautical miles)

IncrementY float 32 units defined by containing MapHorz_Source widget
(degrees, nautical miles, or feet)

CountX ushort 16

CountY ushort 16

MapGrid Runtime Modifiable Parameters are defined in Table 3.4.1-3.

Table 3.4.1-3 — MapGrid Runtime Modifiable Parameters

Name of the

parameter to Size | Parameterldent used Type of Structure Used

set Type | (bits | in the ParameterStructure (Refer to sections 4.5.3)

Visible uchar | 8 A661_VISIBLE A661_ParameterStructure_1Byte

OffsetX, OffsetY float 32x2 | A661_MAPGRID_OFFSET A661_ParameterStructure_ 8Bytes

X 2

IncrementX, float 32x2 | A661_MAPGRID_CELLSIZE A661_ParameterStructure_ 8Bytes

IncrementY X 2

BufferOfFillStyles N/A {32}+ | A661_BUFFER_OF_FILL_STYLES | A661_ParameterStructure_BufferOfFillStyles
Refer to “MapGrid Parameter Structure
Specifics” section below.

MapSynchronizati | ushor | 16 A661_MAP_SYNCHRONIZATION_ | A661_ParameterStructure_2Bytes

onNumber t NUMBER See section 3.2.8.4

All the data in the buffer must use the same origin/orientation values. Even though
the buffer can be filled line-at-a-time, over time, all the lines are displayed
simultaneously, and must be internally consistent.

For MapGrids in MapHorz_Sources that have a variable orientation value
(A661_MDF_BRG_DIST_ACHDG or A661_MDF_DIST_DIST), the convention is
that the first line of fill (the one following a BUFFER_COMPLETE signal — see next
section), must be aligned to the current orientation value (aircraft heading). If the
orientation reference changes during subsequent line updates, those subsequent
lines must be oriented consistent with all the preceding ones (in particular, the first

one).

3.41.1

ARINC SPECIFICATION 661 — Page 169

3.0 WIDGET LIBRARY

MapGrid A661_ParameterStructure Specifics

Table 3.4.1.1-1 — A661_ParameterStructure_BufferOfFillStyles

Field

Type

Size (bits)

Description

Parameterldent
UnusedPad

Identifier of the parameter type

StartindexX

StartindexY

Index (zero-based) of column to start storing
data.
Index (zero-based) of row to start storing data.
Some CDS implementations may require that

one of StartindexX or StartindexY be zero.

NumColumns
NumRows

ushort

Number of columns being filled.
Number of rows being filled.

Some CDS implementations may require that
one of NumColumns or NumRows be set to
CountX or CountY, respectively. For some
implementations the restriction may only be
enforced if the other of NumColumns,

NumRows is greater than one.

RowMajor

ControlFlag

+1 or -1 (OxFF)
May be setto 0 if NumColumnsis1. |

+1 or -1 (OxFF)
May be set to 0 if NumRows is 1.

Some CDS implementations may suggest or
require that StepX and/or StepY always be set
to a specific value (such as +1).

AG61_FALSE or A661_TRUE

If TRUE, the second Fill Style Index in this
message goes into the same COLUMN as the
first. If FALSE, the second one goes into the
same ROW as the first.

Some CDS implementations may suggest or
require this parameter always be set to a given
value.

bit 0 = clear buffer (see text)
bit 1 = buffer complete (see text)

ParameterValue

List of Fill Style Index values.

Data are stored starting with the cell indexed by
[StartindexX, StartindexY] and continuing in the
direction specified by the RowMajor parameter
until the specified NumColumns (or NumRows)
have been filled, then moving one row (or
column) in the direction specified by the StepX
or StepY parameter and repeating until the
specified NumRows (or NumColumns) have
been filled.

Structure is ended by zero, one, two, or three
NULL character(s) to pad the structure to 32-bit

alignment.

ARINC SPECIFICATION 661 — Page 170

3.4.1.2

3.0 WIDGET LIBRARY

StepX, StepY, and RowMajor typically are constants chosen to work efficiently with
the hardware. By listing them specifically in the message, sender and receiver
communicate and check their assumptions. If a CDS implementation has restrictions
on StartindexX/Y or NumColumns/NumRows or StepX/StepY/RowMajor values as
noted in the descriptions above, and a UA violates those restrictions, the CDS must
return an Error Notification Structure (see Section 4.4.2)

The ControlFlag parameter serves two purposes. In the normal case, it must be set
to zero. When the least significant bit is set, it indicates the entire buffer should be
cleared to a Fill Style Index of zero BEFORE this line of data is stored. This allows
the UA to blank the display quickly when required. The meaning of Fill Style Index
zero is not defined here (may be all black, all white, or something else, depending on
flight deck design).

When ControlFlag bit 1 is set, this indicates that the buffer update will be “complete”
AFTER this line of data is stored. This may have a variety of effects. For example, if
double buffering is implemented, it allows the CDS to know when to swap buffers.
Or, if motion compensation is implemented, it allows the CDS to know that a new
frame of data aligned to the current orientation is ready to be sent. User applications
should set this flag whenever this sort of action would be appropriate.

The initial state of the buffer before any user data are sent is defined to be “cleared”,
that is, set to all zero Fill Style Indices. After that, the CDS is not to “clear” the buffer
except on specific command (i.e. NOT in response to a “buffer complete” flag). This
implies that double-buffering must implement a front-to-back copy on swap.

Fill Style Index Values

A Fill Style Index is an unsigned 8-bit value that is used to select a graphic
representation (fill style) from a pre-defined table for use in filling an area on a layer.
Because fill styles depend heavily on CDS hardware capabilities, and because they
are “look-and-feel”, they are not further defined in this specification.

COMMENTARY

The actual fill styles used will depend on both the CDS hardware
capability and the supplier/airframe manufacturer/system integrator/
customer preference for look-and-feel. A fill style may be a solid color
fill, as is typical of late-1990’s weather radar displays, or it may be a
patterned fill, as is typical of late-1990’s terrain displays, or it may
incorporate alpha (transparency) level or other visual attributes of
which modern graphics hardware is capable.

Equipment suppliers will need to agree how to map these 8-bit values
to available hardware capabilities, and assign specific values to the
real-world meaning. In some CDS implementations, the allowable
range of values may be smaller than 0 to 255, or the indices may
have sub-fields. In some CDS implementations, each UA might have
its own palette. In others, all UAs might share a global fill palette.

ARINC SPECIFICATION 661 — Page 171
3.0 WIDGET LIBRARY

3.4.2 ExternalSource

Categories:
None

Description:

The function of the ExternalSource widget is to specify to the CDS where an external
input should appear on the display. For example, an external input may be a video
signal input or a bitmap image. Note that if a UA wants to display video on the CDS,
video input processing provisions are necessary in the CDS. The existence of this
widget in this standard does not guarantee that it will be possible to display a video
or a bitmap image. The following points must be clearly understood:

e The integrator and the CDS supplier define how an external input stream is to
be sent and processed by the display

e The integrator knows the limitations of the CDS for processing of these input
streams. For instance, the CDS may not be able to re-size or rotate the
received video signal.

Note: the ExternalSource widget is unique in the sense that it is
necessary for the UA supplier and the integrator to define the
specific method to bring video to the display.

Restriction:
None

ExternalSource Parameters are defined in Table 3.4.2-1.

Table 3.4.2-1 — ExternalSource Parameters

Parameters | _Change | Description

Commonly used parameters

WidgetType D A661_EXTERNALSOURCE

Widgetldent D Unique identifier of the widget.

Parent Identifier D Identifier of the immediate container of the widget

Specific parameters

Visible DR Visibility of the widget

Xpos D The X position of the widget reference point

Ypos D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

SourceReference D Identifier of input stream source reference available on the CDS and
used by the UA.

SourceX DR For those channels that support zoom/pan/scale/clipping/etc, this
parameter indicates the origin within the source image for display

SourceY DR

SourceDX DR For those channels that support zoom/pan/scale/clipping/etc, this
parameter indicates the extent within the source image for display

SourceDY DR

StyleSet DR Might control transparency, zoom/clip, etc.

ARINC SPECIFICATION 661 — Page 172
3.0 WIDGET LIBRARY

ExternalSource Creation Structure is defined in Table 3.4.2-2.

Table 3.4.2-2 — ExternalSource Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType | ushort | 16 | AB61_EXTERNALSOURCE
Widgetldent ushort 16

Parentldent] ushort | . L
Visible uchar 8 AB61_FALSE
___ ABE1TRUE
UnusedPad uchar 8

X Pos long 32

Y Pos long 32

SizeX ulong 32

SizeY ulong 32

SourceReference | ushort | L
UnusedPad ushort 16

SourceX ulong 32

SourceY ulong 32

SourceDX ulong 32

SourceDY ulong 32

StyleSet | ushort | .. 16
UnusedPad ushort 16

No event is associated with the ExternalSource widget.

Available SetParameter identifiers and associated data structure are defined in
Table 3.4.2-3.

Table 3.4.2-3 — ExternalSource Runtime Modifiable Parameters

Parameterident used
Name of the Size in the Type of Structure Used
parameter to set Type (bits) | ParameterStructure (Refer to sections 4.5.3)
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
SourceX ulong 32 A661 SOURCE_ X A661_ParameterStructure 4Bytes
SourceY ulong 32 A661 SOURCE_Y A661_ ParameterStructure_4Bytes
SourceXY ulong 32x2 | A661_SOURCE_XY A661_ParameterStructure_8Bytes
X2
SourceDX ulong 32 A661 SOURCE_DX A661_ ParameterStructure_4Bytes
SourceDY ulong 32 A661_SOURCE_DY A661_ParameterStructure 4Bytes
SourceDXDY ulong 32x2 | A661_SOURCE_DXDY | A661_ParameterStructure_8Bytes
X2
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes

ARINC SPECIFICATION 661 — Page 173
3.0 WIDGET LIBRARY

3.4.3 MapVert

Categories:

e Container
e Map Management

Description:

The MapVert widget is the counterpart of the MapHorz widget for a vertical display
made of a slice presentation. It is based on Cartesian coordinate system. Typically
the horizontal axis will be distance in nautical miles and the vertical axis will be
height in feet. The UA master of the vertical display will have to create such a widget
and through it, provide the following information to the CDS:

e The location of the widget in the window
o The size of the widget

e The geographic correspondence of this size. From there, real world distance
be converted in screen distance on both axes

o Position of a reference point both in screen coordinate and Geographic
coordinates. From there the CDS can interpret absolute or relative
coordinates for Items. For example, on the horizontal axis, the reference
point is 30 mm from origin of widget, 30Nm in geographic coordinates.
Knowing the distance equivalence, the CDS can position either an Iltem at
45Nm absolute or 15Nm relative to the reference point

COMMENTARY
In cases where the active areas of one or more interactive
Mapltem or MapSource widgets overlap, the sending of one or
more events will be CDS dependent.

Restriction:
None

MapVert Parameters are defined in Table 3.4.3-1.

Table 3.4.3-1 — MapVert Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MAPVERT

Widgetldent D Unique identifier of the widget

Parent D Identifier of the immediate container of the widget

Identifier

Specific parameters

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

PosX D The X position of the widget reference point (screen coordinate system)
PosY D The Y position of the widget reference point (screen coordinate system)
SizeX D Area size X

SizeY D Area size Y

RangeX DR Equivalent in Geographic coordinates of Area Size X

RangeY DR Equivalent in Geographic coordinates of Area Size Y

RefPosX DR Position X of the reference point, expressed in screen coordinates from

ARINC SPECIFICATION 661 — Page 174

3.0 WIDGET LIBRARY

Parameters Change Description
PosX
RefPosY DR Position Y of the reference point, expressed in screen coordinates from
PosY
RefGeoPosX DR Position X of the reference point, expressed in geographic coordinates
RefGeoPosY DR Position Y of the reference point, expressed in geographic coordinates
MapSynchroni R See section 3.2.8.4
zationNumber

MapVert Creation Structure is defined in Table 3.4.3-2a.

Table 3.4.3-2a — MapVert Creation Structure

CreateParameterBuffer Type Size (bits) | Value / Range When Necessary
WidgetType [ushort | 16 |A661_MAPVERT
Widgetldent ushort 16
Parentident | ushort | 16 .
Enable uchar 8 A661_FALSE
A661_TRUE
___ A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
RangeX fr(32768) 32
RangeY long 32
RefPosX long 32
RefPosY long 32
RefGeoPosX fr(32768) 32
RefGeoPosY long 32

MapVert Event Structures: A661_EVT_ITEM_SYNCHRONIZATION is defined in
Table 3.4.3-2b. This event is initiated by the transmission of an
Item_Synchronization in a MapVert_ltemList. See the definition of the
Item_Synchronization in the MapVert_ltemList for more details.

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 175

Table 3.4.3-2b — MapVert Event Structures: A661_EVT_ITEM_

SYNCHRONIZATION
EventStructure Type Size (bits) Value/Description
Eventident [ushort | 16 | AB61_EVT_ITEM_SYNCHRONIZATION |
Linkedldent ushort 16 Identifier of the connector identifier link to the layer
containing the MapVertltemList which has received
the Item Synchronization.
If no connector is used to connect the layer
containing the MapVertltemList with the MapVert,
this field is to be set to identifier of the
MapVertltemList.
DataType uchar 8 Data type coming from the item synchronization.
For example:
VD_MODE_RANGE
UnusedPad N/A 24 0
SynchronizationData 32 Data is implementation dependent.
1st word
SynchronizationData 32 Data is implementation dependent.
2nd word
Available SetParameter identifiers and associated data structure are defined in
Table 3.4.3-3.
Table 3.4.3-3 — MapVert Runtime Modifiable Parameters
Name of the Parameterident used
parameter to Size in the Type of Structure Used
set Type (bits) | ParameterStructure (Refer to sections 4.5.3)
Visible uchar 8 A661 VISIBLE A661 ParameterStructure 1Byte
Enable uchar 8 A661 _ENABLE A661_ ParameterStructure_1Byte
RangeX fr(32768) 32 A661_RANGE_X A661_ParameterStructure_4Byte
RangeY long 32 A661 RANGE_Y A661_ ParameterStructure_4Byte
RangeX fr(32768) | 32x2 | A661_RANGE_XY A661_ParameterStructure_8Bytes
RangeY long
RefPosX long 32 A661 PRP SCREEN_X A661_ ParameterStructure_4Byte
RefPosY long 32 A661 PRP_SCREEN_Y A661_ ParameterStructure_4Byte
RefPosX long 32x2 | A661_PRP_SCREEN_XY | A661_ParameterStructure_8Bytes
RefPosY X2
RefGeoPosX fr(32768) 32 A661 PRP_X A661_ ParameterStructure_4Byte
RefGeoPosY long 32 A661 PRP_Y A661_ ParameterStructure_4Byte
RefGeoPosX fr(32768) 32x2 | A661_PRP_XY A661_ParameterStructure_8Bytes
RefGeoPosY long
MapSynchroni ushort 16 A661_MAP A661_ParameterStructure_2Bytes
zationNumber _SYNCHRONIZATION See section 3.2.8.4
_NUMBER

ARINC SPECIFICATION 661 — Page 176
3.0 WIDGET LIBRARY

3.4.4 MapVert_Source

Categories:

e Map management
e Container
e |[nteractive

Description:

The MapVert_Source is the equivalent of the MapHorz_Source for vertical displays.
The MapVert_Source widget is a specialized container. It contains some
MapVert_ItemList widgets to display Items expressed in a common coordinate
system. The MapDataFormat (X or Y) parameters allow a UA to transmit its data
either in as absolute values or relative to the Reference Point.

MapVert_Source is an interactive widget. The display area of the MapVert_Source is
the same as the MapVert. The UA may need to receive the cursor position on a crew
member validation with CCD on the MapVert_Source display area. The
MapVert_Source EventFlag parameter provides a means to the map UA to control
the CDS sending this event. The X,Y position sent by the CDS is expressed in the
MapVert_Source coordinate system.

Restriction:

The MapVert_Source should be directly under a MapVert widget or a Layer widget.
When directly attached to a Layer, the layer should not be attached to a window
displayed alone.

MapVert_Source Parameters are defined in Table 3.4.4-1.

Table 3.4.4-1 — MapVert_Source Parameters

Parameters Change | Description

WidgetType D A661_MAPVERT_SOURCE

Widgetldent D Unique identifier of the widget

Parent Identifier D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

MapDataFormatX D Relative: X position of Iltems expressed relative to Reference
point.

Absolute: X position of Items expressed in absolute value.
X_Dist: X fixed position with respect to screen reference point (no
motion compensation)

MapDataFormatY D Relative: Y position of Iltems expressed relative to Reference
point.

Absolute: Y position of Items expressed in absolute value.

Y _Alt: Y fixed position with respect to screen reference point (no
motion compensation)

EventFlag DR Indicates if the UA wants to receive the cursor position upon click,
expressed in its coordinate system.

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 177

MapVert_Source Creation Structure is defined in Table 3.4.4-2a.

Table 3.4.4-2a — MapVert_Source Creation Structure

Value/Range When Necessary
CreateParameterBuffer Type Size (bits)
| WidgetType | ushot | 6 | A661_MAP_SOURCE
Widgetldent ushort 16
| Parentldent | ushort | - 16
Enable uchar 8 A661_FALSE
A661_TRUE
IS SN SRR A661_TRUE WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
MapDataFormatX uchar 8 A661_MDF_ABSOLUTE
A661_MDF_RELATIVE
___ A661 MDF X DIST
MapDataFormatY uchar 8 A661_MDF_ABSOLUTE
A661_MDF_RELATIVE
___ A661_MDF Y ALT
EventFlag uchar 8 A661_FALSE
___ A661TRUE
Unused uchar 8

MapVert_Source Format Structure is defined in Table 3.4.4-2b.

Table 3.4.4-2b — MapVert_MapData Format Values

Parameter

Value

Origin

Units of
Measure

Type
(Note 1)

LSB

MapDataFormatX

A661_MDF_ABSOLUTE

Absolute
Reference:
Position with
respect to
RefGeoPosX is:
DataPosX-
RefGeoPosX

nM long

fr(32768)

MapDataFormatX

A661_MDF_RELATIVE

Relative
Reference:
RefGeoPosX
The Position with
respect to
RefGeoPosX is:
DataPosX

nM long

fr(32768)

MapDataFormatX

A661_MDF_X_DIST

RefPosX

nM float

N/A

MapDataFormatY

A661_MDF_ABSOLUTE

Absolute
Reference:
Position with
respect to
RefGeoPosY is:
DataPosY-
RefGeoPosY

feet long

MapDataFormatY

A661_MDF_RELATIVE

Relative
Reference:
RefGeoPosY
The Position with
respect to

feet long

ARINC SPECIFICATION 661 — Page 178
3.0 WIDGET LIBRARY

RefGeoPosY is:
DataPosY

MapDataFormatY A661 MDF Y ALT RefPosY feet float N/A

Note: Type refers to the data type of the X and Y parameters in the
children of the MapVert_Source.

Time =t0 Time = t0+Delta_t
Screen Screen
Referential 4‘/‘—‘ Referential
| > | | >
20 NM 15 20 NM
> “ >
FirstWaypointPosX - RefGeoPosX FirstWaypointPosX - RefGeoPosX

: Geo -referencial
Geo - referencial Referential

Referential
L 4./‘—‘ . J
/ / >
5NM
«—>

Origin Origin —
9 20 NM 20 NM

RefGeoPosX =0 RefGeoPosX =5

FirstWaypointPosX =20 FirstWaypointPosX = 20

Figure 3.4.4-1 — lllustration of MapDataFormatX = A661_MDF_ABSOLUTE, X
Origin is an Absolute Point

Time =10 Time = tO+Delta_t
Screen) Screen
Referential 4./‘—0 Referential 4./‘—‘
| > ["
20 NM 1520
—>

FirstWaypointPosX - RefGeoPosX FirstWaypointPosX RefGeoPosX

Geo- referencial Geo - referencial

Referential Referential
.¥ 4./‘—‘ . J
/ /

- Origin « >
Origin 20 NM 15N
RefGeoPosX =0 RefGeoPosX =0
FirstWaypointPosX = 20 FirstWaypointPosX =15

Figure 3.4.4-2 — lllustration of MapDataFormatX = A661_MDF_RELATIVE : X
Origin is RefGeoPosX

ARINC SPECIFICATION 661 — Page 179
3.0 WIDGET LIBRARY

Note: With MapDataFormatX = A661_MDF_RELATIVE,
RefGeoPosX parameter is without effect.

MapVert_Source Event Structures: A661_EVT_SELECTION_MAP is defined in

Table 3.4.4-3.
Table 3.4.4-3 — MapVert_Source Event Structures:
A661_EVT_SELECTION_MAP
EventStructure Type Size Value/Description
(bits)
Eventldent ushort 16 A661 EVT SELECTION_MAP
UnusedPad N/A 16 0
X 32 Type and LSB are expressed in map source coordinate
system. Reference table 3.4.4-2b.
Y 32 Type and LSB are expressed in map source coordinate
system. Reference table 3.4.4-2b.

Available SetParameter identifiers and associated data structure are defined in
Table 3.4.4-4.

Table 3.4.4-4 — MapVert_Source Runtime Modifiable Parameters

Name of the Type Size | Parameterldent Used | Type of Structure Used

Parameter to Set (bits) | in (Refer to Section 4.5.4.5)
ParameterStructure

Enable uchar 8 A661_ ENABLE A661_ ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure 1Byte

EventFlag uchar 8 A661 EVENT FLAG A661 ParameterStructure 1Byte

3.4.5 MapVert_IltemList

Categories:

e Map management
e Graphical Representation
e Interactive

Text string Description:

The MapVert_ltemList is equivalent to the MapHorz_ItemList for vertical displays. A
MapVert_ItemList contains a list of Items to be drawn. This list is of fixed size
specified through the maximum number of Items. The type of each ltem inside the
MapVert_ItemList can be modified at run-time, which makes the list dynamic. A set
of parameters is associated with each type of Item (refer to Section 3.3.22.2.1, Iltem
Structure).

One or several items can be modified through a SetParameter command with
BufferOfltems as Parameter_ldent. An Item should be modified in its entirety. For
instance, the X coordinate of a symbol can not be changed by itself.

Insert and delete operations are not allowed on the list. However, one specific type
of ltem is NOT_USED. The Item with the NOT_USED type will be ignored, i.e., is
they will have no effect on the processing of following items.

ARINC SPECIFICATION 661 — Page 180
3.0 WIDGET LIBRARY

Section 3.4.5.1 describes the standardized items and their functionality. Section
3.4.5.2 describes the A661_ParameterStructure to address the Items.

Restriction:
A MapVert_ItemList must be in a MapVert_Source container.

MapVert_ItemList Parameters is defined in Table 3.4.5-1.

Table 3.4.5-1 — MapVert_ltemList Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MAPVERT_ITEMLIST

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

Specific parameters

MaxNumberOfltem D Maximum number of items that the UA can address under the
MapVert_ItemList.

BufferOfltems R Buffer of the Map ltems

MapSynchronizati R See section 3.2.8.4

onNumber

EntryValidation R Indicator notifying the CDS that the UA has completed processing
the entry or selection event. This flag also indicates the results of
that processing.
A661_FALSE
A661_TRUE

MapVert_ItemList Creation Structure is defined in Table 3.4.5-2a.

Table 3.4.5-2a — MapVert_ItemList Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType | ushort | 16| A661_MAPVERT_ITEMLIST .
Widgetldent ushort 16
Parentldent || ushort | A6
Enable uchar 8 A661_FALSE
A661_TRUE
,,, A661_TRUE WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
MaxNumberOfitem | | ushort | A6 | .
UnusedPad N/A 16 0
MapVert_ItemList Event Structures: A661_EVT_SELECTION is defined in Table
3.4.5-2b.
Table 3.4.5-2b — MapVert_ItemList Event Structures: A661_EVT_SELECTION
EventStructure Type Size (bits) Value/Description
| Eventldent | ushort | 16 | A661_EVT_SELECTION ...
Item Index ushort 16 Index of the item that has been selected. Index from
1 to MaxNumberOfltem.

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 181

Available SetParameter identifiers and associated data structure are defined in
Table 3.4.5-3.

Note: The structure of this event is different than other
A661_EVT_SELECTION events in that it does not contain

a pad.
Table 3.4.5-3 — MapVert_ltemList Runtime Modifiable Parameters

E:g;:{:pe Size | Parameterldent Used Type of Structure Used

to Set Type | (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

BufferOfltems N/A {32} | A661_BUFFER_OF_MAPVERT_ITEM | A661_ParameterStructure_BufferOfltems

S Refer to “MapVert_ltemList

A661_ParameterStructure Specifics”
Section 3.4.5.2, especially Section
3.4.5.2.2.

MapSynchroniza | ushor 16 A661_MAP_SYNCHRONIZATION_N A661_ParameterStructure_2Bytes

tionNumber t UMBER See section 3.2.8.4

EntryValidatio | uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

n

3.4.5.1

This section describes all the Item structures.

MapVert_ItemList Standard Items Description

Table 3.4.5.1 — MapVert_ItemList Standard Items Description

Name of Iltem

Function

FILLED_POLY_START

This Item is used to signify the start of a closed, filled polygon
definition. It holds X/Y parameters, like LINE_START, and a Fill Style
Index. The X/Y parameters of this Item and the following
LINE_SEGMENT Items (up to the EndFlag) define the vertices and
edges of a polygon that is closed and filled with the indicated fill style.

ITEM_STYLE

For drawing any symbol or line, the CDS must apply the last defined
ITEM_STYLE in the list. If no ITEM_STYLE has been defined, the
CDS will apply the default ITEM_STYLE.

ITEM_SYNCHRONIZATION

This item has been defined to attach frame data to symbology
expressing the context of the computation or the rendering for the
symbology frame. This data is sent in A661 in order to avoid
synchronization issues between the symbology frame and the
attached information (e.g. mode, range; MRP ...). This item can be
used to pass synchronization information from the application owning
a MapVert Item List and the application owning the parent MapVert.

LEGEND

strings.

This Item is used to store Legend Strings.

Some symbols may contain logic to automatically position legends.
LEGEND Items will then follow the SYMBOL Item and carry this
legend. Each LEGEND Item can only hold 16 characters including the
NULL character. Several LEGENDS Item can be used to carry longer

CR is recognized as either NextField (For symbols with automatic
Legend positioning) or as a normal Carriage Return / Line Feed if
LEGEND follows a LEGEND_ANCHOR.

The last LEGEND Item of a group must have its EndFlag set.

ARINC SPECIFICATION 661 — Page 182
3.0 WIDGET LIBRARY

Name of Item Function

LEGEND_ANCHOR This Item is used to specify the position of a LEGEND not attached to
a symbol.

LEGEND_POP_UP This Item is a basic LEGEND, but it will appear only when the crew

member selects the associated SYMBOL_x Item.

Disappearance of the LEGEND_POP_UP is airframe
manufacturer/system integrator specification dependent.
LINE_START This Item is used to signify the start of a line. It holds only X/Y
parameters, interpreted by the CDS depending on the
MapVert_Source DataFormat

LINE_SEGMENT This Item is used to draw a line, using the last defined style in the list,
from the previous LINE_xxx End position, to the specified X/Y
coordinates.

This Item holds EndFlag, set if it is the last item of a line.

NOT_USED This Item is used when the Item is to be discarded by the CDS. There
is no effect on subsequent ltems interpretation.
SYMBOL_GENERIC This Item represents the basic symbol, which holds X/Y parameters

along with a type of symbol and possibly an EndFlag.

Some of these types may include an Automatic Legend positioning.

In this case, and provided the EndFlag is not set on the symbol, the

CDS will interpret the following LEGEND Items as part of the symbol
legend. When multiple Fields exist on the symbol, “Carriage Return”
will signify to the CDS that a field end is reached.

SYMBOL_ROTATED Same than SYMBOL_GENERIC except an orientation parameter is
added.

SYMBOL_RUNWAY Same than SYMBOL_GENERIC except Length parameter is added

TRIANGLE_STRIP This Item is used to signify the start of a closed, filled

_START polygon defined by a series of triangle strips.

TRIANGLE_FAN This Item is used to signify the start of a closed, filled

_START polygon defined by a series of triangles arranged in a fan.

TRIANGLE_SEGMENT Defines a single vertex of a Triangle Strip or Triangle Fan.

TRIANGLE_SEGMENT_ | Defines two vertices of a Triangle Strip or Triangle Fan.
DOUBLE

TRIANGLE_END Defines the last vertex of a Triangle Strip or Triangle Fan.
TRIANGLE_END Defines the last two vertices of a Triangle Strip or Triangle
_DOUBLE Fan.

3.4.5.2 MapVert_IltemList A661_ParameterStructure Specifics

This section describes the A661_ParameterStructure_BufferOfltems for
MapVert_ItemList.

3.45.21 Item Structures

All the structures include the same format, three fields for the first 4-byte word. One
field is not used on all Items, however it is maintained for consistency.

ARINC SPECIFICATION 661 — Page 183

3.0 WIDGET LIBRARY

3.45.21.1 Item_Style
Iltem_Style is defined in Table 3.4.5.2.1.1.
Table 3.4.5.2.1.1 — Item_Style
Name Type Size (bits) | Value/Range When Necessary
| Itemindex o ushort A6 .
| ltemType | | uchar | . 8 | A661_ITEM_STYLE .
UnusedPad N/A 8 0
| ltemStyleSet o ushort | A6 .
UnusedPad N/A 16 0

3.45.21.2 Legend_Anchor

Legend_Anchor is defined in Table 3.4.5.2.1.2.

Table 3.4.5.2.1.2 — Legend_Anchor

Name Type Size (bits) | Value/Range When Necessary
| ltemindex]] ushort | L
 temType | . uchar | . 8 | A661_LEGEND_ANCHOR
RelativePosition uchar 8 A661_FALSE
A661_TRUE
When RelativePosition is true then X and Y
correspond to a position in screen units
relative to the last symbol defined in the
MapSource coordinate system.
X 32 Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.
Y 32 Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.
3.45.21.3 Legend and Legend_Pop_Up

This Item must follow XXX _SYMBOL, LEGEND_ANCHOR or another LEGEND
Item. The LegendString can contain special characters, line feed and carriage return.
The type of symbol attached to this legend defines the position and the format of this
String under control of the CDS. If LEGEND is followed by another LEGEND, they
should be considered as one unique Legend, possibly including carriage return and
line feed characters. The full entire LegendString (possibly across multiple Legend
MapVert_Items) must have a NULL terminator.

Legend and Legend_Pop_Up is defined in Table 3.4.5.2.1.3.

ARINC SPECIFICATION 661 — Page 184
3.0 WIDGET LIBRARY

Table 3.4.5.2.1.3 — Legend and Legend_Pop_Up

Name Type Size (bits) Value/Range When Necessary
Jtemindex | | ushort | A6
ltemType uchar 8 A661_LEGEND
__ A661_LEGEND_POP_UP
EndFlag uchar 8 A661_TRUE
A661_FALSE
LegendString {uchar}+ {32}+ Max 16 characters including NULL and pad
(not Followed by zero, one, two or three extra NULL for
‘string’) alignment of 32 bits. It must have a NULL
terminator.

3.4.5.2.1.4 Line_Start

Line_Start is defined in Table 3.4.5.2.1.4.

Table 3.4.5.2.1.4 — Line_Start

Name Type Size (bits) | Value/Range When Necessary

ltemIndex ushort 16

ltemType uchar 8 A661 LINE START

UnusedPad N/A 8 0

X 32 Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.

Y 32 Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.

3.45.21.5 Line_Segment

Line_Segment is defined in Table 3.4.5.2.1.5.

Table 3.4.5.2.1.5 — Line_Segment

Name Type Size (bits) | Value/Range When Necessary
ltemindex | _ushort | 16 .
ltemType [uchar | 8 | AG61LINE SEGMENT

EndFlag uchar 8 A661_TRUE

A661_FALSE

X 32 Type and LSB are expressed in map source

coordinate system. Reference table 3.4.4-2b.

Y 32 Type and LSB are expressed in map source

coordinate system. Reference table 3.4.4-2b.

3.45.21.6 Not_Used

Not_Used is defined in Table 3.4.5.2.1.6.

Table 3.4.5.2.1.6 — Not_Used

Name Type Size (bits) | Value/Range When Necessary
ltemIndex ushort 16

ltemType uchar 8 A661 NOT_USED

UnusedPad N/A 8 0

ARINC SPECIFICATION 661 — Page 185
3.0 WIDGET LIBRARY

3.45.21.7 Symbol_Generic

Symbol_Generic is defined in Table 3.4.5.2.1.7.

Table 3.4.5.2.1.7 — Symbol_Generic
Name Type Size (bits) | Value/Range When Necessary
| temindex | __ushort | 16
[ltemType | uchar |8 | AB61_SYMBOL_GENERIC "~
EndFlag uchar 8 A661_TRUE
A661_FALSE
SymbolType uchar 16 SYMBOL_WAYPOINT
SYMBOL_AIRPORT
SYMBOL_VOR
___ SYMBOL VORDME
RelativePosition N/A 8 A661_FALSE
A661_TRUE

When RelativePosition is true then X and Y correspond
to a position in screen units relative to the last symbol
defined in the MapSource coordinate system.

UnusedPad N/A 8 0

X 32 Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.

Y 32 Type and LSB are expressed in map source

coordinate system. Reference table 3.4.4-2b.

3.4.5.21.8 Symbol_Runway

Symbol_Runway is defined in Table 3.4.5.2.1.8.

Table 3.4.5.2.1.8 — Symbol_Runway

Name Type Size | Value/Range
(bits) | When Necessary
[temlndex | | ushort | 16
[ftemType | uchar | 8 | A661_SYMBOL RUNWAY
EndFlag uchar 8 A661_TRUE
A661_FALSE
X 32 | Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.
Y 32 | Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.
Length fr(32768) 32 Length of runway (in feet)

ARINC SPECIFICATION 661 — Page 186

3.0 WIDGET LIBRARY

3.45.21.9 Filled_Poly_Start
There are restrictions on the polygons to be filled. The number of line segments is
limited to three segments (triangle) or four segments (quadrilateral). The vertices are
specified in counter-clockwise order. The polygon must be convex.
If any error is found in the polygon definition, the CDS should send an
A661_ERR_SET_ABORTED exception event. The airframe manufacturer/system
integrator free data field may include the Itemindex, etc., to identify the error further.
Filled_Poly_Start is defined in Table 3.4.5.2.1.9.
Table 3.4.5.2.1.9 — Filled_Poly_Start
Name Type Size (bits) | Value/Range When Necessary
ItemIndex ushort 16
ltemType uchar 8 AB61_FILLED POLY_START
FillStyleIndex uchar 8
X/ Lat/ Range 32 Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.
Y / Lng / Angle / Alt 32 Type and LSB are expressed in map source
coordinate system. Reference table 3.4.4-2b.

3.4.5.2.1.10 Item_Synchronization

Table 3.4.5.2.1.10 — Iltem_Synchronization

Name Type Size (bits) | Value/Range When Necessary
ltemindex || ushort | 16]
MtemType | _uchar | ¢ 8 . | A661_ITEM_SYNCHRONIZATION |
DataType uchar 8 For example:

VD_MODE_RANGE

MRP latitude / longitude...
SynchronizationData 32 Data is implementation dependent.
1st word
SynchronizationData 32 Data is implementation dependent.
2nd word

ARINC SPECIFICATION 661 — Page 187
3.0 WIDGET LIBRARY

3.4.5.2.1.11 Symbol_Rotated

Table 3.3.22.2.1.11 — Symbol_Rotated

Name Type Size (bits) | Value/Range When Necessary
[Mtemindex | ____ushort | A6 .
[ftemType | uchar [" 8 | A661_SYMBOL ROTATED
EndFlag uchar 8 A661_TRUE

AB61_FALSE
| SymbolType [ushot | 16 | Forexample, SYMBOL AIRCRAFT
RelativePosition uchar 8 A661_FALSE

A661_TRUE

When RelativePosition is true then X and Y
correspond to a position in screen units relative to
the last symbol defined in the MapSource
coordinate system.

UnusedPad N/A 8 0

X Scaled Integer 32 First coordinate of symbol, (fixed real LSB depends
on MapVert_Source MapDataFormat and
RelativePosition)

Y Scaled Integer 32 Second coordinate of symbol, (fixed real LSB
depends on MapVert_Source and RelativePosition)
Orientation fr(180) 32 Orientation of Symbol (counter-clockwise is positive

orientation). Orientation is not adjusted by the CDS
to account for the scaling of the RangeX and
RangeY in the MapVert widget.

3.4.5.2.1.12 Triangle Strip Start

The Triangle Strip Start, Triangle Segment, Triangle Segment Double, Triangle
End, and Triangle End Double MapVert_IltemList Items are meant to define
triangle strips, similar to those defined in SDL Symbols.

Each Triangle Strip is made up of one Triangle Strip Start, any number of
Triangle Segment and Triangle Segment Double items, and one Triangle End
or Triangle End Double. The Triangle Segment Double and Triangle End
Double items exist to minimize MapVert_IltemList size and should be used
whenever possible. See the illustration below for more details.

ARINC SPECIFICATION 661 — Page 188
3.0 WIDGET LIBRARY

Note: Lines shown for illustration only
v1

v3

V2 v4
Red Triangle:
Triangle Strip Start(v0, v1)
Triangle Segment(v2)

Green Triangles:

Triangle Segment Double(v3, v4)
Blue Triangle:

Triangle End(v5)

Figure 3.4.5.2.1.12 — Triangle Strip

Table 3.4.5.2.1.12 — Triangle Strip Start

Parameter Type Size (bits) Description

Item Index ushort 16

Iltem Type uchar 8 A661_TRIANGLE_STRIP_START
Pad NA 8 Unused Pad

X/Lat/Rng 1 long 32 First Coordinate of first vertex
Y/Lng/Brg 1 long 32 Second Coordinate of first vertex
X/Lat/Rng 2 long 32 First Coordinate of second vertex
Y/Lng/Brg 2 long 32 Second Coordinate of second vertex

3.4.5.2.1.13 Triangle Segment

The color of the triangle completed by this item shall be defined by the
FillStyleIndex parameter.

ARINC SPECIFICATION 661 — Page 189

3.0 WIDGET LIBRARY

Table 3.4.5.2.1.13 — Triangle Segment

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_SEGMENT

FillStyleIndex uchar 8 Color for the triangle completed by this point
X/Lat/Rng long 32 First coordinate of vertex

Y/Lng/Brg long 32 Second coordinate of vertex

3.4.5.2.1.14 Triangle Segment Double

The color of the triangles completed by this item shall be defined by the
FillStyleIndex parameter.

Table 3.4.5.2.1.14 — Triangle Segment Double

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_SEGMENT_ DOUBLE

FillStyleIndex uchar 8 Color for the triangles completed by these
points

X/Lat/Rng 1 long 32 First coordinate of first vertex

Y/Lng/Brg 1 long 32 Second coordinate of first vertex

X/Lat/Rng 2 long 32 First coordinate of second vertex

Y/Lng/Brg 2 long 32 Second coordinate of second vertex

3.4.5.2.1.15 Triangle End

The color of the triangle completed by this item shall be defined by the
FillStyleIndex parameter.

Table 3.4.5.2.1.15 — Triangle End

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_END

FillStyleIndex uchar 8 Color for the triangle completed by this point
X/Lat/Rng long 32 First coordinate of vertex

Y/Lng/Brg long 32 Second coordinate of vertex

3.4.5.2.1.16 Triangle End Double

The color of the triangles completed by this item shall be defined by the
FillStyleIndex parameter.

ARINC SPECIFICATION 661 — Page 190
3.0 WIDGET LIBRARY

Table 3.4.5.2.1.16 — Triangle End Double

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_END_DOUBLE

FillStyleIndex uchar 8 Color for the triangles completed by these
points

X/Lat/Rng 1 long 32 First coordinate of first vertex

Y/Lng/Brg 1 long 32 Second coordinate of first vertex

X/Lat/Rng 2 long 32 First coordinate of second vertex

Y/Lng/Brg 2 long 32 Second coordinate of second vertex

3.4.5.2.1.17 Triangle Fan Start

The Triangle Fan Start (along with Triangle Segment, Triangle Segment
Double, Triangle End, and Triangle End Double) MapVert_ItemList item is
meant to define triangle fans, similar to those defined in SDL Symbols. Each
Triangle Fan is made up of one Triangle Fan Start, any number of Triangle
Segment and Triangle Segment Double items, and one Triangle End or
Triangle End Double. The Triangle Segment Double and Triangle End Double
items exist to minimize MapVert_IltemList size and should be used whenever
possible.

Note: Black lines shown for illustration only
v2

v3

A v4

v5

Red Triangle:
Triangle Fan Start(v0, v1)
Triangle Segment(v2)
Green Triangles:
Triangle Segment Double(v3, v4)
Blue Triangle:
Triangle End(v5)

Figure 3.4.5.2.1.17 — Triangle Fan

ARINC SPECIFICATION 661 — Page 191
3.0 WIDGET LIBRARY

Note: If a triangle is defined as three co-linear points, nothing
will be drawn. However, the next triangle will be defined
using the first and third points of the previous triangle, as
usual.

Table 3.4.5.2.1.17 — Triangle Fan Start

Parameter Type Size (bits) Description

Item Index ushort 16

Item Type uchar 8 A661_TRIANGLE_FAN_START

Pad NA 8 Unused Pad

X/Lat/Rng 1 long 32 First coordinate of first vertex
Y/Lng/Brg 1 long 32 Second coordinate of first vertex
X/Lat/Rng 2 long 32 First coordinate of second vertex
Y/Lng/Brg 2 | long 32 Second coordinate of second vertex

Triangle Segment, Triangle Segment Double, Triangle End, and Triangle End
Double are already defined (this was done in conjunction with Triangle Strip
Start).

Note: The CDS will process subsequent Triangle Segment,
Triangle Segment Double, Triangle End, and Triangle End
Double items appropriately based on the type of triangle
start item that preceded them. That is, if a Triangle Fan
Start item begins a sequence of triangle items, the first
and third vertex of the previous triangle is used as the
base for the triangle that follows. If a Triangle Strip Start
item begins a sequence of triangle items, the second and
third vertex of the previous triangle is used as the base
for the triangle that follows.

3.45.2.2 A661_ParameterStructure_BufferOfltems

A661_ParameterStructure_BufferOfltems as used for MapVert_IltemList is defined
in Table 3.4.5.2.2.

Table 3.4.5.2.2 — A661_ParameterStructure_BufferOfltems

A661_ParameterStructure Size (bits) | Description
Parameterldent |] 16 | A661_BUFFER OF MAPVERT ITEMS
ClearFlag 1 If Set, All Items will be set to NOT_USED by CDS
,, before setting the specified Items.
Number of Items 15 Number of Items modified by the command
{ltemStructures}+ {32}+

3.45.3 MapVert_IltemList Interactive Items

MapVert interactive items operate the same as Map_Horz interactive items. See
section 3.3.22.3 for more information on interactive map items.

ARINC SPECIFICATION 661 — Page 192
3.0 WIDGET LIBRARY

3.4.6 EditBoxMultiLine

Categories:

e Graphical representation

e Interactive

e Text String
Description:
EditBoxMultiLine is a text edit box for displaying text across several lines in a
scrolling area. The text string can be modified by the crew. When the
EditBoxMultiLine is in edit mode, the CDS only reports the confirmed text string (after

a crew member validation). The purpose of this widget is to allow free text edit and
perform automatic line feed and scroll management.

Restriction:

None

ARINC SPECIFICATION 661 — Page 193
3.0 WIDGET LIBRARY

EditBoxMultiLine Parameters are defined in Table 3.4.6-1.

Table 3.4.6-1 — EditBoxMultiLine Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_EDIT_BOX MULTILINE

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget
NextFocusedWidget D Widget ident of next widget to be focused upon crew member

validation

AutomaticFocusMotion

Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

ReportAllChanges

A661_EDB_CHANGE_CONFIRMED
CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

A661_EDB_ALL_CHANGE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED

CDS will report each update from the crew member while in
edit mode
(A661_EVT_STRING_CHANGE)

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

A661_EDB_OPEN_CLOSE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

EntryValidation

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE

A661_TRUE

MaxStringLength

Maximum length of the entire text included the first NULL
character ended the string (in bytes), MaxStringLength > 1.

ARINC SPECIFICATION 661 — Page 194

3.0 WIDGET LIBRARY

Parameters Change Description
LabelString DR Text of the edit box
Alignment D Justification of the label text within the edit box area
CENTER
LEFT
RIGHT
VerticalScroll D Position of scroll controls, absent/left/right/bottom/top
StartCursorPos DR Start position of the cursor in field when entering in edit

EditBoxMultiLine Creation Structure is defined in Table 3.4.6-2.

Table 3.4.6-2 — EditBoxMultiLine Creation Structure

CreateParameterBuffer Type Size (bits) | Value / Range When Necessary
WidgetType | ushort [16| AB61_EDIT BOX MULTILINE
Widgetldent ushort 16
Parentldent | _ushort | 16
Enable uchar 8 A661_FALSE
A661_TRUE
,,, A661_TRUE_WITH_ VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | __ushort | 16
NextFocusedWidget ushort 16
StartCursorPos | ushort | 16
MaxStringLength ushort 16
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
ReportAllChanges uchar 8 A661_EDB_CHANGE_CONFIRMED
A661_EDB_ALL_CHANGE
,,, A661 EDB OPEN CLOSE
Alignment uchar 8 A661_CENTER
A661_LEFT
,,, A6G1RIGHT
Vertical Scroll uchar 8 A661_TOP
A661_BOTTOM
AB61_LEFT
A661_RIGHT
A661_ABSENT
LabelString string {8}+ Followed by zero, one, two or three extra NULL
for alignment on 32 bits.

The specific event sent by the EditBoxMultiLine to the owner application is defined in
Tables 3.4.6-3, 3.4.6-4, 3.4.6-5 and 3.4.6-6.

ARINC SPECIFICATION 661 — Page 195
3.0 WIDGET LIBRARY

Table 3.4.6-3 — EditBoxMultiLine Event Structures:
A661_EVT_STRING_CHANGE_ABORTED

EventStructure Type Size (bits) | Value/Description
Eventldent | ushort [16| A661_EVT_STRING_CHANGE ABORTED
StringLength ushort 16
String string {32}+ Followed by zero, one, two or three extra NULL
for alignment of 32 bits
Table 3.4.6-4 — EditBoxMultiLine Event Structures:
A661_EVT_STRING_CHANGE
EventStructure Type Size (bits) | Value/Description
Eventident | | ushort | . 16 | A661_EVT_STRING CHANGE
StringLength ushort 16
String string {32}+ Followed by zero, one, two or three extra NULL for
alignment of 32 bits

Table 3.4.6-5 — EditBoxMultiLine Event Structure: A661_STRING_CONFIRMED

EventStructure Type Size (bits) | Value/Description
Eventldent | ushort | 16 | A661_STRING_CONFIRMED
StringLength ushort 16

String string {32}+ Followed by zero, one, two or three extra NULL for

alignment of 32 bits.
Table 3.4.6-6 — EditBoxMultiLine Event Structures:
A661_EVT_EDITBOX_OPENED

EventStructure Type Size (bits) Value/Description
Eventident | __ushort | 16 | AB61_EVT EDITBOX OPENED
UnusedPad ushort 16 0

EditBoxMultiLine Runtime Modifiable Parameters is defined in Table 3.4.6-7.

Table 3.4.6-7 — EditBoxMultiLine Runtime Modifiable Parameters

Parameterident used
Name of the Size in the Type of Structure Used
Parameter to Set Type (bits) | ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure 1Byte
StartCursorPos ushort 16 A661 CURSOR_POS A661_ParameterStructure 2Bytes
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
LabelString string {32}+ | A661_STRING A661_ParameterStructure String
EntryValidation uchar 8 A661 ENTRY_VALID A661 ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 196

3.0 WIDGET LIBRARY

3.4.7 ComboBoxEdit

Categories:

e Graphical representation
e Interactive
e Text String

Description:

Like ComboBox, ComboBoxEdit provides a means to select one item in a list of
items. This widget is composed of a static part displaying the selected item and a
pop up part displaying possible items. The number of the current selected entry is
held in the SelectedEntry parameter. The complete list of possible Entries is held in
a string array (parameter EntryList). The list is displayed upon crew member
selection (e.g., a click on the arrow button associated with the Selected Entry).

Moreover, ComboBoxEdit allows the crew to enter new data to the static part of the
widget. When ComboBoxEdit is in edit mode, the CDS may report all modification
done on the edited string and the final confirmed string, or only report the confirmed
string (after a crew member validation). This option may be set by the UA through
the “ReportAliChanges” parameter. If ReportAllChanges is True and, after having
entered a text, the crewmember finally aborts the edit, the CDS should send a
specific event to the UA with the former validated LabelString as parameter of the
event.

Note that SelectingAreaHeight and the SelectingAreaWidth represent the Y and X
Size of the pop-up part of the ComboBoxEdit

OpeningMode of the ComboBoxEdit is used to determine how the ComboBox
opens.

The pop-up part of the ComboBoxEdit is displayed on top of its containing window
and is affected by the clipping area of its containing window.

Restriction:
N/A

ComboBoxEdit Parameters are defined in Table 3.4.7-1.

Table 3.4.7-1 — ComboBoxEdit Parameters

Parameters

| Change | Description

Commonly used parameters

WidgetType D A661_COMBO_BOX_EDIT

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget (in the closed mode)
SizeY D The Y dimension size (height) of the ComboBoxEdit (in the closed

mode)

ARINC SPECIFICATION 661 — Page 197
3.0 WIDGET LIBRARY

Parameters

| Change

Description

NextFocusedWidget

Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion

Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

SelectingAreaWidth

X Size of the area available to display the entry list (when the
ComboBoxEdit is opened)

SelectingAreaHeight

Y Size of the area available to display the entry list (when the
ComboBoxEdit is opened)

OpeningMode

Mode of combo opening:
upP

CENTERED

DOWN

MaxStringLength

Maximum string length for each entry item (including end tag
character) but also for any user caption process, MaxStringLength >
1

Alignment

Justification of the label text within the edit area
CENTER

LEFT

RIGHT

ReportAllChanges

A661_EDB_CHANGE_CONFIRMED

CDS will report the value change after crew member validation

(A661_EVT_STRING_CONFIRMED)
A661_EDB_ALL_CHANGE

CDS will report the edit mode opening

A661_EVT_EDITBOX_OPENED

CDS will report each update from the crew member while in edit
mode

(A661_EVT_STRING_CHANGE)

CDS will report the value change after crew member validation

(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit

(A661_EVT_STRING_CHANGE_ABORTED)
A661_EDB_OPEN_CLOSE

CDS will report the edit mode opening

A661_EVT_EDITBOX_OPENED

CDS will report the value change after crew member validation

(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit

(A661_EVT_STRING_CHANGE_ABORTED)

EntryValidation

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also indicates
the results of that processing.

A661_FALSE
A661_TRUE

StartCursorPos

DR

Start position of the cursor in field when entering in edit

MaxNumberOfEntries

Maximum number of entries in the list

NumberOfEntries

DR

Total number of entries in the list (must be lower than
MaxNumberOfEntries)

SelectedEntry

DR

Current selected entry number in the list from 1 to NumberOfEntries
if an entry is selected and 0 else

OpeningEntry

DR

Entry number which is ensured to be visible when the
ComboBoxEdit is opened.
Opening entry is in the range [0; NumberOfEntries]

ARINC SPECIFICATION 661 — Page 198

3.0 WIDGET LIBRARY

Parameters | Change | Description

OpeningEntry will be set to 0, if not used.
LabelString N/A Text of the new entry entered by the crewmember
EntryList DR String array holding the list of entries.
[MaxEntryNumber]

Note: D is Design time. R is Run time.

N/A means that this parameter is only used as an event value. It is never set by the
UA (not at definition time nor at runtime).

ComboBoxEdit Creation Structure is defined in Table 3.4.7.-2.

Table 3.4.7-2 — ComboBoxEdit Creation Structure

CreateParameterBuffer Type Size (bits) | Value / Range When Necessary
WidgetType [ushort | 16 [A661_COMBO BOX EDIT
Widgetldent ushort 16
Parentident | ushort | 16
Enable uchar 8 A661_FALSE
A661_TRUE
___ A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
SelectingAreaWidth ulong 32
SelectingAreaHeight ulong 32
StyleSet [ushort | I
NextFocusedWidget ushort 16
MaxNumberOfEntries | ushort | 16
NumberOfEntries ushort 16
SelectedEntry ushort 16
OpeningEntry ushort 16
MaxStringlength | ushort | 16
OpeningMode uchar 8 A661_OPEN_UP
A661_OPEN_CENTERED
___ AB61 OPEN DOWN
AutomaticFocusMotion uchar 8
 StartCursorPos | ushort | 16
ReportAllChanges uchar 8 A661_EDB_CHANGE_CONFIRMED
A661_EDB_ALL CHANGE
___ A661 EDB OPEN CLOSE
Alignment uchar 8 A661_CENTER
A661_LEFT
,,, ABGTRIGHT
EntryList string[] 8 * string | Each string is ended by character NULL (used
[NumberOfEntries] length + as string separator).
PAD The complete string list is followed by zero,
one, two or three NULL character(s) to be 32
bits aligned

ARINC SPECIFICATION 661 — Page 199

3.0 WIDGET LIBRARY

The specific events sent by the ComboBoxEdit to the owner application are:

Table 3.4.7-3 -

ComboBoxEdit Event Structures:

A661_EVT_SELECTED_ENTRY_CHANGE

EventStructure Type Size (bits) | Value/Description
| Eventldent | | ushort | 16 | A661_EVT _SEL _ENTRY CHANGE .
SelectedEntry ushort 16

Table 3.4.7-4 — ComboBoxEdit Event Structures: A661_EVT_STRING_CHANGE

EventStructure Type Size (bits) | Value/Description
| Eventldent | ushort | .- 16 .| A661_EVT_STRING CHANGE
StringLength ushort 16
String string {32}+ Followed by zero, one, two or three extra NULL for
alignment of 32 bits.
Table 3.4.7-5 — ComboBoxEdit Event Structures:
A661_EVT_STRING_CHANGE_ABORTED
EventStructure Type Size (bits) | Value/Description
Eventldent | ushort | 16 | A661_EVT_STRING_CHANGE ABORTED
StringLength ushort 16
String string {32}+ Followed by zero, one, two or three extra NULL for
alignment of 32 bits.
Table 3.4.7-6 — ComboBoxEdit Event Structures:
A661_EVT_STRING_CONFIRMED
EventStructure Type Size (bits) | Value/Description
 Eventldent | _ushort | 16 | A661_EVT_STRING_CONFIRMED
StringLength ushort 16
String string {32}+ Followed by zero, one, two or three extra NULL for
alignment of 32 bits.
Table 3.4.7-7 — ComboBoxEdit Event Structures:
A661_EVT_EDITBOX_ OPENED
EventStructure Type Size (bits) | Value/Description
Eventldent | _ushort | 16 | A661_EVT_EDITBOX OPENED
UnusedPad ushort 16 0

ARINC SPECIFICATION 661 — Page 200

3.0 WIDGET LIBRARY

Available SET_PARAMETER identifiers and associated data structure are:

Table 3.4.7-8 — ComboBoxEdit Runtime Modifiable Parameters

Name of the Size | Parameterldent used Type of Structure Used
parameter to set Type | (bits) | in the ParameterStructure (Refer to 4.5.4.5)
Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
NumberOfEntries | ushort | 16 | A661_NUMBER_OF ENTRIES | A661_ParameterStructure 2Bytes
SelectedEntry ushort | 16 | A661 SELECTED ENTRY A661_ ParameterStructure 2Bytes
StyleSet ushort | 16 | A661 STYLE SET A661_ParameterStructure 2Bytes
StartCursorPos ushort | 16 | A661 CURSOR_POS A661_ParameterStructure 2Bytes
EntryList N/A | {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfEntries]
OpeningEntry ushort | 16 | A661 OPENING_ENTRY A661_ParameterStructure 2Bytes
EntryValidation uchar 8 A661 _ENTRY VALID A661_ParameterStructure 1Byte
3.4.8 MenuBar

Categories:

Container

Description:

A MenuBar is a widget containing PushButtons, PicturePushButtons and
PopUpMenuButtons. It implements specific behaviors to move from one button to
another.

COMMENTARY
Example behavior of MenuBar:

When a PopUpMenu attached to a button is visible, a validation
through the cursor on another button of the MenuBar closes the
PopUpMenu and activates the selected button. Right / Left arrow keys
move the focus from one button to another button of the MenuBar.

The Buttons contained in the MenuBar are individually defined with
the MenuBar as parent widget. The positions of buttons inside the
MenuBar are defined by their own parameters PosX and PosY
according to the following rules:

e For Horizontal menu bar, all buttons inside the MenuBar have
the same PosY and SizeY defined by the menu bar parameter
ButtonPos and ButtonSize

e For Vertical menu bar, all buttons inside the MenuBar have the
same PosX and SizeX defined by the menu bar parameter
ButtonPos and ButtonSize

ARINC SPECIFICATION 661 — Page 201
3.0 WIDGET LIBRARY

Restriction:
A MenuBar has only children types:

e PushButton
e PicturePushButton
e PopupMenuButton

MenuBar parameters are defined in Table 3.4.8-1.

Table 3.4.8-1 — MenuBar Parameters

Parameters

| Change

| Description

Commonly used parameters

WidgetType D A661_MENU BAR

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

Specific parameters

Horizontal D True: MenuBar is horizontal
False: MenuBar is Vertical

ButtonPos D If Horizontal =True: Value of the buttons parameter PosY
If Horizontal =False: Value of the buttons parameter PosX

ButtonSize D If Horizontal =True: Value of the buttons parameter SizeY
If Horizontal =False: Value of the buttons parameter SizeX

MenuBar Creation Structure is defined in Table 3.4.8-2.

Table 3.4.8-2 — MenuBar Creation Structure

CreateParameterBuffer Type Size (bits) Value / Range When Necessary
WidgetType [ushort [6 | ABET MENUBAR
Widgetldent ushort 16
Parentldent | ushort | 16
Enable uchar 8 A661_FALSE
A661_TRUE
ol | A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
Horizontal uchar 8 A661_FALSE
| AeSITRUE
UnusedPad N/A 24
PosX long 32
PosY long 32
ButtonPos long 32
ButtonSize long 32

ARINC SPECIFICATION 661 — Page 202

3.0 WIDGET LIBRARY

Available SET_PARAMETER identifiers and associated data structure are:

Table 3.4.8-3 — MenuBar Runtime Modifiable Parameters

Name of the Size | Parameterident used Type of Structure Used
parameter to set | Type | (bits) | in the ParameterStructure | (Refer to 4.5.4.5)

Visible uchar 8 A661_ VISIBLE A661 ParameterStructure 1Byte
Enable uchar 8 A661 ENABLE A661 ParameterStructure 1Byte

3.5 Widget Extension (Supplement 2)

This section was added in Supplement 2. It introduces new widgets to ARINC 661.

3.5.1 MutuallyExclusiveContainer

Categories:
Container

Description:

The MutuallyExclusiveContainer has no graphical representation. Its purpose is to
group children widgets and to provide a means for managing the exclusive display of
the children. The operation of the MutuallyExclusiveContainer is very similar to that
of the BasicContainer except that only one child of the MutuallyExclusiveContainer
can be visible. All of the children of a BasicContainer can be visible.

A UA can make a child visible in the container by setting the VisibleChild parameter.
Only the Widget in the container that has the Widgetldent that matches the
VisibleChild will be processed for display. The visibility of the child is controlled by
the child’s Visible parameter and is not changed by changing the VisibleChild
parameter. For a child in the container to be visible the VisibleChild must be set to
the child’s Widgetldent and the Visible parameter for the Widget must be True.
Normal rules for visibility and enabling of a parent widget apply to the
MutuallyExclusiveContainer.

The contained widgets are positioned with respect to the PosX and PosY of the
MutuallyExclusiveContainer. The MutuallyExclusiveContainer does not have clipping
capabilities.

There is no interactivity associated with this widget so there are no events
associated with this widget. Only the UA controlling the layer can change the
VisibleChild.

The following figure shows the difference between the MutuallyExclusiveContainer
and the BasicContainer. The bottom picture shows an example application of the
MutuallyExclusiveContainer to make one message visible from a collection of 4
messages.

3.0 WIDGET LIBRARY

Basic Container

Visible = True

ARINC SPECIFICATION 661 — Page 203

!

!

Widget
ID #2

Widget
ID #3

Widgets in the Basic Container

All widgets are
evaluated for display.

Mutually Exclusive Container

Visible = True
VisibleChild = 3

- ~
- SS
- N
. N
- SS
- S

\

/

Widget
ID #1

Widget
ID #2

Widget
ID #3

Widget
ID #4

————

i Widget 3 is evalutated
i for display. All other

Widgets in the Mutually Exclusive Container

Example of selecting a message for display.

Mutually Exclusive Container

Visible = True
VisibleChild = 3

~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
s ~o
- ~

: widgets are not visible.

NBB
213

4 Messages defined at

the same location and

only 1 message made
visible by application

4L
N

Label Label Label Label
Widget Widget Widget Widget
HN] " YIN2 " YIN3 " "BBH
ID #1 ID #2 ID #3 ID #4

Widgets in the Mutually Exclusive Container

3

Figure 3.5.1-1 — Mutually Exclusive Container

Restriction:

None

ARINC SPECIFICATION 661 — Page 204
3.0 WIDGET LIBRARY

MutuallyExclusiveContainer Parameters are defined in Table 3.5.1-1.

Table 3.5.1-1 — MutuallyExclusiveContainer Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MUTUALLY EXCLUSIVE CONTAINER

Widgetldent D Unique identifier of the widget

Parent D Identifier of the immediate container of the widget

Identifier

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

Specific parameters

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

VisibleChild DR Identifier of the widget to be made visible. A value of 0 means that no
widget is visible

MutuallyExclusiveContainer Creation Structure is defined in Table 3.5.1-2.

Table 3.5.1-2 — MutuallyExclusiveContainer Creation Structure

CreateParameterBuffer Type Size (bits) Value/Description
WidgetType | ___ ushort | 16 | AB61_Mutually Exclusive_Container |
Widgetldent ushort 16
Parentident] ushort | 16 |
Enable uchar 8 A661_FALSE
A661_TRUE
el | AGB1_TRUE_WITH_VALIDATION
Visible uchar 8 AB61_FALSE
A661_TRUE
PosX long 32
PosY long 32
VisibleChild | whot [16 [
UnusedPad N/A 16

Available SetParameter identifiers and associated data structure are:

Mutually Exclusive Container Runtime Modifiable Parameters are defined in
Table 3.5.1-3.

Table 3.5.1-3 — MutuallyExclusiveContainer Runtime Modifiable Parameters

Name of the Type Size | Parameterldent Used in Type of Structure Used
Parameter to (bits) | the ParameterStructure (Refer to 4.5.4.5)

Set

Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure 1Byte
VisibleChild ushort 16 | A661 VISIBLE CHILD A661_ ParameterStructure 2Bytes
PosX long 32 A661_POS_XY A661_ParameterStructure_8Bytes
PosY X 2 X 2

PosX long 32 A661 POS X A661_ ParameterStructure 4Bytes
PosY long 32 | A661 POS Y A661 ParameterStructure 4Bytes

ARINC SPECIFICATION 661 — Page 205
3.0 WIDGET LIBRARY

3.5.2 ProxyButton

Categories:
Interactive

Description:

The ProxyButton directs a physical button press as a select event to the target
widget. If the target widget is visible and enabled at the time of the physical button
press, it will respond in the same way as if the user had selected the widget. The
CDS will supply a list of unique identifiers for the selection keys available in the
system. A common use for this feature is a bezel line select soft key. If the target
widget ID is 0 then the select event is sent directly to the UA.

Cursor Control
Device
Button Press
Selest— — __ Select
/ - \\ Selictz -~
/ .\ 7 Y
Physical / = 7
Button ledlion il o ua TOXy o g [Widget | Button Widget
Link Button Link ID #5
ID #3
ARINC 661 UALD
A661 _EVT_‘ §ELECTION
1
User
Application
Button Press
Selgot— — ~
~
1 7 \\‘
/
. A661_EVT_SELECTION
Phwlcal / —_——
Buon 4100 D #3 BP ey D#0| T SQ
ID #3 utton \
ARINC 661 UALD
User
Application
Figure 3.5.2-1 — Proxy Button
Restrictions:

e The result of assigning more than one ProxyButton widget to a single key will
cause events to be sent to multiple widgets when that key is pressed

e If an undefined target widget ID is set the A661_ERR_SET_ABORTED may
be sent to the application

o If the ProxyButton is in a container or layer that is disabled or not visible then
the ProxyButton is disabled. When the ProxyButton is disabled, the
ProxyButton will not pass events from physical buttons

ARINC SPECIFICATION 661 — Page 206
3.0 WIDGET LIBRARY

ProxyButton Parameters are defined in Table 3.5.2-1.

Table 3.5.2-1 — ProxyButton Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_PROXY_BUTTON

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget
Enable DR Ability of the widget to be activated

Specific Parameters

DedicatedKeyldent D The unique identifier of the dedicated CDS key
TargetWidgetldent DR Identifier of the widget to receive the select event

ProxyButton Creation Structure is defined in Table 3.5.2-2.

Table 3.5.2-2 — ProxyButton Creation Structure

CreateParameterBuffer Type Size (bits) Value/Description

| WidgetType | ushort | .16 | A661_PROXY BUTTON
Widgetldent ushort 16

| Parentldent | ushott | 16 |
Enable uchar 8 A661_FALSE

A661_TRUE

| A661_TRUE_WITH_VALIDATION
UnusedPad N/A 8 0

| DedicatedKeyldent | ushort | 16 .
TargetWidgetldent ushort 16

ProxyButton Event Structures:
This event indicates to the UA that a crew member has interacted with the widget.

ProxyButton Event Structures: A661_EVT_SELECTION is defined in
Table 3.5.2-3.

Table 3.5.2-3 — ProxyButton Event Structures: A661_EVT_SELECTION

EventStructure Type Size (bits) | Value/Description
Eventident | _ushort | - 16 | A661_EVT SELECTION]
UnusedPad N/A 16 0

Available SetParameter identifiers and associated data structure are defined in
Table 3.5.2-4.

Table 3.5.2-4 — ProxyButton Runtime Modifiable Parameters

Name of the Type Size Parameterldent Used in the | Type of Structure Used
Parameter to (bits) | ParamterStructure (Refer to 4.5.4.5)
Set

TargetWidget | ushort 16 A661_TARGET _WIDGET_ID | A661_Parameterstructure_2bytes
Ident

Enable uchar 8 A661 ENABLE A661_ParameterStructure 1Byte

ARINC SPECIFICATION 661 — Page 207
3.0 WIDGET LIBRARY

3.5.3 WatchdogContainer

Categories:
Container

Description

The WatchdogContainer widget is a non-graphical container widget stimulated,
during normal operation, by the UA at a periodic rate. One or more widgets must be
placed into the container and the ShowlfFailldent must be set to either zero or the
value of one of the widgets in the container. During normal operation, all of the
widgets within this container, except for the widget referenced with the
ShowlfFailldent, are evaluated for display. If the UA fails to stimulate the Refresh
parameter in the Watchdog Container widget for FailCountLimit periods then the
watchdog is considered expired causing an event to be sent back to the UA and
causing the CDS to display the widget referenced by ShowlfFailldent.

This widget is useful when used in combination with the BufferFormat widget to
assure that a data set is updated at a specific rate. The BufferFormat contains a set
of functionally related parameters and the “Refresh” parameter for a Watchdog
widget. If the BufferFormat is updated at the period defined by “TimePeriod” then the
timer is satisfied and no action is taken. If the “Refresh” is not set to true for
FailCountLimit periods, the timer expires and two actions are taken by the CDS:

* Aneventis sent back to the UA indicating that the timer has expired
e The Widget referenced by ShowlfFailldent is evaluated for display. If the
Visible parameter of the child widget is True then the widget is displayed

If the UA starts setting the “Refresh” to true for “ValidCountLimit” periods, the
Watchdog is satisfied. When the Watchdog is satisfied the following actions are
taken by the CDS:

e Aneventis sent back to the UA indicating the watchdog is satisfied
e The widget referenced by ShowlfRefreshldent is evaluated for display. If the
Visible parameter of the child widget is True then the widget is displayed

The timer of a watchdog that is a child of another watchdog is still updated
regardless of the state of the parent watchdog.

ARINC SPECIFICATION 661 — Page 208
3.0 WIDGET LIBRARY

In the example below, the first picture shows a buffer format updating the watchdog
timer to display widget #12. The Refresh parameter is included in the buffer format.
The bottom picture shows the case when the buffer format is no longer received by
the CDS. In this case the fail indication in Widget #24 is displayed.

UALD
BufferFormat
Watchdog
Pa:am Pa;am ... | Refresh
Showif
+ v o Refresh | Failldent
PN AN > #24
Widget #12 Widget #24
Watchdog is refreshed by UA. e i BasicContainer with
All widgets in the Watchdog Container, except for parameters that are
that referenced by the ShowifFailldent, are set by BufferFormat Fail Indication
evaluated for display by the CDS.
UALD
BufferFormat
Ay — Watchdog
1/k Showif
+ s, N _p| Refresh | Failldent
N e S in
><]
Widget #12 Widget #24
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ wann~—¥ BasicContainer with
Watchdog is not refreshed by UA. Widget parameters that are
#24 referenced by ShowlfFailldent is set by BufferFormat Fail Indication
evalutated for display by the CDS.

Figure 3.5.3-1 — Watchdog Buffer

To provide a better understanding of how the timer works consider the following
example:

e TimePeriod = 50ms.

e ValidCountLimit =2

e FailCountLimit = 3



ARINC SPECIFICATION 661 — Page 209
3.0 WIDGET LIBRARY

In the above example, the UA must set Refresh once every 50ms for the timer to be
satisfied. There are two inner states associated with the watchdog. They are
WatchdogExpired and WatchdogNormal. The CDS should evaluate the refresh and
timer counts once every 50ms as follows:

o When the state is W makes the ShowlfFailldent widget visible. Every 50ms
(the TimePeriod) the CDS checks to see if the refresh has been updated by
the UA in the last 50ms. If the refresh is updated for 2 consecutive cycles
(100ms) then the CDS transitions to the WatchdogNormal state.

o When the state is WatchdogNormal. In the WatchdogNormal state the CDS
evaluates the other widgets for display. Every 50ms (the TimePeriod) the
CDS checks to see if Refresh has been updated by the UA in the last 50ms.
If the refresh is not updated for 3 consecutive cycles (150ms) then the CDS
transitions to the WatchdogExpired state.watchdogExpired — In the
WatchdogExpired state the CDS.

The figure below shows a state transition diagram for the Watchdog Container. With
TimePeriod equal to 50ms, this State Transition Diagram would be evaluated once
every 50ms by the CDS. For the labels on the transitions the condition above the line
determines whether the transition is taken and the statement under the line is the
action taken if the transition occurs.

(Refresh Not Set) and
(FailCount < FailCountLimit)

(Refresh Set)
Set FailCount ;=0

FailCount := FailCount + 1

Watchdog
Normal

(Refresh Not Set) and
FailC = FailC Limi

Set NormalCount := 0

(Refresh Set) and

(ValidCount = ValidCountLimit)
Set FailCount := 0

Watchdog
Expired
(Refresh Set) and
Refresh Not Set ValidC < ValidC | imit

Set ValidCount ;=0 ValidCount := ValidCount + 1

Restriction:
N/A

Figure 3.5.3-2 — Watchdog State



ARINC SPECIFICATION 661 — Page 210

3.0 WIDGET LIBRARY

Table 3.5.3-1 — WatchdogContainer Parameters

Parameters | _Change | Description

Commonly used parameters

WidgetType D A661_WATCHDOG_CONTAINER

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Specific parameters

TimePeriod D The period in ms between updates of timer.

Note: The values allowed for this parameter depend
on the CDS supplier.

ValidCountLimit D The number of periods that the refresh must be
updated before the Watchdog is satisfied.

FailCountLimit D The number of periods that the refresh is not updated
before the Watchdog expires.

Refresh R Set by the UA to satisfy the Watchdog. There is no
significance to the value passed to the Refresh
parameter.

ShowlfFailldent D The ID of the child widget to be evaluated for display
when the timer expires. A value of zero indicates that
nothing is to be displayed when the timer expires.

ShowFail DR ShowFail can be set to true by the UA to show the

failed state of the widget. This has the same result as
failing to update the Refresh.

Table 3.5.3-2 — WatchdogContainer Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Description

WidgetType ushort 16 A661 WATCHDOG_CONTAINER
Widgetldent ushort 16

Parentldent ushort 16

UnusedPad N/A 16

TimePeriod ushort 16

ValidCountLimit ushort 16

FailCountLimit ushort 16

Refresh uchar 8

UnusedPad N/A 8

ShowlfFailldent ushort 16

ShowfFail uchar 8 A661_TRUE

A661_FALSE
UnusedPad N/A 8
Table 3.5.3-3 — WatchdogContainer Event Structures:
A661_EVT WATCHDOG_EXPIRED

CreateParameter

Buffer Type Size (bits) | Value/Description

| Eventldent || Ushort | . 16 | A661_EVT_WATCHDOG EXPIRED .

UnusedPad N/A 16




ARINC SPECIFICATION 661 — Page 211
3.0 WIDGET LIBRARY

Table 3.5.3-4 — WatchdogContainer Event Structures:

A661_EVT_WATCHDOG_NORMAL

CreateParameter Type Size (bits) Value/Description
Buffer

Eventldent | | ushort | 16 | AB61_EVT_WATCHDOG _NORMAL
UnusedPad N/A 16

Table 3.5.3-5 — WatchdogContainer Runtime Modifiable Parameters

Name of the Size | Parameterldent Used in Type of Structure Used
Parameter to Set | Type | (bits) | the ParamterStructure (Refer to 4.5.4.5)
Refresh uchar 8 A661 REFRESH A661_ParameterStructure_1Byte
ShowkFail uchar 8 A661_ SHOW_FAIL A661_ParameterStructure_1Byte
3.5.4 Slider
Categories:

e Graphical Representation

e |[nteractive

Description:
(MajorTickInterval/MinorTickMultiple)/LsbMultiple
_} <
MajorTickInterval
MajorTickInterval/MinorTickMultiple
< > —> <
|
e R |
MajorTick 5 05 15 25 35 45 55 Max Value
Reference Thumb |
Value-Range |

A Slider allows the crewmember to select a value between the range of MIN_VALUE
and MAX VALUE. The Slider can be displayed in either the horizontal or vertical

axis.

The mapping of the value-range to the slider depends on the orientation, for example

when the slider is hori

zontal the value-range can either be LEFT TO RIGHT or

RIGHT TO LEFT. The Orientation specifies direction of increasing values.

When the UA sets the Value to something that is not a multiple of the LSB value the
behavior is implementation dependent

The event is reported

on upon selection by a crewmember with a “click” or keyboard

selection. The CDS would then move the thumb to the click position.



ARINC SPECIFICATION 661 — Page 212

3.0 WIDGET LIBRARY

In the diagram above, the following values are used:

e MajorTickReference = 0.5
e MajorTickInterval = 1.0
e MinorTickMultiple = 3

e LsbMultiple =2

Restriction:

MAX_VALUE must be greater than the MIN_VALUE.

Table 3.5.4-1 — Slider Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_ SLIDER

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

MinValue D Minimum value of the scroll bar

MaxValue D Maximum value of the scroll bar

Value DR Current value of the Slider

MajorTickInterval D Value between each MAJOR tick mark. MajorTickInterval can
not be zero.

ShowMajorLabels D If TRUE the values for each MAJOR tick are shown.

Alignment D Specifies where the ticks and labels are drawn with relation to
the slider.
A661_LEFT
A661_RIGHT
A661_CENTER
A661_TOP
A661_BOTTOM

Orientation D Specifies the orientation of the Slider either vertical or
horizontal. It also specifies which way the value-range of the
slider is oriented.
A661_BOTTOM_TO_TOP - Vertical
A661_TOP_TO_BOTTOM - Vertical
A661_LEFT _TO_RIGHT - Horizontal
A661_RIGHT _TO_LEFT - Horizontal

LsbMultiple D This specifies the number of intervals between discrete
positions for the thumb within the Minor Tick.

MinorTickMultiple D Specifies the number of Minor Tick intervals between two Major
Ticks.

MajorTickReference D Holds the value where the major tick starts.




3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 213

Parameters Change | Description
EntryValidation R Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.
A661_FALSE
A661_TRUE
Table 3.5.4-2 — Slider Creation Structure Table
CreateParameterBuffer | Type Size (bits) | Value/Range When Necessary
WidgetType [ ushort [ 16 [A661 SLDER
Widgetldent ushort 16
Parentident | ushort | 16
Enable uchar 8 A661_FALSE
A661_TRUE
__________________________________________________________ A661_TRUE WITH VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | I
NextFocusedWidget ushort 16
MinValue float 32
MaxValue float 32
Value float 32
MajorTickInterval float 32
ShowMajorLabels uchar 8 A661_TRUE
__________________________________________________________ A661FALSE
Orientation uchar 8 A661_ BOTTOM_TO_TOP
A661_TOP_TO_BOTTOM
A661_LEFT_TO_RIGHT
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A661 RIGHT TO_LEFT
Alignment uchar 8 A661_LEFT
A661_RIGHT
A661_CENTER
A661_TOP
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Aés1 BOTTOM
UnusedPad N/A 8
LsbMultiple | ushort | I
MinorTickMultiple ushort 16
MajorTickReference float 32
Table 3.5.4-3 — Slider Event Structures Tables: A661_EVT_VALUE_CHANGE
EventStructure Type | Size (bits) | Value/Description
Eventident ___________|. ushort | 16 | A661_EVT_VALUE CHANGE
UnusedPad N/A 16 0
Value float 32 Holds the current value of the Slider




ARINC SPECIFICATION 661 — Page 214

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in
Table 3.5.4-4.

Table 3.5.4-4 — Slider Runtime Modifiable Parameters Table

Name of the Size | Parameterldent Used Type of Structure Used
Parameter to Set Type | (bits) | in the ParameterStructure | (Refer to Section 4.5.4.5)

Enable uchar 8 A661 ENABLE A661_ParameterStructure 1Byte
Visible uchar 8 A661_VISIBLE A661_ ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes
Value float 32 | A661 VALUE A661_ ParameterStructure_4Bytes
EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

3.5.5 PictureAnimated

Categories:
Graphical representation

Description:
A PictureAnimated is a reference to a set of images available in the CDS. By

displaying this set of pictures successively at a frequency defined as a parameter of
the widget, the CDS performs an animation. It is possible to define if the animation is
performed only once then stopped or if it is an infinite loop. The UA can stop the loop
animation. The animation always stops on the first picture of the list.

Restriction:

N/A

Table 3.5.5-1 — PictureAnimated Parameters

Parameters

| Change

| Description

Commonly used parameters

WidgetType D A661_PICTURE_ANIMATED

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

Specific parameters

IndexOfFrequency D Index of the frequency defined in CDS (OEM dependent)

LoopFlag D Flag for loop animation:
FALSE: animation is played once then stops
TRUE: loop animation.

AnimationFlag DR TRUE: the animation is played
FALSE: the animation continues until it reaches the first picture of the
array. Then it stops.

NumberOfPictures D The number of picture references to store

PictureArray D Array of pictures references stored in the CDS. The definition order set
the sequence order.

PictureAnimated Creation Structure is defined in Table 3.5.5-2.




3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 215

Table 3.5.5-2 — PictureAnimated Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When
Necessary
WidgetType [ ushort | 16 | A661_PICTURE_ANIMATED
Widgetldent ushort 16
 Parentldent | ushort | 16
Visible uchar 8 A661_FALSE
ol | AeS1ITRUE
UnusedPad uchar 8 0
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet [ ushort [ e
NumberOfPictures uchar 16
| IndexOffFrequency | uchar | 8
LoopFlag uchar 8 A661_FALSE
el |AeBITRUE
AnimationFlag uchar 8 A661_FALSE
el |AeBITRUE
UnusedPad N/A 8 0
PictureArray {ushort}+ 16* Array of pictures references
NumberOfPictures | Followed by zero or two extra
+ PAD NULL for alignment on 32 bits.

The PictureAnimated widget does not send any event.

Available SET_PARAMETER identifiers and associated data structure are:

Table 3.5.5-3 — PictureAnimated Runtime Modifiable Parameters

Name of the Parameterldent used

parameter to Size in the Type of Structure Used

set Type (bits) ParameterStructure (Refer to 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
AnimationFlag | uchar 8 A661_ANIMATION_FLAG | A661_ ParameterStructure 1Byte
StyleSet ushort 16 A661 STYLE SET A661_ ParameterStructure 2Bytes

3.5.6 SymbolAnimated

Categories:
Graphical representation

Description

The SymbolAnimated widget is similar to the Symbol widget. It places vector
symbols predefined in the CDS at a specified location on the display. However, the
Symbol widget is static unless the controlling application changes widget
parameters, while the SymbolAnimated widget is animated by providing the ability to
automatically display a sequence of symbol references, rotation angles and relative
movements.

NumberOfSymbols specifies how many elements are specified in the creation
structure for each of the following arrays: a symbol reference array, a rotation angle
array, and arrays for both an x and a y component of relative movement (relative to
the widgets overall PosX/PosY position). The combination of these arrays allows the



ARINC SPECIFICATION 661 — Page 216
3.0 WIDGET LIBRARY

definition of animation sequences in which the symbol displayed by the CDS, its
orientation and position relative to the widget’s origin can change over the course of
time.

IndexOfFrequency is interpreted according to CDS-specific rules. This widget
attribute controls the time between adjacent cycles of the animation sequence when
the animation is played.

AnimationType allows the controlling application to start and stop the animation.
When the widget becomes visible and AnimationType is set to A661_DONT_RUN,
the first symbol reference, orientation, and movement parameters are used to
display the symbol. If AnimationType is A661_RUN_ONCE or A661_RUN when the
widget is set to visible, the animation begins. A661_RUN_ONCE will start the
animation and have the CDS stop it automatically once the animation sequence has
been completely displayed — to start over, AnimationType must be set to
A661_RUN_ONCE again. To show the animation continuously, AnimationType
should be set to A661_RUN and remain this value until the animation should stop, at
which time the value should be reset to A661_DONT_RUN.

LoopType is one of the following:

e A661_LOOP_FORWARD:
The sequence is played from the first to the last frame. When the animation is
stopped, the last frame remains visible

e A661_LOOP_FORWARD_AND_RESET:
The sequence is played from the first to the last frame. When the animation is
stopped, the first frame remains visible

e A661_LOOP_FORWARD_AND_BLANK:
While the animation is running, the sequence is played from the first to the
last frame. When the animation is not running, nothing is visible

e A661_LOOP_FORWARD_AND_BACKWARD_AND_BLANK:
While the animation is running, the sequence is played from the first to the
last frame and then reverses direction until the first frame is reached again.
When the animation is not running, nothing is visible

Restriction:
N/A
Table 3.5.6-1 — SymbolAnimated Parameters
Parameters | Change | Description
Commonly used parameters
WidgetType D A661_SYMBOL_ANIMATED
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
StyleSet DR Reference to predefined graphical characteristics inside the CDS
PosX DR The X position of the widget reference point
PosY DR The Y position of the widget reference point
Specific parameters
MotionAllowed D Capability to change PosX, PosY at run time
Colorindex DR Color index, used if StyleSet allows color to be set
IndexOfFrequency D Index of the frequency defined in the CDS (Implementation
dependent)




ARINC SPECIFICATION 661 — Page 217

3.0 WIDGET LIBRARY

Parameters Change | Description

LoopType D Type of looping (see description above)
AnimationType DR Type of animation (see description above)
NumberOfSymbols D The number of symbol references used for this animation.
SymbolArray D Array of symbol references

OrientationArray D Array of symbol orientations

MovementXArray D Array of horizontal component of movement
MovementYArray D Array of vertical component of movement

Table 3.5.6-2 — SymbolAnimated Creation Structure Table

CreateParameterBuffer Type Size (bits) Value/Description
WidgetType | _ushort | 16 |AG61_SYMBOL ANIMATED
Widgetldent ushort 16
Parentident | _wshort | 16
MotionAllowed uchar 8 A661_ FALSE
e |A6B1TRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
StyleSet | ushort .\ A6 .
Colorindex | uchar | I
LoopType uchar 8 A661_LOOP_FORWARD
A661_LOOP_FORWARD_AND_RESET
A661_LOOP_FORWARD AND_BLANK
A661_LOOP_FORWARD_AND_BACKW
ARD_AND_BLANK
NumberOfSymbols | _ushort | 16 | .
_IndexOfFrequency | uchar | R
AnimationType uchar 8 A661_DONT_RUN
A661_RUN
A661_RUN_ONCE
SymbolArray {ushort}+ 16 * Array of symbol references, padded if
NumberOfSymbols | necessary to reach a 32 bit boundary
+ PAD
OrientationArray {fr(180)}+ 32* Array of rotation angles
NumberOfSymbols
MovementXArray {long}+ 32* Array of horizontal movements.
NumberOfSymbols
MovementYArray {long}+ 32~ Array of vertical movements.
NumberOfSymbols




ARINC SPECIFICATION 661 — Page 218

3.0 WIDGET LIBRARY

Table 3.5.6-3 — SymbolAnimated Runtime Modifiable Parameters

Name of the Size | Parameterldent Used in | Type of Structure Used
Parameter to Set Type (bits) | the ParamterStructure (Refer to 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE SET A661_ParameterStructure 2Bytes
PosX long 32 A661 POS X A661_ ParameterStructure_4Bytes
PosY long 32 A661 POS Y A661_ParameterStructure 4Bytes
PosX longx2 | 32x2 | A661_POS_XY A661_ParameterStructure_8Bytes
PosY

Colorindex uchar 8 A661 COLOR_INDEX A661_ ParameterStructure 2Bytes
AnimationType uchar 8 A661_ANIMATION_TYPE | A661 ParameterStructure_1Byte

3.5.7 SelectionListButton

Categories:

e Graphical representation
e Interactive
e Text string

Description:
The SelectionListButton is the same as the ComboBox except that a constant
LabelString is displayed instead of the selected value.

The SelectionListButton allows a crew member to select one entry within a list. A
fixed LabelString is displayed in the SelectionListButton area. The number of the
current selected entry is held in the SelectedEntry parameter. The complete list of
possible Entries is held in a string array (parameter EntryList). The list is displayed
upon crew member selection, for example, click on the arrow button associated with
the Selected Entry.

Note that SelectingAreaHeight and the SelectingAreaWidth represent the Y and X
Size of the PopUp part of the SelectionListButton .

OpeningMode of the SelectionListButton determines how the SelectionListButton
opens.

The pop-up part of the SelectionListButton is displayed on top of its containing
window and is affected by the clipping area of its containing window.

Restriction:
N/A




ARINC SPECIFICATION 661 — Page 219

3.0 WIDGET LIBRARY

SelectionListButton Parameters are defined in Table 3.5.7 -1.

Table 3.5.7 -1 — SelectionListButton Parameters

Parameters

| Change | Description

Commonly used parameters

WidgetType D A661_SELECTION_LIST_BUTTON

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the SelectionListButton (in the
closed mode)

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter

Specific parameters

SelectingAreaHeight D Size of the area available to display the entry list

SelectingAreaWidth D Size of the area available to display the entry list

LabelString D Text permanently displayed in the SelectionListButton label area.

OpeningMode D Way of combo opening:
UpP
CENTERED
DOWN

MaxStringLength D Maximum string length for each entry in the list.

Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER

MaxNumberOfEntries D Maximum number of entries in the list

NumberOfEntries DR Total number of entries in the list (must be lower than
MaxNumberOfEntries)

SelectedEntry DR Current selected entry number in the list.

OpeningEntry DR Entry number which is ensured to be visible when the
SelectionListButton is opened.
Opening entry is in the range [0; NumberOfEntries]
OpeningEntry will be set to 0, if not used.

EntryList DR String array holding the list of entries.

[MaxEntryNumber]

EntryValidation R

Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also
indicates the results of that processing.

A661_FALSE

A661_TRUE




ARINC SPECIFICATION 661 — Page 220

3.0 WIDGET LIBRARY

SelectionListButton Creation Structure is defined in Table 3.5.7-2.

Table 3.5.7-2 — SelectionListButton Creation Structure

CreateParameterBuffer Type Size (bits) | Value/Range When Necessary
WidgetType [ ushort [ 16| A661_SELECTION_LIST BUTTON
Widgetldent ushort 16
Parentldent | . ushort | .. 16 .
Enable uchar 8 A661_FALSE
A661_TRUE
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A661_TRUE WITH VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
SelectingAreaWidth ulong 32
SelectingAreaHeight ulong 32
StyleSet ] ushort | 16
NextFocusedWidget ushort 16
MaxNumberOfEntries | 1 ushort | 16
NumberOfEntries ushort 16
SelectedEntry | ] ushort | 16
MaxStringLength ushort 16
OpeningEntry ushort 16
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
OpeningMode uchar 8 A661 _OPEN_UP
A661_OPEN_CENTERED
A661_OPEN_DOWN
AutomaticFocusMotion uchar 8 A661_FALSE
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A661TRUE
UnusedPad N/A 24 0
LabelString string 8 x string | The string is followed by zero, one, two or
length+ three NULL character(s) to be 32 bits
PAD aligned
EntryList [NumberOfEntries] {string}+ {32}+ Each string terminating NULL is used as

string separator.

The complete string list is followed by zero,
one, two or three NULL character(s) to be
32 bits aligned

The specific event sent by the SelectionListButton to the owner application is defined

by Table 3.5.7 -

3.

Table 3.5.7-3 — SelectionListButton Event Structures:
A661_EVT_SEL_ENTRY_CHANGE

EventStructure Type Size (bits) | Value/Description
Eventldent ] ... ushort | . 16 | A661_EVT_SEL_ENTRY_CHANGE
EntryNumber ushort 16 Number of the entry chosen by the crew

member




3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 221

Available SetParameter identifiers and associated data structure are defined in

Table 3.5.7 -4.

SelectionListButton Runtime Modifiable Parameters are defined in Table 3.5.7 -4.

Table 3.5.7-4 — SelectionListButton Runtime Modifiable Parameters

Name of the Size | Parameterldent Used Type of Structure Used
Parameter to Set Type (bits) | in the ParameterStructure | (Refer to 4.5.4.5)

Enable uchar 8 A661 ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661 STYLE_SET A661_ParameterStructure 2Bytes
SelectedEntry ushort 16 A661_SELECTED_ENTRY A661_ParameterStructure_2Bytes
OpeningEntry ushort 16 A661_OPENING_ENTRY A661_ParameterStructure_2Bytes
NumberOfEntries ushort 16 A661_NUMBER_OF_ENTRIES | A661_ParameterStructure_2Bytes
EntryList {string}+ | {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfEntries]

EntryValidation uchar 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte

3.6

3.6.1 EditBoxNumericBCD

Categories:

Widget Extension (Supplement 3)

e Graphical representation
e Interactive
e Text string

Description:

The EditBoxNumericBCD is a customized numeric edit box allowing to edit a
complex numeric value that is not in 10 base (such as a time). The principle of
this widget is to use several fields for the value, each field being a part of the
value (e.g. For time = 23h59 min, there is one field for hour from 0 to 23 and
one field for minutes from 0 to 59)).A crew member can modify this value using
its input devices. As it is a numeric value, CDS is able to increment itself the
value. The widget can receive a number of increment or a numeric key value.

The idea is to use distinct fields of "value" 64 bits word. The size of each field
is defined in the widget. Each 4 bits part of "value" parameter is used to code a
digit (in BCD format), of the value to be displayed. The first 4 bits field is used
to code the sign (0xF=-1 / 0x1=+1).

Example:

0xF123456789012345:
sign: odd (F)
1% digit = 1
2" digit = 2

15" digit = 5



ARINC SPECIFICATION 661 — Page 222

3.0 WIDGET LIBRARY

The number of fields is defined by the parameter NumberOfFields.

The table SizeOfFields[NumberOfFields] allows to define the size of each field
in digits. Note that the format limits the global size of parameter value to 15
digits. It is not necessary to use all the 15 digits. It is not allowed to define a
field size of 0.

Examples:
Example 1 Example 2 Example 3
NumberOfFields 2 4 2
SizeOfFields 3;2 3;2;2;4 2; 2
Value 0x1123450000000000 0xF179595912340000 0x1094500000000000
decoding Sign: + Sign: - Sign: +
Field1: 123 Field1: 179 Field1: 09
Field2: 45 Field2: 59 Field2: 45
Field3: 59
Field 4: 1234

The widget parameters MinFieldsValue and MaxFieldsValue define the min and
max boundaries of each field in ABSOLUTE VALUE (always positive). The
widget parameters MinFieldsValues and MaxFieldsValues use the same coding
of ‘value’ parameter but the sign is not interpreted.

MinValue and MaxValue parameters allow to define the min and max of the
global signed value.

MinValue and MaxValue parameters use the same coding of ‘value’ parameter

Examples:
Example 1 Example 2
NumberOfFields 4 2
SizeOfFields 3;2;2;4 2;2
MinFieldsValues Field1: 0 Field1: 0
Field2: 0 Field2: 0
Field3: 0 => 0x000000000000000
Field4: 0
=> 0x0000000000000000
MaxFieldsValues Field1: 180 Field1: 23
Field2: 59 Field2: 59
Field3: 59 => 0x0235900000000000
Field 4: 9999
=> 0x0180595999990000
MinValue 0xF179595999990000 - 0x1000000000000000
17959599999 0
MaxValue 0x1180000000000000 0x1235900000000000
+ 18000000000 + 2359

The widget parameters TicsFine and TicsCoarse use the same coding than
value parameter.



ARINC SPECIFICATION 661 — Page 223

3.0 WIDGET LIBRARY

The parameters PositiveString and NegativeString define a string for positive
and negative values. The character '+' in parameter FormatString indicates the
position of parameter PositiveString or NegativeString for display.

Examples:
Example 1 Example 2 Example 3
NumberOfFields | 4 4 2
SizeOfFileds 3;2;2;4 3;2;2;4 2;2
PositiveString EAST null RIGHT
NegativeString WEST null LEFT
FormatString HHEHCHHE HH A+ +  HHHHHEAH " HEHE+
MinFieldsValue | Field1: 0 Field1: 0 Field1: 0 = 0x00
Field2: 0 Field2: 0 Field2: 0 = 0x00
Field3: 0 Field3: 0 => 0x0000000000000000
Field4: 0 Field4: 0
=> 0x0000000000000000 => 0x0000000000000000
MaxFieldsValue | Field1: 180 Field1: 360 Field1: 90
Field2: 59 Field2: 59 Field2: 99
Field3: 59 Field3: 59 => 0x0909900000000000
Field4: 9999 Field4: 9999
=> 0x0180595999990000 => 0x0360595999990000
MinValue -179 59 59 9999 0 00 00 0000 -90 00
=> 0xF179595999990000 => 0x1000000000000000 =>-9000
=> 0xF900000000000000
MaxValue 180 00 00 0000 359 59 59 9999 90 00
=> 18000000000 => 35959599999 =>9000
=> 0x1180000000000000 => 0x1359595999990000 => 0x1900000000000000
TicsFine Field1: 0 Field1: 0 Field1: 0
Field2: 0 Field2: 0 Field2: 1
Field3: 0 Field3: 0 => 0x0000100000000000
Field4: 50 Field4: 50
=> 0x0000000000500000 => 0x0000000000500000
TicsCoarse Field1: 0 Field1: 0 Field1: 1
Field2: 0 Field2: 0 Field2: 0
Field3: 0 Field3: 0 => 0x0010000000000000
Field4: 1000 Field4: 500
=> 0x0000000010000000 => 0x0000000005000000
Value (example) | Sign: + Sign: + Sign:
Field1: 45 Field1: 45 Field1: 79
Field2: 5 Field2: 5 Field2: 79
Field3: 10 Field3: 10 0xF797900000000000
Field4: 4200 Field4: 4200
0x1045051042000000 0x1045051042000000
Display 045°05'10.4200"EAST 45°05'10.42" 79.79 LEFT

Some of the parameters of the EditBoxNumericBCD have to be consistent:

o Each field of the Value must belong to [MinfieldValue, MaxfieldValue]
e The Value must belong to [MinValue, MaxValue] and be consistent with

FormatString

¢ MinValue must be less than MaxValue

e MinFieldValue must be less than MaxFieldValue

e The length of the string edited with the KCCU and the length of the
FormatString shall be less than MaxFormatStringLength




ARINC SPECIFICATION 661 — Page 224
3.0 WIDGET LIBRARY

¢ During the run-time phase, if the UA sets any field of parameter "Value"
with a value inferior to MinFieldValue or greater than MaxFieldValue, the
CDS shall notify an error. In the same way, if during the run-time phase,
the UA sets the parameter Value with a value inferior to MinValue or
greater than MaxValue, the CDS shall notify an error. However, the
values entered by the crew member are not checked by the CDS.

When the EditBoxNumericBCD is in Edit Mode, the CDS may report all
modification done on the edited value and the final confirmed value, or only
report the confirmed value (after a crew member validation). This option is
setable by the UA through the "ReportAlIChanges" parameter. If after having
entered a value, the crewmember finally aborts the edition, the CDS shall send
a specific event to the User Application with the former validated Value as
parameter of the event.

Upon event notification A661_STRING_CHANGE &
A661_STRING_CONFIRMED (respectively
A661_STRING_CHANGE_ABORTED), the string value returned to the UA shall
be the string currently displayed in the edit area (respectively the ‘value’
parameter converted in string according to formatString)

EditBoxNumericBCD Parameters are defined in Table 3.6.1-1.

Table 3.6.1-1 — EditBoxNumeric Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_EDIT_BOX_NUMERIC_BCD

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

NextFocusedWidget D Widget ident of next widget to be focused upon crew member
validation

AutomaticFocusMotion D Automatic motion of the focus on widget specified in
NextFocusedWidget parameter.

Specific parameters

Value DR Value to be interpreted (format Binary Coding Decimal). Each

half-byte will be interpreted as a digit to be displayed in the final
string except the most significant one which will be used for the
sign (F for a negative value and 1 for a positive value).
Example: 0xF123456789012345

- negative sign (F)

- 1% digit = 1
- 2" digit = 2
-15" digit=5

NumberOfFields

Number Of Fields in the Value

SizeOfFields
[NumberOfFields]

Number of digits of each field of the Value




ARINC SPECIFICATION 661 — Page 225
3.0 WIDGET LIBRARY

Parameters Change | Description
MinFieldsValues D Minimum value of each field (in absolute value)
MaxFieldsValues D Maximum value of each field (in absolute value)
MinValue D Minimum value of the parameter Value
MaxValue D Maximum value of the parameter Value
TicsCoarse DR Coarse increment step for modification of the value with main
wheel
TicsFine DR Fine increment step for modification of the value with secondary
wheel
FormatString DR String describing the format of the numeric field. The string is
composed of any authorized characters. Some of them will be
interpreted to format the value.
'_"and '# are used to position the different digits within the string
(the first '_' or '#' indicates the position of the first digit and so on
)
' is used to remove leading and trailing 0 within the same
field. If the digit is equal to 0, it indicates that the corresponding
digit is replaced by no character, or it is displayed when there is a
digit on the left and on the right of the 0 within the same field. In
other cases ([1-9]), it indicates that the corresponding digit will be
displayed as it is defined in the value. Refer to Figure 3.6.1-2 for
more information.
H indicates that the corresponding digit will be displayed as
it is defined in the value.
"+ defines the position of the PositiveString/NegativeString
in the final string. Note that if this sign character is not present in
the FormatString, there will be no difference between the display
of a positive or a negative value.
i Any other characters (any except one of '+, '_', "#') will be
displayed
Examples:
NumberOfFie | PosString / Value Displayed string
Ids / NegString
SizeOfFields | FormatString
2/ 41 +/- 0xF0123400 |-123.4
+ ##
4/ 3;2;2;4 |EAST/WEST 0xF17959591 |179°59'59.1234"W
THEHIE H A | 3240000 EST
+
31/3;2;2 null | - 0x10054630 |005°46'30"
HHHEHETHE
2/2;2 RIGHT / LEFT 0x10510000 | 5.1 RIGHT
_HH#H +
2/3;2 +/- 0x12501500 |250x15
HEHEXHE
MaxFormatStringLength D Maximum size of the FormatString.
PositiveStringLength D Length of the PositiveString
NegativeStringLength D Length of the NegativeString
PositiveString D String to be used for a positive value
NegativeString D String to be used for a negative value
Alignment D Justification of the label text within the edit box area

CENTER




ARINC SPECIFICATION 661 — Page 226
3.0 WIDGET LIBRARY

Parameters Change | Description
LEFT
RIGHT
ReportAllChanges D A661_EDB_CHANGE_CONFIRMED

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

A661_EDB_ALL_CHANGE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED

CDS will report each update from the crew member while in
edit mode
(A661_EVT_STRING_CHANGE)

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

A661_EDB_OPEN_CLOSE
CDS will report the edit mode opening
A661_EVT_EDITBOX_OPENED

CDS will report the value change after crew member validation
(A661_EVT_STRING_CONFIRMED)

CDS will report the value if the crew member aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)

EntryValidation R Indicator notifying the CDS that the UA has completed
processing the entry or selection event. This flag also indicates
the results of that processing.

A661_FALSE
A661_TRUE
MaxLegendStringLength D Max string size for the legend (MaxLegendStringLength > 0)
LegendAreaSizeX D The X dimension (size) of the legend.
LegendString DR Legend associated to the numeric value
LegendPosition D Position of the legend in comparison with the numeric value:
LEFT, RIGHT, TOP, BOTTOM
LegendRemoved D The flag defining if the legend shall be removed on entry in the
editing mode.
NumericKeyFlag D Ability to change the value with the numerical key
TRUE
FALSE
CyclicFlag D Possibility for cyclic modification of the value
TRUE

FALSE




ARINC SPECIFICATION 661 — Page 227
3.0 WIDGET LIBRARY

Digits
01000 02 4
__#.# < Format String

1% step: format string and digits are
split into individual fields.

2" step: all non-zero digits are displayed
where the format string has a “_’ or ‘#.
Zeros are displayed only where the format
string has a ‘#'.

1 0 02
@ Eﬂ/\ These positions

have digits both

This position has on the right and 3" step: for any remaining *_, display a
no digits on the ' digit only if there already are digits to the
left side. right and left (not necessarily adjacent).
1000
4\

The first character
of this field remains
empty.

Figure 3.6.1-2 — Format String example of ‘_’ character
EditBoxNumeric Creation Structure is defined in Table 3.6.1-2.

Table 3.6.1-2 — EditBoxNumeric Creation Structure

CreateParameterBuffer | Type Size Value / Range when necessary
(bits)
WidgetType ushort 16 A661_EDIT_BOX_NUMERIC_BCD
Widgetldent ushort 16
Parentldent ushort 16
Enable uchar 8 A661_FALSE
A661_TRUE
A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
LegendAreaSizeX ulong 32
StyleSet ushort 16
NextFocusedWidget ushort 16
Value BCD 64 Comment : Each 4 bits will be interpreted as a digit to be
displayed in the final string except the most significant




ARINC SPECIFICATION 661 — Page 228

3.0 WIDGET LIBRARY

CreateParameterBuffer | Type Size Value / Range when necessary
(bits)
one which will be used for the sign (F for a negative
value and 1 for a positive value).
MinValue BCD 64 Comment : Same type as value
MaxValue BCD 64 Comment : Same type as value
MinFieldsValues BCD 64 Comment : Same type as value but the sign will not be
interpreted.
MaxFieldsValues BCD 64 Comment : Same type as value but the sign will not be
interpreted.
TicsCoarse BCD 64 Comment : Same type as value
TicsFine BCD 64 Comment : Same type as value
NumberOfFields uchar 8
Alignment uchar 8 A661_CENTER
A661_LEFT
A661_RIGHT
LegendPosition uchar 8 A661_LEFT
A661_RIGHT
A661_TOP
A661_BOTTOM
LegendRemoved uchar 8 A661_FALSE
A661_TRUE
MaxFormatStringLengt | uchar 8
h
MaxLegendStringLengt | uchar 8
h
PositiveStringLength uchar 8
NegativeStringLength uchar 8
AutomaticFocusMotion | uchar 8 A661_FALSE
A661_TRUE
ReportAliIChanges uchar 8 A661_FALSE
A661_TRUE
NumericKeyFlag uchar 8 A661_FALSE
A661_TRUE
CyclicFlag uchar 8 A661_FALSE
A661_TRUE
SizeOfFields uchar 8= Followed by zero, one, two or three NULL for alignment
[NumberOfFields] NbOf on 32 bits
Fields
+ PAD
FormatString string 8*
string
length
LegendString string 8*
string
length
PositiveString string 8*
string
length
NegativeString string 8* Followed by zero, one, two or three extra NULL for
string | alignment on 32 bits.
length

+ PAD




ARINC SPECIFICATION 661 — Page 229
3.0 WIDGET LIBRARY

EditBoxNumericBCD Event Structures Table

During edition of an EditBoxNumericBCD, it shall be possible for the pilot to
enter values containing alphanumeric character (for example, the value and
the legend). It is the responsibility of the UA to analyze the entered value and
format it correctly in the widgets. As a consequence of this need, the events
associated to the EditBoxNumericBCD take a string value as parameters.

EditBoxNumericBCD Event Structures:
A661_EVT_STRING_CHANGE_ABORTED are defined in Table 3.6.1-3.

Table 3.6.1-3 — EditBoxNumericBCD Event Structures:
A661_EVT_STRING_CHANGE_ABORTED

EventStructure Type Size (bits) | Value/Description

[Eventldent | ushort |16 |A661_EVT _STRING CHANGE ABORTED

StringLength ushort 16

String string {32}+ Followed by zero, one, two or three extra NULL
for alignment of 32 bits

EditBoxNumericBCD Event Structures: A661_EVT_STRING_CHANGE are
defined in Table 3.6.1-4.

Table 3.6.1-4 — EditBoxNumericBCD Event Structures:
A661_EVT_STRING_CHANGE

EventStructure Type Size (bits) | Value/Description
Eventldent | ushort |16 | A661_EVT_STRING CHANGE |
StringLength ushort |16
String string {32}+ Followed by zero, one, two or three extra NULL
for alignment of 32 bits

EditBoxNumericBCD Event Structures: A661_EVT_STRING_CONFIRMED are
defined in Table 3.6.1-5.

Table 3.6.1-5 — EditBoxNumericBCD Event Structures:
A661_EVT_STRING_CONFIRMED

EventStructure Type (Sbllzti) Value/Description
Eventldent ushor |16 A661_EVT_STRING_CONFIRMED
t
StringLength ushor |16
t
String string | {32}+ | Followed by zero, one, two or three extra NULL for
alignment of 32 bits

EditBoxNumericBCD Event Structures: A661_EVT_EDITBOX_OPENED are
defined in Table 3.6.1-6.



ARINC SPECIFICATION 661 — Page 230

3.0 WIDGET LIBRARY

Table 3.6.1-6 — EditBoxNumericBCD Event Structures:
A661_EVT_EDITBOX_OPENED

EventStructure Type (Sbllzti) Value/Description
|Eventldent | ushort |16 | A661_EVT EDITBOX OPENED
UnusedPad ushort 16 0

The CDS shall notify an event to the User Application when the EditBox widget
goes to Editing state. As a consequence, the CDS shall also notify the UA
when the EditBox widget exits the Editing State without any validation, using
the event A661_STRING_CHANGE_ABORTED.

Available SetParameter identifiers and associated data structure are defined in

Table 3.6.1-7.

Table 3.6.1-7 — EditBoxNumericBCD Runtime Modifiable Parameters

Type Size | Parameterldent used in the Type of Structure Used
(bits) | ParameterStructure

Enable uchar | 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar | 8 A661_VISIBLE A661_ParameterStructure_1Byte
EntryValidation | uchar | 8 A661_ENTRY_VALID A661_ParameterStructure_1Byte
StyleSet ushort | 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
Value BCD 64 A661_VALUE A661_ParameterStructure_8bytes
Tics coarse BCD 64 A661_TICS_COARSE A661_ParameterStructure_8bytes
Tics fine BCD 64 A661_TICS_FINE A661_ParameterStructure_8bytes
LegendString string | {32}+ | A661_STRING A661_ParameterStructure_String
FormatString String | {32}+ | A661_FORMAT_STRING A661_ParameterStructure_String |




ARINC SPECIFICATION 661 — Page 231
3.0 WIDGET LIBRARY

CursorRef

Categories:
Utility

Description:
The CursorRef widget defines a non-visible reference point that the Cursor can
be moved to using the A661_REQ_CURSOR_ON_WIDGET command.

The ability for a UA to request that the cursor be placed on an item in its layer
is important for certain Human Engineering considerations. These include
situations where it is important to place the cursor so that it is not on a widget
(i.e. at a point on the screen), to avoid inadvertent selection, or in cases where
the widget that the cursor is being placed upon is complex and the cursor
needs to be placed on a particular sub-part of that widget.

The widget has no graphics associated with it. The values of PosX, PosY
defines its location.

The CursorRef can be the normal child of a container, layer, MapHorz_Source
or MapVert_Source. Depending upon this parent, the widget parameters PosX
and PosY are interpreted as either screen co-ordinates (1/100mm) or the co-
ordinates of the associated map source. Values of PosX, PosY must be set
appropriately to this co-ordinate system for the CursorRef to be positioned at
the intended point.

Restriction:

None

CursorRef Parameters are defined in Table 3.6.2-1.

Table 3.6.2-1-1 — CursorRef Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_CURSOR_REF

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

PosX DR The X/ Lat / Range position of the widget reference point.
First coordinate of reference point

PosY DR The Y / Long/ Bearing position of the widget reference point.
Second coordinate of reference point




ARINC SPECIFICATION 661 — Page 232

3.0 WIDGET LIBRARY

CursorRef Creation Structure is defined in Table 3.6.2-2.

Table 3.6.2-2 — CursorRef Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
[WidgetType | ushort [ 16 | A661 CURSOR REF
Widgetldent ushort 16
| Parentident | wshot | 16 |

UnusedPad N/A 16 0

PosX long/ 32 If parent is a MapHorz_Source then the LSB
scaled and units are defined by the MapHorz_Source.
Integer If parent is not a MapHorz_Source then the

units are 1/100mm.

PosY long/ 32 If parent is a MapHorz_Source then the LSB
scaled and units are defined by the MapHorz_Source.
integer If parent is not a MapHorz_Source then the

units are 1/100mm.

Available SetParameter identifiers and associated data structure are defined in
Table 3.6.2-3.

Table 3.6.2-3 — CursorRef Runtime Modifiable Parameters

Parameterldent used

Name of the Size | in the ParameterStructure Type of Structure Used
parameter to set Type (bits) (Refer to Section 4.5.4.5)
PosX Long/ 32 | A661_POS_X A661_Parameter_structure_4Byt

scaled es

integer
PosY Long/ 32 | A661_POS_Y A661_Parameter_structure_4Byt

scaled es

integer
PosX longx2 | 32x | A661_POS_XY A661_Parameter_structure_8Byt
PosY / scaled 2 es

integer

X 2

3.6.3 CursorOver

Categories:

Interactive
Graphical Representation

Description:

The CursorOver widget allows the UA to be notified as soon as a Cursor enters
or exits the active area of the widget. The events generated do not require a
cursor select action, they are generated when the X,Y position of the cursor
intersects with the active area of the widget.

Unlike the ActiveArea and CursorPosOverlays widgets, no additional events
are created by the CursorOver widget when the widget is clicked-on.

The events that are generated when the cursor enters the active area of the
widget can be configured as follows, using the PositionReport Mode
parameter.




ARINC SPECIFICATION 661 — Page 233
3.0 WIDGET LIBRARY

e Report All: Events are sent when the cursor enters, exits or while over
the active area.

e On Transition: Events are sent only when the cursor enters or exits the
active area.

The event notification reports the X,Y position of the Cursor with respect to the
origin of the CursorOver widget.

The StyleSet may be used to define alternate cursor representations.

While the Cursor is over the widget an alternative CDS defined cursor or other
graphics can be displayed if desired, as defined by the widget StyleSet.

The EventOrigin parameter contained in the A661_NOTIFY_WIDGET_EVENT
block defines which cursor has entered the active area (see section 4.5.4.2).

CursorOver widgets that are drawn on top of other interactive widget do not
prevent the widget underneath from generating events. Under these conditions
the CursorOver widget and the interactive widget underneath will still be able
to generated events. This is one of the noted exceptions to the rule defined in
section 2.3.5.2 for overlapping widgets.

There are many possible uses for this widget for detecting whether a cursor is
within a certain region on the screen. Some example cases are shown below.

Example case 1: By configuring the widget to report on transition, events are
only sent to the UA when the cursor passes outside to inside and inside to
outside.

Typical Use - Case 1 (On Transition)

”

| —

"Cursor Inside PosX,Y"

4

"Cursor Exit Pos X,Y"

T

Widget
Active Area

Example case 2: By configuring the widget to report all, events are sent to the
UA when the cursor passes from outside to inside; continuously while the
cursor is inside; and from inside to outside.



ARINC SPECIFICATION 661 — Page 234
3.0 WIDGET LIBRARY

Typical Use - Case 2 (Report All)

S

| —

"Cursor Enter PosX,Y"

"Cursor Inside Pos X,Y"

"D % "Cursor Inside Pos X,Y"

"Cursor Inside Pos X,Y"
...etc

/—'
"Cursor Exit Pos X,Y"

Widget
Active Area

Restriction:
None
CursorOver Parameters are defined in Table 3.6.3-1.

Table 3.6.3-1 — CursorOver Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_CURSOR_OVER

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

PosX DR The X position of the widget reference point

PosY DR The Y position of the widget reference point
SizeX DR The width of the widget.

SizeY DR The height of the widget.

PositionReport D Defines when events are generated from the widget, when the
Mode Cursor is over the widget active area.

A661_REPORT_ON_TRANSITION
- A661_EVT_CURSOR_ENTER, sent once when cursor
enters the active area.
- A661_EVT_CURSOR_EXIT, sent once when cursor
exits the active area.

A661_REPORT_ALL
- A661_EVT_CURSOR_ENTER, sent once when cursor
enters the active area.




ARINC SPECIFICATION 661 — Page 235
3.0 WIDGET LIBRARY

Parameters

Change

Description

- A661_EVT_CURSOR_EXIT, sent once when cursor
exits the active area.

- A661_EVT_CURSOR_INSIDE, sent continuously while
the cursor remains inside the active area.

StyleSet

DR

Defines optional characteristics of the cursor or other related
graphics as defined by the CDS implementation.

CursorOver Creation Structure is defined in Table 3.6.3-2.

Table 3.6.3-2 — CursorOver Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType  [ushort | 16 |, A661_CURSOR OVER
Widgetldent ushort 16
Parentldent ushort 16
Visible uchar 8 A661_FALSE
A661_TRUE
Enable uchar 8 A661_FALSE
A661_TRUE
A661_TRUE_WITH_VALIDATION
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet ushort 16
Unused Pad N/A 16
PositionReportMode uchar 8 A661_REPORT_ON_TRANSITION
A661_REPORT_ALL
Unused pad N/A 24

Note: The Visible and Enable parameters are in a different order
to the normal convention.

The specific events sent by the CursorOver to the owner application are
defined in Table 3.6.3-3, -4, and -5.

Table 3.6.3-3 — CursorOver Event Structures: A661_EVT_CURSOR_ENTER

EventStructure Type Size (bits) | Value/Description
_Eventldent || ushort | 16 | A661_EVT _CURSOR ENTER |
UnusedPad N/A 16
RelPosX long 32 Relative X position of Cursor as an offset to the
e | widgets origin. ]
RelPoxY long 32 Relative Y position of Cursor as an offset to the
widgets origin.
Table 3.6.3-4 — CursorOver Event Structures: A661_EVT_CURSOR_INSIDE
EventStructure Type Size (bits) | Value/Description
_Eventldent || ushort | 16 | A661_EVT _CURSORINSIDE |
UnusedPad N/A 16
RelPosX long 32 Relative X position of Cursor as an offset to the
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, widgets origin. |
RelPoxY long 32 Relative Y position of Cursor as an offset to the
widgets origin.




ARINC SPECIFICATION 661 — Page 236

3.0 WIDGET LIBRARY

Table 3.6.3-5 — CursorOver Event Structures: A661_EVT_CURSOR_EXIT

EventStructure Type Size (bits) | Value/Description
_Eventldent | ushort | 16 | A661_EVT CURSOR EXIT |
UnusedPad N/A 16
RelPosX long 32 Relative X position of Cursor as an offset to the
| Widgets origin. ]
RelPoxY long 32 Relative Y position of Cursor as an offset to the
widgets origin.

Available SetParameter identifiers and associated data structure are defined in
Table 3.6.3-6.

Table 3.6.3-6 — CursorOver Runtime Modifiable Parameters

Parameterident used

Name of the Size | in the ParameterStructure | Type of Structure Used
parameter to set Type (bits) (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_Parameter_structure_1Byte
Enable uchar 8 A661_ENABLE A661_Parameter_structure_1Byte
PosX long 32 A661_POS_X A661_Parameter_structure_4Bytes
PosY long 32 A661_POS_Y A661_Parameter_structure_4Bytes
PosX longx | 32x2 | A661_POS_XY A661_Parameter_structure_8Bytes
PosY 2
SizeX ulong 32 A661_SIZE_X A661_Parameter_structure_4Bytes
SizeY ulong 32 A661_SIZE_Y A661_Parameter_structure_4Bytes
SizeXY long 32 x2 | A661_SIZE_XY A661_ParameterStructure_8Bytes

X 2
StyleSet ushort 16 A661_STYLE_SET A661_Parameter_structure_2Bytes

3.6.4 Focus Navigation Widgets

It is often required to move the cursor focus among widgets residing in
different layers, including layers owned by different User Applications. Two
ways of supporting this kind of Focus navigation are presented here. One
method makes use of a single widget (FocusLink). The other method uses two
widgets (Focusin, FocusOut). For both methods the OEM and CDS provider
must take care to manage the configuration of the widgets in the two layers.

Note: The choice of which solution to use is CDS dependent. It
is not necessary to implement both solutions.

3.6.4.1 FocusLink

Categories:
Utility

Description:

The FocusLink widget is used to define a NextFocusWidget sequence that
crosses between two separate layers. The interactive widgets and the
FocusLinks are chained together using the NextFocusedWidget parameters in
the normal way.




ARINC SPECIFICATION 661 — Page 237
3.0 WIDGET LIBRARY

Figure 3.6.4.1 shows an example of two layers with FocusLinks used to join
the focus sequences. To the Pilot the focus would move through the sequence
17, 18, 19, 58, 59. Although the FocusLinks (20 and 57) exist in the chain of
NextFocusedWidgets the highlight box does not “focus” on these items.

The NextLayerConnectorRef parameter is used to point to the second layer in
the same way as a ConnectorReference is used for the Connector widget.

The value of the NextFocusedWidget is used to point to the next widget in the
focus sequence. Note that for the FocusLink the next widget maybe on another
UAs layer.

Application 1, Layer 4 Application 2, Layer 7
(Focus Sequence 1) (Focus Sequence 2)

Interactive Widget
17

Interactive Widget
18

NextLayerConnectorRef = 0
NextFocusedWidget = 58

FocusLink
57

Interactive Widget
58

Interactive Widget
19

FocusLink
20

NextLayerConnectorRef = XXXX
NextFocusedWidget = 57

Interactive Widget
59

The value of XXXX for the
NextLayerConnectorRef is a CDS
reference to Application 2, Layer 7

Focus Sequence as it appears to the user

P Ve Ve Vs Ve

Page 1 Page 2 Page 3 Page 4 Page 5
Widget Widget Widget Widget Widget
17 18 19 58 59

Figure 3.6.4.1 — FocusLink
Restriction:

None



ARINC SPECIFICATION 661 — Page 238
3.0 WIDGET LIBRARY

FocusLink Parameters are defined in Table 3.6.4.1-1.

Table 3.6.4.1-1 — FocusLink Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_FOCUS_LINK

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

NextLayer ConnectorRef D CDS reference to the linked layer and/or FocusLink widget
associated with this focus sequence. The resolution of the link
is a CDS configuration issue.

NextFocusedWidget DR Widget ident of next widg_;et in the focus sequence.

FocusLink Creation Structure is defined in Table 3.6.4.1-2.

Table 3.6.4.1-2 — FocusLink Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType [ ushort[ 16 [ A661 FOCUS LINK
Widgetldent ushort 16

Parentldent ushort 16

Unused Pad N/A 32

Unused Pad N/A 16

NextLayerConnectorRef | ushort 16

NextFocusedWidget ushort 16

Table 3.6.4.1-3 — FocusLink Runtime Modifiable Parameters

Parameterldent used
Name of the Size | in the ParameterStructure | Type of Structure Used
parameter to set Type (bits) (Refer to Section 4.5.4.5)
NextFocusedWidget ushort 16 A661_NEXT_FOCUSED A661_ParameterStructure_2Bytes
_WIDGET

3.6.4.2 Focusin
Categories:
Utility

Description:

The Focuslin widget is used together with the FocusOut widget to define a
NextFocusedWidget sequence that crosses between two separate layers. The
interactive widgets and the FocusOut / Focusln widgets are chained together
using the NextFocusWidget parameters in the normal way.




ARINC SPECIFICATION 661 — Page 239
3.0 WIDGET LIBRARY

Figure 3.6.4.2 shows an example of two layers with FocusOut / Focusin used
to join the focus sequences. To the Pilot the tabber would move through the
sequence 17, 18, 19, 58, 59. Although the FocusOut (20) and Focusin (57) exist
in the chain of NextFocusedWidgets the highlight box does not “focus” on
these items (since they does not have any graphical representation).

Application 1, layer 4

R
Interactive
widget (17) L
Application 3, layer 7
FocusInRef: XXXX
—— NextFocusWidget58
Interactive
widget (18) Focusin
— —> widget (57)
v
Interactive /; ;\
widget (19) Interactive
\ ) widget (58)
\ 4 J
FocusOut )
widget (20) Interactive
\ ) widget (59)
NextFocusInRef XXXX ﬁ_/

Figure 3.6.4.2 — Focuslin

The connection between the two layers is performed thanks to the
FocusiInRef : the FocusOut widget identifies the Focusin widget that will
receive the focus through this FocusinRef (NextFocusIinRef parameter). The
Focusin widget is associated to this FocusinRef parameter thanks to its
FocusInRef parameter.

Each FocusIn widget shall have a unique CDS-wide FocusinRef. The CDS
vendor is thus in charge of ensuring that this reference is unique. The
behavior of the CDS when to Focusin widgets have the same FocusInRef is
undetermined.

Restriction:

None

Focusin Parameters are defined in Table 3.6.4.2-1.



ARINC SPECIFICATION 661 — Page 240

3.0 WIDGET LIBRARY

Table 3.6.4.2-1 — FocuslIn Parameters

Parameters

| Change | Description

Commonly used parameters

WidgetType

A661_FOCUS_IN

Widgetldent

Unique identifier of the widget

Parentldent

Identifier of the immediate container of the widget

NextFocusedWidget

O 0|0|0

Widget ident of next widget to be focused upon crew member
validation

Focusin Creation Structure is defined in Table 3.6.4.2-2.

Table 3.6.4.2-2 — Focusln Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType | ushort | 16 |, A661 FOCUSIN
Widgetldent ushort 16
Parentident ~  jushort| 16 | .
NextFocusedWidget ushort 16
3.6.4.3 FocusOut

Categories:

Utility

Description:

The FocusOut widget is used together with the Focusin widget to define a
NextFocusedWidget sequence that crosses between two separate layers. The
interactive widgets and the FocusOut / Focusin widgets are chained together
using the NextFocusedWidget parameters in the normal way.

Figure 3.6.4.3 shows an example of two layers with FocusOut / Focusin used
to join the focus sequences. To the Pilot the tabber would move through the
sequence 17, 18, 19, 58, 59. Although the FocusOut (20) and Focusln (57) exist
in the chain of NextFocusedWidgets the highlight box does not “focus” on
these items (since they does not have any graphical representation).



ARINC SPECIFICATION 661 — Page 241
3.0 WIDGET LIBRARY

Application 1, layer 4

)
Interactive
widget (17) L.
Applicatior8, layer 7
FocusInRef: XXXX
H ;\ NextFocusWidget58
Interactive )
widget (18) Focusin
- P widget (57)
v -
) :
Interactive /# )
widget (19) Interactive
-/ widget (58)

FocusOut )
widget (20) Interactive

NextFocus

I

widget (59)

InRef XXXX ﬁ—/

Figure 3.6.4.3 — FocusOut

The connection between the two layers is performed thanks to the FocusInRef
the FocusOut widget identifies the Focusln widget that will receive the focus
through this FocusinRef (NextFocusIinRef parameter). The Focusln widget is
associated to this FocusinRef parameter thanks to its FocusinRef parameter.

Restriction:

None

FocusOut Parameters are defined in Table 3.6.4.3-1.

Table 3.6.4.3-1 — FocusOut Parameters

Parameters

| Change |

Description

Commonly used parameters

WidgetType

A661_FOCUS_OUT

Widgetldent

Unique identifier of the widget

Parentldent

Identifier of the immediate container of the widget

NextFocusInRef

O|0|0|0

Unique CDS-wide identifier of the Focusln widget that will
receive the focus when this focus reaches the FocusOut
widget




ARINC SPECIFICATION 661 — Page 242
3.0 WIDGET LIBRARY

FocusOut Creation Structure is defined in Table 3.6.4.3-2.

Table 3.6.4.3-2 — FocusOut Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType | ushort| = 16 |. A661_FOcus out
Widgetldent ushort 16

Parentident | wushort| 16 | .
NextFocusInRef ushort 16

3.6.5 SizeToFitContainer
Categories:
Container
Graphical Representation

Description:

This widget is used to stretch/shrink its children such that they all have the
same SizeX or SizeY, and are arranged either horizontally or vertically within
the bounds of the SizeToFitContainer widget. The child widgets can also be
configured so that they are ordered from top to bottom, left to right, etc.

This is typically useful when constructing menus or other list of controls,
while still allowing the UA developer to control the nature of the interactive
widgets that are to be sized. The widget function can be equally applied to non
interactive widgets such as GpRectangles, etc.

Its purpose is to layout child widgets either in a horizontal row or a vertical
column. The contained widgets are positioned with respect to the PosX, PosY
of the SizeToFitContainer.



ARINC SPECIFICATION 661 — Page 243
3.0 WIDGET LIBRARY

SizeX >

'Y

SizeToFitContainer
SizeToFitMode = A661_SIZE_LEFT_TO_RIGHT
SizeX = 20000; SizeY= 2500; ItemSpacing =0

SizeToFitContainer

Push
— Button 1 Button 1

Push
— Button 2 I

I Push
Button 3 Button 3

— Button 4 Push
Button 4

Will look like this when
processed by CDS.

Push Push Push Push
Button 1 Button 2 Button 3 Button 4

Push Push Push Push
Button 1 Button 2 Button 3 Button 4
SizeToFitContainer

J

Push Push Push Push NumberOfVisibleChildren=4
Button 1 Button 2 Button 3 Button 4 Mode = Left to Right
N fVisibleChil =
Push Button 1 Push Button 2 Push Button 3 M‘;’::irfeﬂ'zb;ght' dren=3
Push Button 3 Push Button 2 Push Button 1 NumberOVisibleChildren=3

Mode = Right to Left

NumberOfVisibleChildren=2

Push Button 1 Push Button 2 Mode = Left to Right

|e

Note: In this diagram the buttons are aligned vertically for
simplicity. This does not indicate an intended function of
the widget.

Figure 3.6.5-1 — SizeToFit Example



ARINC SPECIFICATION 661 — Page 244
3.0 WIDGET LIBRARY

Push Push Push Push
Button 1 Button 2 Button 3 Button 4

SizeToFitContainer

s

Push Push Push NumberOfVisibleChildren=4

Button 1 Button 2 Button 3 Button 4 Mode = Left to Right
NumberOfVisibleChildren=3

Push Button 1 Push Button 2 Push Button 3 Mode = Left to Right
Push Button 3 Push Button 2 Push Button 1 NumberOfVisibleChildren=3

Mode = Right to Left

NumberOfVisibleChildren=2

Push Button 1 Push Button 2 Mode = Left to Right

|e

Note: In this diagram the buttons are aligned vertically for
simplicity. This does not indicate an intended function of
the widget.

Figure 3.6.5-2 — SizeToFit Example

When the size to fit mode is operating horizontally the widget SizeX and PosX
values are computed.

When the size to fit mode is operating vertically the widget SizeY and PosY
values are computed.

If a horizontal (Size X) sizing mode is selected, the effect on SizeY of the child
widgets is CDS dependent. Similarly if a vertical (SizeY) sizing mode is
selected the effect on SizeX of the child widgets is CDS dependent.

The function of the SizeToFitContainer only applies to the first “n” children
whose visibility is set to true, where “n” is equal to NumberOfVisibleChildren.
If a child widget’s visibility is set to false it is not considered when counting
the NumberOfVisibleChildren.

The SizeToFitContainer only affects its immediate children. It does this even if
the Size and/or Pos attributes of the children are definition time only.

The order of widgets is defined by their order in the Definition File, the order
direction is determined by the SizeToFitMode parameter.

The function of the widget can be suspended, and the last computed sizes
retained by changing the size to fit mode from any fit mode to “no sizing”.
When the function is suspended in this way the child widgets retain their last
computed size.



ARINC SPECIFICATION 661 — Page 245
3.0 WIDGET LIBRARY

Although the SizeToFitContainer is listed as having a graphical representation,
typically it will not appear on the display. Its purpose is to lay out child widgets
either in a horizontal row or a vertical column. The contained widgets are
positioned with respect to the PosX, PosY of the SizeToFitContainer.

An optional item spacing can be applied between the child widgets. The
optional item spacing is only applied in the direction indicated by the sizing
mode.

SizeToFitContainers can be one of the children of a SizeToFitContainer.

In the example shown in Figure 3.6.5-3, the first SizeToFitContainer 1 has two
visible children, one of which is another SizeToFitContainer 2.
SizeToFitContainer 1 allocated half of the horizontal space to Button 1 and half
to SizeToFitContainer 2. SizeToFitContainer 2 then sub-allocates is space to
its own three children. Each one being sized to be 33.33% of the space
allocated to SizeToFitContainer 2.

< SizeX: >

SizeToFitContainer
SizeToFitMode = A661_SIZE_LEFT_TO_RIGHT SizeY
SizeX = 20000; SizeY= 2500; ltemSpacing =0

SizeToFitContainer 1

Push

—— SizeToFitContainer 2

Push

I Push
Button 4

Will look like this when
@ processed by CDS.

Push Push Push 1
Button 2 | Button 3 | Button 4 |

L 0000—»‘&3333—»‘«3333—4%3333—»‘

Figure 3.6.5-3 — SizeToFit Example

The effect of nesting SizeToFitContainers or ShuffleToFitContainers is
allowed, but the effect is CDS dependent.



ARINC SPECIFICATION 661 — Page 246
3.0 WIDGET LIBRARY

Restrictions:

Any widget that has a SizeX / Size Y can be a child of this widget, although its
intended use is that is should only contain basic widgets such as
Checkbutton, Label, LabelComplex, PicturePushButton, PictureToggleButton,
PopUpMenuButton, PushButton, ToggleButton and SelectionListButton. If
complex widgets are made children of this widget, overly complicated nesting
should be avoided.

SizeToFitContainer Parameters are defined in Table 3.6.5-1.

Table 3.6.5-1 — SizeToFitContainer Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_SIZE_TO_FIT_CONTAINER

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Enable DR Ability of the widget to be activated

Visible DR Visibility of the widget

PosX DR The X position of the widget reference point

PosY DR The Y position of the widget reference point

SizeX DR The width of the widget.

SizeY DR The height of the widget.

NumberOfVisible DR Defines the first “n” visible children that to which the sizing
Children function is applied.

SizeToFitMode DR Determines how the children in the container are sized to fit.

A661_SIZE_TOP_DOWN

A661_SIZE_BOTTOM_UP

A661_SIZE_LEFT_TO_RIGHT

A661_SIZE_RIGHT_TO_LEFT

A661_NO_SIZING

ItemSpacing D Defines the spacing between the widgets in 1/100th mm,
applied in the axis defined by SizeToFitMode, or the last axis
if “no sizing” mode is selected.




3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 247

SizeToFitContainer Creation Structure is defined in Table 3.6.5-2.

Table 3.6.5-2 — SizeToFitContainer Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType  [ushort[ 16 [ A661_SIZE TO_FIT_CONTAINER
Widgetldent ushort 16
Parentldent ushort 16
Enable uchar 8 A661_FALSE
A661_TRUE
A661_TRUE_WITH_VALIDATION
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
NumberOfVisible ushort 16
Children
SizeToFitMode uchar 8
Unused Pad N/A 8
ItemSpacing ulong 32

Available SetParameter identifiers and associated data structure are defined in
Table 3.6.5-3.

Table 3.6.5-3 — SizeToFitContainer Runtime Modifiable Parameters

Parameterident used

Name of the Size | in the ParameterStructure | Type of Structure Used
parameter to set Type (bits) (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_Parameter_structure_1Byte
Visible uchar 8 A661_VISIBLE A661_Parameter_structure_1Byte
PosX long 32 A661_POS X A661_Parameter_structure_4Bytes
PosY long 32 A661_POS_Y A661_Parameter_structure_4Bytes
PosX longx | 32x2 | A661_POS_XY A661_Parameter_structure_8Bytes
PosY 2
SizeX ulong 32 A661_SIZE_X A661_Parameter_structure_4Bytes
SizeY ulong 32 A661_SIZE_Y A661_Parameter_structure_4Bytes
SizeXY long 32x2 | A661_SIZE_XY A661_ParameterStructure_8Bytes

X2
NumberOfVisible ushort 16 A661_NUMBER_OF_ A661_Parameter_structure_1Byte
Children VISIBLE_CHILDREN
SizeToFitMode uchar 8 A661_SIZE_TO_FIT_MODE | A661_Parameter_structure_1Byte




ARINC SPECIFICATION 661 — Page 248
3.0 WIDGET LIBRARY

3.6.6 ShuffleToFitContainer
Categories:
Container
Graphical Representation

Description:

The ShuffleToFitContainer is used to arrange all of its child widgets in a
continuous vertical or horizontal stack. Typically this is used in menus where
an item may only be visible some of the time. The remaining items below it are
then shuffled up to fill the gap left by the widget(s) that is invisible.

The purpose of the widget is to layout its child widgets either in a horizontal
row or a vertical column. The contained widgets are positioned with respect to
the PosX, PosY of the ShuffleToFitContainer.

When the widgets are shuffled horizontally their PosX values are computed.
When the widgets are shuffled vertically, their SizeY values are computed.

If horizontal shuffling is selected, the effect on PosY of the child widgets is
CDS dependent. Similarly if vertical shuffling is selected the effect on PosX of
the child widgets is CDS dependent.

The function of the ShuffleToFitContainer only applies to the first “n” children
whose visibility is set to true, where “n” is equal to NumberOfVisibleChildren.
If a child widget’s visibility is set to false, it is not considered when counting
the NumberOfVisibleChildren.

The function of the widget can be suspended, and the last computed positions
retained by changing the shuffle to fit mode from any fit mode to “no shuffle”.
When the function is suspended in this way the child widgets retain their last
computed PosX/Y.

Optional item spacing can be applied between the child widgets. The optional
item spacing is only applied in the direction indicated by the fit mode.

The ShuffleToFitContainer only affects the PosX/Y of widgets; it does not
affect their Size.



Push
Button 1

ARINC SPECIFICATION 661 — Page 249

3.0 WIDGET LIBRARY

Push Push Push Push
Button 2 Button 3 Button 4 Button 5

J

ShuffleToFitContainer

Push Push Push Push Push
Button 1 Button 2 Button 3 Button 4 Button 5
Push Button 3, Visible = A661_FALSE
Push Push Push Push
Button 1 Button 2 Button 4 Button 5
Shuffle
Push Push Push Push
Button 1 Button 2 Button 4 Button 5
Push Button 3, Visible = A661_TRUE
i Push i
3 Push Push  pgutton 3 Push 3
| Button 1 Button 2 — Button 5 |
Shuffle
#  Push Push Push Push Push |
A Button 1 Button 2 Button 3 Button 4 Button 5 §

Figure 3.6.6 — ShuffleToFit Example

The effect of nesting SizeToFitContainers or ShuffleToFitContainers is

allowed, but the effect is CDS dependent.



ARINC SPECIFICATION 661 — Page 250
3.0 WIDGET LIBRARY

Restriction:

Any widget that has a SizeX / Size Y can be a child of this widget, although its
intended use is that is should only contain basic widgets such as
Checkbutton, Label, LabelComplex, PicturePushButton, PictureToggleButton,
PopUpMenuButton, PushButton, ToggleButton and SelectionListButton. If
complex widgets are made children of this widget, overly complicated nesting
should be avoided.

ShuffleToFitContainer Parameters are defined in Table 3.6.6-1.

Table 3.6.6-1 — ShuffleToFitContainer Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_SHUFFLE_TO_FIT_CONTAINER
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Enable DR Ability of the widget to be activated
Visible DR Visibility of the widget
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The width of the widget.
SizeY D The height of the widget.
NumberOfVisible DR Defines the first “n” visible children that to which the sizing
Children shuffle function is applied.
ShuffleToFitMode DR Determines how the children in the container are re-
positioned.
A661_SHUFFLE_UP
A661_SHUFFLE_DOWN
A661_SHUFFLE_LEFT
A661_SHUFFLE_RIGHT
A661_NO_SHUFFLE
ItemSpacing D Defines the spacing between the widgets in 1/100th mm,
applied in the axis defined by ShuffleToFitMode.
StyleSet DR Reference to predefined graphical characteristics inside CDS.




3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 — Page 251

ShuffleToFitContainer Creation Structure is defined in Table 3.6.6-2.

Table 3.6.6-2 — ShuffleToFitContainer Creation Structure

CreateParameterBuffer Type Size (bits) Value/Range When Necessary
WidgetType [ ushort [ 16 | A661_SHUFFLE TO_FIT_CONTAINER

Widgetldent ushort 16

Parentldent ushort 16

Enable uchar 8 A661_FALSE
A661_TRUE
A661_TRUE_WITH_VALIDATION

Visible uchar 8 A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

NumberOfVisibleChildren | ushort 16

ShuffleToFitMode uchar 8 A661_SHUFFLE_UP
A661_SHUFFLE_DOWN
A661_SHUFFLE_LEFT
A661_SHUFFLE_RIGHT
A661_NO_SHUFFLE

Unused Pad N/A 8

ItemSpacing long 32

StyleSet ushort 16

UnusedPad N/A 16

Available SetParameter identifiers and associated data structure are defined in
Table 3.6.6-3.

Table 3.6.6-3 — ShuffleToFitContainer Runtime Modifiable Parameters

Parameterldent used
Name of the Size | in the ParameterStructure | Type of Structure Used
parameter to set Type (bits) (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_Parameter_structure_1Byte
Visible uchar 8 A661_VISIBLE A661_Parameter_structure_1Byte
NumberOfVisible uchar 8 A661_NUMBER_OF_ A661_Parameter_structure_1Byte
Children VISIBLE_CHILDREN
ShuffleToFitMode | uchar 8 A661_SHUFFLE_TO_FIT_ | A661_Parameter_structure_1Byte
MODE




ARINC SPECIFICATION 661 — Page 252
4.0 COMMUNICATION PROTOCOL

4.1 Introduction

This section defines the type, content and format for ARINC 661 data to be
exchanged between a User Application (UA) and the Cockpit Display System
(CDS). This includes the type, content and format of the data. At definition time, a
Definition File (DF) is sent from UAs to the CDS. At run-time, messages are
exchanged between UAs and CDS.

4.2 Definition Phase Exchange
4.2.1 Definition File and UALD

A DF contains User Application Layer Definitions (UALDs) from one UA. The
UALD describes data shared between the UA and the CDS, as depicted in Figure
4.1.

The DF header and footer are OEM dependent. The data between header and
footer are defined in this specification, and are composed of UALDs, using a block
structure defined later in this section. Each block (i.e., each UALD) contains the
definition of exactly one layer. Support for multiple blocks in a file is OEM
dependent.

Each UA displaying data inside the CDS is associated with at least one layer. The
UALD describes the hierarchical structure of the UA widgets residing in the layer
as well as the specific ARINC 661 interface parameters of these widgets. The
format of a block is described in Sections 3.0 and 4.5. The hierarchical structure of
the widgets is ensured by the use of the “Parentldent” parameter in each widget
definition.

For each type of widget, all parameters must have a CDS default value. If a
parameter is not set in the UALD, the CDS default value will be used. This will
happen in the case of run-time-only parameters, or in the case where a CDS
library definition has been updated to incorporate new parameters, but an older
UALD is not updated.

On one side, Figure 4-1 shows widgets “owned” by the UA (primarily, defines their
IDs) for display of information on CDS. This is the definition of the static graphical
part of the UA interface for one layer.

On the other side, Figure 4-1 shows that the CDS interprets the UALD data to
allocate and construct the hierarchical tree of widgets in conjunction with the CDS
widget library.

At run-time the CDS and UA exchange ARINC 661 messages to manage the
widget parameters, and thus their graphical representation.

4.2.2 Binary Format

The DF describes shared data. Therefore, one main objective of this specification
is to standardize the DF data and format shared between the UA and the CDS.
The graphical part of the application interface (DF) must be loaded into the CDS.
This DF describes only data, and is therefore interpreted by the CDS to be
associated with the CDS graphical capacities.



ARINC SPECIFICATION 661 — Page 253
4.0 COMMUNICATION PROTOCOL

To limit the impact of a UA modification on the CDS, the data format loaded into
CDS should be independent from the CDS. Besides, as a growth potential, a data
format independent from the CDS should provide the capability to UAs to
download their Definition Files (DF) into the CDS.

The format for the DF is a standard non-executable binary format, allowing
uploading and downloading of the DF.

Graphic Tool

for graphic interface definition

A661 Definition File(s)

non executable binary file

P Application graphic interface

e Data loading CDS

e Down-loading at \

1st connexion / power-up / run-time
~~"(Growth potential) T >

CDS widget library
User Application Kernel| CDS 661 compliant

Widgets instantiation (allocation
Widgets tree construction

Figure 4.1 — Definition File Integration Process
4.3 Run-time Communication
4.3.1 General Principle

The communication from UA to CDS concerns run-time widget parameters for
widgets management. The transmittal of these parameters corresponds to:

o A context change of the application, which could correspond to current
periodic parameter transmittal

e Aresponse to a widget event, which is purely asynchronous

The communication from CDS to UA is event driven. The transmittal of these
parameters corresponds to:

e Event notification from a widget, which is purely asynchronous

Basically, the communication from UA to CDS is event driven. Therefore, all
messages will be sent in an asynchronous way. Asynchronous exchange for UA
functional context change should save bandwidth as well as decrease latency-time
values. Nevertheless, if synchronous refresh of information is needed for a
particular UA, the UA could send the information on a periodic basis.

Due to the Client-Server architecture of ARINC 661, a communication
channel between a CDS and a User Application is logically a point-to-point



ARINC SPECIFICATION 661 — Page 254
4.0 COMMUNICATION PROTOCOL

connection, even if the actual network architecture uses multicast or
broadcast mechanisms.

COMMENTARY

Concerning widget states, the associated parameters should be
managed in an asynchronous way. Periodic transmittal of messages
for controlling widget states could raise a “race condition,” described
in Appendix A, Glossary.

4.3.2 lIssues

The asynchronous approach should mitigate the following design concerns:

1. Loss of a message: From UA to CDS, the display will not be in the state
that the UA expects. From CDS to UA, the UA will not react to a crew
member interaction. Refer to Section 4.3.3, Assumption on Communication
Reliability.

2. Synchronization: A UA needs to be sure that a message will arrive before
the next transmitted message. Refer to Section 4.3.3, Assumption on
Communication Reliability.

3. Reconfiguration of the rendering unit: The new rendering subsystem may
not have needed information available. Refer to Section 2.3.2.4, Layer
Activity/Visibility Management.

4.3.3 Assumption on Communication Reliability
This specification is independent of any bus choice. Nevertheless, some
assumption should be made on the level of reliability. Therefore, the basic
assumption is that the communication is in reliable packet order.

This applies to:

e The correct reception order of messages, (see Issue 2 above)
o The loss of messages, (see Issue 1 above)

4.3.4 Layer Data Management

Refer to Section 2.3.2.4, Layer Activity/Visibility Management.
4.4 ARINC 661 Commands
441 Type of Commands

Table 4.4.1-1 describes the definition-time command.



ARINC SPECIFICATION 661 — Page 255
4.0 COMMUNICATION PROTOCOL

Table 4.4.1-1 — Definition-Time Command

Command Type Description
UA A661_CMD_CREATE Creation of a widget with definition of its parameters. For a
U version of the Widget library, all the parameters of a used
CDS widget should be set. Refer to Section 4.5, ARINC 661

Command Structure.

Parameter order inside the Creation buffer is provided in
each widget description in Section 3.3, Widget List.

Table 4.4.1-2 describes run-time commands.

Table 4.4.1-2 — Run-time Commands

Command name Description
UA A661_CMD_SET_PARAMETER Set the value of one parameter for one widget. The target
U of this message is one widget of one UA layer.
CDS A661_CMD_UA REQUEST Request from UA to CDS.

A request corresponds to a message exchange between a
UA and the CDS, without widget targeted. Request from
the UA to the CDS may or may not be accepted by the
CDS (refer to section 4.4.3, ARINC 661
Request/Notification.)

CDS A661_NOTIFY_WIDGET_EVENT Notification of an Event from CDS to UA. This message is
U initiated by a widget on which an interaction has occurred.
UA The nature of the event depends on the widget type and
the interaction on this widget. This command also contains
the Context Number associated with the current context of
the layer.

A661_NOTIFY_LAYER_EVENT Notification of a request from CDS to UA. The request is a
notification from the CDS. The difference with the previous
message type is this notification is initiated at layer level. It
corresponds to an event from the Layer managed by the
CDS (Refer to Section 4.4.3.2, Request/Notification from
CDS to UA).

A661_NOTIFY_EXCEPTION Notification of an error from CDS to UA. Refer to Section
4.4.2, Error Notification, for all applicable errors.

4.4.2 Error Notification

This Specification defines the principle of error notification to provide the tools to
manage errors in a command. Nevertheless it is outside the scope of this
document to define the recovery action on an error notification. The aircraft OEM
should specify only error recording in built-in test equipment (BITE), or some
recovery mechanism to implement specific errors.

The error notifications which the CDS may send in response to erroneous
commands and overload situations are described in Table 4.4.2 in this
specification.

This ARINC specification lists valid values that User Applications and the
CDS are supposed to use when exchanging run-time messages. The CDS’s
response to undefined values is up to the OEM/CDS implementation. At the
CDS’s discretion, error messages may be created and sent to the User
Application if for example a value other than “0” and “1” is sent as a Boolean
parameter value, or the CDS may choose to fall back to a default value (for



ARINC SPECIFICATION 661 — Page 256

4.0 COMMUNICATION PROTOCOL

example, interpret every non-zero valid the same as A661_True, or only look
at the least significant bit of the 8-bit value). This applies analogous to some
other parameter types, such as those using enumerated types. Note that this
is not to be understood as an encouragement for a sender of 661 run-time
messages to rely on the behavior of a specific CDS implementation when
sending data to that CDS, because doing so could lead to an undesirable
dependency between a User Application and that CDS.

Any or all of the following notifications are sent at the discretion of the CDS.

Table 4.4.2 — Exception Type

ggg]un;:tn ,:jy/ pe A661_ExceptionType Description
Error notification on command error
All A661_ERR_BAD_COMMAND This exception is sent on any erroneous
command. It applies to:
Invalid block structure (keyword or size
field)
Invalid command/request code
Create A661_ERR_CREATE_ABORTED This exception is sent on erroneous Create

command. It applies to:

Invalid Layer ID or Context ID

Invalid Widget ID

Invalid parameter value

Insufficient required parameter data
(growth potential for direct downloading the DF
from UA to CDS)

SetParameter | A661_ERR_SET_ABORTED

This exception is sent on erroneous
SetParameter. It applies to:
Invalid Layer ID or Context ID
Invalid Widget ID or Parameter ID
Invalid parameter value
Insufficient parameter data

UARequest A661_ERR_UA_REQUEST_ABORTED

This exception is sent on erroneous UA
Request. It applies to:
Invalid Layer ID or Context ID
Invalid Request key value
Invalid Widget ID
Insufficient required parameter data

Error notification on CDS Resource overload

A661_ERR_MEMORY_OVERLOAD

Notification of memory overloading by allotting
UA widgets. (Definition time).

(Growth potential for direct downloading the DF
from UA to CDS)

A661_ERR_PROCESS_OVERLOAD

Inability to complete processing of desired
image.

A661_ERR RENDERING_OVERLOAD

Inability to complete rendering of desired image.

Because the level of CDS is the higher application, there is no need for exceptions

on commands from CDS to UA.




ARINC SPECIFICATION 661 — Page 257
4.0 COMMUNICATION PROTOCOL

4.4.3 ARINC 661 Request/Notification

Communication described in this specification is based on the widget
management. Requests apply to messages exchanged between UA and the CDS
without a particular widget being targeted. These messages provide a means for
the UA to change HMI mechanisms under CDS responsibility, such as Focus
position or layer activity. In the other direction, these messages provide the CDS a
means to indicate the current state to the UA.

4431 Request from UA to CDS
Requests from the UA to the CDS, described in Table 4.4.3.1, may or may not be
accepted by the CDS. These requests should be sent to the CDS through
A661_CMD_UA_REQUEST command.

Table 4.4.3.1 — Request from UA to CDS

Request Type Description

A661_REQ_LAYER_ACTIVE Provide a means for a UA application to request to the
CDS the activation of its layer. The CDS may or may not
accept the request according to the current possible
configuration.

When a layer is active, the CDS should update widget
parameters of this layer (refer to Section 2.3.2.4 — Layer
Activity/Visibility Management).

A661_REQ_LAYER_INACTIVE Provide a means for a UA to request the CDS to deactivate
its layer.

A661_REQ_FOCUS_ON_WIDGET Move focus on a defined widget of one UA layer.

A661_REQ_LAYER_VISIBLE Turn on the visibility of one layer. This request follows the
CDS naitification of the layer activity.

A661_REQ_CURSOR_ON_WIDGET Move the cursor to a defined widget of one UA layer.

4.43.2 Request/Notification from CDS to UA

Request/Notifications, described in Table 4.4.3.2, should be sent from CDS to the
UA through the A661_NOTIFY_LAYER _EVENT command. The UA should to take
into account the notification.

Table 4.4.3.2 — Request/Notification from CDS to UA

Request/Notification Type Description

A661 _NOTE_REINIT_LAYER DATA CDS request to the UA for Layer data initialization.

The response of the UA should be a block of SetParameter
commands.

A661_NOTE_LAYER_IS_ACTIVE CDS naitification to the UA that its layer becomes active.
This implies that the UA will reinitialize the layer data.

A661 NOTE_LAYER IS INACTIVE Notification of layer deactivation.




ARINC SPECIFICATION 661 — Page 258

4.0 COMMUNICATION PROTOCOL

4.5 ARINC 661 Command Structure

4.5.1 Notation

Notations used in ARINC 661 Command Structures:

Command Description

<A> element of type A

“<A>| <B>" | means <A> or <B>

“{<A>} means a set of 0 or more of <A>

“{<A>}+” means a set of 1 or more of <A>

“(...)" are used for external references or comments
[ <A>] means zero or one of <A>

4.5.2 Block Structure

The UA and CDS exchange information through blocks of commands. A block
represents a set of data to be processed as coherent information.

The structures detailed in Tables 4.5.3.1-2 and 4.5.4.1-1 are built so that a single
datum (excluding arrays) is never encoded across two 32-bit words. This simple
rule is emphasized for better understanding of the structure details.

4.5.3 Definition Time Exchanged Structure

4.5.3.1

4.5.3.2

UADF Loading Structure

The DF is recommended to be loadable into CDS according to the ARINC 615A
standard. The format of the loadable software is described in the ARINC 665
standard. In this case the DF is defined as a data file.

According to A665, the data file will be a binary file with the extension XXX.LUP.
The 665 header file has the extension: XXX.LUH. The header file defines which
data file(s) are to be loaded.

It is recommended that only one data file be attached to the A665 header of a DF.
In this case the “Number of Data Files” (in A665 header) would be 1.

It is recommended that no support file be attached to the A665 header of a data
file. The “Number of Support Files” (in A665 header) should be O.

Definition File (DF) Structure

A Definition File (DF) may hold several User Application Layer Definitions (UALD)
from one UA, zero or more symbol definitions and zero or more picture
definitions. The loadable entity is the DF. Table 4.5.3.2-1 describes the structure
of a DF.



ARINC SPECIFICATION 661 — Page 259
4.0 COMMUNICATION PROTOCOL

Table 4.5.3.2-1 — Definition File Structure

A661_Definition_File Description

DF_File_Header Header of the file

{A661_Symbol_Block_Structure_DT} Defines ARINC 661 Symbols

{A661_Picture_Block_Structure_DT}+ Defines ARINC 661 Pictures (bitmaps)
(see Section 7 for details)

{ A661_Block_Structure_DT }+ Core of the file

DF_File Footer Footer of the file

The DF has a header with a OEM specific part:
Table 4.5.3.2-2 — Definition File Header

DF_File_Header Type Size (bits) Description
_A661_DF_MAGIC_NUMBER | | ushort | . 16 || Identifier for A661 Definition File
LibraryVersion uchar 8 Identifier of the Library version compatible

with the User Application Definition File.
This value is implementation dependent.

SuppVersion uchar 8 Identifier of A661 Supplement version on
which the User Application Definition File
is based.

A661 & A661-1 value = “00”

A661-2 value = “02”

A661-3 value = “03”

Applildent ] ushort | . 16 ______| Identifier of the User Application.
Size of the OEM free data ushort 16 Size of the OEM_Free_Data in bytes
OEM_Free Data N/A {32}+

Note: The DF has a footer.

Table 4.5.3.2-3 — Definition File Footer

DF_File Footer Type Size (bits) | Description

A661_DF _FOOTER uchar 8 Keyword to indicate the end of the
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, DefiniionFile

UnusedPad N/A 24 0

Block Structure exchanged between UA and CDS at definition time is defined in
Tables 4.5.3.2-4 and 4.5.3.2-5.



ARINC SPECIFICATION 661 — Page 260

4.0 COMMUNICATION PROTOCOL

Table 4.5.3.2-4 — Block Structure Exchanged Between UA and CDS at
Definition Time

A661 Block Structure DT Type Size (bits) | Description
A661 BEGIN_LAYER BLOCK uchar 8 Start keyword opening a block of
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, information |
Layerldent uchar 8 Relative Identifier of the layer for the User
_________________________________________________________________________ Application ]
Context Number ushort 16 ContextNumber value attached to the
layer. This value is attached by the CDS to
any block of message sent before
communication is established with UA.
Block Size ulong 32 Size of this block, including header, in
bytes.
{ A661_Definition_Command }+ N/A {32}+ Set of command structures, as applicable.
A661_END_LAYER BLOCK | | uchar | 8 .| Keyword ending a block of information. |
UnusedPad N/A 24 0

Table 4.5.3.2-5 — Symbol Block Structure Exchanged Between UA and CDS at
Definition Time

A661_Symbol Block_Structure DT Type | Size (bits) | Description
A661_BEGIN_SYMBOL_BLOCK uchar 8 Start keyword opening a symbol
_____________________________________________________________________________ definiion. |
UnusedPad N/A 24
Block Size ulong 32 Size of this block, including header, in
bytes.
{ A661_Symbol_Definition_Command }+ N/A {32}+ Set of command structures, as
applicable.
A661_END_SYMBOL_BLOCK uchar 8 Keyword ending a block of symbol
oo | information. ]
UnusedPad N/A 24 0
4.5.3.21 Definition Time Block Commands

One or more A661_Definition_Command can be included in a block.
Table 4.5.3.2.1 lists the commands defined in the protocol.

Table 4.5.3.2.1 — Definition Time Block Commands

A661_Definition Command

Type

Size (bits)

Description

A661_Create_ Structure

N/A

{321+

Command applicable at definition time.

4.53.3 Command Structure

Table 4.5.3.3 defines the command structure.

Table 4.5.3.3 — Command Structure

A661_Create_Structure Type Size (bits) | Description

A661_CMD_CREATE ushort 16 Start keyword for opening the create
structure

CommandSize ushort 16 Size of the command, in bytes.

CreateParameterBuffer N/A {32}+ Refer to the widget library section for the
description of all the creation parameter
buffers.




ARINC SPECIFICATION 661 — Page 261
4.0 COMMUNICATION PROTOCOL

4534 Constraints Inside a UALD Block

The User Application Layer Definition is composed of LayerBlocks, between
A661_BEGIN_LAYER_BLOCK and A661_END_LAYER_BLOCK codes, as
follows:

e A UALD LayerBlock should contain only A661_CMD_CREATE commands

o The LayerBlock should contain the complete description of the widgets
inside one layer. It implies that a UALD can not be described over several
LayerBlock

¢ Inside a LayerBlock, a widget should be created (with
A661_CMD_CREATE command, refer to Section 4.4) after its parent (as
defined by Parentldent parameter, refer to Section 3.1.3.1)

e For reference from a widget to another widget without Parentldent, there is
no restriction on the definition order. For instance, the
ActiveTabbedPanellD parameter of the TabbedPanelGroup will be set
before the TabbedPanel is actually referenced in the block. However, the
consistency of the DF should be checked

4.5.3.5 Definition Time Symbol Block Commands

One or more A661_Symbol Definition_Commands can be included in a block.
Table 4.5.3.5 lists the commands defined in the protocol.

Table 4.5.3.5 — Definition Time Symbol Block Commands

Size
A661_Symbol Definition_ Command Type | (bits) | Description
A661 Create_Symbol_Structure N/A {32}+ | Command applicable at definition time.
4.5.3.6 Symbol Command Structure

Table 4.5.3.6 defines the symbol command structure.

Table 4.5.3.6 — Symbol Command Structure

A661_Create_Symbol Type Size (bits) Description
_Structure
A661_CMD_CREATE_SYMBOL ushort 16 Start keyword for opening the create
| Structure
CommandSize ushort 16 Size of the command, in bytes.
| Symbolld ] ushort | 16 | SymbolldValue
UnusedPad N/A 16
CreateParameterBuffer N/A {32}+ Refer to the symbol definition section for
the description of all the creation
parameter buffers.




ARINC SPECIFICATION 661 — Page 262

4.0 COMMUNICATION PROTOCOL

453.7 Constraints Inside a Symbol Definition Block

A symbol can be split into up to four different representations:

e The standard representation
e The focus representation
e The highlight representation

e The sensitive area representation

Refer to Section 5 for a description of the symbol definition commands, as well as
any other restrictions on symbol definitions.

4.5.4 Run-Time Exchange Structure

4541 Run-Time Block Commands

One or more A661_Run-Time_Command can be included in a block. Run-time
structures do not have any CDS- or OEM-specific header/footer. They may have
bus-specific or network-specific packaging at the transport level.

Table 4.5.4.1-1 — Block Structure Exchanged Between UA and CDS at Run Time

A661_Block_ Structure RT Type Size Description
(bits)
AB61_BEGIN BLOCK | uchar | 8 | Startkeyword opening a block of information.
Layerldent uchar 8 Relative Identifier of the layer for the User
e Application
Context Number ushort 16 ContextNumber value attached to one layer.
UA->CDS : Value to be returned by CDS with
subsequent blocks.
CDS->UA : Value attached by UA on last received
block.
Block Size ulong 32 Size of this block, including header, in bytes.
{ A661_Run-Time_Command }+ N/A {32}+ | Set of command structures, as applicable.
A661_END BLOCK | uchar | 8 | Keywordending ablock of information.
UnusedPad N/A 24 0

Table 4.5.4.1-2 lists commands defined in the protocol:

Table 4.5.4.1-2 — Run-Time Block Commands

A661 Run-Time Command

Description

A661_Set Parameter_Structure
A661_Widget Event_Structure
A661_UA_Request_Structure
A661_CDS_Notification_Structure
A661_ Error_Notification_Structure

Commands applicable at run-time.

The following sections define run-time commands and event notifications.




4.5.4.2

ARINC SPECIFICATION 661 — Page 263

4.0 COMMUNICATION PROTOCOL

Command Structure — Run-Time Commands

Table 4.5.4.2-1 — Set_Parameter_Structure

A661_ Set Parameter_ Structure Type Size (bits) | Description
A661_CMD_SET PARAMETER ushort 16 Start keyword for opening the set parameter
______________________________________________________________________ structure. ]
CommandSize ushort 16 Size of the command, in bytes.
Widgetldent | ushort | 16 ____| |dentifier of the widget |
UnusedPad N/A 16 0
{A661_ParameterStructure}+ N/A {32}+ Set of parameters with the associated values.
Refer to Section 4.5.4.5.
Table 4.5.4.2-2 — UA_Request_Structure
A661 UA Request Structure Type Size (bits) | Description
A661_CMD_UA_ REQUEST ushort 16 Start keyword for opening the UA request
______________________________________________________________________ structure. ]
CommandSize ushort 16 Size of the command, in bytes.
A661_Request_Structure N/A {32}+ Type of request from UA to CDS. Refer to
Section 4.5.4.3.

Table 4.5.4.2-3 — Widget_Event_Structure

A661 Widget Event Structure Type Size (bits) | Description
A661_NOTIFY_WIDGET_EVENT | ushort 16 Start keyword for opening the widget event
______________________________________________________________________ structure. ]
CommandSize ushort 16 Size of the command, in bytes.
Widgetldent ] ushort | 16 ____| Identifier of the widget |
EventOrigin ushort 16 Identifier of the input device which has been
used to initiate the event:
(Enumeration to be defined by OEM)
EventStructure N/A {32}+ Refer to the widget library for the structure of
each widget associated events.

Table 4.5.4.2-4 — CDS_Notification_Structure

A661_CDS_Notification_Structure Type Size (bits) | Description

A661_NOTIFY_LAYER _EVENT ushort 16 Start keyword for opening the CDS

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, notification structure. ]

CommandSize ushort 16 Size of the command, in bytes.

A661_Layer Notification_Structure N/A {32}+ Type of notification from UA to CDS. Refer
to Section 4.5.4.4.

Table 4.5.4.2-5 — Error_Notification_Structure

A661_ Error_Notification_Structure Type | Size (bits) | Description

A661_NOTIFY_EXCEPTION ushort 16 Start keyword for opening the error

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, notification structure.

CommandSize ushort 16 Size of the command, in bytes.

A661_ExceptionType ushort 16 Type of error to be notified. Refer to Table
4.4-2.

UnusedPad N/A 16 0

OEM _free_data N/A {32}+ OEM may or may not add free data
according to specified mechanism for
recovering the error.




ARINC SPECIFICATION 661 — Page 264
4.0 COMMUNICATION PROTOCOL

4543 Request Structure

Table 4.5.4.3-1 — Request_Structure

A661 Request Structure Description

A661_Layer_Active_Struct Type of request
A661_Layer_Inactive_Struct
A661_Focus_On_Widget_Struct
A661 Layer Visible Struct

Table 4.5.4.3-2 — Layer_Active_Structure

A661 Layer Active_ Structure Type Size (bits) | Description

A661_REQ_LAYER_ACTIVE ushort 16 Start keyword for opening the layer
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, active structure

UnusedPad N/A 16 0

Table 4.5.4.3-3 — Layer_Inactive_Structure

Size
A661_Layer Inactive Structure Type (bits) | Description
A661_REQ_LAYER_INACTIVE ushort 16 Start keyword for opening the layer
_________________________________________________________________________ inactive structure
UnusedPad N/A 16 0

Table 4.5.4.3-4 — Focus_On_Widget_Structure

Size
A661_Focus On_Widget Structure Type (bits) | Description
A661_REQ_FOCUS_ON_WIDGET ushort 16 Start keyword for opening the focus on
_________________________________________________________________________ widget structure.
Widgetldent ushort 16 Identifier of the widget on which the

CDS should move the focus.

Table 4.5.4.3-5 — Layer_Visible_Structure

Size
A661_Layer Visible Structure Type (bits) | Description
A661_REQ_LAYER VISIBLE ushort 16 Start keyword for turning on the visibility
_________________________________________________________________________ ofonelayer.
UnusedPad N/A 16 0

Table 4.5.4.3-6 — Cursor_On_Widget_Structure

Size
A661_Cursor_On_Widget_Structure Type (bits) | Description

A661_REQ_CURSOR_ON_WIDGET ushort 16 Start keyword for opening the cursor
on widget structure.

Widgetldent ushort 16 Identifier of the widget on which the
CDS should move the cursor.
OEM Data Field N/A 32 This could be used for OEM-

dependent behavior, e.g. to define
which cursor to move




ARINC SPECIFICATION 661 — Page 265

4.0 COMMUNICATION PROTOCOL

4544

Notification Structure

Table 4.5.4.4-1 — Layer_Notification_Structure

A661_Layer Notification_Structure

Description

A661_Layer Is_Active_Struct |
A661_Layer Is_Inactive_Struct |
A661_Reinitialize_Layer Data_Struct

Type of notification

Table 4.5.4.4-2

— Layer_lIs_Active Structure

Size
A661 Layer Is Active Structure Type (bits) Description
A661_NOTE_LAYER_IS_ACTIVE ushort 16 Start keyword for opening the layer
________________________________________________________________________ active structure. |
UnusedPad N/A 16 0
Table 4.5.4.4-3 — Layer_lIs_Inactive_Structure
Size
A661_Layer Is_Inactive_Structure Type (bits) | Description
A661_NOTE_LAYER_IS_INACTIVE ushort 16 Start keyword for opening the layer
________________________________________________________________________ inactive structure. |
UnusedPad N/A 16 0

Table 4.5.4.4-4 — Reinitialize_Layer_Data Structure

A661_Reinitialize_Layer Data_ Size
Structure Type (bits) Description
A661_NOTE_REINIT_LAYER_DATA ushort 16 Start keyword for opening the
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, reinitialize layer data structure. |
UnusedPad N/A 16 0

4.54.5 ARINC 661 Parameter Structure

Section 3.0, Widget Library, provides a description for each widget that includes a
table of parameters modifiable at run-time. These tables contain the name of a
A661_ParameterStructure, which should be applied to set this parameter. This
section provides details of these structures.

For a few specific parameters, the A661_ParameterStructure is defined in the
Widget Library. For completeness, all the structures are listed here, with

references as necessary.

4.54.51 A661_ParameterStructure_1Byte
Table 4.5.4.5.1-1 — ParameterStructure_1Byte
Size

A661 ParameterStructure Type (bits) Description
_Parameterldent | ushort | 16| Identifier of the parametertype
ParameterValueBuffer uchar 8 Values associated with the parameter
_______________________________________________________________________ ype .
UnusedPad N/A 8 0




ARINC SPECIFICATION 661 — Page 266
4.0 COMMUNICATION PROTOCOL

4.54.5.2 A661_ParameterStructure_2Bytes

Table 4.5.4.5.2-1 — ParameterStructure_2Bytes

Size
A661_ ParameterStructure Type (bits) Description
_Parameterldent | __ushort | - 16 || Identifier of the parameter type
ParameterValueBuffer ushort / short 16 Values associated with the parameter
type

4.54.5.3 A661_ParameterStructure_4Bytes

Table 4.5.4.5.3 -1 — ParameterStructure_4Bytes

Size
A661_ParameterStructure Type (bits) Description
_Parameterldent | ushort | 16 || Identifier of the parameter type
UnusedPad N/A 16 0
ParameterValueBuffer long / ulong / 32 Values associated with the parameter
float / fr() type

45454 A661_ParameterStructure_String

Table 4.5.4.5.4-1 — ParameterStructure_String

Size
A661_ ParameterStructure Type (bits) Description
Parameterldent | ushort | - 16| Identifier of the parameter type |
String size ushort 16 Size of the string, in bytes, including
terminating NULL.
ParameterValue string {32}+ List of char, terminated by NULL.
Padded by zero, one, two, or three
NULL character(s) to be 32 bit aligned

4.54.5.5 A661_ParameterStructure_StringArray

Table 4.5.4.5.5-1 — ParameterStructure_StringArray

A661_ ParameterStructure Type Size (bits) | Description
Parameterident [ 1 ushort | 16 | A661_STRING ARRAY ]
Number of Strings ushort 16 Integer
Number of Strings modified by the
command
{stringarray_cellstructure}+ N/A {32}+

4.5.4.5.6 A661_StringArray_CellStructure

Table 4.5.4.5.6-1 — StringArray_CellStructure

A661 ParameterStructure Type Size (bits) Description
| Stringlndex ] ushort | 16 | Index of the string
string size ushort 16 Integer

Size of the string, in bytes, including
terminating NULL.

String string {32}+ List of char.
Ended by one, two, three or four NULL
character(s) to be 32 bits aligned




ARINC SPECIFICATION 661 — Page 267
4.0 COMMUNICATION PROTOCOL

4.5.4.5.7 A661_ParameterStructure_EnableArray

Table 4.5.4.5.7-1 — A661_ParameterStructure_EnableArray

A661 ParameterStructure Type Size (bits) | Description
| Parameter_ident | | ushort | 16 | A661_ENABLE ARRAY
| Entryindex | uchar | 8
Enable uchar 8 A661_FALSE
A661_TRUE

4.54.5.8 A661_ParameterStructure_8Bytes

Table 4.5.4.5.8-1 — ParameterStructure_8Bytes

A661_ParameterStructure_8
Bytes Type Size (bits) | Description
| Parameter_ident | 1 ushort | 16 _____| Identifier of the parametertype
UnusedPad N/A 16 0
ParameterValue1 N/A 32
ParameterValue2 N/A 32

45459 A661_ParameterStructure_BufferOfltems

For usage with MapHorz_ItemList widget, see description in Section 3.3.22.2.2.
For usage with MapVert_ltemList widget, see description in Section 3.4.5.2.2.

4.5.4.510 A661_ParameterStructure_Buffer
A661_ParameterStructure_Buffer is defined in Table 4.5.4.5.10.

Refer also to BufferFormat widget description in Section 3.3.4 and the
BufferFormat data alignment and padding info in Section 3.3.4.1.

Table 4.5.4.5.10 — A661_ParameterStructure_Buffer

A661_ParameterStructure Type Size (bits) | Description

Parameterldent | ushort | 16| A661_BUFFER OF PARAM |
Size ushort 16 Size of BufferFormatData in bytes.
{BufferFormatData}+ N/A {32}+

4.54.511 A661_ParameterStructure_EntryPopUpArray
Refer to PopUpMenu widget description in Section 3.3.31.1.
4.6 ARINC 661 Keyword Values

The following tables define numeric values associated with the ARINC 661
keywords:

Table 4.6-1 — Constant — Definition File (16 bits)

ARINC 661 Constant — Definition File (16 bits)
A661_DF MAGIC_NUMBER | 0xAB61




ARINC SPECIFICATION 661 — Page 268
4.0 COMMUNICATION PROTOCOL

Table 4.6-2 — Block Codes (8 bits)

ARINC 661 Block Codes (8 bits)

A661 BEGIN_LAYER BLOCK 0xAO
A661 BEGIN _BLOCK 0xBO
A661_BEGIN_PICTURE_BLOCK 0xBB
A661_END_PICTURE_BLOCK O0xBE
A661_BEGIN_PICTURE 0xBC
A661_END_PICTURE 0xBD
A661_END_LAYER BLOCK 0xCO
A661_ END_BLOCK 0xDO
A661 DF_FOOTER 0XEO
A661_BEGIN_SYMBOL_BLOCK OxFO
A661_ END_SYMBOL_BLOCK OxF8

Table 4.6-3a — Commands

ARINC 661 Commands

A661_CMD_CREATE 0xCAO1
A661_CMD_SET_PARAMETER 0xCA02
A661_CMD_UA_REQUEST 0xCA03
A661_CMD_CREATE_SYMBOL 0xCA04

Table 4.6-3b — Commands

ARINC 661 Symbol Definition Commands (16 bits)

A661_SYMBOL_DEFN_FOCUS 0x9000
A661_SYMBOL_DEFN_HIGHLIGHT 0x9010
A661_SYMBOL_DEFN _SET_COLOR 0x9020
A661_SYMBOL_DEFN SET LINE STYLE 0x9030
A661_SYMBOL_DEFN _SET_FONT 0x9040
A661_SYMBOL _DEFN _SET HALO 0x9050
A661_SYMBOL_DEFN_LEGEND_ANCHOR 0x9060
A661_SYMBOL _DEFN ARC _ELLIPSE 0x9070
A661_SYMBOL_DEFN ARC_CIRCLE 0x9080
A661_SYMBOL_DEFN _CROWN 0x9090
A661_ SYMBOL _DEFN LINE 0x90A0
A661_SYMBOL_DEFN_LINE_POLAR 0x90B0
A661_SYMBOL_DEFN POLYLINE 0x90C0
A661_SYMBOL_DEFN RECTANGLE 0x90D0
A661_SYMBOL_DEFN TRIANGLE 0x90EQ
A661_SYMBOL_DEFN TRIANGLE_FAN 0x90F0
A661_SYMBOL_DEFN TRIANGLE_STRIP 0x9100
A661_SYMBOL_DEFN TEXT 0x9110
A661_SYMBOL_DEFN_RECTANGULAR 0x9120
A661_SYMBOL_DEFN_CIRCULAR 0x9130
A661_SYMBOL_DEFN_SIZE 0x9140

Table 4.6-4 — Notifications

ARINC 661 Notifications

A661_NOTIFY_EXCEPTION 0xCC03

A661_NOTIFY_LAYER_EVENT 0xCC02

A661_NOTIFY WIDGET_EVENT 0xCCO01




ARINC SPECIFICATION 661 — Page 269

4.0 COMMUNICATION PROTOCOL

Table 4.6-5 — Requests/Notifications

ARINC 661 Requests/Notifications

A661 REQ_LAYER ACTIVE 0xDAO1
A661_REQ_LAYER_INACTIVE 0xDA02
A661 REQ FOCUS _ON_WIDGET 0xDA03
A661_ REQ_LAYER_VISIBLE 0xDAO4
A661_REQ_CURSOR_ON_WIDGET 0xDAO05
A661 NOTE_REINIT_LAYER DATA 0xDCO1
A661 NOTE_LAYER IS _ACTIVE 0xDC02
A661 NOTE_LAYER_IS_INACTIVE 0xDC03

Table 4.6-6 — ExceptionType

A661_ExceptionType

A661_ ERR_BAD_COMMAND 0xF001
A661_ ERR_CREATE_ABORTED 0xF002
A661 ERR_SET_ABORTED 0xF003
A661 ERR_UA REQUEST ABORTED O0xF004
A661_ERR_MEMORY_OVERLOAD 0xF005
A661_ ERR_PROCESS_OVERLOAD 0xF006
A661 ERR_RENDERING_OVERLOAD 0xF007

Table 4.6-7 — Widgets (16 bits)

ARINC 661 Widgets (16 bits)

A661 ACTIVE AREA 0xA010
A661 BASIC CONTAINER 0xA020
A661 BLINKING_ CONTAINER 0xA030
A661 BUFFER_FORMAT 0xA040
A661 CHECK BUTTON 0xA050
Reserved 0xA060
A661 COMBO_BOX 0xA070
A661 CONNECTOR 0xA080
A661 CURSOR POS OVERLAY 0xA090
A661 EDIT BOX MASKED 0xAOAO
A661 EDIT BOX_ NUMERIC 0xA0CO
A661_EDIT_BOX_NUMERIC_BCD 0xA0C2
A661 EDIT BOX TEXT 0xA0DO
A661 GP_ARC _CIRCLE 0xAOF0
A661 GP_ARC ELLIPSE 0xA100
A661 _GP_CROWN 0xA110
A661 GP_LINE 0xA120
A661 _GP_LINE POLAR 0xA130
A661 GP_RECTANGLE 0xA140
A661 GP_TRIANGLE 0xA150
A661 LABEL 0xA160
A661 LABEL COMPLEX 0xA170
A661 MAP HORZ ITEMLIST 0xA180
A661 MAP LEGACY 0xA190
A661 MAP HORZ SOURCE 0xA1A0
A661 MAP HORZ 0xA1BO
A661 MASK CONTAINER 0xA1CO
Reserved O0xA2EO
Reserved O0xA1EO




ARINC SPECIFICATION 661 — Page 270
4.0 COMMUNICATION PROTOCOL

ARINC 661 Widgets (16 bits)
A661 PANEL 0xA1FO0
A661 PICTURE 0xA200
A661_PICTURE_PUSH BUTTON 0xA240
A661 PICTURE_TOGGLE BUTTON 0xA250
Reserved 0xA260
A661 POP_UP_MENU 0xA270
A661 POP_UP_MENU BUTTON 0xA280
A661 POP_UP PANEL 0xA290
A661 PUSH BUTTON 0xA2A0
A661 RADIO BOX 0xA2B0
Reserved 0xA2CO0
A661 ROTATION_CONTAINER 0xA2D0
A661 SCROLL_LIST 0xA2F0
A661 SCROLL_PANEL 0xA300
A661_SYMBOL 0xA310
A661 _TABBED PANEL 0xA320
A661 TABBED PANEL GROUP 0xA330
A661 TOGGLE BUTTON 0xA340
Reserved 0xA350
A661 TRANSLATION_CONTAINER 0xA360
A66l_MAP_GRID 0xA178
A661 EXTERNAL SOURCE 0xA188
A661 MAP_VERT 0xA1B2
A661 MAP VERT_SOURCE 0xA1B4
A661 MAP_VERT ITEMLIST 0xA1B3
A661 EDIT BOX MULTI_LINE 0xA0BO
A661_COMBO_BOX_EDIT 0xAOEO
A661 MENU BAR 0xA1DO0
A661 MUTUALLY EXCLUSIVE CONTAINER 0xA400
A661 PICTURE_ANIMATED 0xA210
A661 PROXY BUTTON 0xA420
A661 SELECTION_LIST BUTTON 0xA370
A661_ SLIDER 0xA440
A661 SYMBOL_ ANIMATED 0xA450
A661 WATCHDOG_CONTAINER 0xA460
A661_CURSOR_REF 0xA470
A661_CURSOR_OVER 0xA480
A661_FOCUS_LINK 0xA490
A661_FOCUS_IN 0xA4938
A661_FOCUS_OUT 0xA499
A661_SIZE_TO_FIT_CONTAINER 0xA4A0
A661_SHUFFLE_TO_FIT_CONTAINER 0xA4B0
Reserved for OEM extensions 0xA800 to OXAFFF
Table 4.6-8 — Parameter Types
ARINC 661 Parameter Types (16 bits)
A661 AC LAT 0xB010
A661 AC LAT LONG 0xB030
A661 _AC LONG 0xB020
A661_AC ORIENTATION 0xB040
A661 ACTIVE_TABBED PANEL 0xB050
A661 ALPHA MASK 0xB060




4.0 COMMUNICATION PROTOCOL

ARINC SPECIFICATION 661 — Page 271

ARINC 661 Parameter Types (16 bits)

A661 ALTERN_PICTURE_REFERENCE 0xB080
A661_ANIMATION_FLAG 0xB090
A661_ANIMATION_TYPE 0xB098
A661 BLINKING_TYPE 0xBOA8
A661_BOUND_X 0xBOBO
A661_BOUND_Y 0xBOCO
A661_BOUND_XY 0xBODO
A661_BOUND_SIZE_X 0xBOEO
A661_ BOUND_SIZE_Y 0xBOFO
A661_BOUND_SIZE_XY 0xB100
A661 BUFFER_OF PARAM 0xB110
A661 BUFFER_OF MAPITEM 0xB120
A661 BUFFER_OF_MAPVERT_ITEMS 0xB125
A661_CENTER_X 0xB130
A661_CENTER_XY 0xB150
A661_ CENTER_Y 0xB140
A661_COLOR_INDEX 0xB160
A661 CURSOR_POS 0xB170
A661_CURSOR_POS_BYTE 0xB172
A661_ENABLE 0xB180
A661_ENABLE_ARRAY 0xB1A0
A661_ENTRY ARRAY 0xB190
A661_END_ANGLE 0xB1B0
A661_ENTRY_POP_UP_ARRAY 0xB1CO
A661_ENTRY_VALID 0xB570
A661_EVENT FLAG 0xB1D0
A661_FILL_INDEX O0xB1EO
A661 FIRST ACCESS_ENTRY 0xB1FO0
A661_FIRST_ACCESS_UA_ENTRY 0xB1F8
A661_FIRST VISIBLE_ENTRY 0xB200
A661_FONT 0xB590
A661_FORMAT STRING 0xB550
A661_FRAME_X 0xB210
A661_FRAME_Y 0xB220
A661_FRAME_XY 0xB230
A661_INNER_RADIUS 0xB240

ARINC 661 Parameter Types (16 bits)

A661_INNER_STATE_CHECK 0xB244
AG661_INNER_STATE_EDIT 0xB248
AG61_INNER_STATE_TOGGLE 0xB258
A661_LEGEND_POSITION 0xB260
AG61_LINE_LENGTH 0xB270
A661_LOOP_FLAG 0xB272
A661_LOOP_TYPE 0xB273
A661_MAP_SYNCHRONIZATION_NUMBER 0xB277
A661_MASK_REFERENCE 0xB280
A661_MASK_ENABLED 0xB290
A661_NEXT_FOCUSED_WIDGET 0xB2B8
A661_NEXT_WIDGET_IDENT 0xB5B0
A661_NUMBER_OF_ENTRIES 0xB2A0
A661_NUMBER_OF_VISIBLE_CHILDREN 0xB5D0




ARINC SPECIFICATION 661 — Page 272

4.0 COMMUNICATION PROTOCOL

ARINC 661 Parameter Types (16 bits)

A661_NUMBER_OF_UA_ENTRIES 0xB2A8
A661_NUMERIC_MASK 0xB2B0
A661_ORIENTATION 0xB2C0
A661_OUTER_RADIUS 0xB2D0
A661_PICTURE_ARRAY 0xB2EO
A661_PICTURE_REFERENCE 0xB2F0
A661_POS_X 0xB300
A661_POS_X2 0xB330
A661_POS X3 0xB360
A661_POS_XY 0xB320
A661_POS_XY2 0xB350
A661_POS_XY3 0xB380
A661_POS_Y 0xB310
A661_POS_Y2 0xB340
A661_POS Y3 0xB370
A661_PREV_WIDGET_IDENT 0xB5A0
A661 PRP_LAT 0xB390
A661 PRP_LAT LONG 0xB3B0
A661_PRP_LONG 0xB3A0
A661_PRP_SCREEN_X 0xB3C0
A661_ PRP_SCREEN_XY O0xB3EO
A661_PRP_SCREEN_Y 0xB3D0
A661_RADIUS OxB3F0
A661_ RANGE 0xB400
A661_ROTATION_ANGLE 0xB410
A661_SCREEN_RANGE 0xB420
A661 SELECTED _ENTRY 0xB430
A661_SHIFT_FIRST VISIBLE_ENTRY 0xB440
A661_SHUFFLE_TO_FIT_MODE 0xB5EO0
A661_SIZE_TO_FIT_MODE 0xB5C0
A661_SIZE X 0xB450
A661_SIZE_Y 0xB460
A661_SIZE_XY 0xB470
A661 START ANGLE 0xB480
A661_STRING 0xB490
A661 STRING_ALTERNATE 0xB498

ARINC 661 Parameter Types (16 bits)

AG61_STRING_ARRAY 0xB4A0
AG61_STYLE_SET 0xB4B0
A661_SYMBOL_REFERENCE 0xB4CO
AG661_TICS_COARSE 0xB4D0
A661_TICS_FINE 0xB4EOQ
AG61_TRANSLATION_X 0xB4F0
A661_TRANSLATION_XY 0xB510
AG61_TRANSLATION_Y 0xB500
A661_VALUE 0xB520
AG61_VISIBLE 0xB530
A661_VISIBLE_CHILD 0xB540
AG661_OPENING_ENTRY 0xB560
A661_BUFFER_OF_FILL_STYLES 0xBOF8
A661_MAJOR_TICK 0xB600
A661_MAPGRID_CELLSIZE 0xB274




ARINC SPECIFICATION 661 — Page 273

4.0 COMMUNICATION PROTOCOL

ARINC 661 Parameter Types (16 bits)

A661 MAPGRID OFFSET 0xB278
A661 MAX VALUE 0xB610
A661_MIN_ VALUE 0xB620
A661_ MINMAX_ VALUES 0xB580
A661_MINOR TICK 0xB630
A661 RANGE_X 0xB402
A661 RANGE_Y 0xB403
A661 RANGE_XY 0xB404
A661 PRP_X 0xB3B2
A661 PRP_Y 0xB3B3
A661_PRP_XY 0xB3B4
A661 SOURCE_X 0xB660
A661 TARGET WIDGET_ID 0xB650
A661 SOURCE_Y 0xB661
A661_SOURCE_DX 0xB662
A661 SOURCE_DY 0xB663
A661_SOURCE_XY 0xB664
A661 _SOURCE_DXDY 0xB665
A661 REFRESH 0xB670
A661 SHOW FAIL 0xB671
Reserved for OEM extensions 0xB800 to OxBFFF

Table 4.6-9 — Event Types

ARINC 661 Event Types (16 bits)

A661 EVT INCREMENT 0xE006
A661 EVT CURSOR POS_CHANGE 0XE010
A661 EVT FIRST VIS ENTRY_CHANGE 0XE020
A661 EVT FRAME_POS_CHANGE 0XE030
A661_EVT POPUP_CLOSED OXE040
A661 EVT SEL_ENTRY CHANGE 0XE050
A661_EVT SELECTION OXE060
A661 EVT SELECTION _MAP OxE068
A661_EVT STATE_CHANGE O0XE070
A661 EVT STRING_CHANGE 0xE080
A661_EVT STRING_CHANGE_ABORTED OXE090
A661_EVT STRING_CONFIRMED OXEOAOD
A661 EVT TABBED PANEL_CHANGE OXEOBO
A661_EVT VALUE_CHANGE 0XEOCO
A661_EVT EDITBOX_OPENED OXE110
A661_EVT POPUP_PANEL_CLOSED 0xE120
A661_EVT ITEM_SYNCHRONIZATION OXE150
A661_EVT WATCHDOG_EXPIRED 0xE200
A661_EVT WATCHDOG_NORMAL 0xE210
A661_EVT_CURSOR_ENTER 0xE300
A661_EVT_CURSOR_INSIDE 0xE310
A661_EVT_CURSOR_EXIT 0xE320




ARINC SPECIFICATION 661 — Page 274
4.0 COMMUNICATION PROTOCOL

Table 4.6-10 — Boolean Constant Values

ARINC 661 Boolean Constant Values
A661_FALSE 0x00
A661_TRUE 0x01
A661 TRUE_WITH_ VALIDATION 0x02
Table 4.6-11 — Integer Constant Values
ARINC 661 Integer Constant Values
On 8 bits
A661_UNSELECTED 0x00
A661_EVENT_NONE 0x00
A661_SELECTED 0x01
A661_VALIDATION 0x01
A661_VALIDATION_AND_ WHEEL 0x02
A661_WHEEL 0x03
AB661_ABSENT 0x10
AB61_TOP 0x11
A661_BOTTOM 0x12
A661_LEFT 0x13
A661_RIGHT 0x14
A661_CENTER 0x15
A661_OPEN_UP 0x16
A661_OPEN_CENTERED 0x17
A661_OPEN_DOWN 0x18
A661_UP 0x19
A661_DOWN 0x1A
A661_EDITING 0x1B
A661_ERROR 0x1C
A661_NORMAL 0x1D
A661_NOT_USED 0x00
A661_ITEM_STYLE 0x20
A661_LEGEND 0x21
A661_LEGEND_ANCHOR 0x22
A661_LEGEND_POP_UP 0x23
A661_LINE_ARC 0x24
A661_LINE_SEGMENT 0x25
A661_LINE_START 0x26
A661_SYMBOL_CIRCLE 0x27
A661_SYMBOL_GENERIC 0x28
A661_SYMBOL_ROTATED 0x29
A661_SYMBOL_RUNWAY 0x2A
A661_FILLED_POLY_START 0x2B
A661_SYMBOL_OVAL 0x2C
A661_SYMBOL_TARGET 0x2D
A661_TRIANGLE_STRIP_START 0x2E
A661_TRIANGLE_SEGMENT 0x2F
A661_TRIANGLE_SEGMENT_DOUBLE 0x31
A661_TRIANGLE_END 0x32
A661_TRIANGLE_END_DOUBLE 0x33
A661_TRIANGLE_FAN_START 0x34
A661_BOTTOM_CENTER 0x30




4.0 COMMUNICATION PROTOCOL

ARINC SPECIFICATION 661 — Page 275

ARINC 661 Integer Constant Values

A661_BOTTOM_LEFT 0x31

A661_ BOTTOM_RIGHT 0x32

A661_TOP_CENTER 0x33

A661 TOP_LEFT 0x34

A661_TOP_RIGHT 0x35

A661_BOTTOM_TO_TOP 0x40

A661 LEFT TO_RIGHT 0x41

A661_RIGHT _TO_LEFT 0x42

A661_TOP _TO_BOTTOM 0x43

A661 ITEM_SYNCHRONIZATION 0x51

ARINC 661 Integer Constant Values

A661_MDF _BRG _DIST_ACHDG 0x60
A661_MDF_LAT_LONG 0x61
A661_MDF_LEGACY 0x62
A661_MDF_ABSOLUTE 0x65
A661_MDF_RELATIVE 0x66
A661_MDF_DIST_DIST 0x67
A661_MDF_X DIST 0x68
A661_MDF_Y ALT 0x69
A661_REPORT_ON_TRANSITION 0x60
A661_REPORT_ALL 0x61
A661_SIZE_TOP_DOWN 0x70
A661_SIZE_BOTTOM_UP 0x71
A661_SIZE_LEFT_TO_RIGHT 0x72
A661_SIZE_RIGHT_TO_LEFT 0x73
A661_NO_SIZING 0x74
A661_SHUFFLE_UP 0x80
A661_SHUFFLE_DOWN 0x81
A661_SHUFFLE_LEFT 0x82
A661_SHUFFLE_RIGHT 0x83
A661_NO_SHUFFLE 0x84
A661_LINE_ARC_INTERACTIVE 0xA4
AB661_LINE_SEGMENT_INTERACTIVE 0xA5
A661_LINE_START_INTERACTIVE 0xAB
A661_SYMBOL_CIRCLE_INTERACTIVE O0xA7
A661_SYMBOL_GENERIC INTERACTIVE 0xA8
A661_SYMBOL_ROTATED_INTERACTIVE 0xA9
A661_SYMBOL_RUNWAY _INTERACTIVE OxAA
A661_FILLED POLY_START_INTERACTIVE 0xAB
A661_SYMBOL_OVAL_INTERACTIVE 0xAC
A661_SYMBOL_TARGET_INTERACTIVE 0xAD
A661_PIX_FMT_RGBA_8 0xCO0
A661_PIX_FMT_LUMINANCE_ALPHA_8 0xC1




ARINC SPECIFICATION 661 — Page 276
4.0 COMMUNICATION PROTOCOL

ARINC 661 Integer Constant Values

A661_PIX_FMT_COLOR_INDEXED_8 0xC2

(0xC3 through 0xCF are reserved for future use)

A661_DONT_RUN 0x00
A661_RUN 0x01
A661_RUN_ONCE 0x02
A661_LOOP_FORWARD 0x00
A661_LOOP_FORWARD_AND_RESET 0x01
A661_LOOP_FORWARD AND_BLANK 0x02
A661_LOOP_FORWARD_AND_BACKWARD_AND_BLANK | 0x03
A661_EDB_CHANGE_CONFIRMED 0x00
A661 EDB_ALL_CHANGE 0x01
A661_EDB_OPEN_CLOSE 0x02
On 16 bits

A661_STYLE_SET_DEFAULT | 0x0000




ARINC SPECIFICATION 661 — Page 277
5.0 SYMBOL GRAPHICAL DEFINITION

5.1 Overview

Symbol widget and the SYMBOL_GENERIC and SYMBOL_ROTATED map items
refer to symbols by a “SymbolReference” ID number. A CDS supports a set of
predefined symbols. The existing predefined CDS symbology can also be
supplemented by symbols defined within DFs. The DF Symbol definitions are found
near the start of the DF, before any of the UA Layer definitions. Any UA Layers of a
DF can reference the symbols defined in that DF.

The following scheme should be used to find the appropriate symbol for a given
symbol ID number:

e If a Symbol with matching ID is found in the DF, use it.

e Otherwise, use the predefined symbol with that ID.

In the case of the SYMBOL_GENERIC and SYMBOL_ROTATED map items, the
legend anchor command of a symbol defines the first legend position.

This section describes the Symbol Definition Commands that are used within the
Symbol Definition Structure to specify the graphical appearance of the symbol.

o See Section 4.5.3 for the format of the Definition Time structure in general,
and the Symbol Definitions Structure in particular.

5.2 Symbol Definition Commands

A single Symbol Definition contains a sequence of Symbol Definition Commands. A
Symbol Definition can have up to four different representations, each consisting of
graphic primitive and/or attribute commands:

e The standard representation begins the symbol definition.

¢ An optional focus representation begins with a FOCUS command, and
follows the standard representation.

e An optional highlight representation is last, beginning with a HIGHLIGHT
command.

¢ An optional sensitive area representation to define the interactive zone
of the symbol.

Commands given in one representation (standard, focus, highlight or sensitive
area) of a symbol do not affect commands given in another representation of that
symbol (or any other symbol).

symbol_definition ::=
symbol_representation
[ FOCUS_Command symbol _representation ]
[ HIGHLIGHT_Command symbol_representation ]

[ RECT_AREA_Command | CIRC_AREA_Command ]

symbol_representation ::=
{ symbol_attribute_command | symbol_graphic_primitive_command } +

The symbol attribute commands and symbol graphic primitive commands are
described in sections 5.2.2 and 5.2.3 respectively.



ARINC SPECIFICATION 661 — Page 278
5.0 SYMBOL GRAPHICAL DEFINITION

5.21 Top Level Commands
5.21.1 Focus

The FOCUS command identifies the beginning of the definition of the focus
representation of the symbol.

Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16| A661_SYMBOL _DEFN_FOCUS |
UnusedPad N/A 16

5.2.1.2 Highlight

The HIGHLIGHT command identifies the beginning of the definition of the highlight
representation of the symbol.

Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16| A661_SYMBOL_DEFN_HIGHLIGHT |
UnusedPad N/A 16

5.2.1.3 Sensitive Area

The Sensitive Area command identifies the definition of the interactive zone
representation of the symbol. This zone is a rectangular one or a circular one.
If this zone is not defined, the behavior is OEM dependent (the symbol may be
declared as not interactive, or a default interactive zone may be defined by the
CDS).

For a rectangular zone, the parameter “RotationAllowed” is set to A661_TRUE
if the Sensitive Area is rotated with the symbol in case of
A661_SYMBOL_ROTATED. If this parameter is set to A661_FALSE, the
Sensitive area rectangle is always parallel to X and Y axis.

Origin of the
‘ Symbol ‘ Symbol

PosY

Active arca



ARINC SPECIFICATION 661 — Page 279
5.0 SYMBOL GRAPHICAL DEFINITION

Field Name Type Size Description
(bits)
| SymbolCommandType | ushort |- 16 | A661_SYMBOL_DEFN_RECTANGULAR
| RotationAllowed | NA 8 | A661_TRUE, A661 FALSE
UnusedPad N/A 8
PosX long 32 The X position : it is the bottom left corner of
the rectangle, relative to the symbol origin
PosY long 32 The Y position : it is the bottom left corner of
the rectangle, relative to the symbol origin
SizeX ulong 32 The width of the Sensitive area.
SizeY ulong 32 The height of the Sensitive area.
Field Name Type Size Description
(bits)
| SymbolCommandType | ushort | 16 | A661_SYMBOL DEFN_CIRCULAR
UnusedPad N/A 16
PosX long 32 The X position of the center of the circle
PosY long 32 The Y position of the center of the circle
Radius ulong 32 The radius of the circle.

5.2.2 Symbol Attribute Setting Commands

Symbol Attribute Setting Commands set graphical attributes (Color, Linestyle, Font,
Halo) that affect Graphic Primitive Commands.

The StyleSet and/or Color and/or Halo properties of the widget or Map ltem that
references the symbol determine the initial attribute settings of each of the
representations of the symbol. Attribute setting commands (if any) made within a
representation of the symbol definition override those initial defaults. The attribute
setting commands made within a symbol definition only apply within the context of
that symbol: these settings cannot affect subsequent widgets (including other
symbols) or map items.

5.2.21 Set Color
The SET_COLOR command sets the current color index, affecting the color of lines,
boundary lines and fills. It is an index into the same color table referenced by color
index properties of Gp widgets.
Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16 | AB61_SYMBOL DEFN_SET COLOR |
Colorindex | __uchar | ¢ 8_______|Index into a CDS-defined color table. |
UnusedPad N/A 8
5.2.2.2 Set Line Style
The SET_LINE_STYLE command sets (non-color) attributes that effect line (and line
segment) drawing: for example pattern and width. The style is an index into a line
style table stored on the CDS. Linestyle modulation is reset with every
SET_LINE_STYLE command.
Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16 | A661_SYMBOL DEFN _SET_LINE STYLE |
Style ushort 16 Index into a CDS-defined line style table.




ARINC SPECIFICATION 661 — Page 280

5.0 SYMBOL GRAPHICAL DEFINITION

5.2.2.3 Set Font
The SET_FONT command sets the current font to the given font index.
Field Name Type Size (bits) | Description
SymbolCommandType | ushort | 16| A661_SYMBOL _DEFN_SET_FONT
Font . |.._uchar | 8 _.___|.Indexinto a CDS-defined fonttable. |
UnusedPad N/A 8
5.224 Set Halo
The SET_HALO command sets the current halo setting.
Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16 | A661_SYMBOL DEFN_SET HALO |
Halo uchar 8 A661_TRUE
____________________________________________________________________ AB61 FALSE ]
UnusedPad N/A 8

5.2.3 Graphic Primitive Commands

This section describes symbol commands to define the graphic primitives that make
up a symbol.

All coordinate, height, width and radius arguments are in units of hundredths of mm.
All angles are in degrees and follow the rules specified in section 2.3.4.2, Angles.
The (0,0) position of the symbol represents the part of the symbol that will be placed
at the widget or map item’s position. Symbols are sensitive to rotation and/or
translations that are applied by ancestor widgets.

5.2.31 Legend Anchor
The LEGEND_ANCHOR command explicitly sets the anchor position for the legend
attached to the symbol representation. If there is more than one Legend Anchor
command, the behavior is OEM-dependent. If there is no LEGEND_ANCHOR
command within a symbol representation, the legend anchor position is (0,0). The
LEGEND_ANCHOR command does not correspond to any Gp widget.
Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16 | A661_SYMBOL_DEFN_LEGEND_ANCHOR |
UnusedPad N/A 16
PosX long 32 The X position.
PosY long 32 The Y position.
5.2.3.2 Arc Ellipse

The ARC_ELLIPSE command defines an arc shape that may be a portion of an
ellipse or an arc. It is defined by a bounding box where a rectangle is specified and
the ellipse is drawn touching the rectangle. When the bounding box is a square, the
arc will be a circle. The major and minor axes of the ellipse are implicitly along the
cardinal directions of the bounding box.

The ARC_ELLIPSE command draws the same shape as the GpArcEllipse widget.
As in the GpArcEllipse widget, the ARC_ ELLIPSE becomes a complete ellipse or
circle when the StartAngle and EndAngle represent the minimum and maximum



ARINC SPECIFICATION 661 — Page 281
5.0 SYMBOL GRAPHICAL DEFINITION
possible values of a 32-bit fr(180), corresponding to —180 degrees and slightly less
than +180 degrees respectively.

The ARC_ ELLIPSE is drawn using the current color (in both the filled and unfilled
cases). If it is unfilled, the outline is drawn using the current linestyle.

Field Name Type Size (bits) | Description

_SymbolCommandType | ushort | .. 16 _____ | A661_SYMBOL DEFN_ARC_ELLIPSE

Filled uchar 8 A661_TRUE

| AGB1_FALSE

UnusedPad N/A 8

PosX long 32 The X start position of the bounding box
(lower left corner).

PosY long 32 The Y start position of the bounding box
(lower left corner).

SizeX ulong 32 The maximum width the ARC_ELLIPSE can
have (if it's StartAngle and EndAngle defines
a full ellipse).

SizeY ulong 32 The maximum height the ARC_ELLIPSE can
have (if it's StartAngle and EndAngle defines
a full ellipse).

StartAngle fr(180) 32 The angle (referenced from the center
position) that defines the start of the
ARC _ELLIPSE.

EndAngle fr(180) 32 The angle (referenced from the center
position) that defines the end of the
ARC ELLIPSE.

5.2.3.3 Arc Circle

The ARC_CIRCLE command can define either an arc or a circle. It is defined by a
center position, a start angle and an end angle. The arc sweeps counterclockwise
from the start angle to the end angle.

The ARC_CIRCLE command draws the same shape as the GpArcCircle widget.

The following figure illustrates the two ARC_CIRCLE command cases, depending on
the Filled setting. The small circles are for reference purposes and indicate the circle
centers (they don’t actually get drawn). The ARC_CIRCLE is drawn using the current

color (in both the filled and unfilled cases). If it is unfilled, the outline is drawn using
the current linestyle.

Filled = FALSE

Filled = TRUE



ARINC SPECIFICATION 661 — Page 282
5.0 SYMBOL GRAPHICAL DEFINITION

Field Name Type Size (bits) | Description

‘SymbolCommandType | ushort [ 6| AB61_SYMBOL DEFN ARC CIRCLE |

Filled uchar 8 A661_TRUE

________________________________________________________________ A661 FALSE ]

UnusedPad N/A 8

PosX long 32 The center X position of the arc or circle.

PosY long 32 The center Y position of the arc or circle.

Radius long 32 The radius of the arc or circle.

StartAngle fr(180) 32 The angle (referenced from the center position)
that defines the start of the arc or circle.

EndAngle fr(180) 32 The angle (referenced from the center position)
that defines the end of the arc or circle.

5.234 Crown

The CROWN command defines a 2D doughnut-shaped region, defined by a center,
two radii, a StartAngle and an EndAngle. The crown sweeps the region going
counterclockwise from the start angle to the end angle. The crown becomes closed
to form a complete “doughnut” shape when the StartAngle and EndAngle represent
the minimum and maximum possible values of a 32-bit fr(180), corresponding to —
180 degrees and slightly less than +180 degrees respectively.

A crown can be filled or unfilled (outlined). The following diagram shows an outlined
crown. The crown is drawn using the current color (in both the filled and unfilled
cases). If it is outlined, the outline is drawn using the current linestyle.

The CROWN command draws the same shape as the GpCrown widget.

Field Name Type Size (bits) | Description

SymbolCommandType | ushort | 16| A661_SYMBOL DEFN _CROWN |

Filled uchar 8 If set to True, the Crown will be filled. If False,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, an outline of the Crown will be drawn.. |

UnusedPad N/A 8

PosX long 32 The center X position of the crown.

PosY long 32 The center Y position of the crown.

InnerRadius ulong 32 The inner radius.

OuterRadius ulong 32 The outer radius.

StartAngle fr(180) 32 The angle (referenced from the center position)
that defines the start of the crown

EndAngle fr(180) 32 The angle (referenced from the center position)
that defines the end of the crown.




ARINC SPECIFICATION 661 — Page 283
5.0 SYMBOL GRAPHICAL DEFINITION

5.2.3.5 Line
The LINE command draws a line between the two positions specified. The LINE is
drawn using the current color and linestyle. The LINE command draws the same
shape as the GpLine widget.
Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16 | A661_SYMBOL DEFN_LINE |
UnusedPad N/A 16
PosXStart long 32 The start X position of the line.
PosY Start long 32 The start Y position of the line.
PosXEnd long 32 The end X position of the line.
PosYEnd long 32 The end Y position of the line.
5.2.3.6 Line Polar
The LINE_POLAR command defines a line in polar coordinates with an XY
coordinate start position, a line length, and a draw angle. The LINE_POLAR is drawn
using the current color and linestyle. The LINE command draws the same shape as
the GpLinePolar widget.
Field Name Type Size (bits) | Description
_SymbolCommandType | ushort | 16 | A661_SYMBOL_DEFN_LINE_POLAR |
UnusedPad N/A 16
PosXStart long 32 The start X position of the line.
PosY Start long 32 The start Y position of the line.
RotationAngle fr(180) 32 The angle at which the line is drawn.
LineLength long 32 The length of the line.
5.2.3.7 Polyline

The POLYLINE command defines a sequence of connected lines. It is drawn using
the current color and linestyle. The POLYLINE command does not correspond to
any Gp widget.

The following figure shows an example of how an unclosed polyline defined using
vertices (VO .. V5) could be defined. (When drawn, the polyline will not show the
(V0..V5) labels).

U V1 V2

v4

US)
U3



ARINC SPECIFICATION 661 — Page 284
5.0 SYMBOL GRAPHICAL DEFINITION

Field Name Type Size (bits) Description

_SymbolCommandType | ushort | . 16 | AB61_SYMBOL _DEFN_POLYLINE |
NumVertices ushort 16 3 <= number of vertices

Closed uchar 8 A661_TRUE: an extra line is drawn from

the last vertex to the first vertex.
A661_FALSE: no extra line is drawn from
the last vertex to the first vertex.

UnusedPad N/A 24
Vertices array of 64 An array of (X,Y) pairs.
(long, long) *
NumVertices
5.2.3.8 Rectangle

The RECTANGLE command defines a rectangle, according to a lower left corner
position, a height and a width. The RECTANGLE is drawn using the current color (in
both the filled and unfilled cases). If unfilled, it uses the current linestyle. The
RECTANGLE command draws the same shape as the GpRectangle widget.

Field Name Type Size (bits) | Description

‘SymbolCommandType | ushort | 16 | A661_SYMBOL_DEFN_RECTANGLE |

Filled uchar 8 If set to True, the Rectangle will be filled.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, If set to False, the Rectangle will be outlined. |

UnusedPad N/A 8

PosX long 32 The X start position of the rectangle (lower left
corner).

PosY long 32 The Y start position of the rectangle (lower left
corner).

SizeX ulong 32 The width of the rectangle.

SizeY ulong 32 The height of the rectangle.

5.2.3.9 Triangle

The TRIANGLE command defines a triangle, according to three defined vertices.
The TRIANGLE is drawn using the current color (in both the filled and unfilled
cases). If unfilled, it uses the current linestyle. The TRIANGLE command draws the
same shape as the GpTriangle widget.

Field Name Type Size (bits) | Description

‘SymbolCommandType | ushort [ 16 [ A661_SYMBOL DEFN TRIANGLE
Filled uchar 8 A661_TRUE: the Triangle will be filled.
|l | A6B1_FALSE: the Triangle il be outiined. |
UnusedPad N/A 8

PosX long 32 The X start position of the triangle.

PosY long 32 The Y start position of the triangle.

PosX2 long 32 The X position of the second vertex of the triangle
PosY3 long 32 The Y position of the second vertex of the triangle
PosX3 long 32 The X position of the third vertex of the triangle

PosY3 long 32 The Y position of the third vertex of the triangle




5.2.3.10

ARINC SPECIFICATION 661 — Page 285
5.0 SYMBOL GRAPHICAL DEFINITION

Triangle Fan

The TRIANGLE_FAN command defines a filled shape composed out of a fan of
triangles. The first three vertices define the first triangular section. Each subsequent
vertex defines a new triangular section, sharing the first and last vertices of the
previous triangular section. At least three vertices must be specified. Any convex
polygon can be represented as a triangle fan, by just specifying its vertices in the
natural order. A triangle fan is not necessarily a convex polygon, though. It is drawn
using the current color. The TRIANGLE_FAN command does not correspond to any
Gp widget.

The following figure shows how the Vertices (VO ..V6) of a triangle fan define a filled

shape formed out of triangles. When drawn, a triangle fan does not draw the lines or
vertex labels shown in this figure. In this case it defines a concave polygon:

V1

Vo

The following figure illustrates a convex polygon case:

V1

Ve U3

V4
V6 Vo

Field Name

Type Size (bits) Description

SymbolCommandType ushort 16 A661_SYMBOL_DEFN _TRIANGLE_FAN

NumVertices

ushort 16 Number of vertices, must be >= 3.

Vertices

array of 64 An array of (X,Y) pairs.
(long, long) *

NumVertices




ARINC SPECIFICATION 661 — Page 286

5.0 SYMBOL GRAPHICAL DEFINITION

5.2.3.1 Triangle Strip
The TRIANGLE_STRIP command defines a filled shape composed out of a linked
strip of triangles. The first three vertices define the first triangular section. Each
subsequent vertex defines a new triangular section, sharing the last two vertices of
the previous triangular section. It is drawn using the current color. The
TRIANGLE_STRIP command does not correspond to any Gp widget.
The following figure shows how the Vertices (VO ..V5) of a triangle strip define a filled
shape formed out of triangles. When drawn, a triangle fan does not draw the lines or
vertex labels shown in this figure.
U2
V4
Ve
U3
V1
US
Field Name Type Size (bits) Description
SymbolCommandType ushort 16 A661_SYMBOL_DEFN
_TRIANGLE_STRIP
NumVertices ushort 16 Number of vertices, must be >= 3.
Vertices array of 64 An array of (X,Y) pairs.
(long, long) *
NumVertices
5.2.3.12 Text
The TEXT command defines a fixed text string that is part of symbol and is drawn
using the current font. The first character of the text string is placed at the specified
position and subsequent characters are drawn to the right. It is drawn using the
current color. The effect of current linestyle on Text for a particular font is OEM-
dependent. The TEXT command does not correspond to any Gp widget.
Field Name Type Size (bits) Description
SymbolCommandType ushort 16 A661 SYMBOL DEFN TEXT
Alignment uchar 8 specifies the alignment of the text with
respect to PosX and PosY.
TOP_LEFT
TOP_CENTER
TOP_RIGHT
LEFT
CENTER
RIGHT
BOTTOM_LEFT
BOTTOM_CENTER
BOTTOM_RIGHT
UnusedPad N/A 8
PosX long 32 The X position.
PosY long 32 The Y position.




ARINC SPECIFICATION 661 — Page 287

5.0 SYMBOL GRAPHICAL DEFINITION

Field Name Type Size (bits) Description
RotationAngle fr(180) 32 Specifies rotation of text with respect to
PosX and PosY.
StringText string 8 * string length | Null-terminated string, followed by zero,
+ pad one, two or three extra NULL for 32 bit
alignment.
5.2.3.13 Size

The SIZE command defines the size of a symbol representation. If multiple

SIZE commands are found in a representation, all but the last are ignored. If
there is no SIZE command in a symbol representation then a default size of
zero is used for that representation.

Size defines a bounding box which does not change if the symbol is rotated.
Unlike other objects having SizeX/SizeY parameters, symbols are not clipped
to the SizeX/SizeY region defined by this command.

Field Name Type Size (bits) Description
SymbolCommandType | | ushort | 16 | A661_SYMBOL DEFN SIZE |
UnusedPad N/A 16
SizeX ulong 32 The width of the symbol
representation.
SizeY ulong 32 The height of the symbol
representation.




ARINC SPECIFICATION 661 — Page 288
6.0 XML DEFINITION FILE SPECIFICATION

6.1 Introduction

This section describes how an ARINC 661 definition file is defined in XML format. It
is assumed that the reader is familiar with XML [1] and ARINC 661 widgets.

The XML DF format is intended to provide a convenient interchange format between
ARINC 661 tools. It also has the advantage that it is human-readable. The XML DF
format includes all the information found in the binary DF, but may also contain
additional information. For example, the XML DF optionally allows names to be given
to widgets (in addition to the widget id). This is convenient for various ARINC 661
tools (e.g. UA Layer editors). There is also provision for additional OEM-specific
information to be added (which also might not correspond to information found in the
binary DF).

Since the XML DF can contain more information than a binary DF, a round-trip
conversion from an XML DF to a binary DF and back again could lose information.

The XML DF grammar description provided defines the core grammar subset. It
does not describe the full grammar because it is expected that OEM-specific XML
elements will also be added.

The XML DF grammar is not widget-type-specific, so does not need to be changed
to support new widgets.

Refer to Appendix C for XML DF examples.
6.2 Description

ARINC 661 Definition XML data consists of the following declarations, in the
order given below. XML comments (starting with “<!--” and ending in “-->*)
may also be given, but not before the “<?xml” element).

1. An XML version processing instruction. The “encoding” attribute should
specify UTF-8 encoding as defined in ISO 10646-1:2000. This is the XML
default value for the encoding attribute, so this specification is optional.
There are some additional character restrictions in the ARINC 661 XML
file, since the ARINC 661 character set does not correspond to
UNICODE. See Section 6.2.5 for more details. For example:

<?xml version="1.0" encoding=“UTF-8"?>

2. A Document Type Declaration (DTD) specification, as found in a
“DOCTYPE” element. There are different formats of this element, some
which declare the grammar locally within the same file, and others
which refer to an external file. The example below refers to an external
DTD file. The root type (always the first argument of the DOCTYPE)
must be a661_df. The DTD does not have to be exactly as defined in
Section 6.3 of this specification (for example, it could introduce new
XML element tags), but needs to follow the Rules given below in this
section.

<!DOCTYPE a661 df SYSTEM “a66l.dtd”>

3. A top-level a661_df XML element, which defines the hierarchy of the
Definition File via its nested children.



ARINC SPECIFICATION 661 — Page 289
6.0 XML DEFINITION FILE SPECIFICATION

Rules for an ARINC 661 XML DF to be compliant with a particular version of
ARINC 661:

It should have a DTD (as specified by the DOCTYPE element), and be both
well-formed and valid (i.e. it has to conform to that DTD).

Its DTD can only differ from the DTD specified in section 6.3 in the following
ways :

1.

2.

It can introduce new “<!IELEMENT” and/or “<!ATTLIST” and/or
“<IENTITY>" commands to define new XML elements.

It can modify existing <IELEMENT” commands to introduce new
XML elements as possible children of existing XML elements.

It can modify existing “<!ATTLIST” commands to add new attributes
to existing XML elements.

It can have other syntactic differences that don’t affect content. This
includes (but is not limited to) differences in comments or
whitespace.

A tool loading the ARINC 661 XML DF:

W N - o

should reject any file that is not both “valid” and “well-formed” in the
standard XML sense. In other words, the file has to have good XML
syntax and must conform to its DTD to be accepted.

has undefined behavior if the ARINC 661 XML DF is not ARINC 661
compliant, as defined in the rules above.

should skip any of the following, possibly giving warnings :

any unrecognized XML element (including children).

any unrecognized XML attribute of a standard ARINC 661 XML element.
any standard A661 XML element that it does not support (including
children). Here are examples:

e any property XML element (i.e. prop, structprop, or arrayprop)
whose (property) name attribute value isn’t supported, as well as
any children it might have.

e any symboldefncmd XML element whose type attribute value is
not supported, as well as any children it might have. (see section
6.2.1).

e any a661_widget XML element whose type attribute value is not
supported, as well as any children it might have. (see section
6.2.2).

The following subsections specify the standard content of the top-level XML
element.

The following table describes a table format that is used in the remainder of this
section to describe each XML element:

XML Element name of the XML Element
Description description of the XML Element
XML Attributes List of the XML attributes of the XML Element.

¢ j.e. the names of the attributes that are specified as “attrib=value”
pairs in the XML element.

Contains (in order)

A description of the legal XML element children of this XML element, if any.




ARINC SPECIFICATION 661 — Page 290

6.0 XML DEFINITION FILE SPECIFICATION

XML Element

name of the XML Element

Properties

If the XML element allows a model child XML element, that model element can
specify properties. For example, properties are used to specify parameters of an
a661_widget XML element. See section 6.2.3 for details regarding the model
XML element.

The following XML fragment gives an example of how model XML elements are
used to define properties. In it a model XML element specifies the parameter values
of a CheckButton widget:

<a661_widget name=“CKB_CHOICE” type=“A661 CHECK BUTTON” >
<model>
<prop name=“WidgetId” value=“2"/>
<prop name="“Visible” value=“A661 TRUE”/>
<prop name=“Enable” value=“A661 TRUE”/>
<prop name=‘“CheckButtonState” value=“A661 UNSELECTED”/>
<prop name=“StyleSet” value=“1"/>
<prop name=“PosX” value=“100"/>
<prop name=“PosY” value=“100"/>
<prop name=“SizeX” value=%3000"/>
<prop name=“SizeY” value=%900"/>
<prop name=“NextFocusedWidget” value=“0"/>
<prop name=“AutomaticFocusMotion” value=“A661 FALSE"/>
<prop name=“LabelSring” value=“SELECT”/>
<prop name=“MaxStringLength” value=“7"/>
<prop name=“Alignment” value=“A661 LEFT”/>
<prop name="“PicturePosition” value=“A661 LEFT”/>
</model>
</a661 widget>

The following table describes the a661_df element, which is the root element of the
XML data. The following parts of this element provide information that is not found in
the binary DF:

name XML attribute.

XML Element a661_df
Description This is the root object of the XML data. It defines the entire DF.
XML Attributes e name (optional, string): this is the name of the DF. It corresponds to the

name of the file (not including file extension).

library_version (required, unsigned char): this gives the
implementation dependent library version of the DF as found in the
binary DF header. Refer to section 4.5.3.2.

supp_version (required, unsigned char): this gives the supplement
version of the DF as found in the binary DF header. Refer to section
4.5.3.2.

Contains (in order)

A model element.

An optional symboltable element
Zero or more picturetable elements.
One or more a661_layer elements

Properties

Applicationld (unsigned short) : this is the identification number of the
user application associated with this DF. This information is found in the
binary DF header. Refer to section 4.5.3.2.

6.2.1 Picture and Symbol Graphical Definitions

This section describes XML elements related to Symbol Graphical Definitions and
Picture Definitions that are defined locally within the DF. See section 5 for more
information on Symbol Definitions. See Section 7 for more information on
Picture Definitions.




The following

ARINC SPECIFICATION 661 — Page 291
6.0 XML DEFINITION FILE SPECIFICATION

table describes the symboltable XML element.

XML Element symboltable

Description Defines a table of Symbol Graphical Definitions that are stored within the
DF.

XML Attributes None

Contains Zero or more symboldefn elements.

Properties None.

The following table describes the symboldefn XML element. The following parts of
this element provide information that is not found in the binary DF:

name XML attribute.

XML Element symboldefn
Description Defines the graphical representation of a symbol.
XML Attributes name (optional) : a name for the symbol definition. This name might be

referenced elsewhere in the XML file instead of a numeric symbol id value.

Contains (in order)

e arequired model element

e required stdrepr element.
e an optional focusrepr element
e an optional highlightrepr element
e an optional rectangular_sensitive area or
circular_sensitive area element
Properties Id : an unsigned short value giving the id number of the symbol.
The following table describes the stdrepr XML element.
XML Element stdrepr
Description Defines the standard representation of a symbol defined within the DF.
XML Attributes None
Contains Zero or more symboldefncmd elements.
Properties None.
The following table describes the focusrepr XML element.
XML Element focusrepr
Description Defines the focus representation of a symbol defined within the DF.
XML Attributes None
Contains Zero or more symboldefncmd elements.
Properties None.
The following table describes the highlightrepr XML element.
XML Element highlightrepr
Description Defines the highlight representation of a symbol defined within the DF.
XML Attributes None
Contains Zero or more symboldefncmd elements.
Properties None.
The following table describes the rectangular_sensitive_area XML element.
XML Element rectangular_sensitive_area
Description Defines a rectangular sensitive area definition command.
XML Attributes None
Contains One model element.




ARINC SPECIFICATION 661 — Page 292

6.0 XML DEFINITION FILE SPECIFICATION

Properties The properties available correspond directly to the parameters defined per

in the rectangular sensitive area definition command in section 5.

The following table describes the circular_sensitive_area XML element.

XML Element circular_sensitive_area

Description Defines a circular sensitive area definition command.

XML Attributes None

Contains One model element.

Properties The properties available correspond directly to the parameters

defined in the circular sensitive area definition command in section

5.

The following table describes the symboldefnecmd XML element. The following
parts of this element provide information that is not found in the binary DF:
e name XML attribute.

XML Element symboldefnecmd

Description Defines a symbol graphical definition command.

XML Attributes e name (optional) : this gives the symbol definition command object a
name. This name would be purely for descriptive purposes, and would
not be referenced elsewhere in the XML file.

o type (required) : this gives the type of symbol graphical definition
command (e.g. A661_SYMBOL_DEFN_ARC_ELLIPSE). Refer to
section 5 for the legal symbol graphical definition command types.

Note: the following symbol definition types cannot be
used here, since they are handled via the
rectangular_sensitive_area,
circular_sensitive_area, focusrepr and
highlightrepr XML elements:

e A661_SYMBOL_DEFN_RECTANGULAR
e A661_SYMBOL_DEFN_CIRCULAR

e A661_SYMBOL_DEFN_FOCUS

e A661 _SYMBOL_DEFN_HIGHIGHT

Contains One model element.

Properties The properties available correspond directly to the parameters defined per

type of symbol definition command in section 5. Unused pad parameters

should not be specified as properties.

The XML DF defines pictures a bit differently than the binary DF. Refer to
Section 7 for more details on the binary representation. What follows is a quick
comparison.

The binary DF has zero or more A661_Picture_Block_Structure_DT structures,
each of which specifies:

PixelFormat: A661_PIX_FMT_RGBA 8,
A661_PIX_FMT_LUMINANCE_ALPHA 8,
A661_PIX_FMT_COLOR_INDEXED_8 or OEM-specific value.

NumberOfPicturesinBlock.
NumberOfColorTableEntries.

ColorTableFormat: A661_PIX_FMT_RGBA_8,
A661_PIX_FMT_LUMINANCE_ALPHA_8 , or OEM-specific value. (Only
useful if NumberOfColorTableEntries is greater than 0 and the
PixelFormat references a color palette, e.g.
A661_PIX_FMT_COLOR_INDEXED_38).



ARINC SPECIFICATION 661 — Page 293
6.0 XML DEFINITION FILE SPECIFICATION

The color table, composed of NumberOfColorTableEntries color table
entries, whose representation depends on the ColorTableFormat.

The picture definitions, each of which specifies:
o PictureReference.

o NumberOfPixelsWidth.

o NumberOfPixelsHeight.
(@]

The pixel data of the picture according to the PixelFormat (and
references the color table if applicable).

The XML DF has an optional picturetable XML element, which contains:

Zero or more picturedefn XML elements, each of which specifies:
o A PictureReference property.
o A PixelFormat property.

o A ColorTableFormat property, only used if PixelFormat is color
palette-based (e.g. A661_PIX_FMT_COLOR_INDEXED_S8).

o An ImageFile property giving the name of a PNG file.

When converting from an XML DF to a binary DF:

The pixel data is found in the image file. It might need to be transformed
before copying to the binary DF, e.g. if it isn’t represented in the
required PixelFormat.

The NumberOfPixelsWidth and NumberOfPixelsHeight information is
found in the image file.

The color tables are computed as necessary based on the required
ColorTableFormat and the colors used in the image files.

A661_Picture_Block_Structure_DT structures are created where
necessary, from picturedefn XML elements having the same
PixelFormat (and ColorTableFormat if applicable). The maximum size of
the color tables is limited by the PixelFormat . This may limit which
pictures may be grouped together. For example, pictures using
PixelFormat of A661_PIX_FMT_COLOR_INDEXED_8 can only be
grouped together if the total number of colors they use does not exceed
256. The exact details of this algorithm are OEM-specific. The main goal
is to reduce binary DF size by grouping pictures using the same color
palette format together, where possible.

The following table describes the picturetable XML element, defining the set of
picture definitions stored in the DF. A picturetable corresponds to the
sequence of PictureBlockStructure blocks found near the top of the binary DF.

XML Element picturetable

Description Defines a block of picture definitions that are stored within the DF.
XML Attributes None

Contains Zero or more picturedefn elements.

Properties None

The following table describes the picturedefn XML element. The following parts of
this element provide information that is not found in the binary DF:

. ImageFile property.



ARINC SPECIFICATION 661 — Page 294

6.0 XML DEFINITION FILE SPECIFICATION

The ImageFile property refers to an external PNG (Portable Network Graphics) file
which contains the picture pixel data. The PNG file format supports a variety of pixel
formats, including both (RGBA) palette-based and RGBA. It also has the advantages
that it supports lossless compression and is open source. Refer to
www.w3.org/Graphics/PNG/ or www.libpng.org for details.

XML Element picturedefn

Description Defines a local picture in a DF. A PNG (Portable Network Graphics) file is
used to store the pixel data and image size. The PNG file format supports
lossless compression and a variety of pixel formats.

XML Attributes e name (optional): this is purely for descriptive purposes.

Contains One model element.

Properties o PictureReference: ushort: a numeric identifier that widgets such as

Picture and PicturePushButton use to identify a bitmap they wish to

display.

ImageFile (string): file pathname specifying a PNG (Portable Network

Graphics) file that contains the image contents and specifies the

image size in pixels. The path may be relative or absolute. Relative

pathnames are relative to the directory which contains the XML DF file
containing the a661_picture_defn element. Note: it is recommended to
avoid the usage of absolute pathnames to help make it easier to move

XML files from one directory (or machine) to another.

PictureFormat: (uchar): indicates how the picture pixel information

will be stored in the binary DF. It does not necessarily correspond to

the internal representation of the PNG file itself. The most common

PNG internal representations are RGBA-based. It is possible to use an

RGBA PNG file in conjunction with any of the picture representations

below. In some cases processing could be required to transform the

PNG format into the requested binary DF format.

e A661_PIX_FMT_RGBA_8 : It is easy to extract this format of RGBA
pixel information from a PNG file, regardless of its internal
representation.

e A661_PIX_FMT_LUMINANCE_ALPHA_ 8: PNG supports a
“grayscale with alpha” representation that maps to this directly. If
the PNG is in another format that allows non-gray colors its pixel
values would be converted to grayscale values.

e A661_PIX_FMT_COLOR_INDEXED_8 : This setting requires that
the PNG file uses 256 or less different colors.

ColorTableFormat (uchar) : specifies the format of the color table in

the binary DF (only useful if PictureFormat is a color palette format

such as A661_PIX_FMT_COLOR_INDEXED_8). The PNG file could
have a different representation (e.g. a non-palette representation).

e A661_PIX_FMT_RGBA_8 : There are no warning or error cases
with this choice.

e A661_PIX_FMT_LUMINANCE_ALPHA_8: If the PNG is in another
format that allows non-gray colors its pixel values would be
converted to grayscale values.

6.2.2 Layers and Widgets

The following table describes the a661_layer XML element. The following aspects of
this element provide information that is not found in the binary DF:

1.

name XML Attribute

2. Height property
3. Width property




ARINC SPECIFICATION 661 — Page 295
6.0 XML DEFINITION FILE SPECIFICATION

XML Element a661_layer
Description Defines a layer.
XML Attributes e name (optional) : this is purely for descriptive purposes.
Contains e A model element.
e Zero or more a661_widget elements.
Properties

e Layerld (unsigned char) : the layer id number.
e ContextNumber (unsigned short) : the “context number” of the layer.
o Height (unsigned long) : the height of the layer, in 1/100 mm.

e Width (unsigned long) : the width of the layer, in 1/100 mm.

The following table describes the a661_widget XML element. The following aspects
of this element provide information that is not found in the binary DF:

e name XML Attribute
XML Element a661_widget
Description Defines a widget.
XML Attributes

e name (optional) : this is purely for descriptive purposes.

o type (required) : this gives the type of the ARINC 661 widget (e.g.
“A661_PUSHBUTTON?”).

Contains (in order)

¢ A model element.

e Zero or more a661_widget elements (which represent the child widgets of
a container widget).

Properties

There is a property specified for each widget “D” or “DR” property, with the
following exceptions:

o Parentldent parameters are not specified using a property because they
can be calculated based on the context: 0 if is a top-level widget within the
layer, otherwise it is the Parentldent of the parent widget.

o WidgetType parameters are not specified using a property since they are
already specified using the type XML Attribute described above.

e Unused pad Ilocations are not specified wusing properties.

Note: all unused pad locations are implicitly zero-filled.

6.2.3 Properties

Property values are specified using the model XML element.

It isn’t applicable in this section to do either of the following:

Provide the Properties row in the XML element tables. Property values don’t
have properties.

Indicate which parts of these elements are found in the binary DF. Look at
the Properties sections of the tables in the sections above for this
information.




ARINC SPECIFICATION 661 — Page 296

6.0 XML DEFINITION FILE SPECIFICATION

Here is a summary of the XML elements described in this section:

The model XML element holds the property values of a particular object.

The prop, structprop, and arrayprop XML elements specify the value of a
property, having a simple, structure or array type, respectively

The field, structfield and arrayfield XML elements specify the value of a field
of a structure, having a simple, structure or array type, respectively

The entry, xyentry, structentry, and arrayentry XML elements specify the
value of an entry of an array, having a simple, (x,y) coordinate, structure or
array type, respectively

In principle these elements can be nested deeply, to allow arrays of structures of
arrays, etc. In practice the usage is much more limited, based on the much simpler
data types which are used within the ARINC 661 standard.

If an object has a property, but its value is not specified within the model element,
an OEM-specific default value of that property should be used instead.

Rules for handling string values:

Properties that contain a variable number of elements should be modeled
using an array. The property that specifies the size of the array should be
specified before the array property itself. Here are some examples:

o The EntryList parameter of the ComboBox widget

o The PopUpldentArray, EnableArray and StringArray parameters of the
PopUpMenu or PopUpMenuButton widgets

Properties that specify an enumerated type should use the name of the
enumerated values in the XML file. For example, Boolean properties should
show values “A661_TRUE” and “A661_FALSE” in the XML file.

Properties that provide an attribute index (color, styleset, symbol or linestyle)

can be given either as a symbolic name, or as a numeric index. The symbolic

names are OEM-specific.

o Inthe case of a symbol index, if it refers to a locally defined symbol, the
name of the symbol as given in the symboldefn XML item can be used.
The name of a CDS-defined OEM-specific symbol could also be used.

Properties that specify an “fr” (fixed real) value can be expressed in either of
the following ways

o as a “real” value if the number given contains a “.
o as an integral representation of the fixed real value if the number given

does not contain a “.

For integral numeric values, a C-style hex representation should also be
supported. A hex value starts with zero, followed by the letter “x” (lowercase
or uppercase), followed by a sequence of hex digits (e.g. “Ox6F12”).

ARINC 661 characters are restricted to have codes between 0 and 255
inclusive. The UTF-8 XML encoding used in ARINC 661 XML files can in
general support all of UNICODE (whose codes can be much larger than
255), via the use of multi-byte characters. The ARINC 661 XML file does
therefore not support full UTF-8. Some ARINC 661 characters do not
conform to UNICODE. Refer to section 3.2.5.1 for the description of the



ARINC SPECIFICATION 661 — Page 297
6.0 XML DEFINITION FILE SPECIFICATION

ARINC 661 character set, which introduces ARINC 661 specific
characters, and also leaves many characters OEM-dependant.

Note: Characters with codes 0 to 127 are the same in ASCIl and
UNICODE.

Any character - even non printable - can be described in the XML file
through its character code. The selected syntax is &#xhh; where hh is
the 2 hex digit character code. Note: hex letter digits ‘A’ .. ‘F’ must be
given in uppercase. Therefore &#x42; stands for B and A&#x42;C
stands for ABC. Non-printable characters, and characters which do not
conform to UNICODE should be specified in this way. This avoids
problems in XML editors and viewers.

The following table describes the model XML element:

XML Element model

Description Contains the property settings of an object. The “object” is not
necessarily only a widget. Refer to all XML elements that specify
“Properties”.

XML Attributes None

Contains (in order) Zero or more prop and/or structprop and/or arrayprop elements.
(Each child specifies the value of a property).

The following table describes the prop XML element:

XML Element prop
Description Sets a simple property value.
XML Attributes e name (required) : the name of the property.
o value (required) : the simple value of the property.
Contains Has no children.

The following table describes the structprop XML element:

XML Element structprop

Description Sets a struct-valued property value.

XML Attributes e name (required) : the name of the property.

Contains One or more field and/or structfield and/or arrayfield elements.

(Each child element specifies the value of a field of the structure property)

The following table describes the arrayprop XML element:

XML Element arrayprop

Description Sets an array-valued property value.

XML Attributes e name (required) : the name of the property.

Contains zero or more entry and/or xyentry and/or structentry and/or arrayentry

elements.
(Each child element specifies the value of an element of the array
property)




ARINC SPECIFICATION 661 — Page 298

6.0 XML DEFINITION FILE SPECIFICATION

The following table describes the field XML element:

XML Element field
Description Specifies the value of a simple field value within a structure.
XML Attributes e name (required) : the name of the field.

e value (required) : the simple value of the field.
Contains Has no children.

The following table describes the structfield XML element:

XML Element structfield

Description Specifies the value of a structure-typed field value within a structure.

XML Attributes e name (required) : the name of the field.

Contains One or more field and/or structfield and/or arrayfield elements.
(Each child element specifies the value of a field of the sub-structure
value)

The following table describes the arrayfield XML element:

XML Element arrayfield

Description Specifies the value of an array-typed field value within a structure.

XML Attributes e name (required) : the name of the field.

Contains Zero or more entry and/or xyentry and/or structentry and/or arrayentry
elements.
(Each child element specifies the value of an element of the array value.
The children are given in the order in which they appear in the array)

The following table describes the entry XML element:

XML Element entry

Description Specifies the value of a simple entry within an array.

XML Attributes e value (required) : the simple value of the array entry.
Contains Has no children.

The following t

able describes the xyentry XML element:

XML Element xyentry
Description Specifies the value of an (x,y) coordinate-typed entry within an array.
XML Attributes e X (required) : the x coordinate of the array entry.
e y (required) : the y coordinate of the array entry.
Contains Has no children.

The following t

able describes the structentry XML element:

XML Element structentry

Description Specifies the value of a structure-typed entry within an array.
XML Attributes None

Contains One or more field and/or structfield and/or arrayfield elements.

(Each child element specifies the value of a field of the sub-structure

value)




ARINC SPECIFICATION 661 — Page 299
6.0 XML DEFINITION FILE SPECIFICATION

The following table describes the arrayentry XML element:

XML Element arrayentry

Description Specifies the value of an array-typed entry within an array. Note: this could
be a way to specify multi-dimensional arrays.

XML Attributes None

Contains Zero or more entry and/or xyentry and/or structentry and/or arrayentry
elements.

(Each child element specifies the value of an element of the array value)

6.3 Document Type Definition (DTD) Specification

This section describes the grammar in DTD format. In practice, the actual DTD used
may be a superset of this grammar, with OEM-specific XML elements added.

<! ELEMENT

<!ATTLIST
name
libra

a661l_df ( model, (symboltable)?, (picturetable)*, (a66l1_ layer)+ )>

a661_df
CDATA #IMPLIED
ry version CDATA #REQUIRED

supp_version CDATA #REQUIRED>

<l-- ===
< !ELEMENT
< !ELEMENT
<!ATTLIST
name
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT

<!ATTLIST
name

type
<l-=- ===
< !ELEMENT
< !ELEMENT

<!ATTLIST
name

<l-- ===
< !ELEMENT

<!ATTLIST
name

<! ELEMENT

<!ATTLIST
name

type

SYMBOL GRAPHICAL DEFINITION === -->
symboltable ( (symboldefn)* )>
symboldefn ( model, stdrepr, (focusrepr)?, (highlightrepr)?,

(rectangular sensitive area | circular sensitive area)? )>

symboldefn
CDATA #IMPLIED>

stdrepr ( (symboldefncmd)* )>
focusrepr ( (symboldefncmd)* )>
highlightrepr ( (symboldefncmd)* )>
rectangular sensitive area ( model )>
circular sensitive area ( model )>
symboldefncmd ( model ) >

symboldefncmd
CDATA #IMPLIED

CDATA #REQUIRED>

PICTURE DEFINITION === -->
picturetable ( (picturedefn)* )>
picturedefn ( model )>

picturedefn

CDATA #IMPLIED>

LAYERS AND WIDGETS === -->

a661_layer ( model, (a66l1_widget)* )>

a66l layer
CDATA #IMPLIED>

a661 _widget ( model, (a661_widget)* )>
a661_widget

CDATA #IMPLIED
CDATA #REQUIRED>



ARINC SPECIFICATION 661 — Page 300
6.0 XML DEFINITION FILE SPECIFICATION

<!-- === PROPERTIES === -->

<!ELEMENT model ( (prop | structprop | arrayprop)* )>

<!-- property value: the “name” attribute gives the name of the property.
PYOP v eve e the value is simple.
structprop ...... the value is a structure.
arrayprop ....... the value is an array.

<!ELEMENT prop EMPTY>
<!ATTLIST prop
name CDATA #REQUIRED
value CDATA #REQUIRED>
<!ELEMENT structprop ( (field | structfield | arrayfield)+ )>

<!ATTLIST structprop
name CDATA #REQUIRED>

<!ELEMENT arrayprop ( (entry | xyentry | arrayentry | structentry )* )>

<!ATTLIST arrayprop
name CDATA #REQUIRED>

<!-- structure field values: the “name” attribute gives the name
of the field.
field ........ the value is simple.
arrayfield ... the value is an array.
structfield .. the value is a structure.

<!ELEMENT field EMPTY >
<!ATTLIST field
name CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT arrayfield ( (entry | xyentry | structentry | arrayentry)* )>

<!ATTLIST arrayfield
name CDATA #REQUIRED>

<!ELEMENT structfield ( (field | arrayfield | structfield)+ )>

<!ATTLIST structfield
name CDATA #REQUIRED>

<!-- array entries:
entry ........ the array entry is simple.
xyentry ...... the array entry is an (x,y) pair.
arrayentry ... the array entry is an array.
structentry .. the array entry is a structure.

<!ELEMENT entry EMPTY >

<!ATTLIST entry
value CDATA #REQUIRED>

<!ELEMENT xyentry EMPTY >
<!ATTLIST xyentry

x CDATA #REQUIRED

y CDATA #REQUIRED>

<!ELEMENT arrayentry ( (entry | xyentry | arrayentry | structentry )* )>



ARINC SPECIFICATION 661 — Page 301
6.0 XML DEFINITION FILE SPECIFICATION

<!ELEMENT structentry ( (field | arrayfield | structfield)+ )>

6.4 References

o ‘“eXtensible Markup Language (XML)”, a technical recommendation standard of
the W3C. W3C Consortium (www.w3c.org) , release 1.0, February 10, 1998

e “XML Schema”, a technical recommendation standard of the W3C Consortium
(www.w3c.org) , release 1.0, May 2, 2001.



ARINC SPECIFICATION 661 — Page 302
7.0 PICTURE GRAPHICAL DEFINITION

71 Introduction

This section defines how bitmap images can be defined in Definition Files.
These bitmap images are identified by a PictureReference number, and they
can be referenced by a variety of widgets, such as Picture and
PicturePushButton.

Similar to vector symbols defined by the Symbol Graphical Definition language
(see section 5 of this specification), bitmaps defined in a Definition File can be
referenced by any layer whose User Application Layer Definition (UALD) is
defined in the same Definition File as the symbol it wants to reference.

The following scheme should be used to find the appropriate picture for a
given PictureReference number:

e If a Picture with matching ID is found in the DF, use it

e Otherwise, use the predefined (global) Picture with that ID
7.2  Picture Definition Structures

Pictures are defined in a Picture structure, which in turn is part of a
PictureBlock structure. Each PictureBlock determines the pixel format and
color table (if applicable) for all Pictures that it contains.

Table 7-1 below defines the PictureBlock structure. Zero or more PictureBlock
structures may appear inside a Definition File between the Definition File
header and the User Application Layer Definitions (UALDs), as described in
Section 4.5.3.2.



ARINC SPECIFICATION 661 — Page 303

7.0 PICTURE GRAPHICAL DEFINITION

Table 7-1 — PictureBlockStructure

A661_Picture_Block_Structure_DT Type Size Description
(bits)

A661_BEGIN_PICTURE_BLOCK uchar Start keyword opening a picture.

PixelFormat uchar 8 Defines Pixel and storage format, e.g.
A661_PIX_FMT_RGBA_8

NumberOfPicturesinBlock uchar 8 Number of pictures defined in this
block

NumberOfColorTableEntries uchar 8 Size (number of colors) of the color
table.
0 means global CDS color table is
referenced,
only used with PixelFormats that
reference a color table

ColorTableFormat uchar 8 Defines format of each color table
entry, for example
A661_PIX_FMT_RGBA_8.
Ignored if NumberOfColorTableEntries
is zero, only used with PixelFormats
that reference a color table.

UnusedPad ushort 24

[ Color_Table ] {32} Color table entries (if defined), padded
to align with 4 byte boundary, only
used with PixelFormats that reference a
color table

{ A661_Picture_Structure_DT }+ N/A {32}+ One or more pictures in this block

Reserved for future use N/A 32

A661_END_PICTURE_BLOCK uchar 8 Keyword ending a block of symbol
information.

UnusedPad N/A 24 0

Pictures within these PictureBlocks are defined as described in Table 7-2.



ARINC SPECIFICATION 661 — Page 304
7.0 PICTURE GRAPHICAL DEFINITION

Table 7-2 — PictureStructure

A661_Picture_Structure_DT Type | Size Description
(bits)

A661_BEGIN_PICTURE uchar |8 Start keyword opening a picture.

UnusedPad N/A 8

PictureReference ushort |16

NumberOfPixelsWidth ushort |16 Width of the picture in pixels

NumberOfPixelsHeight ushort |16 Height of the picture in pixels

{ A661_Pixel_Values }+ N/A {32}+ |Information for each pixel, padded to
align with 4 byte boundary after the last
pixel

A661_END_PICTURE uchar |8 Keyword ending a block of symbol
information.

UnusedPad N/A 24 0

In this structure, PictureReference is a numeric identifier that widgets such as
Picture and PicturePushButton use to identify a bitmap they wish to display.
Pictures are rectangular; the size of a picture is defined by the width and
height, measured in the number of pixels used in the bitmap that defines the
picture. Note that the details of scaling or mapping this image to pixels of the
actual display is dependent on the CDS implementation.

Pixels data ({ A661_Pixel_Values }+) is stored as a sequence of pixels, starting
with the top left pixel and then progressing left to right, one line at a time until
the bottom line is completed.

The definition of pixel and storage formats is addressed by an enumerated
type, which determines both the pixel format and the storage format. While the
support for various pixel and storage formats is largely dependent on the CDS
implementation, three widely used formats are defined in this specification.
CDS implementers may adopt these formats at their discretion or add
additional formats as required.

Table 7-3 — Pixel and Storage Formats

Enumeration Type Value Pixel Format Storage Format
(bits)
A661_PIX_FMT_RGBA_8 Red, Green, Blue, 8+8+8+8=32
Alpha
A661_PIX_FMT_LUMINANCE_ALPHA_8 Luminance, 8+8=16
Alpha
A661_PIX_FMT_COLOR_INDEXED_8 Color Index 8

Red, Green, and Blue information in the formats shown in Table 7-3 are stored
in 8 bits each, where zero means lowest intensity and 255 means highest
intensity of each base color. For Alpha, zero means fully transparent and 255



ARINC SPECIFICATION 661 — Page 305
7.0 PICTURE GRAPHICAL DEFINITION

means fully opaque. Likewise, a luminance of zero has the lowest intensity,
and 255 represents the highest intensity.

7.3 Color Tables

Pictures may reference a color table, in which case indices into this table are
used instead of explicit RBG values. There are two different scenarios:

1.

NumberOfColorTableEntries = 0:

No color table is defined in the PictureBlock. Instead, color index
values in the picture are interpreted the same way as Colorindex
parameters in other widgets, such as GpLine. This means that the
global CDS color table is used for the picture. The ColorTableFormat
parameter is ignored.

NumberOfColorTableEntries > 0:

In this case, the NumberOfColorTableEntries parameter defines how
many colors indices are available. The range of color index values is
from zero to (NumberOfColorTableEntries — 1), meaning that at most
a PictureBlock can define 255 colors in a color table. The
ColorTableFormat parameter determines the format of the data
describing each color table entry, starting with color index zero.



ARINC SPECIFICATION 661 — Page 306

APPENDIX A
GLOSSARY

Active Layer

When a layer is active, the CDS updates widget parameters of this layer (refer to
Section 2.3.2.4 — Layer Activity/Visibility Management).

ARINC 661 Widget Library

Widget Library resident in the CDS containing the full description (graphic and
behavior) of each ARINC 661 widget that a user application may require for
displaying.

Cockpit Display System (CDS)
Equipment that performs the functions described in this document.

Crew member interaction (or crew member input)
Action of a crew member on an interactive widget through the use of an input device.

Cursor
Visual indicator of the point of crew input on the screen.

Definition File (DF)
A Definition File is associated with one UA. The DF contains the UA Layer
Description (UALD) to be displayed on the CDS.

Definition phase

Consists in loading of DF in the CDS, which specify the creation of widgets in order
to describe user application’s interface layouts. The instantiation (creation plus first
setting of all parameters) of widgets inside the CDS is part of the definition phase.
This will occur before the beginning of the run-time phase.

Disabled
State of an interactive widget when it does not react to crew-member activation.

Display

A non-specific term, generally meaning “thing you look at.” As a noun, “display”
refers to a physical assembly of metal and glass (Display Head), or to the pattern of
colored dots that appear on that glass (Format). As a verb, “display” refers to the act
of deciding which of those colored dots to light (render) or, loosely, to providing the
parameters necessary to be able to render.

Display Head
A physical assembly that can generate patterns of colored dots (raster) or lines
(stroke).

Event

Notification sent by the CDS to a UA to indicate a crew member interaction has
occurred on a widget owned by that UA.

Focus

State of a widget in which this widget receives the events triggered by a crew
member through a keyboard or other device, such as rotary wheels, except for the
cursor control device.



ARINC SPECIFICATION 661 — Page 307
APPENDIX A
GLOSSARY
Format

Format image rendered to the whole display unit surface. A format is constructed
from one or more windows

Highlight

A widget is highlighted when the cursor over-flies its interactive area. A click with the
cursor control device on an highlighted widget will bring the focus on this widget
(refer to Focus). Depending on the OEM choice, the click may also select the widget.

Inner state

Specific states of a widget. This state level represents the core of the widget
behavior as well as its functional objectives. Examples of inner states :

For a basic PushButton, there is one inner state.
For a CheckButton, there are two inner states, which are ‘SELECTED’ and
‘UNSELECTED’

Interactive

Category of widgets that can generate events in response to crew member activity
on input device(s).

Layer

Layers provide the mechanism to combine graphical information from several UAs
inside one window. For example, layers of the ND image include compass rose, map
with interactive way-points, TCAS information, terrain or weather display. A layer is
connected to a unique UA, whereas a UA can use several layers.

A layer is the higher level entity of the CDS that is known by the UA. From the UA
point of view, the Layer is the high level container in the hierarchical structure of the
UA widgets. From the CDS point of view, the layer is one graphical layer associated
with one UA inside a window. The layer layout within a window is beyond the scope
of this standard. Refer to Section 2.3.2, Layer Definition.

Look & Feel

Cover the graphical characteristics of a widget, which are not managed by a UA but
by the CDS in order to insure a homogeneous HMI. This terminology also applies to
widget behavior internal to the CDS, leading to a state diagram internal to the CDS
that manages transition between visual representations.

Mask

A graphical representation (a picture, typically a bitmap) used to implement non-
rectangular clipping. The exact format is CDS-specific. Typically, a Mask is a Picture
made up of only Black and Transparent elements.

Navigation Display (ND)
Generally, the ND includes the Course/Speed/Flight Plan/Surveillance indicators.

Normal

Normal visual representation of the widget when it is visible, enabled, and not
selected.

Picture
A fixed image, stored in the CDS, referenced by an index, not rotatable.



ARINC SPECIFICATION 661 — Page 308
APPENDIX A
GLOSSARY
Race condition

Race condition occurs when there is a cross of messages between the CDS and a
UA concerning dynamic widgets. It can lead to some inconsistency between the UA
context and the CDS display.

Reference to ...
The index or ID of something that has been loaded into the CDS.

Render

The act of combining software-code instructions, uploaded symbols and parameters
into a pattern of colored dots or lines on a display head.

Run-time phase

The run-time phase consists of dynamic data transfers between UAs and CDS using
ARINC 661 run-time commands.

Style guide

The style guide defined by the OEM should describe the Look & Feel (common
graphical characteristics and consistent behavior) inside the cockpit, and thus,
provide necessary information to UAs for their HMI interface design.

Symbol
A rotatable image, stored in the CDS, referenced by an index.

User Application Layer Definition (UALD)

The UALD describes the structure of data of one layer of a UA. This set of data
describes all the widgets that have to be allocated in the CDS inside this layer and
describes widget parameters values as well as the widget tree to be drawn.

User Application (UA)

A UA can use several layers in one window to draw its graphical objects, typically to
insure graphical priorities among layers.

Visual representation

A widget is characterized by its inner states. One inner state covers several
graphical representations. The visual representation “state” is managed internal to
the CDS.

An example of visual representations for a Button follows:

Highlighted:

Normal:

Pl

Widget
Graphical-user interface, object between a crew member and the UAs. Widgets
belong to a Widget Library inside the CDS. A widget may (or not) be interactive (i.e.



ARINC SPECIFICATION 661 — Page 309

APPENDIX A
GLOSSARY

accept and react to crew member actions). A widget is defined by a set of
characteristics accessible to UA through ARINC 661 parameters, some functional
states corresponding to specific sets of graphical parameters , which refers to “Look
& Feel,” and a behavior.

Window
A window defines a rectangular physical area of the display surface. A window
consists of one or more layers and is controlled by the CDS.



ARINC SPECIFICATION 661 — Page 310

ADI
AEEC
BITE
CCD
CDS
CPU
DCDU
DF

DU
EFI
EFIS
EICAS
FM
FMS
GNLU
GNU
HMI
HUD
IRS
I/0
L1,L2 ,L3
LRU
LSB
MCDU
MFD

MSB

APPENDIX B
ACRONYMS AND ABBREVIATIONS

Attitude Director Indicator

Airlines Electronic Engineering Committee
Built-In Test Equipment

Cursor Control Device

Cockpit Display System

Central Processing Unit

Data-link Control Display Unit

Definition File

Display Unit

Electronic Flight Instrument

Electronic Flight Instrumentation System
Engine Indication and Crew Alerting System
Flight Management

Flight Management System

GNSS Navigation and Landing Unit
GNSS Navigation Unit

Human Machine Interface

Head-Up Display

Inertial Reference System

Input/Output

Layer 1, Layer 2, Layer 3

Line Replacement Unit

Least Significant Bit

Multi-Purpose Display Unit
Multi-Function Display

Most Significant Bit



ND

OEM

PFD

PRP

TAWS

UA

UALD

WXR

2D

3D

ARINC SPECIFICATION 661 — Page 311

APPENDIX B
ACRONYMS AND ABBREVIATIONS

Navigation Display

Original Equipment Manufacturer
Primary Flight Display

Projection Reference Point

Terrain Avoidance Warning System
User Application

User Application Layer Definition
Weather Radar

Two Dimensional

Three Dimensional



ARINC SPECIFICATION 661 — Page 312

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C-1  User Application Example Overview

The following UA example controls the cabin temperature using two interfaces:

1. The UA is connected to the aircraft environment with:
a. one input: a cabin temperature sensor
b. one output: an actuator for the heater system and cooler system

2. The UA is connected to the CDS with a ARINC 661 interface to display the
following format in a DU window:

Buttons increment or decrement a selected temperature for the cabin, indicated by the
small green pointer. The current cabin temperature is indicated by both the white arrow
and the digital readout.

The format is composed of eight ARINC 661 widgets summarized as follows:

The scale is an ARINC 661 picture (A661_PICTURE : several colors, no
rotation).

Pointers (selected and real temperature) are ARINC 661 symbols
(A661_SYMBOL.: can rotate, has one selected color).

The digital readout and its unit string are ARINC 661 labels (A661_LABEL).

Buttons are ARINC 661 buttons using a reference to a symbol
(A661_PICTURE_PUSH_BUTTON).

All drawings are clipped inside an ARINC 661 panel container (A661_PANEL).



ARINC SPECIFICATION 661 — Page 313

APPENDIX C
EXAMPLE OF A DEFINITION FILE

Each widget is a node in a hierarchical structure defined in the DF. The tree for
Example C.1 is:

C-2 Example of Application Code at Run Time

An example of UA code for controlling the cabin temperature example at run time
follows:

if ((selectedCabinTemp < maxValue) and (BUTTON_ PRESSED.id = IncreaseSelectTemp)) then
increment (selectedCabinTemp) ;

end if
if ((selectedCabinTemp > minvValue) and (BUTTON_PRESSED.id = DecreaseSelectTemp)) then
decrease (selectedCabinTemp) ;

end 1if
Actuator.heaterCommand = PIDcontroller (selectedCabinTemp) ;
angleValue = selectedCabinTemp * scaleFactor + offset;
setParameter (TemperatureSelectedPointer, RotationAngle, angleValue) ;
cockpitTemp = Sensor.cabinTemp
if IsValid(cockpitTemp) = True then
angleValue = cockpitTemp * scaleFactor + offset;

setParameter (IndicatedTempDRO, LabelString, toString(cockpitTemp)) ;
setParameter (TemperatureIndicatedPointer, RotationAngle, angleValue) ;
if (cockpitTemp > ThresholdValue ) then
setParameter (IndicatedTempDRO, StyleSet, A661 STYLE SET WARNING) ;
setParameter (TemperatureIndicatedPointer, StyleSet, A661 STYLE SET WARNING) ;
else
setParameter (IndicatedTempDRO, StyleSet, A661 STYLE SET NOMINAL) ;
setParameter (TemperatureIndicatedPointer, StyleSet, A661 STYLE SET NOMINAL) ;

end 1if

setParameter (TemperatureIndicatedPointer, Visible, A661 TRUE) ;
setParameter (IncreaseSelectTemp, Enable, A661 TRUE) ;
setParameter (DecreaseSelectTemp, Enable, A661 TRUE) ;

else
setParameter (IndicatedTempDRO, LabelString, “---");
setParameter (IndicatedTempDRO, StyleSet, A661_ STYLE SET WARNING) ;
setParameter (TemperatureIndicatedPointer, Visible, A661 FALSE) ;
beginBlock () ;
setParameter (IncreaseSelectTemp, Enable, A661 FALSE) ;
setParameter (DecreaseSelectTemp, Enable, A661 FALSE) ;
endBlock () ;

end 1if

Begin-Block and End-Block commands limit the amount of data that can be processed
as coherent information. In the following example, the corresponding byte stream is
sent for this block by the UA assuming that the network allows transmission of blocks
of such size. In other cases, sub-blocks might be used.



ARINC SPECIFICATION 661 — Page 314

APPENDIX C
EXAMPLE OF A DEFINITION FILE

Paragraphs are aligned with 32 bits length words.

# Word 1

BO # A661 BEGIN BLOCK

42 # LAYER ID

1230 # CONTEXT NUMBER
# Word 2

00000024 # BLOCK SIZE (= 36 bytes, words 1 - 9)
# Word 3

CA02 # A661 CMD SET PARAMETER

000C # COMMAND SIZE (= 12 bytes, words 3 - 5)
# Word 4

0000 # UNUSED PAD

4566 # WIDGET ID (IncreaseSelectTemp)
# Word 5

B180 # PARAMETER ID (A661_ENABLE)

0000 # VALUE (A661_FALSE)
# Word 6

CA02 # Ae66l CMD_SET PARAMETER

000C # COMMAND SIZE (= 12 bytes, words 6 - 8)
# Word 7

0000 # UNUSED PAD

4567 # WIDGET ID (DecreaseSelectTemp)
# Word 8

B180 # PARAMETER ID (A661_ENABLE)

0000 # VALUE (A66_FALSE)
# Word 9

DO # A661 END BLOCK

000000 # UNUSED PAD



C-3

ARINC SPECIFICATION 661 — Page 315
APPENDIX C

EXAMPLE OF A DEFINITION FILE

When a CCD click occurs on one of the buttons, the following message is sent from the CDS to

the UA:

BO
42
1230

00000018

CCo1
0ooC

4566

CCD1

E060
0000

DO
000000

H*H H H H

H H*

+H

# WIDGET ID

Word 1

A661 BEGIN BLOCK
LAYER ID

CONTEXT NUMBER

Word 2

BLOCK SIZE (= 24 bytes, words 1 - 6)
Word 3

A661 NOTIFY WIDGET_EVENT
COMMAND SIZE (= 12 bytes, words 3 - 5)

Word 4

(IncreaseSelectTemp)

EVENT ORIGIN

Word 5
EVENT ID (A661_SELECTION)
UNUSED PAD

Word 6
A661 END BLOCK
UNUSED PAD

The UA then acknowledges the event by sending an acknowledgment back to the

CDS.

Definition File

Section C.3 provides an example of a User Application Definition File (UADF) for the
cabin temperature UA, containing only one layer. Note: unit length of measure is 1/100

of millimeter.

UADF Example for Cabin Temperature Application

# START DF

# Input file:
cabin temperature.xml

# Hexadecimal

A661
00
02

6788
0000

A0
42

+H

Comment

Word 1

A661 DF MAGIC NUMBER
A661 LIBRARY VERSION
A661 SUPP VERSION

H o HF H*

Word 2
DF ID
# SIZE OF OEM FREE DATA

H* #*

# Word 3
A661 BEGIN LAYER BLOCK
# LAYER ID

+H



ARINC SPECIFICATION 661 — Page 316

APPENDIX C
EXAMPLE OF A DEFINITION FILE

UADF Example for Cabin Temperature Application

1230 # CONTEXT NUMBER

# Word 4
0000013C # BLOCK SIZE (=316 bytes, words 3 - 81)

# Widget instance number:1

# Word 5
CA01 # A661 CMD CREATE
0020 # COMMAND SIZE (= 32 bytes, words 5 - 12)
Al1FO # WIDGET TYPE (A661_PANEL)
1221 # WIDGET ID (CabinTempPanel)
0000 # PARENT ID (zero indicates layer is parent)
01 # Enable, value:A661_ TRUE
01 # Visible, value:A661 TRUE
00002AF8 # PosX, value: 11000 = 110 mm, 4.33 in
0000319C # PosY, value: 12700 = 127 mm, 5 in
00001DC4 # SizeX, value: 7620 = 76.2 mm, 3 in
0000175A # SizeY, value: 5978 = 59.78 mm, 2.44 in
0000 # StyleSet, value:A661 STYLE SET DEFAULT
00 # MotionAllowed, value: A661 FALSE
00 # UNUSED PAD

# Widget instance number:2

# Word 13
CAO01 # A661 CMD CREATE
0020 # COMMAND SIZE (=32 bytes, words 13 - 20)
A200 # WIDGET TYPE (A661_PICTURE)
1222 # WIDGET ID (TemperatureCelciusScale)
1221 # PARENT ID (CabinTempPanel)
00 # Anonymous, value:A661 FALSE
01 # Visible, value:A661 TRUE
000002EE # PosX, value: 750, 7.5 mm, 0.31 in
00000956 # PosY, value: 2390, 23.9 mm, 0.98 in
000017EE # SizeX, value: 6126, 61.26 mm, 2.41 in
000009BA # SizeY, value: 2490, 24.9 mm, 1.02 in
0000 # StyleSet, value: A661 STYLE SET DEFAULT
9870 # PictureRef

# Widget instance number:3

# Word 21
CAO01 # A661 CMD CREATE
0020 # COMMAND SIZE (=32 bytes, words 21 - 28)
A310 # WIDGET TYPE (A661_SYMBOL)
1223 # WIDGET ID (TemperatureIndicatedPointer)
1221 # PARENT ID (CabinTempPanel)
00 # MotionAllowed, value: A661 FALSE
01 # Visible, value:A661 TRUE
00000EE2 # PosX, value:3810, 38.1 mm, 1.56 in
00000956 # PosY, value: 2390, 23.9 mm, 0.98 in
0000238C # RotationAngle, value: 9100 = 50 deg [fr(180)

LSB



ARINC SPECIFICATION 661 — Page 317

APPENDIX C
EXAMPLE OF A DEFINITION FILE

UADF Example for Cabin Temperature Application

0.0005439]
0001 # StyleSet, value: OEM STYLESET FREE COLOR
9874 # PictureReference,

value:SymbolTemperatureIndicatedPointer

OF # ColorIndex, value: OEM_WHITE
000000 # UNUSED PAD
# Widget instance number:4
# Word 29
CAO1 # A661 CMD CREATE
0020 # COMMAND SIZE (=32 bytes, words 29 - 36)
A310 # WIDGET TYPE (A661 SYMBOL)
1224 # WIDGET ID (TemperatureSelectedPointer)
1221 # PARENT ID (CabinTempPanel)
00 # MotionAllowed, value: A661 FALSE
01 # Visible, value:A661 TRUE
00000EE2 # PosX, value:3810, 38.1 mm, 1.56 in
00000956 # PosY, value: 2390, 23.9 mm, 0.98 in
0000071C # RotationAngle, value: 1820 = 10 deg [fr(180) LSB =
0.0005439]
0001 # StyleSet, value: OEM_STYLESET FREE COLOR
0003 # SymbolReference,
value:SymbolTemperatureSelectedPointer
01 # ColorIndex, value: OEM_GREEN4
000000 # UNUSED PAD
# Widget instance number:5
# Word 37
Ccaol # A661 CMD CREATE
2C # COMMAND SIZE (=44 bytes, words 37 - 47)
Al60 # WIDGET TYPE (A661 LABEL)



ARINC SPECIFICATION 661 — Page 318

1225
1221

00

01
00000B30
000006E8
000003B6
0000026E
00000000

0801
0004

00

00

00

14
32340000

CAOQ1

2C

Al60
1226
1221

00

01
00000B30
000006ES8
000001DS
0000026E
00000000

0801
0002

00

00

00

13
81430000

APPENDIX C

EXAMPLE OF A DEFINITION FILE

UADF Example for Cabin Temperature Application

H O H H HF O H H oH H HF OH H H H O H H*

H oHF H H H H H O H H FH OH H HHE H HEHHHFHEHF

+H

WIDGET ID (IndicatedTempDRO)

PARENT ID (CabinTempPanel)

Anonymous, value:A661 FALSE

Visible, value:A661_ TRUE

PosX, value: 2864, 28.64 mm, 1.13 in

PosY, value: 1768, 17.68 mm, 0.72 in
SizeX, value: 950, 9.5 mm, 0.39 in

SizeY, value: 622, 6.22 mm, 0.25 in
RotationAngle, value: 0 deg [fr(180) LSB =

.0005439]

StyleSet, value:0EM STYLESET NORMAL READOUT
MaxStringLength, value:4

MotionAllowed, value:A661 FALSE

Font, value: OEM STYLESET DEFAULT FONT
UNUSED PAD

Alignment, value:A661 RIGHT

LabelString, value: “24”"

Widget instance number:6

Word 48

A661 CMD CREATE

COMMAND SIZE (=44 bytes, words 48 - 58)
WIDGET TYPE (A661 LABEL)

WIDGET ID (IndicatedUnitLabel)

PARENT ID (CabinTempPanel)

Anonymous, value:A661 FALSE

Visible, value:A661 TRUE

PosX, value: 3984, 39.84 mm, 1.63 in
PosY, value: 1768, 17.68 mm, 0.72 in
SizeX, value: 473, 4.73 mm, 0.19 in
SizeY, value: 622, 6.22 mm, 0.25 in
RotationAngle, value: 0 deg [fr(180) LSB =

.0005439]

StyleSet, value:OEM STYLESET NORMAL READOUT
MaxStringLength, value:2

MotionAllowed, value:A661 FALSE

Font, value: OEM STYLESET DEFAULT FONT
UNUSED PAD

Alignment, value:A661 LEFT

LabelString, value: “°C”

Widget instance number:7
Word 59



CAO01
0020
A240
1227
1221

01

01
000001D9
000001D9S
00000B30
000003B6
0000
0000
9878
0000

15

00

00

00
00000000

CAO01
002C
A240
1228
1221

01

01
00000B30
000001D9
00000B30
000003B6
0000
0000
987C
0000

15

00

00

00
00000000

Co
000000
EO
000000

# END DF

ARINC SPECIFICATION 661 — Page 319
APPENDIX C

EXAMPLE OF A DEFINITION FILE

UADF Example for Cabin Temperature Application

H oH = H HF H HF H HF H H HH HHEHHHEHEHF

H o HF oH FHF H F OH HF H H H H HH HHH H HHHFHEHFHEHEH

A661 CMD CREATE

COMMAND SIZE (=32 bytes, words 62 - 69)
WIDGET TYPE (A661 PICTURE PUSH BUTTON)
WIDGET ID (IncreaseSelectTemp)

PARENT ID (CabinTempPanel)

Enable, value:A661 TRUE

Visible, value:A661 TRUE

PosX, value: 473, 4.73 mm, 0.19 in
PosY, value: 473, 4.73 mm, 0.19 in
SizeX, value: 2864, 28.64 mm, 1.13 in
SizeY, value: 950, 9.5 mm, 0.39 in
StyleSet, value:A661 STYLE SET DEFAULT
NextFocusedWidget, value:O0
PictureReference, value:SymbolArrowUp
MaxStringLength, value:0
PicturePosition, value:A661 CENTER
AutomaticFocusMotion, value:A661 FALSE
Alignment, value: A661 CENTER

UNUSED PAD

LabelString, value: “~

Widget instance number:8

Word 70

A661 CMD CREATE

COMMAND SIZE (=44 bytes, words 70 - 80)
WIDGET TYPE (A661 PICTURE PUSH BUTTON)
WIDGET ID (DecreaseSelectTemp)

PARENT ID (CabinTempPanel)

Enable, value:A661 TRUE

Visible, value:A661 TRUE

PosX, value: 3984, 39.84 mm, 1.63 in
PosY, value: 473, 4.73 mm, 0.19 in
SizeX, value: 2864, 28.64 mm, 1.13 in
SizeY, value: 950, 9.5 mm, 0.39 in
StyleSet, value:A661 STYLE SET DEFAULT
NextFocusedWidget, value:0
PictureReference, value:SymbolArrowDown
MaxStringLength, value:0
PicturePosition, value:A661_CENTER
AutomaticFocusMotion, value:A661 FALSE
Alignment, value: A661 CENTER

UNUSED PAD

LabelString, value: “~

Word 81

A661 END LAYER BLOCK

UNUSED PAD

7661 DF_FOOTER

UNUSED PAD



ARINC SPECIFICATION 661 — Page 320

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C-4 Example of the XML Form of the Definition File

For the application illustrated in Section C.3, the corresponding XML form of the DF is
as follows. Refer to Section 6 for a description of the XML DF format. In this example
not all property values are given explicitly. The unspecified properties take default
values.

Note: the DOCTYPE specification is ad hoc. It requires that a file defining the DTD be
found in the current directory with the name “a661.dtd”.

<?xml version="1.0"?>
<!DOCTYPE a661 df SYSTEM "a661l.dtd">

<a661_df library version="0" supp version="2">
<model>
<prop name="ApplicationId" value="0x6788"/>
</model>
<a66l layer>
<model>
<prop name="LayerId" value="66"/>
<prop name="ContextNumber" value="0x1230"/>
<prop name="Height" value="20000"/>
<prop name="Width" value="20000"/>
</model>
<a661_widget name="CabinTempPanel" type="A661 PANEL">
<models>
<prop name="WidgetId" value="4641"/>
<prop name="PosX" value="11000"/>
<prop name="PosY" value="12700"/>
<prop name="SizeX" value="7620"/>
<prop name="SizeY" value="5978"/>
</model>
<a661_widget name="TemperatureCelciusScale" type="A661 PICTURE">
<model>
<prop name="WidgetId" value="4642"/>
<prop name="PosX" value="750"/>
<prop name="PosY" value="2390"/>
<prop name="SizeX" value="6126"/>
<prop name="SizeY" value="2490"/>
<prop name="PictureReference" value="SymbolTemperatureCelciusScale"/>
</model>
</a66l widget>
<a661_widget name="TemperatureIndicatedPointer" type="A661 SYMBOL">
<model>
<prop name="WidgetId" value="4643"/>
<prop name="PosX" value="3810" />
<prop name="PosY" value="2390" />
<prop name="RotationAngle" value="9100" />
<prop name="StyleSet" value="OEM STYLESET FREE COLOR" />
<prop name="ColorIndex" value="OEM WHITE" />
<prop name="PictureReference" value:;éymbolTemperatureIndicatedPointer" />
</model>
</a661l widget>
<a661_widget name="TemperatureSelectedPointer" type="A661 SYMBOL">
<model>
<prop name="WidgetId" value="4644"/>
<prop name="PosX" value="3810" />
<prop name="PosY" value="2390" />
<prop name="RotationAngle" value="1820" />
<prop name="StyleSet" value="OEM STYLESET FREE COLOR" />
<prop name="ColorIndex" value="OEM GREEN4" />
<prop name="PictureReference" value="SymbolTemperatureSelectedPointer" />
</model>
</a661 widget>
<a661_widget name="IndicatedTempDRO" type="A661 LABEL">
<models>
<prop name="WidgetId" value="4645"/>
<prop name="PosX" value="2864" />



<prop
<prop
<prop
<prop
<prop
<prop
<prop
<prop
</model>

ARINC SPECIFICATION 661 — Page 321

APPENDIX C
EXAMPLE OF A DEFINITION FILE

name="PosY" value="1768" />

name="SizeX" value="950" />

name="SizeY" value="622" />

name="StyleSet" value="OEM STYLESET NORMAL_ READOUT" />
name="Font" value="OEM STYLESET DEFAULT_ FONT" />
name="MaxStringLength" value="4" />

name="Alignment" value="A661 RIGHT" />
name="LabelString" value="24" />

</a661 widget>
<a661_widget name="IndicatedUnitLabel" type="A661_ LABEL">

<model>
<prop
<prop
<prop
<prop
<prop
<prop
<prop
<prop
<prop

</model>

name="WidgetId" value="4645"/>

name="PosX" value="3984" />

name="PosY" value="1768" />

name="SizeX" value="473" />

name="SizeY" value="622" />

name="StyleSet" value="OEM STYLESET NORMAL_ READOUT" />
name="Font" value="OEM_STYLESET DEFAULT FONT" />
name="MaxStringLength" value="2" />

name="LabelString" value="°C" />

</a661_widget>
<a661_widget name="IncreaseSelectTemp" type="A661 PICTURE_PUSH_ BUTTON">

<model>
<prop
<prop
<prop
<prop
<prop
<prop

</model>

name="WidgetId" value="4646"/>

name="PosX" value="473" />

name="PosY" value="473" />

name="SizeX" value="2864" />

name="SizeY" value="950" />
name="PictureReference" value="SymbolArrowUp" />

</a661l widget>
<a661_widget name="DecreaseSelectTemp" type="A661 PICTURE PUSH BUTTON">

<model>
<prop
<prop
<prop
<prop
<prop
<prop

</model>

name="WidgetId" value="4647"/>

name="PosX" value="3984" />

name="PosY" value="473" />

name="SizeX" value="2864" />

name="SizeY" value="950" />
name="PictureReference" value="SymbolArrowDown" />

</a661l widget>
</a661 widget>
</a661 layers>

</a66l df>



ARINC SPECIFICATION 661 — Page 322

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C-5 A More Interesting XML DF Example

This is an XML file example that uses a wider range of property types. Refer to Section
6 for a description of the XML DF format. In this example not all property values are
given explicitly. The unspecified properties take default values.

Note: the DOCTYPE specification is ad hoc: it requires that a file defining the DTD be
found in the current directory with the name “a661.dtd”.

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE a661_df SYSTEM "a661.dtd">

<a661_df library version="3" supp version="2">

<model>

<prop name="ApplicationId" value="45"/>
</model>
<a661_layer name="ATC_COM">

<models>

<prop name="LayerId" value="55"/>
<prop name="ContextNumber" value="0"/>
<prop name="Height" value="10000"/>
<prop name="Width" value="10000"/>
</model>
<a661_widget name="PNL_ COM" type="A661 PANEL">
<model>
<prop name="WidgetId" value="1"/>
<prop name="Visible" value="A661 TRUE"/>
<prop name="Enable" value="A661 TRUE"/>
<prop name="StyleSet" value="0"/>
<prop name="PosX" value="100"/>
<prop name="PosY" value="100"/>
<prop name="SizeX" value="7000"/>
<prop name="SizeY" value="5000"/>
</model>
<a661_widget name="CKB_CHOICE" type="A661 CHECK BUTTON">
<model>
<prop name="WidgetId" value="2"/>
<prop name="Visible" value="A661 TRUE"/>
<prop name="Enable" value="A661 TRUE"/>
<prop name="CheckButtonState" value="A661 UNSELECTED"/>
<prop name="StyleSet" value="1"/>
<prop name="PosX" value="100"/>
<prop name="PosY" value="100"/>
<prop name="SizeX" value="3000"/>
<prop name="SizeY" value="900"/>
<prop name="NextFocusedWidget" value="0"/>
<prop name="AutomaticFocusMotion" value="A661 FALSE"/>
<prop name="LabelSring" value="SELECT"/>
<prop name="MaxStringLength" value="7"/>
<prop name="Alignment" value="A661 LEFT"/>
<prop name="PicturePosition" value="A661 LEFT"/>
</model>
</a661l widget>
<a661_widget name="SL_COUNTRY" type="A661 SCROLL LIST">
<model>
<prop name="WidgetId" value="3"/>
<prop name="Visible" value="A661 TRUE"/>
<prop name="Enable" value="A661 FALSE"/>
<prop name="StyleSet" value="2"/>
<prop name="PosX" value="100"/>
<prop name="PosY" value="1100"/>
<prop name="SizeX" value="6800"/>
<prop name="SizeY" value="3800"/>
<prop name="NextFocusedWidget" value="0"/>
<prop name="AutomaticFocusMotion" value="A661 FALSE"/>
<prop name="NumberOfEntries" value="4"/>
<prop name="MaxNumberOfEntries" value="15"/>
<prop name="FirstVisibleEntry" value="3"/>



ARINC SPECIFICATION 661 — Page 323

APPENDIX C
EXAMPLE OF A DEFINITION FILE

<prop name="FirstAccessibleEntry" value="3"/>
<prop name="FlagReportVisibleEntry" value="A661 FALSE"/>
<prop name="SelectedEntry" value="3"/>

<structprop name="DefaultStyleText">
<field name="TOutline" value="0"/>
<field name="TBackColor" value="0"/>
<field name="TForeColor" value="41"/>
<field name="TFont" value="0"/>
</structprop>
<prop name="MaxStringLength" value="10"/>
<prop name="Alignment" value="A661 CENTER"/>
<arrayprop name="LabelStringArray"s>
<entry value="CANADA"/>
<entry value="USA"/>
<entry value="BELGIUM"/>
<entry value="FRANCE"/>
<entry value="GERMANY"/>
<entry value="UK"/>
</arrayprop>
<arrayprop name="EnableArray">
<entry value="A661 TRUE"/>
<entry value="A661 TRUE"/>
<entry value="A661 TRUE"/>
<entry value="A661 TRUE"/>
<entry value="A661 TRUE"/>
<entry value="A661 TRUE"/>
</arrayprop>
<prop name="VerticalScroll" value="A661 RIGHT"/>
</model>
</a661l widget>
</a661 widget>
<a661_widget name="BF_COM" type="A661_ BUFFER_FORMAT">
<model>
<prop name="WidgetId" value="4"/>
<prop name="NumberOfFields" value="2"/>
<arrayprop name="BufferStructure">
<structentry>
<field name="WidgetIdent" value="2"/>
<field name="ParameterIdent" value="A661 INNER STATE CHECK"/>
</structentrys>
<structentrys>
<field name="WidgetIdent" value="3"/>
<field name="ParameterIdent" value="A661 ENABLE"/>
</structentrys>
</arrayprop>
</model>
</a66l widget>
</a661 layers>
</a661 dfs>



ARINC SPECIFICATION 661 — Page 324

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C-6 Binary DF Specifying Symbol Graphical Definitions

This section shows a binary Definition File that defines two symbols. See Section C.7
for an XML version of this example.

# Binary Definition File

# Example for ARINC-661 Specification

# Demonstrates how symbols and layers can be defined in
# a single binary definition file

661 # A661 DF_MAGIC_NUMBER
02 # Library Version

02 # Supp Version

6788 # Application Identifier
0000 # UNUSED PAD

# Symbol Definition starts here:

FO # A661 BEGIN_ SYMBOL_BLOCK
000000 # UNUSED PAD

00000076 # block size (118 bytes)
CA04 # A661 CMD CREATE SYMBOL
0030 # command size (48 bytes)
0064 # symbol ID (100)

0000 # UNUSED PAD

90D0 # A661 SYMBOL DEFN POLYLINE
0004 # number of vertices

01 # closed (A661 TRUE)
000000 # UNUSED PAD

FFFFFEOC # first X (-500)

FFFFFEOC # first Y (-500)

000001F4 # second X (500)

000001F4 # second Y (500)

FFFFFEOC # third X (-500)

000001F4 # third Y (500)

000001F4 # fourth X (500)

FFFFFEOC # fourth Y(-500)

CA04 # A661 CMD CREATE SYMBOL
003A # command size (58 bytes)
0065 # symbol ID (101)

0000 # UNUSED PAD

90BO # A661 SYMBOL DEFN_ LINE
0000 # UNUSED PAD

00000000 # first X (0)

FFFFFC18 # first Y (-1000)
00000000 # second X (0)

FFFFFEOC # second Y (-500)

90F0 # A661 SYMBOL DEFN TRIANGLE
0000 # UNUSED PAD

00 # filled (A661 FALSE)

00 # UNUSED PAD

FFFFFF38 # first X (-200)

FFFFFEOC # first Y (-500)

00000000 # second X (0)

00000000 # second Y (0)

000000C8 # third X (200)

FFFFFEOC # third Y (-500)

F8 # A661 END SYMBOL BLOCK
000000 # UNUSED PAD



ARINC SPECIFICATION 661 — Page 325

APPENDIX C
EXAMPLE OF A DEFINITION FILE

# Layer Definition starts here:

A0

05

0000
ooooo008C

CAO01
0020
Al1FO
1221
0000

01

01
00002AF8
0000319C
00001DC4
0000175A
0000
0000
CAO01
0020
A200
1222
1221

00

01
0O0OO0OO02EE
00000956
000017EE
000009BA
0000
9870
CAO01
0020
A310
1223
1221

01

01
0OO0OOOQOEE2
00000956
0000238C
0001
0065

OF
000000

CAO1
0020
A310
1224
1221

01

01
00000D52
00000A82
0000071C
0001
0064

01
000000
Cco
000000
EO
000000

H H H

FHHFHFHFHF A HH

ot o A H O HH

A661 BEGIN_ LAYER BLOCK
layer ID (5)

context number

block size (140 bytes)

A661 CMD CREATE

command size (32 bytes)
widget type (A661 PANEL)
widget ID

parent ID (zero indicates layer is parent)
enable, value: A661_TRUE
visible, value: A661 TRUE
pos_x, value: 11000

pos_y, value: 12700

size x, value: 7620

size y, value: 5978

style set

UNUSED PAD

A661 CMD CREATE

command size (32 bytes)
widget type (A661 PICTURE)
widget ID

parent ID

anonymous, value: A661 FALSE
visible, value: A661_ TRUE
pos_x, value: 750

pos_y, value: 2390

size x, value: 6126

size_ y, value: 2490

style set

picture reference
A661 CMD CREATE

command size (32 bytes)
widget type (A661 SYMBOL)
widget ID

parent ID

motion allowed, value: A661 TRUE
visible, value: A661 TRUE
pos_x, value: 3810

pos_y, value: 2390

rotation angle, value: 9100
style set, value: OEM STYLESET FREE COLOR
symbol reference

color index, value: OEM_WHITE
UNUSED PAD

A661 CMD_CREATE

command size (32 bytes)

widget type (A661 SYMBOL)

widget ID

parent ID

motion allowed, value: A661 TRUE
visible, value: A661 TRUE

pos_x, value: 3410

pos_y, value: 2690

rotation angle, value: 1820
style set, value: OEM STYLESET FREE_ COLOR
symbol reference

color index, value: OEM_GREEN
UNUSED PAD

A661 END LAYER BLOCK

UNUSED PAD

A661 DF_FOOTER

UNUSED PAD



ARINC SPECIFICATION 661 — Page 326

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C-7 XML DF Specifying Symbol Graphical Definitions

This is the XML encoding of the example given in Section C.6. Refer to Section 6 for a
description of the XML DF format. In this example not all property values are given
explicitly. The unspecified properties take default values. The Widgetld values are
provided in hex format in this example. Both hex and decimal formats for unsigned
integral values are allowed.

Note: the DOCTYPE specification is ad hoc. It requires that a file defining the DTD be
found in the current directory with the name “a661.dtd”.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE a661 df SYSTEM "a66l.dtd">

<a661_df library version="2" supp version="2">

<model>
<prop name="ApplicationId" value="0x6788"/>
</model >
<symboltable>
<symboldefn name="HourGlassSymbol">
<model>
<prop name="Id" value="100" />
</model>
<stdrepr>
<symboldefncmd type="A661 SYMBOL DEFN_ POLYLINE">
<model>
<prop name="NumVertices" value="4" />
<prop name="Closed" value="A661 TRUE" />
<arrayprop name="Vertices">
<xyentry x="-500" y="-500" />
<xyentry x="500" y="500" />
<xyentry x="-500" y="500" />
<xyentry x="500" y="-500" />
</arrayprop>
</model>
</symboldefncmd>
</stdrepr>
</symboldefn>
<symboldefn name="VertArrowSymbol">
<model>
<prop name="Id" value="101" />
</model>
<stdrepr>
<symboldefncmd type="A661 SYMBOL DEFN LINE">
<model>
<prop name="PosXStart" value= "0O" />

<prop name="PosYStart" value="-1000" />
<prop name="PosXEnd" value="0" />

<prop name="PosYEnd" value="-500" />
</model>
</symboldefncmd>
<symboldefncmd type="A661 SYMBOL DEFN TRIANGLE">
<model>
<prop name="Filled" value="A661 FALSE" />
<prop name="PosX" value="-200" />
<prop name="PosY" value="-500" />

<prop name="PosX2" value="0" />

<prop name="PosY2" value="0" />

<prop name="PosX3" value="200" />

<prop name="PosY3" value="-500" />
</model>



ARINC SPECIFICATION 661 — Page 327

APPENDIX C
EXAMPLE OF A DEFINITION FILE
</symboldefncmd>
</stdrepr>

</symboldefn>
</symboltable>
<a661 layer name="SYMBOL EXAMPLE LAYER">

<model>

<prop name="LayerId" value="5"/>
<prop name="ContextNumber" value="0"/>
<prop name="Height" value="20000"/>
<prop name="Width" value="20000"/>
</model>
<a661 widget name="Panel" type="A661 PANEL">
<models>
<prop name="WidgetId" value="0x1221" />
<prop name="PosX" value="11000" />
<prop name="PosY" value="12700" />
<prop name="SizeX" value="7620" />
<prop name="SizeY" value="5978" />
</model>
<a661l widget name="TemperatureCelciusScale" type="A661 PICTURE">
<model>
<prop name="WidgetId" value="0x1222" />
<prop name="PosX" value="750" />
<prop name="PosY" value="2390" />
<prop name="SizeX" value="6126" />
<prop name="SizeY" value="2490" />
<prop name="PictureReference"
value="SymbolTemperatureCelciusScale" />
</model>
</a661_ widgets>
<a661 widget name="Symboll" type="A661 SYMBOL">
<model>
<prop name="WidgetId" value="0x1223" />
<prop name="PosX" value="3810" />
<prop name="PosY" value="2390" />
<prop name="RotationAngle" value="9100" />
<prop name="StyleSet" value="OEM STYLESET FREE COLOR" />
<prop name="ColorIndex" value="OEM WHITE" />
<prop name="SymbolReference" value="VertArrowSymbol" />
</model>
</a661_ widget>
<a661 widget name="Symbol2" type="A661 SYMBOL">
<model>
<prop name="WidgetId" value="0x1224" />
<prop name="PosX" value="3410" />
<prop name="PosY" value="2690" />
<prop name="RotationAngle" value="1820" />
<prop name="StyleSet" value="OEM STYLESET FREE COLOR" />
<prop name="ColorIndex" value="OEM GREEN4" />
<prop name="SymbolReference" value="HourGlassSymbol" />
</model>
</a661_widget>
</a661_ widget>
</a661 layers
</a661 dfs>



ARINC SPECIFICATION 661 — Page 328

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C-8 Binary DF Specifying Picture Definitions

This section shows a binary Definition File that defines two pictures (bitmaps).
See Section C.9 for an XML version of this example.

# Binary Definition File
# Example demonstrates how a block of pictures can be defined.

2661 # A661 DF MAGIC NUMBER
01 # Library Version

03 # Supp Version

6788 # Application Identifier
0000 # UNUSED PAD

# Picture Definitions start here:

BB # A661 BEGIN PICTURE BLOCK

Cl # PixelFormat, value: A661 PIX FMT RGBA 8
02 # NumberOfPicturesInBlock, value: 2
00 # NumberOfColorTableEntries, value: 0 (CDS Global Color Table)
00 # ColorTableFormat, value: 0 (ignore)
000000 # UNUSED PAD

BB # A661 BEGIN PICTURE

00 # UNUSED PAD

0200 # picture reference, value: 512
0100 # NumberOfPixelsWidth, value: 128
0100 # NumberOfPixelsHeight, value: 128
34174644 # Pixel Data for Picture

84006125 # Pixel Data for Picture

542B8F00 # Pixel Data for Picture

06E374E1l # Pixel Data for Picture

6C248EF1 # Pixel Data for Picture

00000000 # Pixel Data for Picture

49454E44 # Pixel Data for Picture

AE426082 # Pixel Data for Picture

50011E00 # Pixel Data for Picture

00006CC6 # Pixel Data for Picture

81690000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

34174644 # Pixel Data for Picture

84006125 # Pixel Data for Picture

542B8F00 # Pixel Data for Picture

06E374E1l # Pixel Data for Picture

6C248EF1 # Pixel Data for Picture

00000000 # Pixel Data for Picture

49454E44 # Pixel Data for Picture

AE426082 # Pixel Data for Picture

50011E00 # Pixel Data for Picture

00006CC6 # Pixel Data for Picture

81690000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

00006CC6 # Pixel Data for Picture

81690000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

00000000 # Pixel Data for Picture

BD # A661 END PICTURE

000000 # UNUSED PAD



BB

00

0201
0100
0100
34124644
84006125
542B8F00
06E374E1l
6C248EF1
00000000
49454E44
AE426082
50011E00
00006CC6
81690000
00000000
00000000
34124644
84006125
542B8F00
06E374E1l
6C248EF1
00000000
49454E44
AE426082
50011E00
00006CC6
81690000
00000000
00000000
00006CC6
81690000
00000000
00000000
00000000
00000000
BD
000000

00000000
BE
000000

F= o3 3 3k 3k 3k 3k 3 3 3 3k 3k 3k 3k 3 3k 3 3k 3 3k 3 3k 3 3 3 3 3 3 3 3 3k 3 3 3 3 3 3 3 3

3+ 3 3

EXAMPLE OF A DEFINITION FILE

APPENDIX C

A661 BEGIN PICTURE
UNUSED PAD

picture reference, value:
NumberOfPixelsWidth, value:
NumberOfPixelsHeight, wvalue:

Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture

A661 END PICTURE
UNUSED PAD

RESERVED
A661 END PICTURE BLOCK
UNUSED PAD

ARINC SPECIFICATION 661 — Page 329

128
128



ARINC SPECIFICATION 661 — Page 330

APPENDIX C
EXAMPLE OF A DEFINITION FILE

# Layer Definition starts here:

A0 # A661 BEGIN LAYER BLOCK

05 # layer ID (5)

0000 # context number

0000008C # block size (140 bytes)

ca01 # A661 CMD CREATE

0020 # command size (32 bytes)

AlFO0 # widget type (A661 PANEL)
1221 # widgetID, value: 0x1221

0000 # parented, (zero indicates layer is parent)
01 # enable, value: A661 TRUE

01 # visible, value: A661 TRUE
00002AFS8 # pos x, value: 11000

0000319C # pos_ y, value: 12700

00001000 # size x, value: 4096

00001000 # size_y, value: 4096

0000 # style set

0000 # UNUSED PAD

caol # A661 CMD CREATE

0020 # command size (32 bytes)

A200 # widget type (A661 PICTURE)
1222 # widgetID, value: 0x1222

1221 # parentID, value: 0x1221

00 # anonymous, value: A661 FALSE
01 # visible, value: A661 TRUE
00002AFS8 # pos x, value: 11000

0000319C # pos y, value: 12700

00001000 # size x, value: 4096

00001000 # size_y, value: 4096

0000 # style set

0200 # picture reference, value: 512
ca01 # A661 CMD CREATE

0020 # command size (32 bytes)

2200 # widget type (A661 PICTURE)
1223 # widgetID, value: 0x1223

1221 # parentID, value: 0x1221

00 # anonymous, value: A661 FALSE
01 # visible, value: A661 TRUE
00002AF8 # pos_x, value: 11000

0000319C # pos y, value: 12700

00001000 # size_x, value: 4096

00001000 # size y, value: 4096

0000 # style set

0201 # picture reference, value: 513
000000 # UNUSED PAD

co # A661 END LAYER BLOCK

000000 # UNUSED PAD

EO # A661 DF FOOTER

000000 # UNUSED PAD



ARINC SPECIFICATION 661 — Page 331

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C-9 XML DF Specifying Picture Definitions

This is the XML encoding of the example given in Section C.8. Refer to Section 6
for a description of the XML DF format. In this example not all property values
are given explicitly. The unspecified properties take default values. The Widgetid
values are provided in hex format in this example. Both hex and decimal formats
for unsigned integral values are allowed.

Note: the DOCTYPE specification is ad hoc. It requires that a file defining the
DTD be found in the current directory with the name “a661.dtd”.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE a661l df SYSTEM "a66l.dtd">

<a66l df library version="1" supp version="3">

<model>
<prop name="ApplicationId" value="0x6788"/>
</model>
<picturetable>
<picture defn name="ScalePicture”>
<model>
<prop name="PictureReference" value="512" />
<prop name="ImageFile" value= "..\pictures\scale2.png" />
<prop name="PictureFormat" value="A661 PIX FMT RGBA 8" />
</model>

</picture defn>
<picture defn name="ScaleBackgroundPicture">
<model>
<prop name="PictureReference" value="513" />
<prop name="ImageFile" value= "..\pictures\scale backgroundl.png"/>
<prop name="PictureFormat" value="A661 PIX FMT RGBA 8" />
</model>
</picture defn>
</picturetable>
<a66l layer name="PICTURE EXAMPLE LAYER">
<model>
<prop name="LayerId" value="5"/>
<prop name="ContextNumber" wvalue="0"/>
<prop name="Height" value="25000"/>
<prop name="Width" value="20000"/>
</model>
<a661 widget name="ExampleScale" type="A661 PANEL">
<model>
<prop name="WidgetId" value="0x1221" />
<prop name="PosX" value="11000" />
<prop name="PosY" value="12700" />
<prop name="SizeX" value="4096" />
<prop name="SizeY" value="4096" />
</model>
<a661 widget name="Scale" type="A661 PICTURE">
<model>
<prop name="WidgetId" value="0x1222" />
<prop name="PosX" value="11000" />
<prop name="PosY" value="12700" />
<prop name="SizeX" value="4096" />
<prop name="SizeY" value="4096" />
<prop name="PictureReference" value="512" />
</model>
</a661 widget>
<a661 widget name="Pointer" type="A661 PICTURE">
<model>



ARINC SPECIFICATION 661 — Page 332

APPENDIX C
EXAMPLE OF A DEFINITION FILE

<prop name="WidgetId" value="0x1223" />
<prop name="PosX" value="10000" />
<prop name="PosY" value="12700" />
<prop name="SizeX" value="4096" />
<prop name="SizeY" value="4096" />
<prop name="PictureReference" value="513" />
</model>
</a661 widget>
</a661 widget>
</a661 layer>
</a661 df>



ARINC SPECIFICATION 661 — Page 333

APPENDIX D
EXAMPLE OF ‘IN/OUT” WIDGET MANAGEMENT USING STYLESET PARAMETER

Note: This appendix deleted by Supplement 3.



ARINC SPECIFICATION 661 — Page 334

APPENDIX E
MAP MANAGEMENT TUTORIAL

E-1 Examples of Parameters Definition for Map Management

e ND as the master application —

The ND has two basic modes for displaying data. The first one corresponds
to Rose or Arc mode where the aircraft representation does not move on the
display. The second corresponds to the Plan mode in which the aircraft
representation moves and the display is centered on a point which can be
very far from the aircraft. Moreover, the ND can represent the data Track-Up,
(magnetic or true), Heading-Up (magnetic or true) or North-Up (typical for
plan mode).

e FMS as the master application —

The master application must first provide a projection reference point (PRP).
The PRP will be used by the CDS to know what reference has to be used to

run the projection algorithm. Due to the PRP, the CDS will be able to convert
latitude/longitude data into a Cartesian coordinate system, for instance, true

north oriented and distances in nautical miles.

If the master application provides:
o The position of the PRP on the display
o The orientation of the True North relative to the Up direction of the display
o A Range information in nautical miles and its correspondence in screen
unit
the CDS is then able to put the FMS map data on the display.
e TCAS as the master application —

The TCAS transmits its data as bearing/distance relative to the aircraft with
distance to the aircraft and bearing relative to the aircraft main axis. By
adding an enumerated value in the “coordinate system” parameter of the
MAPHORZ_SOURCE, that means bearing/distance relative to aircraft axis,
the CDS will not have enough information to depict the traffic data for TCAS.
The CDS needs the following additional data:

o The location of the aircraft on the display

o The orientation of the aircraft relative to the display up direction

There is an aircraft location issue: Aircraft location is set by the master
application through the MapHorz. There is an aircraft orientation issue. The
master application provides the true heading through the MapHorz.

e The CDS will implement a bearing/distance Mapltem relative to the aircraft.
Additional parameters for the MapHorz are:

o aircraft orientation: relative to the True North
o aircraft latitude
o aircraft longitude



ARINC SPECIFICATION 661 — Page 335

APPENDIX E
MAP MANAGEMENT TUTORIAL

E-2 Addressing Mapltems

Inside a MapHorz_ltemList one or several Mapltems can be modified through a
SetParameter command with “A661_BUFFER_OF_MAPITEM” as Parameter_ldent.
A Mapltem will be modified in its entirety; for instance, the latitude of a symbol can
not be changed by itself. But because the parameter list of each Mapltem is reduced
to the useful information only, all the parameters should be set in each SetParameter
command.

E-2.1 Addressing Mapltems for One Change:

Example A661_ParameterStructure for the SetParameter command for a
SYMBOL_GENERIC:

Parameter name Parameter value Description
Parameter_ident A661 BUFFER_OF MAPITEM Modification type
ClearFlag 0 If Set, All ltems will be set to NOT_USED
by CDS before setting the specified Items.
Number of Items 1 Number of modified Items
ltemStructure = Parameters of the modified ltem.
{ {
ltemIndex 12
EndFlag 0
ltemType SYMBOL_GENERIC
SymbolType SYMBOL_VOR
X Longitude
Y Latitude
} }

Note that the same item number could be used once for a SYMBOL_GENERIC and
later for another type of Mapltem. The CDS must have enough space for the number
of items specified using the biggest possible size of parameter list.

E-2.2 Addressing Mapltems for Multiple Changes

Another command would be provided to access multiple ltems in one command. The
A661_ParameterStructure for the SetParameter command would look like the
following:




ARINC SPECIFICATION 661 — Page 336

APPENDIX E

MAP MANAGEMENT TUTORIAL

Parameter name

Parameter value

Description

Parameter_ident

A661_BUFFER_OF_MAPITEM

Modification type

ClearFlag 0 If Set, All ltems will be set to NOT_USED
by CDS before setting the specified Items.
Number of Items 2 Number of modified ltems
ltemStructure = Parameters of the modified Items.
{ {
IltemIndex 12
EndFlag 0
ltemType SYMBOL_GENERIC
SymbolType SYMBOL_VOR
X Longitude
Y Latitude
IltemIndex 20
EndFlag 0
ltemType A661_LINE_START
X Longitude
Y Latitude
} }

Note: The set Parameter command can contain a different type of Mapltem.

E-2.3 Removing Map Items

A specific IltemType is A661_NOT_USED. The parameter list for this item would be
reduced to the ltemType. This approach declares a previously used Item as not used
anymore without faking a type and setting its visibility to HIDE.

The A661_ParameterStructure for the Set Parameter command follows:

Parameter name

Parameter value

Description

Parameter_ident

A661_BUFFER_OF_MAPITEM

Modification type

ClearFlag

0

If Set, All Items will be set to NOT_USED
by CDS before setting the specified
ltems.

Number of Items

Number of modified ltems

ltemStructure =

{

ltemIndex
ltemType

12
A661_NOT_USED

Parameters of the modified Item.




ARINC SPECIFICATION 661 — Page 337

APPENDIX E
MAP MANAGEMENT TUTORIAL

E-3 Address ‘Race Condition’ on Iltem Transmission

The Map UA should handle with care the functional data associated with the
dynamic widgets. Changing the functional information associated with a visible
widget could cause the race condition. An example of a typical race condition
follows:

e Pilot desire is to select PARIS waypoint

o At the time the pilot clicks PARIS waypoint, data is carried by the
MapHorz_ItemList identified by 201 and the Item 32

o CDS sends back the event “Widget 201, Item 32” selected

In the mean time, the FMS has changed the information associated with “Widget
201, Item 32,” which now carries “NEW YORK”.

The problem is that the FMS cannot decide what the event truly means: has the
pilot has selected PARIS or NEW YORK?

To address this problem, the FMS could have several solutions. One solution is to
manage the Context Number. The UA can change the Context Number by changing
the functional information attached to a widget or simply to an Item. In this way, the
FMS will have the knowledge of the selected waypoint by correlation between the
Context Number and the ident of the selected waypoint.

E-4 Dynamic Priority Management inside MapHorz_ItemList

The Items inside a MapHorz_ltemList are defined at run-time. The order of the ltem
inside the MapHorz_ItemList defines the drawing order of the items defined by the
ItemIndex parameter of the item. The Item with the highest ItemIndex has the
highest drawing priority. Figure E.4-1 illustrates an example of dynamic priority
management.

The UA induces a specific drawing order of symbology by ordering the item inside a
MapHorz_ItemList. If the UA does not specify the drawing order, then the drawing
order should be defined statically in the DF with different MapHorz_ItemList for the
set of symbols and drawing orders. Nevertheless, this different set of symbols
corresponds to different functional sets, for which it should define a different widget
(MapHorz_ltemList).

However, the drawing priority of an ltem is defined by the ItemIndex of the ltem.
Nevertheless, the Itemindex of an Item is independent of the transmittal order of the
Item in the command. In Figure E.4-1, the UA, for instance the FMS, may have to
respect a transmitting order. But the transmitting order is independent of the order of
the ltemIndex declaration inside the SetParameter command.



ARINC SPECIFICATION 661 — Page 338

APPENDIX E

MAP MANAGEMENT TUTORIAL

First Data
Data for a FPLN leg
FMS : transmitting order
Data for a FPLN Waypoint
Data for background Waypoint
Last
v
A661 Parameter name Value
SetParameter
Command
CommandSize Size
Widgetldent Ident of the MapltemList
Parameter _ident A661 BUFFER OF ITEMS
ClearFlag 1
Number of Items 200
ItemStructure
{
ItemIndex 50
DataBuffer for a FPLN leg
ItemIndex 1
DataBuffer for a FPLN Waypoint
TtemIndex 200
DataBuffer for background Waypoint
1
I
Low
MapltemList Data Index
. DataBuffer for background Waypoint 1
CDS: drawing order ¢ w»
DataBuffer for a FPLN leg 50
DataBuffer for a FPLN Waypoint 200

High

Figure E.4-1 — Example of Dynamic Priority Management




ARINC SPECIFICATION 661 — Page 339

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

F-1 Introduction

ARINC 661 defines data communication in the run-time format
exchanged between User Applications (UAs) and the CDS. However,
it does not specify the transport mechanism for such run-time
messages. This was deliberately excluded in early versions of
ARINC 661 because the computing environment and networking
infrastructures used in aircraft covers such a broad range — from
ARINC 429 interfaces to Ethernet derivatives, from simple real-time
executives to partitioned operating systems with inter-partition
communications mechanisms. Specifying exactly how ARINC 661
run-time messages are delivered to a receiver seemed to be too
restrictive. Thus, this detail is left as an exercise for the implementer
and the aircraft system integrator.

With this background, this appendix provides an overview of how
ARINC 661 communications can work in a several typical
environments. It makes suggestions on how to deal with specific
problems that may arise. It is expected that the information in this
appendix will be helpful to system architects that want to consider
the use of ARINC 661. Following the scenarios and suggestions
described herein is not mandatory to achieve compliance with
ARINC 661.

F-2 ARINC 661 in Typical Aircraft Environments

Before providing specific examples and solutions, this section
provides a brief summary of communication options that ARINC 661
display system designers may wish to consider.

F-2.1 Local / External Applications

This appendix describes communication transport protocols. It
assumes the CDS and the UA are not located in the Line
Replaceable Unit (LRU). Thus the UA is considered an external
application.

ARINC 661 also allows UA and CDS to be located in the same LRU.
In the case, ARINC 661 run-time messages are exchanged only
within this one LRU. This approach may be chosen for design
reasons (e.g., reuse of existing ARINC 661 application code, use of
ARINC 661-based modeling or other development tools) or to
provide for future growth that allows external UAs to use the CDS.

This case will likely have an implication for systems design: a
communications mechanism between the UA and the CDS
components that provides both high integrity and high reliability
exists within this LRU. The following sections do not address
architecture-dependent communications inside of an LRU.

F-2.2 Interactivity Impact on Communication

Interactivity in flight deck formats means that bi-directional
communications between the CDS and the interactive UAs is
required, such that widget events can be communicated to the CDS.



ARINC SPECIFICATION 661 — Page 340

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

While the communications link may be bi-directional in many cases
even for applications that do not display interactive formats,
systems in which a UA “blindly” transmits run-time messages to the
CDS are certainly possible. Other CDS-generated messages (such
as error messages, notifications, etc.) can then not be sent to the
UA, but that may be acceptable under the right circumstances.

F-2.3 Communication Type

Communication between CDS and UA can be periodic or event

based:

Data sent by a UA (periodic)

Traditionally, display systems have received periodic updates
(at various rates) of all aircraft data needed for the display.
While data updates will likely continue to be periodic for
many applications, for the communications link, having an
application send periodic updates of all appropriate widget
parameters means that the loss of an individual run-time
message every now and then due to communications
problems is acceptable.

Data sent upon event (non periodic)

ARINC 661 gives UAs a choice to send widget parameters
only when values have actually changed. Doing this leads to
software that resembles PC-based software applications
more than the traditional avionics display software; however,
there may be cases where that is appropriate, especially for
interactive, “PC like” applications that are ported to an ARINC
661 display system.

If UAs base the generation of some or all of their run-time
messages on changed values, then the run-time messages
must be sent such that they will arrive intact at the receiver
with a very high probability, and a transport mechanism that
can guarantee the safe delivery of information must be
chosen.

Depending on how UAs and the CDS communicate, providing
that type of transport mechanism can be a non-trivial task.
This may lead designers to quickly dismiss the idea of
sending any widget parameters only when data changes, and
instead send all necessary parameters periodically, all the
time. This, however, does not completely solve the problem,
because many UAs require a guaranteed delivery of widget
events, notifications and other CDS-generated messages
that, due to their nature, cannot just be sent to the UA many
times. Once this problem is solved, the solution can be
applied to messages traveling the other way, too, meaning
that UAs can use the same mechanism that guarantees
delivery of event messages for widget parameter updates that
are not periodic.



ARINC SPECIFICATION 661 — Page 341

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

e Hybrid designs
Many hybrid designs are possible: displays that are driven by
both ARINC 661 applications and the traditional ways (for
different formats or different features within a format); display
LRUs that contain some of the UAs but have network
interfaces to communicate with others; some UAs sending
ARINC 661 run-time messages blindly to a CDS while other
UAs maintain bi-directional communications with the CDS, to
name just a few of the possibilities. ARINC 661 does not
prevent (or even discourage) to mix and combine different
solutions where that makes sense.

The following sections show how ARINC 661 can work in selected,
typical environments. Detailed discussions of industry terms (such
as Ethernet) and other ARINC specifications are not provided here;
there is no lack of other information about these terms and concepts
for the interested reader.

F-3 Ensuring Reliability

For the purposes of this discussion, the term “reliability” means the
probability that a message sent by some transmitting application is
received by the receiving application. Typical network connections
(such as Ethernet, ARINC 429, etc.) drop data every now and then,
so they are not reliable unless some mechanism is added at a higher
level to deal with dropped data. This is not to be confused with the
network’s integrity, which describes the probability that a message
that arrives at the receiving application contains has not been
accidentally corrupted (without detecting the) during the
transmission. In other words, high integrity ensures correctness of
received messages, while high reliability makes sure takes care of
completely receiving all sent information.

Data connections used in avionics systems typically have good
integrity but relatively poor reliability. There are three different ways
to deal with the reliability issues:

e Periodic Transmissions:

Parameters are sent repeatedly at some periodic rate.
Examples where this is typically done include aircraft
attitude, airspeed and altitude data. The loss of a single piece
of data is not significant because the transmitter will send
new values anyway. The probability that two, three, or more
subsequent instances of a data value are all lost is much
smaller than the probability to lose a single value, and for this
reason, low network reliability is typically not an issue if
periodic transmissions are used.

e Acknowledgements (ACK/NACK):
Acknowledgement-based protocols require that the receiver
sends a confirmation to the sender for information that it has

received. That way, the loss of a data packet is recognized
and the sender can send another copy of the original data



ARINC SPECIFICATION 661 — Page 342

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

over the network. These protocols exist in various different
forms. Some widely known examples are TCP and TFTP.

e Sequence Numbers:

Another mechanism to detect the loss of data packets is to
have the receiver add a sequence number to each packet,
which the receiver monitors. The receiver expects that
subsequent messages have adjacent sequence numbers; if it
receives anything else, it can assume that a message has
been dropped, and some corrective action can be initiated.

Note that these concepts are not mutually exclusive.
F-4 Ethernet

Ethernet and UDP-based network connections (such as AFDX) are
generally a good choice for ARINC 661, because they offer a high
bandwidth along with good integrity. They are also bi-directional.
However, Ethernet is not, by itself, reliable, so if a guaranteed
delivery of run-time messages is required, an additional protocol
level above UDP or IP is required.

Several industry standards exist that make Ethernet more reliable.
The two most widely used ones are TCP and TFTP. Both TCP and
TFTP require the receiver to send a confirmation for received
messages. If a confirmation is not received back at the sender within
a certain amount of time, the sender will retransmit the information.

Both TCP and TFTP can be useful to ensure reliability for ARINC 661
run-time messages. A few things should be considered carefully,
though:

e With TCP, sender and receiver determine the size of a
“window”, and the sender is allowed to send as much
information as will fit in this window until a receipt for a
portion or all of the window’s data is received. Thus, TCP
does not generally block the sending application — it only
does so if the entire window lacks an acknowledgement
through the receiver.

Advantages:

o Transmit run-time message reliably over an unreliable
network

Drawbacks:

o TCP is a very complex protocol. It was created to solve
transport problems in the world-wide Internet, and many
of those problems do not really exist on aircraft networks.
If provided on an aircraft network, TCP can be used for
ARINC 661, but its complexity and overhead should be
kept in mind.

e InTFTP, each message sent by a transmitting application
must be confirmed by the sender before more information
can be sent. In case of a communication problem, TFTP will



F-5

F-6

ARINC 429

ARINC SPECIFICATION 661 — Page 343
APPENDIX F

COMMUNICATION TRANSPORT PROTOCOLS

prevent a sender from sending new messages until the
problem has been recovered by a re-transmission. In case of
re-transmission failure, a high level communication sanction
has to be taken, such as Communication re-initialization.

Advantages:

o

Transmits run-time message reliably over an unreliable
network

It allows latency and network bandwidth optimization (by
sending only once the message).

This communication protocol is well-known (and thus the
associated drawback effect).

Drawbacks:

o

Blocking nature of the TFTP, UA application has to
receive the message acknowledge before sending new
data. Thus a particular attention shall be paid to TFTP and
network configuration. Besides, re-transmission could
lead to additional latency in degraded cases.

For connections that carry periodic data, this is probably
a poor choice, whereas for certain interactive, “PC like”
formats it can work well.

ARINC 429 is a serial interface that is widely used for exchanging
information on aircraft, including for display systems. It is
unidirectional and does not provide a guarantee for delivery of sent
messages. Its wide availability on aircraft makes it an interesting
consideration for ARINC 661, though.

ARINC 661 run-time messages can be sent over ARINC 429
connections. The result is somewhat similar to Ethernet/UDP,
operating at much slower data rates, though. If reliable
communications is needed, an intermediate protocol between
ARINC 429 and the ARINC 661 run-time messages can be used,
similar to TFTP and TCP (as discussed above).

Example Protocol for Reliable Communications

This reliable communications protocol is based on sequence
number. It is suggested as an optional mechanism for ARINC 661
display systems, and can serve as a starting point when
circumstances require the use of such a mechanism.



ARINC SPECIFICATION 661 — Page 344

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

The main goals for the design of the reliable communications
mechanism are:

e Transmit run-time message reliably over an unreliable
network

e Determinism — achieve predictable network load and behavior
¢ Include status (health, availability) information into the design
e Compatible with multicast/broadcast transmission

The protocol works mostly by sending out multiple copies (spread
out over time) of data that a sender considers important, whereas
other data is sent only once, such as data that is generated
cyclically anyway and for which a lost value every now and then
would not cause a problem.

Drawback effect of this proposal could be:

e Bandwidth use of the network: Need to transmit several times
a set of data depending of network reliability.

e Next message is blocked until all the multiple copies of the
previous message have been sent.

The mechanism consists of two levels of wrappers around ARINC
661 run-time data: a “group” and a “block”. Conceptually, a “block”
can be thought of something that an application transmits (at least)
one of per cycle. It is atomically transmitted by the network in that it
is either received and undamaged, or not visible to the receiver at
all. A block consists of the block header and zero or more “groups”.

A “group” consists of one or more ARINC 661 run-time message
blocks. Anytime a UA or a CDS intends to send an ARINC 661 run-
time message block, that block is wrapped in a “group”. “Groups”
can be sent reliably or unreliably, which is a choice the sender
makes.

The sender assigns a sequence number to each group. Groups that
carry unreliable data have a sequence number of zero. Groups that
carry reliable data have a sequence number greater than zero. The
sender starts with a sequence number of one for the first reliable
group, and increments it by one each time a new reliable group is
generated. Copies of a reliable group have the same sequence
number as the first version of that group.

The Groups within an Extended Block are assembled so that they
are in order of sequence number, from lowest to highest, except that
groups with a sequence number of zero (i.e., unreliable groups) may
appear anywhere within an Extended Block.



ARINC SPECIFICATION 661 — Page 345

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

A

Extended Block Data Structure

Extended
Block
Header

ARINC | ARINC 661
661 Runtime

Header | Commands

ARINC
661

" = Header

ARINC 661
Runtime
Commands

Extended Block
The Extended Block is structured as defined in Table F-6.1.
Note: The first 12 bytes are the Extended Block

Header.

Table F-6.1 — Extended Block Structure

Offset | Size Parameter Description Value/

(bytes) | (bits) Type

0 16 Start Marker Indicates the start of the Block “BS”
Header. 0x4253

2 16 Extended Block | Size in bytes of the extended 0-65535

Size block including the header.

4 4 Source Identifies the CDS or UA 0-15
originator of the message block.

4 Destination Identifies the CDS or UA to which | 0-15
the message block is destined.

5 8 Number of Number of groups in this 0-255

Groups extended block.
6 8 Service Used by UAs to indicate whether | True/
Available the service associated with this False
connection is available for use by
the CDS.

7 8 Assumed Health | For each connection, the CDS and | True/
UAs compute health of their False
counterpart and echo this
assumed health in subsequent
transmissions.

8 32 Lowest Used by the reliable

Sequence No. communications protocol to
indicate the lowest sequence
number of data that is being or
will be sent.

12 {32}+ Extended Block | The extended block data is made

Data up of any number of Data Groups.

The values for “Source” and “Destination” are meant for multi-cast
scenarios, where more than one UA or CDS listens on any given
connection. In this case, a number between 0 and 15 is assigned to
each sender and each receiver on each connection. These fields can
be ignored if point-to-point connections are used between each CDS
and each UA.




ARINC SPECIFICATION 661 — Page 346

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

Both UAs and the CDS exchange extended blocks periodically to
exchange health information. If a UA or a CDS determines that its
own health is bad, it should stop sending periodic extended blocks.
Extended blocks may contain any number of groups, including none
if there is no actual data to send and the purpose of the extended
block is merely to announce the sender’s health.

The intended use for the “Service Available” parameter means that it
should be set either by a CDS or a UA. The idea is that either a CDS
picks a UA to drive a layer, or a UA picks a CDS to display its layers.
In either case, the “Service Available” flag is set to True if the
sender is able to support a new request from the receiver.

The “Assumed Health” parameter is used to tell the receiver what
health it assumes for that receiver. For example, if a CDS is
communicating to a UA, the CDS will determine the health status of
that UA (either Failed or Valid). When the CDS transmits data to UA it
will set the value of “Assumed Health” in the Extended Block Header
to the value of the Health Status it computed for the “UA”. This
helps address problems that might otherwise arise from a failure in
just one way of a bi-directional connection.

The use of the Lowest Sequence Number parameter is defined
below (see “Reliable Communications Method”).

Data Groups
The Data Group shall be structured as defined in Table F-6.2 below.
Note: The first 8 bytes are the Group Header.

Table F-6.2 — Data Group Structure

Offset Size Parameter Description Value
0 16 Start Marker Indicates the start of the Data Group “‘GS”

Header. 0x4753
2 16 Data Group Size Size of the group in bytes

(incl. the group header).
4 32 Sequence Sequence Number for the group.

Number

8 {32}+ Group Data Block | Contains one or more ARINC 661

data blocks and a maximum of one

control block.

The Sequence Number is defined in the following section.
Reliable Communications Method

The reliable communication method allows a CDS or UA to transmit
a message block multiple times and allow the receiving system a
means of determining whether it has missed one of these blocks.

Note: The number of times the transmitter sends the
block is variable and can be configured to
achieve the desired reliability across the
network. The assertion being that sending the



ARINC SPECIFICATION 661 — Page 347

APPENDIX F
COMMUNICATION TRANSPORT PROTOCOLS

block multiple times increases the probability
that one of the blocks will arrive.

Transmitting System

When a connection is first established, the transmitting system sets
the value of Transmitted Sequence Number to zero. Each time the
sender creates a fresh block of new data that needs to be
transmitted it increments the Transmitted Sequence Number by one
and sets the Sequence Number in the Group Header to this value.

Note: If a group is to be sent multiple times, then each
duplicate message will have the same sequence
number.

If the sender wishes to send a non-reliable block of data it sets the
Sequence Number in the Group Header to zero.

The sender sets the value of Lowest Transmitted Sequence Number
to the lowest non-zero sequence number for a message block that is
still scheduled for re-sending, or the next future sequence number if
there is nothing more to send.

The sender transmits this group in successive message blocks until
it has been sent the number of times required to assure reliable
transmission.

Receiver

When a connection is first established, the receiver sets the value of
Expected Next Sequence Number to one.

The receiver compares the value of Expected Next Sequence
Number to the Sequence Number value in each Group Header for
new message blocks. If the Sequence Number in the Group Header
is equal to the Expected Next Sequence Number then the receiver
processes the associated block of ARINC 661 data, increments the
Expected Next Sequence Number by one and then process the next
group.

If the Sequence Number in the Group Header is not equal to the
Expected Next Sequence Number, then the receiver skips to the next
group.

If the Lowest Sequence Number in the Extended Header is higher
than the Expected Next Sequence, the receiver knows that it has
experienced an unrecoverable loss of data. To resynchronize, the
receiver then sets the Expected Next Sequence Number to the
Lowest Sequence Number in the Extended Header and then asserts
the “Data Lost” state. If the receiver is a CDS, it sends the
A661_NOTE_REINIT_LAYER to the associated application. If the
receiver is a UA, it reinitializes all layer data as if it had received an
A661_NOTE_REINIT_LAYER message. And the data is recovered.



ARINC SPECIFICATION 661 — Page 348

APPENDIX G
NEW WIDGET GUIDELINES

G-1 Guideline Purpose

The purpose of the New Widget Guidelines is to:

Assist candidate widget advocates in successfully proposing
new widgets.

Assist reviewers in a conducting a structured evaluation of
proposed new widgets.

The proposal of new widgets can be divided into two general parts.

1.

2.

The Description / Discussion section that provides a higher
level discussion of the proposed widget’s purpose.

The Template section that provides the detailed widget
attributes that will ultimately be included in the ARINC 661
specification.

G-2 Description/Discussion

Potential new widgets should be introduced with a high level
discussion that addresses why the proposed widget should be
added to the Widget Library. As applicable, that discussion should
include the following points:

Describe the new widget’s purpose and operational capability
it provides for the aircraft. If possible, provide a
representative figure and illustrative example. If applicable,
describe how the user interface functions. Where does the
new widget fit in the A661 library structure?

If applicable, explain why the current library is insufficient to
accomplish the requirement. What does the candidate widget
do that can not be reasonably accomplished with the current
widget library?

Is this new widget an extension of a current capability or a
fundamentally new capability?

How does this widget interface with other widgets?

Could a current widget be modified to accomplish the
intended purpose? If so, why is a new widget a better idea?
How does this proposed widget differ from related widgets
(what attributes are different). Why is the new widget better
than a previous widget?

Are there any backward compatibility issues with this widget
or widget change?

Does this widget make any current widgets obsolete and
candidate for removal from the standard?

Does the new widget design include any growth capability?

Are there likely to be any processing or bandwidth resource
issues with the new widget?



ARINC SPECIFICATION 661 — Page 349

APPENDIX G
NEW WIDGET GUIDELINES

e Is the definition of widget parameters independent of “look
and feel” concerns that could be better addressed by
StyleSet.

e Is the new widget best suited as a standard A661 library
object or is it more appropriately implemented as an OEM
custom widget?

e If the introduction of the new widget introduces new concepts
beyond those already defined in ARINC 661, the advocate
should include material that describes the advantage of the
proposal and how it might be specified in ARINC 661.

G-3 Widget Design Guidelines

The following guidelines should be considered when designing a
new widget. If a widget does not comply with these guidelines, an
explanation should be provided.

Each rule is associated with an example to illustrate the way it
should be understood (example of good usage of the rule or of
violation of the rule).

Note: For examples of rules violation, the provided
examples have been discussed.

1. Each widget should have a single role / responsibility. If a
widget has several roles (for instance depending on a
parameter), it should be split into a set of simpler widgets
having a single role.

A widget could be a scrolled-list or a pop-up list depending
on its size (still allowing to select one item out of several), but
a widget can not be a pop-up list (selecting an item out of
several) and a text-field (entering a text) depending on the
value of its parameters.

2. Each parameter should have a single goal. If a parameter has
several goals (for instance depending on other parameters), it
should be split into a set of simpler parameters having a
single goal.

Example of rule violation: ExternalSource SourceDX and
SourceDY parameter have different behavior depending on
the Source parameter.

3. A widget should not rely on hypothesis on its container.
Example of rule violation: the tabbedPanel widget can only be
the children of a tabbedPanelGroup widget.

4. Widget parameters should be individually modifiable:
provided a parameter value is set consistently with its usage
domain, setting this value should not result into an erroneous
behavior due to the value of other parameters.

Example of rule violation: the AlphaMask and NumericMask
value can not be changed if not consistent with the
labelString.



ARINC SPECIFICATION 661 — Page 350

10.

APPENDIX G
NEW WIDGET GUIDELINES

Each layer has an associated namespace (widget ID). The
parameter of a widget belonging to a layer should not use
reference to the namespace of another layer (in this case, use
a CDS-level reference).

Example of rule violation: FocusLink is making a reference to
a widget belonging to another layer.

StyleSet should not be used to describe anything but
alternative views (no different controller depending on the
StyleSet)

Example of rule violation: the StyleSet should not be used to
change a radiobox into a multiple selection container.

No widget should rely on assumption of cockpit configuration
(number of users, number of cursors, size and number of
displays, type of control, etc.)

All parameters should be definition and run-time modifiable
except if they raise a safety or system issue. This analysis
should be done before adding a new widget to ARINC 661.
Example: Maximum string length is not run-time modifiable
because changing the value of this parameter at run-time may
result in undesired effects (memory allocation issue).

If a widget is derived from an existing widget, it should inherit
(in term of parameters) from the existing widgets (having the
same parameters plus specific parameters).

Example: PicturePushButton is derived from the PushButton.

All widget should follow convention of parameter types /
sizes / run-time identifiers / events defined for existing
widgets. For example, all parameters related to screen
dimension should be 32 bits and related to 1/100th
millimeters.

G-4 New Widget Template

Section 3.3 describes ARINC 661 widget characteristics and the
interface.

Each widget definition is divided into the following parts that need to
be included in a new widget proposal.

1.

abkhob

Definition Section

a. Categories

b. Description

c. Restriction

Widget Parameters Table

Creation Structure Table

Event Structure Table

Run-time Modifiable Parameter Tables



ARINC SPECIFICATION 661 — Page 351

APPENDIX G
NEW WIDGET GUIDELINES

While it may not be necessary to complete the entire widget
definition when initially proposing a widget it is helpful to highlight
the areas that make the widget unique.

Definition Section
G-5 Widget Category

Widgets are grouped into one or more categories based on the
widget’s purpose. Table 3.2.2-6 is the current list of Widget Library
Categories. The following is provided for convenience.

e Container

e Graphical Representation
e Text String

e Interactive

e Map Management

e Dynamic Motion

o Utility

e UA Validation

Description
Provide a functional description of the widget.

List any widgets it is similar to or dependent upon.

Restrictions
Describe any restrictions to ARINC 661 principles.

Describe any exceptions to defined provisions. For example,
Sections 2.3.4.1 through 2.3.4.3 provide defined conventions for
positioning and sizing within a window. Exceptions to these
conventions should be identified and explained.

Widget Parameters

The parameters associated with each widget can be divided into
commonly used parameters and specific parameters. Specific
parameters can be either previously used or new ones.
Requirements for new specific parameters will need to be clearly
explained as part of the new widget proposal.

The Commonly Used Parameters List below is provided for
convenience and lists common parameters and identifies the
parameters that are required for all widgets. The list is an
abbreviated compilation of the information found in section 3.1.3

Section 3.1.3 provides a full discussion of Commonly Used
Parameters.



ARINC SPECIFICATION 661 — Page 352

APPENDIX G
NEW WIDGET GUIDELINES

Pay special attention to the StyleSet parameter. It is desirable for the
ARINC 661 interface to be as independent as possible from the
widget’s graphical characteristics. The parameter allows the
different OEMs to ensure the widget graphics meets their
requirements.

The following table is provided to assist in listing the new widget’s
parameters.

Parameters Change Description

Commonly Used Parameters

See Commonly Used Parameter list below or Section
3.1.3

Previously Used Specific Parameters

See Table 4.6-8 — Parameter Types

New Specific Parameters

G-6 Commonly Used Parameters List

Note: (Req) indicates a required widget parameter

Widget Parameter Category Description

WidgetType (Req) Type of widget
See Table 4.6.7

Widgetldent (Req) Identifier of the widget (refer to Section 3.1.1,)
Widgetldent is a non-null positive value.
NULL is reserved for referring to the layer level (e.g., Parentldent)

Parentldent (Req) Identifier of the immediate container of the widget. Only a special
category of widgets called “Container” can be the parent of other
widgets.

At the highest level of the widget hierarchy within a layer, the
Parentldent value is 0 (NULL). This means that the parent of the
widget is the layer.

InnerState Holds the specific functional state (if any) of a widget.
The set of possible values depends on widget type.

Visible A661_FALSE:

The widget will not be rendered.

A661_TRUE:

If its entire parent is visible, the widget will be rendered.

If one or all its parents are invisible, the widget will not be rendered,
whatever the value of its visible parameter.




ARINC SPECIFICATION 661 — Page 353

APPENDIX G
NEW WIDGET GUIDELINES

Widget Parameter

Category Description

Enable A661_FALSE:
The widget will not be interactive.
A661_TRUE or A661_TRUE_WITH_VALIDATION:
If all its parents are enabled, the widget will be interactive.
If one or all its parents are disabled, the widget will not be interactive,
whatever the value of its Enable parameter.
An invisible widget is not interactive, independent of the value of its
Enable parameter.

Anonymous A661_FALSE: run-time accessible.

Widget can be modified at run-time, if it has some run-time
accessible parameters.

A661_TRUE: anonymous.

Widget can not be modified at run-time by UA. CDS behavior when a
UA attempts to SetParameter on an anonymous widget is undefined.

StyleSet StyleSet allows the UA to select from a predefined set of graphical
characteristics to be applied to a widget. See Table 3.1.3.3 for a full
discussion of the StyleSet parameter.

Pos X The X position of the widget reference point is an offset with respect
to the absolute X position of the reference point of the widget
container (parent).

PosY The Y position of the widget reference point is an offset with respect
to the absolute Y position of the reference point of the widget
container (parent).

Size X The X dimension size (width) of the widget.

Size Y The Y dimension size (width) of the widget.

NextFocusedWidget Widget ident of next widget to be focused upon crew member

validation.

AutomaticFocusMotion

A661_FALSE:

No automatic motion: after a crew member validation, the focus
remains on the widget until an explicit move of the focus.
A661_TRUE:

Move automatically the focus after a crew member validation to the
next widget according to the NextFocusedWidget parameter




ARINC SPECIFICATION 661 — Page 354

APPENDIX G
NEW WIDGET GUIDELINES

G-7 Creation Structure

A Creation Structure Table should be prepared for each candidate
widget.

In the Creation Structure Tables, parameters are grouped together to
form 32-bit words. Each word in the table is separated from other
words by a full line. When one word of 32 bits is composed of
several parameters, the parts are separated in the table by a dashed
line. Refer to Table 3.3-2, Example of Creation Structure.

The widget parameter order discussed in the previous section may
be different from the order in the widget parameter table. The widget
parameter table describes parameter functional aspect, while the
creation structure table describes the parameter buffer coding
aspect.

Some points to remember when generating a new Creation
Structure:

o If possible, allocate a set of pad bits (16 to 32 bits) at the end
of the widget creation structure for future growth.

e Ensure the StyleSet size is 16 bits.

e The Enable flag goes just before Visible flag (exceptions are
the Connector and CursorOver widget).

e Use existing parameter types as much as possible, refer to
tables in Section 4.

e When adding codes to the tables in Section 4, be careful to
avoid adding a code to a table that has already been assigned
in that table (exception: constants can be duplicated). Some
checking beforehand is required before assigning a code: not
all tables are ordered according to increasing code value,
some are ordered alphabetically or per some other method.

e Use {n}+ notation to indicate variable sized buffer of
parameters.

e Pads are all type N/A.
e Within a word, place 16-bit parameters before 8-bit
parameters.

Add pads at the end of any unfilled 32-bit words.



APPENDIX G
NEW WIDGET GUIDELINES

ARINC SPECIFICATION 661 — Page 355

The following table is provided to assist in completing the new

widget’s Creation Structure table.

Create Parameter Buffer Type Size Value / Range
(bits) When Necessary
WidgetType ushort 16 See Table 4.6-9, Widget Types
Widgetldent ushort 16
Parentldent ushort 16

Continue the table, ensuring all widget
parameters are included.

G-8 Event Structure

Interactive widgets must have an event structure table attached.
This structure is similar to the widget creation structure and
provides the structure for widget associated events.

An Event Structure Table should be prepared for each Event.

In the Event Structure Tables, parameters are grouped together to
form 32-bit words. Each word in the table is separated from other
words by a full line. When one word of 32 bits is composed of
several parameters, the parts are separated in the table by a dashed
line. Refer to Table 3.3-2, Example of Event Structure.

A discussion of widget events can be found in Section 3.1.4, Widget

Events.

Table 4.5.4.2-3 defines the run-time Widget_Event_Structure.

The following table is provided to assist in completing the new
widget’s Event Structure Table.

Event Structure Type Size Value / Description
(bits)
Eventldent ushort 16 See Table 4.6-9, Event Types
As required. See Table 4.6-10, Boolean Constants
See Table 4.6-11, Integer Constants
UnusedPad N/A variable If required

G-9 Runtime Modifiable Parameters

The dynamic data transfer between the UA and CDS at run-time
includes the requirement to update run-time widget parameters.
Runtime Modifiable Parameters should include all widget
parameters that have “R” in the Widget Parameter Table Change

column.




ARINC SPECIFICATION 661 — Page 356

APPENDIX G
NEW WIDGET GUIDELINES

Section 4.5.4.5, ARINC 661 Parameter Structure, provides details of
the parameter structures which should be applied to run-time
modifiable parameters.

Some points to remember when generating a new runtime
modifiable parameter:

Never modify WidgetType or Widgetident
Do not use StyleSet to manage race condition

“XY” and “DXDY” are for convenience only. This allows the
UA to set two adjacent parameters at once, as no
corresponding parameters exist in the Creation Structure.

Follow existing widget as much as possible when naming
runtime modifiable parameters, (e.g., abbreviate longitude as
‘Lng’ not ‘Lon’)

The following table is provided to assist in completing the new
widget’s Runtime Modifiable Parameter table.

Name of the
Parameter to Set

Type | Size Parameterldent Used in | Type of Structure Used
(bits) | the ParameterStructure | (Refer to 4.5.4.5)

G-10 Widget Library Tables

As part of the inclusion of a new widget in the Section 3.0, Widget
Library, the tables identified below will need to be updated.

Widget Event Use Cross Reference Table - 3.1.4-1
This table should be updated.

Widget Library Summary — 3.2.1

Brief widget description.

Widget Classification Table — 3.2.2-2

List widget categories (Container, Map Management, Dynamic
Motion, Graphical Representation, Text String, Interactive,
Unclassified)

Widget Children — 3.2.3.1

List all possible parents of the new widget. For new container
widget, list the possible children.

ARINC 661 Keyword Values - 4.6
Provide input to all applicable tables.




AERONAUTICAL RADIO, INC.
2551 Riva Road
Annapolis, Maryland 24101-7465

SUPPLEMENT 1
TO
ARINC SPECIFICATION 661

COCKPIT DISPLAY SYSTEM INTERFACE
TO USER SYSTEMS

Published: June 26, 2003

Prepared by the Airlines Electronic Engineering Committee

Adopted by the Airlines Electronic Engineering Committee: March 6, 2003






SUPPLEMENT 1 TO ARINC SPECIFICATION 661 — Page a

A. PURPOSE OF THIS DOCUMENT

This supplement introduces various changes and additions to ARINC Specification
661. It adds eight new widgets to the standard and provides clarification of the
definition of the Cockpit Display System (CDS) interface to user systems.

B. ORGANIZATION OF THIS SUPPLEMENT

In the past, changes introduced by a supplement to an ARINC Standard were
identified by vertical change bars with an annotation indicating the change number.
Electronic publication of ARINC Standards has made this mechanism impractical.

In this document, vertical change bars in the margin will indicate those areas of text
changed by the current supplement only.

C. CHANGES TO ARINC SPECIFICATION 661 INTRODUCED BY THIS SUPPLEMENT

This section presents a complete listing of the changes to the document introduced
by this supplement. Each change is identified by the section number and the title as
it will appear in the complete document. Where necessary, a brief description of the
change is included.

0.0 Global Changes to Nomenclature Used in ARINC 661

e MapWidget changed to MapHorz
e MapSource changed to MapHorz_Source
e MapltemList changed to MapHorz_ltemList

2.2.1 Definition Phase
This section modified for clarity.
2.2.3 Special Conditions
This section and subordinate sections added.
2.2.4 ARINC 661 Conformance
This section re-numbered.
2.2.5 ARINC 661 Library Evolution
This section re-numbered.
3.2.2 Widget Classification
Table 3.2.2-2 updated to support the expansion of widgets.
3.2.3.1 Possible Children of Container Widgets
Table 3.2.3.1 updated to support the expansion of widgets.

3.2.5.3 Change Style Capabilities

Table 3.2.5.3 corrected error by replacing “Flashing” with “Animation”. Replace the
definition with “Animation of ASCII text”.



SUPPLEMENT 1 TO ARINC SPECIFICATION 661 — Page b
3.2.5.5 Escape Sequences Description

Table 3.2.5.5.1 and 3.2.5.5.2 corrected error by replacing “Flashing” with
“Animation”.

3.2.8 Map Management

This section modified for clarity.
3.3.1 Active Area

Added StyleSet Parameter.
3.3.2 BasicContainer

This section modified to state that some widgets can only be positioned at run-time.
supplement 1 supports the definition of the position of an optional panel at run-time.
The objective is to define a position, not to move the widget at run-time.

3.3.5 CheckButton

This section modified to define the label alignment on button. The definition of the
LabelPosition parameter is clarified. This parameter can be replaced by
“PicturePosition” to be coherent with PictureXxxxButton.

3.3.6 ComboBox
This section modified to define the label alignment on button.
3.3.9 EditBoxMasked

This section updated for clarity. The UA cannot change the EditBoxState into the edit
mode through the EditBoxState parameter. The UA must request the Focus on the
EditBox. When an EditBox reports all changes are completed and a crew member
cancels the modifications, the display should annunciate an aborted event.
Descriptive paragraph added. EditBoxState parameter deleted. Type of
ReportAlliChanges changed from Boolean to Enumeration. STATE_CHANGE event
deleted. ABORTED event added.

3.3.10 EditBoxNumeric

This section updated for clarity. The UA cannot change the EditBoxState into the edit
mode through the EditBoxState parameter. The UA must request the Focus on the
EditBox. When an EditBox reports all changes are completed and a crew member
cancels the modifications, the display should annunciate an aborted event.
Descriptive paragraph added. EditBoxState parameter deleted. Type of
ReportAllChanges changed from Boolean to enumeration. STATE_ CHANGE event
deleted. ABORTED event added. Parameters NumericKeyFlag, MinValue,
MaxValue and CyclicFlag are added. TicsCoarse and TicsFine are not modifiable at
run-time.

3.3.11 EditBoxText

This section updated for clarity. The UA cannot change the EditBoxState into the edit
mode through the EditBoxState parameter. The UA must request the Focus on the
EditBox. When an EditBox reports all changes are completed and a crew member
cancels the modifications, the display should annunciate an aborted event.
Descriptive paragraph added. EditBoxState parameter deleted. Type of



SUPPLEMENT 1 TO ARINC SPECIFICATION 661 — Page ¢

ReportAllChanges changed from Boolean to enumeration. STATE_ CHANGE event
deleted. ABORTED event added.

3.3.20 Label

Changed “static” to “anonymous”. Deleted references to “blink” capability. Added
“ColorIndex” parameter. Added additional Alignment value definitions.

3.3.21 LabelComplex

Added additional Alignment value definitions.
3.3.22 MapHorz_Iltem List

MapltemList changed to MapHorz_ltem List.
3.3.22.1 MapHorz_ItemList Standard Items Description

Added “FilledPolyStart” and “FilledOval” map items.
3.3.22.2.1.8 Symbol Generic

SymbolType values were labeled as examples.
3.3.22.2.1.10 Symbol Rotated

SymbolType values were labeled as examples.
3.3.22.2.1.11 Symbol Runway

The words “coordinate of symbol” changed to “coordinate of threshold”.
3.3.22.2.1.12 FilledPolyStart

This section added.
3.3.22.2.1.13 SymbolOval

This section added.
3.3.23 MapLegacy

Parameter “FormatType” changed to “ChannellD”. All references to ARINC 702 and
ARINC 708 were removed. This makes MapLegacy consistent in description and
operation to ExternalSource widget.

3.3.24 MapHorz_Source

MapSource changed to MapHorz_Source. Table of MapDataFormat valued added
for clarity. “A661_EVT_SELECTION” changed to “A661_EVT_SELECTION_MAP”.

3.3.25 MapHorz

This section modified to support map display. Map Widget changed to MapHorz.
Description of “PRP Lat/Lng” identified as Commentary. Description of “Orientation”
updated for clarity. Screen Reference Point X/Y changed from ulong to long.

3.3.28 PicturePushButton

Alignment parameter added.



SUPPLEMENT 1 TO ARINC SPECIFICATION 661 — Page d

3.3.29

3.3.30

3.3.31

3.3.32

3.3.33

3.3.34

3.3.36

3.3.37

3.3.38

3.3.39

3.3.40

PictureToggleButton

Alignment parameter added.

PopUpPanel
AutomaticClosure parameter added.

PopUpMenu
Replace “UAPositionFlag” by “OpeningMode”, because an UA may want to open a
menu UP or DOWN.

PopUpMenuButton
It is necessary to define the label alignment on button. Replace “UAPositionFlag” by
“OpeningMode”, because an UA may want to open a menu UP or DOWN.

PushButton
It is necessary to define the label alignment on button.

RadioBox
Updated to say that a user application may need to display a RadioBox without any
selected element (for example, in the disable state).

ScrollPanel
HorizontalScroll and VerticalScroll modified to cover all possibilities,
Absent/Up/Bottom/Left/right. For operational reasons, it might be necessary to place
vertical and horizontal scroll at the same place. It is easier for a crew member to
manage the scroll buttons.

ScrollList
It is necessary to define the label alignment on button.

Symbol
Category does not include “interactive”. This category was deleted.

TabbedPanel

It is necessary to define the label alignment on button. The UA managing a
TabbedPanel (or a set of TabbedPanel) may need to define inset size. To introduce
this functionality and keep the segregation between the TabbedPanel and the
TabbedPanelGroup, new parameters were added. For Tabbed Panel, the “InsetSize”
parameter is added. For TabbedPanelGroup, the “AutomaticlnsetSizeFlag”
parameter is added. This flag allows the choice between the manual inset size using
“InsetSize” parameter or an inset size defined by a display dependent algorithm.

TabbedPanelGroup

The UA managing a TabbedPanel, or set of TabbedPanel, may need to define inset
size. To introduce this functionality and to keep the segregation between
TabbedPanel and the TabbedPanelGroup, new parameters were added. For Tabbed
Panel, the “InsetSize” parameter is added. For TabbedPanelGroup, the
“‘AutomaticlnsetSizeFlag” parameter is added. This flag selects between the manual



SUPPLEMENT 1 TO ARINC SPECIFICATION 661 — Page e

inset size using “InsetSize” parameter, or an inset size defined by a display

dependent algorithm.
3.3.41 ToggleButton
It is necessary to define the label alignment on button.
3.4 Widget Library Expansion
This section and its subordinate sections added by supplement 1.
3.4.1 MapGrid
This section added. New Widget is defined.
3.4.2 ExternalSource
This section added. New Widget is defined.
3.4.3 MapVert
This section added. New Widget is defined.
3.4.4 MapVert_Source
This section added. New Widget is defined.
3.4.5 MapVert_ItemList
This section added. New Widget is defined.
3.4.6 EditBoXMultiLine
This section added. New widget is defined.
3.4.7 ComboBoxEdit
This section added. New widget is defined.
3.4.8 MenuBar
This section added. New widget is defined.
4.0 COMMUNICATION PROTOCOL
This section modified to reflect changes elsewhere in the document.
4.6 ARINC 661 Keyword Values
This section updated.
APPENDIX C — EXAMPLE OF A DEFINITION FILE
The example was updated following an actual implementation in 2003.
APPENDIX E - MAP MANAGEMENT TUTORIAL

This appendix modified to provide example of a map display.






AERONAUTICAL RADIO, INC.
2551 Riva Road
Annapolis, Maryland 24101-7465

SUPPLEMENT 2
TO
ARINC SPECIFICATION 661

COCKPIT DISPLAY SYSTEM
INTERFACES TO USER SYSTEMS

Published: June 30, 2005

Prepared by the Airlines Electronic Engineering Committee

Adopted by the Airlines Electronic Engineering Committee: October 27, 2004






SUPPLEMENT 2 TO ARINC SPECIFICATION 661 — Page a

A. PURPOSE OF THIS DOCUMENT

This supplement introduces numerous changes and additions to ARINC 661,
Cockpit Display System Interface to User Systems. The supplement introduces
seven new widgets that expand the capability of ARINC 661 display systems.

To make communication consistent across all widgets, changes to the
communications protocol are included for some widgets, Standardized data structure
and communication protocols are introduced, with the expectation that subsequent
supplements will be compatible with this version. As a result of these changes, it is
recognized that the communication protocol for some widgets included herein may
not be compatible with communication protocols defined in earlier versions of this
standard. The intent is for all CDS implementations built to this standard and future
versions of this standard to use the same communication protocols.

B. ORGANIZATION OF THIS SUPPLEMENT

In the past, changes introduced by a supplement to an ARINC Standard were
identified by vertical change bars with an annotation indicating the change number.
Electronic publication of ARINC Standards has made this mechanism impractical.

In this document, vertical change bars in the margin will indicate those areas of text
changed by the current supplement only.

C. CHANGES TO ARINC SPECIFICATION 661 INTRODUCED BY THIS SUPPLEMENT

This section presents a complete listing of the changes to the document introduced
by this supplement. Each change is identified by the section number and the title as
it will appear in the complete document. Where necessary, a brief description of the
change is included.

Global Changes to Widgets and Data Structures Used in ARINC 661

The pad bits used within the data structures were modified to follow existing
conventions more consistently.

The Focuslndex attribute was replaced by NextFocusWidget

ParameterStructure_XY was replaced by ParameterStructure_8Bytes
2.3.5 Cursor Management

This section was updated to provide guidance on cursor focus and highlight. The
changes are intended to better describe cursor control timing.

3.1.3.5 Parameters Related to Focus Navigation

Table 3.1.3.5 was modified to identity of the widget to be focused upon was clarified.
3.1.4 Widget Events

This Section was added to describe behavior of widget events.
3.2.1 Widgets Summary

The widget library summary was expanded to include seven new widgets introduced
in supplement 2. These include:

1. MutuallyExclusiveContainer widget
2. ProxyButton widget



SUPPLEMENT 2 TO ARINC SPECIFICATION 661 — Page b

3. WatchdogContainer widget
4. Slider widget

5. PictureAnimated widget

6. SymbolAnimated widget
7. SelectionListButton widget

3.2.2 Widgets Classification
Table 3.2.2-2 was updated to support the widget expansion in supplement 2.
3.2.3.1 Possible Children of Container Widgets

Table 3.2.3.1 was expanded to include new widgets and the relationship with respect
to each other.

3.3 Widget List

Table 3.3-1 was updated to correct the LSB value for 32 bit words. Conventions for
padding and alignment were added.

3.3.1 ActiveArea

A parameter was modified to include the identity of the widget to focus upon.
3.3.2 BasicContainer

Runtime parameters PosX and PosY were defined to be 8 bytes.
3.3.4 BufferFormat

The restrictions on BufferOf Parameter were modified.

3.3.4.1 A661_ParameterStructure_Buffer

This section was expanded to provide additional detail.
3.3.5 CheckButton

A parameter was modified to include the identity of the widget to focus upon.
3.3.6 ComboBox

This section was modified to add new OpeningEntry parameter. A parameter was
modified to include the identity of the widget to focus upon.

3.3.9 EditBoxMasked

An EntryValidation parameter was added. This would clarify use of alpha and
numeric characters.

3.3.10 EditBoxNumeric

The FormatString parameter was changed to be run-time modifiable. New
MaxFormatStringLength parameter was added. Events reported by this widget were
updated.



SUPPLEMENT 2 TO ARINC SPECIFICATION 661 — Page ¢
3.3.11 EditBoxText

FormatString parameter was changed to be run-time modifiable. New
MaxFormatStringLength parameter was added. Events reported by this widget were
updated. New parameters StartCursorPos and LegendString were added.

3.3.13 GpArcCircle

Runtime parameters PosX and PosY were defined to be 8 bytes. UnusedPad were
changed from 8 bits to 16 bits for proper alignment.

3.3.14 GpCrown

Runtime parameters PosX and PosY were defined to be 8 bytes.
3.3.15 GpLine

Runtime parameters PosX and PosY were defined to be 8 bytes.
3.3.16 GpLinePolar

Runtime parameters PosX and PosY were defined to be 8 bytes.
3.3.17 GpRectangle

Runtime parameters PosX and PosY were defined to be 8 bytes.
3.3.18 GpTriangle

Runtime parameters PosX and PosY were defined to be 8 bytes.
3.3.22.1 MapHorz_ltemList Standard Items Description

New Mapltem types ITEM_SYNCHRONIZATION was added.
3.3.22.2 MapHorz_IltemList A661_ParameterStructure Specifics

The description of symbol placement was added. Also, throughout this section,
RelativePosition attribute was added.

3.3.22.2.1.6 Line_Arc

This section was updated to clarify the description of InboundCourse and
CourseChange angles.

3.3.22.2.1.14 Item_Synchronization

A new Mapltem type was added.
3.3.22.3 MapHorz_ltemList Interactive Items

This section was added to define interactivity on maps.
3.3.24 MapHorz_Source

The EventFlag parameter was modified to support scroll wheels. A column was
added to Table 3.3.24-2b to show direction of positive orientation for angles
(clockwise or counter-clockwise).



SUPPLEMENT 2 TO ARINC SPECIFICATION 661 — Page d

3.3.25

3.3.28

3.3.29

3.3.30

3.3.31

3.3.32

3.3.33

3.3.34

3.3.35

3.3.36

3.3.37

Map_Horz

A new event was defined for Iltem Synchronization.
PicturePushButton

A parameter was modified to include the identity of the widget to focus upon.
PictureToggleButton

A parameter was modified to include the identity of the widget to focus upon.
PopUpPanel

A restriction was removed. PopUpPanels can be nested.
PopUpMenu

PictureArray was added as run-time modifiable parameter in Table 3.3.31-4.
PopUpMenuButton

A parameter was modified to include the identity of the widget to focus upon. The
PictureArray parameter was added

PushButton

A parameter was modified to include the identity of the widget to focus upon.
RadioBox

Restrictions were removed from this widget.
RotationContainer

The Enable parameter was deleted as it does not apply to this widget
ScrollPanel

The Horizontal Scroll parameter was modified to include Top/Bottom scroll. The
Vertical Scroll parameter was modified to include Left/Right scroll.

ScrollList

The EnableArray parameter was added.

3.3.37.1 ScroliList Specific A661_ParameterStructure

3.3.39

New Section added.
TabbedPanel

A parameter was modified to include the identity of the widget to focus upon.

3.3.41 ToggleButton

3.3.42

A parameter was modified to include the identity of the widget to focus upon.
TranslationContainer

The Enable parameter was deleted as it does not apply to this widget. Runtime
parameters TranslationX and TranslationY were defined to be 8 bytes.



SUPPLEMENT 2 TO ARINC SPECIFICATION 661 — Page e
3.4.1 MapGrid

The description of MapGrid parameters, IncrementX and IncrementY, were modified
in Table 3.4.1-1. The changes would distinguish between distance-distance on a
rectangular grid versus true bearing-distance grid used with weather radar. Support
for various MapDataFormat values would be implementation dependent.

3.4.3 MapVert

Vertical display capability is included for terrain profile and other applications. A new
event was defined for Item Synchronization. This would ensure that weather radar
display and terrain display would be synchronized with aircraft position. Parameters
RangeX and RangeY were retained.

3.4.4 MapVert_Source

The MapDataFormat parameter described in Table 3.4.4-2b was modified to allow
the origin of the map to be an absolute geometric point or a point relative to a
geometric reference point. A clarification was made to the use of different
MapDataFormats in this widget.

3.4.5 MapVert_ItemList

Item Synchronization was added to Table 3.4.5.1-1.
3.4.5.2.1.10 Item_Synchronization

New Section added.
3.4.5.2.11 Symbol_Rotated

New Section added.
3.4.5.3 MapVert_ltemList Interactive Item

New Section added.
3.4.6 EditBoxMultiline

Changes made to event reporting of this widget.
3.4.7 ComboBoxEdit

A parameter was modified to include the identity of the widget to focus upon.
Changes made to event reporting and entry validation.

3.5 Widget Library Expansion

This section and its subordinate sections were added. Seven widgets are included in
the widget library expansion in supplement 2.

3.5.1 MutuallyExclusiveContainer widget

MutuallyExclusiveContainer widget was added to activate a single widget from a
collection of widgets.



SUPPLEMENT 2 TO ARINC SPECIFICATION 661 — Page f

3.5.2 ProxyButton widget

ProxyButton widget was added to direct a physical button push as an event selection
on a window.

3.5.3 WatchdogContainer widget

WatchdogContainer widget was added to monitor the refresh rate of data supplied to
the display system.

3.5.4 Slider widget

Slider widget was added to enable scrolling through the contents of a specific
viewing area.

3.5.5 PictureAnimated widget

PictureAnimated widget was added to display of a set of bitmap images in rapid
succession.

3.5.6 SymbolAnimated widget
SymbolAnimated widget was added to animate vector symbols.
3.5.7 SelectionListButton widget

SelectionListButton widget was added to allow a crew member to select one entry
within a list.

4.5.1 Notation
Notation was corrected to specify [<A>] means zero or one of [<A>].
4.5.3.1 UADF loading structure

This section was added to describe the software data loading of the User Application
Definition File (UADF).

4.5.3.2 Definition File (DF) Structure

The OEM File Header was replaced with the ARINC 665 definition file header, part
of which can be implementation dependent. The block structure for Symbol
Graphical Definition (SGD) was added.

4.5.3.5 Definition Time Symbol Block Commands

This section was added to address the symbol graphical definition (SGD) language.
4.5.3.6 Symbol Command Structure

This section added to address the symbol graphical definition (SGD) language.
4.5.3.7 Constraints Inside a Symbol Definition Block

This section was added to introduce Symbol Graphical Definition (SGD).
4.5.4.5.7 A661_Parameter_Structure_EnableArray

This section was added to support new widgets.



SUPPLEMENT 2 TO ARINC SPECIFICATION 661 — Page g
4.6 ARINC 661 Keyword Values
Section 4.6 was updated to include new constants, keywords and associated values.
5.0 Symbol Graphical Definition (SGD)
Symbol Graphical Definition (SGD) was added to define complex symbology.
6.0 XML Definition File Specification

This section was added as a suggested encoding method for ARINC 661 Definition
Files.

Appendix C Example of a Definition File

This Appendix was updated to support the XML Definition File Specification added in
Section 6. Section C.5 was added to provide an example XML definition file with a
wide range of properties. Section C.6 was added as an example binary definition file
that contains two symbol definitions. Section C.7 is the XML encoding of the binary
definition file provided in Section C.6.






AERONAUTICAL RADIO, INC.
2551 Riva Road
Annapolis, Maryland 24101-7465

SUPPLEMENT 3
TO
ARINC SPECIFICATION 661

COCKPIT DISPLAY SYSTEM INTERFACE TO USER SYSTEMS

Published: November 7, 2007

Prepared by the AEEC

Adopted by the Airlines Electronic Engineering Executive Committee:

September 26, 2007






SUPPLEMENT 3 TO ARINC SPECIFICATION 661 — Page a

A. PURPOSE OF THIS DOCUMENT

This supplement introduces numerous changes and additions to ARINC
Specification 661: Cockpit Display System Interface to User Systems. The
supplement introduces six new widgets that expand the capability of ARINC 661
display systems.

B. ORGANIZATION OF THIS SUPPLEMENT

In the past, changes introduced by a supplement to an ARINC Standard were
identified by vertical change bars with an annotation indicating the change number.
Electronic publication of ARINC Standards has made this mechanism impractical.

In this document blue bold text is used to indicate those areas of text changed by
the current supplement only.

C. CHANGES TO ARINC SPECIFICATION 661 INTRODUCED BY THIS SUPPLEMENT

This section presents a complete listing of the changes to the document introduced
by this supplement. Each change is identified by the section number and the title as
it will appear in the complete document. Where necessary, a brief description of the
change is included.

Global Changes to ARINC 661 Introduced by Supplement 3

For reasons of conciseness, global changes introduced by this supplement are
summarized here. These changes are repetitive changes that affect multiple
sections in the same way.

An improvement to the handshake protocol between the CDS and the UA was
introduced for validating pilot entries to the CDS. As part of this UA Validation
change, the Enable parameter was redefined to be a three-state enumerated data
type instead of a Boolean flag. Widget Parameter Tables, Creation Structure Tables
and Runtime-Modifiable Parameter Tables were modified accordingly.

Other global changes:
o Added Type column to several Event Structure Tables.
e Added Size column to several Runtime-Modifiable Parameter Tables.

¢ Removed Values column from the four Runtime-Modifiable Parameter Tables
that had this column: the information is found in the Widget Parameter
Tables.

o Added notes to several widget description sections to clarify cases in which
the cursor collides with widgets or layers which overlap one another.

Numerous minor editorial changes were applied to the document to improve:
e Table and Figure numbering consistency
e Text and Table formatting consistency

e Clarity and Grammar of Text descriptions.
2.2.4 ARINC 661 Conformance

This section was updated to better describe ARINC 661 compliance.



SUPPLEMENT 3 TO ARINC SPECIFICATION 661 — Page b

A reference to Appendix G was added to describe how new widgets can be
introduced in ARINC 661.

2.3.5.2 From CDS to UA
Added clarification describing the behavior of overlapping widgets.
3.1.2.1 Widget States Definition

The section was expanded by the inclusion of Figure 3.1.2 (formerly included in
Section 3.1.2.2).

3.1.2.2 Inner State Management: “Race Condition”

This section was updated to describe mitigation of race conditions. The reference to
Appendix D was removed. (Appendix D was deleted by Supplement 3.)

3.1.3.5 Parameters Related to Focus Navigation

This Section was modified to support FocusLink widget introduced in Section 3.6.4.
3.1.4 Widget Events

Widget Event Use Cross Reference Table 3.1.4-1 was added.
3.2.1 Widgets Summary

The widget library summary was expanded to include six new widgets introduced in
Supplement 3. These include:

3.6.1 EditBoxNumericBCD

3.6.2 CursorRef

3.6.3 CursorOver

3.6.4 FocusLink, Focusln, FocusOut
3.6.5 SizeToFitContainer

3.6.6 ShuffleToFitContainer

3.2.2 Widgets Classification

Table 3.2.2-1 and 3.2.2-2 was updated to support the widget expansion in
Supplement 3. New widget categories “utility” and “UA validation” were added.

3.2.3.1 Possible Children of Container Widgets

Table 3.2.3.1 was expanded to include new widgets and the relationship with respect
to each other.

3.2.5.1 Available Character Set
Clarify character set.
3.2.8.4 Map Synchronization Number

New Section added.
3.2.9 UA Validation

This Section replaces the old Section 3.2.9 (Non-Classified Widgets) deleted by
Supplement 3. UA Validation describes the handshake protocol between the CDS
and the UA for validating pilot entries and selections.



SUPPLEMENT 3 TO ARINC SPECIFICATION 661 — Page ¢

3.3.4.1 Buffer Format Alignment
This section renamed. The content remains the same.
3.3.6 ComboBox

Deleted Commentary regarding alternate ways for UAs to signal CDS that validation
is complete and what is displayed during entry validation.

3.3.9 EditBoxMasked

Deleted Commentary regarding alternate ways for UAs to signal CDS that validation
is complete, what is displayed during entry validation and what is displayed upon an
invalid entry.

3.3.10 EditNumeric

Deleted Commentary regarding alternate ways for UAs to signal CDS that validation
is complete, what is displayed during entry validation and what is displayed upon an
invalid entry.

3.3.11 EditBoxText

Deleted Commentary regarding alternate ways for UAs to signal CDS that validation
is complete, what is displayed during entry validation and what is displayed upon an
invalid entry.

3.3.20 Label
Changed Font parameter so it is runtime-modifiable.
3.3.22 MapHorz_ltemList Parameters

The Map Item Synchronization number was added. Table 3.3.22-1 -
MapHorz_ItemList Parameters was updated. Table 3.3.22-4 - MapHorz_ItemList
Runtime Modifiable Parameters was updated. Made spelling of BufferOfMapltems
Parameterldent match Section 4.

3.3.22.1 MapHorz_ItemList Standard Items Description

New MapHorz_Items for Symbol Target and Triangle Strips/Fans were added to
Table 3.3.22.1 - MapHorz_ItemList Standard Items Description.

3.3.22.2.1.15 Symbol_Target
New section added.
3.3.22.2.1.16 Triangle Strip Map Item
New section added.
3.3.22.2.1.17 Triangle Segment Map Item
New section added.
3.3.22.2.1.18 Triangle Segment Double Map Item

New section added.



SUPPLEMENT 3 TO ARINC SPECIFICATION 661 — Page d

3.3.22.2.1.19 Triangle End Map Item
New section added.

3.3.22.2.1.20 Triangle End Double Map Item
New section added.

3.3.22.2.1.21 Triangle Fan Start Map Item
New section added.

3.3.25 MapHorz Parameters

The Map Item Synchronization number was added. Table 3.3.25-1 - MapHorz
Parameters was updated. Table 3.3.25-3 - MapHorz Runtime Modifiable Parameters
was updated.

3.3.27 Panel

The motion allowed parameter was added. The position and size parameters are
run-time modifiable. Table 3.3.27-1, Panel Parameters, was updated. Table 3.3.27-
2, Panel Creation Structure, was updated. Table 3.3.27-3, Panel Runtime Modifiable
Parameters, was updated.

3.3.37 ScroliList
This section updated for clarity. Two parameters were added.
3.4.1 MapGrid

The Map Item Synchronization number was added. Table 3.4.1-1 - MapGrid
Parameters was updated. Table 3.4.1-3 - MapGrid Run-Time Modifiable Parameters
was updated

3.4.3 MapVert

The Map Item Synchronization number was added. Table 3.4.3-1 - MapVert
Parameters was updated. Table 3.4.3-3 - MapVert Runtime Modifiable Parameters
was updated.

3.4.5 MapVert_ltemList

The Map Item Synchronization number was added. Table 3.4.5-1 - MapVert_ltemList
Parameters was updated. Table 3.4.5-3 - MapVert_ItemList Runtime Modifiable
Parameters was updated.

3.4.5.1 MapVert_ltemList Standard Items Description

New MapVert_ltems for Triangle Strips and Fans were added to Table 3.4.5.1 -
MapVert_ItemList Standard Items Description. Made spelling of BufferOfltems
Parameterldent match new spelling adopted in Section 4.

3.4.5.2.1.12 Triangle Strip MapVert_ltem
This section was added.
3.4.5.2.1.13 Triangle Segment MapVert_Item

This section was added.



SUPPLEMENT 3 TO ARINC SPECIFICATION 661 — Page e

3.4.5.2.1.14 Triangle Segment Double MapVert_ltem

This section was added.
3.4.5.2.1.15 Triangle End MapVert_Iltem

This section was added.
3.4.5.2.1.16 Triangle End Double MapVert_ltem

This section was added.
3.4.5.2.1.17 Triangle Fan Start MapVert_ltem

This section was added.
3.4.6 EditBoxMultiLine

Deleted Commentary regarding alternate ways for UAs to signal CDS that validation
is complete, what is displayed during entry validation and what is displayed upon an
invalid entry.

3.4.7 ComboBoxEdit

Deleted Commentary regarding alternate ways for UAs to signal CDS that validation
is complete, what is displayed during entry validation and what is displayed upon an
invalid entry.

3.5.6 SymbolAnimated

Renamed AnimationFlag and LoopFlag as AnimationType and LoopFlag,
respectively, and changed tables to correctly describe these parameters as
enumerated parameters.

3.5.7 SelectionListButton

Deleted Commentary regarding alternate ways for UAs to signal CDS that validation
is complete and what is displayed during entry validation.

3.6 Widget Library Expansion

This section and its subordinate sections were added. Six widgets are included in
the widget library expansion in Supplement 3.

3.6.1 EditBoxNumericBCD

This section was added to define a new widget.
3.6.2 CursorRef

This section was added to define a new widget.
3.6.3 CursorOver

This section was added to define a new widget.
3.6.4 Focus Navigation Widgets

This section and its subordinate sections were added to define three new widgets to
allow focus motion between layers.



SUPPLEMENT 3 TO ARINC SPECIFICATION 661 — Page f
3.6.5 SizeToFitContainer

This section was added to define a new widget.
3.6.6 ShuffleToFitContainer

This section was added to define a new widget.
4.4.2 Error Notification

This section was updated to clarify CDS behavior in error conditions.
4.4.3.1 Request from UA to CDS

This section expanded to include the capability to set cursor on widget.
4.5.3.2 Definition File (DF) Structure

Added picture definitions. Table 4.5.3.2-2 was clarified.
4.5.4.3 Request Structure

Added Table 4.5.4.3-6 containing cursor on widget description.
4.5.4.5.9 A661_ParameterStructure_BufferOfltems

Added a reference and clarified that this structure is used for both MapHorz_ItemList
and MapVert_ltemList.

4.5.4.5.10 A661_ParameterStructure_Buffer
Structure table was added.
4.6 ARINC 661 Keyword Values

This section was updated to include new constants, keywords and associated
values.

Table 4.6-2 updated to include picture block.

Table 4.6-3B updated to include symbol size, symbol rectangular and symbol
circular.

Table 4.6-5 updated to include request cursor on widget.

Table 4.6-7 updated to include new keyword values.

Table 4.6-8 updated to include new keyword values.

Table 4.6-9 updated to delete material pertaining to unused events.

Table 4.6-10 updated to include a True_With_Validation value for the redefined
Enable parameter. This is part of the UA Validation change.

Table 4.6-11 updated to include new keyword values.
5.2 Symbol Definition Commands

Symbol definition commands were updated to define an optional sensitive area
representation.

5.2.1.3 Sensitive Area

This section was added to describe cursor sensitive areas for symbols.



SUPPLEMENT 3 TO ARINC SPECIFICATION 661 — Page g
5.2.3.13 Size

This section was added to define a new symbol definition command which allows the
size of a symbol representation to be set.

6.0 XML Definition File Specification

This section was expanded to support OEM extensions and guidance for
representing non-printable characters.

Expanded to include sensitive area and picture graphical definition.

Expanded to include support for defining bitmap images in XML definition files.
7.0 Picture Graphical Definition

New section added. It describes how bitmap images can be described in binary
definition files using data structures called picture blocks.

Appendix C - Example of Definition File

This Appendix was updated and expanded. Examples C-1 through C-7 were
updated for clarity and to bring them in line with changes to widget parameters.
Example C-8, Binary DF Example, was added. Example C-9, XML Example, was
added. Both C-8 and C-9 are examples of using bitmaps in DFs.

Appendix D - Use of StyleSet for Inner State Depiction
This appendix was deleted by Supplement 3.
Appendix F - Communication Transport Protocols
This appendix was added by Supplement 3.
Appendix G - New Widget Guidelines
This appendix was added by Supplement 3.






ARINC Standard — Errata Report

1. Document Title

ARINC Specification 661-3: Cockpit Display System Interfaces to User Systems
Published: November 15, 2007

2, Reference
Page Number: Section Number: Date of Submission:
3. Error

(Reproduce the material in error, as it appears in the standard.)

4, Recommended Correction

(Reproduce the correction as it would appear in the corrected version of the material.)

5. Reason for Correction (Optional)

(State why the correction is necessary.)

6. Submitter (Optional)

(Name, organization, contact information, e.g., phone, email address.)

Please return comments to fax +1 410-266-2047 or standards@arinc.com

Note: Items 2-5 may be repeated for additional errata. All recommendations will be evaluated by the staff. Any
substantive changes will require submission to the relevant subcommittee for incorporation into a subsequent
Supplement.

[To be completed by IA Staff |

Errata Report Identifier: Engineer Assigned:

Review Status:

ARINC Errata Form
11/24/2004







1.0

2.0
2.1

2.2

2.3

2.4
2.5

3.0
3.1

3.2

ARINC IA Project Initiation/Modification (APIM)

Name of Proposed Project APIM #:
(Insert name of proposed project.)

Subcommittee Assignment and Project Support
Identify AEEC Group
(Identify an existing or new AEEC group.)

Support for the activity

Airlines: (Identify each company by name.)

Airframe Manufacturers:

Suppliers:

Others:

Commitment for resources (Identify each company by name.)
Airlines:

Airframe Manufacturers:

Suppliers:

Others:

Chairman: (Recommended name of Chairman.)

Recommended Coordination with other groups
(List other AEEC subcommittees or other groups.)

Project Scope (why and when standard is needed)

Description

(Insert description of the scope of the project. Use the following symbol to check
yes or no below. [X1)

Planned usage of the envisioned specification

New aircraft developments planned to use this specification yes [do [1
Airbus: (aircraft & date)
Boeing: (aircraft & date)
Other: (manufacturer, aircraft & date)
Modification/retrofit requirement yes [do [1
Specify: (aircraft & date)
Needed for airframe manufacturer or airline project yes [do [1
Specify: (aircraft & date)
APIM#___ 11/8/2007

Page 1 of 3



3.3

4.0
4.1

4.2

Form instructions are available at http://www.aviation-ia.com/aeec/information/apim_instructions.pdf

Mandate/regulatory requirement yes [ Mo
Program and date: (program & date)

Is the activity defining/changing an infrastructure standard? yes [do
Specify (e.g., ARINC 429)

When is the ARINC standard required?

(month/year)

What is driving this date? (state reason)

Are 18 months (min) available for standardization work? yes [Hdo
If NO please specify solution:

Are Patent(s) involved? yes [1
If YES please describe, identify patent holder:

Issues to be worked

(Describe the major issues to be addressed.)

Benefits

Basic benefits

Operational enhancements yes [ Mo

For equipment standards:

a. Is this a hardware characteristic? yes [do

b. Is this a softwareware characteristic? yes [Hdo

c. Interchangeable interface definition? yes [do

d. Interchangeable function definition? yes [do
If not fully interchangeable, please explain:

Is this a software interface and protocol standard? yes [Ho
Specify:

Product offered by more than one supplier yes [ Ao

Identify: (company name)
Specific project benefits
(Describe overall project benefits.)
4.2.1 Benefits for Airlines
(Describe any benefits unique to the airline point of view.)
4.2.2 Benefits for Airframe Manufacturers

(Describe any benefits unique to the airframe manufacturer’s point of view.)

4.2.3 Benefits for Avionics Equipment Suppliers

(Describe any benefit unique to the equipment supplier’s point of view.)

L1

L1

L1

0 0 0000 O



5.0 Documents to be Produced and Date of Expected Result
5.1 Meetings and Expected Document Completion
The following table identifies the number of meetings and proposed meeting days
needed to produce the documents described above.
- Mtg-Days Expected Start Expected
Activity Mtgs (Total) Date Completion Date
Document a # of mtgs # of mtg days mm/yyyy mm/yyyy
#of mtgs * # of mtg days *
Document b # of mtgs # of mtg days mm/yyyy mm/yyyy
#of mtgs * # of mtg days *
* Indicate unsupported meetings and meeting days, i.e., technical working group
or other ad hoc meetings that do not requiring IA staff support.
6.0 Comments
(Insert any other information deemed useful to the committee for managing this
work.)
For IA Staff use

Date Received: IA Staff Assigned:
Estimated Cost:

Potential impact:
(A. Safety

Forward to committee(s) (AEEC, AMC, FSEMC):

B. Regulatory

Committee resolution:

(0 Withdrawn 1 Authorized 2 Deferred

Assigned Priority: Date of Resolution:

C. New aircraft/system D. Other)

Date Forwarded:

3 More detail needed 4 Rejected)

(A High - execute first
Assigned to SC/WG:

B Normal - may be deferred.)

Form instructions are available at http://www.aviation-ia.com/aeec/information/apim_instructions.pdf







	Cover Page
	Disclaimer
	Foreword
	Table of Contents
	1.0 Introduction
	2.0 Concept of Operation
	3.0 Widget Library
	4.0 Communication Protocol
	5.0 Symbol Graphical Definition
	6.0 XML Definition File Specification
	7.0 Picture Graphical Definition
	App A - Glossary
	App B - Acronyms and Abbreviations
	App C - Example of A Definition File
	App D - Deleted by Supplement 3
	App E - Map Management Tutorial
	App F - Communication Transport Protocols
	App G - New Widget Guidelines
	Supplement 1
	Supplement 2
	Supplement 3
	ARINC Standard - Errata Report
	ARINC IA Project Initiation/Modification (APIM)


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




