ARING

COCKPIT DISPLAY SYSTEM
INTERFACES TO USER SYSTEMS

ARINC SPECIFICATION 661-1

PUBLISHED: JUNE 26, 2003

an ARINIC pocument

Prepared by

AIRLINES ELECTRONIC ENGINEERING COMMITTEE
Published by

AERONAUTICAL RADIO, INC.

2551 RIVA ROAD, ANNAPOLIS, MARYLAND 21401

This document is based on material submitted by wvarious
participants during the drafting process. Neither AEEC nor ARINC
has made any determination whether these materials could be
subject to valid claims of patent, copyright or other proprietary
rights by third parties, and no representation or warranty, express or
implied, is made in this regard. Any use of or reliance on this
document shall constitute an acceptance thereof “as is” and be
subject to this disclaimer.

Copyright” 2003 by
AERONAUTICAL RADIO, INC.
2551 Riva Road
Annapolis, Maryland 21401-7465 USA

ARINC SPECIFICATION 661-1¢

COCKPIT DISPLAY SYSTEM INTERFACES TO USER SYSTEMS

Published: June 26, 2003

Prepared by the Airlines Electronic Engineering Committee

Specification 661 Adopted by the Airlines Electronic Engineering Committee: November 12, 2001
Specification 661 Air Industry Review Completed: December 28, 2001

Summary of Document Supplements

Supplement Adoption Date Published
Specification 661-1 March 6, 2003 June 26, 2003

A description of the changes introduced by each Supplement is included on Goldenrod paper at the end of this document.

FOREWORD
Aeronautical Radio, Inc., the AEEC, and ARINC Standards

Aeronautical Radio, Inc. (ARINC) was incorporated in 1929 by four fledgling airlines in the United
States as a privately-owned company dedicated to serving the communications needs of the air transport
industry. Today, the major U.S. airlines remain the Company’s principal shareholders. Other
shareholders include a number of non-U.S. airlines and other aircraft operators.

ARINC sponsors aviation industry committees and participates in related industry activities that benefit
aviation at large by providing technical leadership and guidance and frequency management. These
activities directly support airline goals: promote safety, efficiency, regularity, and cost-effectiveness in
aircraft operations.

The Airlines Electronic Engineering Committee (AEEC) is an international body of airline technical
professionals that leads the development of technical standards for airborne electronic equipment-
including avionics and in-flight entertainment equipment-used in commercial, military, and business
aviation. The AEEC establishes consensus-based, voluntary form, fit, function, and interface standards
that are published by ARINC and are known as ARINC Standards. The use of ARINC Standards results
in substantial benefits to airlines by allowing avionics interchangeability and commonality and reducing
avionics cost by promoting competition.

There are three classes of ARINC Standards:

a) ARINC Characteristics—Define the form, fit, function, and interfaces of avionics and other
airline electronic equipment. ARINC Characteristics indicate to prospective manufacturers of
airline electronic equipment the considered and coordinated opinion of the airline technical
community concerning the requisites of new equipment including standardized physical and
electrical characteristics to foster interchangeability and competition.

b) ARINC Specifications—Are principally used to define either the physical packaging or
mounting of avionics equipment, data communication standards, or a high-level computer

language.

¢) ARINC Reports— Provide guidelines or general information found by the airlines to be good
practices, often related to avionics maintenance and support.

The release of an ARINC Standard does not obligate any airline or ARINC to purchase equipment so
described, nor does it establish or indicate recognition or the existence of an operational requirement for
such equipment, nor does it constitute endorsement of any manufacturer’s product designed or built to
meet the ARINC Standard.

In order to facilitate the continuous product improvement of this ARINC Standard, two items are included
in the back of this volume:
a) An Errata Report solicits any corrections to the text or diagrams in this ARINC Standard.

b) An ARINC IA Project Initiation/Modification (APIM) form solicits any recommendations for
addition of substantive material to this volume which would be the subject of a new
Supplement.

il

ARINC REPORT 661

TABLE OF CONTENTS
ITEM SUBJECT PAGE
1.0 INTRODUCTION 1
1.1 Purpose and Scope 1
1.2 Relationship to Other Documents 1
1.3 Interoperability 2
1.3.1 General 2
1.3.2 Interface Standards 2
1.33 Modularity 2
1.4 Integrity and Availability 3
1.5 Reliability 3
1.6 Use of “Specification Language” 3
1.7 Regulatory Approval 3
1.8 Reference Documents 3
1.9 Applicability 3
2.0 CONCEPT OF OPERATION 5
2.1 Introduction 5
2.2 Overview of Interface Level Between UA and CDS 5
2.2.1 Definition Phase 6
222 Run-Time Phase 7
223 Special Conditions 7
2231 Initialization 7
2232 Need for —Re-initialization 7
2233 Suppression of a Layer from Display 7
224 ARINC 661 Conformance 7
225 ARINC 661 Library Evolution 8
2.3 Window/Layer and General Concepts 8
2.3.1 Window Definition 8
2.3.2 Layer Definition 9
2321 Layer Graphical Definition 9
2322 Layer Content Management 9
2323 Layer Priority Management 10
2324 Layer Activity/Visibility Management 10
2.3.24.1 Visibility 10
23242 Activity 10
2325 Layer Context Management 11
233 Configuration Issues 11
234 Positioning and Size Within Window 11
2.3.4.1 Origins 11
2342 Angles 12
2343 Screen Units of Measurements 12
2.3.5 Cursor Management 12
2.3.5.1 From UA to CDS 12
2352 From CDS to UA 12
3.0 WIDGET LIBRARY 14
3.1 Introduction to Widgets 14
3.1.1 Widget Identification 14
3.1.2 Widget States 14
3.1.2.1 Widget States Definition 14
3.1.2.2 Inner State Management: “Race Condition” 15
3.13 Commonly Used Parameters 17
3.1.3.1 Identification of the Widget 17
3.1.3.2 States of a Widget 18
3.1.33 Look and Feel Characteristics of a Widget: “StyleSet” Parameter 19
3.1.34 Positioning/Size of a Widget 20
3.1.3.5 Parameters Related to Focus Navigation 20
3.2 HMI Widget Library Summary 20
3.2.1 Widgets Summary 20
322 Widget Classification 23
323 Container 25
3.2.3.1 Possible Children of Container Widgets 26
32.4 Graphical Representation 27
325 Text Strings 27
3251 Available Character Set 28
3252 Notation Examples 28
3253 Change Style Capabilities 28

11

ARINC REPORT 661

TABLE OF CONTENTS

ITEM SUBJECT PAGE
3254 Default Graphic Properties 30
3255 Escape Sequences Description 30
3.2.6 Interactive 32
3.2.7 Dynamic Motion 32
3.2.8 Map Management 32
3.2.8.1 Horizontal Map Management 33
3.2.8.1.1 Link Between MapHorz, MapHorz_Source, MapHorz_ItemList

and MapGrid 34
328.1.2 Parameter Definition for MapHorz and MapHorz_Source 35
3282 Vertical Map Management 36
3.2.83 Priority Management 36
329 Non-Classified Widget 37
33 Widget List 37
331 ActiveArea 39
332 BasicContainer 41
333 BlinkingContainer 42
334 BufferFormat 43
3341 A661_ParameterStructure_Buffer 45
335 CheckButton 46
33.6 ComboBox 48
3.3.7 Connector 51
338 CursorPosOverlay 53
3.3.9 EditBoxMasked 54
3.3.10 EditBoxNumeric 58
3.3.11 EditBox Text 61
3.3.12 GpArcEllipse 66
3.3.13 GpArcCircle 69
3.3.14 GpCrown 71
3.3.15 GpLine 74
3.3.16 GpLinePolar 75
3.3.17 GPRectangle 77
3.3.18 GpTriangle 79
3.3.19 Picture 81
3.3.20 Label 82
3.3.21 LabelComplex 85
3322 MapHorz_ItemList 88
3.3.22.1 MapHorz_ItemList Standard Items Description 90
33222 MapHorz_ItemList A661_Parameter Structure Specifics 91
3.3.22.2.1 Item Structures 91
3.3.22.2.1.1 Item_Style 91
3.3.22.2.1.2 Legend_Anchor 91
3322213 Legend and Legend_Pop_Up 92
3.3.222.1.4 Line_Start 92
3.3.22.2.1.5 Line_Segment 93
3.3.222.1.6 Line_Arc 93
3.3.22.2.1.7 Not_Used 93
3.3.222.1.8 Symbol_Generic 94
3.3.22.2.1.9 Symbol_Circle 94
3.3.22.2.1.10 Symbol_Rotated 95
3.3.22.2.1.11 Symbol_Runway 95
3.3.22.2.1.12 Filled_Poly_Start 96
3.3.22.2.1.12.1 Fill Style Index Values 96
3.3.22.2.1.13 Symbol_Oval 96
332222 A661_ParameterStructure_BufferOfltems 97
3.3.23 MapLegacy 98
3.3.24 MapHorz_Source 99
3.3.25 MapHorz 101
3.3.26 MaskContainer 104
3.3.27 Panel 106
3.3.28 PicturePushButton 108
3.3.29 PictureToggleButton 110
3.3.30 PopUpPanel 114
3.3.31 PopUpMenu 116
3.3.31.1 PopUp Specific A661_ParameterStructure 118
3332 PopUpMenuButton 120
3333 PushButton 124

iv

ITEM

AR RNWLWLWWLWWWW
N— OO WA

o —

[FSHUSRUS RS RUS RUSRUSRUS RUS RUS RUSRUSRUS RUS RUS RUSRUSRUS RUS RUSRUSRUS RUS VS RUSRUSRUS R US R VS RUSRUS RS RS |
OO~ W WN—

B R R
S W — N —

PAA
s
W B =

L
DN —

AhALLAALDADDADDLAL
Lhbhbhbbbhbhbbhhhhhhne s
et ke

LN W — LN —

N —

ARINC REPORT 661
TABLE OF CONTENTS

SUBJECT

RadioBox
RotationContainer
ScrollPanel
ScrollList
Symbol
TabbedPanel
TabbedPanelGroup
ToggleButton
TranslationContainer
Widget Library Expansion
MapGrid

MapGrid A661_ParameterStructure Specifics

Fill Style Index Values
ExternalSource
MapVert
MapVert_Source
MapVert_ItemList

MapVert_ItemList Standard Items Description
MapVert_ItemList A661_ParameterStructure Specifics

Item Structures
Item_Style
Legend_Anchor
Legend and Legend_Pop_Up
Line_Start
Line_Segment
Not_Used
Symbol_Generic
Symbol_Runway
Filled_Poly_Start

A661_ParameterStructure_BufferOfltems

EditBoxMultiLine
ComboBoxEdit
MenuBar

COMMUNICATION PROTOCOL
Introduction
Definition Phase Exchange
Definition File and UALD
Binary Format
Run-time Communication
General Principle
Issues
Assumption on Communication Reliability
Layer Data Management
ARINC 661 Commands
Type of Commands
Error Notification
ARINC 661 Request/Notification
Request from AU to CDS
Request/Notification from CDS to UA
ARINC 661 Command Structure
Notation
Block Structure
Definition Time Exchanged Structure
Definition File (DF) Structure
Definition Time Block Commands
Command Structure
Constraints Inside a UALD Block
Run-Time Exchange Structure
Run-Time Block Commands

Command Structure — Run-Time Commands

Request Structure

Notification Structure

ARINC 661 Parameter Structure
A661_ParameterStructure_1Byte
A661_ParameterStructure_2Bytes

v

PAGE
126

185

ARINC REPORT 661

TABLE OF CONTENTS

ITEM SUBJECT PAGE
45453 A661_ParameterStructure_4Bytes 185
45454 A661_ParameterStructure_String 186
45455 A661_ParameterStructure_String/Array 186
4.54.5.6 A661_String/Array_Cell Structure 186
4.54.5.7 A661_Parameter Structure_XY 187
45458 A661_ParameterStructure_BufferOfltems 187
45459 A661_ParameterStructure_Buffer 187
4.54.5.10 A661_ParameterStructure_EntryPopUpArray 187
4.6 ARINC 661 Keyword Values 188
APPENDICES

A Glossary 195
B Acronyms and Abbreviations 198
C Example of a Definition File 199
D Example of “In/Out” Widget Management Using Styleset Parameter 206
E Map Management Tutorial 207

ARINC Standard — Errata Report
ARINC IA Project Initiation /Modification (APIM) Guidelines for Submittal

vi

ARINC SPECIFICATION 661 - Page 1

1.0 INTRODUCTION

1.1 Purpose and Scope

The purpose of this document is to define interfaces to a Cockpit Display System (CDS) used in all types of aircraft
installations. The primary objective is to minimize the cost to the airlines, directly or indirectly by accomplishing the
following:

a. Minimize the cost of acquiring new avionic systems to the extent it is driven by the cost of CDS development.

b. Minimize the cost of adding new display function to the cockpit during the life of an aircraft.

c. Minimize the cost of managing hardware obsolescence in an area of rapidly evolving technology.

d. Introduce interactivity to the cockpit, thus providing a basis for airframe manufacturers to standardize the Human
Machine Interface (HMI) in the cockpit.

This document defines two external interfaces between the CDS and the aircraft systems. The first interface is the
interface between the avionics equipment (user systems) and the display system graphics generators. The second is a
means by which symbology and its related behavior is defined. A user application is defined as a system that transmits
data to the CDS, which, in turn can be displayed as visual graphical information to the flight deck crew. A user
application can also include software or hardware that receives input from interactive graphics managed by the CDS.

The CDS provides graphical and interactive services to user applications within the flight deck environment. When
combined with data from user applications, it should display graphical images to the flight deck crew.

This document defines an interface between the CDS and user applications (UA). The application that controls the
interface is defined to be within the CDS.

This document does not specify the “look and feel” of any graphical information.

1.2 Relationship to Other Documents

ARINC Specification 661 defines an interface protocol that is intended to facilitate communication between the cockpit
display system and user equipment. This document does not specify electrical parameters.

This document refers to user application data formats that are specified in existing ARINC 700-series Characteristics,
such as:

ARINC Characteristic 702A - Advanced Flight Management Computer System

ARINC Characteristic 708A - Airborne Weather Radar with Forward Looking Windshear Detection Capability
ARINC Characteristic 735A - Traffic Alert and Collision Avoidance System (TCAS)

ARINC Characteristic 762 - Terrain Awareness and Warning System (TAWS)

Communication between user applications and the cockpit display system may be implemented over a physical data bus
defined in system-level standards, such as:

ARINC Specification 429 - Mark 33 Digital Information Transfer System (DITS)
AEEC Project Paper 453 - Very High Speed (VHS) Bus

ARINC Specification 664 - Aircraft Data Network

ARINC SPECIFICATION 661 - Page 2

1.0 INTRODUCTION

1.3 Interoperability

1.3.1 General

One of the primary objectives of this Specification is to define interface protocols that can be met by any equipment
manufacturer. This level of interface standardization is different from a typical form, fit, and function standard.

This document emphasizes the need for standardized communication between the CDS and user applications. This
approach is expected to facilitate the development of standardized subsystems that can easily interface with the CDS.

COMMENTARY

It is not the intention of this Specification to specify a bus structure, either physically or electrically. However,
airlines encourage display system providers and aircraft system integrators to use industry standard buses.
Manufacturers should recognize the practical advantages of developing equipment in accordance with the standards
set forth in this document.

This document is not intended to define CDS packaging or physical configuration. It is noted, however, that some
designs may be more suitable than others for use in a flight deck.

Avionics user systems should connect to the cockpit display system using interfaces based upon industry standards. This
allows flexibility in the installation with the wide variety of display systems.

The desire for interoperability makes it necessary to standardize input and output interface parameters. The CDS
interfaces should be capable of exchanging data in the form of input/output messages as defined in this Specification.

1.3.2 Interface Standards

In recognition of the widely varying cockpit layouts and configurations, standardization of equipment is not included
within this standard.

This Specification defines a set of logical interfaces that support change containment and preserve investment across
both aircraft types and hardware generations.

COMMENTARY

It is widely recognized that software qualification and system certification costs dwarf all other aspects of
developing, installing, and updating a CDS.

1.3.3 Modularity

Architecturally, the CDS should be an integrated system comprised of modular hardware and software components. It
should be possible to include optional features to individual units, as determined by airline user requirements, with
minimum impact on the existing functions.

This Specification emphasizes that software necessary to add or change display functionality of the display system
should be contained within the use application (e.g., FMS). Thus, during system upgrade or modification, only the user

application software should need to change.

COMMENTARY

Airlines, airframe manufacturers, display system providers and user application developers contributed to the
development of this Specification. The application developers advocated strict adherence to the preceding

ARINC SPECIFICATION 661 - Page 3

1.0 INTRODUCTION

paragraph. However, others express caution that this proposal is not feasible from a certification standpoint. The
writers of this document supported a compromise, which are detailed in later sections of this document.

User application developers should consider the role of a Cursor Control Device (CCD) in their equipment design.
Application software should be structured in a manner that allows addition or modification of ARINC 661 input in
general and cursor-based commands in particular. Software should be capable of adapting the HMI to fit different
cockpit philosophies. This is expected to evolve as airline crews gain experience with existing and evolving levels of
interactivity.

1.4 Integrity and Availability

The CDS is a significant portion of the flight deck crew interface. Therefore, the equipment design should contribute
positively to overall aircraft system performance, operational integrity and availability goals for all types of aircraft
operations.

1.5 Reliability
The airlines desire reliability in all phases in the design, production, installation and operation of a display system.

COMMENTARY

This document does not specify reliability goals. As a general rule, users want all they can get within the bounds of
reasonable equipment complexity and cost.

1.6 Use of “Specification Language”

The vast majority of military and government standards are usually written in terms of “shall” and “shall not.” However,
it is often difficult to describe airline operator preferences that have grown out of experience over time. For this reason,
this Specification is written to express airline desires in the form of guidance material. Designers should interpret this
document in terms of the “need” for specific design practices rather than practices that “must” be met under all
circumstances.

1.7 Regulatory Approval

ARINC 661 display equipment should meet all applicable regulatory requirements. This Specification should not and does
not define the specific requirements that an equipment manufacturer must follow to be assured of approval. Such
information should be obtained from the appropriate regulatory authority.

1.8 Reference Documents

The latest versions of the following documents apply to the development of a CDS:
ARINC Specification 429 - Mark 33 Digital Information Transfer System (DITS)
ARINC Specification 664 - Aircraft Data Network
1.9 Applicability
The CDS architecture should be robust with sufficient integrity, availability, reliability, and capacity to support any or all
of the display types listed below. Also, it should enable growth to support other features that may be required in the

future, as constrained only by what will physically fit in the cockpit. This CDS is not intended for cabin use. Display
types include, but are not limited to:

ARINC SPECIFICATION 661 - Page 4

1.0 INTRODUCTION

1.9 Applicability (cont’d)

Primary Flight Display (PFD)

Navigation Display (ND)

Head-Up Display (HUD)

Multi-Purpose Control Display Unit (MCDU)

Engine Indication and Crew Alerting System (EICAS)
Multi-Function Display (MFD)

Side Displays

Data Link Control Display Unit (DCDU)

ARINC SPECIFICATION 661 - Page 5

2.0 CONCEPT OF OPERATION

2.1 Introduction

This section describes the concept of operation for the standard protocol used between avionic equipment User
Applications (UA) and the Cockpit Display System (CDS). This approach segregates the interactive event
management and rendering details from the functional context displayed. The interface defined in this standard relies
on a basic set of graphical user interface objects, hereafter referred to as “widgets.”

The list of widgets is referred to as the ARINC 661 Human Machine Interface (HMI) Widget Library. It is described
in detail in Section 3.2, HMI Widget Library. In general, these widgets correspond to a displayable entity. Some of
these widgets are “interactive widgets” because they support crew member interaction by way of cursor control
devices and keyboards. Crew member actions on interactive widgets are generally associated with event reports sent to
the UA. The non-interactive widgets do not have any associated event.

This Specification defines a list of standardized widgets. CDS providers should include the widget library defined by
this Specification in their display products. This is the interface between UA and CDS, and describes the widget
interface to the UA, i.e., and widget parameters accessible to the UA.

The CDS should manage the actual rendering of the widgets as well as monitoring the flight deck crew interaction via
display system input devices.

The UA should specify through the Definition File (DF), the characteristics of all the instances of each widget they use
in the initial design or are expected to use. This is described in detail in Section 4.1.1, Definition File and User
Application Layer Definition (UALD). These widgets are allocated inside the CDS.

The UA addresses their widgets through a run-time protocol. This is described in detail in Section 4.2, Run-time
Communications. The UA animates the display format by setting the accessible parameters of the widgets, in order to
reflect its functional context. The run-time protocol serves the purpose of the CDS reporting the crew events to the
UA.

Characteristics and capabilities are the focus of this document, not the implementation of these capabilities.

2.2 Overview of Interface Level Between UA and CDS

The general approach for the widget interface is to segregate the UA functional description from the “look and feel” of
HMI pages. The “look and feel” description refers to graphical characteristics such as color and border properties.

UAs should manage the widget interface in order to illustrate their functional state. Consequently, they should only
manage functional states of widgets. UAs have no need to directly interact with “look and feel” characteristics.

The “look and feel” characteristics of a widget are linked with its functional characteristics. Thus, UAs may have to
use a reference to a set of “look and feel” references in order to reflect their functional context. This service is
provided by the widget parameter, “StyleSet.” Refer to Section 3.1.3, Commonly Used Parameters, which defines a set
of characteristics that should be defined by the airframe manufacturer and stored inside the CDS. The airframe
manufacturer specification task consists of defining the widget behavior implemented in the CDS, as well as the
graphical characteristics associated with each particular functional state of the widget. UAs should refer to these
pre-defined characteristics to manage the “look and feel” of their images, according to the airframe manufacturer-
specified HMI rules.

This approach provides segregation between functional behavior managed by UAs and graphical behavior managed by
the CDS. This provides a common look across all aircraft, and common implementation of behavior consistent with
that airframe manufacturer’s cockpit philosophy. The style guide defined by the airframe manufacturer describes the
“look and feel” inside the cockpit, and thus, provides the necessary information to UAs for their HMI interface design.

ARINC SPECIFICATION 661 - Page 6

2.0 CONCEPT OF OPERATION

2.2 Overview of Interface Level Between UA and CDS (cont’d)

There are two categories of widget interface definition, (1) specification or compile-time information and (2) run-time
interface, described as follows:

The compile time definition is static information stored inside the CDS that sets some parameters of the widget.
The main objectives of this phase are to allow deterministic widget allocation in CDS memory, avoid heap
memory utilization, and reduce system bus bandwidth requirements.

Run-time interfaces enable UAs to control and change certain characteristics of the widgets during operation.

Figure 2.1-1 illustrates ARINC 661 protocol principles applied in a typical CDS system architecture. Higher values in
the stacks take precedence over the lower modifiable values.

2.2.1 Definition Phase

The definition phase consists of loading and interpreting Definition Files (DF) in the CDS.

A661 PROTOCOL SYSTEM LEVEL RESPONSIBILITY
»| : < [N
‘ A661 Dynamic commands speciﬁcationi >Run-time values< | User applications / CDS ‘
| » A66ldefinition file |« | et
‘ A661Definition commands specification| > cimton 1 | | User applications ‘

‘ A661 Library interface specification ‘ >} A661 library }4 } Aircraft specification / CDS‘

Figure 2.1-1 ARINC 661 Protocol Principles

A DF is a loadable standard format file inside the CDS.
The DF specifies the creation of widgets that describe User Application (UA) interface pages.
The DF describes widget hierarchical structures.

The interpretation of the DF by the CDS results in the creation (instantiation and first setting of all parameters) of
widgets.

All widgets should be created at this definition time to enable deterministic allocation of memory. The necessary
memory size should be reserved at definition time for the allocation of the widgets. Items should be specified at run-time
inside their container widget. Refer to Section 3.2.8, Map Management.

Some parameters can only be set at definition time. Among these parameters are all the parameters which have an
impact on the memory size allocation.

The definition phase should be closed for one DF before the beginning of the run-time data exchange for widgets defined
inside this DF (run-time phase for this DF).

c-1

ARINC SPECIFICATION 661 - Page 7

2.0 CONCEPT OF OPERATION

COMMENTARY

Defining the end of the definition phase and the beginning of the run-time phase is beyond the scope of this
document. It is CDS integrator’s choice to implement one global definition phase or an individual definition
phase for each DF.

2.2.2 Run-Time Phase

The run-time phase consists of dynamic data transfers between UA and CDS using ARINC 661 run-time commands.

These exchanges cover the following needs:

From UA to CDS:

Update the run-time widget parameters.

Request to the CDS for change on entities managed by the CDS, for example layer visibility and direct focus
motion.

From CDS to UA:
Notification of event occurrence for application event processing.
CDS configuration command, for example, notification of application layer activation.

2.2.3 Special Conditions

2.2.3.1 Initialization

The CDS is the master of display configurations. The CDS determines the formats to be displayed and the UA Layers
that will appear. Therefore, a UA should not transmit any data to the CDS before the CDS has notified the UA that its
layer is ACTIVE (refer to Section 4 for such notification format).

After receiving such a notification, it becomes the UA responsibility to update, as necessary, the parameters of the
corresponding layer widgets AND to request the visibility of the layer. The CDS will not display the layer before this

request is received in a message block.

2.2.3.2 Need for Re-initialization

c-1
In some conditions, the CDS may loose its image of the widget parameters as the UA has set them. In this event, the
CDS can transmit a request for Layer Re-initialization. The UA should then update, as necessary, the layer widget
parameters AND request the visibility of the layer. The CDS will not display the layer before this request is received in a
message block.

2.2.3.3 Suppression of a Layer from Display

External conditions may lead the CDS to remove a layer from the display. In such a case, the CDS may notify the UA
that the layer is INACTIVE. Upon such a notification, the UA should stop its update of the layer widget parameters.

2.2.4 ARINC 661 Conformance

A CDS conforms to this standard when it implements all ARINC 661 mechanisms, all standardized widgets and potentially
other widgets, as necessary.

A UA conforms to this standard when it implements the necessary ARINC 661 mechanisms and uses only the
standardized widgets.

ARINC SPECIFICATION 661 — Page 8

2.0 CONCEPT OF OPERATION

2.2.5 ARINC 661 Library Evolution

The ARINC 661 library should evolve in a manner that is compatible with the library defined herein. For example, if
optional parameters were to be added to an existing widget, default values should be defined such that existing
equipment can continue to use the older data block format. A new WidgetType ID should be created, defined, and used
to indicate that the new size and format definition parameter block is in use.

. (manage
Unit by the CDS) Layer
(owned by one :
User Application) Widget

Figure 2.3-1 Window/Layer Illustration

2.3 Window/Layer and General Concepts

This Specification uses a windowing concept, which can be compared to a desktop computer system windowing, but
with many restrictions due to the aircraft environment constraints. Each format on a Display Unit (DU), shown in Figure
2.3-1, consists in a set of windows, defined by the current configuration of the CDS. A window is subdivided in layers.
These layers are connected to the user applications and provide an area to display their widgets.

2.3.1 Window Definition

Windows are owned and managed by the CDS. In particular the CDS manages the visibility of the window. The UA
may have no knowledge of the window set-up. Therefore, this section is provided as guidance and not considered a
requirement for the interface between UA and CDS. Windows have the following characteristics:

A format image rendered to a display unit surface is constructed from one or more windows.

The windows included in a format image of a DU are fully defined in the configuration definition. The window
visibility is managed by the CDS according to the current configuration.

A window defines a rectangular physical area of the display surface.
A window may not be resized.
Windows cannot overlap each other.

A window consists of one or more layers.

ARINC SPECIFICATION 661 - Page 9

2.0 CONCEPT OF OPERATION

2.3.2 Layer Definition

A layer is the highest level entity of the CDS that is known by the UA. From the UA point of view, the Layer is the
highest level container in the hierarchical structure of the UA widgets. From the CDS point of view, the layer is one
graphical layer associated with one application inside a window. The definition of layer layout within a window is
beyond the scope of this standard.

Layers provide the mechanism to combine information from several UA inside one window.

COMMENTARY

Within an aircraft system, there is a need to place information from multiple client systems as well as information
from the CDS itself within a single window. For example, the navigation display requires:

Graphical information such as the compass rose

Control widgets such as a PopUpMenu for changing the range
Flight Management (FM) map

TCAS information

2.3.2.1 Layer Graphical Definition

An ARINC 661 layer graphical definition has the following characteristics:
It is a graphical layer inside a window.

A layer has an origin that is defined with respect to the origin of its window. For a special case, refer to Section
3.3.7, Connector.

All rendering within a layer is clipped by the bounding window definition.

Layers may overlap.
In the hierarchical structure of the DU format image definition, the layers are containers just under the window level.
2.3.2.2 Layer Content Management
Layer content management has the following characteristics:

One ARINC 661 Layer is associated with one UALD. Thus, each layer has only one owner, that is, the owner of its
associated UALD. A layer contains the hierarchical structure of widgets defined inside its associated UALD.

COMMENTARY

A layer can be displayed in several windows at the same time. If the duplicated layer is interactive, it could lead to
interactive widget identification confusion.

One proposal could be to allow the interactivity by the CDS only on one of these layers.
The UA, as well as the CDS itself, may be an owner of a layer.

The UA has only the knowledge of its layer, not the knowledge of the containing window, which is defined by
current CDS configuration.

ARINC SPECIFICATION 661 - Page 10

2.0 CONCEPT OF OPERATION

2.3.2.2 Layer Content Management (cont’d)

One UA or the CDS itself, possibly, owns several layers within a window.

The owner of a layer is responsible for managing the parameters of the contained widget. In this way, the owner UA
should know the complete set of run-time parameters for widgets contained inside the layer.

A crew-member input through an interactive widget contained within a layer transmits an event to the owning UA.

2.3.2.3 Layer Priority Management

Layer content management has the following characteristics:
Layers are assigned a static priority that defines the order of visibility, e.g., which layer appears on top of other
layers. A UA knows the relative priority of its own layers, while the CDS manages absolute priority between layers
of different UAs. Priority between layers of different UAs is not accessible to UAs.
Widgets are drawn in the order they are defined in the UALD, so that the last defined is drawn on top of the others.
Note that if container C1 is defined before container C2, then all widgets included in C2 will be drawn on top of all
widgets defined in C1.

Some widgets should always be drawn on top of the other widgets, for example, ComboBox, PopUp Menu.

2.3.2.4 Layer Activity/Visibility Management

A layer has two properties: Active/Inactive and Visible/ Invisible. For definition of commands to manage these
properties, refer to Section 4.4.3.2, Request/Notification from CDS to UA.

2.3.2.4.1 Visibility

The layer visibility is managed by the UA through a visibility parameter.

All objects within a layer should become invisible when the layer becomes invisible by control of the layer visibility
parameter. This does not affect the current value of each widget visibility parameter.

2.3.2.4.2 Activity

The activity of the layer is controlled by the CDS. When a layer is active, the CDS should to update the data from the
UA that owns the layer, even if the layer is not visible. Refer to Section 4.4.3, ARINC 661 Request/Notification for
A661_REQ_LAYER_ACTIVE.

The CDS sends the A661_NOTE_LAYER_IS_ACTIVE request to the UA when CDS activates the layer.

The CDS sends a A661_NOTE_LAYER_IS_INACTIVE request to the UA when CDS de-activates the layer.

When a layer becomes inactive, its visibility is turned off by the CDS. When the layer becomes active, it is the
responsibility of the UA to turn on the visibility of its layer. Also, when a layer becomes active, the UA should

reinitialize the data of its layer

COMMENTARY

The specific use of the Activity / Inactivity property on a layer of the CDS is outside the scope of this standard. This
should be defined by the airframe manufacturer, except at initialization, the CDS should send
A661_NOTE_LAYER_IS_ACTIVE notification.

ARINC SPECIFICATION 661 - Page 11

2.0 CONCEPT OF OPERATION

When the layer is inactive, the CDS has only to consider the A661_REQ_LAYER_ACTIVE request command
from the UA owning the layer.

2.3.2.5 Layer Context Management

Context management covers the notion of correlation between the data exchanged and the data displayed at a given time.
A “context number” is attached to each layer. The value management of this parameter is the responsibility of the UA
owning the layer. The application will modify the context number through the context number parameter of the block
structure.

The CDS sends the current context number of the layer containing the interacted widget inside the block structure.

The initial value of the context number is set inside the layer definition block (UALD).

Context number allows the UA to manage the internal state of its display in the CDS.

2.3.3 Configuration Issues

The CDS controls the configuration of the cockpit by defining the following:
The correct window to go on the specific DU.
The correct application layer to go in the specific window. The CDS notifies the UA that a window containing
layers of this UA is displayed and the UA has to be ready for widget management through notification
A661_NOTE_LAYER_IS_ACTIVE.
A UA can send the CDS a request to display one of its layers. The CDS may accept or reject this request depending on
the configuration logic that is implemented at that time. Refer to Section 4.4.3, ARINC 661 Request/Notification for
A661_REQ_LAYER_ACTIVE.

2.3.4 Positioning and Size Within Window

Figure 2.3.4 illustrates graphic references for widget positioning.

YA<\G'>
ZO >X

Figure 2.3.4
Graphic references for widget positioning

2.3.4.1 Origins

All origins are in the lower left-hand corner of the object. Origin of widgets within containers is relative to the
immediate container.

Any exception to these provisions will be clearly stated in the detailed description of the widgets.

ARINC SPECIFICATION 661 - Page 12

2.0 CONCEPT OF OPERATION

2.3.4.2 Angles

All angles are measured in degrees. All rotation is around the Z-axis. The ZERO degree is along the X-axis in the
positive direction. The positive direction of rotation is in the counter-clockwise direction from the X-axis.

Any exception to these provisions will be clearly stated in the detailed description of the widgets.

2.3.4.3 Screen Units of Measurements

All screen units should be measured in units of millimeters with a resolution of 0.01 millimeters. Therefore, the position
and size of widgets are expressed with a resolution of 0.01 millimeters. Widget position parameters are signed integer
and widget size parameters are unsigned integer. Refer to Section 3.2, HMI Widget Library Summary. Any exception to
these provisions is clearly stated in the detailed description of the widgets.

2.3.5 Cursor Management

The cursor is controlled by the CDS. The cursor shape is defined by the CDS. The cursor shape is an element of the
“look and feel” of the cockpit and is managed in a homogeneous way throughout the different formats. The cursor shape
depends on the type of the widget that holds the cursor (e.g., button, text editor) and the current state of this widget (e.g.,
editing mode). Nevertheless, some information related to the cursor may be exchanged between the CDS and the UAs.

2.3.5.1 From UA to CDS
An example of cursor management from the UA to the CDS is to request the highlight of a particular widget. This
request may or may not move the cursor according to the CDS implementation. Refer to Section 4.4.3.1, Request from

UA to CDS.

Another example is the ability to inform the CDS at definition time of widget navigation order, which supports CDS
management of focus navigation. Refer to Section 3.1.3.5, Parameters Relative to Focus Navigation.

2.3.5.2 From CDS to UA

An example of cursor management from CDS to UA is the identification of which cursor, i.e., pilot or co-pilot, has been
used to interact with a widget in addition to the other information related to the event.

COMMENTARY

Some cursor characteristics are outside the scope of this Specification. They should be defined by the airframe
manufacturer for the display system provider including the following features:

Interactivity features

Movement rules between DUs

Movement rules between windows

Link between the cursor shape and the window characteristics, for example frozen window
Determination of all cases where a cursor snaps might occur. For example, when the cursor is on a widget owned by
a UA that suddenly fails, the placement of the cursor should be defined. The cursor could go to another widget in
such a case. Another case to consider is where to put the cursor when a window or layer is first initialized and
displayed. The definition and use of default locations for such cases should be considered.
Precise response time requirements depend on user system operational requirements. Table 2.3.5.2 provides

guidelines that should be considered by system designers in determining computer processing requirements and
software architecture necessary to support this interface.

ARINC SPECIFICATION 661 - Page 13

2.0 CONCEPT OF OPERATION

COMMENTARY (cont’d)

The CDS provides the ability to perform the first four of these tasks within itself, drastically reducing the processing
load on the user system, if used properly.

Table 2.3.5.2
Guidelines for Cursor-Control Timing

Task Description Time

Time between cursor collision
with display object and indication
of collision (cursor shape change
or object highlight)

Time between object selection and| 180 ms max
indication of selection.

50 ms max

150 ms avg

Time between crew movement of 100 ms max
the CCD and cursor movement on

the display. 80 ms ave

Time between cursor command for
paging and menu selection and

resulting user system display. 300 ms max

Time between cursor command

action and resulting action of the s
command being processed (for
commands other than paging or max

menu selection).

System integrators and designers are reminded that the flight deck is not a desk-top environment. Thus, common
desk-top practices such as “double click” may be difficult to implement successfully. Turbulence may produce an
unintended double click. Data transmission rates may make it difficult for the display system to recognize a double
click. Therefore, if a double click feature is used in the system design, the CCD should bear the responsibility for
recognizing this situation and transmit it as a discrete event to the display system.

ARINC SPECIFICATION 661 - Page 14

3.0 WIDGET LIBRARY

3.1 Introduction to Widgets

Communication between the CDS and UA is defined based on the identification of widgets defined in Section 3.0,
Widget Library.

3.1.1 Widget Identification

A widget is defined with respect to the UA to which it belongs. Widget identifiers are assigned and managed by the UA.
A widget identifier, referred to as [Widgetldent], is unique in one UALD.

Since the CDS also manages layers and their priorities, the CDS needs to know at definition time to which layer a widget
belongs. Therefore, the CDS also needs a relative [Layerldent] from the UA. A [Layerldent] referenced by the “User
Application A” could be identical to a [Layerldent] referenced by the “User Application B.” Internally the CDS resolves
its internal Layer Identification by using the [User Application Ident].

At definition time, the interface between CDS and UA should uniquely define widgets by the combination:
[UserApplicationldent].[LayerIdent].[WidgetIdent]

COMMENTARY

At run-time, [UserApplicaionldent] is resolved by the CDS using information from the system bus.

3.1.2 Widget States

3.1.2.1 Widget States Definition

Four different levels, illustrated in Figure 3.1.2, have to be considered to define widget states:
1. Visibility level: widget is visible or not

2. Inner level: specific states of a widget. This level represents the core of the widget behavior as well as its
functional objectives. Examples of inner states:

for a basic PushButton, there is one stable inner state
for a CheckButton, there are two stable inner states, which are “selected” and “unselected”

3. Ability level: widget is enabled or disabled. This level exists for interactive widgets. An enabled widget is ready
to receive input from crew member interaction.

4. Visual level (visual representation): internal behavior of the widget inside the CDS. Examples of visual
representation are Normal and Focus. Refer to the glossary in Appendix A for the definitions of the visual states
listed below.

State levels 1, 2 and 3 describe the possible combinations of states accessible to a UA in order to interact with one
widget. These states affect the behavior of the widget. These widget states can be managed through run-time parameters,
specifically:

Visible

Specific parameter related to the inner states (like “CheckButtonStates” for a CheckButton)

Enable

ARINC SPECIFICATION 661 - Page 15

3.0 WIDGET LIBRARY

State level 4 is the visual representation. In the ARINC 661 CDS interface, the complete definition of the visual
representations might freeze the widget behavior internal to the CDS. To avoid this, visual representation should be part
of the aircraft original equipment manufacturers (OEM) specification and implemented by the CDS supplier in the CDS
Widget Library.

A UA should not have any direct access to the visual representations. Therefore, visual presentations do not have to be
defined within the ARINC 661 interface protocol. Only the ARINC 661 parameter effects on graphical representation
should be described in the ARINC 661 interface. The style guide defined by the OEM should describe the “look and
feel” and thus, provide necessary information to UAs for their HMI interface design.

3.1.2.2 Inner State Management: “Race Condition”

Both CDS and the owner UA of a widget can manage the inner states of a widget. For instance, considering a
CheckButton:

Upon selection by a crew member, the CDS will change the widget inner state from SELECTED to UNSELECTED
or from UNSELECTED to SELECTED.

The UA may change the inner state to initialize or refresh the interface reasons.

Therefore, a conflict situation may occur that is based on the fact that inner states of an interactive widget are generally
managed by the CDS upon crew member interaction. When the CDS changes the state of a widget, it sends an event to
inform the UA of the interaction. In this case, the widget is considered as an IN widget. Interactions from the crew
member enter the IN widget.

W idget states

Visible D State level 1

Invisible

Inner state 1 & state n State level 2

State level 3

Enable \ Disable D isable

Normal Focus Normal Focus e State level 4

Figure 3.1.2 Example of Widget States Levels

ARINC SPECIFICATION 661 - Page 16

3.0 WIDGET LIBRARY

3.1.2.2 Inner State Management: “Race Condition” (cont’d)

But the inner state is not supposed to reflect a functional context of the UA. This means that the inner state should not be
used to display the fact that the UA has taken into account the interaction. If the UA wants to display its functional
context though the interactive widget, the widget is considered as an OUT widget. The widget is used to provide
functional information to the crew member. This information hould be covered by “StyleSet” parameter.

The CDS has the responsibility to provide a graphical feedback upon a crew member interaction through the inner state.
The UA has the responsibility to provide a functional feedback on crewmember interaction. If the UA wants to display
this functional feedback on the widget itself, it should use the “StyleSet” parameter.

An illustration of the management of an IN/OUT widget is provided in Appendix D, Example of “IN/OUT” Widget
Management Using “StyleSet” parameter.

If inner states are used for both command and functional context, their management by both CDS and UA will lead to
conflicts known as a “race condition.”
However, the UA will have to change inner states of its widgets, for initialization or refresh of its interface. The UA
should take into account the probability of “race condition” for example, turning off and then on the visibility (or
interactivity) of the widgets after refresh of their inner states.
Different types of race conditions have been identified for managing an inner state, for example:

a. Command from a UA arrived just before an interaction from a crew member in the CDS.

The CDS must take into account the UA command, where the UA is the master of widget management.

COMMENTARY

The CDS behavior on the event reception is not in the scope of this Specification. It depends on the CDS
implementation.

b. An interaction from a crew member arrived just before the command from a UA. The CDS will send an event
to the UA and then take into account the UA command. The UA will receive an event with the context number
attached. If the UA has changed the context number through the command it sent, the context number received
allows the UA to know that the event has been generated before the reception of its command.

ARINC SPECIFICATION 661 - Page 17

3.0 WIDGET LIBRARY

3.1.3 Commonly Used Parameters

This section includes tables that identify the parameters commonly used by all widgets of the ARINC 661 library.

3.1.3.1 Identification of the Widget

Widget Identification Parameters are defined in Table 3.1.3.1.

Table 3.1.3.1 - Widget Identification Parameters

Parameter Description

WidgetType Type of the widget

Widgetldent Identifier of the widget (refer to the Section 3.1.1, 3.1.1 Widget Identification)
Widgetldent is a non-null positive value ([Widgetldent] >0). NULL is reserved for
referring to the layer level (e.g., Parentldent)

Parentldent Identifier of the immediate container of the widget. Only a special category of widgets
called “Container” can be the parent of other widgets.

At the highest level of the widget hierarchy within a layer, the Parentldent value is 0
(NULL). This means that the parent of the widget is the layer.

ARINC SPECIFICATION 661 - Page 18

3.0 WIDGET LIBRARY

3.1.3.2 States of a Widget

Widget State Parameters are defined in Table 3.1.3.2.

Table 3.1.3.2 - Widget States Parameters

Parameter

Description

InnerState

Holds the specific functional state (if any) of a widget.
The set of possible values depends on the type of the widget.

Visible

A661_FALSE:
The widget will not be rendered.

A661_TRUE:
a. If all its parent are visible, the widget will be rendered.

b. If one of all its parents is invisible, the widget will not be rendered, whatever the value
of its visible parameter.

Enable

A661_FALSE:
The widget will not be interactive.

A661_TRUE:
a. If all its parent are enabled, the widget will be interactive.

b. If one of all its parents is disabled, the widget will not be interactive, whatever the
value of its Enable parameter.

COMMENTARY

An invisible widget is not interactive, independent of the value of its Enable
parameter.

Anonymous

A661_FALSE: run-time accessible.
Widget can be modified at run-time, if it has some run-time accessible parameters.

A661_TRUE: anonymous.

Widget can not be modified at run-time by UA. The CDS behavior when a UA
attempts to SetParameter on an anonymous widget is undefined.

ARINC SPECIFICATION 661 - Page 19

3.0 WIDGET LIBRARY

3.1.3.3 Look and Feel Characteristics of a Widget : “StyleSet” Parameter

Widget State Parameters are defined in Table 3.1.3.3.

Table 3.1.3.3 - Widget StyleSet Parameter

Parameter Description

StyleSet StyleSet allows the user application to select from a predefined set of graphical
characteristics to be applied to a widget. This serves two purposes. First, many
graphical capabilities (color depth, halo, fill styles, line weights/patterns, blinking,
transparency, fonts, character highlighting, kerning, rotation, etc.) are inherently a
function of CDS architecture. Requiring or disallowing any of these characteristics is
incompatible with the spirit of this standard.

Second, the application of these characteristics is usually intended by the aircraft OEM
to be consistent across all UAs for common state conditions. Indexing among
predefined styles supports this goal. Common state conditions can be defined as
conditions that impact more than one user application in the same way (e.g., Alert,
Caution). It can also be used by a single application for convenience and control of
hidden characteristics.

Thus, any graphical characteristics set by StyleSet that match individually accessible
graphical characteristics will be overridden by the values specified in the StyleSet. All
other parameters take on their default values. Hidden graphical characteristics used for
representing common state conditions are only accessible via StyleSet commands.

This Specification defines one default SyleSet value:
STYLE_SET_DEFAULT

meaning that default graphical characteristics will be used.

The aircraft OEM (or CDS vendor) defines the list of StyleSet values.

COMMENTARY

Examples of possible StyleSet values:

STYLE_SET_NOMINAL STYLE_SET_SELECTED
STYLE_SET_ADVISORY STYLE_SET_PRESELECTED
STYLE_SET_CAUTION

STYLE_SET_WARNING STYLE_SET_ENGAGED

STYLE_SET_ARMED
STYLE_SET_NOT_ENGAGED

ARINC SPECIFICATION 661 - Page 20
3.0 WIDGET LIBRARY

3.1.3.4 Positioning/Size of a Widget

Widget Position/Size Parameters are defined in Table 3.1.3.4.

Table 3.1.3.4 - Widget Position/Size Parameters

Parameter Description

PosX The X position of the widget reference point is an offset with respect to the absolute X position
of the reference point of the widget container (parent).

PosY The Y position of the widget reference point is an offset with respect to the absolute Y position
of the reference point of the widget container (parent).

SizeX The X dimension size (width) of the widget.

SizeY The Y dimension size (height) of the widget.

The PosX, PosY, SizeX and SizeY parameters define a clipping area for the widget. Graphical characteristics must not
be rendered outside this area.

This area defines the static area of the widget. For widget containing a “Pop Up part” such as ComboBox, only the static
part is constrained by these parameters.

3.1.3.5 Parameters Related to Focus Navigation

The management of directional motion of the focus, e.g., through arrow keys, will be internal to CDS and as a
consequence, does not require interface level parameters.

However, it is possible for the UA to specify a “logical” navigation order through the use of a given key (for example,
tabulation). This can be done using the “FocusIndex” parameter.

To allow automatic motion of the focus after a selection or a confirmation event, a Boolean parameter
“AutomaticFocusMotion” will be used in combination with the “FocusIndex” parameter.

The Widget Common Structure is defined 3.1.3.5.
Table 3.1.3.5 - Widget Common Structure

Parameter Description

FocusIndex Order of the widget (FocusIndex is specified from “1” to “n” that it applies to

one layer, FocusIndex “n” next is “1””). When multiple layers are present, the
behavior will be specified by OEM.

If set to 0, the widget is excluded from the focus motion list.

AutomaticFocusMotion A661_FALSE:

No automatic motion: after a crew member validation, the focus remains on
the widget until an explicit move of the focus.

A661_TRUE:

Move automatically the focus after a crew member validation to the next
widget according to the FocusIndex parameter

3.2 HMI Widget Library Summary

3.2.1 Widgets Summary

Table 3.2.1 summarizes the widgets in the Widget Library.

ARINC SPECIFICATION 661 - Page 21

3.0 WIDGET LIBRARY

Table 3.2.1 - Widgets Library Summary

Widget Type Description
. Transparent rectangular area defining an interactive area. Selection of this area will send
1 ActiveArea L
an event to the owner application.
BasicContainer Manages the visibility and the interactivity of a group of widgets.
BlinkingContainer Allows to apply blinking behavior to a group of widgets.
The objective of this widget is to provide a mean for compressing data from different

4 BufferFormat widgets (in the same layer) in one buffer. Use for this widget could be initialization of a
page, or refresh of big widget. The bufferFormat format is defined at definition phase.
The content of the buffer is exchanged at run-time from the UA to the CDS.

5 CheckButton A CheckButton allows the crew-member to select or not an option. (other names:
Radio/Toggle box).

A ComboBox is a widget providing a mean to select one item among a list. This widget

6 ComboBox is composed of a static part displaying the selected item and a pop up part displaying the
ScrollList of items.

The purpose of this widget is to connect a layer to a container of another layer. In this

7 Comnector way it provides the mean to a master application to interact on widgets owned by
another UA. Typical use cases are for TabbedPanelGroup, MapHorz which can mix data
from several user applications.

A CursorPosOverlay consists of a transparent rectangular area of the display. The

8 CursorPosOverlay distinguishing characteristic of a CursorPos Overlay is that the reportable event is the
current cursor pointer position relative to the CursorPosOverlay position.
The Masked edit box is an extension of the Text edit box.

9 EditBoxMasked The difference with the basic Text edit box is that some characters are not modifiable by
the crew member. Those Characters non-modifiable are specified by the user application
by setting to 0 the “alpha mask” parameter and the “numeric mask.”

The numeric edit box allows editing a numeric value. A crew member can modify this

10 EditBoxNumeric value using its input devices. As it is a numeric value, CDS is able to increment itself
the value. The widget can receive a number of increment or a numeric key value.

. A text edit box allows to display a string, which can be modified by the crew member

I EditBoxText (other names: Text field, Text entry box).

12 GpArcEllipse Th'e graphlcgl primitive GpArcEllipse allows the definition of an arc (portion of an
ellipse or a circle).

13 GpArcCircle The graphical primitive GpArcCircle allows the definition of a circular arc.

14 GpCrown The graphical primitive GpCrown allows the definition of a circular filled region.

15 GpLine The graphical primitive GpLine allows the definition of a line.

16 GpLinePolar The grgphlcal primitive GpLinePolar allows the definition of a line using a polar
definition.

17 GpRectangle The graphical primitive GpRectangle allows the definition of a rectangle.

18 GpTriangle The graphical primitive GpTriangle allows the definition of a triangle.

A picture is a reference to an image available in the CDS. The picture reference can be

19 Picture modified by the user application. Picture may have different color not modifiable
(unlike characters). Picture has no rotation capability.

20 Label A Label consists of a non-editable text field at a defined display location.

ARINC SPECIFICATION 661 - Page 22

MapHorz_ItemList

3.0 WIDGET LIBRARY
Widget Type Description
A Complex Label consists of a non-editable text field at a defined display location. The
21 LabelComplex . .
graphical representation is managed through an escape sequence.
22

MapHorz_ItemList represents a group of related graphics. Example use of the widget is
the creation of flight plan, map background symbols and TCAS intruders.

23

MapLegacy

Map Legacy widget provides a mean for being compatible with currently use data
format, such as ARINC 702 format for FMS, AEEC 453 format for weather radar.

24

MapHorz_Source

MapHorz_Source is a specialized container. It contains a specific dynamic widget
expressed in a common coordinate system. It describes characteristics of the common
coordinate system.

MapHorz consists of a rectangular region on the display, which contains reference
information to allow the display of map features in the cockpit. It allows multiple

25
MapHorz sources of information with different coordinate systems to be fused into a composite

map image.

26 MaskContainer MaskContainer is intended to apply a referenced mask to a group of widgets.
A panel groups several widgets together in a rectangular area and has clipping

27 Panel oS
capabilities.

. Momentary switched button with Picture, which allows the crew-member to launch an

28 PicturePushButton . .
action (to send an event to the owner user application).

29 PictureToggleButton Two stable states button with Picture.
PopUpPanel is a container that is displayed on the top of other layers. PopUpPanel

30 PopUpPanel visibility can be managed by the CDS using logic defined by the OEM. In this way this
PopUpPanel can not be used as a regular container.
PopUpMenu is a set of selectable items. This menu is displayed on the top of other

31 PopUpMenu layer, but it is affected by clipping area of it parents. PopUpMenu visibility is managed
by the CDS.

32 PopUpMenuButton PopUpMenl}B}ltton is a button providing the ability to display a PopUpMenu. This
mechanism is internal to the CDS.
Momentary switched button, which allows the crew-member to launch an action (to

33 PushButton L
send an event to the owner user application).
Manages the visibility and the interactivity of a group of CheckButtons or

34 RadioBox ToggleButtons. The selection of one of the CheckButtons or the ToggleButtons is
exclusive.

35 RotationContainer A thatlonContame.r has all of the capgblhtles of Panel. Its intended use is to apply a
rotation transformation to a group of widgets.
A ScrollPanel is a “sheet container widget”, for which only a subpart is visible called

36 ScrollPanel the “frame”. Scrolling button provide the capability to scroll the visible part inside the
whole sheet.

37 ScrollList A ScrollList is a list of items, for which only a subpart is visible. Scrolling buttons
provide the capability to scroll the visible part of items inside the whole list.

38 Symbol Symbol has rotation and color capability. Symbol widget has a reference to a table.
A TabbedPanel widget is a Panel associated with a selection button. This widget is only

39 TabbedPanel for use within a TabbedPanelGroup widget.
A TabbedPanelGroup groups several TabbedPanel widgets. A TabbedPanelGroup

40 TabbedPanelGroup allows the user application or a crew member using a selection button to display one of

the TabbedPanel widgets. All of the panels inside the TabbedPanel widgets occupy the
same display space. Only one may be displayed at a time.

ARINC SPECIFICATION 661 - Page 23

3.0 WIDGET LIBRARY

Widget Type

Description

41 ToggleButton

Two stable states button with text.

42 TranslationContainer

A TranslationContainer is similar to a Panel. Its intended use is to apply a translation
transformation to a group of widgets.

3.2.2 Widget Classification

Table 3.2.2-1 describes the categories of widgets in the Widget Library. Table 3.2.2-2 defines the widget classifications.
These categories are not exclusive, and a widget may belong to several categories.

Table 3.2.2-1 - Widget Library Categories

Widget Category

Description

Container

Container is a widget that can be referenced as a parent.

A Container groups several widgets together. This category of widget is used to
design the hierarchical structure of the widget inside the HMI pages.

Graphical Representation

Category of widgets which have a graphical representation.

Text string

Category of widget that displays a string of text.

Interactive

Category of widgets on which the crew member can interact. An Interactive
widget has an Event Structure table attached (refer to Section 3.0, Widget
Library).

Map management

Category of widgets related to the management of the Dynamic widget inside
map. Typical use case for this symbol is Navigation Display format.

Dynamic motion

Category of widgets which can change of position at run-time.

Table 3.2.2-2 - Widget Classification Table

Widget
Categories/Widgets

Container Map Dynamic Graphical | Text string | Interactive

Manage- Motion Represen-
ment tation

3.3.1 |ActiveArea

X X

3.3.2 | BasicContainer

3.3.3 | BlinkingContainer

3.3.4 | BufferFormat

3.3.5 | CheckButton

3.3.6 | ComboBox

|
>~
|

3.3.7 | Connector

3.3.8 | CursorPosOverlay

3.3.9 | EditBoxMasked

3.3.10 | EditBoxNumeric

>

3.3.11 | EditBoxText

=
X | R <

3.3.12 | GpArcEllipse

3.3.13 | GpArcCircle

3.3.14 | GpCrown

3.3.15| GpLine

3.3.16 | GpLinePolar

3.3.17 | GpRectangle

3.3.18 | GpTriangle

DL PR P DR R R | R X R

D DL R R R <

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 24

3.0 WIDGET LIBRARY

Widget
Categories/Widgets

Container

Map
Manage-
ment

Dynamic
Motion

Graphical
Represen-
tation

Text string

Interactive

3.3.19

Picture

3.3.20

Label

3.3.21

LabelComplex

3.3.22

MapHorz_ItemList

>

3.3.23

MapLegacy

PR R R

3.3.24

MapHorz_Source

3.3.25

MapHorz

X | R <

3.3.26

MaskContainer

3.3.27

Panel

X | X R

3.3.28

PicturePushButton

3.3.29

PictureToggleButton

3.3.30

PopUpPanel

3.3.31

PopUpMenu

3.3.32

PopUpMenuButton

3.3.33

PushButton

It L R R ke

| > <

| DR R |

3.3.34

RadioBox

3.3.35

RotationContainer

ke

3.3.36

ScrollPanel

3.3.37

ScrollList

>

3.3.38

Symbol

3.3.39

TabbedPanel

3.3.40

TabbedPanel Group

3.3.41

ToggleButton

PR PR < | R

3.3.42

TranslationContainer

WIDGET
EXPANSION
SUPPLEMENT 1

3.4.1

MapGrid

342

ExternalSource

343

MapVert

3.44

MapVert_Source

ikl

345

MapVert_ItemList

| <

3.4.6

EditBoxMultiLine

3.4.7

ComboBoxEdit

>~

>~

348

MenuBar

it iRalRe

ARINC SPECIFICATION 661 - Page 25

3.0 WIDGET LIBRARY

3.2.3 Container

A Container is a widget that can be referenced as a parent. A Container groups several widgets together. This category of
widget is used to design the hierarchical structure of the widget inside the HMI pages.

All objects within a Container become invisible when the Container becomes invisible, as controlled by the Container
visible parameter. This should not automatically affect the current value of each widget parameters. The UA is
responsible for insuring the coherence of its HMI, for instance the management of EditBoxText inner state. When a
container becomes invisible, a contained EditBox can not stay in its EDIT inner state.

All objects within a container become non-interactive when the Container becomes non-interactive, controlled by the
Container enable parameter. This will not automatically affect the current value of each widget parameters.

Widgets placed within Container widgets have their coordinates referenced to the PosX, PosY reference point of the
Container. If the Container has no reference point, widgets placed within the Container have their coordinates referenced
to the PosX, PosY of the first parent containing a reference point.

Table 3.2.3.1 describes the possible children of Container widgets. Although the layer is not a widget, it has been listed
with the Container because of its capability to be the parent of widgets.

ARINC SPECIFICATION 661 - Page 26

3.0 WIDGET LIBRARY

3.2.3.1 Possible Children of Container Widgets

Possible Children of Container Widgets is defined in Table 3.2.3.1.

Table 3.2.3.1 - Possible Children of Container Widgets

Parents

Children

BlinkingContainer

MapHorz

MapHorz_Source

MapVert

MapVert_Source

[MaskContainer

MenuBar

[RadioBox

[RotationContainer

TabbedPanelGroup

TranslationContainer

ActiveArea

BasicContainer

BlinkingContainer

5 || < |BasicContainer

>

| < | < [Panel

|4 [[PopUpPanel

|4 [IScrollPanel

> || < |TabbedPanel

BufferFormat

CheckButton

ComboBox

|

K| >R X< | < [Layer

|

ke

Connector

CursorPosOverlay

EditBoxMasked

EditBoxNumeric

EditBoxText

GpArcCircle

GpArcEllipse

GpCrown

GpLine

GpLinePolar

GpRectangle

GpTriangle

Label

DDA DR DL PR 4| 4| <

DDA DR DL PR PR < | 4

DDA DR DR DR PR < | <

PR P PR | | <

LabelComplex

MapHorz

et i e il E T Bt T El P e e e

it b b b i el et

T b Ea T Ea T b I E P E e e P e

el E T e Ea T E T B I E P e e e

el E T Ea T E T Bt T E P e e

i bt T Ea i b kT El P E el e P e

MapHorz_ItemList

MapHorz_Source

>

MapLegacy

MaskContainer

Panel

Picture

PicturePushButton

PictureToggleButton

PopUpMenu

PopUpMenuButton

PR PR DR | <

PopUpPanel

PushButton

RadioBox

RotationContainer

ScrollList

ScrollPanel

Symbol

e Ea T E T b T El P e e

D PR PR DL DR R P D4R | < D4 [4| <

PR P 4R <

DR PR PR DL DR R P D4R | < D4 [4| <

D PR PR DL DR R P D4R | < D4 [4| <

TabbedPanel

TabbedPanel Group

ToggleButton

|

Sl i i A P P P P P P P

|

|

|

|

ARINC SPECIFICATION 661 - Page 27

3.0 WIDGET LIBRARY

Parents 5
P 8 3 P s |3
s 3 | 5|k AN
i 12 EIEIEIEIC|E_ S5 2|25l 3
ildren =25 |ElRlalal® |2l |5 5|22 %
2 E|lzls|ls|lslslE |e8|5|85|5 |5 |5 |5|5|¢E
2 Blal> > > > > | >la & | & & 5 e=l= =
TranslationContainer X | X | X X X | X X | X | X X
WIDGET EXPANSION c-1
SUPPLEMENT 1
ComboBoxEdit X X X | X X | X
EditBoxMultiLine X X X | X X | X
ExternalSource X X X X X X X
MapGrid X X
MapVert X X X | X X | X
MapVert_ItemList X
MapVert_Source X X X
MenuBar X X X | X X

3.2.4 Graphical Representation

Most widgets have a graphical representation. Those that do manifest different appearance aspects according to their
StyleSet parameter value. For a given StyleSet, non-interactive widgets have one graphical representation, while
interactive widgets may have several graphical representations based on internal state.

3.2.5 Text Strings

Some widgets contain a string of text (digits, characters, and related symbols). This section describes the available
character set for concatenation into a text string.

It also describes the escape sequences principles. The escape capabilities are only available for the following widgets:
ComplexLabel
ScrollList

The escape sequences may be embedded in a text string to allow special formatting to occur. The default graphic
properties for the text are defined through the “DefaultStyleText” parameter.

For widgets containing a text string, the “MaxStringLength” parameter defines the maximum size of the string; the size
is expressed in bytes. This size includes the NULL character that ends the string. For strings containing escape
sequences, this size includes all characters, plus the escape sequences, plus the NULL character that ends the string. If
several NULL characters end the string (for padding), only the first one is counted inside this length.

Concerning the SetParameter command for modifying a text string, in the A661_ParameterStructure_String or the
StringArray_CellStructure, the command structure includes a “StringSize” parameter. This parameter follows the same
rule as the “MaxStringLength” parameter.

ARINC SPECIFICATION 661 - Page 28
3.0 WIDGET LIBRARY

3.2.5.1 Available Character Set

Table 3.2.5.1 defines the characters available for text strings inside widgets. The characters in this table are
representative of the shapes. It is not intended to define a font.

3.2.5.2 Notation Examples

For example, a text code is designated by ‘G’ or h47

A text string is designated by, as an example: ‘GH12’. This string is the concatenation of the following text codes: ‘G’,
GH” 61” (2,.

Kxxx : describes a constant value (code or string).
Txxx : describes a type of element. It represents a set of text values (code or string).

“0* is the concatenation symbol.
Examples of concatenation follow:
Concatenation of strings -

If Kyyy = ‘0’ and Kxxx = ‘abc’ then Kyyy[UKxxx = ‘Oabc’

Concatenation of sets -
If Kyyy ='0" and Txxx = {‘a’, ‘b’, ‘c’} then KyyyTxxx = {‘0a’, ‘0a’, ‘0c’}

3.2.5.3 Change Style Capabilities

Table 3.2.5.3-1 lists the available change style capabilities through escape sequences.

Table 3.2.5.3-1 - Available Character Set
Control characters

h00 NULL | Null character, character for ending a text string.

hOA | LF Line Feed

hOD | CR Carriage Return

h1B | ESC Escape Character, character beginning all escape sequences.

ARINC SPECIFICATION 661 - Page 29

3.0 WIDGET LIBRARY

Table 3.2.5.3-1 - Available Character Set (cont’d)

Printing characters (ASCII)

h20 space h40 @ h60
h21 ! h41 A h61 a
h22 «“ h42 B h62 b
h23 # h43 C h63 c
h24 $ h44 D h64 d
h25 % h45 E h65 e
h26 & h46 F h66 f
h27 ! apostrophe h47 G h67 g
h28 (h48 H h68 h
h29) h49 I h69 i
h2A | * h4A |1 h6A |]
h2B | + h4B | K h6B | k
h2C s comma h4C | L h6C 1
h2D | - dash (minus) h4dD | M h6D | m
h2E | . point h4E ([N h6E ([n
h2F / slash h4F (0] Letter O h6F o
h30 [0 digit zero h50 ([P h70 | p
h31 1 h51 Q h71 q
h32 2 h52 R h72 r
h33 3 h53 S h73]
h34 4 h54 T h74 t
h35 5 h55 U h75 u
h36 6 h56 v h76 %
h37 7 h57 W h77 w
h38 8 h58 X h78 X
h39 9 h59 Y h79 y
h3A |: colon h5A | Z h7A |z
h3B | ; semicolon h5B | [h7B | {
h3C | < h5C |\ h7C ||
h3D | = h5D |] h7D | }
h3E | > hSE |~ h7E | ~
h3F ? h5F _ underscore

Printing characters (A661 Extensions) h84 « | Left arrow

h85 —s | Right arrow

h80 | A\ | overfly triangle 186 T | Up arrow
h8l degrees h87 | | Down arrow

o
h82 | < | diamond
[]

h8&3 box

ARINC SPECIFICATION 661 - Page 30

3.0 WIDGET LIBRARY

3.2.5.3 Change Style Capabilities (cont’d)
Table 3.2.5.3 lists the Escape Sequence Types.

Table 3.2.5.3 - Escape Sequence Types

Escape Capabilities | Escape Sequence Description
Type

Foreground Color TForeColor Sets the text color. Setting this Escape sequence in the middle of the
string will cause all following text to be the new color.

Background Color TBackColor Sets the background fill color. Setting this Escape sequence in the
middle of the string will cause all following text to have the new
background color.

Font TFont Sets the font of the text. Setting this Escape sequence in the middle of
the string will cause all following text to use the new font.

Videolnv TVideolnv Inverse video between the current foreground and background color.
The inverse video is applied to characters between this two escape
sequences: a Start and an End sequence.

Animation T Animation Animation of ACSII text is applied to characters between two escape
sequences: Start and End sequence.

Underline TUnderline Underline characters capability. Underlining is applied to characters
between this two escape sequences: a Start and an End sequence.

Bold TBold Bold characters capability. It is applied to characters between this
two escape sequences: a Start and an End sequence.

Crossed TCrossed Crossed-charaeters capability. It is applied to characters between this
two escape sequences: a Start and an End sequence.

Framed TFramed IFramed characters| capability. It is applied to characters between this
two escape sequences: a Start and an End sequence.

Repeat Character TRepeat Repetition of a set of characters for a specified number of times. It is
applied to characters between two escape sequences: Start and End
sequence. The repetition number is the first hex value after the start
sequence. It is a hex value from 0 to 255 representing the integer
number of times to repeat the set of characters.

3.2.5.4 Default Graphic Properties

The “DefaultStyleText” parameter, described in Table 3.2.5.4, indicates if escape sequences are used inside string of
the widget. In the case of escape sequence use, it also describes the default background color, foreground color and
font for the widget strings

3.2.5.5 Escape Sequences Description

All escape sequences begin with an “ESC” character, shown in Table 3.2.5.5.1, Escape Sequences Description. An
Escape Identifier follows the ESC character (values from h40 to h41) and any specific parameters required by the
sequence (designated by Tvalue). Some escape sequence will apply to the following characters, for instance
TForeColor, while some escape sequences will apply between the start and end sequences, for instance TVideolnv.

3.0 WIDGET LIBRARY

Escape Sequences Descriptions are defined in Table 3.2.5.5.1.

ARINC SPECIFICATION 661 - Page 31

Table 3.2.5.5.1 - Escape Sequences Description

c-1

Type Starting Sequence Ending Sequence Escape Sequence Size
(bits)
TOutLine - - ESCOKOutLine(Tvalue0 24
TBackColor |- - ESCOKBackColor(Tvaluel 24
TForeColor |- - ESCOKForeColorOTvaluel 24
TFont - - ESCOKFontOTvalue2 24
TVideolnv ESCOKvideolnv_B | ESCOKvideolnv_E 16
TAnimation | ESCOKanimation B | ESCOKanimation E 16
TUnderline ESCOKunderline B | ESCOKunderline E 16
TBold ESCOKbold_B ESCOKbold_E 16
TCrossed ESCOKcrossed_B ESCOKcrossed_E 16
TFramed ESCOKframed_B ESCOKframed_E 16
TRepeat ESCOKrepeat_BOOP1 | ESCOKrepeat_E 24 and 16
Where:

P1: is a hex value from 0 to 255 representing the integer number of times to repeat the set of characters embedded
between the escape sequences: “ESCOKRepeat_BOP1” and “ESCUKRepeat_E”

Tvalue0: Standard for Outline

parameter = {‘0°, ‘1°, ‘27, ‘3°, ‘4’ *5>° “6°, ‘7°, ‘8, ‘9’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’}
Notation: T line on the Top

L line on the Left

R line on the Right
B line on the Bottom

The text characters correspond to the following situation:
‘0’ =h30 = no line

‘1’=h31=B
2’=h32=T
‘3°’=h33=B+T
‘4’=h34=L
‘5’=h35=B+R
‘6>=h36=B+L
“7’=h37=T+L
‘8=h38=R
‘9°’=h39=T+R
‘A’=h3A=R+L

‘B’ =h3B = B+L+R
‘C’ =h3C = L+T+R
‘D’ = h3D = B+R+T
“E’ = h3E = L+B+T
“F’ = h3F = B+T+L+R (Frame)

c-1

ARINC SPECIFICATION 661 - Page 32
3.0 WIDGET LIBRARY

3.2.5.5 Escape Sequences Description (cont’d)

Tvaluel = {airframe manufacturer/system integrator-dependent list}

Tvalue2 = {airframe manufacturer/system integrator-dependent list}
Escape Identifers are defined in Table 3.2.5.5.2.
Table 3.2.5.5.2 - Escape Identifier

Escape Identifiers Value

KoutLine h40
KforeColor h41
KbackGround h42
Kfont h43

Kvideolnv_B h44
Kvideolnv_E h45
Kanimation_B h46
Kanimation_E h47
Kunderline_B h48
Kunderline_E h49

Kbold_B h4A
Kbold_E h4B
Kcrossed_B h4C
Kcrossed_E h4D
Kframed_B h4E
Kframed_E h4F
Krepeat B h50
Krepeat_E h51

3.2.6 Interactive

Interactive widgets are widgets that have the ability to send an event to their UA. An interactive widget has an Event
Structure table attached. Some interactions on these widgets induce an event transmitted to the UA. These widgets will
implement different graphical representations according to their state. Refer to Section 3.1.2, 3.1.2 Widget States.

3.2.7 Dynamic Motion

UAs have the ability to move dynamic motion widgets at run-time. The parameters PosX, PosY are modifiable at run-
time for a dynamic motion widget.

3.2.8 Map Management

The map management category of widgets relates to the management of the symbology inside a map. This section
describes a collaboration between widgets fulfilling a map functionality.

There are two types of map: Horizonal and Vertical. In both cases interaction between widgets composing a Map is
similar. Following widgets are considered as a part of Map Management group:

For Horizontal Map:
* MapHorz
* MapHorz_Source
e MapHorz_ItemList
e MapGrid

ARINC SPECIFICATION 661 - Page 33

3.0 WIDGET LIBRARY

For Vertical Map:
e MapVert
* MapVert_Source
e MapVert_ItemList
e MapGrid

For more detailed information about specific widget refer to the corresponding paragraph in section 3.3. Widgets as
well as a set of predefined symbols are defined at definition time. Number and position of symbols vary at runtime.

Horizontal maps were part of avionics systems for quite a while. On the other hand the vertical map is slowly
beginning to make an appearance. For this reason more in dept analysis is performed for the Horizontal Map.

3.2.8.1 Horizontal Map Management
A typical example of horizontal map management widgets is navigation display format.

A MapHorz_ItemList contains a list of items to be drawn. The type of each item inside the MapHorz_ItemList can be
modified at run-time, which makes the list dynamic. A set of parameters is associated with each type of item.

COMMENTARY

MapHorz_ItemList could be used in the creation of flight plan or map background symbols from FM
Application, and identification of TCAS intruders from TCAS application.

Addressing of a Item inside a MapHorz_ItemList is described Section 3.3.22, MapHorz_ItemList and illustrated in
Appendix E, Map Management Tutorial.

MapGrid widget allows to draw map background as a series of rectangles. More details about MapGrid can be found
in Section 3.4.1.

Any Item in MapHorz_ItemList has its position expressed in a local coordinate systems, as opposed to the display unit
or screen coordinate system. Thus, to display a MapHorz_ItemList in a format image, a transformation into a window
reference system is necessary. This transformation is defined in two steps. First, information about type of local
coordinate system is contained in MapHort Source. Data in MapHorz ItemList is meaningless without
MapHort_Source MapDataFormat.

Similar in case of MapGrid, IncrementX and IncrementY are in real-world units defined in MapHorz_Source. As a
result, each MapGrid and MapHorz_ItemList has to be a child of MapHorz_Source. Second step is to convert known
world coordinate system to screen coordinate system. MapHorz allows to convert from real-world units to screen
coordinate system. Rationale behind splitting transformation between MapHorz and MapHorz_Source was to allow
objects to merge from multiple world coordinate system into one Map Image. As such, several MapHorz_ItemList and
MapGrids can be merged in one Map even if they use different world coordinate systems.

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 34

3.0 WIDGET LIBRARY
3.2.8.1 Horizontal Map Management (cont’d)
MapHorz_ItemList
MapHorz_Source MapHorz
World coord system Screen Coord system

X /Lat/Range Coord 1
Y/Lng/Range Coord 2

MapDataFormat Ii Size X/Y

Range

ScreenRange
Reference(Position/Orientation)

MapGrid

IncrementX
IncrementY

Figure 3.2.8.1 Coordinate System for MapHorz Widget Management

The UA, which provides MapHorz_ItemList to the CDS, is called a Map User Application. To allow display of the
MapHorz_ItemLists in the display area, the Map User Application also provides to the CDS characteristics its
MapHorz_ItemLists coordinate system through a widget called MapHorz_Source.

One UA is responsible for passing to the CDS the required reference information for the CDS to perform the merger.
In this way, this UA federates all the different MapHorz_Source data to enable CDS to perform the merger. This
application is called the master application. The master application provides reference information to the CDS through
a widget called MapHorz widget.

COMMENTARY

In the ND window case, possible implementation would be ND as the master application while the Map User
Applications might be the FMS User Application, TCAS User Application, or other UA.

Different kinds of UAs could be developed to merge data. The description of such UAs is beyond the scope of this
Specification.

3.2.8.1.1 Link Between MapHorz, MapHorz_Source, MapHorz_ItemList and MapGrid

From a hierarchical point of view, illustrated in Figure 3.2.8.2, the MapHorz widget is a container of MapHorz_Source
widgets. It defines reference information for all MapHorz_Sources that it contains. MapHorz_Sources and MapHorz
widget are defined by different UAs. Thus, MapHorz_Sources and MapHorz widget are defined in different UALDs or
layers. The link between the MapHorz widget and its contained MapHorz_Source will be insured by a Connector
widget (refer to Section 3.3.7, Connector). The MapHorz widget can specifically contain only Connector(s) and/or
MapHorz_Source(s).

The MapHorz_Source parent can only be the MapHorz widget or the layer. The layer only contains the
MapHorz_Source (one or several). One MapHorz_Source can be shared between several MapHorz widgets by using
the Connector widget.

ARINC SPECIFICATION 661 - Page 35

3.0 WIDGET LIBRARY

The master application manages the visibility of MapHorz_Source from other layers through the connector widget.
Indeed the Connector widget has a visibility parameter.

The MapHorz_Source is a container of MapHorz_ItemLists and MapGrid. The MapHorz_Source defines coordinate
system characteristics for all its contained MapHorz_ItemLists and MapGrids.

MapHorz_Widget

_—

Connector widget MapHorz_Source Connector widget

Master Application ——p/ to MapHorz_Source 1 to MapHorz_Source 2
’
> ~ . . /
N MapHorz_ItemList Map Grid »
~ N ;
N /
~ /
.. MapHorz_Source 1 ,’
Map User Application] ———» / \ /
7

MapHorz_ItemListll ~ MapHorz_ItemList12 7
/
/
VA
/

MapHorz_Source 2

T~

MapHorz_ItemList21 MapGrid

Map User Application 2 ——»

LEGEND:
E : Layer . .
: Tree of Widgets inside one layer
>) .
: Owner of the Layer = = = = - —. : Connection of one layer to another layer

Figure 3.2.8.1.1 Hierarchical Structure For MapHorz Widget Management

3.2.8.1.2 Parameter Definition for MapHorz and MapHorz_Source

MapHorz and MapHorz_Source widgets hold parameters to assure that, when it is time to draw the map, the CDS will
have all the required information.

To define the parameters for MapHorz and MapHorz_Source, the system integrator should review the possible Map
User Applications and the kind of display a master application may require. Several examples of master applications
are described in the Appendix E, Map Management Tutorial.

c-1

ARINC SPECIFICATION 661 - Page 36
3.0 WIDGET LIBRARY

3.2.8.1.2 Parameter Definition for MapHorz and MapHorz_Source cont’d)

The MAPHORZ widget is defined by the following parameters:

MAPHORZ:

- MAPHORZ X, Y : Position of the MapHorz widget.

- PRP lat/long : PRP latitude and longitude.

-PRPX,Y: PRP position on the display. Value relative to the MAPHORZ X,Y
- True North Angle : Angle between the true North and the Up direction of the display.

- Range Geo referenced : Range in nm

- Display equivalent Range : Range in screen unit

MAPHORZ_SOURCE :

- Coordinate System : Enumerated value. Lat/long is one of these values.

3.2.8.2 Vertical Map Management

A typical example of vertical map management widgets is vertical situation display format. In previous section we
described Horizontal map. Vertical map management is similar to horizontal with following substitution for Horz to
Vert widgets :

e MapHorz MapVert
e MapHorz_Source MapVert_Source
e MapHorz_ItemList MapVert_ItemList
e MapGrid MapGrid
3.2.8.3 Priority Management
The drawing priority between widgets is defined as follows:
Level 1. The drawing priority between the layer.
Level 2. The drawing priority between the widget inside a layer, as discussed in Section 2.3. The definition
order of the widget inside the UALD defines the drawing priority. The last defined widget is the
higher priority widget.

Level 3. Then inside a MapHorz_ItemList, the drawing priority is defined by the item order specified by their
“ItemIndex” parameter. The higher ItemIndex value has the higher drawing priority.

The level 1 and 2 drawing priority are defined statically. The level 3 drawing priority, which is the drawing priority for
the item, is defined dynamically at run-time.

The MapHorz_ItemList introduces the notion of container, which is beneficial for managing independently groups of
items.

ARINC SPECIFICATION 661 - Page 37

3.0 WIDGET LIBRARY

COMMENTARY

The FMS could set in different MapHorz ItemLists the different flight plans, the different kinds of
background data, etc. The MapHorz_ItemList allows the FMS to group items with different graphical
priorities, which correspond to different functional group.

Correlation between items addressing order and drawing order is developed in Appendix E, Map Management
Tutorial.

3.2.9 Non-Classified Widget

Some widgets have been defined without graphical representation neither interactive or container capability. This
widget has specific functionality in order to extend or optimize the ARINC 661 defined principle:

BufferFormat
Connector

3.3 Widget List

This section describes the characteristics and the interface of ARINC 661 standard widgets. For each widget the
definition is divided into parts as follows:

1. Definition section

2. Widget parameters table

3. Creation structure table: CreateParameterBuffer
4. Event Structure table

5. Run-time modifiable parameter tables

6. Specific sections

These parts are described as follows:

Part 1) This subsection states the categories of the widget, the functional description of this widget and some
restrictions to the ARINC 661 principles.

Part 2) This subsection presents the Parameters Table which describes all parameters of the object. These parameters
are divided into two categories: “Commonly used parameters” with a reduced description and “Specific
parameters” with a complete description. For “commonly used parameter” full descriptions, refer to section
3.1.3. Also, for “commonly used parameters”, additional information and differences from the norm are
underlined.

For each parameter, the following information is presented:
. Name of the parameter

. Possible modifications of parameter by the UA (“change” column)
D : parameter set at definition time only through A661_CMD_CREATE command

DR : parameter set at definition time through A661_CMD_CREATE and modifiable at run time
through A661_CMD_SET_PARAMETER command

R : parameter modifiable only at run time through A661_CMD_SET_PARAMETER command

. Description of the parameter

c-1

ARINC SPECIFICATION 661 - Page 38

3.0 WIDGET LIBRARY

3.3 Widget List (cont’d)

The next sections describe the format of the exchanges at definition-time, the Create command, as well as at run-time,
the Widget Event notifications and SetParameter commands for each widget. This description is completed by the
fourth subsection.

The coding format is Big Endian. The types are defined by Table 3.3-1. Fields in the table appear on the bus in the
order they are listed.

Table 3.3.1 - Type of Parameters

Type Standardized Format

uchar unsigned char coded on 8 bits (used for strings, too)

string array of uchar
Ended by NULL character

long long integer coded on 32 bits

ushort unsigned short integer coded on 16 bits

ulong unsigned long integer coded on 32 bits

float IEEE 754 format floating point coding on 32 bits (single precision).

fr(x) Scaled Integer, number of significant bits specified in table. LSB is value in parenthesis (i.e.
‘x”), divided by 2-raised-to-the-number-of-bits minus 1. Used for angles. Signed.
For example, fr(180) in 16 bits is LSB 0.00549316
fr(180) in 32 bits is 8.381903175442¢-8.
fr(32768) in 32 bits is LSB 0.000030517578125.

N/A Non Applicable

All signed numbers are two’s complement form.

Part 3) This subsection presents the “Creation Structure Table” which describes the format of the creation structure:

CreateParameterBuffer.

In the Creation Structure Tables, as well as the Event Structure Tables, parameters are grouped together to
form words of 32 bits. Each word is separated from other words by a full line. When one word of 32 bits is
composed of several parameters, the parts are separated in the table by a dashed line. Refer to the examples in
Table 3.3.2.

Table 3.3.2 - Example of Creation Structure

Woray | Nome | Twwe | Sine iy When Necessoy
1 Paraml ushort 16
Param2 | ushort | 6]
2 Param3 ulong 32
Param4 uchar 16
Param5 | uchar | s |
Param6 | uchar | N

The parameter order in this table may be different from the order in the Widget parameter table. Indeed, the
Widget parameter table describes parameter functional aspect, while the Creation structure table describes the
parameter buffer coding aspect.

ARINC SPECIFICATION 661 - Page 39

3.0 WIDGET LIBRARY

Part 4) This subsection presents the “Event Notification Structure” which describes the structure of the events
associated with the widget. It describes the events that are able to be sent to the UA by the CDS initiated by a
crew member interaction.

Part 5) This subsection describes the table of parameters modifiable at run time. This table refers to some
parameterStructure. This table describes the accessible commands to the UA that manages the widget at run-
time.

Some widgets have additional subsections to define dedicated data structures.

The following sections define widgets in the Widget Library.

3.3.1 ActiveArea

Categories:

Graphical representation

Interactive

Description:

The ActiveArea is transparent rectangular widget. The ActiveArea may have a graphical representation when this
widget is highlight or when it has the focus. A selection of this widget by a crew member initiates an event notification

sent to the owner UA of the widget.

Restriction:
None

ActiveArea Parameters are defined in Table 3.3.1-1.

3.3.1-1 - ActiveArea Parameters

Parameters Change Description

Commonly used parameters

WidgetType D A661_ACTIVE_AREA

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

FocusIndex D Order of the widget for focus circulation

AutomaticFocusMotion D Automatic motion of the focus on widget having the following
FocusIndex value

ARINC SPECIFICATION 661 - Page 40
3.0 WIDGET LIBRARY

3.3.1 ActiveArea (cont’d)

ActiveArea Creation Structures are defined in Table 3.3.1-2.

Table 3.3.1-2 ActiveArea Creation Structure

CreateParameter Buffer Type (f)li::) Xflllllelfllgzgfsesary
WidgetType | ushort | 16 |AG6L ACTIVE AREA |
Widgetldent ushort 16
Parentldent | ushort | 16\]
Enable uchar 8 A661_FALSE
A661_TRUE
Visible | uchar | 8 |A661_FALSE]
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet .. ushort |\ 16 |]
FocusIndex ushort 16
AutomaticFocusMotion uchar 8 A661_FALSE
___ AGLTRUE]
UnusedPad N/A 24 |0

Table 3.3.1-3 defines the specific event sent by the ActiveArea to the owner application.

Table 3.3.1-3 - ActiveArea Event Structures: A661_EVT_SELECTION

EventStructure Type | Size (bits) | Value/Description
Eventldent ushort | 16 ___|A661_EVT SELECTION ...
UnusedPad N/A 16 0

Available SetParameter identifiers and associated data structure are defined in Table 3.3.1-4.

Table 3.3.1-4 - ActiveArea Runtime Modifiable Parameters

Name of the Parameter to Type Sl.ze .Parameterldent Used Type of Structure Used

Set (bits) | in the (Refer to 4.5.4.5)
ParameterStructure

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

StyleSet ushort 16 |A661_STYLE_SET A661_ParameterStructure_2Bytes

3.3.2 BasicContainer

Categories:
Container

Description:

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 - Page 41

The BasicContainer has no graphical representation. Its purpose is to group children widgets and to provide a means
for managing the visibility and the interactivity of this set of widgets. The contained widgets are positioned with

respect to the PosX, PosY of the BasicContainer. It has no clipping capabilities. The position of the BasicContainer

can be changed at run-time.

BasicContainer is

COMMENTARY

different from a TranslationContainer because
RotationContainer. BasicContainer can be used to define, at run-time, the position of a button.
Translation/Rotation containers are used to translate and rotate graphical primitives or symbols.

it can not be the child of a

Restriction:
N/A

BasicContainer Parameters are defined in Table 3.3.2-1.

Table 3.3.2-1 - BasicContainer Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_BASIC_CONTAINER
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR | Ability of the widget to be activated
PosX DR | The X position of the widget reference point
PosY DR | The Y position of the widget reference point

BasicContainer Creation Structure is defined in Table 3.3.2-2.

Table 3.3.2-2 - BasicContainer Creation Structure

CreateParameterBuffer Type (?)li::) Value/Description

WidgetType | ushort | 16 | A661_BASIC CONTAINER

Widgetldent ushort 16

Parentldent | ushort | o |\

Enable uchar 8 A661_FALSE
A661_TRUE

Visible | uchar | ¢ 8 |A661_FALSE]
A661_TRUE

PosX long 32

PosY long 32

The BasicContainer widget does not send any event.

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 42

3.3.2 BasicContainer (cont’d)

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are:

Basic Container Runtime Modifiable Parameters are defined in Table 3.3.2-3.

Table 3.3.2-3 - BasicContainer Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used

Parameter to Set (bits) | in the ParameterStructure (Refer to 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_ XY
PosY X2
PosX long 32 |A661_POS_X A661_ParameterStructure_X
PosY long 32 |A661_POS_Y A661_ParameterStructure_Y

3.3.3 BlinkingContainer

Categories:
Container

Description:

A BlinkingContainer is intended to apply blinking behavior to a group of widgets.

Restriction:
N/A

BlinkingContainer Parameters are defined in Table 3.3.3-1.

Table 3.3.3-1 - BlinkingContainer Parameters

Parameters

Change

Description

Commonly used parameters

WidgetType D A661_BLINKING_CONTAINER

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR | Visibility of the widget

Specific parameters

BlinkingType DR | Type of blinking (appearance to be defined by the aircraft OEM).

Value of zero means no blinking. The definition of all other 255 values is
determined by OEM.

ARINC SPECIFICATION 661 - Page 43

3.0 WIDGET LIBRARY

BlinkingContrainer Creation Structures is defined in Table 3.3.3-2.

Table 3.3.3-2 - BlinkingContainer Creation Structure Table

CreateParameterBuffer Type (?)ii::) W\lii:lule\lliilslsg:ry
WidgetType ushort 16 | A661_BLINKING_CONTAINER
Widgetldent ushort | 16
Parentldent ushort 16
BlinkingType uchar | 8
Visibe uchar | 8 |A661_FALSE

A661_TRUE

The BlinkingContainer widget does not send any event.
Available SetParameter identifiers and associated data structure are defined in Table 3.3.3-3.

Table 3.3.3-3 - BlinkingContainer Runtime Modifiable Parameters Table

Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 | A661_VISIBLE A661_ParameterStructure_1Byte
BlinkingType uchar 8 | A661_BLINKING_TYPE A661_ParameterStructure_1Byte

3.3.4 BufferFormat

Categories:
None

Description:
The objective of this widget is to provide a means for grouping data from different widgets (but one layer) in one
buffer to reduce overhead. For example, rather than sending <layer id><widget id><parameter id><value><layer
id><widget id><parameter id><value><layer id><widget id><parameter id><value><layer id><widget
id><parameter id><value>, a supplier can instead define the structure:

<widget id><parameter id>

<widget id><parameter id>

<widget id><parameter id>
and at run-time provide just <layer id><widget id><value><value><value>, which is much more compact. The
<widget id> is that of the “BufferFormat” widget.

The buffer structure is fixed at definition time through the BufferStructure parameter. The maximum size of the buffer
of values is a function of the number and the nature of the parameters. This buffer structure contains a set of parameter
modifiable at run-time. The CDS will perform a set on each parameter identified in the structure.

The widgets referenced in this BufferFormat widget must be defined in the Definition File before the BufferFormat
widget. Uses for the BufferFormat include initialization of a layer, and refresh of a large number of widgets at the
same time.

ARINC SPECIFICATION 661 - Page 44
3.0 WIDGET LIBRARY

3.3.4 BufferFormat (cont’d)

Restrictions:
- The BufferFormat can only be the child of a layer.

- The BufferFormat can not contain “Definition Only” parameters.

- The BufferFormat can not contain parameters which are used inside one of the following structure.
A661_ParameterStructure_Buffer
A661_ParameterStructure_BufferOfltems
A661_ParameterStructure_EnableArray
A661_ParameterStructure_EntryPopUpArray
A661_ParameterStructure_StringArray
Indeed, this list corresponds to variable size parameters.

- The BufferFormat can only contain parameters which are used inside one of the following structure.
A661_ParameterStructure_1Byte
A661_ParameterStructure_2Bytes
A661_ParameterStructure_4Bytes
A661_ParameterStructure_String
A661_ParameterStructure_ XY

Variable-size structures can not be used inside the Buffer parameter of the BufferFormat. The Buffer parameter of the
BufferFormat can only be composed of simple parameter values. One exception is the String, which is preceded by

one byte describing the size of the string in bytes (including the NULL character terminating the string).

BufferFormat Parameters are defined in Table 3.3.4-1.

Table 3.3.4-1 - BufferFormat Parameters Table

Parameters Change Description

Commonly used parameters

WidgetType D | A661_BUFFER_FORMAT
Widgetldent D | Unique identifier of the widget.
Parentldent D |Identifier of the immediate container of the widget.

The only possible parent of the bufferFormat is the layer, therefore
Parentldent Value: 0

Specific parameters

NumberOf Fields Number of fields in the buffer

W/

BufferStructure D | Pairs of widgetldent / Parameterldent for the value to be sent by the UA through the
bufferFormat. The number of pairs is defined by the NumberOfFields.

The size of this parameter, in bytes, is
(widgetldent_Size + Parameterldent_Size)* NumberOfFields

BufferOfParameter R | Buffer containing the values corresponding to each pair widgetldent / Parameterldent.

The maximum size of this buffer is the sum of the maximum size of each parameter

ARINC SPECIFICATION 661 - Page 45

3.0 WIDGET LIBRARY

BufferFormat Creation Structure is defined in Table 3.3.4-2.

Table 3.3.4-2 - BufferFormat Creation Structure Table

CreateParameterBuffer Type Size (bits) W‘lllze‘:lulil/ﬁcaerslsg:ry

WidgetType ushort 16 A661_BUFFER_FORMAT
Widgetldent | ushort | 16 |
Parentldent ushort 16 0
NumberOfFields | wushort | 16 |
BufferStructure N/A 32*Number | Pairs of :

of Fields | WidgetIdent (16 bits)

Parameterldent (16 bits)

The BufferFormat widget does not send any event.
Available SetParameter identifiers and associated data structure are defined in Table 3.3.4-3.

Table 3.3.4-3 - BufferFormat Runtime Modifiable Parameters Table

Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
BufferOfParameter | N/A | {32}+ | A661_BUFFER_OF_PARAM A661_ParameterStructure_Buffer

3.3.4.1 A661_ParameterStructure_Buffer

Eight-byte, 4-byte, and 2-byte parameters must not cross 32-bit boundaries.

The BufferFormat structure must be padded out to a multiple of 32-bits.

c-1

ARINC SPECIFICATION 661 - Page 46

3.3.5 CheckButton

Categories:
Graphical representation
Interactive
Text string

Description:

3.0 WIDGET LIBRARY

A CheckButton allows the crew member to select or not select an option.

Restriction:
N/A

CheckButtom Parameters are defined in Table 3.3.5-1.

Table 3.3.5-1 - CheckButton Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_CHECK _BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
CheckButtonState DR | Inner state of the CheckButton:
SELECTED
UNSELECTED
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on widget having the following FocusIndex
value.
Specific parameters
LabelString DR | Label of the CheckButton
MaxStringLength D Maximum length of the label text
Alignment D Alignment of the text within the label area of the widget
Left
Right
Center
PicturePosition D Position of the CheckBox (picture) with respect to the label within the
CheckButton
Left
Right

ARINC SPECIFICATION 661 - Page 47

3.0 WIDGET LIBRARY

CheckButton Creation Structure is defined in Table 3.3.5-2.

Table 3.3.5-2 - CheckButton Creation Structure

CreateParameterBuffer Type (f)li::) W‘llli:lule\g{caelslsg:ry
WidgetType ushort 16 |A661_CHECK_BUTTON
Widgetldent | ushort | 6 |
Parentldent | ushort | LS
Enable uchar 8 A661_FALSE
A661_TRUE
visibe | uchar | 8 |A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ___ ushort | T R
FocusIndex ushort 16
MaxStringlength | ushort | S
CheckButtonState uchar 8 A661_SELECTED
__ AG6I_UNSELECTED
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
PicturePositon | uchar | ¢ 8 |A661_LEFT
__ AGOLRIGHT
UnusedPad N/A 16 |0
LabelString string 8 * | Followed by zero, one, two or three extra NULL for alignment of
string | 32 bits.
length
+ Pad

The specific event sent by the CheckButton to the owner application is defined in Table 3.3.5-3.

Table 3.3.5-3 - CheckButton Event Structures: A661_EVT_STATE_CHANGE

EventStructure Type (?)li::) Value/Description
Eventldent ushort 16 |A661_EVT_STATE_CHANGE
UnusedPad [NA |8 N0
CheckButtonState uchar 8 A661_SELECTED
A661_UNSELECTED

ARINC SPECIFICATION 661 - Page 48
3.0 WIDGET LIBRARY

3.3.5 CheckButton (cont’d)

Available SetParameter identifiers and associated data structure are defined in Table 3.3.5-4.

Table 3.3.5-4 - CheckButton Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
CheckButtonState | uchar 8 ARINC661_INNER_STATE_CHECK | A661_ParameterStructure_1Byte
StyleSet ushort 16 | A661_STYLE SET A661_ParameterStructure_2Bytes
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String

3.3.6 ComboBox

Categories:
Graphical representation
Interactive
Text string

Description:

The ComboBox allows a crew member to select one entry within a list. Only the current choice is displayed in the
ComboBox area. The number of the current selected entry is held in the SelectedEntry parameter. The complete list of
possible Entries is held in a string array (parameter EntryList). The list is displayed upon crew member selection, for
example, click on the arrow button associated with the Selected Entry.

Note that SelectingAreaHeight and the SelectingAreaWidth represent the Y and X Size of the PopUp part of the
ComboBox.

OpeningMode of the ComboBox determines how the ComboBox opens.

The pop-up part of the ComboBox is displayed on top of its containing window and is affected by clipping area of its
containing window.

COMMENTARY

The data/formatting displayed for current-item-selected during crew selection and UA validation is part of
CDS internal behavior, and is beyond the scope of this document. For instance, the CDS could implement a
graphical representation indicating that one text has been selected but not yet validated by the UA. In this
case the UA could show that it has validated the selection through a SetParameter command on the
SelectedEntry parameter.

Restriction: N/A

ARINC SPECIFICATION 661 - Page 49

3.0 WIDGET LIBRARY

ComboBox Parameters are defined in Table 3.3.6-1.

Table 3.3.6-1 - ComboBox Parameters

Parameters

| Change |

Description

Commonly used parameters

[MaxEntryNumber]

WidgetType D A661_COMBO_BOX
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the ComboBox (in the closed mode)
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on widget having the following FocusIndex
value.
Specific parameters
SelectingAreaHeight D Size of the area available to display the entry list
SelectingAreaWidth D Size of the area available to display the entry list
OpeningMode D Way of combo opening:
(0]
CENTERED
DOWN
MaxStringlLength D Maximum string length for the entries of the list.
Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER
MaxNumberOfEntries D Maximum number of entries in the list
NumberOfEntries DR | Total number of entries in the list (must be lower than MaxNumberOfEntries)
SelectedEntry DR | Current selected entry number in the list.
EntryList DR | String array holding the list of entries.

c-1

ARINC SPECIFICATION 661 - Page 50

3.3.6 ComboBox (cont’d)

3.0 WIDGET LIBRARY

ComboBox Creation Structure is defined in Table 3.3.6-2.

Table 3.3.6-2 - ComboBox Creation Structure

CreateParameterBuffer Type (ilii:) W‘lllze‘:lulil/?caerslsg:ry
| WidgetType | ushort | | 16 | A661 COMBO BOX .
Widgetldent ushort 16
Parentldent | ‘ushort | | 6 |
Enable uchar 8 A661_FALSE
A661_TRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
SelectingAreaWidth ulong 32
SelectingAreaHeight ulong 32
[StyleSet | ushort | | L
FocusIndex ushort 16
| MaxNumberOfEntries | ushort | | N
NumberOfEntries ushort 16
| SelectedEntry | ushort | | L
MaxStringlLength ushort 16
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
OpeningMode uchar 8 A661_OPEN_UP
A661_OPEN_CENTERED
A661_OPEN_DOWN
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
UnusedPad N/A 8 0
EntryList [NumberOfEntries] {string}+ | {32}+ | Each string terminating NULL is used as string
separator.
The complete string list is followed by zero, one, two
or three NULL character(s) to be 32 bits aligned

The specific event sent by the ComboBox to the owner application is defined by Table 3.3.6-3.

Table 3.3.6-3 - ComboBox Event Structures: A661_EVT_SEL_ENTRY_CHANGE

EventStructure Type Sl‘ze Value/Description
(bits)
Eventldent | ushort | 16 |A661 EVT SEL ENTRY CHANGE
EntryNumber ushort 16 | Number of the entry chosen by the crew member

ARINC SPECIFICATION 661 - Page 51

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.6-4.

ComboBox Runtime Modifiable Parameters are defined in Table 3.3.6-4.

Table 3.3.6-4 - ComboBox Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 | A661_STYLE SET A661_ParameterStructure_2Bytes
SelectedEntry ushort 16 | ARINC661_SELECTED_ENTR | A661_ParameterStructure_2Bytes
Y

NumberOfEntries ushort 16 A661_NUMBER_OF_ENTRIES | A661_ParameterStructure_2Bytes
EntryList string[] | {32}+ | A661_ STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfEntries]

3.3.7 Connector

Categories:
None

Description:

The purpose this widget is to connect a layer to a container of another layer. Examples of the use of the Connector
widget include TabbedPanelGroup and MapHorz both of which mix data from several UAs. The action of the
Connector widget is functionally like a call to a library routine, or similar reference to a preceding definition. The
Connector widget allows another UA to get an image of the referenced widgets. The Connector widget does not imply
ownership, copying of the data, or write access. All events associated with the image are still handled by the owning
application.

Restriction:
The Connector widget capability across physical display surfaces is dependent on system architecture.

Each layer has one priority defined by the current configuration, it does not “inherit” the priority of its “parent” layer.
In this way, L3 will not inherit the priority of L1 nor L2. Indeed, one UA, for instance, the owner of the L3, can not
“draw” in the graphical layer of another UA in L1 or L2.

The connected layer rendering is affected by the properties of the Container of the connector including: Position,
Clipping area, Visible, Enable. Thus, the connected layer has an origin that is defined with respect to the origin of
Connector widget parent.

COMMENTARY

If each layer L1 and L2 owns a Connector widget in their UALD reference, the same layer L3, then L1 and
L2 should not be interactive at the same time in one given configuration.

Use of the Connector widget may have impact on certification demonstration. Indeed, the Connector widget
provides one means for an UA 1 to manage widgets from an UA 2. For instance, if the UA 1 is level C,
then UA 1 it should not manage widgets from UA 2, which is level B.

ARINC SPECIFICATION 661 - Page 52

3.3.7 Connector (cont’d)

3.0 WIDGET LIBRARY

Connector Parameters are defined in Table 3.3.7-1.

Table 3.3.7-1 - Connector Parameters

Parameters Change Description

Commonly used parameters

WidgetType D A661_CONNECTOR

WidgetIdent D Unique identifier of the connector.

Parentldent D Identifier of the immediate container of the connector.

Visible DR Visibility of the widget.

Specific parameters

Connector D Reference of the Connector. It is used to resolve the link with the connected layer.

Reference The resolution of the link between the connector and the layer is a configuration
issue.
All events generated by the widgets of the child layer are still handled by the owning
application of this layer.

ConnectorCreation Structure is defined in Table 3.3.7-2.

Table 3.3.7-2 - Connector Creation Structure

CreateParameterBuffer Type (f)ii::) Value/Description
WidgetType ushort 16 A661_CONNECTOR
Widgetldent ushort | 16
Parentldent ushort 16
Connector Reference ushort | 16
Visible uchar 8 A661_FALSE

A661_TRUE

UnusedPad NA | 24 |0

The Connector widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.7-3.

Table 3.3.7-3 - Connector Runtime Modifiable Parameters

Name of the Type

Size

Parameterldent Used

. . Type of Structure Used
Parameter to Set (bits) in the (Refer to Section 4.5.4.5)
ParameterStructure
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

3.3.8 CursorPosOverlay

Categories:
Interactive

Description:

ARINC SPECIFICATION 661 - Page 53

3.0 WIDGET LIBRARY

A CursorPosOverlay widget consists of a defined area of the display. The distinguishing characteristic of a
CursorPosOverlay is that the reportable event is the current cursor pointer position relative to the CursorPosOverlay.
The event is reported on upon selection by a crewmember with a “click” or keyboard selection.

Restriction: N/A

CursorPosOverlay Parameters are defined in Table 3.3.8-1.

Table 3.3.8-1 - CursorPosOverlay Parameters

Parameters Change Description
Commonly used parameters
WidgetType D A661_CURSOR_POS_OVERLAY
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Enable DR Ability of the widget to generate events.
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget

CursorPosOverlay Creation is defined in Table 3.3.8-2.

Table 3.3.8-2 - CursorPosOverlay Creation Structure

CreateParameterBuffer Type Size (bits) Value/Description
WidgetType ushort 16 A661_CURSOR_POS_OVERLAY
Widgetident | wshot | 16 |
Parentldent ushort 16
[Enable [uchar | g | A661 FALSE
A661_TRUE
[UnusedPad | NA | 8 | o
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32

ARINC SPECIFICATION 661 - Page 54
3.0 WIDGET LIBRARY

3.3.8 CursorPosOverlay (cont’d)

The specific event sent by the CursorPosOverlay to the owner application is defined in Table 3.3.8-3.

Table3.3.8-3 - CursorPosOverlay Event Structure Tables: A661_EVT_CURSOR_POS_CHANGE

EventStructure Type (?)ii::) Value/Description
Eventldent ushort | 16 |A661_EVT_CURSOR_POS_CHANGE
UnusedPad _ N/A _____ 16 - 0
X long 32 | X position of the cursor with respect to the PosX of the widget
Y long 32 | Y position of the cursor with respect to the PosY of the widget

Available SetParameter identifiers and associated data structure are defined in Table 3.3.8-4.

Table 3.3.8-4 - CursorPosOverlay Runtime Modifiable Parameters

Name of the Type (?)li::) Paramegflrtll(ll:nt Used Type of Structure Used
Parameter to Set (Refer to Section 4.5.4.5)
ParameterStructure
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte

3.3.9 EditBoxMasked

Categories:
Graphical representation
Interactive
Text string

Description:

The Masked edit box is an extension of the Text edit box. The difference with the basic Text edit box is that some
characters are not modifiable by the crew member. The characters that are not able to be modified are specified by the
UA by setting the “alpha mask” parameter and the “numeric mask™ parameters to 0.

If a character is only numerical, the masks for this character are 1 for numeric mask and 0 for alpha mask.
If a character is only alphabetic, the masks for this character are 0 for numeric mask and 1 for alpha mask.
If a character is alpha-numeric, the masks for this character are 1 for numeric mask and 1 for alpha mask.

The size of this string is limited to 32 characters.

COMMENTARY

The data/formatting displayed for current-item-selected during crew editing and UA validation is part of CDS
internal behavior, and is beyond the scope of this document. For instance, the CDS could implement a
graphical representation indicating that one text has been edited but not yet validated by the UA. In this case
the UA could show that it has validated the entry through a SetParameter command on either the LabelString
or EditBoxState parameter, according to defined widget behavior. Similarly, the UA should display an
ERROR mode through the use of the StyleSet parameter.

ARINC SPECIFICATION 661 - Page 55

3.0 WIDGET LIBRARY

When the EditBoxMasked is in edit mode, the CDS may report all modifications done on the value of the

edited string and the final confirmed string, or only report the confirmed string (after a crew member
validation). This option may be set by the UA through the “ReportAllChanges” parameter. If c-1
ReportAllChanges is True and, after having entered a text, the crewmember finally aborts the edit, the CDS

should send a specific event to the UA with the former validated LabelString as parameter of the event.

EditBoxMasked Parameters are defined in Table 3.3.9-1.

Table 3.3.9-1 - EditBoxMasked Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_EDIT_BOX_MASKED
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on widget having the following FocusIndex value.
Specific parameters
LabelString DR | Text of the edit box, this string is limited to 32 characters
StartCursorPos DR | Start position of cursor in the field when entering edit mode.
Alignment D Justification of the label text within the edit box area
CENTER
LEFT
RIGHT
ReportAllChanges D TRUE
CDS will report each update from the crew member while in edit mode
(A661_EVT_VALUE_CHANGE)
CDS will report the value change after crew member validation
(A661_EVT_VALUE_CONFIRMED)
CDS will report the value if the crew member aborts the edit
(A661_EVT_VALUE_CHANGE_ABORTED) c-1
FALSE
CDS will report the value change after crew member validation
(A661_EVT_VALUE_CONFIRMED)
Note: In all cases the CDS will report the entry in edit mode
AlphaMask DR | Mask for Alpha character
NumericMask DR | Mask for Numeric character

ARINC SPECIFICATION 661 - Page 56
3.0 WIDGET LIBRARY

3.3.9 EditBoxMasked (cont’d)

EditBoxMasked Creation is defined in Table 3.3.9-2.

Table 3.3.9-2 - EditBoxMasked Creation Structure

CreateParameterBuffer Type (?)Ii::) W‘lllze‘:lulil/ﬁcaerslsg:ry
WidgetType ushort 16 | A661_EDIT_BOX_MASKED
Widgetldent ushort 16
Parentldent ushort | 16
Enable uchar 8 A661_FALSE

A661_TRUE
Visible uchar | 8 |A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet ushort 16
FocusIndex ushort 16
AlphaMask ulong 32
NumericMask ulong 32
StartCursorPos ushort 16
AutomaticFocusMotion uchar 8 | A661_FALSE
________ A661_TRUE
ReportAllChanges uchar 8 A661_FALSE
A661_TRUE
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
UnusedPad NA | 24 |0
LabelString string 8 * | Followed by zero, one, two or three extra NULL
string | for alignment of 32 bits.
length
+ Pad

EditBoxMasked Event Structures: A661_EVT_STRING_CHANGE_ABORTED is defined in Table 3.3.9-3.

Table 3.3.9-3 - EditBoxMasked Event Structures: A661_EVT_STRING_CHANGE_ABORTED

EventStructure Type (?)lii:) Value/Description
Eventldent ushort 16 |A661_EVT_STRING_CHANGE_ABORTED
StringLength ushort 6 |
String string | {32}+ | Followed by zero, one, two or three extra NULL for
alignment of 32 bits

ARINC SPECIFICATION 661 - Page 57

3.0 WIDGET LIBRARY

EditBoxMasked Event Structures: A661_EVT_STRING_CHANGE is defined in Table 3.3.9-4.

Table 3.3.9-4 - EditBoxMasked Event Structures: A661_EVT_STRING_CHANGE

EventStructure Type (il;:) Value/Description
Eventldent ushort 16 | A661_EVT_STRING_CHANGE
StringLength | ushort | 16
String string {32}+ | Followed by zero, one, two or three extra NULL for alignment of
32 bits

EditBoxMasked Event Structures: A661_EVT_STRING_CONFIRMED is defined in Table 3.3.9-5.

Table 3.3.9-5 - EditBoxMasked Event Structures: A661_EVT_STRING_CONFIRMED

EventStructure Type (?)li::) Value/Description
Eventldent ushort 16 |A661_EVT_STRING_CONFIRMED
StringLength | ushort | 6
String string {32}+ | Followed by zero, one, two or three extra NULL for alignment
of 32 bits

Available SetParameter identifiers and associated data structure are defined in Table 3.3.9-6.

Table 3.3.9-6 - EditBoxMasked Runtime Modifiable Parameters

Il,\; ir;rfl:tfe:'h:o Type (?)li::) ‘ ParameterIdent Used Type of Structure Used Value
Set in the ParameterStructure (Refer to 4.5.4.5)

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte A661_FALSE
A661_TRUE

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte A661_FALSE
A661_TRUE

LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String

StartCursorPos ushort 16 A661_CURSOR_POS A661_ParameterStructure_2Bytes

StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes

AlphaMask ulong 32 A661_ALPHA_MASK A661_ParameterStructure_4Bytes

NumericMask ulong 32 A661_NUMERIC_MASK A661_ParameterStructure_4Bytes

c-1

ARINC SPECIFICATION 661 - Page 58
3.0 WIDGET LIBRARY

3.3.10 EditBoxNumeric

Categories:
Graphical representation
Interactive
Text string

Description:

The EditBoxNumeric widget enables editing a numeric value. A crew member can modify the numeric value using
input devices. Since a numeric value is used, the CDS is able to increment the value. The widget can receive a number
of incremental values or a numeric key value.

COMMENTARY

The data/formatting displayed for current-item-selected during crew editing and UA validation is part of CDS
internal behavior, and is beyond the scope of this document. For instance, the CDS could implement a
graphical representation indicating that one text has been edited, but not yet validated by the UA. In this case,
the UA could show that it has validated the entry through a SetParameter command on either the LabelString
or EditBoxState parameter, according to defined widget behavior. Similarly, the UA should display an
ERROR mode through the use of the StyleSet parameter.

When the EditBoxNumeric is in edit mode, the CDS may report all modification done on the edited value and
the final confirmed value, or only report the confirmed value (after a crew member validation). This option
may be set by the UA through the “ReportAllChanges” parameter. If ReportAllChanges is True and, after
having entered a value, the crewmember finally aborts the edit, the CDS should send a specific event to the
UA with the former validated Value as parameter of the event.

ARINC SPECIFICATION 661 - Page 59

3.0 WIDGET LIBRARY

EditBoxNumeric Parameters are defined in Table 3.3.10-1.

Table 3.3.10-1 -

EditBoxNumeric Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_EDIT_BOX_NUMERIC
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on widget having the following
FocusIndex value.
Specific parameters
Value DR Value displayed by the edit box in normal mode.
FormatString D String describing the format of the numeric field.
Tics coarse D Coarse increment step for modification of the value with main
wheel.
Tics fine D Fine increment step for modification of the value with
secondary wheel.
StartCursorPos DR Start position of cursor in field when entering edit mode
Alignment D Justification of the label text within the edit box area:
CENTER
LEFT
RIGHT
ReportAllChanges D TRUE
CDS will report each update from the crew member while in
edit mode (A661_EVT_VALUE_CHANGE)
CDS will report the value change after crew member
validation (A661_EVT_VALUE_CONFIRMED)
CDS will report the value if the crew member aborts the edit
(A661_EVT_VALUE_CHANGE_ABORTED)
FALSE
CDS will report the value change after crew member
validation (A661_EVT_VALUE_CONFIRMED)
Note: In all cases the CDS will report the entry in edit mode
NumericKeyFlag D Ability to change the value with the numerical key
TRUE
FALSE
MinValue D Minimum value of the float
MaxValue D Maximum value of the float
CyclicFlag D Possibility for cyclic modification of the value
TRUE
FALSE

c-1

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 60

3.3.10 EditBoxNumeric (cont’d)

3.0 WIDGET LIBRARY

EditBoxNumeric Creation Structure is defined in Table 3.3.10-2.

Table 3.3.10-2 - EditBoxNumeric Creation Structure

CreateParameterBuffer Type Size (bits) WY]ZLugz{c?slsg:ry
WidgetType ushort 16 A661_EDIT_BOX_NUMERIC
Widgetldent | ushort | 16
Parentldent | ushort | 16 .

Enable uchar 8 A661_FALSE
A661_TRUE

Visble | uchar | 8 A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StyleSet | ushort | 16

FocusIndex ushort 16

Value float 32

Tics coarse float 32

Tics fine float 32

MinValue float 32

MaxValue float 32

StartCursorPos ushort 8

UnusedPad N/A 24 0

AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE

ReportAllChanges =~ | uchar | 8 A661_FALSE
A661_TRUE

Alignment | uchar | 8 A661_CENTER
A661_LEFT
A661_RIGHT

UnusedPad N/A 8

NumericKeyFlag | _uchar | 8 0

CyclicFlag | _uwhar | &

UnusedPad N/A 16

FormatString string 8 * string | Followed by zero, one, two or three extra NULL

length + Pad | for alignment of 32 bits

EditBoxNumeric Event Structures: A661_EVT_VALUE_CHANGE_ABORTED are defined in Table 3.3.10-3.

Table 3.3.10-3 - EditBoxNumeric Event Structures: A661_EVT VALUE_CHANGE_ABORTED

EventStructure Type Size (bits) Value/Description
Eventldent ushort 16 A661_EVT_VALUE_CHANGE_ABORTED
[UnusedPad | NA | 6
Value float 32

EditBoxNumeric Event Structures: A661_EVT_VALUE_CHANGE are defined in Table 3.3.10-4.

ARINC SPECIFICATION 661 - Page 61

3.0 WIDGET LIBRARY

Table 3.3.10-4 - EditBoxNumeric Event Structures: A661_EVT_VALUE_CHANGE

EventStructure Type Size (bits) Value/Description
Eventldent ushort 16 A661_EVT _VALUE_CHANGE
UnusedPad N/A 16 0
Value float 32

EditBoxNumeric Event Structures: A661_EVT_VALUE_CONFIRMED are defined in Table 3.3.10-5.

Table 3.3.10-5 - EditBoxNumeric Event Structures: A661_EVT_VALUE_CONFIRMED

EventStructure Type (il;:) Value/Description
Eventldent ushort 16 |A661_EVT_VALUE_CONFIRMED
UnusedPad 1) a6 0
Value float 32

Available SetParameter identifiers and associated data structure are defined in Table 3.3.10-6.

Table 3.3.10-6 - EditBoxNumeric Runtime Modifiable Parameters

Name of the | Type Si.ze Parame?erldent Used Type of Structure Used Value
Parameter to (bits) in the (Refer to 4.5.4.5)
Set ParameterStructure

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte A661_FALSE
A661_TRUE

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte A661_FALSE
A661_TRUE

Value float 32 | A661_VALUE A661_ParameterStructure_4Bytes

StartCursorPos | ushort 16 | A661_CURSOR_POS A661_ParameterStructure_2Bytes

StyleSet ushort 16 | A661_STYLE_SET A661_ParameterStructure_2Bytes

3.3.11 EditBoxText

Categories:

Graphical representation

Interactive
Text string

Description:
A EditBoxText widget enables displaying a string, which can be modified by a crew-member.

The CDS is responsible to perform the following changes of state:
From NORMAL to EDIT
From ERROR to EDIT

The UA is responsible to perform the other transitions.

ARINC SPECIFICATION 661 - Page 62
3.0 WIDGET LIBRARY

3.3.11 EditBoxText (cont’d)

COMMENTARY

The data/formatting displayed for current-item-selected during crew editing and UA validation is part of CDS
internal behavior, and is beyond the scope of this document. For instance, the CDS could implement a
graphical representation indicating that one text has been edited but not yet validated by the UA. In this case
the UA could show that it has validated the entry through a SetParameter command on either the LabelString
or EditBoxState parameter, according to defined widget behavior. Similarly, the UA should display an
ERROR mode through the use of the StyleSet parameter.

When the EditBoxText is in edit mode, the CDS may report all modification done on the edited string and the
final confirmed string, or only report the confirmed string (after a crew member validation). This option may
be set by the UA through the “ReportAllChanges” parameter. If ReportAllChanges is True and, after
having entered a text, the crewmember finally aborts the edit, the CDS should send a specific event to the UA
with the former validated LabelString as parameter of the event.

ARINC SPECIFICATION 661 - Page 63

3.0 WIDGET LIBRARY

EditBox Text Parameters are defined in Table 3.3.11-1.

Table 3.3.11-1 - EditBoxText Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_EDIT_BOX_TEXT
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on widget having the following FocusIndex
value.
Specific parameters
MaxStringlLength D Maximum length of the text
LabelString DR Text of the edit box
StartCursorPos DR Start position of cursor in field when entering edit mode.
Alignment D Justification of the label text within the edit box area
CENTER
LEFT
RIGHT
ReportAllChanges D TRUE

CDS will report each update from the crew member while in edit mode
(A661_EVT_VALUE_CHANGE)

CDS will report the value change after crew member validation
(A661_EVT_VALUE_CONFIRMED)

CDS will report the value if the crew member aborts the edit
(A661_EVT_VALUE_CHANGE_ABORTED)

FALSE
CDS will report the value change after crew member validation

(A661_EVT_VALUE_CONFIRMED)

Note: In all cases, the CDS will report the entry in edit mode

c-1

ARINC SPECIFICATION 661 - Page 64

3.3.11 EditBoxText (cont’d)

3.0 WIDGET LIBRARY

EditBoxTextCreation Structure is defined in Table 3.3.11-2.

Table 3.3.11-2 - EditBoxText Creation Structure

CreateParameterBuffer Type (f)li::) &al::ﬁ/gzgegsesary
WidgetType ushort 16 | A661_EDIT_BOX_TEXT
Widgetldent | whott | 16 |
Parentldent | ushort |\ 16 |\ .
Enable uchar 8 A661_FALSE
A661_TRUE
Visible | uchar | 8 |A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | uhort | 16 |
FocusIndex ushort 16
StartCursorPos ushort 16
MaxStringLength | whott | 16 |
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
ReportAllChanges | uchar | 8 |A661 FALSE
A661_TRUE
Alignment | uchar | 8 |A661_CENTER
A661_LEFT
__ AG6IRIGHT
UnusedPad N/A 8 0
LabelString string 8 * | Followed by zero, one, two or three extra NULL for alignment
string | of 32 bits.
length
+ Pad

EditBoxText Event Structures: A661_EVT_STRING_CHANGE_ABORTED is defined in Table 3.3.11-3.

Table 3.3.11-3 - EditBoxText Event Structures: A661_EVT_STRING_CHANGE_ABORTED

Value/Description

EventStructure Type | Size
(bits)

Eventldent ushort 16
StringLength [ushort [16 _
String string | {32}+

A661_EVT_STRING_CHANGE_ABORTED

Followed by zero, one, two or three extra NULL for alignment of 32

bits

ARINC SPECIFICATION 661 - Page 65

3.0 WIDGET LIBRARY

EditBoxText Event Structures: A661_EVT_STRING_CHANGE are defined in Table 3.3.11-4.

Table 3.3.11-4 - EditBoxText Event Structures: A661_EVT_STRING_CHANGE

EventStructure Type Sl.ze Value/Description

(bits)

Eventldent ushort 16 A661_EVT_STRING_CHANGE

StringLength ushort 16

String string 8 * | Followed by zero, one, two or three extra NULL for alignment of 32 bits
string
length
+ Pad

EditBoxText Event Structures: A661_EVT_STRING_CONFIRMED are defined in Table 3.3.11-5.

Table 3.3.11-5 - EditBoxText Event Structures: A661_EVT_STRING_CONFIRMED

EventStructure Type S1.2e Value/Description

(bits)

Eventldent ushort 16 |A661_EVT_STRING_CONFIRMED

Stringlength ushort 16

String string 8 * | Followed by zero, one, two or three extra NULL for alignment of 32 bits
string
length
+ Pad

Available SetParameter identifiers and associated data structure are defined in Table 3.3.11-6.

Table 3.3.11-6 - EditBoxText Runtime Modifiable Parameters

Il,\; T;llf]:; :,h:; Type (il.::) ParameterIdent Used Type of Structure Used Value
Set ! in the ParameterStructure (Refer to 4.5.4.5)

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte A661_FALSE
A661_TRUE

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte A661_FALSE
A661_TRUE

LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String

StartCursorPos | ushort 16 A661_CURSOR_POS A661_ParameterStructure_2Bytes

StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes

ARINC SPECIFICATION 661 - Page 66
3.0 WIDGET LIBRARY

3.3.12 GpArcEllipse
Categories:
Graphical Representation

Dynamic motion

Description:

The graphical primitive GpArcEllipse widget enables the definition of an arc. The arc may be a portion of an ellipse or
circle. The arc is defined by a bounding box where a rectangle is specified and the ellipse is drawn touching the
rectangle. When the bounding box is a square, the arc will be a circle. The major and minor axes of the ellipse are
implicitly along the cardinal directions of the bounding box.

UNFILLED

£

Restriction: none
GpArcEllipse Parameters are defined in Table 3.3.12-1.

Table 3.3.12-1 - GpArcEllipse Parameters

Parameters Change Description

Commonly used parameters

WidgetType D A661_GP_ARC_ELLIPSE

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR | Visibility of the widget

StyleSet DR |Reference to predefined graphical characteristics inside CDS.

PosX DR The X start position of the bounding box (lower left corner).

PosY DR The Y start position of the bounding box (lower left corner).

SizeX DR | The width of the bounding box.

SizeY DR | The height of the bounding box.

Anonymous D Ability to be modified at run-time by the UA.

Specific parameters

ColorIndex DR | Color index of the boundary line, used if StyleSet allows color to be set.

Halo D If set to True, Halo is present. Halo is a full outline in a contrasting color (typically
black) to enhance readability.

Filled D If set to True, interior of Arc will be filled.

Filllndex DR | Fill Pattern index, used if StyleSet allows fill color to be set.

StartAngle DR The angle (referenced from the center of the ellipse) that defines the start position of
the arc.

EndAngle DR The angle (referenced from the center of the ellipse) that defines the end position of
the arc.

ARINC SPECIFICATION 661 - Page 67

3.0 WIDGET LIBRARY

GpArcEllipse Creation Structure is defined in Table 3.3.12-2.

Table 3.3.12-2 - GpArcEllipse Creation Structure

CreateParameter Buffer Type (?)ii::) W‘lllie‘:lultl/?czlslsg:ry

WidgetType ushort 16 | A661_GP_ARC_ELLIPSE

Widgetldent | wshort | 16 |

Parentldent ushort 16

Anonymous | uchar | § |A66I_FALSE
A661_TRUE

Visible | uchar | § |A66I_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StartAngle fr(180) 32

EndAngle fr(180) 32

StyleSet ushort 16

Colorindex | uchar | 8 |(validpaletteindex)

Filled | uchar | § |A661_FALSE
A661_TRUE

Filllndex uchar 8 (valid Fill Pattern index)

Halo | uchar | § |A661 FALSE
A661_TRUE

UnusedPad | NA | | 6 [0

The GpArcEllipse widget does not send any event.

ARINC SPECIFICATION 661 - Page 68
3.0 WIDGET LIBRARY

3.3.12 GpArcEllipse (cont’d)

Available SetParameter identifiers and associated data structure are defined in Table 3.3.12-3.

Table 3.3.12-3 - GpArcEllipse Runtime Modifiable Parameters

Name of the Type Si.ze ParameterIdent Used Type of Structure Used
parar;:;ter to (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 | A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 |A661 STYLE_SET A661_ParameterStructure_2Bytes
PosX long 32x |A661_POS_XY A661_ParameterStructure_ XY
PosY x2 2
PosX long 32 |A661_POS X A661_ParameterStructure_4Bytes
PosY long 32 |A661_POS_Y A661_ParameterStructure_4Bytes
SizeX ulong 32 | A661_SIZE X A661_ParameterStructure_4Bytes
SizeY ulong 32 |A661 _SIZE Y A661_ParameterStructure_4Bytes
ColorIndex uchar 8 | A661_COLOR_INDEX A661_ParameterStructure_1Byte
Filllndex uchar 8 | A661_FILL_INDEX A661_ParameterStructure_1Byte
StartAngle fr(180) | 32 | A661_START_ANGLE A661_ParameterStructure_4Bytes
EndAngle fr(180) | 32 |A661_END_ANGLE A661_ParameterStructure_4Bytes

3.13 GpArcCircle

Categories:

Graphical Representation

Dynamic motion

Description:

ARINC SPECIFICATION 661 - Page 69

3.0 WIDGET LIBRARY

The graphical primitive GpArcCircle widget enables the definition of a circular arc. The circle is defined by a center

and radius.

Restriction: none

GpArcCircle Parameters are defined in Table 3.3.13-1.

Table 3.3.13-1 - GpArcCircle Parameters

Parameters

Change

Description

Commonly used parameters

WidgetType D A661_GP_ARC_CIRCLE

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR | Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS. Refer to section
3.1.3.3.

PosX DR The center X position of the circle.

PosY DR The center Y position of the circle.

Anonymous D Ability to be modified at run-time by the UA

Specific parameters

ColorIndex DR Color index of the boundary line, used if StyleSet allows color to be set.

Halo D If set to True, Halo is present

Filled D If set to True, interior of Arc will be filled.

Filllndex DR Fill Pattern index, used if StyleSet allows fill color to be set.

Radius DR The radius of the circle

StartAngle DR The angle (referenced from the center of the circle) that defines the start position of

EndAngle DR Ell"fea;fl.gle (referenced from the center of the circle) that defines the end position of

the arc.

ARINC SPECIFICATION 661 - Page 70
3.0 WIDGET LIBRARY

3.3.13 GpArcCircle (cont’d)

GpArcCircle Creation Structure is defined inTable 3.3.13-2.

Table 3.3.13-2 - GpArcCircle Creation Structure

CreateParameterBuffer Type (?)iii:) W‘lllzilule\llgc?slsg:ry

WidgetType ushort 16 |A661_GP_ARC_CIRCLE

‘Widgetldent | ushort | 16 |

Parentldent ushort 16

Anonymous | uchar | 8 [AGGI_FALSE
A661_TRUE

Visible | uchar | 8 [AGGI_FALSE
A661_TRUE

PosX long 32

PosY long 32

StartAngle fr(180) 32

EndAngle fr(180) 32

Radius ulong 32

StyleSet ushort 16

Colorlndex | uchar | 8 [(validpaletteindex)

Filled | uchar | 8 [A661_FALSE
A661_TRUE

Filllndex uchar 8 (valid fill index)

Halo | uchar | 8 |A661 FALSE
A661_TRUE

UnusedPad | 1 NA | 8 o

The GpArcCircle widget does not send any event.

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 - Page 71

Available SetParameter identifiers and associated data structure are defined in Table 3.3.13-3.

Table 3.3.13-3 - GpArcCircle Runtime Modifiable Parameters

Name of the Type Size

Paragl:tt er to (bits) in fl?: zll’l::;gggeerllsttll*{lsgglre (’lli)q;lf)eeroti(‘)sstggtci:)l:lrz.g?g)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_ XY
PosY x2

PosX long 32 A661_POS_X A661_ParameterStructure_4Bytes
PosY long 32 A661_POS_Y A661_ParameterStructure_4Bytes
ColorIndex uchar 8 A661_COLOR_INDEX A661_ParameterStructure_1Byte
Filllndex uchar 8 A661_FILL_INDEX A661_ParameterStructure_1Byte
Radius ulong 32 A661_RADIUS A661_ParameterStructure_4Bytes
StartAngle fr(180) 32 A661_START_ANGLE A661_ParameterStructure_4Bytes
EndAngle fr(180) 32 A661_END_ANGLE A661_ParameterStructure_4Bytes

3.3.14 GpCrown
Categories:
Graphical Representation

Dynamic motion

Description:

The graphical primitive GpCrown widget enables the definition of a circular filled region. The circle is defined by a

center and two radii. The filled area is the area between the radii.

CROWN

Restriction: none

ARINC SPECIFICATION 661 - Page 72
3.0 WIDGET LIBRARY

3.3.14 GpCrown (cont’d)

GpCrown Parameters are defined in Table 3.3.14-1.
Table 3.3.14-1 - GpCrown Parameters

Parameters Change Description

Commonly used parameters

WidgetType D A661_GP_CROWN

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR | Visibility of the widget

StyleSet DR | Reference to predefined graphical characteristics inside CDS.

PosX DR | The center X position of the circle.

PosY DR | The center Y position of the circle.

Anonymous D Ability to be modified at run-time by the UA

Specific parameters

ColorIndex DR | Color index of the boundary line, used if StyleSet allows color to be set.

Halo D If set to True, Halo is present

Filled D If set to True, interior of Crown will be filled.

Filllndex DR | Fill Pattern index, used if StyleSet allows color to be set.

InnerRadius DR | The radius of the inner circle

OuterRadius DR | The radius of the outer circle

StartAngle DR | The angle (referenced from the center of the circle) that defines the start position
of the filled arc to be drawn.

EndAngle DR | The angle (referenced from the center of the circle) that defines the end position
of the filled arc to be drawn.

ARINC SPECIFICATION 661 - Page 73

3.0 WIDGET LIBRARY

GpCrown Creation Structure is defined in Table 3.3.14-2.

Table 3.3.14-2 - GpCrown Creation Structure

CreateParameter Buffer Type (?)iii:) W‘lllie‘:lule\l/gc?slf:ry
WidgetType ushort 16 A661_GP_CROWN
Widgetldent | ushort | 6 |
Parentldent ushort 16
 Anonymous | uchar | 8 |AGGI_FALSE
A661_TRUE
Visibe | uchar | 8 |AGGI_FALSE
A661_TRUE
PosX long 32
PosY long 32
StartAngle fr(180) 32
EndAngle fr(180) 32
InnerRadius ulong 32
OuterRadius ulong 32
StyleSet ushort 16
[ColorIndex | uchar | 8 |(valid palette index)
Filled | uchar | 8 |A661_FALSE
A661_TRUE
Filllndex uchar (valid fill index)
Halo uchar A661_FALSE
A661_TRUE
[UnusedPad |] NA | 16 [0

The GpCrown widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.14-3.

Table 3.3.14-3 - GpCrown Runtime Modifiable Parameters

I\II;T:I](;gttel:-e Type (?)iii:) ParameterIldent Used Type of Structure Used
to Set in the ParameterStructure (Refer to 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_ XY
PosY x2
PosX long 32 A661_POS_X A661_ParameterStructure_4Bytes
PosY long 32 | A661_POS_Y A661_ParameterStructure_4Bytes
ColorIndex uchar A661_COLOR_INDEX A661_ParameterStructure_1Byte
Filllndex uchar A661_FILL_INDEX A661_ParameterStructure_1Byte
InnerRadius ulong 32 A661_INNER_RADIUS A661_ParameterStructure_4Bytes
OuterRadius ulong 32 A661_OUTER_RADIUS A661_ParameterStructure_4Bytes
StartAngle fr(180) 32 | A661_START_ANGLE A661_ParameterStructure_4Bytes
EndAngle fr(180) 32 A661_END_ANGLE A661_ParameterStructure_4Bytes

ARINC SPECIFICATION 661 - Page 74

3.3.15 GpLine

Categories:

Graphical Representation

Dynamic motion

Description:

3.0 WIDGET LIBRARY

The graphical primitive GpLine widget enables the definition of a line. The line is defined in rectangular coordinates
by two pairs of X,Y coordinates that define the end points of the line.

Restriction: none

GpLine Parameters are defined in Table 3.3.15-1.

Table 3.3.15-1 - GpLine Parameters

Parameters Change Description
Commonly used parameters
WidgetType D A661_GP_LINE
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
StyleSet DR Reference to predefined graphical characteristics inside CDS.
Anonymous D Ability to be modified at run-time by the UA
Specific parameters
ColorIndex DR Color index of the line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present
PosXStart DR The starting X position of the line.
PosYStart DR The starting Y position of the line.
PosXEnd DR The ending X position of the line.
PosYEnd DR The ending Y position of the line.

GpLine Creation Structure is defined in Table 3.3.15-2.

Table 3.3.15-2 - GpLine Creation Structure

CreateParameterBuffer Type (?)iii:) W‘liz:lule\llgczlslsg:ry

WidgetType ushort 16 A661_GP_LINE

Widgetldent | ushort | 6 |

Parentldent ushort 16

Anonymous |~ uchar | 8 [A6GI_FALSE
A661_TRUE

visible | uchar | 8 |AG6I_FALSE
A661_TRUE

PosXStart long 32

PosYStart long 32

PosXEnd long 32

PosYEnd long 32

StyleSet ushort 16

Colorlndex | uchar | 8 |[(validpaletteindex) |

Halo 1 uchar | 8 |A661_FALSE]
A661_TRUE

The GpLine widget does not send any event.

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 - Page 75

Available SetParameter identifiers and associated data structure are defined in Table 3.3.15-3.
Table 3.3.15-3 - GpLine Runtime Modifiable Parameters

Il,\i‘ ?‘I;Ig:tfe :.hteo Type (?)iii:)) ParameterIdent Used Type of Strugture Used
Set in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
PosXStart long 32x2 | A661_POS_XY A661_ParameterStructure_ XY
PosY Start x2
PosXStart long 32 A661_POS_X A661_ParameterStructure_4Bytes
PosYStart long 32 A661_POS Y A661_ParameterStructure_4Bytes
PosXEnd long 32x2 |A661_POS_XY2 A661_ParameterStructure_ XY
PosYEnd x2
PosXEnd long 32 A661_POS_X2 A661_ParameterStructure_4Bytes
PosYEnd long 32 A661_POS_Y2 A661_ParameterStructure_4Bytes
ColorIndex uchar 8 A661_COLOR_INDEX A661_ParameterStructure_1Byte
3.3.16 GpLinePolar

Categories:
Graphical Representation
Dynamic motion

Description:

The graphical primitive GpLinePolar widget enables the definition of a line. The line is defined by polar coordinates

with an X,Y coordinate start position, a line length, and a draw angle.

Restriction: none

GpLinePolar Parameters are defined in Table 3.3.16-1.

Table 3.3.16-1 - GpLinePolar Parameters

Parameters Change Description
Commonly used parameters
WidgetType D A661_GP_LINE_POLAR
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
StyleSet DR Reference to predefined graphical characteristics inside CDS.
Anonymous D Ability to be modified at run-time by the UA
Specific parameters
ColorIndex DR Color index of the line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present
PosXStart DR The starting X position of the line.
PosYStart DR The starting Y position of the line.
RotationAngle DR Angle at which the line is drawn.
LineLength DR The length of the line in millimeters.

ARINC SPECIFICATION 661 - Page 76
3.0 WIDGET LIBRARY

3.3.16 GpLinePolar (cont’d)

GpLinePolar Creation Structure is defined in Table 3.3.16-2.

Table 3.3.16-2 - GpLinePolar Creation Structure

CreateParameter Buffer Type (?)ii::) W\l]z:lule\lli?sl;g:ry

WidgetType ushort 16 | A661_GP_LINE POLAR

Widgetldent | whort | 16 |

Parentldent ushort 16

Anonymous | uchar | § |A661_FALSE
A661_TRUE

visible | uchar | § |A661_FALSE
A661_TRUE

PosXStart long 32

PosY Start long 32

RotationAngle fr(180) 32

LineLength ulong 32

StyleSet ushort 16

Colorlndex | uchar | 8§ |(validpaletteinde)y

Halo | uchar | 8§ |A661_FALSE
A661_TRUE

The GpLinePolar widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.16-3.

Table 3.3.16-3 - GpLinePolar Runtime Modifiable Parameters

Name of the Type Size
Parameter | | (i) |, harameteridentUsed | Tapeof Structure ed
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
PosXStart long 32x2 |A661_POS_XY A661_ParameterStructure_ XY
PosYStart x2
PosXStart long 32 A661_POS_X A661_ParameterStructure_4Bytes
PosYStart long 32 A661_POS Y A661_ParameterStructure_4Bytes
RotationAngle | fr(180) 32 g661_ROTATION_ANGL A661_ParameterStructure_4Bytes
LineLength ulong 32 A661_LINE_LENGTH A661_ParameterStructure_4Bytes
ColorIndex uchar 8 A661_COLOR_INDEX A661_ParameterStructure_1Byte

ARINC SPECIFICATION 661 - Page 77

3.0 WIDGET LIBRARY

3.3.17 GpRectangle

Categories:
Graphical Representation
Dynamic motion

Description:

The graphical primitive GpRectangle widget enables the definition of a rectangle. The primitive defines the start
position and the width and height of the rectangle.

Restriction: none

GpRectangle Parameters are defined in Table 3.3.17-1.

Table 3.3.17-1 - GpRectangle Parameters

Parameters Change Description
Commonly used parameters
WidgetType D A661_GP_RECTANGLE
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR | Visibility of the widget
StyleSet DR | Reference to predefined graphical characteristics inside CDS.
PosX DR | The X start position of the rectangle (lower left corner).
PosY DR The Y start position of the rectangle (lower left corner).
SizeX DR The width of the rectangle.
SizeY DR | The height of the rectangle.
Anonymous D Ability to be modified at run-time by the UA.
Specific parameters
ColorIndex DR Color index of the boundary line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present.
Filled D If set to True, interior of Rectangle will be filled.
Filllndex DR Fill pattern index, used if StyleSet allows fill color to be set.

ARINC SPECIFICATION 661 - Page 78
3.0 WIDGET LIBRARY

3.3.17 GpRectangle(cont’d)

GpRectangle Creation Structure is defined in Table 3.3.17-2.

Table 3.3.17-2 - GpRectangle Creation Structure

CreateParameter Buffer Type (?)iif:) WYliLule\I/eI}caelslsg:ry

WidgetType ushort 16 A661_GP_RECTANGLE

Widgetldent | ushort | 6 |

Parentldent ushort 16

[Anonymous | uchar | 8 [AGGI_FALSE
A661_TRUE

[Visible | uchar | 8 [AGGI_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StyleSet ushort 16

[Colorindex | uchar | 8 |(validpaletteindex)

[Filled | uchar | 8 | A661_FALSE
A661_TRUE

Filllndex uchar (valid Fill Pattern index)

Halo uchar A661_FALSE
A661_TRUE

[UnusedPad | NA | 6 o

The GpRectangle widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.17-3.

Table 3.3.17-3 - GpRectangle Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes

PosX long 32x2 |A661_POS_XY A661_ParameterStructure_ XY
PosY x2

PosX long 32 A661_POS_X A661_ParameterStructure_4Bytes
PosY long 32 A661_POS_Y A661_ParameterStructure_4Bytes
SizeX ulong 32 A661_SIZE X A661_ParameterStructure_4Bytes
SizeY ulong 32 A661_SIZE Y A661_ParameterStructure_4Bytes
ColorIndex uchar A661_COLOR_INDEX A661_ParameterStructure_1Byte
Filllndex uchar A661_FILL_INDEX A661_ParameterStructure_1Byte

3.3.18

Categories:

Graphical Representation

Dynamic motion

Description:

GpTriangle

ARINC SPECIFICATION 661 - Page 79

3.0 WIDGET LIBRARY

The graphical primitive GpTriangle widget enables the definition of a triangle. The primitive defines the three XY
coordinate pairs that specify three points of the triangle.

Restriction: none

GpTriangle Parameters are defined in Table 3.3.18-1.

Table 3.3.18-1 - GpTriangle Parameters

Parameters

Change

Description

Commonly used parameters

WidgetType D A661_GP_TRIANGLE

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR | Visibility of the widget

StyleSet DR | Reference to predefined graphical characteristics inside CDS.
PosX DR The X start position of the triangle (lower left corner).

PosY DR The Y start position of the triangle (lower left corner).
Anonymous D Ability to be modified at run-time by the UA

Specific parameters

ColorIndex DR | Color index of the boundary line, used if StyleSet allows color to be set.
Halo D If set to True, Halo is present

Filled D If set to True, interior of Triangle will be filled.

Filllndex DR | Fill Pattern index, used if StyleSet allows fill color to be set.
PosX?2 DR The X position of the second point of the triangle

PosY?2 DR | The Y position of the second point of the triangle

PosX3 DR The X position of the third point of the triangle

PosY3 DR | The Y position of the third point of the triangle

ARINC SPECIFICATION 661 - Page 80

3.0 WIDGET LIBRARY

3.3.18 GpTriangle (cont’d)

GpTriangle Creation Structure is defined in Table 3.3.18-2.

Table 3.3.18-2 - GpTriangle Creation Structure

CreateParameterBuffer Type (f)ii%:) szhuggczgsg:ry

WidgetType ushort 16 A661_GP_TRIANGLE

Widgetldent ushort 16

Parentldent ushort 16

Anonymous uchar g |A661_FALSE
A661_TRUE

visible uchar g [A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

PosX2 long 32

PosY?2 long 32

PosX3 long 32

PosY3 long 32

StyleSet ushort 16

Colorlndex uchar (valid palette index)

Filled uchar A661 FALSE
A661_TRUE

Filllndex uchar (valid fill index)

Halo uchar A661_FALSE
A661_TRUE

UnusedPad N/A 16 |0

The GpTriangle widget does not send any event.

ARINC SPECIFICATION 661 - Page 81

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.18-3.

Table 3.3.18-3 - GpTriangle Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used

Parameter to Set (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_XY
PosY X2
PosX long 32 A661_POS_X A661_ParameterStructure_4Bytes
PosY long 32 A661_POS_Y A661_ParameterStructure_4Bytes
PosX2 long 32x2 [|A661_POS_XY2 A661_ParameterStructure_XY
PosY2 X2
PosX2 long 32 A661_POS_X2 A661_ParameterStructure_4Bytes
PosY2 long 32 A661_POS_Y2 A661_ParameterStructure_4Bytes
PosX3 long 32x2 |A661_POS_XY3 A661_ParameterStructure_ XY
PosY3 X2
PosX3 long 32 | A661_POS_X3 A661_ParameterStructure_4Bytes
PosY3 long 32 A661_POS_Y3 A661_ParameterStructure_4Bytes
ColorIndex uchar 8 A661_COLOR_INDEX A661_ParameterStructure_1Byte
Filllndex uchar A661_FILL_INDEX A661_ParameterStructure_1Byte

3.3.19 Picture

Categories:

Graphical representation

Description:

A Picture widget is a reference to an image available in the CDS. The Picture reference can be modified by the UA.
Unlike symbols, a picture can not move or rotate.

Restriction: N/A

Picture Parameters are defined in Table 3.3.19-1.

Table 3.3.19-1 - Picture Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_PICTURE
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR | Visibility of the widget
Anonymous D Ability to be modified at run-time by the UA
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
Specific parameters
PictureReference ‘ DR | Reference of a picture stored in the CDS

ARINC SPECIFICATION 661 - Page 82

3.3.19 Picture (cont’d)

Picture Creation Structure is defined in Table 3.3.19-2.
Table 3.3.19-2 - Picture Creation Structure

3.0 WIDGET LIBRARY

CreateParameterBuffer Type (iiii:) W‘lllglugel}caerslsg:ry

WidgetType ushort 16 | A661_PICTURE

Widgetldent | ushort | 6 |

Parentldent ushort 16

Anonymous | uchar | 8 |AG661_FALSE
A661_TRUE

visible | uchar | 8 |AG661_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StyleSet ushort 16

PictureReference | ushort | 6 |

The Picture widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.19-3.

Table 3.3.19-3 - Picture Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer Section to 4.5.3)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
PictureReference ushort 16 | A661_PICTURE_REFERENCE | A661_ParameterStructure_2Bytes
StyleSet ushort 16 |A661 _STYLE_SET A661_ParameterStructure_2Bytes
3.3.20 Label

Categories:

Graphical representation

Dynamic Motion
Text string

Description:

A Label widget consists of a non-editable text field at a defined display location. If the label is anonymous, it is not
editable (i.e., it can not be modified at runtime by the UA). If it is not anonymous, it can be modified by the UA.
However, a label can not be modified by a crew member.

Restriction: none

c-1

ARINC SPECIFICATION 661 - Page 83

3.0 WIDGET LIBRARY

Label Parmaters are defined in Table 3.3.20-1.

Table 3.3.20-1 - Label Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_LLABEL
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Anonymous D Ability to be modified at run-time by the UA
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX DR | The X position of the widget reference point
PosY DR | The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
Specific parameters
LabelString DR | Text of the label
MaxStringlLength D Maximum number of character
MotionAllowed D Capability to change PosX, PosY, RotationAngle at runtime
RotationAngle DR | Angle at which symbol is displayed relative to its origin
Refer to Angles defined in Section 2.3.4.2)
Font D Font of the displayed string
ColorIndex DR | Applicable color index if color definition inside StyleSet is FREE_COLOR
Alignment D Justification of the label text within the label area
BottomCenter
BottomLeft
BottomRight
Center
Left
Right
TopCenter
TopLeft
TopRight

c-1

ARINC SPECIFICATION 661 - Page 84
3.0 WIDGET LIBRARY

3.3.20 Label (cont’d)

Label Creation Structure is defined in Table 3.3.20-2.

Table 3.3.20-2 - Label Creation Structure

CreateParameterBuffer Type (?)li::) W\lii:lule\lliilslsg:ry
WidgetType . ushort | 16 |A66l LABEL .
Widgetldent ushort 16
Parentldent ___ushort | e |\
Anonymous uchar 8 A661_FALSE
| lAeetTRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
RotationAngle fr(180) 32
StyleSet ___ushort | e |\
MaxStringlLength ushort 16
MotionAllowed uchar 8 A661_FALSE
A661_TRUE
Font ~uchar | 8 |
Colorlndex owehar [8
Alignment uchar 8 A661_BOTTOM_CENTER
A661_BOTTOM_LEFT
A661_BOTTOM_RIGHT
A661_CENTER
A661_LEFT
A661_RIGHT
A661_TOP_CENTER
A661_TOP_LEFT
A661_TOP_RIGHT
LabelString string 8 * | Followed by zero, one, two or three extra NULL for alignment
string | of 32 bits.
length
+ Pad

The Label widget does not send any event.

ARINC SPECIFICATION 661 - Page 85

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.20-3.

Table 3.3.20-3 - Label Runtime Modifiable Parameters

Name of the Type (ii;:) Parame::rlrtlltli:nt Used Type of Structure Used
Parameter to Set (Refer to Section 4.5.4.5)
ParameterStructure

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string {32}+ | A661_STRING A661_ParameterStructure_String
PosX long 32x2 | A661_POS_XY A661_ParameterStructure_ XY
PosY X 2
PosX long 32 | A661_POS_X A661_ParameterStructure_4Bytes
PosY long 32 A661_POS_Y A661_ParameterStructure_4Bytes
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
RotationAngle fr(180) 32 | A661_ORIENTATION | A661_ParameterStructure_4Bytes
ColorIndex uchar 8 A661_COLOR_INDEX | A661_ParameterStructure_1Byte

3.3.21 LabelComplex

Categories:
Graphical representation
Text string

Description:

A LabelComplex widget consists of a non-editable text field at a defined display location. If the LabelComplex is
anonymous, it is not editable (i.e., it can not be modified at runtime by the UA). If it is not anonymous, it can be
modified by the UA. However, a LabelComplex can not be modified by a crew member.

The text string can embedded escape sequences, refer to Section 3.2.5.5, Escape Sequences Definition.

Restriction: N/A

ARINC SPECIFICATION 661 - Page 86
3.0 WIDGET LIBRARY

3.3.21 LabelComplex (cont’d)

LabelComplex Parameters are defined in Table 3.3.21-1.

c-1

Table 3.3.21-1 - LabelComplex Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_LABEL_COMPLEX
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Anonymous D Ability to be modified at run-time by the UA
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
Specific parameters
DefaultStyleText D NULL character: Escape sequence not used, default value from the CDS used.
“TOutLineTBackColorOTForeColorJTFont”
For Escape sequences defining the Default style for the text, refer to Section
3.2.5.4, Default Graphic Properties.
LabelString DR | Text of the label
MaxStringlLength D Maximum number of character
Alignment D Justification of the label text within the label area
BottomCenter
BottomLeft
BottomRight
Center
Left
Right
TopCenter
TopLeft
TopRight

ARINC SPECIFICATION 661 - Page 87

3.0 WIDGET LIBRARY

LabelComplex Creation Structure is defined in Table 3.3.21-2.

Table 3.3.21-2 - LabelComplex Creation Structure

CreateParameterBuffer Type (f)lii:) &al::ﬁ/gzggsiary
WidgetType |] ushort | 16 | A66l_LABEL COMPLEX |
Widgetldent ushort 16
Parentldent | ushort | o]
Anonymous uchar 8 A661_FALSE
ol |Ae6tTRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet ushort 16
MaxStringLength | ushort | | 6
Alignment uchar 8 A661_BOTTOM_CENTER
A661_BOTTOM_LEFT
A661_BOTTOM_RIGHT
A661_CENTER
A661_LEFT
A661_RIGHT
A661_TOP_CENTER
A661_TOP_LEFT
A661_TOP_RIGHT
UnusedPad | N/A | 24 (o
DefaultStyleText uchar 96
LabelString string 8 * | Followed by zero, one, two or three extra NULL for
string | alignment of 32 bits.
length
+ Pad

No event is associated with the LabelComplex widget.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.21-3.

Table 3.3.21-3 - LabelComplex Runtime Modifiable Parameters

Name of the Type Sl.ze Parame?erldent Used Type of Structure Used
Parameter to Set (bits) in the (Refer to 4.5.4.5)
ParameterStructure
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String
StyleSet ushort 16 | A661_STYLE_SET A661_ParameterStructure_2Bytes

ARINC SPECIFICATION 661 - Page 88

c-1 | 3.3.22 MapHorz_ItemList

Categories:
Map management

Graphical Representation

Interactive
Text string

Description:

c-1

3.0 WIDGET LIBRARY

A MapHorz_ItemList widget represents a group of related graphics. Examples of the use of the MapHorz_ItemList

widget is the creation of flight plan, map background symbols, TCAS intruders, etc.

c-1

| A MapHorz_ItemList must be in a MapHorz_Source container.

A MapHorz_ItemList contains a list of Items to be drawn. This list is of fixed size specified through the maximum

C-

number of Items. The type of each Item inside the MapHorz_ItemList can be modified at run-time, which makes the

list dynamic. A set of parameters is associated with each type of Item (refer to the “Item Structure” subsection,

3.3.22.2.1, below).

c-1 | MapHorz_ItemList is different from BufferFormat in that the latter is a list of parameter values for any pre-defined list
of widgets, and the former is a list from a limited set of widgets, as well as their parameter values.

One or several items can be modified through a SetParameter command with “BufferOfltems” as Parameter_Ident. An
Item should be modified in their entirety, for instance, the latitude of a symbol can not be changed by itself.

Insert and delete operations are not allowed on the list. However, one specific type of Item is NOT_USED. The Item
with the NOT_USED type will be ignored, i.e., is they will have no effect on the processing of following items.

NOTE: This section includes two additional subordinate sections as follows:
Section 3.3.22.1 describes the standardized items and their functionality.
Section 3.3.22.2 describes the A661_ParameterStructure to address the Items.

Restriction:

A MapHorz_ItemList must be in a MapHorz_Source container.

c-1 | MapHorz_ItemList Parameters are defined inTable 3.3.22-1.

Table 3.3.22-1 - MapHorz_ItemList Parameters

Parameters Change Description
Commonly used parameters
c-1 WidgetType D A661_MAPHORZ_ITEMLIST
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
Specific parameters
c-1 MaxNumberOfltem D Maximum number of items that the UA can address under the MapHorz_ItemList.
BufferOfltems R Buffer of the Map Items

ARINC SPECIFICATION 661 - Page 89

3.0 WIDGET LIBRARY

MapHorz_ItemList Creation Structure is defined in Table 3.3.22-2a.

Table 3.3.22-2a - MapHorz_ItemList Creation Structure

CreateParameterBuffer Type (:iii:) WY]ZLu;I/fl}cilslsg:ry

WidgetType ushort 16 | A661_MAPHORZ_ITEMLIST

Widgetldent | whort | 16 |

Parentldent ushort 16

Enable | 1 uchar | | § |A661_FALSE
A661_TRUE

Visible | uchar | § |A661_ FALSE
A661_TRUE

MaxNumberOfltem ushort 16

UnusedPad | NA |16 fo

MapHorz_ItemList Event Structures: A661_EVT_SELECTION are defined in Table 3.3.22-2b.

Table 3.3.22-2b - MapHorz_ItemList Event Structures: A661_EVT_SELECTION

Size . L.
EventStructure (bits) Value/Description
Eventldent 16 |A661_EVT_SELECTION
Item Index 16 | Index of the item which has been selected

Available SetParameter identifiers and associated data structure are defined in Table 3.3.22-4.

Table 3.3.22-3 - MapHorz_ItemList Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used
Parameter to Set y (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
BufferOfMapltems | N/A | {32} | A661_BUFFER_OF_MAPHORZ | A661_ParameterStructure_BufferOfltems
_ITEM Refer to “MapHorz_ItemList
A661_ParameterStructure Specifics”,
Section 3.3.22.2, below.

c-1

c-1

c-1

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 90

3.0 WIDGET LIBRARY

3.3.22.1 MapHorz_ItemList Standard Items Description

This section describes the MapHorz item structures.

Table 3.3.22.1-1- MapHorz_ItemList Standard Items Description

Name of Item

Function

FILLED_POLY_START

This Item is used to signify the start of a closed, filled polygon definition. It holds X/Y
parameters, like LINE_START, and a Fill Style Index. The X/Y parameters of this
Item and the following LINE_SEGMENT Items (up to the EndFlag) define the
vertices and edges of a polygon that is closed and filled with the indicated fill style.

ITEM_STYLE For drawing any symbol or line the CDS must apply the last defined ITEM_STYLE in
the list. If no ITEM_STYLE has been defined, the CDS will apply a default
ITEM_STYLE.

LEGEND This Item is used to store Legend Strings.

Some symbols may contain logic to automatically position legends. LEGEND Items
will then follow the SYMBOL Item and carry this legend.

Each LEGEND Item can only hold 16 characters including the NULL character.
Several LEGEND Item can be used to carry longer strings.

CR is recognized as either NextField (For symbols with automatic legend positioning)
or as a normal Carriage Return / Line Feed if LEGEND follows a
LEGEND_ANCHOR.

The last LEGEND Item of a group must have its EndFlag set.

LEGEND_ANCHOR

This Item is used to specify the position of a LEGEND not attached to a symbol.

LEGEND_POP_UP

This Item is a basic LEGEND, but it will appear only when the crew member selects
the associated SYMBOL_x Item.

Disappearance of the LEGEND_POP_UP is airframe manufacturer/system integrator
specification dependent.

LINE_START

This Item is used to signify the start of a line. It holds only X/Y parameters, interpreted
by the CDS depending on the MapHorz_Source DataFormat

LINE_SEGMENT

This Item is used to draw a line, using the last defined style in the list, from the
previous LINE_xxx End position, to the specified X/Y coordinates.

This Item holds a EndFlag, set if it is the last item of a line.

LINE_ARC This Item is used to draw an arc, using the last defined style in the list, from the
previous LINE_xxx End position, to the point specified by the three data :
(InboundCourse, Radius, CourseChange).
This Item holds a EndFlag, set if it is the last item of a line.

NOT_USED This Item is used when the Item is to be discarded by the CDS. There is no effect on

subsequent [tems interpretation.

SYMBOL_GENERIC

This Item represent the basic symbol which holds X/Y parameters along with a type of
symbol and possibly an EndFlag.

Some of these types may include an Automatic Legend positioning. In this case, and
provided the EndFlag is not set on the symbol, the CDS will interpret the following
LEGEND Items as part of the symbol legend. When multiple Fields exist on the
symbol, “Carriage Return” will signify to the CDS that a field end is reached.

SYMBOL_ROTATED

Same than SYMBOL_GENERIC except an orientation parameter is added

SYMBOL_CIRCLE

Specific Symbol. It represent a circle of specific radius. Radius is expressed in nm.

SYMBOL_OVAL

Specific symbol. It represents an oval, filled with the indicated fill style, which may be
“no fill”.

SYMBOL_RUNWAY

Same than SYMBOL_GENERIC, except orientation and Length parameters are added.

ARINC SPECIFICATION 661 - Page 91

3.0 WIDGET LIBRARY

3.3.22.2 MapHorz_ItemList A661_ParameterStructure Specifics

This section describes the A661_ParameterStructure_BufferOfltems.
3.3.22.2.1 Item Structures

All the structures include the same format: three fields for the first 4-byte word. One field is not used on all Items,
however it is maintained for consistency.

3.3.22.2.1.1 Item_Style
Item_Style is defined in Table 3.3.22.2.1.1.
Table 3.3.22.2.1.1 - Item_Style

Name Type Si.ze Value/Range
(bits) When Necessary
ItemIndex ushort 16
ltemType | uchar | 8 |A661 ITEM_STYLE
UnusedPad | NA s o
UnusedPad N/A 16 |0
ItemStyleSet | ushort | w6 |

3.3.22.2.1.2 Legend_Anchor
Legend_Anchor is defined in Table 3.3.22.2.1.2.

Table 3.3.22.2.1.2 - Legend_Anchor

Name Tvoe Size Value/Range
P (bits) When Necessary

ItemIndex ushort 16

ItemType uchar 8 |A661_LEGEND_ANCHOR

UnusedPad N/A g |0

X/ Lat/ Range Scaled Integer | 32 | First coordinate of symbol, MapHorz_Source coordinate
system (fixed real LSB depends on MapHorz_Source
MapDataFormat)

Y / Lng / Bearing Scaled Integer | 32 Second coordinate of symbol, MapSource coordinate system
(fixed real LSB depends on MapHorz_Source)

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 92
3.0 WIDGET LIBRARY

3.3.22.2.1.3 Legend and Legend_Pop_Up

This Item must follow a XXX_SYMBOL, a LEGEND_ANCHOR or another LEGEND Item. The LegendString can
contain special characters, line feed and carriage return. The type of symbol attached to this legend defines the position
and the format of this String under control of the CDS. If a LEGEND is followed by other LEGENDs, they should be
considered as one unique Legend, possibly including some carriage return and linefeed characters. The full entire
LegendString (possibly across multiple Legend Mapltems) must have a NULL terminator.

Legend and Legend_Pop_Up is defined in Table 3.3.22.2.1.3.

Table 3.3.22.2.1.3 — Legend and Legend_Pop_Up

Name Type Size Value/Range
(bits) When Necessary
ItemIndex ushort 16
ItemType uchar 8 A661_LEGEND
__ A661_LEGEND_POP_UP
EndFlag uchar 8 A661_TRUE
A661_FALSE
LegendString {uchar}+ {32}+ | Max 16 characters including NULL and pad
Followed by zero, one, two or three extra NULL for alignment of
o 32 bits. The paragraph above defines the proper string
(not *string’) termination.

3.3.22.2.1.4 Line_Start
Line_Start is defined in Table 3.3.22.2.1.4.

Table 3.3.22.2.1.4 - Line_Start

Name Tvoe Size Value/Range
yp (bits) When Necessary

ItemIndex ushort 16

ItemType uchar 8 A661_LINE_START

UnusedPad N/A g8 |0

X/ Lat / Range Scaled Integer 32 First coordinate of symbol, MapHorz_Source coordinate system
(fixed real LSB depends on MapDataFormat)

Y / Lng / Bearing Scaled Integer 32 Second coordinate of symbol, MapHorz_Source coordinate system
(fixed real LSB depends on MapDataFormat)

ARINC SPECIFICATION 661 - Page 93

3.0 WIDGET LIBRARY

3.3.22.2.1.5 Line_Segment
Line_Segment is defined in Table 3.3.22.2.1.5.
Table 3.3.22.2.1.5 - Line_Segment

Name Type Size Value/Range
y (bits) When Necessary

ItemIndex ushort 16

ItemType uchar 8 A661_LINE_SEGMENT

EndFlag uchar 8 A661_TRUE
A661_FALSE

X/ Lat/ Range Scaled Integer 32 | First coordinate of symbol, MapHorz_Source coordinate system
(fixed real LSB depends on MapDataFormat)

Y / Lng / Bearing Scaled Integer 32 Second coordinate of symbol, MapHorz_Source coordinate system
(fixed real LSB depends on MapDataFormat)

3.3.22.2.1.6 Line_Arc
Line_Arc is defined in Table 3.3.22.2.1.6.

Table 3.3.22.2.1.6 - Line_Arc

Name Type (f)lii:) W\llliilule\lli?slsg:ry

ItemIndex ushort 16

ltemType | uchar | 8 |A661 LINE.ARC
EndFlag | uchar | § |A66I_TRUE

A661_FALSE

InboundCourse fr(180) 32

Radius fr(32768) 32 | (in nautical miles)

CourseChange fr(180) 32

3.3.22.2.1.7 Not_Used
Not _Used is defined in Table 3.3.22.2.1.7.

Table 3.3.22.2.1.7 - Not_Used

Name Type Si.ze Value/Range
(bits) When Necessary
ItemIndex ushort 16
temType | uchar | § |A66l NOT_USED |
UnusedPad | NA | g [0 |

ARINC SPECIFICATION 661 - Page 94

3.0 WIDGET LIBRARY

3.3.22.2.1.8 Symbol_Generic

Symbol_Generic is defined in Table 3.3.22.2.1.8.

Table 3.3.22.2.1.8 - Symbol_Generic

Type Size Value/Range
Name (bits) | When Necessary
ItemIndex | ushort 16 |
ItemType uchar 8 | A661_SYMBOL_GENERIC
[EndFlag | uchar 8 |A661_TRUE
A661_FALSE
| UnusedPad | N/A 24 10
SymbolType uchar 8 EXAMPLES:
o1 SYMBOL_WAYPOINT
SYMBOL_AIRPORT
SYMBOL_VOR
SYMBOL_VORDME
X/ Lat / Range Scaled Integer 32 | First coordinate of symbol center, MapHorz_Source
coordinate system (fixed real LSB depends on
c-1 | MapDataFormat)
Y / Lng / Bearing Scaled Integer 32 | Second coordinate of symbol center, MapHorz_Source
coordinate system (fixed real LSB depends on
MapDataFormat)
3.3.22.2.1.9 Symbol_Circle
Symbol_Circle is defined in Table 3.3.22.2.1.9.
Table 3.3.22.2.1.9 - Symbol_Circle
Size Value/Range
Name Type (bits) When Neces;gary
ItemIndex ushort 16
ItemType uchar 8 A661_SYMBOL_CIRCLE
EndFlag uchar A661_TRUE
A661_FALSE
X / Lat / Range Scaled Integer 32 | First coordinate of symbol, MapHorz_Source coordinate system
(fixed real LSB depends on MapDataFormat)
c-1 Y / Lng / Bearing Scaled Integer 32 | Second coordinate of symbol, MapHorz_Source coordinate
system (fixed real LSB depends on MapDataFormat)
Radius fr(32768) 32 | in nautical miles. approximate LSB = 0.000030517578125 nm

3.3.22.2.1.10 Symbol_Rotated

ARINC SPECIFICATION 661 - Page 95

3.0 WIDGET LIBRARY

Symbol_Rotated is defined in Table 3.3.22.2.1.10.

Table 3.3.22.2.1.10 - Symbol Rotated

Type Size | Value/Range
Name P (bits) | When Necegssary
Itemindex | ushort | 16
ItemType uchar 8 | A661_SYMBOL_ROTATED
EndFlag | uchar | 8 | A661 TRUE
A661_FALSE
UnusedPad | . NA |24 |0
SymbolType uchar 8 | EXAMPLES:
SYMBOL_HOLD_LEFT
SYMBOL_HOLD_RIGHT
SYMBOL_PROCEDURE_TURN_LEFT
SYMBOL_PROCEDURE_TURN_RIGHT
SYMBOL_LONG_RANGE_AIRPORT_WITH_RUNWAY
X /Lat/ Range Scaled 32 | First coordinate of symbol, MapHorz_Source coordinate system
Integer (fixed real LSB depends on MapDataFormat)
Y / Lng / Bearing Scaled 32 | Second coordinate of symbol, MapHorz_Source coordinate
Integer system (fixed real LSB depends on MapDataFormat)
Orientation fr(180) 32 | Orientation of Symbol relative to True North

3.3.22.2.1.11 Symbol_Runway

Symbol_ Runway is defined in Table 3.3.22.2.1.11.

Table 3.3.22.2.1.11 - Symbol_Runway

Name Tvpe Size | Value/Range
P (bits) | When Necessary
ItemIndex ushort 16
ItemType uchar A661_SYMBOL_RUNWAY
EndFlag uchar A661_TRUE
A661_FALSE
X /Lat / Range Scaled Integer 32 | First coordinate of runway threshold, MapHorz_Source
coordinate system (fixed real LSB depends on
MapDataFormat)
Y / Lng / Bearing Scaled Integer 32 Second coordinate of symbol center, MapHorz_Source
coordinate system (fixed real LSB depends on
MapDataFormat)
Length fr(32768) 32 | Length of runway
Orientation fr(180) 32 | Orientation of Symbol relative to True North

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 96
3.0 WIDGET LIBRARY

3.3.22.2.1.12 Filled_Poly_Start

There are restrictions on the polygons to be filled. In particular, the number of line segments is limited to three
segments (triangle) or four segments (quadrilateral). The vertices must be specified in counter-clockwise order. The
polygon must be convex.

If any error is found in the polygon definition, the CDS should send an A661_ERR_SET_ABORTED exception event.
The airframe manufacturer/system integrator free data field may include, for example, the ItemIndex to identify the
error.

Filled_Poly_Start is defined in Table 3.2.22.2.1.12.

Table 3.2.22.2.1.12 - Filled_Poly_Start

Name Type Size Value/Range
(bits) | When Necessary

ItemIndex ushort 16
ItemType uchar 8 A661_FILLED_POLY_START
FillStyleIndex uchar 8 See paragraph below
X/ Lat / Range Scaled 32 First coordinate of symbol

Integer (LSB and units defined by MapHorz_Source)
Y /Lng/ Angle / Alt Scaled 32 Second coordinate of symbol

Integer (LSB and units defined by MapHorz_Source)

3.3.22.2.1.12.1 Fill Style Index Values

A Fill Style Index is an unsigned 8-bit value that is used to select a graphic representation (fill style) from a pre-
defined table for use in filling an area on a layer. Because fill styles depend heavily on CDS hardware capabilities, and
because they are look-and-feel related, they are not further defined in this specification.

COMMENTARY

The actual fill styles used will depend on both the CDS hardware capability and the supplier/airframe
manufacturer/system integrator/customer preference for look-and-feel. A fill style may be a solid color fill, a
patterned fill, an alpha blend, or other visual attribute.

3.3.22.2.1.13 Symbol_Oval

Symbol_Oval is defined in Table 3.3.22.2.1.13.

Table 3.3.22.2.1.13 - Symbol_Oval

Name Type Size Value/Range
(bits) | When Necessary

MtemIndex | ushort | Yo

ItemType uchar 8 A661_SYMBOL_OVAL

FillStyleIndex uchar 8 airframe manufacturer/system integrator dependent

X /Lat/Range Scaled 32 First coordinate of symbol center
Integer (LSB and units defined by MapHorz_Source)

Y / Lng / Bearing Scaled 32 Second coordinate of symbol center
Integer (LSB and units defined by MapHorz_Source)

Radius 1(32768) 32 Half the Major Axis in nautical miles

Axis Ratio fr(1) 16 Minor Axis divided by Major Axis

Orientation fr(180) 16 Orientation of Major Axis relative to True North

ARINC SPECIFICATION 661 - Page 97

3.0 WIDGET LIBRARY

3.3.22.2.2 A661_ParameterStructure_BufferOfltems

A661_ParameterStructure_BufferOfltems is defined in Table 3.3.22.2.2.

Table 3.3.22.2.2 - A661_ParameterStructure_BufferOfItems

A661_ParameterStructure Size Description
(bits)
Parameterldent 16 |A661_BUFFER_OF_MAPITEM
ClearFlag 1 If Set, All Items will be set to NOT_USED by CDS

before setting the specified Items.

Number of Items 15 | Number of Items modified by the command

{ItemStructures } + {32}+

ARINC SPECIFICATION 661 - Page 98
3.0 WIDGET LIBRARY

3.3.23 MapLegacy

Categories:
Map management
Graphical Representation

Description:

c-1 The MapLegacy widget provides a means for the CDS to be compatible with legacy data formats used with display
systems prior to the introduction of ARINC 661. The purpose is to define the means by which the visibility of this kind
of data will be managed in relation with other Map UAs. The format of the data and the link to transmit the data
depends on the legacy type. Therefore, the data buffer should not be sent through ARINC 661 commands. The CDS
and UAs that exchange this type of widget should define together how the CDS processes this data. The MapLegacy is
not an interactive widget.

Restriction:
A MapLegacy should be in a MapHorz_Source container.

MapLegacy Parameters are defined in Table 3.3.23-1.

Table 3.3.23-1 - MapLegacy Parameters

Parameters Change Description
Commonly used parameters
WidgetType D A661_MAP_LEGACY
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Specific parameters
c-1 ChannellD D Identifier of the input stream source reference

MapLegacy Creation Structure is defined in Table 3.3.23-2.

Table 3.3.23-2 - MapLegacy Creation Structure

CreateParameterBuffer Type Size (bits) Value/Description
WidgetType ushort 16 A661_MAP_LEGACY
Widgetldent | ushort | 6
Parentldent ushort 16
-l | |Channetp | uchar | 8 |CDSspecific
Visble | uchar | 8 |A66LFALSE
A661_TRUE

The MapLegacy widget does not send any event.

The MapLegacy is not modifiable through the A661_CMD_SET_PARAMETER command.

ARINC SPECIFICATION 661 - Page 99

3.0 WIDGET LIBRARY

3.3.24 MapHorz_Source

Categories:

Map management
Container
Interactive

Description:
The MapHorz_Source widget is a specialized container. It contains some MapHorz_ItemList widgets to display Items
expressed in a common coordinate system.

MapHorz_Source is a widget directly contained by a MapHorz or by one Layer, which is directly under the layer in
the widget tree. One MapHorz_Source can be shared between several MapHorz widgets using a Connector widget.
The format of the data contained by the MapHorz_Source is specified at design time, but the data itself is only
available at run time.

MapHorz_Source is an interactive widget. The display area of the MapHorz_Source is the same as the MapHorz. The
UA may need to receive the cursor position on a crew member validation with CCD on the MapHorz_Source display
area. The MapHorz_Source “EventFlag” parameter provides a means to the Map UA to control the CDS sending this
event. The X,Y position sent by the CDS is expressed in MapHorz_Source coordinates.

Restriction:
The MapHorz_Source should be directly under a MapHorz or a Layer widget. When directly attached to a Layer, the
layer should not be attached to a window displayed alone.

MapHorz_Source Parameter are defined in Table 3.3.24-1.

Table 3.3.24-1 - MapHorz_Source Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MAPHORZ_SOURCE

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR | Visibility of the widget

Enable DR | Ability of the widget to be activated

Specific Parameters

MapDataFormat D Format of the data contained by this MapHorz_Source. This parameter defines the
coordinate system as well as the kind of transformation to apply on dynamic widgets
contained by the MapHorz_Source. See values in the table below.

EventFlag DR Indicates if the UA wants to receive the cursor position upon click, expressed in its
coordinate system.

ARINC SPECIFICATION 661 - Page 100
3.0 WIDGET LIBRARY

3.3.24 MapHorz_Source (cont’d)

MapHorz_Source Creation Structure is defined in Table 3.3.24-2a.

Table 3.3.24-2a - MapHorz_Source Creation Structure

CreateParameterBuffer Type (ilii:) X\?lil::/gizegsesary

WidgetType ushort 16 A661_MAPHORZ_SOURCE

WidgetIdent ~ ushort | 6 |

Parentldent ushort 16

Enable | uchar | 8 |A661_FALSE
A661_TRUE

Visible | uchar | 8 |A661_FALSE
A661_TRUE

MapDataFormat uchar 8 A661_MDF_BRG_DIST_ACHDG
A661_MDF_LAT_LONG
A661_MDF_LEGACY

EventFlag ~ uchar | 8 |A661_FALSE
A661_TRUE

UnusedPad | NA | 16 [0

c-1

MapData Format values are defined in Table 3.3.24-2b.

Table 3.3.24-2b - MapDataFormat Values:

Value Projection | Alignment Origin Units of LSB
Applied of +Y Axis Measure
A661_MDF_BRG_DIST_ACHDG No aircraft body | aircraft lat/Ing | X nautical miles | X: fr(32768)
longitudinal | defined in Y degrees Y: fr(180)
axis MapHorz
A661_MDF_DIST_DIST No Various aircraft lat/Ing | X and Y: X: fr(32768)
defined in nautical miles Y: fr(32768)
MapHorz
A661_MDF_LAT_LONG Yes True North lat/Ing Xand Y X: fr(180)
degrees Y: fr(180)
A661_MDF_LEGACY various various various various various

MapHorz_Source Event Structures: A661_EVT_SELECTION_MAP are defined in Table 3.3.24-3.

Table 3.3.24-3 - MapHorz_Source Event Structures: A661_EVT_SELECTION_MAP

EventStructure Type Sl.ze Value/Description
(bits)
Eventldent ushort 16 | A661_EVT_SELECTION_MAP
UnusedPad N/A 16 |0
X /Lat/ Range Scaled | 32 |expressed in map source coordinate system
Integer
Y / Lng / Bearing Scaled | 32 |expressed in map source coordinate system
Integer

ARINC SPECIFICATION 661 - Page 101

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.24-4.

Table 3.3.24-4 - MapHorz_Source Runtime Modifiable Parameters

Name of the Type Sl.ze ‘Parameterldent Used Type of Structure Used

Parameter to Set (bits) | in the (Refer to Section 4.5.4.5)
ParameterStructure

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

EventFlag uchar 8 A661_EVENT_FLAG | A661_ParameterStructure_1Byte

3.3.25 MapHorz

Categories:
Container
Map management

Description:

A MapHorz widget consists of a rectangular region on the display, which contains reference information to enable the
display of map features in the cockpit. The MapHorz widget enables multiple sources of information with different
coordinate systems to be merged into a composite map image.

MapHorz provides information for resolving coordinate system disparities among the map sources. MapHorz also has
the responsibility for containing multiple map sources such that the data is merged properly into a composite

representation.

Restriction: None

c-1

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 102

3.3.25 MapHorz (cont’d)

3.0 WIDGET LIBRARY

MapHorz Parameters are defined in Table 3.3.25-1.

Table 3.3.25-1 - MapHorz Parameters

Parameters

| Change | Description

Commonly used parameters

WidgetType D A661_MAPHORZ

Widgetldent D Unique identifier of the widget

Parent Identifier D Identifier of the immediate container of the widget

Visible DR | Visibility of the widget

Enable DR | Ability of the widget to be activated

X Pos D The X position of the widget reference point (screen coordinate system)
Y Pos D The Y position of the widget reference point (screen coordinate system)
SizeX D Area size X

SizeY D Area size Y

Reference coordinate system

Projection Reference R
Point Latitude
Projection Reference R

Point Longitude

This point is used by the CDS to know what reference should be used to run the
projection algorithm.

The CDS converts dynamic widget coordinate data into the MapHorz coordinate
system. The MapHorz coordinate system is defined by:

Reference point: PRP with lat/Ing coordinate

Reference direction: True North

Commentary: For the ND, PRP is the aircraft position for ARC and ROSE mode.
For PLAN mode the PRP is a waypoint of the FPLN. In mode PLAN, the PRP can
be populated by the FMS through the ND.

Equivalence between “MapHorz coordinate system” and “MapHorz Screen Coordinate system’

s

Screen Reference DR | X and Y Position of the PRP on the screen. This position is expressed in MapHorz
Point X Screen Coordinate System refer to (X Pos, Y Pos)

Screen Reference DR

Point Y

Range DR | Geo-referenced range

ScreenRange DR | Distance in screen unit (0.01 mm) equivalent to range

Orientation parameters

or latitude/longitude and TCAS coordinate like systems

Orientation R Angle of the True North relative to the up-direction of display at the PRP. (see
Reference coordinate system, above). If PRP Latitude is at a pole, the up-direction
of the display should be the meridian identified by PRP Longitude.

AircraftOrientation R Orientation of the aircraft relative to the True North

AircraftLatitude R Latitude of the aircraft

AircraftLongitude R Longitude of the aircraft

ProjectionType D Indicate which kind of projection will be applied on lat/Ing coordinate of dynamic

widget:
LAMBERT
POLAR

ARINC SPECIFICATION 661 - Page 103

3.0 WIDGET LIBRARY

3.3.25 MapHorz (cont’d)

MapHorz Creation is defined in Table 3.3.25-2.

Table 3.3.25-2 - MapHorz Creation Structure

CreateParameterBuffer Type (?)lii:) :]R?llllelfl/gizegsesary

WidgetType ushort 16 | A661_MAPHORZ

Widgetldent ushort 16

Parentldent ushort 16

Enable | uchar | 8 |A661_FALSE
A661_TRUE

Visible | uchar | 8 |A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

Screen Reference Point X long 32

Screen Reference Point Y long 32

Range r(32768) 32

ScreenRange ulong 32

ProjectionType | __. uchar | L D

UnusedPad N/A 24 |0

No Event is associated with the MapHorz widget.
Available SetParameter identifiers and associated data structure are defined in Table 3.3.25-3.

Table 3.3.25-3 - MapHorz Runtime Modifiable Parameters

Name of the Parameter to Type Size | Parameterldent Used Type of Structure Used

Set (bits) | in the ParameterStructure | (Refer to Section 4.5.4.5)

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
Projection Reference Point fr(180) 32 A661_PRP_LAT A661_ParameterStructure_4Bytes
Latitude

Projection Reference Point | fr(180)x | 32x2 [A661_PRP_LAT_LONG A661_ParameterStructure_ XY
Latitude and Longitude 2

Projection Reference Point fr(180) 32 A661_PRP_LONG A661_ParameterStructure_4Bytes
Longitude
Screen Reference Point X long 32 A661_PRP_SCREEN_X A661_ParameterStructure_4Bytes

Screen Reference Point X longx2 | 32x2 | A661_PRP_SCREEN_XY A661_ParameterStructure_ XY
Screen Reference Point Y

Screen Reference Point Y long 32 A661_PRP_SCREEN_Y A661_ParameterStructure_4Bytes
Range fr(32768) 32 A661_RANGE A661_ParameterStructure_4Bytes
ScreenRange ulong 32 A661_SCREEN_RANGE A661_ParameterStructure_4Bytes
Orientation fr(180) 32 A661_ORIENTATION A661_ParameterStructure_4Bytes
AircraftLatitude fr(180) 32 A661_AC_LAT A661_ParameterStructure_4Bytes
AircraftLongitude fr(180) 32 | A661_AC_LONG A661_ParameterStructure_4Bytes
AircraftLatitude fr(180) x 64 A661_AC_LAT_LONG A661_ParameterStructure_XY
AircraftLongitude 2

AircraftOrientation fr(180) 32 | A661_AC_ORIENTATION | A661_ ParameterStructure_4Bytes

c-1

c-1

| el

ARINC SPECIFICATION 661 - Page 104
3.0 WIDGET LIBRARY

3.3.26 MaskContainer

Categories:
Container

Description:

A MaskContainer widget applies a mask to a group of widgets to implement non-rectangular clipping. A mask should
be referenced and placed by the Container. Widgets placed within this Container will be affected by the referenced
mask.

Restriction: none

MaskContainer Parameters are defined in Table 3.3.26-1.

Table 3.3.26-1 - MaskContainer Parameters

Parameters Change Description

Commonly used parameters

WidgetType D A661_MASK_CONTAINER

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR | Visibility of the widget

PosX D X position of the mask. Note that this does not reposition widgets contained
within the MaskContainer, only the mask itself.

PosY D Y position of the mask. Note that this does not reposition widgets contained
within the MaskContainer, only the mask itself.

Specific parameters

MaskReference DR |Index to a Mask stored in the CDS. See definition of Mask in the Glossary.

MaskEnabled DR | If set to True, the mask is active and all the widgets contained within the

MaskContainer will be affected by the referenced mask.

If set to False, the mask is not active and the widgets contained within the
MaskContainer will not be affected by the referenced mask.

ARINC SPECIFICATION 661 - Page 105

3.0 WIDGET LIBRARY

MaskContainer Creation Structure is defined in Table 3.3.26-2.

Table 3.3.26-2 - MaskContainer Creation Structure

CreateParameterBuffer Type (iii::) W\llliilugi?slsg:ry

WidgetType ushort 16 | A661_MASK_CONTAINER

Widgetldent | whort | 16 |]

Parentldent ushort 16

MaskEnabled | uchar | 8 |A661_FALSE]
A661_TRUE

Visible | uhar | 8 |A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

MaskReference ushort 16

UnusedPad | | NA | 6 o]

The MaskContainer widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.26-3.

Table 3.3.26-3 - MaskContainer Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
MaskReference ushort 16 |A661_MASK_REFERENCE | A661_ParameterStructure_2Bytes
MaskEnabled uchar 8 A661_MASK_ENABLED | A661_ParameterStructure_1Byte

ARINC SPECIFICATION 661 - Page 106

3.3.27 Panel

Categories:
Container

Graphical representation

Description:

3.0 WIDGET LIBRARY

A Panel widget groups several widgets together in a rectangular area with clipping capabilities. Widgets placed within
a Panel widget have their coordinates referenced to the PosX, PosY reference point of the Panel.

Restriction: none

Panel Parameters are defined in Table 3.3.27-1.

Table 3.3.27-1 - Panel Parameters

Parameters Change Description
Commonly used parameters
WidgetType D A661_PANEL
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget

ARINC SPECIFICATION 661 - Page 107

3.0 WIDGET LIBRARY

Panel Creation Structure is defined in Table 3.3.27-2.

Table 3.3.27-2 - Panel Creation Structure

CreateParameterBuffer Type (iiii:) W\l]l::lugi?sl;g:ry

WidgetType ushort 16 | A661_PANEL

widgettdent | whort | 16 |

Parentldent ushort 16

[Enable | whar | 8 |A661_FALSE
A661_TRUE

[visile | uhar | § |A66LFALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StyleSet ushort 16

[UnusedPad | NA | 6 o

No event is associated with the Panel widget.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.27-3.

Table 3.3.27-3 - Panel Runtime Modifiable Parameters

Name of the Type (ili::) Parame:flrtll(lijnt Used Type of Structure Used
Parameter to Set (Refer to Section 4.5.4.5)
ParameterStructure
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 | A661_STYLE_SET A661_ParameterStructure_2Bytes

c-1

ARINC SPECIFICATION 661 - Page 108

3.3.28 PicturePushButton

Categories:
Interactive

Graphical representation

Text string

Description:

3.0 WIDGET LIBRARY

A PicturePushButton widget is a PushButton including a picture and possibly a string.

Restriction: none

PicturePushButton Parameters are defined in Table 3.3.28-1.

Table 3.3.28-1 - PicturePushButton Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_PICTURE_PUSH_BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotio D Automatic motion of the focus on widget having the following FocusIndex value.
n
Specific parameters
MaxStringLength D Maximum length of the label text
Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER
LabelString DR Label of the PicturePushButton
Picture Reference DR Reference of the picture
PicturePosition D The string position depends on the picture position:
CENTER
LEFT
RIGHT
TOP
BOTTOM

ARINC SPECIFICATION 661 - Page 109

3.0 WIDGET LIBRARY

Picture PushButton Creation Structure is defined in Table 3.3.28-2.

Table 3.3.28-2 - Picture PushButton Creation Structure

CreateParameterBuffer Type (?)li::) W‘lllze‘:lulil/?c?slsg:ry
WidgetType ushort 16 | A661_PICTURE_PUSH_BUTTON
Widgetldent | ushort | 16 |
Parentldent ushort 16
Enable | uchar | 8 |A661 FALSE]
A661_TRUE
Visibe [uchar | 8 |A661 FALSE]
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | 6]
FocusIndex ushort 16
PictureReference | uhort | 16 |]
MaxStringLength ushort 16
PicturePosition uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
A661_TOP
A661_BOTTOM
AutomaticFocusMotion | uchar | 8 |A661_FALSE |
A661_TRUE
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
UnusedPad N/A 8 0
LabelString string 8 * | Followed by zero, one, two or three extra
string | NULL for alignment of 32 bits.
length
+ Pad

Picture PushButton Event Structures: A661_EVT_SELECTION is defined in Table 3.3.28-3.

Table 3.3.28-3 - Picture PushButton Event Structures: A661_EVT_SELECTION

EventStructure Type (ilii:) Value/Description
Eventldent ushort 16 | A661_EVT_SELECTION

UnusedPad N/A 16 0

c-1

ARINC SPECIFICATION 661 - Page 110

3.3.28 PicturePushButton (cont’d)

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.28-4.

Table 3.3.28-4 - Picture PushButton Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String
PictureReference ushort 16 | A661_PICTURE_REFERENCE | A661_ParameterStructure_2Bytes
StyleSet ushort 16 | A661_STYLE_SET A661_ParameterStructure_2Bytes

3.3.29 PictureToggleButton

Categories:

Graphical representation

Interactive
Text string

Description:

A PictureToggleButton widget is a button with two stable states with a picture and possibly text.

Restriction: none

ARINC SPECIFICATION 661 - Page 111

3.0 WIDGET LIBRARY

PictureToggleButton Parameters is defined in Table 3.3.29-1.

Table 3.3.29-1 - PictureToggleButton Parameters

Parameters | Change |

Description

Commonly used parameters

WidgetType D A661_PICTURE_TOGGLE_BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
ToggleState DR Inner state of the ToggleButton
SELECTED
UNSELECTED
StyleSet DR Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on a widget having the following FocusIndex
value.
Specific parameters
MaxStringLength D Maximum length of the label text
AlternateFlag D True: Use of the two string (and two picture) according to the inner state. CDS
will change the string if the inner state change
False: “AlternateString” (and AlternatePicture) is not used. Only parameter
“string” (and Picture) is used for the two inner state
LabelString DR Label of the ToggleButton
Label used for UNSELECTED state
AlternateLabelString DR Label of the ToggleButton
Label used for SELECTED state
PictureReference DR Picture on the ToggleButton
Picture used for UNSELECTED state
AlternatePictureReference DR Picture on the ToggleButton
Picture used for SELECTED state
Alignment D Alignment of the text within the label area of the widget:
LEFT
RIGHT
CENTER
PicturePosition D The string position depends on the picture position:
CENTER
LEFT
RIGHT
TOP

BOTTOM

c-1

c-1

ARINC SPECIFICATION 661 - Page 112

3.3.29 PictureToggleButton (cont’d)

3.0 WIDGET LIBRARY

PictureToggleButton Creation Structureis defined in Table 3.3.29-2.

Table 3.3.29-2 - PictureToggleButton Creation Structure

CreateParameterBuffer Type (?)Ii::) W\lii:lule\lliilsl;g:ry
WidgetType ushort 16 | A661_PICTURE_TOGGLE_BUTTON
Widgetldent | ushort | 6 |
Parentldent | ushort | L
Enable uchar 8 A661_FALSE
__ AGLTRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet . ushort | T R
FocusIndex ushort 16
MaxStringLength | ushort | S R
AlternateFlag uchar 8 A661_FALSE
A661_TRUE
AutomaticFocusMotion | uchar | 8 |A661_FALSE]
A661_TRUE
PictureReference | ushort | 16 |\]
AlternatePictureReference ushort 16
PicturePosition uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
A661_TOP
A661_BOTTOM
ToggleState | uchar | 8 |A661_UNSELECTED |
A661_SELECTED
Alignment | uchar | 8 |A661_LEFT
A661_CENTER
__ AGGLRIGHT
UnusedPad N/A 8 0
LabelString string 8 * | The string terminating NULL is used as string separator
string1
___ length \]
AlternateLabelString string 8 * | Followed by zero, one, two or three extra NULL for
string? | alignment of 32 bits.
length

+ Pad

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 - Page 113

PictureToggleButton Event Structures: A661_EVT_STATE_CHANGE are defined in Table 3.3.29-3.

Table 3.3.29-3 - PictureToggleButton Event Structures: A661_EVT_STATE_CHANGE

Size

EventStructure (bits) Value/Description
Eventldent 16 | A661_EVT_STATE CHANGE
UnusedPad V8 o
ToggleState 8 A661_UNSELECTED

A661_SELECTED

Available SetParameter identifiers and associated data structure are defined in Table 3.3.29-4.

Table 3.3.29-4 - PictureToggleButton Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used

Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
ToggleState uchar 8 A661_INNER_STATE _TOGGLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
PictureReference ushort 16 A661_PICTURE_REFERENCE A661_ParameterStructure_2Bytes
AlternatePicture ushort 16 | A661_ALTERN_PICTURE_ A661_ParameterStructure_2Bytes
Reference REFERENCE
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String
AlternateLabelString | string | {32}+ | A661_STRING_ALTERNATE A661_ParameterStructure_String

c-1

ARINC SPECIFICATION 661 - Page 114
3.0 WIDGET LIBRARY

3.3.30 PopUpPanel

Categories:

Container

Graphical representation
Interactive

Description:

PopUpPanel widgets should be displayed on the top of other layer, but it is affected by clipping area of its parents.
PopUpPanel widget invisibility should be managed by the CDS through logic defined by the airframe
manufacturer/system integrator.

PopUpPanel widgets should not be used as a regular Container. The UA or CDS can define the position of the
Container according to the PositionFlag value.

PopUpPanel widgets has clipping capability.

Restriction:
PopUpPanel widgets can not be nested.

PopUpPanel Parameters are defined in Table 3.3.30-1.

Table 3.3.30-1 - PopUpPanel Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_POP_UP_PANEL

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible R Visibility of the widget
Widget is not visible at creation time.

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

Specific parameters

UAPositionFlag D TRUE: UA defined position
FALSE: Position defined by CDS using MouseClick location

AutomaticClosure D TRUE: with the automatic closure upon a click outside the PopUpPanel
FALSE: without the automatic closure upon a click outside the PopUpPanel

ARINC SPECIFICATION 661 - Page 115

3.0 WIDGET LIBRARY

PopUpPanel Creation Structure is defined in Table 3.3.30-2.

Table 3.3.30-2 - PopUpPanel Creation Structure

Type . . Value/Range
CreateParameterBuffer Size (bits) When Necessary
WidgetType ushort 16 A661_POP_UP_PANEL
Widgetldent ushort 16
Parentldent ushort 16
UAPositionFlag | uchar | ¢ 8 |A661_FALSE]
A661_TRUE
. A661_FALSE
AutomaticClosure uchar 8 A661_TRUE
PosX long 32 Set to 0 when UAPositionFlag is FALSE.
PosY long 32
SizeX ulong 32
SizeY ulong 32

The specific event sent by the PopUpPanel to the owner application is defined in Table 3.3.30-3.

Table 3.3.30-3 - PopUpPanel Event Structures: A661_EVT_POPUP_CLOSED

EventStructure Type Sl.ze Value/Description
(bits)
Eventldent _|wshort| 16 |A661 EVT POPUP CLOSED
UnusedPad N/A 16 |0

Available SetParameter identifiers and associated data structure are defined in Table 3.3.30-4.

Table 3.3.30-4 - PopUpPanel Runtime Modifiable Parameters

Type | Size | ParameterIdent used
(bits) in the
ParameterStructure

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

Type of Structure Used
(Refer to Section 4.5.4.5)

Name of the parameter to
set

ARINC SPECIFICATION 661 - Page 116
3.0 WIDGET LIBRARY

3.3.31 PopUpMenu

Categories:
Graphical representation
Interactive
Text string

Description:

The PopUpMenu widget should be displayed on the top of other layer, but it is affected by clipping area of its parents.
PopUpMenu is not a Container. PopUpMenu invisibility should be managed by the CDS using logic defined by the
airframe manufacturer/system integrator. The UA or CDS can define the position of the Container according to the

c-1

PositionFlag value.

Restriction: None

PopUpMenu Parameters are defined in Table 3.3.31-1.

Table 3.3.31-1 - PopUpMenu Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_POP_UP_MENU
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible R Visibility of the widget
Widget not visible at creation time
StyleSet DR | Referenced to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
Specific parameters
OpeningMode D OPEN_UP:
the position (X,Y) is given according to bottom/left point
OPEN_DOWN:
the position (X,Y) is given according to top/Left point
CDS_DEPENDENT:
Position defined by CDS using CCD Click location
NumberOfEntries D Number of entries in the PopUpMenu
MaxStringlength D Maximum length of the text of any one entry.
StringArray DR | String attached to one entry
NULL string will be interpreted as “separator.” The NULL string at the end of the
array will be not interpreted.
PopUpldentArray D Widgetldent for the PopUpMenu attached to one string. Widgetldent can only refer
to another PopUpMenu. If Widgetldent is NULL, no PopUpMenu is attached to this
Entry.
EnableArray DR | Ability for each Entry on the PopUpMenu:
ENABLE
DISABLE

ARINC SPECIFICATION 661 - Page 117

3.0 WIDGET LIBRARY

PopUpMenu Creation Structure is defined in Table 3.3.31-2.

Table 3.3.31-2 - PopUpMenu Creation Structure

Type . . Value/Range
CreateParameterBuffer Size (bits) When Necessary
WidgetType ushort 16 A661_POP_UP_MENU
Widgetldent ushort 16
Parentldent ushort | 6
OpeningMode uchar 8 A661_OPEN_UP
A661_OPEN_DOWN
A661_CDS_DEPENDENT
NumberOfEntries uchar 8
PosX long 32 Set to 0 when UAPositionFlag is FALSE
PosY long 32
SizeX ulong 32
SizeY ulong 32
MaxStringLength ushort | 16 |Maximum length of the text of one entry
StyleSet ushort 16
PopUpldentArray[] {ushort}+ | 16 * NumberOf
o Entries |
EnableArray[] {uchar}+ | 8 * NumberOf
o Entres
StringArray[] {string}+ 8 * string Each string terminating NULL is used as string
lengths + Pad | separator.

Each array is not necessarily aligned on 32 bits. The alignment is provided by adding zero, one, two or three NULL
character(s) at the end of the last array (StringArray).

The specific event sent by the PopUpMenu to the owner application is defined in Table 3.3.31-3.

Table 3.3.31-3 - PopUpMenu Event Structures: A661_EVT_POPUP_CLOSED

EventStructure (ili::) Value/Description
Eventldent 16 |A661_EVT_POPUP_CLOSED
| UnusedPad | .8 0
SelectedEntry 8 0 when the pop up is closed without any selection

‘n’ in [1; NumberOfEntry] else.

c-1

ARINC SPECIFICATION 661 - Page 118
3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.31-4.

Table 3.3.31-4 - PopUpMenu Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent Used Type of Structure Used

Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushor 16 | A661_STYLE SET A661_ParameterStructure_2Bytes

t
StringArray N/A | {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfEntries]
EnableArray N/A | {32}+ | A661_ENABLE_ARRAY A661_ParameterStructure_EnableArray
[Entry] Refer to definition in table 3.3.31.1-1
below.

StringArray N/A | {32}+ | A661_ENTRY_POP_UP_ARRAY | A661_ParameterStructure_EntryPopUp
[NumberOfEntries] Array
and Refer to definition in table 3.3.31.1-2
EnableArray below.
[NumberOfEntries]

3.3.31.1 PopUp Specific A661_ParameterStructure

A661_ParameterStructure_EnableArray is defined in Table 3.3.31.1-1.

Table 3.3.31.1-1 - A661_ParameterStructure_EnableArray

A661_ParameterStructure_EnableArray | Size (bits) Description
Parameter_ident 16 A661_ENABLE_ARRAY
Entyldex | 8
Enable 8 A661_FALSE
A661_TRUE

A661_ParameterStructure_EntryPopUpArray is defined in Table 3.3.31.1-2.

Table 3.3.31.1-2 - A661_ParameterStructure_EntryPopUpArray

A661_ParameterStructure_EntryPopUpArray | Size (bits) Description

Parameter_ident 16 A661_ENTRY_POP_UP_ARRAY

Number Of Entry Updated | 6 |
{ EntryPopUp_Structure }+ {32}+

ARINC SPECIFICATION 661 - Page 119

3.0 WIDGET LIBRARY

EntryPopUp_Structure is defined in Table 3.3.31.1-3.

Table 3.3.31.1-3 - EntryPopUp_Structure

EntryPopUp_Structure Size (bits) Description
UnusedPad & | O
Entrylndex .
Enable 8 A661_FALSE
A661_TRUE L
Stringlength 8
String {32}+ Followed by zero, one, two or three NULL character(s)
to be 32 bits aligned.

c-1

c-1

ARINC SPECIFICATION 661 - Page 120

3.3.32 PopUpMenuButton

Categories:
Graphical representation
Interactive
Text string

Description:

3.0 WIDGET LIBRARY

The PopUpButton widget contains a Button widget that displays a PopUpMenu, which is internal to the CDS.

This widget contains a PopUpMenu widget. The UA has the responsibility to define the position of the PopUpMenu.

Restriction: none

PopUpMenuButton Parameters are defined in Table 3.3.32-1.

Table 3.3.32-1 - PopUpMenuButton Parameters

Parameters

| Change |

Description

Commonly used parameters

WidgetType D A661_POP_UP_MENU_BUTTON

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR | Visibility of the widget

Enable DR | Ability of the widget to be activated

StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on widget having the following FocusIndex

value.

Specific parameters for the button

MaxStringLength D Maximum length of the label text
Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER
LabelString DR | Label of the menu button
Picture Reference DR | Reference of the picture to be displayed on the button
PicturePosition D The string position depends on the picture position:

CENTER
LEFT
RIGHT
TOP
BOTTOM

Specific Parameters of PopUp

PopupPosX D The X position of the popUpMenu reference point
PopupPosY D The Y position of the popUpMenu reference point
PopupSizeX D The X dimension size (width) of the popUpMenu

PopupSizeY D The Y dimension size (height) of the popUpMenu
OpeningMode D OPEN_UP:

the position (X,Y) is given according to bottom/left point
OPEN_DOWN:

the position (X,Y) is given according to top/Left point
CDS_DEPENDENT:

ARINC SPECIFICATION 661 - Page 121

3.0 WIDGET LIBRARY
Parameters Change Description
Position defined by CDS using CCD Click location

NumberOfEntries D Number of entries in the PopUpMenu

MaxStringLengthPopUp D Maximum string length for the entries on the popup

StringArray DR | String attached to one entry
NULL string will be interpreted as “separator.” The NULL string at the end of
the array will be not interpreted.

PopUpldent Array D ushort for the PopUpMenu attached to one string. Widgetldent can only refer
to another PopUpMenu. If Widgetldent is NULL, no PopUpMenu is attached
to this Entry.

EnableArray DR | Ability for each Entry on the PopUpMenu:

ENABLE
DISABLE

c-1

ARINC SPECIFICATION 661 - Page 122

3.3.32 PopUpMenuButton (cont’d)

3.0 WIDGET LIBRARY

PopUpMenuButton Creation Structure is defined in Table 3.3.32-2.

Table 3.3.32-2 - PopUpMenuButton Creation Structure

Type . . Value/Range
CreateParameterBuffer Size (bits) When Necessary
WidgetType ushort 16 A661_POP_UP_MENU_BUTTON
Widgetldent ushort 16
Parentldent |.__ushort 0
Enable uchar 8 A661_FALSE
A661_TRUE
. A661_FALSE
Visible uchar 8 A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ___ushort T
FocusIndex ushort 16
PopupPosX long 32
PopupPosY long 32
PopupSizeX ulong 32
PopupSizeY ulong 32
MaxStringLength | .__ushort 0
MaxStringLengthPopUp ushort 16
PictureReference |.__ushort 6
NumberOfEntries | uchar 8
PicturePosition uchar 8 A661_CENTER
A661_LEFT
A661_RIGHT
A661_TOP
A661_BOTTOM
OpeningMode uchar 8 A661_OPEN_UP
A661_OPEN_DOWN
A661_CDS_DEPENDENT
Alignment uchar 8 A661_LEFT
A661_CENTER
A661_RIGHT
| UnusedPad | NA L 8 0]
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
LabelString string 8 * string length + | Followed by zero, one, two or three NULL
Pad character(s) to be 32 bits aligned
PopUpldentArray[] {ushort}+ 16 * NumberOf
__ Entries
EnableArray([] {uchar}+ 8 * NumberOf
__ Entries
StringArrayl[] {string}+ | 8 * string length + | Each string terminating NULL is used as string
Pad separator.

Each array is not necessary aligned on 32 bits. The alignment is provided by adding zero, one, two or three NULL
character(s) at the end of the last array only (StringArray)

ARINC SPECIFICATION 661 - Page 123

3.0 WIDGET LIBRARY

The specific event sent by the PopUpMenuButton to the owner application is defined in Table 3.3.32-3.

Table 3.3.32-3 - PopUpMenuButton Event Structures: A661_EVT_POPUP_CLOSED

EventStructure Type (?)li::) Value/Description
Eventldent ushort 16 A661_EVT_POPUP_CLOSED
UnusedPad | NA | 8 |0
SelectedEntry _______________________ uchar | 8 |0 when the pop up is closed without any selection
‘n’ in [1; NumberOfEntry] else.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.32-4.

Table 3.3.32-4 - PopUpMenuButton Runtime Modifiable Parameters

1\11,2::_1:;: ttel;e Type (?)Ii::) ParameterIdent Used in the Type of Structure Used

to Set ParameterStructure (Refer to Section 4.5.4.5)
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_1Byte
String string {32}+ | A661_STRING A661_ParameterStructure_String
PictureRefer | ushort 16 A661_PICTURE_REFERENCE A661_ParameterStructure_2Bytes
ence
StringArray N/A {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfE
ntries]
EnableArray N/A {32}+ | A661_ENABLE_ARRAY A661_ParameterStructure_EnableArray
[Entry] Refer to definition in Table 3.3.31.1-1
StringArray N/A {32}+ | A661_ENTRY_POP_UP_ARRAY | A661_ParameterStructure_EntryPopUpArray
[NumberOfE Refer to definition in Table 3.3.31.1-2
ntries]
And
EnableArray
[NumberOfE
ntries]

c-1

ARINC SPECIFICATION 661 - Page 124

3.3.33 PushButton

Categories:
Graphical representation
Interactive
Text string

Description:

3.0 WIDGET LIBRARY

A PushButton widget is a momentary switched Button, which enables the crew to launch an action.
A PushButton has only one inner state, so there is no need for an inner state parameter.

Restriction: none

PushButton Parameters are defined in Table 3.3.33-1.

Table 3.3.33-1 - PushButton Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_PUSH_BUTTON
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocusMotion D Automatic motion of the focus on widget having the following FocusIndex
value.
Specific parameters
Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER
LabelString DR | String of the PushButton
MaxStringlength D Maximum length of the label text

ARINC SPECIFICATION 661 - Page 125

3.0 WIDGET LIBRARY

PushButton Creation Structure is defined in Table 3.3.33-2.

Table 3.3.33-2 - PushButton Creation Structure

c-1

CreateParameterBuffer Type (f)lii:) W\l:::lug?c?slsg:ry
WidgetType ushort 16 A661_PUSH_BUTTON
Widgetldent | wshort | 16 |
Parentldent | ushort |\ 16 |]
Enable uchar 8 A661_FALSE
A661_TRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | ushort | 16]
FocusIndex ushort 16
MaxStringlength | ushort | 16 |
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
Alignment | uchar | 8 |A661_LEFT]
A661_RIGHT
A661_CENTER
LabelString string 8 * | Followed by zero, one, two or three NULL character(s) to
string | be 32 bits aligned
length
+ Pad

This event indicates to the UA that a crew member has interacted with the widget.
PushButton Event Structures: A661_EVT_SELECTION is defined in Table 3.3.33-3.

Table 3.3.33-3 - PushButton Event Structures: A661_EVT_SELECTION

Size s
EventStructure (bits) Value/Description
| Eventldent 16 |A661 EVT SELECTION
UnusedPad 16 |0

Available SetParameter identifiers and associated data structure are defined in Table 3.3.33-4.

Table 3.3.33-4 - PushButton Runtime Modifiable Parameters

Name of the Parameter Type Sl‘ZE Parameferldent Used Type of Structure Used
(bits) in the .
to Set (Refer to Section 4.5.4.5)
ParameterStructure

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes

c-1

ARINC SPECIFICATION 661 - Page 126
3.0 WIDGET LIBRARY

3.3.34 RadioBox

Categories:
Container

Description:

A RadioBox widget manages the visibility and the interactivity of a group of Buttons (CheckButtons or
ToggleButtons). It enables a crew member to select one Button out of “n” exclusive ones. At a given time one item
maximum can be SELECTED. A selection of a selected item by a crew member is without effect. Never the less, the
UA can deselect the selected item (through setParameter command) to create a RadioBox without selection. The
Buttons contained in the RadioBox should be individually defined with the RadioBox as a parent widget. RadioBox
does not have any graphical representation.

Restriction:
The children of the RadioBox will be positioned relative to the parent of the RadioBox.
A RadioBox has only children types:

ToggleButton

PictureToggleButton

CheckButton
Only one type can be used in a given RadioBox at a time. The CDS assures that internal state of the children is
consistent (one and only one is selected) at all times, including when the user changes the state of the children. The
CDS prevents UAs from deselecting the selected child of a RadioBox (this is not a normal operation). The change of
child state generates two events, one for select and one for deselect.

RadioBox Parameters are defined in Table 3.3.34-1.

Table 3.3.34-1 - RadioBox Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_RADIO_BOX
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated

RadioBox Creation Structure is defined in Table 3.3.34-2.

Table 3.3.34-2 - RadioBox Creation Structure

CreateParameterBuffer Type (ilii:) W\l:::lug?c?slsg:ry

WidgetType ushort 16 A661_RADIO_BOX

Widgetldent ushort 16

Parentldent ushort 16

Enable | uchar | 8 |[A661 FALSE
A661_TRUE

Visible | uchar | 8 |A661 FALSE
A661_TRUE

The RadioBox widget does not send any event.

ARINC SPECIFICATION 661 - Page 127

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.34-3.

Table 3.3.34-3 - RadioBox Runtime Modifiable Parameters

Name of the Type Sl.ze Parameferldent Used Type of Structure Used

Parameter to Set (bits) in the (Refer to Section 4.5.4.5)
ParameterStructure

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

3.3.35 RotationContainer

Categories:
Container

Description:
A RotationContainer widget applies a rotation transformation to a group of widgets. Widgets placed within

RotationContainer have their coordinates referenced to the first parent with a PosX, PosY reference point.

Restriction:
For RotationContainer restriction refer to Table 3.2.3.1 for children/parents.

RotationContainerParameters are defined in Table 3.3.35-1.

Table 3.3.35-1 - RotationContainerParameters

Parameters Change | Description

Commonly used parameters

WidgetType D A661_ROTATION_CONTAINER

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

Specific parameters

CenterX DR X position of the center of the rotation

CenterY DR Y position of the center of the rotation
RotationAngle DR Rotation angle to be applied to the children widgets

ARINC SPECIFICATION 661 - Page 128

3.3.35 RotationContainer (cont’d)

3.0 WIDGET LIBRARY

RotationContainer Creation Structure is defined in Table 3.3.35-2.

Table 3.3.35-2 - RotationContainer Creation Structure

CreateParameterBuff Tvoe Size Value/Range
er M (bits) When Necessary

WidgetType ushort 16 | A661_ROTATION_CONTAINER
Widgetldent ushort 16
Parentldent ushort 16
Enable uchar 8§ |A661_FALSE
| Ae6L TRUE
Visible uchar 8 |A661_FALSE

A661_TRUE
CenterX long 32
CenterY long 32
RotationAngle fr(180) 32

The RotationContainer widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.35-3.

Table 3.3.35-3 - RotationContainer Runtime Modifiable Parameters

Name of the Type Si‘ze ‘ ParameterIdent Used Type of Struc.ture Used

Parameter to Set (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
CenterX long | 32x2 | A661_CENTER_XY A661_ParameterStructure_XY
CenterY x2
CenterX long 32 | A661_CENTER_X A661_ParameterStructure_4Bytes
CenterY long 32 A661_CENTER_Y A661_ParameterStructure_4Bytes
RotationAngle fr(180)| 32 |A661_ROTATION_ANGLE | A661_ParameterStructure_4Bytes

c-1

ARINC SPECIFICATION 661 - Page 129

3.0 WIDGET LIBRARY

3.3.36 ScrollPanel

Categories:
Container
Graphical representation

Description:

A scroll container is composed of two elements:

Frame, at fixed location. This location is the position of the widget (as already known), defined by the parameters
PosX, PosY, SizeX, SizeY.

Sheet, larger than the Frame, at a variable location with respect to the Frame. This location is defined by the variables
FrameX, FrameY, SizeXsheet, SizeYsheet. Note that X/Y coordinates of the sheet are called FrameX and FrameY.

Indeed, the sheet X/Y coordinates should in fact be interpreted as the offset of the sheet relative to the frame according
to standard coordinate system, shown in Figure 3.3.36.

The scrolling function is allowed by DeltaX, DeltaY parameters, which provide to the CDS the displacement of the
sheet to apply when a crew member initiates an action with the scroll controls.

The scrolling function is also subject to boundaries specified through BoundX, BoundY, SizeXbound, SizeYbound
parameters accessible by the UA at run time. These coordinates refer to the sheet location.

The CDS should provide scroll controls (scroll bars and/or scroll buttons, according to the airframe
manufacturer/system integrator style guide). Typically, this is based on the relative size of the frame and the sheet. For
instance, if X size of the frame is smaller than the X size of the sheet, the CDS should set a horizontal scroll control.
Two parameters are available to allow the UA to choose from a variety of positions according to the airframe

manufacturer/system integrator style guide.

Note: Orientation of arrows make a difference.

A

Y frame

Figure 3.3.36 Frame Standard Coordinate System

Restriction: The reference position for the children of the ScrollPanel is the FrameX and FrameY.

ARINC SPECIFICATION 661 - Page 130
3.0 WIDGET LIBRARY

3.3.36 ScrollPanel (cont’d)

ScrollPanel Parameters are defined in Table 33.3.36-1.

Table 3.3.36-1 - ScrollPanel Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_SCROLL_PANEL

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

StyleSet DR Reference to predefined graphical characteristics inside CDS

Enable DR Ability of the widget to be activated

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

Specific parameters

LineDeltaX D Increment/Decrement to apply to FrameX when line scroll
controls are activated.

LineDeltaY D Increment/Decrement to apply to FrameY when line scroll
controls are activated.

PageDeltaX D Increment/Decrement to apply to FrameX when page scroll
controls are activated.

PageDeltaY D Increment/Decrement to apply to FrameY when page scroll
controls are activated.

HomeX D X predefined position for the frame

HomeY D Y predefined position for the frame

FrameX DR Frame Origin co-ordinate on x axis.

FrameY DR Frame Origin co-ordinate on y axis.

SizeXsheet D X dimension size of the sheet

SizeYsheet D Y dimension size of the sheet

BoundX DR Scroll Boundary Origin co-ordinate on X axis.

BoundY DR Scroll Boundary Origin co-ordinate on y axis.

SizeXbound DR X dimension size of the Scroll boundary

SizeYbound DR Y dimension size of the Scroll boundary

FlagReportFramePos D If True, CDS will report change on the frame position following
crew member actions.

Horizontal Scroll D Absent/Top/Bottom/Left/Right

Vertical Scroll D Absent/Left/Right/Top/Bottom

ARINC SPECIFICATION 661 - Page 131

3.0 WIDGET LIBRARY

ScrollPanel Creation Structure is defined in Table 3.3.36-2.

Table 3.3.36-2 - ScrollPanel Creation Structure

CreateParameterBuffer Type (?)lii:) W‘lllzilule\lliilslsg:ry

WidgetType ushort 16 |A661_SCROLL_PANEL

Widgetldent ushort 16

Parentldent ushort 16

Enable | uchar | 8 |A661_FALSE]
A661_TRUE

Visible | uchar | 8 |A661_FALSE]
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

LineDeltaX ulong 32

LineDeltaY ulong 32

PageDeltaX ulong 32

PageDeltaY ulong 32

HomeX long 32

HomeY long 32

FrameX long 32

FrameY long 32

SizeXsheet ulong 32

SizeYsheet ulong 32

BoundX long 32

BoundY long 32

SizeXbound ulong 32

SizeYbound ulong 32

StyleSet] ushort | Yo]

UnusedPad N/A 16 |0

Horizontal Scroll uchar 8 A661_TOP
A661_BOTTOM
A661_LEFT
A661_RIGHT
A661_ABSENT

Vertical Seroll | uchar | 8 |Ae6l_TOP
A661_BOTTOM
A661_LEFT
A661_RIGHT
A661_ABSENT

FlagReportFramePos | uchar | 8 |A661 FALSE]
A661_TRUE

UnusedPad N/A 8 0

c-1

ARINC SPECIFICATION 661 - Page 132
3.0 WIDGET LIBRARY

3.3.36 ScrollPanel (cont’d)

ScrollPanel Event Structures: A661_EVT_FRAME_POS_CHANGE are defined in Table 3.3.36-3.

Table 3.3.36-3 - ScrollPanel Event Structures: A661_EVT_FRAME_POS_CHANGE

EventStructure Type (?)li::) Value/Description
Eventldent ushort 16 | A661_EVT_FRAME_POS_CHANGE
[UnusedPad | whort | 16 [0
FrameX long 32
FrameY long 32

Available SetParameter identifiers and associated data structure are defined in Table 3.3.36-4.

Table 3.3.36-4 - ScrollPanel Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 | A661_STYLE SET A661_ParameterStructure_2Bytes
FrameX long 32 | A661_FRAME_ X A661_ParameterStructure_4Bytes
FrameY long 32 A661_FRAME_Y A661_ParameterStructure_4Bytes
BoundX long 32 A661_BOUND_X A661_ParameterStructure_4Bytes
BoundY long 32 A661_BOUND_Y A661_ParameterStructure_4Bytes
SizeXbound ulong 32 A661_BOUND_SIZE X A661_ParameterStructure_4Bytes
SizeYbound ulong 32 A661_BOUND_SIZE Y A661_ParameterStructure_4Bytes

ARINC SPECIFICATION 661 - Page 133

3.0 WIDGET LIBRARY

3.3.37 ScrollList

Categories:
Graphical Representation
Interactive
Text string

Description:

A ScrollList widget enables the display of a list of entries and selection of one entry from among this list. Entries are
text strings, possibly including escape sequences. This is specified through the DefaultStyleText Definition Time Only
parameter, if set to null, all labels can be considered by the CDS as being like normal Labels. As a consequence of the
use of escape sequences, one entry in the ScrollList can correspond to several lines. The size of the selection area is
determined by graphical parameters (size of widget, number of entries), and not by the text. The UA should verify that
the text fits in the selection area.

Restriction:
SelectedEntry, FirstVisibleEntry and FirstAccessibleEntry assume the first Entry index to be 1.
When SelectedEntry is 0, it is interpreted as none.

c-1

c-1

c-1

ARINC SPECIFICATION 661 - Page 134

3.3.37 ScrollList (cont’d)

3.0 WIDGET LIBRARY

ScrollList Parameters are defined in Table 3.3.37-1.

Table 3.3.37-1 - ScrollList Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_SCROLL_LIST

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside
CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

FocusIndex D Order of the widget for focus circulation

AutomaticFocusMotion D Automatic motion of the focus on widget having the
following FocusIndex value.

Specific parameters

NumberOfEntries DR Number of accessible entries

MaxNumberOfEntries D Max number of entries that can be managed by objects

FirstVisibleEntry DR Index of the entry appearing on top

ShiftFirstVisibleEntry R Index shift to be applied to the current first visible entry.
That is, when a UA wants to move the entries down and
insert new ones above, this parameter allows the UA to
offset indices while new data is loading, to accommodate
for the crossover.

FirstAccessibleEntry DR Entries with lower indices do not appear.
Entries with higher indices than FirstAccessibleEntry plus
NumberOfEntry do not appear.

FlagReportVisibleEntry D If True, CDS will report change on first visible entry
following crew member actions.

SelectedEntry DR | Currently selected Entry index

DefaultStyleText D NULL character: Escape sequence not used, entries in the
ScrollList are simple labels.
“ToutLineTBackColorTForeColorTFont”
Escape sequences defining the Default style for the text,
refer to Section 3.2.5.4, Default Graphic Properties.

MaxStringlength D Maximum string length able to be received by the object

Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER

LabelStringArray[MaxNumberOfEntries] DR Label array of the ScrollList

Vertical Scroll D ABSENT
LEFT
RIGHT
TOP
BOTTOM

ScrollListCreation Structure is defined in Table 3.3.37-2.

ARINC SPECIFICATION 661 - Page 135

3.0 WIDGET LIBRARY

Table 3.3.37-2 - ScrollList Creation Structure

CreateParameterBuffer Type (f)li::) W\l:::lug?c?slsg:ry
WidgetType ushort 16 A661_SCROLL_LIST
Widgetldent ushort 16
Parentldent ushort 16
Enable | uchar | 8 | A661 FALSE
A661_TRUE
Visible | uchar | 8 | A661 FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet] ushort | o |
FocusIndex ushort 16
MaxNumberOfEntries | ushort | o |
NumberOfEntries ushort 16
SelectedEntry | ushort | o |
Vertical Scroll uchar 8 A661_LEFT
A661_RIGHT
A661_ABSENT
Alignment | uchar | 8 | A661_LEFT
A661_RIGHT
A661_CENTER
FirstAccessibleEntry | ushort | L
FirstVisibleEntry ushort 16
MaxStringLength] ushort | L
FlagReportVisibleEntry uchar 8 A661_FALSE
A661_TRUE
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
DefaultStyleText uchar 96
LabelStringArray {string}+ 8 * There are “NumberOfEntries” strings.
string | Each string terminating NULL is used as string separator.
lengths + | The complete string list is followed by zero, one, two or
Pad three NULL character(s) to be 32 bits aligned.

c-1

ARINC SPECIFICATION 661 - Page 136

3.3.37 ScrollList (cont’d)

3.0 WIDGET LIBRARY

ScrollList Event Structures: A661_EVT_SEL_ENTRY_CHANGE are defined Table 3.3.37-3.

Table 3.3.37-3 - ScrollList Event Structures: A661_EVT_SEL_ENTRY_CHANGE

EventStructure (f)li::) Value/Description
Eventldent 16 |A661 EVI SEL ENTRY CHANGE .
SelectedEntry 16 | Index of the new selected entry

ScrollList Event Structures: A661_EVT_FIRST_VIS_ENTRY_CHANGE are defined in Table 3.3.37-4.

Table 3.3.37-4 - ScrollList Event Structures: A661_EVT_FIRST_VIS _ENTRY_CHANGE

Size ..
EventStructure (bits) Value/Description
Eventldent 16 | A661_EVT_FIRST_VIS_ENTRY_CHANGE
FirstVisibleEntry 16 | Index of the first visible entry

Available SetParameter identifiers and associated data structure are defined in Table 3.3.37-5.

Table 3.3.37-5 - ScrollList Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent Used Type of Structure Used

Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 | A661_STYLE SET A661_ParameterStructure_2Bytes
NumberOfEntries ushort 16 |A661_NUMBER_OF_ENTRIES | A661_ParameterStructure_2Bytes
FirstAccessibleEntry | ushort 16 | A661_FIRST_ACCESS_ENTRY | A661_ParameterStructure_2Bytes
FirstVisibleEntry ushort 16 | A661_FIRST_VISIBLE ENTRY |A661_ParameterStructure_2Bytes
ShiftFirstVisibleEntry | ushort 16 A661_SHIFT_FIRST_VISIBLE_ | A661_ParameterStructure_2Bytes

ENTRY

SelectedEntry ushort 16 | A661_SELECTED_ENTRY A661_ParameterStructure_2Bytes
LabelStringArray N/A {32}+ | A661_STRING_ARRAY A661_ParameterStructure_StringArray

ARINC SPECIFICATION 661 - Page 137

3.0 WIDGET LIBRARY

3.3.38 Symbol

Categories:

Graphical Representation

Dynamic Motion

Description:

The Symbol widget is similar to the Label widget, except it does not have a Max-String-Length parameter and the
string parameter is replaced by a Symbol-Reference parameter (outside reference).

Restriction: none

Symbol Parameters are defined in Table 3.3.38-1.

Table 3.3.38-1 - Symbol Parameters

Parameters Change Description

Commonly used parameters

WidgetType D A661_SYMBOL

Widgetldent D Unique identifier of the widget.

Parentldent D Identifier of the immediate container of the widget.

Visible DR | Visibility of the widget

StyleSet DR |Reference to predefined graphical characteristics inside CDS.

PosX DR | The X position of the widget reference point

PosY DR The Y position of the widget reference point

Specific parameters

MotionAllowed D Capability to change PosX, PosY, Rotation Angle at runtime

RotationAngle DR | Angle at which symbol is displayed relative to its origin
Refer to Angles defined in Section 2.3.4.2

ColorIndex DR | Color index of the symbol, used if StyleSet allows color to be set.

SymbolReference DR | Reference of the symbol stored in the CDS

ARINC SPECIFICATION 661 - Page 138
3.0 WIDGET LIBRARY

3.3.38 Symbol (cont’d)

Symbol Creation Structure is defined in Table 3.3.38-2.

Table 3.3.38-2 - Symbol Creation Structure

CreateParameter Buffer Type (f)ii::) WYliLule\;eI}caelslsg:ry

WidgetType ushort 16 A661_SYMBOL

Widgetldent | 1 ushort | 6 |
Parentldent ushort 16

o1 | [Motion Allowea uchar | 8 |A661_FALSE
A661_TRUE
Visible | uchar | 8 [A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

RotationAngle fr(180) 32
StyleSet ushort 16

SymbolReference | whot | 16 |
ColorIndex uchar 8 (valid palette index)

UnusedPad | NA | 24 o

Symbol does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.38-3.

Table 3.3.38-3 - Symbol Runtime Modifiable Parameters
Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 |A661_STYLE_SET A661_ParameterStructure_2Bytes
PosX long | 32x2 | A661_POS_XY A661_ParameterStructure_XY

PosY x2
PosX long 32 | A661_POS_X A661_ParameterStructure_4Bytes
PosY long 32 | A661 POS.Y A661_ParameterStructure_4Bytes
RotationAngle fr(180)| 32 |A661_ORIENTATION A661_ParameterStructure_4Bytes
ColorIndex uchar 8 A661_COLOR_INDEX A661_ParameterStructure_1Byte

c-1 SymbolReference ushort 16 |A661_SYMBOL_REFERENCE |A661_ParameterStructure_1Byte

ARINC SPECIFICATION 661 - Page 139

3.0 WIDGET LIBRARY

3.3.39 TabbedPanel

Categories:

Container

Graphical Representation
Text string

Description:

The TabbedPanel widget is functionally composed of a Panel associated with a Button. This widget can be created
only inside a TabbedPanelGroup widget. The size of the panel part of the TabbedPanel widget is identical for all the
TabbedPanel inside a TabbedPanelGroup and is therefore described by the TabbedPanelGroup widget. Connectors can
be used to move the definition of the TabbedPanel to a different definition file so that the owning application can
control the parameters of the TabbedPanel.

The TabbedPanel widget is not interactive, however it contains a FocusIndex parameter used by the parent
TabbedPanelGroup to shift focus from one tab to another.

Restriction:
The TabbedPanel widget should only be used under a TabbedPanelGroup or a Layer. When directly attached to a
layer, this layer should not be attached to a window to be displayed alone.

TabbedPanel Parameters are defined in Table 3.3.39-1.

Table 3.3.39-1 - TabbedPanel Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_TABBED_PANEL

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget.

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to graphical characteristics defined inside CDS.
The StyleSet will influence only the label or picture displayed on the button
associated with the TabbedPanel

FocusIndex D Order of the widget for focus circulation

AutomaticFocusMotion D Automatic motion of the focus on widget having the following FocusIndex
value.

Specific parameters

LabelString DR Label of the tab

Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER

MaxStringLength D Maximum string length of the label

InsetSize D Size of the button associated with the TabbedPanel, in the direction of the
text writing, in screen units (millimeters).

Picture Reference DR Picture reference among available picture inside CDS

PicturePosition D The string position depends on the picture position:
CENTER
LEFT
RIGHT
TOP
BOTTOM

c-1

c-1

ARINC SPECIFICATION 661 - Page 140
3.0 WIDGET LIBRARY

3.3.39 TabbedPanel (cont’d)

COMMENTARY

TabbedPanel and TabbedPanelGroup widgets are defined as separate widgets to provide the UA the ability to
change the characteristics of each TabbedPanel when it is necessary. This implies that there will be one
identifier for the TabbedPanelGroup and one identifier per TabbedPanel children.

TabbedPanel Creation Structures are defined in Table 3.3.39-2.

Table 3.3.39-2 - TabbedPanel Creation Structure

CreateParameterBuffer Type (f)lii:) W\l:::lug?c?slsg:ry
WidgetType ushort 16 |A661_TABBED_PANEL
Widgetldent | ushort | 6 |\ |
Parentldent | ushort | W |
Enable uchar 8 A661_FALSE
A661_TRUE
Visible | uchar | 8 |A661 FALSE |
A661_TRUE
StyleSet | ushort | T l
FocusIndex ushort 16
MaxStringLength | ushort | 6 |
PictureReference ushort 16
PicturePosition uchar 8 A661_CENTER
A661_LEFT
A661_RIGHT
A661_TOP
A661_BOTTOM
AutomaticFocusMotion | uchar | ¢ 8 |A661 FALSE |
A661_TRUE
Alignment | uchar | 8 |A661_LEFT |
A661_RIGHT
A661_CENTER
UnusedPad | NA | g o |
InsetSize ulong 32
LabelString string 8 * | Followed by zero, one, two or three extra NULL for
string | alignment of 32 bits.
length
+ Pad

The TabbedPanel widget does not send any event.
Available SetParameter identifiers and associated data structure are defined in Table 3.3.39-3.

Table 3.3.39-3 - TabbedPanel Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 |A661_STYLE SET A661_ParameterStructure_2Bytes
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String
PictureReference ushort 16 | A661_PICTURE_REFERENCE | A661_ParameterStructure_2Bytes

ARINC SPECIFICATION 661 - Page 141

3.0 WIDGET LIBRARY

3.3.40 TabbedPanelGroup

Categories:

Container

Graphical representation
Interactive

Description:

A TabbedPanelGroup widget groups several TabbedPanel widgets. A TabbedPanelGroup enables the UA or a crew
member to select one of the TabbedPanel widgets for display. All of the Panels inside the TabbedPanel widgets
occupy the same display space, and only one may be displayed at a time. This TabbedPanel is the one referenced by
the “Active TabbedPanel ID”.

The TabbedPanelGroup has clipping capabilities.

Restriction:
A TabbedPanelGroup can only contain TabbedPanel or Connector widgets.

TabbedPanel Group Parameters are defined in Table 3.3.40-1.

Table 3.3.40-1 - TabbedPanelGroup Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_TABBED_PANEL_GROUP

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

Specific parameters

TabPosition D Display and position of optional tab:
ABSENT no tab will be used
TOP automatic tab will be set up
BOTTOM automatic tab will be set down
LEFT automatic tab will be set left
RIGHT automatic tab will be set right

AutomaticlnsetSizeFlag D If TabPosition is Top/Bottom:
TRUE: CDS defines the button size according to the TabbedPanelGroup
and the number of button.
FALSE: The button size is defined by the TabbedPanel parameter
buttonSize. If this size is incoherent, it is set by the CDS automatically
If TabPosition is Right/Left:
TRUE: CDS defines the button size according to the StyleSet
FALSE: The CDS use the maximum of the sizes defined inside the
TabbedPanel

ActiveTabbedPanellD DR Identifier of the active TabbedPanel

c-1

c-1

ARINC SPECIFICATION 661 - Page 142
3.0 WIDGET LIBRARY

3.3.40 TabbedPanelGroup (cont’d)

TabbedPanelGroup Creation Structure is defined in Table 3.3.40-2.

Table 3.3.40-2 - TabbedPanelGroup Creation Structure

CreateParameterBuffer Type (f)lii:) W‘llli:lule\g{caelslsg:ry

WidgetType ushort 16 | A661_TABBED_PANEL_GROUP

Widgetldent ushort 16

Parentldent ushort 16

Enable uchar 8 A661_FALSE
A661_TRUE

Visible uchar 8 | A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX ulong 32

SizeY ulong 32

StyleSet ushort 16

ActiveTabbedPanellD ushort 16

TabPosition uchar 8 A661_ABSENT
A661_TOP
A661_BOTTOM
A661_LEFT
A661_RIGHT

AutomaticInsetSizeFlag | uchar 8 | A661_FALSE

____________________________ A661_TRUE

UnusedPad N/A 16 |0

TabbedPanelGroup Event Structures: A661_EVT_TABBED_PANEL_CHANGE are defined in Table 3.3.40-3.

Table 3.3.40-3 - TabbedPanelGroup Event Structures: A661_EVT_TABBED_PANEL_CHANGE

Type | Size o
EventStructure (bits) Value/Description
Eventldent = |1 ushort | 16 | A6G6I_EVT_TABBED_PANEL CHANGE
ActiveTabbedPanellD ushort 16 Identifier of the new selected TabbedPanel

Available SetParameter identifiers and associated data structure are defined in Table 3.3.40-4.

Table 3.3.40-4 - TabbedPanelGroup Runtime Modifiable Parameters

Name of the Parameter | Type | Size ParameterIdent Used Type of Structure Used

to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 |A661_STYLE SET A661_ParameterStructure_2Bytes
ActiveTabbedPanellD ushort 16 |A661_ACTIVE_TABBED_PANEL | A661_ParameterStructure_2Bytes

ARINC SPECIFICATION 661 - Page 143

3.0 WIDGET LIBRARY

3.3.41 ToggleButton

Categories:
Graphical representation
Interactive
Text string

Description:
A ToggleButton widget is a two, stable-states Button with text.

Restriction: none
ToggleButton Parameters are defined in Table 3.3.41-1.

Table 3.3.41-1 - ToggleButton Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_TOGGLE_BUTTON

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

ToggleState DR Inner state of the ToggleButton
UNSELECTED
SELECTED

StyleSet DR Reference to predefined graphical characteristics inside CDS

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

FocusIndex D Order of the widget for focus circulation

AutomaticFocusMotion D Automatic motion of the focus on widget having the following
FocusIndex value.

Specific parameters

MaxStringLength D Maximum length of the label text

AlternateFlag D True: Use of the two strings according to the inner state. CDS will change
the string if the inner state change
False: “AlternateString” is not used. Only parameter “string” is used for
the two inner state

Alignment D Alignment of the text within the label area of the widget
LEFT
RIGHT
CENTER

String DR Label of the ToggleButton
Label used for UNSELECTED state

AlternateString DR Label of the ToggleButton
Label used for SELECTED state

ARINC SPECIFICATION 661 - Page 144
3.0 WIDGET LIBRARY

3.3.41 ToggleButton (cont’d)

ToggleButton Creation Structure is defined in Table 3.3.41-2.

Table 3.3.41-2 - ToggleButton Creation Structure

c-1

CreateParameterBuffer Type (?)li::) W\lii:lule\lliilslsg:ry
WidgetType | ushort | 16 |AG6l_TOGGLE BUTTON
Widgetldent ushort 16
Parentldent | ushort | L
Enable uchar 8 A661_FALSE
A661_TRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet | _ ushort | L
FocusIndex ushort 16
MaxStringLength | ushort | L
InnerState uchar 8 A661_UNSELECTED
A661_SELECTED
AlternateFlag uchar 8 A661_FALSE
A661_TRUE
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
Alignment uchar 8 A661_LEFT
A661_RIGHT
A661_CENTER
UnusedPad N/A 16 |0
LabelString string 8*
string1
___ length | .
AlternateLabelString string 8 * | Followed by zero, one, two or three extra NULL for
string2 | alignment of 32 bits.
length
+ Pad

ToggleButton Event Structures: A661_EVT_STATE_CHANGE are defined in Table 3.3.41-3.

Table 3.3.41-3 - ToggleButton Event Structures: A661_EVT_STATE_CHANGE

EventStructure Type Sl.ze Value/Description
(bits)
Eventldent ushort 16 | A661_EVT_STATE_CHANGE
UnssedPad [NA [8 fo]
InnerState uchar 8 A661_UNSELECTED
A661_SELECTED

ARINC SPECIFICATION 661 - Page 145

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.41-4.

Table 3.3.41-4 - ToggleButton Runtime Modifiable Parameters

Name of the Type Size ParameterIdent Used Type of Structure Used
Parameter to Set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)

ToggleState uchar 8 A661_INNER_STATE_TOGGLE | A661_ParameterStructure_1Byte
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String
AlternateLabelString | string | {32}+ | A661_STRING_ALTERNATE A661_ParameterStructure_String

3.3.42 TranslationContainer

Categories:

Container

Description:

A TranslationContainer widget applies a translation transformation to a group of widgets. Widgets placed within
TranslationContainer have their coordinates referenced to the first parent with a PosX, PosY reference point.

Restriction:

For TranslationContainer restriction refer to Table 3.2.3.1 regarding children/parents.

TranslationContainer Parameters are defined in Table 3.3.42-1.

Table 3.3.42-1 - TranslationContainerParameters Table

Parameters Change Description
Commonly used parameters
WidgetType D A661_TRANSLATION_CONTAINER
Widgetldent D Unique identifier of the widget.
Parentldent D Identifier of the immediate container of the widget.
Visible DR Visibility of the widget
Enable DR | Ability of the widget to be activated
Specific parameters
TranslationX DR X Translation of the child widgets
TranslationY DR | Y Translation of the child widgets

ARINC SPECIFICATION 661 - Page 146
3.0 WIDGET LIBRARY

3.3.42 TranslationContainer (cont’d)

TranslationContainer Creation Structure is defined in Table 3.3.42-2.

Table 3.3.42-2 - TranslationContainer Creation Structure Table

CreateParameter Buffer Type (f)iii:) WYliLule\;eI}caelslsg:ry

WidgetType ushort 16 | A661_TRANSLATION_CONTAINER

Widgetldent | whort | 16 |

Parentldent ushort 16

Enabe | ouchar | § |A66I_FALSE
A661_TRUE

Visibe | uchar | § |A66I_FALSE
A661_TRUE

TranslationX long 32

TranslationY long 32

The TranslationContainer widget does not send any event.

Available SetParameter identifiers and associated data structure are defined in Table 3.3.42-3.

Table 3.3.42-3 - TranslationContainer Runtime Modifiable Parameters

Name of the Type Si-ze ‘ ParameterIldent Used Type of Struc.ture Used

Parameter to Set (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
TranslationX long 32x2 | A661_TRANSLATION_XY | A661_ParameterStructure_XY
TranslationY x2
TranslationX long 32 A661_TRANSLATION_X A661_ParameterStructure_4Bytes
TranslationY long 32 A661_TRANSLATION_Y A661_ParameterStructure_4Bytes

3.4 Widget Library Expansion

This section was added in Supplement 1. It introduces new widgets to ARINC 661.
3.4.1 MapGrid

Categories:
Map Management
Graphical Representation

Description:

MapGrid provides a means for conveying arrays of data to the CDS that are rendered as area fills. The intended use is
for filling areas on background layers of the NAV window with colors and/or patterns that indicate terrain topography,
precipitation intensity, or other irregular, dynamic data.

ARINC SPECIFICATION 661 - Page 147

3.0 WIDGET LIBRARY

The fill is defined by the number of cells in the horizontal and vertical, the size of each cell in nautical miles or
equivalent, the offset of the grid’s (0,0) cell from the display origin, and the Fill Style Index for each cell. Distances
are described in real-world units, which decouples the UA from the specific display technology. The entire area
defined by each cell boundary is to be filled with the color or pattern or other graphical attribute as selected by the Fill
Style Index. Typically, slightly more data is supplied than is displayed. The amount of excess depends on several
factors:

» Ifthe CDS or UA implements motion compensation (update the origin or rotation independently of color
data)

If the background data is masked around the edges

If the application is aware of the current display mode (arc, rose, plan, center, etc.)

e Ifthere is sufficient bandwidth between UA and CDS for an oversized array

» Is there is sufficient memory allocated in the CDS for an oversized array

%l ™
NN
NN
AN \
77
A)3
ZZZ NN
/NN /7
/NN 2z
7 V0
OrigK offset 222 2222
OrigY| offset IDY M
O ~
grid N x M cells DX nM display J x K pixels
origin origin
MapGrid widget ND window

Figure 3.4.1-1 Example MapGrid rendering in ND window

The UA may need to update the MapGrid color data periodically. Since the array may be large relative to the
bandwidth available, provision is made for just a few (or one) rows or columns at a time. The UA can change the size
of a cell, in real-world units, at run-time to support a balance between range and resolution. The size of a MapGrid
array, in cells, is fixed at Definition Time.

Restriction:
A MapGrid must be in a MapHorz_Source container.

c-1

c-1

ARINC SPECIFICATION 661 - Page 148
3.0 WIDGET LIBRARY

3.4.1 MapGrid (cont’d)
MapGrid Parameters are defined in Table 3.4.1-1.

Table 3.4.1-1 - MapGrid Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MAP_GRID

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget
Visible DR Visibility of the widget

Specific parameters

CountX D Number of cells along the X axis in the array.
CountY D Number of cells along the Y axis in the array.

OffsetX DR Horizontal offset, in (fractional) cells, between the display reference point and the
grid origin. If translation/rotation is done by the UA, this number is constant
(typically one-half of CountX).

(OffsetX, OffsetY) defines the point in the grid to be placed at the display origin
(typically, the aircraft current location). The point may or may not be at a cell
boundary, depending on the ratio of cell size to pixel size, chosen aircraft mock-up
location, and whether translation for aircraft motion is implemented in the CDS or the

UA.

OffsetY DR Vertical offset, in (fractional) cells, between the display reference point and the grid
origin.

IncrementX DR Size of each individual cell in the X axis, in the real-world units defined by the

containing MapHorz_Source:

A661_MDF_LAT_LONG: IncrementX is in degrees of longitude
A661_MDF_BRG_DIST_ACHDG: IncrementX is in nautical miles
For MapVert sources: IncrementX is in nautical miles

IncrementY DR Size of each individual cell in the Y axis, in the real-world units defined by the
containing MapHorz_Source:

A661_MDF_LAT_LONG: IncrementY is in degrees of latitude
A661_MDF_BRG_DIST_ACHDG: IncrementY is in nautical miles
For MapVert sources: IncrementY is in feet

BufferOfFillStyles R Buffer of Fill Style Indices. Buffer can be updated row-at-a-time or column-at-a-time.

ARINC SPECIFICATION 661 - Page 149

3.0 WIDGET LIBRARY

MapGrid Creation Structure is defined in Table 3.4.1-2.

Table 3.4.1-2 - MapGrid Creation Structure

CreateParameterBuffer Type Size Value / Range
(bits) | When Necessary

WidgetType ushort 16 A661_MAP_GRID

Widgetldent ushort 16

Parentldent ushort 16

Visible uchar 8 A661_FALSE
A661_TRUE

UnusedPad N/A 8

OffsetX float 32 range is 0 to CountX

OffsetY float 32 range is 0 to CountY

IncrementX float 32 units defined by containing MapHorz_Source widget
(degrees or nautical miles)

IncrementY float 32 units defined by containing MapHorz_Source widget
(degrees, nautical miles, or feet)

CountX ushort 16

CountY ushort 16

MapGrid Runtime Modifiable Parameters are defined in Table 3.4.1-3.

Table 3.4.1-3 - MapGrid Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent used Type of Structure Used

parameter to set (bits in the ParameterStructure (Refer to sections 4.5.3)

Visible uchar | 8 A661_VISIBLE A661_ParameterStructure_1Byte

OffsetX, OffsetY float 32x2 | A661_MAPGRID_OFFSET A661_ParameterStructure_ XY

IncrementX, long 32x2 | A661_MAPGRID_CELLSIZE A661_ParameterStructure_ XY

IncrementY

BufferOfFillStyles | float 32 A661_BUFFER_OF_FILL_STYLE | A661_ParameterStructure_BufferOfFillStyles

S

Refer to “MapGrid Parameter Structure
Specifics” section below.

All the data in the buffer must use the same origin/orientation values. Even though the buffer can be filled line-at-a-
time, over time, all the lines are displayed simultaneously, and must be internally consistent.

For MapGrids in MapHorz_Sources that have a variable orientation value (A661_MDF_BRG_DIST_ACHDG), the
convention is that the first line of fill (the one following a BUFFER_COMPLETE signal — see next section), must be
aligned to the current orientation value (aircraft heading). If the orientation reference changes during subsequent line
updates, those subsequent lines must be oriented consistent with all the preceding ones (in particular, the first one).

c-1

c-1

ARINC SPECIFICATION 661 - Page 150
3.0 WIDGET LIBRARY

3.4.1.1 MapGrid A661_ParameterStructure Specifics

A661_ParameterStructure_BufferOfFillStyles are defined in Table 3.4.1.1-1.

Table 3.4.1.1-1 - A661_ParameterStructure_BufferOfFillStyles

Field Type Size Description
(bits)
Parameterldent ushort 16 Identifier of the parameter type
Unused Pad N/A 16 0
StartIndexX ushort 16 Index (zero-based) of column to start storing data.
StartIndexY ushort 16 Index (zero-based) of row to start storing data.

Some CDS implementations may require that one of
StartIndexX or StartlndexY be zero.

NumColumns ushort 16 Number of columns being filled.

NumRows ushort 16 Number of rows being filled.

Some CDS implementations may require that one of
NumColumns or NumRows be set to CountX or
CountY, respectively. For some implementations the
restriction may only be enforced if the other of
NumColumns, NumRows is greater than one.

StepX uchar 8 +1 or —1 (0xFF)
May be set to 0 if NumColumns is 1.
StepY uchar 8 +1 or —1 (0xFF)

May be set to 0 if NumRows is 1.

Some CDS implementations may suggest or require
that StepX and/or StepY always be set to a specific
value (such as +1).

RowMajor uchar 8 A661_FALSE or A661_TRUE

If TRUE, the second Fill Style Index in this message
goes into the same COLUMN as the first. If FALSE,
the second one goes into the same ROW as the first.

Some CDS implementations may suggest or require
this parameter always be set to a given value.

ControlFlag uchar 8 bit 0 = clear buffer (see text)
bit 1 = buffer complete (see text)
ParameterValue uchar {32} List of Fill Style Index values.

Data are stored starting with the cell indexed by
[StartIndexX, StartindexY] and continuing in the
direction specified by the RowMajor parameter until
the specified NumColumns (or NumRows) have been
filled, then moving one row (or column) in the
direction specified by the StepX or StepY parameter
and repeating until the specified NumRows (or
NumColumns) have been filled.

Structure is ended by zero, one, two, or three NULL
character(s) to pad the structure to 32-bit alignment.

StepX, StepY, and RowMajor typically are constants chosen to work efficiently with the hardware. By listing them
specifically in the message, sender and receiver communicate and check their assumptions. If a CDS implementation
has restrictions on StartindexX/Y or NumColumns/NumRows or StepX/StepY/RowMajor values as noted in the

ARINC SPECIFICATION 661 - Page 151

3.0 WIDGET LIBRARY

descriptions above, and a UA violates those restrictions, the CDS must return an Error Notification Structure (see
Section 4.4.2)

The ControlFlag parameter serves two purposes. In the normal case, it must be set to zero. When the least significant
bit is set, it indicates the entire buffer should be cleared to a Fill Style Index of zero BEFORE this line of data is
stored. This allows the UA to blank the display quickly when required. The meaning of Fill Style Index zero is not
defined here (may be all black, all white, or something else, depending on flight deck design).

When ControlFlag bit 1 is set, this indicates that the buffer update will be “complete” AFTER this line of data is
stored. This may have a variety of effects. For example, if double buffering is implemented, it allows the CDS to know
when to swap buffers. Or, if motion compensation is implemented, it allows the CDS to know that a new frame of data
aligned to the current orientation is ready to be sent. User applications should set this flag whenever these sort of
action would be appropriate.

The initial state of the buffer before any user data are sent is defined to be “cleared”, that is, set to all zero Fill Style
Indices. After that, the CDS is not to “clear” the buffer except on specific command (i.e. NOT in response to a “buffer

complete” flag). This implies that double-buffering must implement a front-to-back copy on swap.

3.4.1.2 Fill Style Index Values

A Fill Style Index is an unsigned 8-bit value that is used to select a graphic representation (fill style) from a pre-
defined table for use in filling an area on a layer. Because fill styles depend heavily on CDS hardware capabilities, and
because they are “look-and-feel”, they are not further defined in this specification.

COMMENTARY

The actual fill styles used will depend on both the CDS hardware capability and the supplier/airframe
manufacturer/system integrator/ customer preference for look-and-feel. A fill style may be a solid color fill,
as is typical of late-1990’s weather radar displays, or it may be a patterned fill, as is typical of late-1990’s
terrain displays, or it may incorporate alpha (transparency) level or other visual attributes of which modern
graphics hardware is capable.

Equipment suppliers will need to agree how to map these 8-bit values to available hardware capabilities, and
assign specific values to the real-world meaning. In some CDS implementations, the allowable range of
values may be smaller than 0 to 255, or the indices may have sub-fields. In some CDS implementations, each
UA might have its own palette. In others, all UAs might share a global fill palette.

3.4.2 ExternalSource

Categories: None

Description:
The function of the ExternalSource widget is to specify to the CDS where an external input should appear on the
display. For example, an external input may be a video signal input or a bitmap image. Note that if a UA wants to
display video on the CDS, video input processing provisions are necessary in the CDS. The existence of this widget in
this standard does not guarantee that it will be possible to display a video or a bitmap image. The following points
must be clearly understood:
- The integrator and the CDS supplier define how an external input stream is to be sent and processed by
the display.
- The integrator knows the limitations of the CDS for processing of these input streams. For instance, the
CDS may not re-size or rotate video signal received.

Note: The ExternalSource widget is unique in the sense that it is necessary for the UA supplier and the integrator to
define the specific method to bring video to the display.

Restriction: None

c-1

c-1

ARINC SPECIFICATION 661 - Page 152
3.0 WIDGET LIBRARY

3.4.2 ExternalSource (cont’d)

ExternalSource Parameters are defined in Table 3.4.2-1.

Table 3.4.2-1 - ExternalSource Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_EXTERNALSOURCE

Widgetldent D Unique identifier of the widget.

Parent Identifier D Identifier of the immediate container of the widget

Specific parameters

Visible DR Visibility of the widget

Xpos D The X position of the widget reference point

Ypos D The Y position of the widget reference point

SizeX D The X dimension size (width) of the widget

SizeY D The Y dimension size (height) of the widget

SourceReference D Identifier of input stream source reference available on the CDS and used by
the UA.

SourceX DR For those channels that support zoom/pan/scale/clipping/etc, this parameter
indicates the origin within the source image for display

SourceY DR

SourceDX DR For those channels that support zoom/pan/scale/clipping/etc, this parameter
indicates the extent within the source image for display

SourceDY DR

StyleSet DR Might control transparency, zoom/clip, etc.

ExternalSource Creation Structure is defined in Table 3.4.2-2.

Table 3.4.2-2 - ExternalSource Creation Structure

CreateParameterBuffer Type Size Value/Range
(bits) | When Necessary

WidgetType ushort 16 A661_EXTERNALSOURCE
Widgetldent ushort 16

Parentldent ushort 16

Visible uchar 8 A661_FALSE

A661_TRUE

Unused uchar 8

X Pos long 32

Y Pos long 32

SizeX long 32

SizeY long 32

SourceReference ushort 16

Unused ushort 16

SourceX ulong 32

SourceY ulong 32

SourceDX ulong 32

SourceDY ulong 32

StyleSet ushort 16

No event is associated with the ExternalSource widget.

ARINC SPECIFICATION 661 - Page 153

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.4.2-3.

Table 3.4.2-3 - ExternalSource Runtime Modifiable Parameters

Name of the Size Parameterldent used Type of Structure Used
parameter to set | Type | (bits) in the ParameterStructure (Refer to sections 4.5.3)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
3.4.3 MapVert

Categories:

Container

Map Management

Description:
The MapVert widget is the counterpart of the MapHorz widget for a vertical display made of a slice presentation. It is
based on Cartesian coordinate system. Typically the horizontal axis will be distance in nautical miles and the vertical
axis will be height in feet. The UA master of the vertical display will have to create such a widget and through it,
provide the following information to the CDS:
- The location of the widget in the window
- The size of the widget
- The geographic correspondence of this size. From there, real world distance passed to the CDS can be
converted in screen distance on both axes.
- Position of a reference point both in screen coordinate and Geographic coordinates. From there the CDS can
interpret absolute or relative coordinates for Items. For example, on the horizontal axis, the reference point is
30 mm from origin of widget, 30Nm in geographic coordinates. Knowing the distance equivalence, the CDS
can position either an Item at 45Nm absolute or 15Nm relative to the reference point.

Restriction: None
MapVert Parameters are defined in Table 3.4.3-1.

Table 3.4.3-1 - MapVert Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_MAPVERT
Widgetldent D Unique identifier of the widget
Parent Identifier D Identifier of the immediate container of the widget
Specific parameters
Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated
PosX D The X position of the widget reference point (screen coordinate system)
PosY D The Y position of the widget reference point (screen coordinate system)
SizeX D Area size X
SizeY D Area size Y
RangeX DR Equivalent in Geographic coordinates of Area Size X
RangeY DR Equivalent in Geographic coordinates of Area Size Y
RefPosX DR Position X of the reference point, expressed in screen coordinates from PosX
RefPosY DR Position Y of the reference point, expressed in screen coordinates from PosY
RefGeoPosX DR Position X of the reference point, expressed in geographic coordinates
RefGeoPosY DR Position Y of the reference point, expressed in geographic coordinates

c-1

c-1

ARINC SPECIFICATION 661 - Page 154

3.4.3 MapVert (cont’d)

MapVert Creation Structure is defined in Table 3.4.3-2.

3.0 WIDGET LIBRARY

Table 3.4.3-2 - MapVert Creation Structure

CreateParameterBuffer Type Size Value / Range
(bits) | When Necessary

WidgetType ushort 16 A661_MAPVERT

Widgetldent ushort 16

Parentldent ushort 16

Enable uchar 8 A661_FALSE
A661_TRUE

Visible uchar 8 A661_FALSE
A661_TRUE

PosX long 32

PosY long 32

SizeX long 32

SizeY long 32

RangeX fr(32768) 32

RangeY fr(2*) =1 32

RefPosX long 32

RefPosY long 32

RefGeoPosX fr(32768) 32

RefGeoPosY fr(2’) =1 32

No Event is associated with the MapVert widget.

Available SetParameter identifiers and associated data structure are defined in Table 3.4.3-3.

Table 3.4.3-3 - MapVert Runtime Modifiable Parameters

Name of the Type Size ParameterIldent used Type of Structure Used

parameter to set (bits) in the ParameterStructure (Refer to sections 4.5.3)

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
RangeX ulong 32 A661_RANGE_X A661_ParameterStructure_4Byte
RangeY ulong 32 A661_RANGE_Y A661_ParameterStructure_4Byte
RefPosX long 32 A661_PRP_SCREEN_X A661_ParameterStructure_4Byte
RefPosY long 32 A661_PRP_SCREEN_Y A661_ParameterStructure_4Byte
RefGeoPosX long 32 A661_PRP_X A661_ParameterStructure_4Byte
RefGeoPosY long 32 A661_PRP_Y A661_ParameterStructure_4Byte

ARINC SPECIFICATION 661 - Page 155

3.0 WIDGET LIBRARY

3.4.4 MapVert_Source

Categories:

Map management
Container
Interactive

Description:

The MapVert_Source is the equivalent of the MapHorz_Source for vertical displays. The MapVert_Source widget is a
specialized container. It contains some MapVert_ItemList widgets to display Items expressed in a common coordinate
system. The MapDataFormat (X or Y) parameters allow a UA to transmit its data either in as absolute values or
relative to the Reference Point.

MapVert_Source is an interactive widget. The display area of the MapVert_Source is the same as the MapVert. The
UA may need to receive the cursor position on a crew member validation with CCD on the MapVert_Source display
area. The MapVert_Source EventFlag parameter provides a means to the map UA to control the CDS sending this
event. The X,Y position sent by the CDS is expressed in the MapVert_Source coordinate system.

Restriction:
The MapVert_Source should be directly under a MapVert widget or a Layer widget. When directly attached to a
Layer, the layer should not be attached to a window displayed alone.

MapVert_Source Parameters are defined in Table 3.4.4-1.

Table 3.4.4-1 - MapVert_Source Parameters

Parameters Change | Description

WidgetType D A661_MAPVERT_SOURCE

Widgetldent D Unique identifier of the widget

Parent Identifier D Identifier of the immediate container of the widget

Visible DR Visibility of the widget

Enable DR Ability of the widget to be activated

MapDataFormatX D A661_Relative: X position of Items expressed relative to Reference
point.
A661_Absolute: X position of Items expressed in absolute value.

MapDataFormatY D A661_Relative: Y position of Items expressed relative to Reference
point.
A661_Absolute: Y position of Items expressed in absolute value.

EventFlag DR Indicates if the UA wants to receive the cursor position upon click,
expressed in its coordinate system.

c-1

c-1

ARINC SPECIFICATION 661 - Page 156

3.0 WIDGET LIBRARY

3.4.4 MapVert_Source (cont’d)

MapVert_Source Creation Structure is defined in Table 3.4.4-2a.

Table 3.4.4-2a - MapVert_Source Creation Structure

CreateParameterBuffer Type (?)lii:) &alilellelll;li:egsiary

WidgetType ushort 16 A661_MAP_SOURCE

[Widgetldent | ushort | 16 |

| Parentldent uhort |\ 16 |\

Enable uchar 8 A661_FALSE
A661_TRUE

[Visibe | uchar | 8 |A661_FALSE
A661_TRUE

MapDataFormatX uchar 8 A661_MDF_ABSOLUTE
A661_MDF_RELATIVE

[MapDataFormaty = | uchar | 8 |A661_MDF_ABSOLUTE
A661_MDF_RELATIVE

[EventFlag | uchar | 8 |A661_FALSE
A661_TRUE

[Unused | wuchar | 8 |

MapVert_Source Format Structure is defined in Table 3.4.4-2b.

Table 3.4.4-2b - MapVert_MapData Format Values

Parameter Type Size | Value Origin Units of | LSB
(bits) Measure
MapDataFormatX long 32 A661_MDF_ABSOLUTE RefGeoPosX | nm fr(32768)
MapDataFormatX long 32 A661_MDF_RELATIVE RefPosX nm fr(32768)
MapDataFormatY long 32 A661_MDF_ABSOLUTE RefGeoPosY | feet 1
MapDataFormatY long 32 A661_MDF_RELATIVE RefPosY feet 1

MapVert_Source Event Structures: A661_EVT_SELECTION_MAP is defined in Table 3.4.4-3.

Table 3.4.4-3 - MapVert_Source Event Structures: A661_EVT_SELECTION_MAP

EventStructure Type Sl.ze Value/Description
(bits)
Eventldent ushort 16 | A661_EVT_SELECTION_MAP
UnusedPad N/A 16 |0
X Scaled 32 | expressed in map source coordinate system
Integer
Y Scaled 32 | expressed in map source coordinate system
Integer

ARINC SPECIFICATION 661 - Page 157

3.0 WIDGET LIBRARY

Available SetParameter identifiers and associated data structure are defined in Table 3.3.24-4.

Table 3.4.4-4 - MapVert_Source Runtime Modifiable Parameters

Name of the Type | Size |Parameterldent Used |Type of Structure Used
Parameter to Set (bits) | in ParameterStructure | (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
EventFlag uchar 8 A661_EVENT_FLAG | A661_ParameterStructure_1Byte

3.4.5 MapVert_ItemList

Categories:

Map management
Graphical Representation
Interactive

Text string

Description:

The MapVert_ItemList is equivalent to the MapHorz_ItemList for vertical displays. A MapVert_ItemList contains a
list of Items to be drawn. This list is of fixed size specified through the maximum number of Items. The type of each
Item inside the MapVert_ItemList can be modified at run-time, which makes the list dynamic. A set of parameters is
associated with each type of Item (refer to Section 3.3.22.2.1, Item Structure).

One or several items can be modified through a SetParameter command with BufferOfltems as Parameter_Ident. An
Item should be modified in its entirety. For instance, the X coordinate of a symbol can not be changed by itself.

Insert and delete operations are not allowed on the list. However, one specific type of Item is NOT_USED. The Item
with the NOT_USED type will be ignored, i.e., is they will have no effect on the processing of following items.

Section 3.4.5.1 describes the standardized items and their functionality. Section 3.4.5.2 describes the
A661_ParameterStructure to address the Items.

Restriction:
A MapVert_ItemList must be in a MapVert_Source container.

MapVert_ItemList Parameters is defined in Table 3.4.5-1.

Table 3.4.5-1 - MapVert_ItemList Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MAPVERT_ITEMLIST

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR | Visibility of the widget

Enable DR | Ability of the widget to be activated

Specific parameters

MaxNumberOfltem D Maximum number of items that the UA can address under the MapVert_ItemList.
BufferOfltems R Buffer of the Map Items

c-1

ARINC SPECIFICATION 661 - Page 158
3.0 WIDGET LIBRARY

3.4.5 MapVert_ItemList (cont’d)

MapVert_ItemList Creation Structure is defined in Table 3.4.5-2a.

Table 3.4.5-2a - MapVert_ItemList Creation Structure

CreateParameterBuffer Type (?)li::) &aﬁzﬁlgizeg:sary
WidgetType .. ushort | 16, | A661_MAPVERT ITEMLIST _ ...
Widgetldent ushort 16
Parentldent ___ushort | 6 |
Enable uchar 8 A661_FALSE

_______________________ AGOL_TRUE
Visible uchar 8 A661_FALSE

A661_TRUE

MaxNumberOfltem ___ushort | |
UnusedPad N/A 16 0

MapVert_ItemList Event Structures: A661_EVT_SELECTION is defined in Table 3.4.5-2b.

Table 3.4.5-2b - MapVert_ItemList Event Structures: A661_EVT_SELECTION

Size . L.
EventStructure (bits) Value/Description
Eventldent | _ 16 | A661_EVT_SELECTION ..
Item Index 16 Index of the item that has been selected

Available SetParameter identifiers and associated data structure are defined in Table 3.4.5-3.

Table 3.4.5-3 - MapVert_ItemList Runtime Modifiable Parameters

Name of the Type | Size |Parameterldent Used Type of Structure Used

Parameter to Set (bits) | in the ParameterStructure (Refer to Section 4.5.4.5)

Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte

Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte

BufferOfltems N/A {32} | A661_BUFFER_OF_MAPVERT_ | A661_ParameterStructure_BufferOfltems

ITEM Refer to MapVert_ItemList

A661_ParameterStructure Specifics Section
3.4.52

ARINC SPECIFICATION 661 - Page 159

3.0 WIDGET LIBRARY

3.4.5.1 MapVert_ItemList Standard Items Description

This section describes all the Item structures.

Table 3.4.5.1-1 - MapVert_ItemList Standard Items Description

Name of Item

Function

FILLED_POLY_START

This Item is used to signify the start of a closed, filled polygon definition. It holds
X/Y parameters, like LINE_START, and a Fill Style Index. The X/Y parameters
of this Item and the following LINE_SEGMENT Items (up to the EndFlag) define
the vertices and edges of a polygon that is closed and filled with the indicated fill
style.

ITEM_STYLE For drawing any symbol or line, the CDS must apply the last defined
ITEM_STYLE in the list. If no ITEM_STYLE has been defined, the CDS will
apply the default ITEM_STYLE.

LEGEND This Item is used to store Legend Strings.

Some symbols may contain logic to automatically position legends. LEGEND
Items will then follow the SYMBOL Item and carry this legend. Each LEGEND
Item can only hold 16 characters including the NULL character. Several
LEGENDS Item can be used to carry longer strings.

CR is recognized as either NextField (For symbols with automatic Legend
positioning) or as a normal Carriage Return / Line Feed if LEGEND follows a
LEGEND_ANCHOR.

The last LEGEND Item of a group must have its EndFlag set.

LEGEND_ANCHOR

This Item is used to specify the position of a LEGEND not attached to a symbol.

LEGEND_POP_UP

This Item is a basic LEGEND, but it will appear only when the crew member
selects the associated SYMBOL_x Item.

Disappearance of the LEGEND_POP_UP is airframe manufacturer/system
integrator specification dependent.

LINE_START

This Item is used to signify the start of a line. It holds only X/Y parameters,
interpreted by the CDS depending on the MapVert_Source DataFormat

LINE_SEGMENT

This Item is used to draw a line, using the last defined style in the list, from the
previous LINE_xxx End position, to the specified X/Y coordinates.
This Item holds EndFlag, set if it is the last item of a line.

NOT_USED

This Item is used when the Item is to be discarded by the CDS. There is no effect
on subsequent Items interpretation.

SYMBOL_GENERIC

This Item represents the basic symbol, which holds X/Y parameters along with a
type of symbol and possibly an EndFlag.

Some of these types may include an Automatic Legend positioning. In this case,
and provided the EndFlag is not set on the symbol, the CDS will interpret the
following LEGEND Items as part of the symbol legend. When multiple Fields
exist on the symbol, “Carriage Return” will signify to the CDS that a field end is
reached.

SYMBOL_RUNWAY

Same than SYMBOL_GENERIC except Length parameter is added

c-1

ARINC SPECIFICATION 661 - Page 160

3.0 WIDGET LIBRARY

3.4.5.2 MapVert_ItemList A661_ParameterStructure Specifics

This section describes the A661_ParameterStructure_BufferOfltems.

3.4.5.2.1 Item Structures

All the structures include the same format, three fields for the first 4-byte word. One field is not used on all Items,
however it is maintained for consistency.

3.4.52.1.1 TItem_Style

Item_Style is defined in Table 3.4.5.2.1.1.

Table 3.4.5.2.1.1 - Item_Style
Type Size | Value/Range

Name (bits) | When Necessary

| ItemIndex] ushort | 16 |
ItemType | uchar | 8 _|AGGLITEM STYLE

UnusedPad N/A 8 0

| UnusedPad |] NA e o

ItemStyleSet ushort 16
3.4.5.2.1.2 Legend_Anchor
Legend_Anchor is defined in Table 3.4.5.2.1.2.

Table 3.4.5.2.1.2 — Legend_Anchor
Type Size | Value/Range

Name (bits) | When Necessary

ltemindex ushort L
ItemType uchar |8 [A661_LEGEND_ANCHOR """

UnusedPad N/A 8 |0

X Scaled Integer | 32 | First coordinate of symbol, (fixed real LSB depends on

MapVert_Source MapDataFormat)
Y Scaled Integer | 32 | Second coordinate of symbol, (fixed real LSB depends on
MapVert_Source)

3.4.5.2.1.3 Legend and Legend_Pop_Up

This Item must follow XXX_SYMBOL, LEGEND_ANCHOR or another LEGEND Item. The LegendString can
contain special characters, line feed and carriage return. The type of symbol attached to this legend defines the position
and the format of this String under control of the CDS. If LEGEND is followed by another LEGEND, they should be
considered as one unique Legend, possibly including carriage return and line feed characters. The full entire
LegendString (possibly across multiple Legend MapVert_Items) must have a NULL terminator.

ARINC SPECIFICATION 661 - Page 161

3.0 WIDGET LIBRARY

Legend and Legend_Pop_Up is defined in Table 3.4.5.2.1.3.

Table 3.4.5.2.1.3 - Legend and Legend_Pop_Up
Name Type Size | Value/Range
(bits) | When Necessary

Itemindex | ushort | 16
ItemType uchar 8 A661_LEGEND

A661_LEGEND_POP_UP
EndFlag | uchar | 8 |A661_TRUE

A661_FALSE
LegendString {uchar}+ {32}+ | Max 16 characters including NULL and pad

Followed by zero, one, two or three extra NULL for

(not ‘string’) alignment of 32 bits. It must have a NULL terminator.

3.4.5.2.1.4 Line_Start

Line_Start is defined in Table 3.4.5.21..4.

Table 3.4.5.2.1.4 - Line_Start
Type Size | Value/Range

Name (bits) | When Necessary
Itemindex | ushort | | o |
ItemType | uchar | 8 _|A661_LINE START
UnusedPad N/A 8 0
X Scaled Integer 32 First coordinate of symbol, (fixed real LSB depends on

MapVert_Source MapDataFormat)
Y Scaled Integer 32 Second coordinate of symbol, (fixed real LSB depends on

MapVert_Source)

3.4.5.2.1.5 Line_Segment

Line_Segment is defined in Table 3.4.5.2.1.5.

Table 3.4.5.2.1.5 - Line_Segment
Type Size | Value/Range
Name P (bits) | When Necegssary
ItemIndex ushort 16
TtemType | uchar | 8 |A661_LINE_SEGMENT
EndFlag | uchar | 8 |A661_TRUE
A661_FALSE
X Scaled Integer 32 First coordinate of symbol, (fixed real LSB depends on
MapVert_Source MapDataFormat)
Y Scaled Integer 32 Second coordinate of symbol, (fixed real LSB depends on
MapVert_Source)

c-1

ARINC SPECIFICATION

661 - Page 162

3.0 WIDGET LIBRARY
3.4.5.2.1.6 Not_Used
Not_Used is defined in Table 3.4.5.2.1.6.
Table 3.4.5.2.1.6 - Not_Used
Type Size | Value/Range
Name (bits) | When Necessary
Itemlndex | ushort | 16 |
ItemType uchar 8 A661_NOT _USED
UnusedPad N/A 8 0
3.4.5.2.1.7 Symbol_Generic
Symbol_Generic is defined in Table 3.4.5.2.1.7.
Table 3.4.5.2..1.7 - Symbol_Generic
Type Size | Value/Range
Name (bits) | When Necessary
ItemIndex | 1 ushort | o
[ltemType | uchar | 8 _|A66L SYMBOL GENERIC
EndFlag uchar 8 A661_TRUE
A661_FALSE
(UnusedPad | NA | 4 40
SymbolType uchar 8 SYMBOL_WAYPOINT
SYMBOL_AIRPORT
SYMBOL_VOR
SYMBOL_VORDME
X Scaled Integer 32 First coordinate of symbol, (fixed real LSB depends on
MapVert_Source MapDataFormat)
Y Scaled Integer 32 Second coordinate of symbol, (fixed real LSB depends on
MapVert_Source)
3.4.5.2.1.8 Symbol_Runway
Symbol_Runway is defined in Table 3.4.5.1.8.
Table 3.4.5.2.1.8 - Symbol_Runway
Type Size | Value/Range
Name (bits) | When Necessary
ItemIndex ushort e
ltemType uchar B _|A661 SYMBOL_RUNWAY
EndFlag uchar 8 A661_TRUE
A661_FALSE
X Scaled Integer 32 First coordinate of symbol, (fixed real LSB depends on
MapVert_Source MapDataFormat)
Y Scaled Integer 32 Second coordinate of symbol, (fixed real LSB depends on
MapVert_Source)
Length fr(32768) 32 | Length of runway

3.4.5.2.1.9 Filled_Poly_Start

There are restrictions on the polygons to be filled. The number of line segments is limited to three segments (triangle)
or four segments (quadrilateral). The vertices are specified in counter-clockwise order. The polygon must be convex.

If any error is found in the polygon definition, the CDS should send an A661_ERR_SET_ABORTED exception event.
The airframe manufacturer/system integrator free data field may include the Itemlndex, etc., to identify the error

further.

Filled_Poly_Start is defined in Table 3.4.5.2.1.9.

ARINC SPECIFICATION 661 - Page 163

3.0 WIDGET LIBRARY

Table 3.4.5.2.1.9 - Filled_Poly_Start
Name Type Size Value/Range
(bits) | When Necessary
ItemIndex ushort 16
ItemType uchar 8 A661_FILLED_POLY_START
FillStyleIndex uchar 8
X/ Lat / Range Scaled 32 First coordinate of symbol
Integer (LSB and units defined by MapVert_Source)
Y /Lng/ Angle / Alt Scaled 32 Second coordinate of symbol
Integer (LSB and units defined by MapVert_Source)

3.4.5.2.2 A661_ParameterStructure_BufferOfItems

A66]_ParameterStructure_BufferOfltems is defined in Table 3.4.5.2.2.

Table 3.4.5.2.2 - A661_ParameterStructure_BufferOfltems

A661_ParameterStructure Size | Description

(bits)
Parameterldent 16 A661_BUFFER_OF _MAPVERT_ITEM
ClearFlag 1 If Set, All Items will be set to NOT_USED by CDS
__ before setting the specified Items.
Number of Items 15 | Number of Items modified by the command
{ItemStructures } + {32}+

3.4.6 EditBoxMultiLine

Categories:

Graphical representation
Interactive

ASCII Text

c-1

c-1

ARINC SPECIFICATION 661 - Page 164
3.0 WIDGET LIBRARY

3.4.6 EditBoxMultiLine (cont’d)

Description:

EditBoxMultiLine is a text edit box for displaying text across several lines in a scrolling area. The text string can be
modified by the crew. When the EditBoxMultiLine is in edit mode, the CDS only reports the confirmed text string
(after a crew member validation). The purpose of this widget is to allow free text edit and perform automatic line feed
and scroll management.

COMMENTARY

The information displayed, as the current one selected, after a crew member selection and validation is part of
CDS internal behavior, and is beyond the scope of this document. For instance, The CDS can implement a
graphical representation indicating that one text has been edited but this value has not been validated yet by the
UA. In this case the UA could validate the selection through a setParameter command on the LabelString
parameter. In case of invalid string edit by a crew member, the UA should display an ERROR mode through
the use of the SyleSet parameter.

EditBoxMultiLine Paramters are defined in Table 3.4.6-1.

Table 3.4.6-1 - EditBoxMultiLine Parameters

Parameters | Change | Description
Commonly used parameters
WidgetType D A661_EDIT_BOX_MULTILINE
Widgetldent D Unique identifier of the widget
Parentldent D Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D The X position of the widget reference point
PosY D The Y position of the widget reference point
SizeX D The X dimension size (width) of the widget
SizeY D The Y dimension size (height) of the widget
FocusIndex D Order of the widget for focus circulation
AutomaticFocus D Automatic motion of the focus on widget having the following FocusIndex value.
Motion
Specific parameters
MaxStringLength D Maximum length of the entire text included the first NULL character ended the string
(in bytes), MaxStringLength > 1.
LabelString DR | Text of the edit box
Alignment D Justification of the label text within the edit box area
CENTER
LEFT
RIGHT
VerticalScroll D Position of scroll controls, absent/left/right/bottom/top
StartCursorPos DR | Start position of the cursor in field when entering in edit

Note: D is Design time. R is Run time

3.0 WIDGET LIBRARY

ARINC SPECIFICATION 661 - Page 165

EditBoxMultiLine Creation Structure is defined in Table 3.4.6-2.

Table 3.4.6-2 - EditBoxMultiLine Creation Structure

CreateParameterBuff Type Size Value / Range
er (bits) When Necessary
WidgetType _..ushort | 16 | A661_EDIT BOX MULTILINE ...
Widgetldent ushort 16
Parentldent ___ushort | e
Enable uchar 8 A661_FALSE
A661_TRUE
Visible ~ uchar | 8 |A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
StyleSet ___ushort | L
FocusIndex ushort 16
StartCursorPos ushort 16
MaxStringlLength ~ ushort | 16 |
AutomaticFocusMotion uchar 8 A661_FALSE
A661_TRUE
ReportAllChanges uchar | 8 |A661_FALSE
________________________ AGITRUE
Alignment uchar 8 A661_CENTER
A661_LEFT
A661_RIGHT
Vertical Scroll ~ uchar | 8§ |Aeel_TOP
A661_BOTTOM
A661_LEFT
A661_RIGHT
A661_ABSENT
LabelString string {8}+ | Followed by zero, one, two or three extra NULL for alignment on
32 bits.

The specific event sent by the EditBoxMultiLine to the owner application is defined in Table 3.4.6-3.

Table 3.4.6-3 - EditBoxMultiLine Event Structure: A661_STRING_CONFIRMED

EventStructure Type Sl.ze Value/Description
(bits)
Eventldent | ushort | 16 |A661_STRING_CONFIRMED
Stringlength ushort 16
String string {32}+ | Followed by zero, one, two or three extra NULL for alignment of 32
bits.

Available SET_PARAMETER identifiers and associated data structure are:

c-1

c-1

ARINC SPECIFICATION 661 - Page 166
3.0 WIDGET LIBRARY

3.4.6 EditBoxMultiLine (cont’d)

EditBoxMultiLine Runtime Modifiable Parameters is defined in Table 3.4.6-4.

Table 3.4.6-4 - EditBoxMultiLine Runtime Modifiable Parameters

Name of the Type | Size ParameterIdent used Type of Structure Used
parameter to set (bits) in the ParameterStructure (Refer to Section 4.5.4.5)
Enable uchar 8 A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar 8 A661_VISIBLE A661_ParameterStructure_1Byte
StartCursorPos ushort 16 A661_CURSOR_POS A661_ParameterStructure_2Bytes
StyleSet ushort 16 A661_STYLE_SET A661_ParameterStructure_2Bytes
LabelString string | {32}+ | A661_STRING A661_ParameterStructure_String

3.4.7 ComboBoxEdit

Categories:

Graphical representation
Interactive

ASCII Text

Description:

Like ComboBox, ComboBoxEdit provides a means to select one item in a list of items. This widget is composed of a
static part displaying the selected item and a pop up part displaying possible items. The number of the current selected
entry is held in the SelectedEntry parameter. The complete list of possible Entries is held in a string array (parameter
EntryList). The list is displayed upon crew member selection. For example, click on the arrow button associated to the
Selected Entry.

Moreover, ComboBoxEdit allows the crew to enter the static part a new item. When ComboBoxEdit is in edit mode,
the CDS may report all modification done on the edited string and the final confirmed string, or only report the
confirmed string (after a crew member validation). This option may be set by the UA through the “ReportAllChanges”
parameter. If ReportAllChanges is True and, after having entered a text, the crewmember finally aborts the edit, the
CDS should send a specific event to the UA with the former validated LabelString as parameter of the event.

Note that SelectingAreaHeight and the SelectingAreaWidth represent the Y and X Size of the Popup part of the
ComboBoxEdit

OpeningMode of the ComboBoxEdit is used to determine how the ComboBox opens.
ComboBoxEdit has to be displayed on top of its layer and is affected by clipping area of its layer.

COMMENTARY

The information displayed, like the current selected entry, upon a crew member interaction, is part of CDS
internal behavior, and is beyond the scope of this document. For instance, The CDS can implement a
graphical representation indicating that the item has been selected but the item has not yet been validated by
the UA. In this case the UA could validate the selection through a setParameter command on the
SelectedEntry parameter.

Restriction:
N/A

ARINC SPECIFICATION 661 - Page 167

3.0 WIDGET LIBRARY

ComboBoxEdit Parameters are defined in Table 3.4.7-1.

Table 3.4.7-1 - ComboBoxEdit Parameters

Parameters

| Change |

Description

Commonly used parameters

WidgetType D |A661_COMBO_BOX_EDIT
Widgetldent D | Unique identifier of the widget
Parentldent D | Identifier of the immediate container of the widget
Visible DR | Visibility of the widget
Enable DR | Ability of the widget to be activated
StyleSet DR | Reference to predefined graphical characteristics inside CDS
PosX D | The X position of the widget reference point
PosY D | The Y position of the widget reference point
SizeX D | The X dimension size (width) of the widget (in the closed mode)
SizeY D | The Y dimension size (height) of the ComboBoxEdit (in the closed mode)
FocusIndex D | Order of the widget for focus circulation
AutomaticFocusMotion | D | Automatic motion of the focus on widget having the following FocusIndex value
Specific parameters
SelectingAreaWidth X Size of the area available to display the entry list (when the ComboBoxEdit is
opened)
SelectingAreaHeight Y Size of the area available to display the entry list (when the ComboBoxEdit is
opened)
OpeningMode D | Mode of combo opening:
UP
CENTERED
DOWN
MaxStringLength D | Maximum string length for each entry item (including end tag character) but also for
any user caption process, MaxStringLength > 1.
Alignment D | Justification of the label text within the edit area
CENTER
LEFT
RIGHT
ReportAllChanges D TRUE
CDS will report each update from the crew member
(A661_EVT_STRING_CHANGE)
CDS will report the string change after crew member validation
(A661_EVT_STRING_CONFIRMED)
CDS will report an event if the crewmember aborts the edit
(A661_EVT_STRING_CHANGE_ABORTED)
FALSE
CDS will report the string change only after crew member validation
(A661_EVT_STRING_CONFIRMED)
StartCursorPos DR | Start position of the cursor in field when entering in edit
MaxNumberOfEntries D | Maximum number of entries in the list
NumberOfEntries DR | Total number of entries in the list (must be lower than MaxNumberOfEntries)
SelectedEntry DR | Current selected entry number in the list from 1 to NumberOfEntries if an entry is
selected and 0 else
LabelString N/A | Text of the new entry entered by the crewmember
EntryList DR | String array holding the list of entries.
[MaxEntryNumber]

Note: D is Design time. R is Run time.

c-1

c-1

ARINC SPECIFICATION 661 - Page

3.4.7 ComboBoxEdit (cont’d)

168

3.0 WIDGET LIBRARY

N/A means that this parameter is only used as an event value. It is never set by the UA (not at definition time nor at

runtime).

ComboBoxEdit Creation Structure is defined in Table 3.4.7.-2.

Table 3.4.7-2 - ComboBoxEdit Creation Structure

CreateParameterBuffer Type (?)li::) Wylilelll:fi\llel::szzgliy
WidgetType | ‘ushort | | 16 |A661 COMBO BOX EDIT
Widgetldent ushort 16
Parentldent | ushort | | L
Enable uchar 8 A661_FALSE
A661_TRUE
Visible uchar 8 A661_FALSE
A661_TRUE
PosX long 32
PosY long 32
SizeX ulong 32
SizeY ulong 32
SelectingAreaWidth ulong 32
SelectingAreaHeight ulong 32
StyleSet | whot | 16 |
FocusIndex ushort 16
MaxNumberOfEntries | ushort | | S
NumberOfEntries ushort 16
SelectedEntry | _ushort | | S
UnusedPad N/A 16
MaxStringlength | ushort | | L
OpeningMode uchar 8 A661_OPEN_UP
A661_OPEN_CENTERED
A661_OPEN_DOWN
AutomaticFocusMotion uchar 8
StartCursorPos ushort 16
ReportAllChanges uchar 8 A661_FALSE
A661_TRUE
Alignment uchar 8 A661_CENTER
A661_LEFT
A661_RIGHT
EntryList [NumberOfEntries] string[] 8 * | Each string is ended by character NULL (used as
string | string separator).
length | The complete string list is followed by zero, one,
+ PAD | two or three NULL character(s) to be 32 bits
aligned

ARINC SPECIFICATION 661 - Page 169

3.0 WIDGET LIBRARY

The specific events sent by the ComboBoxEdit to the owner application are:

Table 3.4.7-3 - ComboBoxEdit Event Structures: A661_EVT_SELECTED_ENTRY_CHANGE

EventStructure Type Sl‘ze Value/Description
(bits)
[Eventldent | ushort | 16 | A661 EVT_SELECTED_ENTRY CHANGE
SelectedEntry ushort 16

Table 3.4.7-4 - ComboBoxEdit Event Structures: A661_EVT_STRING_CHANGE

EventStructure Type Sl.ze Value/Description
(bits)
Eventldent | ushort | 16 | A661 EVT_STRING_ CHANGE .
StringLength ushort 16
String string | {32}+ | Followed by zero, one, two or three extra NULL for alignment of 32
bits.

Table 3.4.7-5 - ComboBoxEdit Event Structures: A661_EVT_STRING_CHANGE_ABORTED

EventStructure Type (?)lii:) Value/Description
Eventldent | ushort | 16 |A66l_EVT_STRING_ CHANGE ABORTED
StringLength ushort 16
String string | {32}+ | Followed by zero, one, two or three extra NULL for alignment of 32
bits.

Table 3.4.7-6 - ComboBoxEdit Event Structures: A661_EVT_STRING_CONFIRMED

EventStructure Type (?)li::) Value/Description
Eventldent | ushort | 16 | A661 EVT_STRING_CONFIRMED
StringLength ushort 16
String string | {32}+ | Followed by zero, one, two or three extra NULL for alignment of 32
bits.

Available SET_PARAMETER identifiers and associated data structure are:

Table 3.4.7-7 - ComboBoxEdit Runtime Modifiable Parameters

Name of the Type ParameterIdent used Type of Structure Used
parameter to set in the ParameterStructure (Refer to 4.5.4.5)

Enable uchar | A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar | A661_VISIBLE A661_ParameterStructure_1Byte
NumberOfEntries ushort | A661_NUMBER_OF_ENTRIES | A661_ParameterStructure_2Bytes
SelectedEntry ushort | A661_SELECTED_ENTRY A661_ParameterStructure_2Bytes
StyleSet ushort | A661_STYLE_SET A661_ParameterStructure_2Bytes
StartCursorPos ushort | A661_CURSOR_POS A661_ParameterStructure_2Bytes
EntryList N/A | A661_STRING_ARRAY A661_ParameterStructure_StringArray
[NumberOfEntries]

c-1

ARINC SPECIFICATION 661 - Page 170
3.0 WIDGET LIBRARY

3.4.8 MenuBar

Categories:
Container

Description:
A MenuBar is a widget containing PushButtons, PicturePushButtons and PopUpMenuButtons. It implements specific

behaviors to move from one button to another.

COMMENTARY

Illustration of possible behavior for MenuBar:

When a PopUpMenu attached to a button is visible, a validation through the cursor on another button of the
MenuBar closes the PopUpMenu AND activates the selected button. This behavior is different from the
behavior of a stand-alone PopUpMenu. Right / Left arrow keys move the focus from one button to another
button of the MenuBar.

The Buttons contained in the MenuBar will be individually defined with the MenuBar as parent widget. The
positions of buttons inside the MenuBar is defined by their own parameters PosX and PosY, according to the
following rules:

For Horizontal menu bar, all Button inside the MenuBar have the same PosY and sizeY defined by the menu
bar parameter ButtonPos and ButtonSize.

For Vertical menu bar, all buttons inside the MenuBar have the same PosX and sizeX defined by the menu
bar parameter ButtonPos and ButtonSize.

Restriction:

A MenuBar has only children types:
PushButton

PicturePushButton
PopupMenuButton

MenuBar parameters are defined in Table 3.4.8-1.

Table 3.4.8-1 - MenuBar Parameters

Parameters | Change | Description

Commonly used parameters

WidgetType D A661_MENU_BAR

Widgetldent D Unique identifier of the widget

Parentldent D Identifier of the immediate container of the widget

Visible DR | Visibility of the widget

Enable DR | Ability of the widget to be activated

PosX D The X position of the widget reference point

PosY D The Y position of the widget reference point

Specific parameters

Horizontal True: MenuBar is horizontal
False: MenuBar is Vertical

ButtonPos If Horizontal =True: Value of the buttons parameter PosY
If Horizontal =False: Value of the buttons parameter PosX

ButtonSize If Horizontal =True: Value of the buttons parameter SizeY
If Horizontal =False: Value of the buttons parameter SizeX

ARINC SPECIFICATION 661 - Page 171

3.0 WIDGET LIBRARY

MenuBar Creation Structure is defined in Tablwe 3.4.8-2.

Table 3.4.8-2 - MenuBar Creation Structure

Type . . Value / Range
CreateParameterBuffer Size (bits) When Necessary
WidgetType ushort 16 |A66l MENUBAR
Widgetldent ushort 16
Parentldent ushort o |
Enable uchar 8 A661_FALSE
_______________________________ AGLTRUE
.. A661_FALSE
Visible uchar 8 A661_TRUE
. A661_FALSE
Horizontal uchar 8 A661_TRUE
UnusedPad N/A 24
PosX long 32
PosY long 32
ButtonPos long 32
ButtonSize long 32

Available SET_PARAMETER identifiers and associated data structure are:

Table 3.4.8-3 - MenuBar Runtime Modifiable Parameters

Name of the Type ParameterIdent used Type of Structure Used
parameter to set in the ParameterStructure (Refer to 4.5.4.5)

Visible uchar | A661_VISIBLE A661_ParameterStructure_1Byte
Enable uchar | A661_ENABLE A661_ParameterStructure_1Byte

c-1

ARINC SPECIFICATION 661 - Page 172

4.0 COMMUNICATION PROTOCOL

4.1 Introduction

This section defines the type, content and format for ARINC 661 data to be exchanged between a User Application (UA)
and the Cockpit Display System (CDS). This includes the type, content and format of the data. At definition time, a
Definition File (DF) is provided from UAs to the CDS. At run-time, messages are exchanged between UAs and CDS.

4.2 Definition Phase Exchange

4.2.1 Definition File and UALD

One DF contains User Application Layer Definitions (UALDs) from one UAs. The UALD describes data shared
between one UA and the CDS, as depicted in Figure 4.1.

The DF header and footer are OEM dependent. The data between header and footer are defined in this specification, and
are composed of UALDs, using a block structure defined later in this section. Each block, i.e., each UALD, contains the
definition of exactly one layer. Support for multiple blocks in a file is OEM dependent.

Each UA displaying data inside the CDS is associated with at least one layer. The UALD describes the hierarchical
structure of the UA widgets inside one layer as well as the specific ARINC 661 interface parameters of these widgets.
The format of a block is described in Sections 3.0 and 4.5. The hierarchical structure of the widgets is insured by the use
of “Parentldent” parameter in each widget definition.

For each type of widget, all parameters must have a CDS default value. If a parameter is not set in the UALD, the CDS
default value will be used. This will happen in the case of run-time-only parameters, or in the case where a CDS library
definition has been updated to incorporate new parameters, but an older UALD is not updated.

On one side, Figure 4-1 shows widgets “owned” by the UA (primarily, defines their IDs) for display of information on
CDS. This is the the definition of the static graphical part of the UA interface for one layer.

On the other side, Figure 4-1 shows that the CDS interprets the UALD data to allocate and construct the hierarchical tree
of widgets in conjunction with the CDS widget library.

At run-time the CDS and UA exchange ARINC 661 messages to manage the widget parameters, and thus their graphical
representation.

ARINC SPECIFICATION 661 - Page 173

4.0 COMMUNICATION PROTOCOL

422 Binary Format

The DF describes shared data. Therefore, one main objective of this specification is to standardize the DF data and
format shared between the UA and the CDS. The graphical part of the application interface (DF) must be loaded into the
CDS. This DF describes only data, and is therefore interpreted by the CDS to be associated with the CDS graphical
capacities.

To limit the impact of one UA modification on the CDS, the data format loaded into CDS should be independent from
the CDS. Besides, as a growth potential, a data format independent from the CDS should provide the capability to UAs
to download their Definition Files (DF) into the CDS.

The format for the DF, allowing both data loading and downloading, is a standard non-executable binary format.

Graphic Tool
for graphic interface definition

A661 Definition File(s)

non executable binary file

T Application graphic interface

. Data loading CDS
& Down-loading at \

Ist connexion / power-up / run-time
" (Growth potential) T >

CDS widget library
Kernel| CDS 661 compliant

User Application

Widgets instantiation (allocation
Widgets tree construction

Figure 4.1 Definition File Integration Process

4.3 Run-time Communication

43.1 General Principle

The communication from UA to CDS concerns run-time widget parameters for widgets management. The transmittal of
these parameters corresponds to:

A context change of the application, which could correspond to current periodic parameter transmittal.
A response to a widget event, which is purely asynchronous.
The communication from CDS to UA is event driven. The transmittal of these parameters corresponds to:

Event notification from a widget, which is purely asynchronous.

Basically, the communication from UA to CDS is event driven. Therefore, all messages will be sent in an asynchronous
way. Asynchronous exchange for UA functional context change should save bandwidth as well as decrease latency-time

ARINC SPECIFICATION 661 — Page 174

4.0 COMMUNICATION PROTOCOL

4.3.1 General Principle (cont’d)

values. Nevertheless, if synchronous refresh of information is needed for one UA, this one UA could send this kind of
information on a periodic basis.

COMMENTARY

Concerning widget states, the associated parameters should be managed in an asynchronous way. Periodic
transmittal of messages for controlling widget states could raise a “race condition,” described in Appendix A,
Glossary.

43.2 Issues
The asynchronous approach should mitigate the following design concerns:
1. Loss of one message: From UA to CDS, the display will not be in the state that the UA expects.

From CDS to UA, the UA will not react to a crew member interaction. Refer to Section 4.3.3, Assumption on
Communication Reliability.

2. Synchronization: A UA needs to be sure that a message will arrive before the next transmitted message. Tefer
to Section 4.3.3, Assumption on Communication Reliability.

3. Reconfiguration of the rendering unit: The new rendering subsystem may not have needed information
available. Refer to Section 2.3.2.4, Layer Activity/Visibility Management.

433 Assumption on Communication Reliability

This specification is independent of any bus choice. Nevertheless, some assumption should be made on the level of
reliability. Therefore, the basic assumption is that the communication is in reliable packet order.

This hypothesis applies to:
The correct order reception of messages, Issue 2
The loss of messages, Issue 1

434 Layer Data Management

Refer to Section 2.3.2.4, Layer Activity/Visibility Management.

ARINC SPECIFICATION 661 - Page 175

4.0 COMMUNICATION PROTOCOL

4.4 ARINC 661 Commands

4.4.1 Type of Commands

Table 4.4.1-1 describes the definition-time command.
Table 4.4.1-1 Definition-Time Command

Command Type Description
UA A661_CMD_CREATE Creation of a widget with definition of its parameters. For a
0 version of the Widget library, all the parameters of a used widget
CDS should be set. Refer to Section 4.5, ARINC 661 Command
Structure.

Parameter order inside the Creation buffer is provided in each
widget description in Section 3.3, Widget List.

Table 4.4.1-2 describes run-time commands.

Table 4.4.1-2 Run-time Commands

Command name Description
UA A661_CMD_SET_PARAMETER Set the value of one parameter for one widget. The target of this
O message is one widget of one UA layer.
CDS A661_CMD_UA_REQUEST Request from UA to CDS.

A request corresponds to a message exchange between a UA and the
CDS, without widget targeted. Request from the UA to the CDS may
or may not be accepted by the CDS (refer to section 4.4.3, ARINC
661 Request/Notification.)

CDS A661_NOTIFY_WIDGET_EVENT Notification of an Event from CDS to UA. This message is initiated
O by a widget on which an interaction has occurred. The nature of the
UA event depends on the widget type and the interaction on this widget.

This command also contains the Context Number associated with the
current context of the layer.

A661_NOTIFY_LAYER_EVENT Notification of a request from CDS to UA. The request is a
notification from the CDS. The difference with the previous message
type is this notification is initiated at layer level. It corresponds to an
event from the Layer managed by the CDS (Refer to Section 4.4.3.2,
Request/Notification from CDS to UA).

A661_NOTIFY_EXCEPTION Notification of an error from CDS to UA. Refer to Section 4.4.2,
Error Notification, for all applicable errors.

ARINC SPECIFICATION 661 — Page 176

4.0 COMMUNICATION PROTOCOL

442 Error Notification

This Specification defines the principle of error notification to provide the tools to manage errors in a command.
Nevertheless it is outside the scope of this document to define the recovery action on an error notification. Aircraft OEM
should specify only error recording in built-in test equipment (BITE), or some recovery mechanism to implement
specific errors.

The error notifications with commands in this specification are described in the Table 4.4.2. In addition to the error
notification defined in response to an incorrect command, the CDS should send an error notification to notify an
overload.

Table 4.4.2 Exception Type

Command / A661_ExceptionType Description
Request type
Error notification on command error
All A661_ERR_BAD_COMMAND This exception is sent on any erroneous command. It
applies to:

Invalid block structure (keyword or size field)
Invalid command/request code

Create A661_ERR_CREATE_ABORTED This exception is sent on erroneous Create command. It
applies to:

Invalid Layer ID or Context ID

Invalid Widget ID

Invalid parameter value

Insufficient required parameter data
(growth potential for direct downloading the DF from UA
to CDS)

SetParameter | A661_ERR_SET_ABORTED This exception is sent on erroneous SetParameter. It

applies to:
Invalid Layer ID or Context ID
Invalid Widget ID or Parameter ID

Invalid parameter value
Insufficient parameter data

UARequest A661_ERR_UA_REQUEST_ABORTED | This exception is sent on erronecous UA Request. It applies
to:

Invalid Layer ID or Context ID

Invalid Request key value

Invalid Widget ID

Insufficient required parameter data

Error notification on CDS Resource overload

A661_ERR_MEMORY_OVERLOAD Notification of memory overloading by allotting UA
widgets. (Definition time).

(Growth potential for direct downloading the DF from UA
to CDS)

A661_ERR_PROCESS_OVERLOAD Inability to complete processing of desired image.

A661_ERR_RENDERING_OVERLOAD | Inability to complete rendering of desired image.

Because the level of CDS is the higher application, there is no need for exceptions on commands from CDS to UA.

ARINC SPECIFICATION 661 - Page 177

4.0 COMMUNICATION PROTOCOL

443 ARINC 661 Request/Notification

Communication described in this specification is based on the widget management. Requests apply to messages
exchanged between UA and the CDS without a particular widget being targeted. These messages provide a means for
the UA to change HMI mechanisms under the CDS responsibility, such as Focus position, or layer activity. In the
other direction, these messages provide the CDS a means to indicate the current state to the UA.

4.43.1 Request from UA to CDS

Request from the UA to the CDS, described in Table 4.4.3.1, may or may not be accepted by the CDS. This request
should be sent to the CDS through A661_CMD_UA_REQUEST command.

Table 4.4.3.1 Request from UA to CDS

Request Type Description

A661_REQ_LAYER_ACTIVE Provide a means for a UA application to request to the CDS the
activation of its layer. The CDS may or may not accept the request
according to the current possible configuration.

When a layer is active, the CDS should update widget parameters
of this layer (refer to Section 2.3.2.4 — Layer Activity/Visibility

Management).
A661_REQ_LAYER_INACTIVE Provide a means for a UA to request the CDS to deactivate its
layer.
A661_REQ_FOCUS_ON_WIDGET Move focus on a defined widget of one UA layer.
A661_REQ_LAYER_VISIBLE Turn on the visibility of one layer. This request follows the CDS

notification of the layer activity.

4.4.3.2 Request/Notification from CDS to UA

Request/Notifications, described in Table 4.4.3.2, should be sent from CDS to the UA through the
A661_NOTIFY_LAYER_EVENT command. The UA should to take into account the notification.

Table 4.4.3.2 Request/Notification from CDS to UA

Request/Notification Type Description
A661_NOTE_REINIT _LAYER_DATA CDS request to the UA for Layer data initialization.
The response of the UA should be a block of SetParameter commands.
A661_NOTE_LAYER_IS_ACTIVE CDS notification to the UA that its layer becomes active.
This implies that the UA will reinitialize the layer data.
A661_NOTE_LAYER_IS_INACTIVE Notification of layer deactivation.

ARINC SPECIFICATION 661 — Page 178

4.0 COMMUNICATION PROTOCOL

4.5 ARINC 661 Command Structure
4.5.1 Notation

Notations used in ARINC 661 Command Structures:

<A> element of type A

“<A>|" | means <A> or

Y<A>}” means a set of 0 or more of <A>

Y<A>+ means a set of 1 or more of <A>

“L0e are used for external references or comments

4.5.2 Block Structure

UA and CDS exchange information through a block of commands. One block represents a set of data to be processed
as coherent information.

The structures detailed in Tables 4.5.3.1-2 and 4.5.4.1-1 are built so that a single datum (excluding arrays) is never
encoded across two 32-bit words. This simple rule is emphasized for better understanding of the structure details.

4.5.3 Definition Time Exchanged Structure

4.5.3.1 Definition File (DF) Structure

A DF may hold several UALD from one or more UA. One UA may define several DF. The loadable entity is the DF.
Table 4.5.3.1-1 describes the structure of one DF.

Table 4.5.3.1-1 Definition File Structure

A661_Definition_File Description
OEM File Header Header of the file
{ A661_Block_Structure_DT }+ ARINC 661 core of the file
OEM File Footer Footer of the file

The DF should have a header part, which is OEM specific. Version number should to support version compatibility
checks, which may be required by Original Equipment Manufacturer (OEM) aircraft. The DF should have a footer
part, which is also OEM specific.

ARINC SPECIFICATION 661 — Page 179

4.0 COMMUNICATION PROTOCOL

Block Structure Exchanged Between UA and CDS at Definition Time is defined in Table 4.5.3.1-2.

Table 4.5.3.1-2 Block Structure Exchanged Between UA and CDS at Definition Time

A661_Block_Structure_DT Type | Size (bits) Description
A661_BEGIN_LAYER_BLOCK uchar 8 Start keyword opening a block of information.
Layerldent uchar 8 Relative Identifier of the layer for the User
Application

Context Number ushort 16 ContextNumber value attached to one layer.
This value will be attached by CDS to any block
of message sent before communication is
established with UA.

Block Size ulong 32 Size of this block, including header, in bytes.

{ A661_Definition_Command }+ N/A {32}+ Set of command structures, as applicable.

A661_END_LAYER_BLOCK uchar 8 Keyword ending a block of information.

UnusedPad N/A 24 0

4.5.3.2 Definition Time Block Commands

One or more A661_Definition_Command can be included in a block. Table 4.5.3.2 lists the commands defined in the

protocol.

Table 4.5.3.2 Definition Time Block Commands

A661_Definition_Command

Type

Size (bits)

Description

A661_Create_Structure

N/A

{32}+

Command applicable at definition time.

4.5.3.3 Command Structure

Table 4.5.3.3 defines the command structure.

Table 4.5.3.3 Command Structure

A661_Create_Structure Type | Size (bits) Description
A661_CMD_CREATE ushort 16 Start keyword for opening the create structure
CommandSize ~ |ushort| 16 |Sizeofthccommand,inbytes.
CreateParameterBuffer N/A {32}+ |Refer to the widget library section for the description

of all the creation parameter buffers.

ARINC SPECIFICATION 661 — Page 180

4.0 COMMUNICATION PROTOCOL

4.5.3.4 Constraints Inside a UALD Block

The User Application Layer Definition is composed of LayerBlocks, between A661_BEGIN_LAYER_BLOCK and
A661_END_LAYER_BLOCK codes, as follows:

A UALD LayerBlock should contain only A661_CMD_CREATE commands.

The LayerBlock should contain the complete description of the widgets inside one layer. It implies that a UALD
can not be described over several LayerBlock.

Inside a LayerBlock, a widget should be created (with A661_CMD_CREATE command, refer to Section 4.4) after
its parent (as defined by Parentldent parameter, refer to Section 3.1.3.1).

For reference from a widget to another widget without Parentldent, there is no restriction on the definition order.

For instance, the ActiveTabbedPanellD parameter of the TabbedPanelGroup will be set before the TabbedPanel is
actually referenced in the block. However, the consistency of the DF should be checked.

4.5.4 Run-Time Exchange Structure

4.5.4.1 Run-Time Block Commands

One or more A661_Run-Time_Command can be included in a block. Run-time structures do not have any CDS- or
OEM-specific header/footer. They may have bus-specific or network-specific packaging at the transport level.

Table 4.5.4.1.-1 Block Structure Exchanged Between UA and CDS at Run Time

A661_Block_Structure_RT Type | Size (bits) Description
A661_BEGIN_BLOCK uchar 8 Start keyword opening a block of information.
Layerldent | uhar | 8 |Relative Identifier of the layer for the User Application
ContextNumber | ushort | 16 | ContextNumber value attached to one layer.
UA->CDS : Value to be returned by CDS with subsequent
blocks.

CDS->UA : Value attached by UA on last received block.

Block Size ulong 32 Size of this block, including header, in bytes.

{ A661_Run-Time_Command }+ | N/A {32}+ Set of command structures, as applicable.

A661_END_BLOCK uchar 8 Keyword ending a block of information.

UnusedPad N/A 24 0

ARINC SPECIFICATION 661 — Page 181

4.0 COMMUNICATION PROTOCOL

Table 4.5.4.1-2 lists commands defined in the protocol:

Table 4.5.4.1-2 Run-Time Block Commands

A661_Run-Time_Command

Description

A661_Set_Parameter_Structure
A661_Widget_Event_Structure
A661_UA_Request_Structure
A661_CDS_Notification_Structure
A661_Error_Notification_Structure

Commands applicable at run-time.

. The following sections define run-time commands and event notifications.

4.5.4.2 Command Structure - Run-Time Commands

Table 4.5.4.2-1 Set_Parameter_Structure

A661_Set_Parameter_Structure Type | Size Description

(bits)
A661_CMD_SET_PARAMETER ushort 16 | Start keyword for opening the set parameter structure.
CommandSize | ushort | 16 |Size of the command, in bytes. |
UnusedPad N/A 16 |0
Widgetident | uhort | 16 |Identifier of the widget |
{A661_ParameterStructure }+ N/A | {32}+ | Set of parameters with the associated values. Refer to

Section 4.5.4.5.

Table 4.5.4.2-2 UA_Request_Structure

A661_UA_Request_Structure Type | Size Description
(bits)
A661_CMD_UA_REQUEST ushort 16 | Start keyword for opening the UA request structure.
CommandSize | ushort | 16 |Size of the command, inbytes. |
A661_Request_Structure N/A | {32}+ | Type of request from UA to CDS. Refer to Section

4.5.43.

ARINC SPECIFICATION 661 — Page 182

4.0 COMMUNICATION PROTOCOL

4.5.4.2 Command Structure — Run-Time Comamnds (cont’d)

Table 4.5.4.2-3 Widget_Event_Structure

A661_Widget_Event_Structure Type Size Description
(bits)
A661_NOTIFY_WIDGET_EVENT ushort 16 | Start keyword for opening the widget event structure.
CommandSize | uhort | 16 |Size of the command, inbytes. |
Widgetldent ushort 16 | Identifier of the widget
EventOrign | ushort | 16 |Identifier of the input device which has been used to |
initiate the event:
(Enumeration to be defined by OEM)
EventStructure N/A | {32}+ | Refer to the widget library for the structure of each

widget associated events.

Table 4.5.4.2-4 CDS_Notification_Structure

A661_CDS_Notification_Structure Type Size Description
(bits)
A661_NOTIFY_LAYER _EVENT ushort 16 | Start keyword for opening the CDS notification
___ structure.]
CommandSize ushort | 16 | Size of the command, in bytes.
A661_Layer_Notification_Structure N/A | {32}+ | Type of notification from UA to CDS. Refer to Section

4.5.4.4.

Table 4.5.4.2-5 - Error_Notification_Structure

A661_Error_Notification_Structure Type | Size Description
(bits)

A661_NOTIFY_EXCEPTION ushort 16 | Start keyword for opening the error notification
___ structure.]
CommandSize ushort 16 | Size of the command, in bytes.
A66l_ExceptionType | ushort | 16 | Type of error to be notified. Refer to Table 4.4-2. |
UnusedPad N/A 16 |0
OEM_free_data N/A | {32}+ | OEM may or may not add free data according to

specified mechanism for recovering the error.

ARINC SPECIFICATION 661 — Page 183

4.0 COMMUNICATION PROTOCOL

4.5.4.3 Request Structure

Table 4.5.4.3-1 Request_Structure

A661_Request_Structure Description

A661_Layer_Active_Struct Type of request
A661_Layer_Inactive_Struct
A661_Focus_On_Widget_Struct
A661_Layer_Visible_Struct

Table 4.5.4.3-2 Layer_Active_Structure

A661_Layer_Active_Structure Type | Size Description
(bits)
A661_REQ_LAYER_ACTIVE ushort | 16 |Start keyword for opening the layer active structure
UnusedPad N/A 16 |0

Table 4.5.4.3-3 Layer_Inactive_Structure

A661_Layer_Inactive_Structure Type | Size Description
(bits)
A661_REQ_LAYER_INACTIVE ushort 16 | Start keyword for opening the layer inactive
structure
UnusedPad N/A 16 |0

Table 4.5.4.3-4 Focus_On_Widget_Structure

A661_Focus_On_Widget_Structure Type | Size Description
(bits)
A661_REQ_FOCUS_ON_WIDGET ushort 16 | Start keyword for opening the focus on widget
structure.
Widgetldent ushort 16 | Identifier of the widget on which the CDS should
move the focus.

Table 4.5.4.3-5 Layer_Visible_Structure

A661_Layer_Visible_Structure Type | Size Description
(bits)
A661_REQ_LAYER_VISIBLE ushort 16 | Start keyword for turning on the visibility of one
layer
UnusedPad N/A 16 |0

ARINC SPECIFICATION 661 — Page 184

4.0 COMMUNICATION PROTOCOL

4.5.4.4 Notification Structure

Table 4.5.4.4-1 Layer_Notification_Structure

A661_Layer_Notification_Structure Description

A661_Layer_Is_Active_Struct | Type of notification
A661_Layer_Is_Inactive_Struct |
A661_Reinitialize_Layer_Data_Struct

Table 4.5.4.4-2 Layer_Is_Active Structure

A661_Layer_Is_Active_Structure Type | Size Description
(bits)
A661_NOTE_LAYER_IS_ACTIVE ushort 16 | Start keyword for opening the layer active
structure.
UnusedPad N/A 16 |0

Table 4.5.4.4-3 Layer_Is_Inactive_Structure

A661_Layer_Is_Inactive_Structure Type | Size Description
(bits)
A661_NOTE_LAYER_IS_INACTIVE ushort 16 | Start keyword for opening the layer inactive
structure.
UnusedPad N/A 16 |0

Table 4.5.4.4-4 Reinitialize_Layer_Data Structure

A661_Reinitialize_Layer_Data_ Type | Size Description
Structure (bits)
A661_NOTE_REINIT _LAYER_DATA ushort 16 | Start keyword for opening the reinitialize layer data
___ ST, el
UnusedPad N/A 16 |0

ARINC SPECIFICATION 661 — Page 185

4.0 COMMUNICATION PROTOCOL

4.5.4.5 ARINC 661 Parameter Structure

Section 3.0, Widget Library, provides a description for each widget that includes a table of parameters modifiable at
run-time. These tables contain the name of a A661_ParameterStructure, which should be applied to set this parameter.
This section provides details of these structures.

For a few specific parameters, the A661_ParameterStructure is defined in the Widget Library. For completeness, all
the structures are listed here, with references as necessary.

4.5.4.5.1 A661_ParameterStructure_1Byte

Table4.5.4.5.1-1 ParameterStructure_1Byte

A661_ParameterStructure Type Size Description
(bits)
Parameterldent ushort 16 |Identifier of the parameter type
UnsedPad | NA |8 o
PamameterValueBuffer | 1 uchar | 8 | Values associated with the parameter type

4.5.4.5.2 A661_ParameterStructure_2Bytes

Table 4.5.4.5.2-1 ParameterStructure_2Bytes

A661_ParameterStructure Type Size Description
(bits)
Parameterldent ushort 16 |Identifier of the parameter type
ParameterValueBuffer ushort / 16 | Values associated with the parameter type
short

4.5.4.5.3 A661_ParameterStructure_4Bytes

Table 4.5.4.5.3 -1 ParameterStructure_4Bytes

A661_ParameterStructure Type Size Description
(bits)

Parameterldent ushort 16 |Identifier of the parameter type
UnusedPad N/A 16 |0
ParameterValueBuffer long / 32 | Values associated with the parameter type

ulong /

float /

fr()

ARINC SPECIFICATION 661 — Page 186

4.0 COMMUNICATION PROTOCOL

4.5.4.5.4 A661_ParameterStructure_String

Table 4.5.4.5.4-1 Parameter Structure

A661_ParameterStructure Type Size Description
(bits)

Parameterldent ushort 16 |Identifier of the parameter type

String size ushort 16 | Size of the string, in bytes, including terminating
NULL.

ParameterValue string | {32}+ |List of char, terminated by NULL.
Padded by zero, one, two, or three NULL
character(s) to be 32 bit aligned

4.5.4.5.5 A661_ParameterStructure_StringArray

Table 4.5.4.5.5-1 ParameterStructure_StringArray

A661_ParameterStructure Type | Size Description
(bits)
Parameterldent ushort 16 |A661_STRING_ARRAY
Numberof Stings ~ |ushort| 16 |mteger
Number of Strings modified by the command
{stringarray_cellstructure}+ N/A | {32}+

4.5.4.5.6 A661_ StringArray_CellStructure

Table 4.5.4.5.6-1 StringArray_Cell Structure

A661_ParameterStructure Type | Size Description
(bits)

StringIndex ushort | 16 |Index of the string

string size ushort | 16 |Integer
Size of the string, in bytes, including terminating
NULL.

String string | {32}+ | List of char.
Ended by one, two, three or four NULL
character(s) to be 32 bits aligned

ARINC SPECIFICATION 661 — Page 187

4.0 COMMUNICATION PROTOCOL

4.5.4.5.7 A661_ParameterStructure_XY

Table 4.5.4.5.7-1 ParameterStructure_XY

A661_ParameterStructure Type Size Description
(bits)
Parameter_ident ushort 16 |Identifier of the parameter type
UnusedPad | NA |16 o
ParameterValuel long 32 | PosX
ParameterValue2 long 32 | PosY

4.5.4.5.7 A661_ParameterStructure_BufferOfltems

Refer to MapHorz_ItemList widget description in Section 3.3.22.2.

4.5.4.5.8 A661_ParameterStructure_Buffer

Refer to BufferFormat widget description in Section 3.3.4.1.

4.5.4.5.9 A661_ParameterStructure_EntryPopUpArray

Refer to PopUpMenu widget description in Section 3.3.31.1.

4.5.4.5.10 A661_ ParameterStructure_EntryPopUpArray

Refer to PopUpMenu widget description in Section 3.3.31.1.

c-1

ARINC SPECIFICATION 661 — Page 188

4.6 ARINC 661 Keyword Values

4.0 COMMUNICATION PROTOCOL

The following tables define numeric values associated with the ARINC 661 keywords:

Table 4.6-1 Constant — Definition File (16 bits)

ARINC 661 Constant - Definition File (16 bits)

A661_DF_MAGIC_NUMBER 0xA661
Table4.6-2 Block Codes (8 bits)
ARINC 661 Block Codes (8 bits)
A661_BEGIN_LAYER_BLOCK 0xA0
A661_BEGIN_BLOCK 0xBO
A661_END_LAYER_BLOCK 0xCO
A661_END_BLOCK 0xD0
Table 4.6-3 Commands
ARINC 661 Commands
A661_CMD_CREATE 0xCAO01
A661_CMD_SET_PARAMETER 0xCA02
A661_CMD_UA_REQUEST 0xCAO03
Table 4.6-4 Notifications
ARINC 661 Notifications
A661_NOTIFY_EXCEPTION 0xCCo03
A661_NOTIFY_LAYER_EVENT 0xCC02

A661_NOTIFY_WIDGET_EVENT

0xCCO01

ARINC SPECIFICATION 661 — Page 189

4.0 COMMUNICATION PROTOCOL

Table 4.6-5 Requests/Notifications

ARINC 661 Requests/Notifications
A661_REQ_LAYER_ACTIVE 0xDAO1
A661_REQ_LAYER_INACTIVE 0xDAO02
A661_REQ_FOCUS_ON_WIDGET 0xDAO03
A661_REQ_LAYER_VISIBLE 0xDA04
A661_NOTE_REINIT_LAYER_DATA 0xDCO01
A661_NOTE_LAYER_IS_ACTIVE 0xDC02
A661_NOTE_LAYER_IS_INACTIVE 0xDCO03

Table 4.6-6 Expection Type

A661_ExceptionType
A661_ERR_BAD_COMMAND 0xF001
A661_ERR_CREATE_ABORTED 0xF002
A661_ERR_SET_ABORTED 0xF003
A661_ERR_UA_REQUEST_ABORTED 0xF004
A661_ERR_MEMORY_OVERLOAD 0xF005
A661_ERR_PROCESS_OVERLOAD 0xF006
A661_ERR_RENDERING_OVERLOAD 0xF007

ARINC SPECIFICATION 661 — Page 190

4.0 COMMUNICATION PROTOCOL

4.6 ARINC 661 Keyword Values (cont’d)

Table 4.6-7 Widgets (16 bits)

ARINC 661 Widgets (16 bits)
A661_ACTIVE_AREA 0xA010
A661_BASIC_CONTAINER 0xA020
A661_BLINKING_CONTAINER 0xA030
A661_BUFFER_FORMAT 0xA040
A661_CHECK_BUTTON 0xA050
A661_COMBO_BOX 0xA070
A661_CONNECTOR 0xA080
A661_CURSOR_POS_OVERLAY 0xA090
A661_EDIT_BOX_MASKED 0xA0A0
A661_EDIT_BOX_NUMERIC 0xA0CO
A661_EDIT_BOX_TEXT 0xA0DO
A661_GP_ARC_CIRCLE 0xAOF0
A661_GP_ARC_ELLIPSE 0xA100
A661_GP_CROWN 0xA110
A661_GP_LINE 0xA120
A661_GP_LINE_POLAR 0xA130
A661_GP_RECTANGLE 0xA140
A661_GP_TRIANGLE 0xA150
A661_LLABEL 0xA160
A661_LABEL_COMPLEX 0xA170
A661_MAP_HORZ_ITEMLIST 0xA180
A661_MAP_LEGACY 0xA190
A661_MAP_HORZ_SOURCE 0xA1A0
A661_MAP_HORZ 0xA1B0
A661_MASK_CONTAINER 0xA1CO0
A661_PANEL 0xA1F0
A661_PICTURE 0xA200
A661_PICTURE_PUSH_BUTTON 0xA240
A661_PICTURE_TOGGLE_BUTTON 0xA250
A661_POP_UP_MENU 0xA270
A661_POP_UP_MENU_BUTTON 0xA280
A661_POP_UP_PANEL 0xA290
A661_PUSH_BUTTON 0xA2A0
A661_RADIO_BOX 0xA2B0
A661_ROTATION_CONTAINER 0xA2D0
A661_SCROLL_LIST 0xA2F0
A661_SCROLL_PANEL 0xA300
A661_SYMBOL 0xA310
A661_TABBED_PANEL 0xA320
A661_TABBED_PANEL_GROUP 0xA330
A661_TOGGLE_BUTTON 0xA340
A661_TRANSLATION_CONTAINER 0xA360
A661_MAP_GRID 0xA178
A661_EXTERNAL SOURCE 0xA188
A661_MAP_VERT 0xA198
A661_MAP_VERT_SOURCE 0xA1A8
A661_MAP_VERT_ITEMLIST 0xA1B8
A661_EDIT_BOX_MULTI_LINE 0xA1C8
A661_COMBO_BOX_EDIT 0xA1D8
A661_MENU_BAR 0xA1ES8

ARINC SPECIFICATION 661 — Page 191

4.0 COMMUNICATION PROTOCOL

Table 4.6-8 Parameter Types

ARINC 661 Parameter Types (16 bits)
A661_AC_LAT 0xB010
A661_AC_LAT_LONG 0xB030
A661_AC_LONG 0xB020
A661_AC_ORIENTATION 0xB040
A661_ACTIVE_TABBED_PANEL 0xB050
A661_ALPHA_MASK 0xB060
A661_ALTERN_PICTURE_REFERENCE 0xB080
A661_BLINKING_TYPE 0xB0OA8
A661_BOUND_X 0xBOB0
A661_BOUND_Y 0xB0CO
A661_BOUND_SIZE_X 0xBOEO
A661_BOUND_SIZE_Y 0xBOFO0
A661_BUFFER_OF_PARAM 0xB110
A661_BUFFER_OF_MAPITEM 0xB120
A661_CENTER_X 0xB130
A661_CENTER_XY 0xB150
A661_CENTER_Y 0xB140
A661_COLOR_INDEX 0xB160
A661_CURSOR_POS 0xB170
A661_ENABLE 0xB180
A661_ENABLE_ARRAY 0xB190
A661_END_ANGLE 0xB1B0
A661_ENTRY_POP_UP_ARRAY 0xB1CO0
A661_EVENT_FLAG 0xB1D0
A661_FILL_INDEX 0xB1EO
A661_FIRST_ACCESS_ENTRY 0xB1F0
A661_FIRST_VISIBLE_ENTRY 0xB200
A661_FRAME_X 0xB210
A661_FRAME_Y 0xB220
A661_INNER_RADIUS 0xB240
A661_INNER_STATE_CHECK 0xB244
A661_INNER_STATE_EDIT 0xB248
A661_INNER_STATE_TOGGLE 0xB258
A661_LINE_LENGTH 0xB270
A661_MASK_REFERENCE 0xB280
A661_MASK_ENABLED 0xB290
A661_NUMBER_OF_ENTRIES 0xB2A0
A661_NUMERIC_MASK 0xB2B0
A661_ORIENTATION 0xB2C0
A661_OUTER_RADIUS 0xB2D0
A661_PICTURE_REFERENCE 0xB2F0

ARINC SPECIFICATION 661 — Page 192

4.0 COMMUNICATION PROTOCOL

4.6 ARINC 661 Keyword Values (cont’d)

Table 4.6-8 Parameter Types (cont’d)

ARINC 661 Parameter Types (16 bits) (cont’d)
A661_POS_X 0xB300
A661_POS_X2 0xB330
A661_POS_X3 0xB360
A661_POS_XY 0xB320
A661_POS_XY?2 0xB350
A661_POS_XY3 0xB380
A661_POS_Y 0xB310
A661_POS_Y2 0xB340
A661_POS_Y3 0xB370
A661_PRP_LAT 0xB390
A661_PRP_LAT_LONG 0xB3B0
A661_PRP_LONG 0xB3A0
A661_PRP_SCREEN_X 0xB3C0
A661_PRP_SCREEN_XY 0xB3EO
A661_PRP_SCREEN_Y 0xB3D0
A661_RADIUS 0xB3F0
A661_RANGE 0xB400
A661_ROTATION_ANGLE 0xB410
A661_SCREEN_RANGE 0xB420
A661_SELECTED_ENTRY 0xB430
A661_SHIFT_FIRST_VISIBLE_ENTRY 0xB440
A661_SIZE_X 0xB450
A661_SIZE_Y 0xB460
A661_START_ANGLE 0xB480
A661_STRING 0xB490
A661_STRING_ALTERNATE 0xB498
A661_STRING_ARRAY 0xB4A0
A661_STYLE_SET 0xB4B0
A661_SYMBOL_REFERENCE 0xB4C0
A661_TICS_COARSE 0xB4D0
A661_TICS_FINE 0xB4EO0
A661_TRANSLATION_X 0xB4F0
A661_TRANSLATION_XY 0xB510
A661_TRANSLATION_Y 0xB500
A661_VALUE 0xB520
A661_VISIBLE 0xB530
A661_BUFFER_OF_FILL_STYLES 0xBOF8
A661_MAPGRID_CELLSIZE 0xB274
A661_MAPGRID_OFFSET 0xB278

ARINC SPECIFICATION 661 — Page 193

4.0 COMMUNICATION PROTOCOL

Table 4.6-9 Event Types

ARINC 661 Event Types (16 bits)
A661_EVT_CURSOR_POS_CHANGE 0xE010
A661_EVT_FIRST_VIS_ENTRY_CHANGE 0xE020
A661_EVT_FRAME_POS_CHANGE 0xE030
A661_EVT_TABBED_PANEL_CHANGE 0xEO0BO
A661_EVT_POPUP_CLOSED 0xE040
A661_EVT_SEL_ENTRY_CHANGE 0xE050
A661_EVT_SELECTION 0xE060
A661_EVT_SELECTION_MAP c-1 0xE068
A661_EVT_STATE_CHANGE 0xE070
A661_EVT_STRING_CHANGE 0xE080
A661_EVT_STRING_CONFIRMED 0xE0AO0
A661_EVT_VALUE_CHANGE 0xE0CO
A661_EVT_VALUE_CONFIRMED 0xEOEO

Table 4.6-10 Boolean Constant Values

ARINC 661 Boolean Constant Values
A661_FALSE 0x00
A661_TRUE 0x01

c-1

ARINC SPECIFICATION 661 — Page 194

4.0 COMMUNICATION PROTOCOL

4.6 ARINC 661 Keyword Values (cont’d)

Table 4.6-11 Integer Constant Values

ARINC 661 Integer Constant Values

On 8 bits
A661_UNSELECTED 0x00
A661_SELECTED 0x01
A661_ABSENT 0x10
A661_TOP 0x11
A661_BOTTOM 0x12
A661_LEFT 0x13
A661_RIGHT 0x14
A661_CENTER 0x15
A661_OPEN_UP 0x16
A661_OPEN_CENTERED 0x17
A661_OPEN_DOWN 0x18
A661_UP 0x19
A661_DOWN 0x1A
A661_EDITING 0x1B
A661_ERROR 0x1C
A661_NORMAL 0x1D
A661_ITEM_STYLE 0x20
A661_LEGEND 0x21
A661_LEGEND_ANCHOR 0x22
A661_LEGEND_POP_UP 0x23
A661_LINE_ARC 0x24
A661_LINE_SEGMENT 0x25
A661_LINE_START 0x26
A661_SYMBOL_CIRCLE 0x27
A661_SYMBOL_GENERIC 0x28
A661_SYMBOL_ROTATED 0x29
A661_SYMBOL_RUNWAY 0x2A
A661_FILLED_POLY_START 0x2B
A661_SYMBOL_OVAL 0x2C
A661_MDF_BRG_DIST_ACHDG 0x60
A661_MDF_LAT_LONG 0x61
A661_MDF_LEGACY 0x62
A661_MDF_ABSOLUTE 0x65
A661_MDF_RELATIVE 0x66
A661_MDF_DIST_DIST 0x67
On 16 bits
A661_STYLE_SET_DEFAULT 0x0000

Active Layer

ARINC 661 Widget
Library

Cockpit Display
System (CDS)

Crew member
interaction

Cursor

Definition File
(DF)

Definition phase

Disabled
Display

Display Head

Event
Focus
Format

Highlight

Inner state

Interactive

ARINC SPECIFICATION 661 - Page 195

APPENDIX A
GLOSSARY

When a layer is active, the CDS updates widget parameters of this layer (refer to Section
2.3.2.4 — Layer Activity/Visibility Management).

Widget Library resident in the CDS containing the full description (graphic and behavior) of
each ARINC 661 widget that a user application may require for displaying.

Equipment that performs the functions described in this document.

(or crew member input) Action of a crew member on an interactive widget through the use of
an input device.

Visual indicator of the point of crew input on the screen.

A Definition File is associated with one UA. The DF contains the layers descriptions (UALD)
expected to be displayed on the CDS according to this UA.

Consists in loading of DF in the CDS, which specify the creation of widgets in order to
describe user application’s interface layouts. The instantiation (creation + first setting of all
parameters) of widgets inside the CDS is part of the definition phase. This will occur before
the beginning of the run-time phase.

State of an interactive widget when it does not react to crew-member activation.

A non-specific term, generally meaning “thing you look at.” As a noun, “display” refers to a
physical assembly of metal and glass (Display Head), or to the pattern of colored dots that
appear on that glass (Format). As a verb, “display” refers to the act of deciding which of those
colored dots to light (render) or, loosely, to providing the parameters necessary to be able to
render.

A physical assembly that can generate patterns of colored dots (raster) or lines (stroke).
Notification sent by the CDS to a UA to indicate a crew member interaction has occurred on a
widget owned by that UA.

State of a widget in which this widget receives the events triggered by a crew member through
a keyboard or other device, such as rotary wheels, except for the cursor control device.

Format image rendered to the whole display unit surface. A format is constructed from one or
more windows

A widget is highlighted when the cursor over-flies its interactive area. A click with the cursor
control device on an highlighted widget will bring the focus on this widget (refer to Focus).
Depending on the OEM choice, the click may also select the widget.

Specific states of a widget. This state level represents the core of the widget behavior as well
as its functional objectives. Examples of inner states :

For a basic PushButton, there is one inner state.

For a CheckButton, there are two inner states, which are ‘SELECTED’ and
‘UNSELECTED’

Category of widgets that can generate events in response to crew member activity on input
device(s).

ARINC SPECIFICATION 661 - Page 196

Layer

Look & Feel

Mask

Navigation
Display (ND)
Normal
Picture

Race condition

Reference to ...
Render

Run-time phase

Style guide

Symbol

User Application
Layer Definition
(UALD)

User Application
(UA)

APPENDIX A
GLOSSARY

Layers provide the mechanism to combine graphical information from several UAs inside one
window. For example, layers of the ND image include:

Compass rose,

FM map with interactive way-points,
TCAS information,

Terrain or weather display,

Others.

A layer is connected to a unique UA, whereas a UA can use several layers.

A layer is the higher level entity of the CDS that is known by the UA. From the UA point of
view, the Layer is the high level container in the hierarchical structure of the UA widgets.
From the CDS point of view, the layer is one graphical layer associated with one UA inside a
window. The definition of layer layout within a window is beyond the scope of this standard.
Refer to Section 2.3.2, Layer Definition.

Cover the graphical characteristics of a widget, which are not managed by a UA but by the
CDS in order to insure a homogeneous HMI. This terminology also applies to widget behavior
internal to the CDS, leading to a state diagram internal to the CDS that manages transition
between visual representations.

A graphical representation (a picture, typically a bitmap) used to implement non-rectangular
clipping. The exact format is CDS-specific. Typically, a Mask is a Picture made up of only
Black and Transparent elements.

Generally, the ND includes the Course/Speed/Flight Plan/Surveillance indicators.

Normal visual representation of the widget when it is visible, enabled, and not selected.
A fixed image, stored in the CDS, referenced by an index, not rotatable.

Race condition occurs when there is a cross of messages between the CDS and a UA
concerning dynamic widgets. It can lead to some inconsistency between the UA context and
the CDS display.

The index or ID of something that has been loaded into the CDS.

The act of combining software-code instructions, uploaded symbols and parameters into a
pattern of colored dots or lines on a display head.

The run-time phase consists of dynamic data transfers between UAs and CDS using ARINC
661 run-time commands.

The style guide defined by the OEM should describe the Look & Feel (common graphical
characteristics and consistent behavior) inside the cockpit, and thus, provide necessary
information to UAs for their HMI interface design.

A rotatable image, stored in the CDS, referenced by an index.

The UALD describes the structure of data of one layer of a UA. This set of data describes all
the widgets that have to be allocated in the CDS inside this layer and describes widget
parameters values as well as the widget tree to be drawn.

A UA can use several layers in one window to draw its graphical objects, typically to insure
graphical priorities among layers.

Visual representation

Widget

Window

ARINC SPECIFICATION 661 — Page 197

APPENDIX A
GLOSSARY

A widget is characterized by its inner states. One inner state covers several graphical
representations. The visual representation “state” is managed internal to the CDS.

An example of visual representations for a Button follows:
e Highlighted:

Graphical-user interface, object between a crew member and the UAs. Widgets belong to a
Widget Library inside the CDS. A widget may (or not) be interactive (i.e. accept and react to
crew member actions). A widget is defined by a set of characteristics accessible to UA through
ARINC 661 parameters, some functional states corresponding to specific sets of graphical
parameters , which refers to “Look & Feel,” and a behavior.

A window defines a rectangular physical area of the display surface. A window consists of one
or more layers and is controlled by the CDS.

ARINC SPECIFICATION 661 - Page 198

APPENDIX B
ACRONYMS AND ABBREVIATIONS

ADI Attitude Director Indicator

BITE Built-In Test Equipment

CCD Cursor Control Device

CDS Cockpit Display System

CPU Central Processing Unit

DCDU Data-link Control Display Unit

DF Definition File

DU Display Unit

EFI Electronic Flight Instrument

EFIS Electronic Flight Instrumentation System
EICAS Engine Indication and Crew Alerting System
FM Flight Management

FMS Flight Management System

GNLU GNSS Navigation and Landing Unit
GNU GNSS Navigation Unit

HMI Human Machine Interface

HUD Head-Up Display

IRS Inertial Reference System

1/0 Input/Output

L1.,L2,L3 Layer 1, Layer 2, Layer 3

LRU Line Replacement Unit

LSB Least Significant Bit

MCDU Multi-Purpose Display Unit

MFD Multi-Function Display

MSB Most Significant Bit

ND Navigation Display

OEM Original Equipment Manufacturer
PFD Primary Flight Display

PRP Projection Reference Point

TAWS Terrain Avoidance Warning System
UA User Application

UALD User Application Layer Definition
WXR Weather Radar

2D Two Dimensional

3D Three Dimensional

Cl1

ARINC SPECIFICATION 661 - Page 199

APPENDIX C
EXAMPLE OF A DEFINITION FILE

User Application Overview

The following example is a simple UA that controls the cabin temperature using two interfaces:

1.

2.

The UA is connected to the aircraft environment with:

one input: a cabin temperature sensor

one output: an actuator for the heater system and cooler system

The UA is connected to the CDS with a ARINC 661 link to display the following format in a DU window:

Buttons increment or decrement a selected temperature for the cabin, indicated by the small green pointer. The current
cabin temperature is indicated by both the white arrow and the digital readout.
The format is composed of 8 ARINC 661 widgets summarized as follows:

The scale is an ARINC 661 picture (A661_PICTURE : several colors, no rotation).

Pointers (selected and real temperature) are ARINC 661 symbols (A661_SYMBOL.: can rotate, has one selected
color).

The digital readout and its unit string are ARINC 661 labels (A661_LABEL).

Buttons are ARINC 661 buttons using a reference to a symbol (A661_PICTURE_PUSH_BUTTON).

All drawings are clipped inside an ARINC 661 panel container (A661_PANEL).

Each widget is a node in a hierarchical structure defined in the DF. The tree for Example C.1is:

ARINC SPECIFICATION 661 — Page 200

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C2 Example of Application Code at Run time

An example of UA code at run time follows:

if ((selectedCabinTemp < maxValue) and (BUTTON_PRESSED.id = IncreaseSelectTemp)) then
increment(selectedCabinTemp);

end if

if ((selectedCabinTemp > minValue) and (BUTTON_PRESSED.id = IncreaseSelectTemp)) then
increment(selectedCabinTemp);

end if

Actuator.heaterCommand = PIDcontroller (selectedCabinTemp);

angleValue = selectedCabinTemp * scaleFactor + offset;

setParameter(TemperatureSelectedPointer, RotationAngle, angleValue);

if IsValid(cockpitTemp) = True then
cabinTemp = Sensor.cabinTemp
angleValue = cockpitTemp * scaleFactor + offset;

setParameter(IndicatedTempDRO, LabelString, toString(cockpitTemp));
setParameter(TemperaturelndicatedPointer, RotationAngle, angleValue);
if (cockpitTemp > ThresholdValue) then
setParameter(IndicatedTempDRO, StyleSet, A661_STYLE_SET_WARNING);
setParameter(TemperaturelndicatedPointer, StyleSet, A661_STYLE_SET_WARNING);
else
setParameter(IndicatedTempDRO, StyleSet, A661_STYLE_SET_NOMINAL);
setParameter(TemperaturelndicatedPointer, StyleSet, A661_STYLE_SET_NOMINAL);
end if
setParameter(TemperaturelndicatedPointer, Visible, A661_TRUE);
setParameter(IncreaseSelectTemp, Enable, A661_TRUE);
setParameter(DecreaseSelectTemp, Enable, A661_TRUE);

else
setParameter(IndicatedTempDRO, LabelString, ““-
setParameter(IndicatedTempDRO, StyleSet, A661 STYLE SET_WARNING);
setParameter(TemperaturelndicatedPointer, Visible, A661_FALSE);
beginBlock();
setParameter(IncreaseSelectTemp, Enable, A661_FALSE);
setParameter(DecreaseSelectTemp, Enable, A661_FALSE);
endBlock();

end if

Begin-Block and end-Block commands limit a set of data to be processed as coherent information. Hereunder the
corresponding byte stream send for this block by the UA on the network, assuming that the bus allows to transport
blocks of such size. In other cases, sub-blocking might be used.

ARINC SPECIFICATION 661 — Page 201

APPENDIX C
EXAMPLE OF A DEFINITION FILE

Paragraphs are aligned with 32 bits length words.

Word 1
BO # A661_BEGIN_BLOCK
42 # LAYER ID
1230 # CONTEXT NUMBER
Word 2
00000024 # BLOCK SIZE (= 36 bytes, words 1 — 9)
Word 3
CA02 # A661_CMD_SET_PARAMETER
000C # COMMAND SIZE (= 12 bytes, words 3 - 5)
Word 4
0000 # UNUSED
4566 # WIDGET ID (IncreaseSelectTemp)
Word 5
B180 # PARAMETER ID (A661_ENABLE)
0000 # VALUE (A661_FALSE)
Word 6
CA02 # A661_CMD_SET_PARAMETER
000C # COMMAND SIZE (= 12 bytes, words 6 — 8)
Word 7
0000 # UNUSED
4567 # WIDGET ID (DecreaseSelectTemp)
Word 8
B180 # PARAMETER ID (A661_ENABLE)
0000 # VALUE (A66_FALSE)
Word 9
DO # A661_END_BLOCK
000000 # UNUSED
When a CCD click occurs on one of the buttons, the following message is sent from the CDS to the UA:
Word 1
BO # A661_BEGIN_BLOCK
42 # LAYER ID
1230 # CONTEXT NUMBER
Word 2
00000018 # BLOCK SIZE (= 24 bytes, words 1 — 6)
Word 3
CCo1 # A661_NOTIFY_WIDGET_EVENT
000C # COMMAND SIZE (= 12 bytes, words 3 — 5)
Word 4
4566 # WIDGET ID (IncreaseSelectTemp)
CCD1 # EVENT ORIGIN
Word 5
E060 # EVENT ID (A661_SELECTION)
0000 # UNUSED
Word 6
DO # A661_END_BLOCK
000000 # UNUSED

The UA then acknowledges the event by sending an acknowledgment back to the CDS.

ARINC SPECIFICATION 661 — Page 202

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C3 Definition File

Section C.3 provides an example of a User Application Definition File (UADF) for the cabin temperature UA,
containing only one layer. Reminder: unit length of measure is 1/100 of millimeter. Header and Footer appear in Italic
font style, since they are not defined by the ARINC 661 standard.

START DF
Input file: cabin_temperature.xml
Hexadecimal # Comment

Word 1
A661 # A661_DF_MAGIC_NUMBER
0001 # A661 VERSION NUMBER

Word 2
6788 # DF ID
0000 # UNUSED

Word 3
A0 # A661_BEGIN_LAYER_BLOCK
42 # LAYER ID
1230 # CONTEXT NUMBER

Word 4
0000013C # BLOCK SIZE (=316 bytes, words 3 — 81)

Widget instance number:1

Word 5
CAO01 # A661_CMD_CREATE
0020 # COMMAND SIZE (= 32 bytes, words 5 — 12)
A1F0 # WIDGET TYPE (A661_PANEL)
1221 # WIDGET ID (CabinTempPanel)
0000 # PARENT ID (zero indicates layer is parent)
01 # Enable, value:A661_TRUE
01 # Visible, value:A661_TRUE
00002AF8 # PosX, value: 11000 =110 mm, 4.33 in
0000319C # PosY, value: 12700 = 127 mm, 5 in
00001DC4 # SizeX, value: 7620 =76.2 mm, 3 in
0000175A # SizeY, value: 5978 =59.78 mm, 2.44 in
0000 # StyleSet, value:A661_STYLE_SET_DEFAULT
0000 # UNUSED

Widget instance number:2

Word 13
CAO01 # A661_CMD_CREATE
0020 # COMMAND SIZE (=32 bytes, words 13 —20)
A200 # WIDGET TYPE (A661_PICTURE)
1222 # WIDGET ID (TemperatureCelciusScale)
1221 # PARENT ID (CabinTempPanel)
00 # Anonymous, value:A661_FALSE
01 # Visible, value:A661_TRUE
000002EE # PosX, value: 750, 7.5 mm, 0.31 in
00000956 # PosY, value: 2390, 23.9 mm, 0.98 in
000017EE # SizeX, value: 6126, 61.26 mm, 2.41 in
000009BA # SizeY, value: 2490, 24.9 mm, 1.02 in
0000 # StyleSet, value: A661_STYLE_SET_DEFAULT
9870 # PictureRef

Widget instance number:3

Word 21
CAO01 # A661_CMD_CREATE
0020 # COMMAND SIZE (=32 bytes, words 21 —28)
A310 # WIDGET TYPE (A661_SYMBOL)

1223 # WIDGET ID (TemperatureIndicatedPointer)

ARINC SPECIFICATION 661 — Page 203

APPENDIX C
EXAMPLE OF A DEFINITION FILE

1221 # PARENT ID (CabinTempPanel)
00 # UNUSED
01 # Visible, value:A661_TRUE
00000EE2 # PosX, value:3810, 38.1 mm, 1.56 in
00000956 # PosY, value: 2390, 23.9 mm, 0.98 in
0000238C # RotationAngle, value: 9100 = 50 deg [fr(180) LSB = 0.0005439]
0001 # StyleSet, value: OEM_STYLESET_FREE |[COLOR
9874 # PictureReference, value:SymbolTemperaturelndicatedPointer
OF # ColorIndex, value: OEM_WHITE
000000 # UNUSED
Widget instance number:4
Word 29
CAO01 # A661_CMD_CREATE
0020 # COMMAND SIZE (=32 bytes, words 29 —[36)
A310 # WIDGET TYPE (A661_SYMBOL)
1224 # WIDGET ID (TemperatureSelectedPointer
1221 # PARENT ID (CabinTempPanel)
00 # UNUSED
01 # Visible, value:A661_TRUE
00000EE2 # PosX, value:3810, 38.1 mm, 1.56 in
00000956 # PosY, value: 2390, 23.9 mm, 0.98 in
0000071C # RotationAngle, value: 1820 =10 deg [fr(1§C ~ -~ 7.0005439]
0001 # StyleSet, value: OEM_STYLESET_FREE_J(¢-1
0003 # SymbolReference, value:SymbolTemperatyr Pointer
01 # ColorIndex, value: OEM_GREEN4
000000 # UNUSED
Widget instance number:5
Word 37
CAO01 # A661_CMD_CREATE
2C # COMMAND SIZE (=44 bytes, words 37 —}47)
A160 # WIDGET TYPE (A661_LABEL)
1225 # WIDGET ID (IndicatedTempDRO)
1221 # PARENT ID (CabinTempPanel)
00 # Anonymous, value:A661_FALSE
01 # Visible, value:A661_TRUE
00000B30 # PosX, value: 2864, 28.64 mm, 1.13 in
000006E8 # PosY, value: 1768, 17.68 mm, 0.72 in
000003B6 # SizeX, value: 950, 9.5 mm, 0.39 in
0000026E # SizeY, value: 622, 6.22 mm, 0.25 in
00000000 # RotationAngle, value: 0 deg [fr(180) LSB 5 0.0005439]
0801 # StyleSet, value:OEM_STYLESET_NORMAL_READOUT
0004 # MaxStringLength, value:4
00 # MotionAllowed, value:A661_FALSE
00 # Font, value: OEM_STYLESET_DEFAULT_FONT
00 # UNUSED
14 # Alignment, value:A661_RIGHT
32340000 # LabelString, value: “24”
Widget instance number:6
Word 48
CAO01 # A661_CMD_CREATE
2C # COMMAND SIZE (=44 bytes, words 48 —|58)
A160 # WIDGET TYPE (A661_LABEL)
1226 # WIDGET ID (IndicatedUnitLabel)
1221 # PARENT ID (CabinTempPanel)
00 # Anonymous, value:A661_FALSE

01 # Visible, value:A661_TRUE

ARINC SPECIFICATION 661 — Page 204

00000B30
000006E8
000001D9
0000026E
00000000
0801

0002

00

00

00

13
81430000

000001D9
000001D9
00000B30
000003B6
0000

0000

9878

0000

15

00

0000
00000000

00000B30
000001D9
00000B30
000003B6
0000

0000
987C
0000

15

00

0000
00000000

Co
54E367
END DF

APPENDIX C
EXAMPLE OF A DEFINITION FILE

PosX, value: 3984, 39.84 mm, 1.63 in

PosY, value: 1768, 17.68 mm, 0.72 in

SizeX, value: 473, 4.73 mm, 0.19 in

SizeY, value: 622, 6.22 mm, 0.25 in

RotationAngle, value: 0 deg [fr(180) LSB = 0.0005439]

StyleSet, value:OEM_STYLESET_NORMAL_READOUT

MaxStringLength, value:2

MotionAllowed, value:A661_FALSE

Font, value: OEM_STYLESET_DEFAULT_FONT
UNUSED

Alignment, value:A661_LEFT

LabelString, value: “°C”

Widget instance number:7

Word 59

A661_CMD_CREATE

COMMAND SIZE (=32 bytes, words 62 — 69)
WIDGET TYPE (A661_PICTURE_PUSH_BUTTON)
WIDGET ID (IncreaseSelectTemp)

PARENT ID (CabinTempPanel)

Enable, value:A661_TRUE

Visible, value:A661_TRUE

PosX, value: 473, 4.73 mm, 0.19 in

PosY, value: 473, 4.73 mm, 0.19 in

SizeX, value: 2864, 28.64 mm, 1.13 in

SizeY, value: 950, 9.5 mm, 0.39 in

StyleSet, value:A661_STYLE_SET_DEFAULT
Focuslndex, value:0

PictureReference, value:SymbolArrowUp

MaxStringLength, value:0

PicturePosition, value:A661_CENTER

AutomaticFocusMotion, value:A661_FALSE

UNUSED

LabelString, value: “”

Widget instance number:8

Word 70

A661_CMD_CREATE

COMMAND SIZE (=44 bytes, words 70 — 80)
WIDGET TYPE (A661_PICTURE_PUSH_BUTTON)
WIDGET ID (DecreaseSelectTemp)

PARENT ID (CabinTempPanel)

Enable, value:A661_TRUE

Visible, value:A661_TRUE

PosX, value: 3984, 39.84 mm, 1.63 in

PosY, value: 473, 4.73 mm, 0.19 in

SizeX, value: 2864, 28.64 mm, 1.13 in

SizeY, value: 950, 9.5 mm, 0.39 in

StyleSet, value:A661_STYLE_SET_DEFAULT
Focuslndex, value:0

PictureReference, value:SymbolArrowDown

MaxStringLength, value:0

PicturePosition, value:A661_CENTER

AutomaticFocusMotion, value:A661_FALSE

UNUSED

LabelString, value: *”
Word 81
#A661_END_LAYER_BLOCK
CRC

ARINC SPECIFICATION 661 — Page 205

APPENDIX C
EXAMPLE OF A DEFINITION FILE

C4 Example of XML the Form of the Definition File

For the application illustrated in Section C.3, the corresponding XML form of the DF would be as follows. Note that
parameters not mentioned take on the CDS-defined default value. Parent relationships are implied by the file structure.
Relationship to the containing layer is not shown.

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE A661_METAFILE SYSTEM « ../dtd/A661DF.dtd »>
<A661_METAFILE>
<Panel
Name = “CabinTempPanel”
PosX =“11000" PosY = “12700”
SizeX = “7620” SizeY = “5978">
<Picture
Name = “TemperatureCelciusScale”
PosX =%“750” PosY = “2390”
SizeX = “6126” SizeY = “2490”
PicutreRef = “Symbol TemperatureCelciusScale”
/>
<Symbol
Name = “TemperatureIndicatedPointer”
PosX =“3810” PosY =“2390”
RotationAngle = “9100”
StyleSet = “OEM_STYLESET_FREE_COLOR”
ColorIndex = “OEM_WHITE”
PictureReference = “SymbolTemperatureIndicatedPointer
/>
<Symbol
Name = “TemperatureSelectedPointer”
PosX =“3810” PosY =“2390”
RotationAngle = “1820”
StyleSet = “OEM_STYLESET_FREE_COLOR”
ColorIndex = “OEM_GREEN4”
PictureReference = “SymbolTemperatureSelectedPointer”
/>
<Label
Name = “IndicatedTempDRO”
PosX = “2864” PosY = “1768”
SizeX = “950” SizeY = “622”
StyleSet = “OEM_STYLESET_NORMAL_READOUT”
Font = “OEM_STYLESET_DEFAULT_FONT”
MaxStringLength = “4”
Alignment = “A661_RIGHT”
LabelString = “24”
/>
<Label
Name = “IndicatedUnitLabel”
PosX = “3984” PosY = “1768”
SizeX = “473” SizeY = “622”
StyleSet = “OEM_STYLESET_NORMAL_READOUT”
Font = “OEM_STYLESET_DEFAULT_FONT”
MaxStringLength = “2”
LabelString = “°C”
/>
<PicturePushButton
Name = “IncreaseSelectTemp”
PosX =%“473” PosY =“473”
SizeX = “2864” SizeY = “950”
PictureReference = “SymbolArrowUp”
/>
<PicturePushButton
Name = “DecreaseSelectTemp”
PosX =“3984” PosY = “473”
SizeX = “2864” SizeY = “950”
PictureReference = “SymbolArrowDown”
/>
</Panel>
</A661_METAFILE>

59

ARINC SPECIFICATION 661 - Page 206

APPENDIX D
EXAMPLE OF “IN/OUT” WIDGET MANAGEMENT USING STYLESET PARAMETER

The inner states of an interactive widget are generally managed by the CDS upon crew member interaction. When the
CDS changes the state of a widget, it sends an event to inform the UA of the interaction. In this case, the widget is
considered as an IN widget.

If the UA wants to display its functional context though the interactive widget, the widget is considered as an OUT
widget. The widget is used to provide functional information to the crew member. This information should be
acknowledged by the StyleSet parameter.

Figure D-lillustrates an example of In/Out CheckButton management. The CDS manages a graphical feedback through
the inner state, while the UA manages a functional feedback through the StyleSet parameter.

CheckBox with CheckBox with

a StyleSet Inactive a StyleSet Active
S : [_] option g o
Modification ofthe Widget State g g
by the CDS by crewmember interaction. =
The CDS sends a SELECTED » g
event to the UA ’ g 2
& Option 2
©

Modification ofthe StyleSet by the UA.
After the reception of the SELECTED eveng
the UA changes the StyleSet to indicate

that it has taken into account theinteraction.

Figure D-1 “In/Out” Widget Management

E.1

E.2

ARINC SPECIFICATION 661 - Page 207

APPENDIX E
MAP MANAGEMENT TUTORIAL

Examples of parameters definition for Map Management

ND as is the master application -

The ND has two basic mode for displaying data. The first one corresponds to Rose or Arc mode where the aircraft
representation does not move on the display. The second corresponds to the Plan mode in which the aircraft
representation moves and the display is centered on a point which can be very far from the aircraft. Moreover, the
ND can represent the data Track-Up, (magnetic or true), Heading-Up (magnetic or true) or North-Up (typical for
plan mode).

The FMS as the master application —

The master application must first provide a projection reference point (PRP). The PRP will be used by the CDS to
know what reference has to be used to run the projection algorithm. Due to the PRP, the CDS will be able to convert
latitude/longitude data into a Cartesian coordinate system, for instance, true north oriented and distances in nautical
miles.

If the master application provides :

- The position of the PRP on the display,

- The orientation of the True North relative to the Up direction of the display,
- A Range information in nautical miles and its correspondence in screen unit,
then the CDS is able to put the FMS Map data on the display.

The TCAS as the master application —

The TCAS transmits its data as bearing/distance relative to the aircraft with distance to the aircraft and bearing
relative to the aircraft main axis. By adding an enumerated value in the “coordinate system” parameter of the
MAPHORZ_SOURCE, that means bearing/distance relative to aircraft axis, the CDS will not have enough
information to depict the traffic data for TCAS. The CDS needs the following additional data:

- The location of the aircraft on the display.

- The orientation of the aircraft relative to the display up direction.

There is an aircraft location issue : Aircraft location is set by the master application through the MapHorz.
There is an aircraft orientation issue. The master application provides the true heading through the MapHorz.

The CDS will implement a bearing/distance Mapltem relative to the aircraft. Additional parameters for the
MapHorz are:

- aircraft orientation: relative to the True North

- aircraft latitude

- aircraft longitude

Addressing Mapltems

Inside a MapHorz_ItemList one or several Mapltems can be modified through a SetParameter command with
“A661_BUFFER_OF_MAPITEM” as Parameter_Ident. A Mapltem will be modified in its entirety; for instance, the
latitude of a symbol can not be changed by itself. But because the parameter list of each Mapltem is reduced to the
useful information only, all the parameters should be set in each SetParameter command.

c-1

ARINC SPECIFICATION 661 — Page 208

APPENDIX E
MAP MANAGEMENT TURORIAL

E.2.1 Addressing Mapltems for One Change :

Example A661_ParameterStructure for the SetParameter command for a SYMBOL_GENERIC:

Parameter name

Parameter value

Description

Parameter_ident

A661_BUFFER_OF_MAPITEM

Modification type

ClearFlag

0

If Set, All Items will be set to NOT_USED by
CDS before setting the specified Items.

Number of Items

Number of modified Items

ItemStructure = Parameters of the modified Item.
{ {

ItemIndex 12

EndFlag 0

ItemType SYMBOL_GENERIC

SymbolType SYMBOL_VOR

X Longitude

Y Latitude
} }

Note that the same item number could be used once for a SYMBOL_GENERIC and later for another type of Mapltem.
The CDS must have enough space for the number of items specified using the biggest possible size of parameter list.

E.2.2 Addressing Mapltems for Multiple Changes

Another command would be provided to access multiple Items in one command. The A661_ParameterStructure for the
SetParameter command would look like the following:

Parameter name Parameter value Description
Parameter_ident A661_BUFFER_OF_MAPITEM Modification type
ClearFlag 0 If Set, All Items will be set to NOT_USED by
CDS before setting the specified Items.

Number of Items 2 Number of modified Items
ItemStructure = Parameters of the modified Items.
{ {

ItemIndex 12

EndFlag 0

ItemType SYMBOL_GENERIC

SymbolType SYMBOL_VOR

X Longitude

Y Latitude

ItemIndex 20

EndFlag 0

ItemType A661_LINE_START

X Longitude

Y Latitude
H H

Note: The set Parameter command can contain a different type of Mapltem.

ARINC SPECIFICATION 661 — Page 209

APPENDIX E
MAP MANAGEMENT TUTORIAL

E.2.3 Removing Map Items

A specific ItemType is A661_NOT_USED. The parameter list for thie item would be reduced to the ItemType. This
approach declares a previously used Item as not used anymore without faking a type and setting its visibility to HIDE.

The A661_ParameterStructure for the Set Parameter command follows:

Parameter name Parameter value Description
Parameter_ident A661_BUFFER_OF_MAPITEM Modification type
ClearFlag 0 If Set, All Items will be set to NOT_USED
by CDS before setting the specified Items.

Number of Items 1 Number of modified Items
ItemStructure = Parameters of the modified Item.
{ {

ItemIndex 12

ItemType A661_NOT_USED
} }
E3 Address ‘Race Condition’ on Item Transmission

The Map UA should handle with care the functional data associated with the dynamic widgets. Changing the functional
information associated with a visible widget could cause the race condition. An example of a typical race condition
follows:

* Pilot desire is to select PARIS waypoint.
At the time the pilot clicks PARIS waypoint, data is carried by the MapHorz_ItemList identified by 201 and the
Item 32.
* CDS sends back the event “Widget 201, Item 32” selected.
* In the mean time, the FMS has changed the information associated with “Widget 201, Item 32,” which now carries “NEW
YORK”.
* The problem is that the FMS cannot decide what the event truly means: has the pilot has selected PARIS or NEW YORK?

To address this problem, the FMS could have several solutions. One solution is to manage the Context Number. The UA
can change the Context Number by changing the functional information attached to a widget or simply to an Item. In this
way, the FMS will have the knowledge of the selected waypoint by correlation between the Context Number and the
ident of the selected waypoint.

EA4 Dynamic Priority Management inside MapHorz_ItemList

The Items inside a MapHorz_ItemList are defined at run-time. The order of the Item inside the MapHorz_ItemList
defines the drawing order of the items defined by the ItemIndex parameter of the item. The Item with the highest
ItemIndex has the highest drawing priority. Figure E.4-1 illustrates an example of dynamic priority management.

The UA induces a specific drawing order of symbology by ordering the item inside a MapHorz_ItemList. If the UA does
not specify the drawing order, then the drawing order should be defined statically in the DF with different
MapHorz_ItemList for the set of symbols and drawing orders. Nevertheless, this different set of symbols correspond to
different functional sets, for which it should define a different widget (MapHorz_ItemList).

However, the drawing priority of one Item is defined by the ItemIndex of this Item. Nevertheless, the ItemIndex of one
Item is independent og the transmitting order of this Item in the command. In Figure E.4-1, the UA, for instance the
FMS, may have to respect a transmitting order. But the transmitting order is independent of the order of the ItemIndex
declaration inside the SetParameter command.

ARINC SPECIFICATION 661 — Page 210

APPENDIX E
MAP MANAGEMENT TURORIAL

First Data
Data for a FPLN leg
FMS : transmitting order
,” Data for a FPLN Waypoint
” Data for background Waypoint
Last

A661 Parameter name Value
SetParameter
Command
CommandSize Size
Widgetldent Ident of the MapltemList
Parameter ident A661 BUFFER_OF_ITEMS
ClearFlag 1
Number of Items 200
ItemStructure
{
ItemIndex 50

DataBuffer for a FPLN leg

ItemIndex 1
DataBuffer for a FPLN Waypoint
ItemIndex 200
DataBuffer for background Waypoint

:

295

Low
MapltemList Data Index
. DataBuffer for background Waypoint 1
CDS: drawing order £ »
DataBuffer for a FPLN leg 50
DataBuffer for a FPLN Waypoint 200
High

Figure E.4-1 Example of Dynamic Priority Management

AERONAUTICAL RADIO, INC.
2551 Riva Road
Annapolis, Maryland 24101-7465 USA

ARINC SPECIFICATION 661-1

COCKPIT DISPLAY SYSTEM INTERFACE

TO USER SYSTEMS

Published: June 26, 2003

This document is based on material submitted by various participants during the drafting process. Neither AEEC nor
ARINC has made any determination whether there materials could be subject to claims of patent or other proprietary
rights by third parties, and no representation or warranty, express or implied, is made in this regard. Any use of or
reliance on this document should constitute an acceptance hereof “as is” and be subject to this disclaimer.

This is a working paper prepared for AEEC. It does not constitute air transport industry or ARINC approved policy, nor
is it endorsed by the U.S. Federal Government, any of its agencies or others who may have participated in its
preparation.

SUPPLEMENT 1 TO ARINC SPECIFICATION 661 - Page 1

A. PURPOSE OF THIS DOCUMENT

This Supplement introduces various changes and additions to ARINC Specification 661. It adds eight new widgets to the
standard and provides clarification of the definition of the Cockpit Display System (CDS) interface to user systems.

B. ORGANIZATION OF THIS SUPPLEMENT

The first part of this document, printed on goldenrod-colored paper, contains descriptions of the changes introduced in
Specification 661 by this Supplement. The second part consists of replacement material, organized by section number,
for the Specification to reflect these changes. The modified and added material is identified by the “c-1” symbol in the
margins. ARINC Specification 661 was updated by incorporating the replacement material. The goldenrod-colored
pages are inserted inside the rear cover of the Specification.

C. CHANGES TO ARINC SPECIFICATION 661 INTRODUCED BY THIS SUPPLEMENT

This section presents a complete tabulation of the changes and additions to Specification 661 introduced by this
Supplement. Each change or addition is defined by the section number and the title that will be employed when this
Supplement is incorporated. In each case, a brief description of the change or addition is included.

0.0 Global Changes to Nomenclature Used in ARINC 661
e MapWidget changed to MapHorz
e MapSource changed to MapHorz_Source
* MapltemList changed to MapHorz_ItemList
2.2.1 Definition Phase

This section modified for clarity.

2.2.3 Special Conditions

This section and subordinate sections added.

2.2.4 ARINC 661 Conformance

This section re-numbered.

2.2.5 ARINC 661 Library Evolution

This section re-numbered.

3.2.2 Widget Classification

Table 3.2.2-2 updated to support the expansion of widgets.

3.2.3.1 Possible Children of Container Widgets

Table 3.2.3.1 updated to support the expansion of widgets.

3.2.5.3 Change Style Capabilities

Table 3.2.5.3 corrected error by replacing “Flashing” with “Animation”. Replace the definition with “Animation of
ASCII text”.

3.2.5.5 Escape Sequences Description

SUPPLEMENT 1 TO ARINC SPECIFICATION 661 - Page 2

Table 3.2.5.5.1 and 3.2.5.5.2 corrected error by replacing “Flashing” with “Animation”.

3.2.8 Map Management

This section modified for clarity.
3.3.1 Active Area

Added StyleSet Parameter.

3.3.2 BasicContainer

This section modified to state that some widgets can only be positioned at run-time. Supplement 1 supports the definition
of the position of an optional panel at run-time. The objective is to define a position, not to move the widget at run-time.

3.3.5 CheckButton

This section modified to define the label alignment on button. The definition of the LabelPosition parameter is clarified.
This parameter can be replaced by “PicturePosition” to be coherent with PictureXxxxButton.

3.3.6 ComboBox
This section modified to define the label alignment on button.
3.3.9 EditBoxMasked

This section updated for clarity. The UA cannot change the EditBoxState into the edit mode through the EditBoxState
parameter. The UA must request the Focus on the EditBox. When an EditBox reports all changes are completed and a
crew member cancels the modifications, the display should annunciate an aborted event. Descriptive paragraph added.
EditBoxState parameter deleted. Type of ReportAllChanges changed from Boolean to Enumeration. STATE_CHANGE
event deleted. ABORTED event added.

3.3.10 EditBoxNumeric

This section updated for clarity. The UA cannot change the EditBoxState into the edit mode through the EditBoxState
parameter. The UA must request the Focus on the EditBox. When an EditBox reports all changes are completed and a
crew member cancels the modifications, the display should annunciate an aborted event. Descriptive paragraph added.
EditBoxState parameter deleted. Type of ReportAllChanges changed from Boolean to enumeration. STATE_CHANGE
event deleted. ABORTED event added. Parameters NumericKeyFlag, MinValue, MaxValue and CyclicFlag are added.
TicsCoarse and TicsFine are not modifiable at run-time.

3.3.11 EditBoxText

This section updated for clarity. The UA cannot change the EditBoxState into the edit mode through the EditBoxState
parameter. The UA must request the Focus on the EditBox. When an EditBox reports all changes are completed and a
crew member cancels the modifications, the display should annunciate an aborted event. Descriptive paragraph added.
EditBoxState parameter deleted. Type of ReportAllChanges changed from Boolean to enumeration. STATE_CHANGE
event deleted. ABORTED event added.

3.3.20 Label

Changed “static” to “anonymous”. Deleted references to “blink” capability. Added “ColorIndex” parameter. Added
additional Alignment value definitions.

3.3.21 LabelComplex

SUPPLEMENT 1 TO ARINC SPECIFICATION 661 - Page 3

Added additional Alignment value definitions.

3.3.22 MapHorz_Item List

MapltemList changed to MapHorz_Item List.

3.3.22.1 MapHorz ItemList Standard Items Description
Added “FilledPolyStart” and “FilledOval” map items.
3.3.22.2.1.8 Symbol Generic

SymbolType values were labeled as examples.
3.3.22.2.1.10 Symbol Rotated

SymbolType values were labeled as examples.
3.3.22.2.1.11 Symbol Runway

The words “coordinate of symbol” changed to “coordinate of threshold”.
3.3.22.2.1.12 FilledPolyStart

This section added.

3.3.22.2.1.13 SymbolOval

This section added.

3.3.23 MapLegacy

Parameter “FormatType” changed to “ChannelID”. All references to ARINC 702 and ARINC 708 were removed. This
makes MapLegacy consistent in description and operation to ExternalSource widget.

3.3.24 MapHorz Source

MapSource changed to MapHorz_Source. Table of MapDataFormat valued added for clarity.
“A661_EVT_SELECTION” changed to “A661_EVT_SELECTION_MAP”.

3.3.25 MapHorz
This section modified to support map display. Map Widget changed to MapHorz. Description of “PRP Lat/Lng”
identified as Commentary. Description of “Orientation” updated for clarity. Screen Reference Point X/Y changed from

ulong to long.

3.3.28 PicturePushButton

Alignment parameter added.

3.3.29 PictureToggleButton

Alignment parameter added.

SUPPLEMENT 1 TO ARINC SPECIFICATION 661 - Page 4

3.3.30 PopUpPanel

AutomaticClosure parameter added.

3.3.31 PopUpMenu

Replace “UAPositionFlag” by “OpeningMode”, because an UA may want to open a menu UP or DOWN.

3.3.32 PopUpMenuButton

It is necessary to define the label alignment on button. Replace “UAPositionFlag” by “OpeningMode”, because an UA
may want to open a menu UP or DOWN.

3.3.33 PushButton
It is necessary to define the label alignment on button.
3.3.34 RadioBox

Updated to say that a user application may need to display a RadioBox without any selected element (for example, in the
disable state).

3.3.36 ScrollPanel

HorizontalScroll and VerticalScroll modified to cover all possibilities, Absent/Up/Bottom/Left/right. For operational
reasons, it might be necessary to place vertical and horizontal scroll at the same place. It is easier for a crew member to
manage the scroll buttons.

3.3.37 ScrollList

It is necessary to define the label alignment on button.

3.3.38 Symbol

Category does not include “interactive”. This category was deleted.

3.3.39 TabbedPanel

It is necessary to define the label alignment on button. The UA managing a TabbedPanel (or a set of TabbedPanel) may
need to define inset size. To introduce this functionality and keep the segregation between the TabbedPanel and the
TabbedPanelGroup, new parameters were added. For Tabbed Panel, the “InsetSize” parameter is added. For
TabbedPanelGroup, the “AutomaticInsetSizeFlag” parameter is added. This flag allows the choice between the manual

inset size using “InsetSize” parameter or an inset size defined by a display dependent algorithm.

3.3.40 TabbedPanelGroup

The UA managing a TabbedPanel, or set of TabbedPanel, may need to define inset size. To introduce this functionality
and to keep the segregation between TabbedPanel and the TabbedPanelGroup, new parameters were added. For Tabbed
Panel, the “InsetSize” parameter is added. For TabbedPanelGroup, the “AutomaticlnsetSizeFlag” parameter is added.
This flag selects between the manual inset size using “InsetSize” parameter, or an inset size defined by a display
dependent algorithm.

3.3.41 ToggleButton

It is necessary to define the label alignment on button.

SUPPLEMENT 1 TO ARINC SPECIFICATION 661 - Page 5

3.4 Widget Library Expansion

This section and its subordinate sections added by Supplement 1.
3.4.1 MapGrid

This section added. New Widget is defined.

3.4.2 ExternalSource

This section added. New Widget is defined.

3.4.3 MapVert

This section added. New Widget is defined.

3.4.4 MapVert_Source

This section added. New Widget is defined.

3.4.5 MapVert_ItemList

This section added. New Widget is defined.
3.4.6 EditBoXMultiLine

This section added. New widget is defined.
3.4.7 ComboBoxEdit

This section added. New widget is defined.
3.4.8 MenuBar

This section added. New widget is defined.

4.0 COMMUNICATION PROTOCOL

This section modified to reflect changes elsewhere in the document.

4.6 ARINC 661 Keyword Values

This section updated.

APPENDIX C — EXAMPLE OF A DEFINITION FILE

The example was updated following an actual implementation in 2003.

APPENDIX E - MAP MANAGEMENT TUTORIAL

This Appendix modified to provide example of a map display.

ARINC Standard — Errata Report

1. Document Title

ARINC Specification 661-1: Cockpit Display System Interfaces
Published: June 26, 2003

2. Reference
Page Number: Section Number: Date of Submission:

3. Error
(Reproduce the material in error, as it appears in the standard.)

4. Recommended Correction
(Reproduce the correction as it would appear in the corrected version of the material.)

5. Reason for Correction
(State why the correction is necessary.)

6. Submitter (Optional)
(Name, organization, contact information, e.g., phone, email address.)

Note: Items 2-5 may be repeated for additional errata. All recommendations will be evaluated by
the staff. Any substantive changes will require submission to the relevant subcommittee for
incorporation into a subsequent supplement.

Please return comments to fax +1 410-266-2047 or standards@arinc.com

ARINC IA Project Initiation/Modification (APIM)

Guidelines for Submittal
(Date of Submittal)

1. ARINC Industry Activities Projects and Work Program

A project is established in order to accomplish a technical task approved by one or
more of the committees (AEEC, AMC, FSEMC) Projects generally but not
exclusively result in a new ARINC standard or modify an existing ARINC
standard. All projects are typically approved on a calendar year basis. Any
project extending beyond a single year will be reviewed annually before being re-
authorized. The work program of Industry Activities (IA) consists of all projects
authorized by AEEC, AMC, or FSEMC (The Committees) for the current
calendar year.

The Committees establish a project after consideration of an ARINC Project
Initiation/Modification (APIM) request. This document includes a template which
has provisions for all of the information required by The Committees to determine
the relative priority of the project in relation to the entire work program.

All recommendations to the committees to establish or reauthorize a project,
whether originated by an airline or from the industry, should be prepared using
the APIM template. Any field that cannot be filled in by the originator may be
left blank for subsequent action.

2. Normal APIM Evaluation Process
Initiation of an APIM

All proposed projects must be formally initiated by filling in the APIM template.
An APIM may be initiated by anyone in the airline community, e.g., airline,
vendor, committee staff.

Staff Support

All proposed APIMs will be processed by committee staff. Each proposal will be
numbered, logged, and evaluated for completeness. Proposals may be edited to
present a style consistent with the committee evaluation process. For example,
narrative sentences may be changed to bullet items, etc. When an APIM is
complete, it will be forwarded to the appropriate Committee for evaluation.

The committee staff will track all ongoing projects and prepare annual reports on
progress.

Committee Evaluation and Acceptance or Rejection

The annual work program for each Committee is normally established at its
annual meeting. Additional work tasks may be evaluated at other meetings held
during the year. Each committee (i.e., AMC, AEEC, FSEMC) has its own
schedule of annual and interim meetings.

APIM-VerH Page 1

The committee staff will endeavor to process APIMs and present them to the
appropriate Committee at its next available meeting. The Committee will then
evaluate the proposal. Evaluation criteria will include:

» Airline support — number and strength of airline support for the project,
including whether or not an airline chairman has been identified

* Issues — what technical, programmatic, or competitive issues are
addressed by the project, what problem will be solved

* Schedule — what regulatory, aircraft development or modification,
airline equipment upgrade, or other projected events drive the urgency
for this project

Accepted proposals will be assigned to a subcommittee for action with one of two
priorities:

* High Priority — technical solution needed as rapidly as possible

* Routine Priority — technical solution to proceed at a normal pace

Proposals may have designated coordination with other groups. This means that
the final work must be coordinated with the designated group(s) prior to submittal
for adoption consideration.

Proposals that are not accepted may be classified as follows:

* Deferred for later consideration - the project is not deemed of sufficient
urgency to be placed on the current calendar of activities but will be
reconsidered at a later date

e Deferred to a subcommittee for refinement — the subcommittee will be
requested to, for example, gain stronger airline support or resolve
architectural issues

* Rejected — the proposal is not seen as being appropriate, e.g., out of
scope of the committee

3. APIM Template

The following is an annotated outline for the APIM. Proposal initiators are
requested to fill in all fields as completely as possible, replacing the italicized
explanations in each section with information as available. Fields that cannot be
completed may be left blank. When using the Word file version of the following
template, update the header and footer to identify the project.

APIM-VerH Page 2

ARINC IA Project Initiation/Modification (APIM)

Name of proposed project APIM #:
Name for proposed project.
Suggested Subcommittee assignment

Identify an existing group that has the expertise to successfully complete the
project. If no such group is known to exist, a recommendation to form a new
group may be made.

Project Scope

Describe the scope of the project clearly and concisely. The scope should
describe “what” will be done, i.e., the technical boundaries of the project.
Example: “This project will standardize a protocol for the control of printers.
The protocol will be independent of the underlying data stream or page
description language but will be usable by all classes of printers.”

Project Benefit

Describe the purpose and benefit of the project. This section should describe
“why” the project should be done. Describe how the new standard will improve
competition among vendors, giving airlines freedom of choice. This section
provides justification for the allocation of both IA and airline resources.
Example: “Currently each class of printers implements its own proprietary
protocol for the transfer of a print job. In order to provide access to the cockpit
printer from several different avionics sources, a single protocol is needed. The
protocol will permit automatic determination of printer type and configuration to
provide for growth and product differentiation.”

Airlines supporting effort

Name, airline, and contact information for proposed chairman, lead airline, list
of airlines expressing interest in working on the project (supporting airlines), and
list of airlines expressing interest but unable to support (sponsoring airlines). It
is important for airline support to be gained prior to submittal. Other

organizations, such as airframe manufacturers, avionics vendors, etc. supporting
the effort should also be listed.

Issues to be worked
Describe the major issues to be addressed by the proposed ARINC standard.

Recommended Coordination with other groups

Draft documents may have impact on the work of groups other than the
originating group. The APIM writer or, subsequently, The Committee may
identify other groups which must be given the opportunity to review and comment
upon mature draft documents.

APIM-VerH Page 3

Projects/programs supported by work

If the timetable for this work is driven by a new airplane type, major avionics
overhaul, regulatory mandate, etc., that information should be placed in this
section. This information is a key factor in assessing the priority of this proposed
task against all other tasks competing for subcommittee meeting time and other
resources.

Timetable for projects/programs
Identify when the new ARINC standard is needed (month/year).

Documents to be produced and date of expected result

The name and number (if already assigned) of the proposed ARINC standard to
be either newly produced or modified.

Comments

Anything else deemed useful to the committees for prioritization of this work.

Meetings

The following table identifies the number of meetings and proposed meeting days
needed to produce the documents described above.

Activity Mtgs Mtg-Days
Document a # of mtgs # of mtg days
Document b # of mtgs # of mtg days

For IA staff use
IA staff assigned:
Forward to committee(s) (AEEC, AMC, FSEMC):

Potential impact: ____
(A. Safety B. Regulatory C. New aircraft/system D. Other)

Committee resolution: ____
(1. Authorized 2. Deferred 3. More detail needed 4. Rejected)

Assigned Priority: ____
A. — High (execute first) B. — Normal (may be deferred for A.)

APIM-VerH Page 4

