
Intel® Quartus® Prime Pro Edition
Handbook Volume 1
Design and Compilation

Updated for Intel® Quartus® Prime Design Suite: 17.1

Subscribe
Send Feedback

QPP5V1 | 2017.12.15
Latest document on the web: PDF | HTML

https://www.altera.com/bin/rssdoc?name=jbr1437426657605
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20Handbook%20Volume%201%20Design%20and%20Compilation%20(QPP5V1%202017.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qpp-5v1.pdf
https://www.altera.com/documentation/jbr1437426657605.html

Contents

1 Introduction to Intel® Quartus® Prime Pro Edition.. 16
1.1 Should I Choose the Intel Quartus Prime Pro Edition Software?................................... 17
1.2 Migrating to Intel Quartus Prime Pro Edition... 18

1.2.1 Keep Pro Edition Project Files Separate.. 19
1.2.2 Upgrade Project Assignments and Constraints...19
1.2.3 Upgrade IP Cores and Platform Designer Systems... 24
1.2.4 Upgrade Non-Compliant Design RTL.. 25

1.3 Document Revision History...30

2 Managing Intel Quartus Prime Projects... 32
2.1 Understanding Intel Quartus Prime Projects..33
2.2 Viewing Basic Project Information... 34

2.2.1 Viewing Project Reports... 35
2.2.2 Viewing Project Messages.. 36

2.3 Using the Compilation Dashboard..37
2.4 Project Management Best Practices... 38
2.5 Managing Project Settings..40

2.5.1 Optimizing Project Settings.. 42
2.6 Managing Logic Design Files... 43

2.6.1 Including Design Libraries.. 44
2.7 Managing Timing Constraints..45
2.8 Introduction to Intel FPGA IP Cores... 45

2.8.1 IP Catalog and Parameter Editor... 46
2.8.2 Generating IP Cores (Intel Quartus Prime Pro Edition)....................................50
2.8.3 Modifying an IP Variation... 56
2.8.4 Upgrading IP Cores... 56
2.8.5 Simulating Intel FPGA IP Cores... 62
2.8.6 Synthesizing IP Cores in Other EDA Tools... 71
2.8.7 Instantiating IP Cores in HDL..72
2.8.8 Support for the IEEE 1735 Encryption Standard.. 73

2.9 Integrating Other EDA Tools... 73
2.10 Managing Team-based Projects... 74

2.10.1 Preserving Compilation Results... 74
2.10.2 Factors Affecting Compilation Results... 75
2.10.3 Migrating Compilation Results Across Intel Quartus Prime Software Versions... 76
2.10.4 Archiving Projects... 77
2.10.5 Using External Revision Control...78
2.10.6 Migrating Projects Across Operating Systems.. 79

2.11 Scripting API.. 81
2.11.1 Scripting Project Settings... 81
2.11.2 Project Revision Commands..81
2.11.3 Project Archive Commands... 82
2.11.4 Project Database Commands.. 83
2.11.5 Project Library Commands..84

2.12 Document Revision History...84

3 Design Planning with the Intel Quartus Prime Software.. 87
3.1 Design Planning with the Intel Quartus Prime Software.. 87

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
2

3.2 Creating Design Specifications.. 87
3.3 Selecting Intellectual Property Cores... 88
3.4 Using Platform Designer and Standard Interfaces in System Design.............................88
3.5 Device Selection... 89

3.5.1 Device Migration Planning.. 90
3.6 Development Kit Selection... 90

3.6.1 Specifying a Development Kit for a New Project.. 90
3.6.2 Specifying a Development Kit for an Existing Project......................................91
3.6.3 Setting Pin Assignments.. 92

3.7 Planning for Device Programming or Configuration.. 92
3.8 Estimating Power.. 92
3.9 Selecting Third-Party EDA Tools.. 93

3.9.1 Synthesis Tool.. 94
3.9.2 Simulation Tool...94
3.9.3 Formal Verification Tools.. 94

3.10 Planning for On-Chip Debugging Tools..94
3.11 Design Practices and HDL Coding Styles... 95

3.11.1 Design Recommendations...96
3.11.2 Recommended HDL Coding Styles... 96
3.11.3 Managing Metastability.. 96

3.12 Running Fast Synthesis.. 97
3.13 Document Revision History...98

4 Recommended HDL Coding Styles ... 100
4.1 Using Provided HDL Templates.. 100

4.1.1 Inserting HDL Code from a Provided Template...100
4.2 Instantiating IP Cores in HDL..101
4.3 Inferring Multipliers and DSP Functions.. 102

4.3.1 Inferring Multipliers... 102
4.3.2 Inferring Multiply-Accumulator and Multiply-Adder Functions......................... 103

4.4 Inferring Memory Functions from HDL Code ...104
4.4.1 Inferring RAM functions from HDL Code..105
4.4.2 Inferring ROM Functions from HDL Code...122
4.4.3 Inferring Shift Registers in HDL Code... 124

4.5 Register and Latch Coding Guidelines...127
4.5.1 Register Power-Up Values...127
4.5.2 Secondary Register Control Signals Such as Clear and Clock Enable............... 129
4.5.3 Latches ...130

4.6 General Coding Guidelines..133
4.6.1 Tri-State Signals .. 134
4.6.2 Clock Multiplexing... 134
4.6.3 Adder Trees ...136
4.6.4 State Machine HDL Guidelines...137
4.6.5 Multiplexer HDL Guidelines .. 143
4.6.6 Cyclic Redundancy Check Functions .. 145
4.6.7 Comparator HDL Guidelines.. 148
4.6.8 Counter HDL Guidelines... 149

4.7 Designing with Low-Level Primitives.. 149
4.8 Document Revision History ..150

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
3

5 Recommended Design Practices...152
5.1 Following Synchronous FPGA Design Practices...152

5.1.1 Implementing Synchronous Designs.. 152
5.1.2 Asynchronous Design Hazards.. 153

5.2 HDL Design Guidelines...154
5.2.1 Considerations for the Intel Hyperflex FPGA Architecture.............................. 154
5.2.2 Optimizing Combinational Logic...155
5.2.3 Optimizing Clocking Schemes... 157
5.2.4 Optimizing Physical Implementation and Timing Closure...............................163
5.2.5 Optimizing Power Consumption... 166
5.2.6 Managing Design Metastability.. 166

5.3 Use Clock and Register-Control Architectural Features..166
5.3.1 Use Global Reset Resources..166
5.3.2 Use Global Clock Network Resources..176
5.3.3 Use Clock Region Assignments to Optimize Clock Constraints........................ 177
5.3.4 Avoid Asynchronous Register Control Signals.. 179

5.4 Implementing Embedded RAM.. 180
5.5 Document Revision History...180

6 Design Compilation.. 183
6.1 Compilation Overview..184

6.1.1 Compilation Flows... 184
6.1.2 Design Synthesis...185
6.1.3 Design Place and Route..186
6.1.4 Compilation Hierarchy..187
6.1.5 Reducing Compilation Time...187
6.1.6 Programming File Generation..188

6.2 Running Full Compilation..188
6.3 Running Synthesis...189

6.3.1 Preserve Registers During Synthesis.. 190
6.3.2 Enabling Timing-Driven Synthesis..190
6.3.3 Enabling Multi-Processor Compilation...191
6.3.4 Synthesis Reports... 191

6.4 Running the Fitter... 192
6.4.1 Fitter Stage Commands..193
6.4.2 Incremental Optimization Flow..194
6.4.3 Analyzing Fitter Snapshots... 197
6.4.4 Enabling Physical Synthesis Optimization..203
6.4.5 Viewing Fitter Reports..204

6.5 Running the Hyper-Aware Design Flow... 207
6.5.1 Step 1: Run Register Retiming.. 210
6.5.2 Step 2: Review Retiming Results... 211
6.5.3 Step 3: Run Fast Forward Compile and Hyper-Retiming................................ 213
6.5.4 Step 4: Review Hyper-Retiming Results..215
6.5.5 Step 5: Implement Fast Forward Recommendations..................................... 218

6.6 Running Rapid Recompile... 221
6.7 Generating Programming Files.. 222
6.8 Synthesis Language Support...223

6.8.1 Verilog and SystemVerilog Synthesis Support..223
6.8.2 VHDL Synthesis Support.. 227

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
4

6.9 Synthesis Settings Reference..229
6.9.1 Optimization Modes... 229
6.9.2 Prevent Register Retiming.. 229
6.9.3 Advanced Synthesis Settings.. 230

6.10 Fitter Settings Reference.. 236
6.11 Document Revision History... 242

7 Block-Based Design Flows... 244
7.1 Block-Based Design Examples...245
7.2 Design Partitioning.. 247

7.2.1 Planning Design Partitions.. 248
7.2.2 Creating and Modifying Design Partitions.. 250
7.2.3 Defining an Empty Partition.. 252
7.2.4 Top-Down, Bottom-Up, and Team-Based Design Methods..............................253

7.3 Incremental Block-Based Compilation.. 255
7.3.1 Define Empty Partitions to Reduce Compilation Time....................................256

7.4 Design Block Reuse... 256
7.4.1 Reusing Core Partitions.. 257
7.4.2 Reusing Root Partitions.. 259

7.5 Debugging Block-Based Designs..262
7.5.1 Signal Tap with Core Partition Reuse.. 263
7.5.2 Signal Tap with Root Partition Reuse.. 265

7.6 Creating a Top-Level Project for a Team-Based Design... 269
7.6.1 Preparing a Lower-Level Partition for Integration... 270

7.7 Document Revision History...271

8 Creating a Partial Reconfiguration Design..272
8.1 Partial Reconfiguration Basic Concepts... 273
8.2 Internal Host Partial Reconfiguration..275
8.3 External Host Partial Reconfiguration (Intel Arria 10 Designs Only)............................ 276
8.4 Partial Reconfiguration Design Flow... 277

8.4.1 Identifying Partial Reconfiguration Resources.. 278
8.4.2 Defining PR Partitions.. 279
8.4.3 Defining Personas..281
8.4.4 Instantiating the Intel Arria 10 PR Controller IP... 286
8.4.5 Instantiating the Intel Stratix 10 PR Controller IP.. 292
8.4.6 Promoting Global Signals in a PR Region...292
8.4.7 Partial Reconfiguration Process Sequence... 293
8.4.8 Resetting the PR Region Registers... 294
8.4.9 Floorplanning a Partial Reconfiguration Design.. 295
8.4.10 Creating Revisions for Personas...299
8.4.11 Compiling the Partial Reconfiguration Design...301
8.4.12 Timing Analysis with Partial Reconfiguration.. 306
8.4.13 External Host Configuration (Intel Arria 10 Designs Only)........................... 308
8.4.14 Programming File Generation.. 310
8.4.15 Partial Reconfiguration Design Debugging... 317
8.4.16 Partial Reconfiguration Simulation and Verification..................................... 317

8.5 Partial Reconfiguration Design Recommendations.. 324
8.6 Partial Reconfiguration Design Considerations... 325
8.7 Document Revision History...326

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
5

9 Creating a System with Platform Designer...327
9.1 Interface Support in Platform Designer.. 328
9.2 Introduction to the Platform Designer IP Catalog... 329

9.2.1 Installing and Licensing IP Cores.. 329
9.2.2 Adding IP Cores to IP Catalog... 330
9.2.3 General Settings for IP...331
9.2.4 Set up the IP Index File (.ipx) to Search for IP Components 332
9.2.5 Integrate Third-Party IP Components into the Platform Designer IP Catalog.... 333

9.3 Create a Platform Designer System... 333
9.3.1 Create/Open Project in Platform Designer...333
9.3.2 Modify the Target Device.. 335
9.3.3 Modify the IP Search Path.. 335
9.3.4 Platform Designer System Design flow... 336
9.3.5 Add IP Components (IP Cores) to a Platform Designer System...................... 337
9.3.6 Specify Implementation Type for IP Components... 338
9.3.7 Connect IP Components in Your Platform Designer System........................... 339
9.3.8 Validate System Integrity... 341
9.3.9 Propagate System Information to IP Components.. 343
9.3.10 View Your Platform Designer System..344
9.3.11 Navigate Your Platform Designer System.. 350
9.3.12 Specify IP Component Parameters... 351
9.3.13 Modify an Instantiated IP Component...354
9.3.14 Save your System... 355
9.3.15 Archive your System..355

9.4 Synchronize IP File References..356
9.5 Upgrade Outdated IP Components in Platform Designer..356
9.6 Create and Manage Hierarchical Platform Designer Systems......................................358

9.6.1 Add a Subsystem to Your Platform Designer Design..................................... 358
9.6.2 Drill into a Platform Designer Subsystem to Explore its Contents................... 359
9.6.3 Edit a Platform Designer Subsystem.. 360
9.6.4 Change the Hierarchy Level of a Platform Designer Component..................... 361
9.6.5 Save New Platform Designer Subsystem...361

9.7 Specify Signal and Interface Boundary Requirements... 361
9.7.1 Match the Exported Interface with Interface Requirements............................362
9.7.2 Edit the Name of Exported Interfaces and Signals..363

9.8 Run System Scripts... 364
9.9 View and Filter Clock and Reset Domains in Your Platform Designer System................ 365

9.9.1 View Clock Domains in Your Platform Designer System.................................366
9.9.2 View Reset Domains in Your Platform Designer System.................................367
9.9.3 Filter Platform Designer Clock and Reset Domains in the System Contents Tab 368
9.9.4 View Avalon Memory Mapped Domains in Your Platform Designer System....... 369

9.10 Specify Platform Designer Interconnect Requirements.. 371
9.11 Manage Platform Designer System Security.. 373

9.11.1 Configure Platform Designer Security Settings Between Interfaces............... 374
9.11.2 Specify a Default Slave in a Platform Designer System............................... 374
9.11.3 Access Undefined Memory Regions...375

9.12 Integrating a Platform Designer System with a Intel Quartus Prime Project............... 376
9.13 Manage IP Settings in the Intel Quartus Prime Software... 376

9.13.1 Opening Platform Designer with Additional Memory....................................377
9.14 Generate a Platform Designer System.. 377

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
6

9.14.1 Set the Generation ID.. 378
9.14.2 Generate Files for Synthesis and Simulation.. 378
9.14.3 Generate Files for a Testbench Platform Designer System............................382
9.14.4 Platform Designer Simulation Scripts..385
9.14.5 Simulating Software Running on a Nios II Processor...................................387
9.14.6 Add Assertion Monitors for Simulation.. 388
9.14.7 CMSIS Support for the HPS IP Component.. 389
9.14.8 Generate Header Files..389
9.14.9 Incrementally Generate the System... 390

9.15 Explore and Manage Platform Designer Interconnect.. 391
9.15.1 Manually Controlling Pipelining in the Platform Designer Interconnect........... 392

9.16 Implement Performance Monitoring... 394
9.17 Platform Designer 64-Bit Addressing Support.. 394

9.17.1 Support for Avalon-MM Non-Power of Two Data Widths...............................394
9.18 Platform Designer System Example Designs..395
9.19 Platform Designer Command-Line Utilities.. 395

9.19.1 Run the Platform Designer Editor with qsys-edit.. 395
9.19.2 Scripting IP Core Generation...396
9.19.3 Display Available IP Components with ip-catalog..398
9.19.4 Create an .ipx File with ip-make-ipx...398
9.19.5 Generate Simulation Scripts..399
9.19.6 Generate a Platform Designer System with qsys-script............................... 400
9.19.7 Platform Designer Scripting Command Reference.......................................401
9.19.8 Platform Designer Scripting Property Reference... 574
9.19.9 Parameterizing an Instantiated IP Core after save_system Command........... 601
9.19.10 Validate the Generic Components in a System with qsys-validate............... 602
9.19.11 Archive a Platform Designer System with qsys-archive..............................602
9.19.12 Generate an IP Component or Platform Designer System with

quartus_ipgenerate.. 603
9.19.13 Generate an IP Variation File with ip-deploy...605

9.20 Document Revision History... 606

10 Creating Platform Designer Components..608
10.1 Platform Designer Components... 608

10.1.1 Interface Support in Platform Designer...608
10.1.2 Component Structure...609
10.1.3 Component File Organization.. 610
10.1.4 Component Versions.. 610

10.2 Design Phases of an IP Component..611
10.3 Create IP Components in the Platform Designer Component Editor...........................612

10.3.1 Save an IP Component and Create the _hw.tcl File.....................................614
10.3.2 Edit an IP Component with the Platform Designer Component Editor............ 614

10.4 Specify IP Component Type Information... 614
10.5 Create an HDL File in the Platform Designer Component Editor................................ 617
10.6 Create an HDL File Using a Template in the Platform Designer Component Editor....... 617
10.7 Specify Synthesis and Simulation Files in the Platform Designer Component Editor.....618

10.7.1 Specify HDL Files for Synthesis in the Platform Designer Component Editor... 619
10.7.2 Analyze Synthesis Files in the Platform Designer Component Editor..............620
10.7.3 Name HDL Signals for Automatic Interface and Type Recognition in the

Platform Designer Component Editor...621
10.7.4 Specify Files for Simulation in the Component Editor.................................. 622

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
7

10.7.5 Include an Internal Register Map Description in the .svd for Slave
Interfaces Connected to an HPS Component.. 623

10.8 Add Signals and Interfaces in the Platform Designer Component Editor.....................624
10.9 Specify Parameters in the Platform Designer Component Editor............................... 625

10.9.1 Valid Ranges for Parameters in the _hw.tcl File.. 628
10.9.2 Types of Platform Designer Parameters...628
10.9.3 Declare Parameters with Custom _hw.tcl Commands..................................630
10.9.4 Validate Parameter Values with a Validation Callback.................................. 632

10.10 Declaring SystemVerilog Interfaces in _hw.tcl..632
10.11 User Alterable HDL Parameters in _hw.tcl..634
10.12 Control Interfaces Dynamically with an Elaboration Callback..................................635
10.13 Control File Generation Dynamically with Parameters and a Fileset Callback.............636
10.14 Create a Composed Component or Subsystem...638
10.15 Add Component Instances to a Static or Generated Component............................. 640

10.15.1 Static Components...640
10.15.2 Generated Components.. 641
10.15.3 Design Guidelines for Adding Component Instances..................................644

10.16 Adding a Generic Component to the Platform Designer System.............................. 644
10.16.1 Creating Custom Interfaces in a Generic Component................................ 646
10.16.2 Instantiating RTL in a System as a Generic Component649
10.16.3 Implementing Generic Components Using High Level Synthesis Files.......... 650
10.16.4 Creating System Template for a Generic Component.................................655
10.16.5 Exporting a Generic Component...657

10.17 Document Revision History... 657

11 Platform Designer Interconnect...659
11.1 Memory-Mapped Interfaces.. 659

11.1.1 Platform Designer Packet Format... 661
11.1.2 Interconnect Domains..664
11.1.3 Master Network Interfaces..666
11.1.4 Slave Network Interfaces..669
11.1.5 Arbitration..671
11.1.6 Memory-Mapped Arbiter... 675
11.1.7 Datapath Multiplexing Logic.. 677
11.1.8 Width Adaptation...677
11.1.9 Burst Adapter... 679
11.1.10 Read and Write Responses.. 681
11.1.11 Platform Designer Address Decoding.. 682

11.2 Avalon Streaming Interfaces... 683
11.2.1 Avalon-ST Adapters... 685

11.3 Interrupt Interfaces... 693
11.3.1 Individual Requests IRQ Scheme... 693
11.3.2 Assigning IRQs in Platform Designer.. 694

11.4 Clock Interfaces.. 696
11.4.1 (High Speed Serial Interface) HSSI Clock Interfaces...................................697

11.5 Reset Interfaces..702
11.5.1 Single Global Reset Signal Implemented by Platform Designer.....................703
11.5.2 Reset Controller.. 703
11.5.3 Reset Bridge... 703
11.5.4 Reset Sequencer... 704

11.6 Conduits.. 715

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
8

11.7 Interconnect Pipelining...715
11.7.1 Manually Controlling Pipelining in the Platform Designer Interconnect........... 717

11.8 Error Correction Coding (ECC) in Platform Designer Interconnect............................. 718
11.9 AMBA 3 AXI Protocol Specification Support (version 1.0).. 718

11.9.1 Channels..719
11.9.2 Cache Support.. 719
11.9.3 Security Support... 720
11.9.4 Atomic Accesses..720
11.9.5 Response Signaling..720
11.9.6 Ordering Model... 720
11.9.7 Data Buses...721
11.9.8 Unaligned Address Commands.. 721
11.9.9 Avalon and AXI Transaction Support...721

11.10 AMBA 3 APB Protocol Specification Support (version 1.0)...................................... 722
11.10.1 Bridges.. 722
11.10.2 Burst Adaptation..722
11.10.3 Width Adaptation...723
11.10.4 Error Response..723

11.11 AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)................................723
11.11.1 Burst Support... 723
11.11.2 QoS... 723
11.11.3 Regions..723
11.11.4 Write Response Dependency... 724
11.11.5 AWCACHE and ARCACHE.. 724
11.11.6 Width Adaptation and Data Packing in Platform Designer...........................724
11.11.7 Ordering Model..724
11.11.8 Read and Write Allocate..725
11.11.9 Locked Transactions... 725
11.11.10 Memory Types... 725
11.11.11 Mismatched Attributes.. 725
11.11.12 Signals... 725

11.12 AMBA 4 AXI Streaming Interface Support (version 1.0).. 725
11.12.1 Connection Points.. 725
11.12.2 Adaptation..726

11.13 AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)................................ 726
11.13.1 AMBA 4 AXI-Lite Signals... 727
11.13.2 AMBA 4 AXI-Lite Bus Width...727
11.13.3 AMBA 4 AXI-Lite Outstanding Transactions.. 727
11.13.4 AMBA 4 AXI-Lite IDs.. 727
11.13.5 Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite.......... 727
11.13.6 AMBA 4 AXI-Lite Response Merging..728

11.14 Port Roles (Interface Signal Types)...728
11.14.1 AXI Master Interface Signal Types..728
11.14.2 AXI Slave Interface Signal Types..729
11.14.3 AMBA 4 AXI Master Interface Signal Types.. 730
11.14.4 AMBA 4 AXI Slave Interface Signal Types.. 732
11.14.5 AMBA 4 AXI-Stream Master and Slave Interface Signal Types.................... 733
11.14.6 APB Interface Signal Types..734
11.14.7 Avalon Memory-Mapped Interface Signal Roles.. 734
11.14.8 Avalon Streaming Interface Signal Roles .. 737
11.14.9 Avalon Clock Source Signal Roles ..738

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
9

11.14.10 Avalon Clock Sink Signal Roles ..738
11.14.11 Avalon Conduit Signal Roles ... 739
11.14.12 Avalon Tristate Conduit Signal Roles .. 739
11.14.13 Avalon Tri-State Slave Interface Signal Types...740
11.14.14 Avalon Interrupt Sender Signal Roles ...741
11.14.15 Avalon Interrupt Receiver Signal Roles ...741

11.15 Document Revision History... 741

12 Optimizing Platform Designer System Performance...743
12.1 Designing with Avalon and AXI Interfaces... 743

12.1.1 Designing Streaming Components... 744
12.1.2 Designing Memory-Mapped Components...744

12.2 Using Hierarchy in Systems.. 745
12.3 Using Concurrency in Memory-Mapped Systems.. 748

12.3.1 Implementing Concurrency With Multiple Masters...................................... 749
12.3.2 Implementing Concurrency With Multiple Slaves.. 750
12.3.3 Implementing Concurrency with DMA Engines... 752

12.4 Inserting Pipeline Stages to Increase System Frequency .. 753
12.5 Using Bridges... 753

12.5.1 Using Bridges to Increase System Frequency...754
12.5.2 Using Bridges to Minimize Design Logic.. 757
12.5.3 Using Bridges to Minimize Adapter Logic...759
12.5.4 Considering the Effects of Using Bridges... 760

12.6 Increasing Transfer Throughput...766
12.6.1 Using Pipelined Transfers..767
12.6.2 Arbitration Shares and Bursts..768

12.7 Reducing Logic Utilization... 772
12.7.1 Minimizing Interconnect Logic to Reduce Logic Unitization...........................772
12.7.2 Minimizing Arbitration Logic by Consolidating Multiple Interfaces..................773
12.7.3 Reducing Logic Utilization With Multiple Clock Domains...............................775
12.7.4 Duration of Transfers Crossing Clock Domains .. 777

12.8 Reducing Power Consumption... 778
12.8.1 Reducing Power Consumption With Multiple Clock Domains......................... 778
12.8.2 Reducing Power Consumption by Minimizing Toggle Rates........................... 781
12.8.3 Reducing Power Consumption by Disabling Logic..782

12.9 Reset Polarity and Synchronization in Platform Designer... 783
12.10 Optimizing Platform Designer System Performance Design Examples...................... 786

12.10.1 Avalon Pipelined Read Master Example... 786
12.10.2 Multiplexer Examples... 788

12.11 Document Revision History... 789

13 Component Interface Tcl Reference... 791
13.1 Platform Designer _hw.tcl Command Reference... 791

13.1.1 Interfaces and Ports...792
13.1.2 Parameters...810
13.1.3 Display Items... 821
13.1.4 Module Definition.. 828
13.1.5 Composition... 840
13.1.6 Fileset Generation... 860
13.1.7 Miscellaneous..871
13.1.8 SystemVerilog Interface Commands...877

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
10

13.2 Platform Designer _hw.tcl Property Reference... 883
13.2.1 Script Language Properties... 884
13.2.2 Interface Properties... 885
13.2.3 SystemVerilog Interface Properties.. 885
13.2.4 Instance Properties..886
13.2.5 Parameter Properties... 887
13.2.6 Parameter Type Properties.. 889
13.2.7 Parameter Status Properties..890
13.2.8 Port Properties.. 891
13.2.9 Direction Properties... 893
13.2.10 Display Item Properties.. 894
13.2.11 Display Item Kind Properties... 895
13.2.12 Display Hint Properties... 896
13.2.13 Module Properties.. 897
13.2.14 Fileset Properties...899
13.2.15 Fileset Kind Properties..900
13.2.16 Callback Properties.. 901
13.2.17 File Attribute Properties.. 902
13.2.18 File Kind Properties.. 903
13.2.19 File Source Properties...904
13.2.20 Simulator Properties.. 905
13.2.21 Port VHDL Type Properties.. 906
13.2.22 System Info Type Properties..907
13.2.23 Design Environment Type Properties...909
13.2.24 Units Properties...910
13.2.25 Operating System Properties... 911
13.2.26 Quartus.ini Type Properties... 912

13.3 Document Revision History... 913

14 Platform Designer System Design Components..914
14.1 Bridges.. 914

14.1.1 Clock Bridge... 915
14.1.2 Avalon-MM Clock Crossing Bridge.. 916
14.1.3 Avalon-MM Pipeline Bridge..918
14.1.4 Avalon-MM Unaligned Burst Expansion Bridge..919
14.1.5 Bridges Between Avalon and AXI Interfaces.. 922
14.1.6 AXI Bridge..923
14.1.7 AXI Timeout Bridge... 928
14.1.8 Address Span Extender.. 932

14.2 Error Response Slave...937
14.2.1 Error Response Slave Parameters.. 938
14.2.2 Error Response Slave CSR Registers...939
14.2.3 Designating a Default Slave in the System Contents Tab............................. 942

14.3 Tri-State Components.. 943
14.3.1 Generic Tri-State Controller...945
14.3.2 Tri-State Conduit Pin Sharer..945
14.3.3 Tri-State Conduit Bridge... 946

14.4 Test Pattern Generator and Checker Cores.. 946
14.4.1 Test Pattern Generator... 947
14.4.2 Test Pattern Checker..949

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
11

14.4.3 Software Programming Model for the Test Pattern Generator and Checker
Cores... 950

14.4.4 Test Pattern Generator API..954
14.4.5 Test Pattern Checker API.. 959

14.5 Avalon-ST Splitter Core.. 966
14.5.1 Splitter Core Backpressure..966
14.5.2 Splitter Core Interfaces.. 967
14.5.3 Splitter Core Parameters.. 967

14.6 Avalon-ST Delay Core.. 968
14.6.1 Delay Core Reset Signal... 968
14.6.2 Delay Core Interfaces.. 968
14.6.3 Delay Core Parameters...969

14.7 Avalon-ST Round Robin Scheduler... 970
14.7.1 Almost-Full Status Interface (Round Robin Scheduler)................................ 970
14.7.2 Request Interface (Round Robin Scheduler).. 970
14.7.3 Round Robin Scheduler Operation..970
14.7.4 Round Robin Scheduler Parameters..971

14.8 Avalon Packets to Transactions Converter... 972
14.8.1 Packets to Transactions Converter Interfaces...972
14.8.2 Packets to Transactions Converter Operation... 972

14.9 Avalon-ST Streaming Pipeline Stage...974
14.10 Streaming Channel Multiplexer and Demultiplexer Cores....................................... 975

14.10.1 Software Programming Model For the Multiplexer and Demultiplexer
Components.. 976

14.10.2 Avalon-ST Multiplexer...976
14.10.3 Avalon-ST Demultiplexer.. 978

14.11 Single-Clock and Dual-Clock FIFO Cores... 979
14.11.1 Interfaces Implemented in FIFO Cores..980
14.11.2 FIFO Operating Modes.. 981
14.11.3 Fill Level of the FIFO Buffer...982
14.11.4 Almost-Full and Almost-Empty Thresholds to Prevent Overflow and

Underflow... 982
14.11.5 Single-Clock and Dual-Clock FIFO Core Parameters.................................. 982
14.11.6 Avalon-ST Single-Clock FIFO Registers..983

14.12 Document Revision History... 984

15 Managing Metastability with the Intel Quartus Prime Software................................. 986
15.1 Metastability Analysis in the Intel Quartus Prime Software...................................... 987

15.1.1 Synchronization Register Chains.. 987
15.1.2 Identify Synchronizers for Metastability Analysis.. 988
15.1.3 How Timing Constraints Affect Synchronizer Identification and

Metastability Analysis..988
15.2 Metastability and MTBF Reporting.. 989

15.2.1 Metastability Reports... 990
15.2.2 Synchronizer Data Toggle Rate in MTBF Calculation.................................... 992

15.3 MTBF Optimization.. 992
15.3.1 Synchronization Register Chain Length... 993

15.4 Reducing Metastability Effects... 994
15.4.1 Apply Complete System-Centric Timing Constraints for the Timing Analyzer.. 994
15.4.2 Force the Identification of Synchronization Registers.................................. 994
15.4.3 Set the Synchronizer Data Toggle Rate... 995

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
12

15.4.4 Optimize Metastability During Fitting..995
15.4.5 Increase the Length of Synchronizers to Protect and Optimize..................... 995
15.4.6 Increase the Number of Stages Used in Synchronizers................................995
15.4.7 Select a Faster Speed Grade Device... 996

15.5 Scripting Support.. 996
15.5.1 Identifying Synchronizers for Metastability Analysis....................................996
15.5.2 Synchronizer Data Toggle Rate in MTBF Calculation.................................... 997
15.5.3 report_metastability and Tcl Command...997
15.5.4 MTBF Optimization...997
15.5.5 Synchronization Register Chain Length... 998

15.6 Managing Metastability...998
15.7 Document Revision History... 998

16 Mitigating Single Event Upset.. 1000
16.1 Failure Rates...1001
16.2 Mitigating SEU Effects in Embedded User RAM... 1001

16.2.1 Configuring RAM to Enable ECC... 1002
16.3 Mitigating SEU Effects in Configuration RAM (Intel Arria 10 and Intel Cyclone 10

GX devices).. 1003
16.4 Mitigating SEU Effects in Configuration RAM (Intel Stratix 10 devices).....................1004

16.4.1 Error Message Register...1004
16.4.2 SEU_ERROR Pin Behavior..1005

16.5 Internal Scrubbing...1005
16.6 SEU Recovery... 1006

16.6.1 Planning for SEU Recovery.. 1006
16.6.2 Designating the Sensitivity of the Design Hierarchy 1007
16.6.3 Advanced SEU Detection IP Core..1009

16.7 Intel Quartus Prime Software SEU FIT Reports...1010
16.7.1 SEU FIT Parameters Report... 1010
16.7.2 Projected SEU FIT by Component Usage Report....................................... 1011
16.7.3 Enabling the Projected SEU FIT by Component Usage Report..................... 1014

16.8 Triple-Module Redundancy.. 1014
16.9 Evaluating a System's Response to Functional Upsets... 1014
16.10 CRAM Error Detection Settings Reference..1015
16.11 Document Revision History..1016

17 Optimizing the Design Netlist...1018
17.1 When to Use the Netlist Viewers: Analyzing Design Problems1018
17.2 Intel Quartus Prime Design Flow with the Netlist Viewers...................................... 1019
17.3 RTL Viewer Overview... 1020
17.4 Technology Map Viewer Overview...1021
17.5 Introduction to the User Interface..1022

17.5.1 Netlist Navigator Pane.. 1025
17.5.2 Properties Pane... 1025
17.5.3 Netlist Viewers Find Pane..1027

17.6 Schematic View...1027
17.6.1 Display Schematics in Multiple Tabbed View...1027
17.6.2 Schematic Symbols..1028
17.6.3 Select Items in the Schematic View..1031
17.6.4 Shortcut Menu Commands in the Schematic View.................................... 1031
17.6.5 Filtering in the Schematic View..1031
17.6.6 View Contents of Nodes in the Schematic View.. 1032

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
13

17.6.7 Moving Nodes in the Schematic View..1034
17.6.8 View LUT Representations in the Technology Map Viewer...........................1034
17.6.9 Zoom Controls...1034
17.6.10 Navigating with the Bird's Eye View..1035
17.6.11 Partition the Schematic into Pages..1035
17.6.12 Follow Nets Across Schematic Pages... 1036

17.7 Cross-Probing to a Source Design File and Other Intel Quartus Prime Windows........ 1036
17.8 Cross-Probing to the Netlist Viewers from Other Intel Quartus Prime Windows......... 1037
17.9 Viewing a Timing Path.. 1037
17.10 Document Revision History..1038

18 Mentor Graphics Precision Synthesis Support.. 1040
18.1 About Precision RTL Synthesis Support... 1040
18.2 Design Flow.. 1040

18.2.1 Timing Optimization...1042
18.3 Intel Device Family Support.. 1042
18.4 Precision Synthesis Generated Files..1042
18.5 Creating and Compiling a Project in the Precision Synthesis Software..................... 1043
18.6 Mapping the Precision Synthesis Design..1043

18.6.1 Setting Timing Constraints..1044
18.6.2 Setting Mapping Constraints..1044
18.6.3 Assigning Pin Numbers and I/O Settings... 1044
18.6.4 Assigning I/O Registers.. 1045
18.6.5 Disabling I/O Pad Insertion... 1045
18.6.6 Controlling Fan-Out on Data Nets...1046

18.7 Synthesizing the Design and Evaluating the Results..1046
18.7.1 Obtaining Accurate Logic Utilization and Timing Analysis Reports................1047

18.8 Guidelines for Intel FPGA IP Cores and Architecture-Specific Features..................... 1047
18.8.1 Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files............ 1047
18.8.2 Instantiating IP Cores With IP Catalog-Generated VHDL Files.....................1048
18.8.3 Instantiating Intellectual Property With the IP Catalog and Parameter Editor1048
18.8.4 Instantiating Black Box IP Functions With Generated Verilog HDL Files........ 1049
18.8.5 Instantiating Black Box IP Functions With Generated VHDL Files.................1049
18.8.6 Inferring Intel FPGA IP Cores from HDL Code...1050

18.9 Document Revision History... 1055

19 Synopsys Synplify Support...1056
19.1 About Synplify Support...1056
19.2 Design Flow.. 1056
19.3 Hardware Description Language Support...1058
19.4 Intel Device Family Support.. 1058
19.5 Tool Setup.. 1058

19.5.1 Specifying the Intel Quartus Prime Software Version.................................1058
19.6 Synplify Software Generated Files..1058
19.7 Design Constraints Support...1059

19.7.1 Running the Intel Quartus Prime Software Manually With the
Synplify-Generated Tcl Script... 1060

19.7.2 Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus
Prime Software.. 1060

19.8 Simulation and Formal Verification... 1061
19.9 Synplify Optimization Strategies.. 1061

19.9.1 Using Synplify Premier to Optimize Your Design....................................... 1062

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
14

19.9.2 Using Implementations in Synplify Pro or Premier.................................... 1062
19.9.3 Timing-Driven Synthesis Settings...1062
19.9.4 FSM Compiler..1064
19.9.5 Optimization Attributes and Options... 1065
19.9.6 Intel-Specific Attributes.. 1068

19.10 Guidelines for Intel FPGA IP Cores and Architecture-Specific Features................... 1068
19.10.1 Instantiating Intel FPGA IP Cores with the IP Catalog..............................1069
19.10.2 Including Files for Intel Quartus Prime Placement and Routing Only.......... 1073
19.10.3 Inferring Intel FPGA IP Cores from HDL Code...1073

19.11 Document Revision History..1078

Contents

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
15

1 Introduction to Intel® Quartus® Prime Pro Edition
The Intel® Quartus® Prime software provides a complete design environment for FPGA
and SoC designs. The user interface supports easy design entry, fast processing, and
straightforward device programming. The Intel Quartus Prime Pro Edition software
enables next generation synthesis, physical optimization, design methodologies, and
FPGA architectures. The Intel Quartus Prime Pro Edition software provides unique
features not available in other Intel Quartus Prime software editions.

The Intel Quartus Prime Pro Edition Compiler is optimized for the latest Intel Arria®

10, Intel Cyclone® 10, and Intel Stratix® 10 devices. The Compiler provides powerful
and customizable design processing to achieve the best possible design
implementation in silicon. The Intel Quartus Prime software makes it easy for you to
focus on your design—not on the design tool. The Intel Quartus Prime Pro Edition
software provides unique features not available in other Quartus software products.

Figure 1. Quartus Prime New Feature Support Matrix

New Timing Analyzer

Interface Planner

New Physical Synthesis

Incremental Fitter Optimization

New Hybrid Placer & Global Router

OpenCL

Rapid Recompile

New Synthesis Engine

Intel Quartus Prime
Standard Edition

Intel Quartus Prime
Pro Edition

Platform Designer (for Pro Edition)

Partial Reconfiguration

Software Features

Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

The modular Compiler streamlines the FPGA development process, and ensures the
highest performance for the least effort. The Intel Quartus Prime Pro Edition software
provides the following unique features:

• Hyper-Aware Design Flow—use Hyper-Retiming and Fast Forward compilation for
the highest performance in Intel Stratix 10 devices.

• Intel Quartus Prime Pro Edition synthesis—integrates new, stricter language parser
supporting all major IEEE RTL languages, with enhanced algorithms, and parallel
synthesis capabilities. Added support for SystemVerilog 2009.

• Hierarchical project structure—preserves individual post-synthesis, post-
placement, and post-place and route results for each design entity. Allows
optimization without impacting other partition placement or routing.

• Incremental Fitter Optimizations—run and optimize Fitter stages incrementally.
Each Fitter stage generates detailed reports.

• Faster, more accurate I/O placement—plan interface I/O in Interface Planner.

• Platform Designer—builds on the system design and custom IP integration
capabilities of Platform Designer. Platform Designer in Intel Quartus Prime Pro
Edition introduces hierarchical isolation between system interconnect and IP
components.

• Partial Reconfiguration—support reconfiguration of a portion of the Intel Arria 10
FPGA, while the remaining FPGA continues to function.

• Supports block-based design flows, allowing you to preserve and reuse design
blocks at various stages of compilation.

Note: Intel now refers to the following Intel Quartus Prime tool names:

Table 1. Intel Quartus Prime Tool Name Updates

Altera Name Intel Name

Qsys Platform Designer

BluePrint Interface Planner

TimeQuest Timing Analyzer

EyeQ Eye Viewer

JNEye Advanced Link Analyzer

Related Links

• Migrating to Intel Quartus Prime Pro Edition on page 18

• Upgrade Project Assignments and Constraints on page 19

• Upgrade IP Cores and Platform Designer Systems on page 24

• Upgrade Non-Compliant Design RTL on page 25

• Block-Based Design Flows

1.1 Should I Choose the Intel Quartus Prime Pro Edition Software?

Depending on your immediate needs, the Intel Quartus Prime Pro Edition software
may be an appropriate choice for your design.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
17

https://www.altera.com/documentation/jbr1437426657605.ditamap.html#xdj1491668852667

The Intel Quartus Prime Pro Edition software includes many unique features that the
Intel Quartus Prime Standard Edition software does not include. However, the Intel
Quartus Prime Pro Edition software does not support all features of the Intel Quartus
Prime Standard Edition software.

Selecting a Quartus Prime Edition

Consider the requirements and timeline of your project in determining whether the
Intel Quartus Prime Standard Edition or Intel Quartus Prime Pro Edition software is
most appropriate for you. Use the following factors to inform your decision:

• The Intel Quartus Prime Pro Edition software supports only Intel Arria 10, Intel
Cyclone 10 GX, and Intel Stratix 10 devices. If your design targets any other Intel
FPGA device, select the Intel Quartus Prime Standard Edition.

• Select the Intel Quartus Prime Pro Edition if you are beginning a new Intel Arria
10, Intel Cyclone 10 GX, or Intel Stratix 10 design, or if your design requires any
unique Intel Quartus Prime Pro Edition features.

• Intel Quartus Prime Pro Edition software does not support the following Intel
Quartus Prime Standard Edition features:

— I/O Timing Analysis

— NativeLink third party tool integration

— Video and Image Processing Suite IP Cores

— Talkback features

— Various register merging and duplication settings

— Saving a node-level netlist as .vqm

— Compare project revisions

Related Links

• Managing Projects

• Design Compilation

• Creating a Partial Reconfiguration Design

1.2 Migrating to Intel Quartus Prime Pro Edition

The Intel Quartus Prime Pro Edition software supports migration of Intel Quartus
Prime Standard Edition, Quartus Prime Lite Edition, and Quartus II software projects.

Note: The migration steps for Quartus Prime Lite Edition, Intel Quartus Prime Standard
Edition, and the Quartus II software are identical. For brevity, this section refers to
these design tools collectively as "other Quartus software products."

Migrating to Intel Quartus Prime Pro Edition requires the following changes to other
Quartus software product projects:

1. Upgrade project assignments and constraints with equivalent Intel Quartus Prime
Pro Edition assignments.

2. Upgrade all Intel FPGA IP core variations and Platform Designer systems in your
project.

3. Upgrade design RTL to standards-compliant VHDL, Verilog HDL, or SystemVerilog.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
18

https://www.altera.com/documentation/jbr1437426657605.html#mwh1409958212952
https://www.altera.com/documentation/jbr1437426657605.html#jbr1443197641054
https://www.altera.com/documentation/jbr1437426657605.html#jka1466533251124

This document describes each migration step in detail.

1.2.1 Keep Pro Edition Project Files Separate

The Intel Quartus Prime Pro Edition software does not support project or constraint
files from other Quartus software products. Do not place project files from other
Quartus software products in the same directory as Intel Quartus Prime Pro Edition
project files. In general, use Intel Quartus Prime Pro Edition project files and
directories only for Intel Quartus Prime Pro Edition projects, and use other Quartus
software product files only with those software tools.

Intel Quartus Prime Pro Edition projects do not support compilation in other Quartus
software products, and vice versa. The Intel Quartus Prime Pro Edition software
generates an error if the Compiler detects other Quartus software product's features in
project files.

Before migrating other Quartus software product projects, click Project ➤ Archive
Project to save a copy of your original project before making modifications for
migration.

1.2.2 Upgrade Project Assignments and Constraints

Intel Quartus Prime Pro Edition software introduces changes to handling of project
assignments and constraints that the Quartus Settings File (.qsf) stores. Upgrade
other Quartus software product project assignments and constraints for migration to
the Intel Quartus Prime Pro Edition software. Upgrade other Quartus software product
assignments with Assignments ➤ Assignment Editor, by editing the .qsf file
directly, or by using a Tcl script.

The following sections detail each type project assignment upgrade that migration
requires.

Related Links

• Modify Entity Name Assignments on page 19

• Resolve Timing Constraint Entity Names on page 20

• Verify Generated Node Name Assignments on page 20

• Replace Logic Lock (Standard) Regions on page 21

• Modify Signal Tap Logic Analyzer Files on page 23

• Remove Unsupported Feature Assignments on page 24

1.2.2.1 Modify Entity Name Assignments

Intel Quartus Prime Pro Edition software supports assignments that include instance
names without a corresponding entity name.

• "a_entity:a|b_entity:b|c_entity:c" (includes deprecated entity names)

• “a|b|c” (omits deprecated entity names)

While the current version of the Intel Quartus Prime Pro Edition software still accepts
entity names in the .qsf, the Compiler ignores the entity name. The Compiler
generates a warning message upon detection of an entity names in the .qsf.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
19

Whenever possible, you should remove entity names from assignments, and
discontinue reliance on entity-based assignments. Future versions of the Intel Quartus
Prime Pro Edition software may eliminate all support for entity-based assignments.

1.2.2.2 Resolve Timing Constraint Entity Names

The Intel Quartus Prime Pro Edition Timing Analyzer honors entity names in Synopsys
Design Constraints (.sdc) files.

Use .sdc files from other Quartus software products without modification. However,
any scripts that include custom processing of names that the .sdc command returns,
such as get_registers may require modification. Your scripts must reflect that
returned strings do not include entity names.

The .sdc commands respect wildcard patterns containing entity names. Review the
Timing Analyzer reports to verify application of all constraints. The following example
illustrates differences between functioning and non-functioning .sdc scripts:

Apply a constraint to all registers named "acc" in the entity "counter".
This constraint functions in both SE and PE, because the SDC
command always understands wildcard patterns with entity names in them
set_false_path –to [get_registers “counter:*|*acc”]

This does the same thing, but first it converts all register names to
strings, which includes entity names by default in the SE
but excludes them by default in the PE. The regexp will therefore
fail in PE by default.
#
This script would also fail in the SE, and earlier
versions of Quartus II, if entity name display had been disabled
in the QSF.
set all_reg_strs [query_collection –list –all [get_registers *]]
foreach keeper $all_reg_strs {
 if {[regexp {counter:*|:*acc} $keeper]} {
 set_false_path –to $keeper
 }
}

Removal of the entity name processing from .sdc files may not be possible due to
complex processing involving node names. Use standard .sdc whenever possible to
replace such processing. Alternatively, add the following code to the top and bottom of
your script to temporarily re-enable entity name display in the .sdc file:

This script requires that entity names be included
due to custom name processing
set old_mode [set_project_mode -get_mode_value always_show_entity_name]
set_project_mode -always_show_entity_name on

<... the rest of your script goes here ...>

Restore the project mode
set_project_mode -always_show_entity_name $old_mode

1.2.2.3 Verify Generated Node Name Assignments

Intel Quartus Prime synthesis generates and automatically names internal design
nodes during processing. The Intel Quartus Prime Pro Edition uses different
conventions than other Quartus software products to generate node names during
synthesis. When you synthesize your other Quartus software product project in Intel
Quartus Prime Pro Edition, the synthesis-generated node names may change. If any

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
20

scripts or constraints depend on the synthesis-generated node names, update the
scripts or constraints to match the Intel Quartus Prime Pro Edition synthesis node
names.

Avoid dependence on synthesis-generated names due to frequent changes in name
generation. In addition, verify the names of duplicated registers and PLL clock outputs
to ensure compatibility with any script or constraint.

1.2.2.4 Replace Logic Lock (Standard) Regions

Intel Quartus Prime Pro Edition software introduces more simplified and flexible Logic
Lock constraints, compared with previous Logic Lock regions. You must replace all
Logic Lock (Standard) assignments with compatible Logic Lock assignments for
migration.

To convert Logic Lock (Standard) regions to Logic Lock regions:

1. Edit the .qsf to delete or comment out all of the following Logic
Lockassignments:

set_global_assignment -name LL_ENABLED*
set_global_assignment -name LL_AUTO_SIZE*
set_global_assignment -name LL_STATE FLOATING*
set_global_assignment -name LL_RESERVED*
set_global_assignment -name LL_CORE_ONLY*
set_global_assignment -name LL_SECURITY_ROUTING_INTERFACE*
set_global_assignment -name LL_IGNORE_IO_BANK_SECURITY_CONSTRAINT*
set_global_assignment -name LL_PR_REGION*
set_global_assignment -name LL_ROUTING_REGION_EXPANSION_SIZE*
set_global_assignment -name LL_WIDTH*
set_global_assignment -name LL_HEIGHT
set_global_assignment -name LL_ORIGIN
set_instance_assignment -name LL_MEMBER_OF

2. Edit the .qsf or click Tools ➤ Chip Planner to define new Logic Lock regions.
Logic Lock constraint syntax is simplified, for example:

set_instance_assignment -name PLACE_REGION "1 1 20 20" -to fifo1
set_instance_assignment -name RESERVE_PLACE_REGION OFF -to fifo1
set_instance_assignment -name CORE_ONLY_PLACE_REGION OFF -to fifo1

Compilation fails if synthesis finds other Quartus software product's Logic Lock
assignments in a Intel Quartus Prime Pro Edition project. The following table
compares other Quartus software product region constraint support with the Intel
Quartus Prime Pro Edition software.

Table 2. Region Constraints Per Edition

Constraint Type Logic Lock (Standard) Region Support
Other Quartus Software Products

Logic Lock Region Support
Intel Quartus Prime Pro Edition

Fixed rectangular,
nonrectangular or non-
contiguous regions

Full support. Full support.

Chip Planner entry Full support. Full support.

Periphery element
assignments

Supported in some instances. Full support. Use “core-only” regions to
exclude the periphery.

Nested (“hierarchical”)
regions

Supported but separate hierarchy from the user
instance tree.

Supported in same hierarchy as user
instance tree.

continued...

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
21

Constraint Type Logic Lock (Standard) Region Support
Other Quartus Software Products

Logic Lock Region Support
Intel Quartus Prime Pro Edition

Reserved regions Limited support for nested or nonrectangular
reserved regions. Reserved regions typically
cannot cross I/O columns; use non-contiguous
regions instead.

Full support for nested and
nonrectangular regions. Reserved
regions can cross I/O columns without
affecting periphery logic if the regions
are "core-only".

Routing regions Limited support via “routing expansion.” No
support with hierarchical regions.

Full support (including future support
for hierarchical regions).

Floating or autosized
regions

Full support. No support.

Region names Regions have names. Regions are identified by the instance
name of the constrained logic.

Multiple instances in the
same region

Full support. Support for non-reserved regions.
Create one region per instance, and
then specify the same definition for
multiple instances to assign to the same
area. Not supported for reserved
regions.

Member exclusion Full support. No support for arbitrary logic. Use a
core-only region to exclude periphery
elements. Use non-rectangular regions
to include more RAM or DSP columns as
needed.

1.2.2.4.1 Logic Lock Region Assignment Examples

These examples show the syntax of Logic Lock region assignments in the .qsf file.
Optionally, enter these assignments in the Assignment Editor, the Logic Lock Regions
Window, or the Chip Planner.

Example 1. Assign Rectangular Logic Lock Region

Assigns a rectangular Logic Lock region to a lower right corner location of (10,10), and
an upper right corner of (20,20) inclusive.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"

Example 2. Assign Non-Rectangular Logic Lock Region

Assigns instance with full hierarchical path "x|y|z" to non-rectangular L-shaped Logic
Lock region. The software treats each set of four numbers as a new box.

set_instance_assignment –name PLACE_REGION –to x|y|z "X10 Y10 X20 Y50; X20
Y10 X50 Y20"

Example 3. Assign Subordinate Logic Lock Instances

By default, the Intel Quartus Prime software constrains every child instance to the
Logic Lock region of its parent. Any constraint to a child instance intersects with the
constraint of its ancestors. For example, in the following example, all logic beneath
“a|b|c|d” constrains to box (10,10), (15,15), and not (0,0), (15,15). This
result occurs because the child constraint intersects with the parent constraint.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to a|b|c|d "X0 Y0 X15 Y15"

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
22

Example 4. Assign Multiple Logic Lock Instances

By default, a Logic Lock region constraint allows logic from other instances to share
the same region. These assignments place instance c and instance g in the same
location. This strategy is useful if instance c and instance g are heavily interacting.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

Example 5. Assigned Reserved Logic Lock Regions

Optionally reserve an entire Logic Lock region for one instance and any of its
subordinate instances.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name RESERVE_PLACE_REGION –to a|b|c ON

The following assignment causes an error. The logic in e|f|g is not
legally placeable anywhere:
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

The following assignment does *not* cause an error, but is effectively
constrained to the box (20,10), (30,20), since the (10,10),(20,20) box is
reserved
for a|b|c
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X30 Y20"

1.2.2.5 Modify Signal Tap Logic Analyzer Files

Intel Quartus Prime Pro Edition introduces new methodology for entity names,
settings, and assignments. These changes impact the processing of Signal Tap Logic
Analyzer Files (.stp).

If you migrate a project that includes .stp files generated by other Quartus software
products, you must make the following changes to migrate to the Intel Quartus Prime
Pro Edition:

1. Remove entity names from .stp files. The Signal Tap Logic Analyzer allows
without error, but ignores, entity names in .stp files. Remove entity names
from .stp files for migration to Intel Quartus Prime Pro Edition:

a. Click View ➤ Node Finder to locate and remove appropriate nodes. Use Node
Finder options to filter on nodes.

b. Click Processing ➤ Start ➤ Start Analysis & Elaboration to repopulate the
database and add valid node names.

2. Remove post-fit nodes. Intel Quartus Prime Pro Edition uses a different post-fit
node naming scheme than other Quartus software products.

a. Remove post-fit tap node names originating from other Quartus software
products.

b. Click View ➤ Node Finder to locate and remove post-fit nodes. Use Node
Finder options to filter on nodes.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
23

c. Click Processing ➤ Start Compilation to repopulate the database and add
valid post-fit nodes.

3. Run an initial compilation in Intel Quartus Prime Pro Edition from the GUI. The
Compiler automatically removes Signal Tap assignments originating other Quartus
software products. Alternatively, from the command-line, run quartus_stp once
on the project to remove outmoded assignments.

Note: quartus_stp introduces no migration impact in the Intel Quartus Prime
Pro Edition. Your scripts require no changes to quartus_stp for migration.

4. Modify .sdc constraints for JTAG. Intel Quartus Prime Pro Edition does not
support embedded .sdc constraints for JTAG signals. Modify the timing template
to suit the design's JTAG driver and board.

1.2.2.6 Remove Unsupported Feature Assignments

The Intel Quartus Prime Pro Edition software does not support some feature
assignments that other Quartus software products support. Remove the following
unsupported feature assignments from other Quartus software product .qsf files for
migration to the Intel Quartus Prime Pro Edition software.

• Incremental Compilation (partitions)—The current version of the Intel Quartus
Prime Pro Edition software does not support Intel Quartus Prime Standard Edition
incremental compilation. Remove all incremental compilation feature assignments
from other Quartus software product .qsf files before migration.

• Intel Quartus Prime Standard Edition Physical synthesis assignments. Intel
Quartus Prime Pro Edition software does not support Intel Quartus Prime Standard
Edition Physical synthesis assignments. Remove any of the following assignments
from the .qsf file or design RTL (instance assignments) before migration.

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA
 PHYSICAL_SYNTHESIS_COMBO_LOGIC
 PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION
 PHYSICAL_SYNTHESIS_REGISTER_RETIMING
 PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PIPELINING
 PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR_AREA

1.2.3 Upgrade IP Cores and Platform Designer Systems

Upgrade all IP cores and Platform Designer systems in your project for migration to
the Intel Quartus Prime Pro Edition software. The Intel Quartus Prime Pro Edition
software uses standards-compliant methodology for instantiation and generation of IP
cores and Platform Designer systems. Most Intel FPGA IP cores and Platform Designer
systems upgrade automatically in the Upgrade IP Components dialog box.

Other Quartus software products use a proprietary Verilog configuration scheme within
the top level of IP cores and Platform Designer systems for synthesis files. The Intel
Quartus Prime Pro Edition does not support this scheme. To upgrade all IP cores and
Platform Designer systems in your project, click Project ➤ Upgrade IP
Components.(1)

(1) For brevity, this section refers to Intel Quartus Prime Standard Edition, Intel Quartus Prime Lite
Edition, and the Quartus II software collectively as "other Quartus software products."

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
24

Table 3. IP Core and Platform Designer System Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

IP and Platform Designer system generation
use a proprietary Verilog HDL configuration
scheme within the top level of IP cores and
Platform Designer systems for synthesis files.
This proprietary Verilog HDL configuration
scheme prevents RTL entities from
ambiguous instantiation errors during
synthesis. However, these errors may
manifest in simulation. Resolving this issue
requires writing a Verilog HDL configuration
to disambiguate the instantiation, delete the
duplicate entity from the project, or rename
one of the conflicting entities. Intel Quartus
Prime Pro Edition IP strategy resolves these
issues.

IP and Platform Designer system generation does not use proprietary
Verilog HDL configurations. The compilation library scheme changes in the
following ways:
• Compiles all variants of an IP core into the same compilation library

across the entire project. Intel Quartus Prime Pro Edition identically
names IP cores with identical functionality and parameterization to
avoid ambiguous entity instantiation errors. For example, the files for
everyIntel Arria 10 PCI Express* IP core variant compile into the
altera_pcie_a10_hip_151 compilation library.

• Simulation and synthesis file sets for IP cores and systems instantiate
entities in the same manner.

• The generated RTL directory structure now matches the compilation
library structure.

Note: For complete information on upgrading IP cores, refer to Managing Intel Quartus
Prime Projects.

Related Links

• Introduction to Intel FPGA IP Cores

• Upgrading IP Cores

• Managing Intel Quartus Prime Projects on page 32

1.2.4 Upgrade Non-Compliant Design RTL

The Intel Quartus Prime Pro Edition software introduces a new synthesis engine
(quartus_syn executable).

The quartus_syn synthesis enforces stricter industry-standard HDL structures and
supports the following enhancements in this release:

• More robust support for SystemVerilog

• Improved support for VHDL2008

• New RAM inference engine infers RAMs from GENERATE statements or array of
integers

• Stricter syntax/semantics check for improved compatibility with other EDA tools

Account for these synthesis differences in existing RTL code by ensuring that your
design uses standards-compliant VHDL, Verilog HDL, or SystemVerilog. The Compiler
generates errors when processing non-compliant RTL. Use the guidelines in this
section to modify existing RTL for compatibility with the Intel Quartus Prime Pro
Edition synthesis.

Related Links

• Verify Verilog Compilation Unit on page 26

• Update Entity Auto-Discovery on page 27

• Ensure Distinct VHDL Namespace for Each Library on page 27

• Remove Unsupported Parameter Passing on page 27

• Remove Unsized Constant from WYSIWYG Instantiation on page 28

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
25

https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958250601
https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958294826

• Remove Non-Standard Pragmas on page 28

• Declare Objects Before Initial Values on page 28

• Confine SystemVerilog Features to SystemVerilog Files on page 29

• Avoid Assignment Mixing in Always Blocks on page 29

• Avoid Unconnected, Non-Existent Ports on page 30

• Avoid Illegal Parameter Ranges on page 30

• Update Verilog HDL and VHDL Type Mapping on page 30

1.2.4.1 Verify Verilog Compilation Unit

Intel Quartus Prime Pro Edition synthesis uses a different method to define the
compilation unit. The Verilog LRM defines the concept of compilation unit as “a
collection of one or more Verilog source files compiled together” forming the
compilation-unit scope. Items visible only in the compilation-unit scope include
macros, global declarations, and default net types. The contents of included files
become part of the compilation unit of the parent file. Modules, primitives, programs,
interfaces, and packages are visible in all compilation units. Ensure that your RTL
accommodates these changes.

Table 4. Verilog Compilation Unit Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

Synthesis in other Quartus software products follows the
Multi-file compilation unit (MFCU) method to select
compilation unit files. In MFCU, all files compile in the same
compilation unit. Global definitions and directives are visible
in all files. However, the default net type is reset at the start
of each file.

Intel Quartus Prime Pro Edition synthesis follows the
Single-file compilation unit (SFCU) method to select
compilation unit files. In SFCU, each file is a compilation
unit, file order is irrelevant, and the macro is only defined
until the end of the file.

Note: You can optionally change the MFCU mode using the following assignment:
set_global_assignment -name VERILOG_CU_MODE MFCU

1.2.4.1.1 Verilog HDL Configuration Instantiation

Intel Quartus Prime Pro Edition synthesis requires instantiation of the Verilog HDL
configuration, and not the module. In other Quartus software products, synthesis
automatically finds any Verilog HDL configuration relating to a module that you
instantiate. The Verilog HDL configuration then instantiates the design.

If your top-level entity is a Verilog HDL configuration, set the Verilog HDL
configuration, rather than the module, as the top-level entity.

Table 5. Verilog HDL Configuration Instantiation

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis automatically finds the
mid_config Verilog HDL configuration relating to the
instantiated module.

From the Example RTL, synthesis does not find the
mid_config Verilog HDL configuration. You must instantiate
the Verilog HDL configuration directly.

Example RTL:

config mid_config;
design good_lib.mid;
instance mid.sub_inst use good_lib.sub;
endconfig

continued...

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
26

Other Quartus Software Products Intel Quartus Prime Pro Edition

module test (input a1, output b);
mid_config mid_inst (.a1(a1), .b(b));
// in other Quartus products preceding line would have been:
//mid mid_inst (.a1(a1), .b(b));
endmodule

module mid (input a1, output b);
sub sub_inst (.a1(a1), .b(b));
endmodule

1.2.4.2 Update Entity Auto-Discovery

All editions of the Intel Quartus Prime and Quartus II software search your project
directory for undefined entities. For example, if you instantiate entity “sub” in your
design without specifying “sub” as a design file in the Quartus Settings File (.qsf),
synthesis searches for sub.v, sub.vhd, and so on. However, Intel Quartus Prime Pro
Edition performs auto-discovery at a different stage in the flow. Ensure that your RTL
code accommodates these auto-discovery changes.

Table 6. Entity Auto-Discovery Differences

Other Quartus Software
Products

Intel Quartus Prime Pro Edition

Always automatically
searches your project
directory and search path for
undefined entities.

Always automatically searches your project directory and search path for undefined
entities. Intel Quartus Prime Pro Edition synthesis performs auto-discovery earlier in the
flow than other Quartus software products. This results in discovery of more syntax
errors. Optionally disable auto-discovery with the following .qsf assignment:
set_global_assignment -name AUTO_DISCOVER_AND_SORT OFF

1.2.4.3 Ensure Distinct VHDL Namespace for Each Library

Intel Quartus Prime Pro Edition synthesis requires that VHDL namespaces are distinct
for each library. The stricter library binding requirement complies with VHDL language
specifications and results in deterministic behavior. This benefits team-based projects
by avoiding unintentional name collisions. Confirm that your RTL respects this change.

Table 7. VHDL Namespace Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

For the Example RTL, the analyzer searches all libraries in an
unspecified order until the analyzer finds package utilities_pack
and uses items from that package. If another library, for example
projectLib also contains utilities_pack, the analyzer may use
this library instead of myLib.utilites_pack if found before the
analyzer searches myLib.

For the Example RTL, the analyzer uses the
specific utilities_pack in myLib. If
utilities_pack does not exist in library
myLib, the analyzer generates an error.

Example RTL:

library myLib; use
myLib.utilities_pack.all;

1.2.4.4 Remove Unsupported Parameter Passing

Intel Quartus Prime Pro Edition synthesis does not support parameter passing using
set_parameter in the .qsf. Synthesis in other Quartus software products supports
passing parameters with this method. Except for the top-level of the design where
permitted, ensure that your RTL does not depend on this type of parameter passing.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
27

Table 8. SystemVerilog Feature Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis
overwrites the value of parameter SIZE in
the instance of my_ram instantiated from
entity mid-level.

From the Example RTL, synthesis generates a syntax error for detection of
parameter passing assignments in the .qsf. Specify parameters in the RTL.
The following example shows the supported top-level parameter passing
format. This example applies only to the top-level and sets a value of 4 to
parameter N:

set_parameter -name N 4

Example RTL:

set_parameter –entity mid_level –to my_ram –name SIZE 16

1.2.4.5 Remove Unsized Constant from WYSIWYG Instantiation

Intel Quartus Prime Pro Edition synthesis does not allow use of an unsized constant for
WYSIWYG instantiation. Synthesis in other Quartus software products allows use of
SystemVerilog (.sv) unsized constants when instantiating a WYSIWYG in a .v file.

Intel Quartus Prime Pro Edition synthesis allows use of unsized constants in .sv files
for uses other than WYSIWYG instantiation. Ensure that your RTL code does not use
unsized constants for WYSIWYG instantiation. For example, specify a sized literal, such
as 2'b11, rather than '1.

1.2.4.6 Remove Non-Standard Pragmas

Intel Quartus Prime Pro Edition synthesis does not support the
vhdl(verilog)_input_version pragma or the library pragma. Synthesis in
other Quartus software products supports these pragmas. Remove any use of the
pragmas from RTL for Intel Quartus Prime Pro Edition migration. Use the following
guidelines to implement the pragma functionality in Intel Quartus Prime Pro Edition:

• vhdl(verilog)_input_version Pragma—allows change to the input version in
the middle of an input file. For example, to change VHDL 1993 to VHDL 2008. For
Intel Quartus Prime Pro Edition migration, specify the input version for each file in
the .qsf.

• library Pragma—allows changes to the VHDL library into which files compile. For
Intel Quartus Prime Pro Edition migration, specify the compilation library in
the .qsf.

1.2.4.7 Declare Objects Before Initial Values

Intel Quartus Prime Pro Edition synthesis requires declaration of objects before initial
value. Ensure that your RTL declares objects before initial value. Other Quartus
software products allow declaration of initial value prior to declaration of the object.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
28

Table 9. Object Declaration Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis initializes the output
p_prog_io1 with the value of p_progio1_reg, even though the
register declaration occurs in Line 2.

From the Example RTL, synthesis generates a syntax
error when you specify initial values before declaring
the register.

Example RTL:

1 output p_prog_io1 = p_prog_io1_reg;
2 reg p_prog_io1_reg;

1.2.4.8 Confine SystemVerilog Features to SystemVerilog Files

Intel Quartus Prime Pro Edition synthesis does not allow SystemVerilog features in
Verilog HDL files. Other Quartus software products allow use of a subset of
SystemVerilog (.sv) features in Verilog HDL (.v) design files. To avoid syntax errors
in Intel Quartus Prime Pro Edition, allow only SystemVerilog features in Verilog HDL
files.

To use SystemVerilog features in your existing Verilog HDL files, rename your Verilog
HDL (.v) files as SystemVerilog (.sv) files. Alternatively, you can set the file type in
the .qsf, as shown in the following example:

set_global_assignment -name SYSTEMVERILOG_FILE <file>.v

Table 10. SystemVerilog Feature Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis interprets $clog2 in
a .v file, even though the Verilog LRM does not define the
$clog2 feature. Other Quartus software products allow
other SystemVerilog features in .v files.

From the Example RTL, synthesis generates a syntax error for
detection of any non-Verilog HDL construct in .v files. Intel
Quartus Prime Pro Edition synthesis honors SystemVerilog
features only in .sv files.

Example RTL:

localparam num_mem_locations = 1050;
wire mem_addr [$clog2(num_mem_locations)-1 : 0];

1.2.4.9 Avoid Assignment Mixing in Always Blocks

Intel Quartus Prime Pro Edition synthesis does not allow mixed use of blocking and
non-blocking assignments within ALWAYS blocks. Other Quartus software products
allow mixed use of blocking and non-blocking assignments within ALWAYS blocks. To
avoid syntax errors, ensure that ALWAYS block assignments are of the same type for
Intel Quartus Prime Pro Edition migration.

Table 11. ALWAYS Block Assignment Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

Synthesis honors the mixed blocking and non-blocking
assignments, although the Verilog Language Specification
no longer supports this construct.

Synthesis generates a syntax error for detection of mixed
blocking and non-blocking assignments within an ALWAYS
block.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
29

1.2.4.10 Avoid Unconnected, Non-Existent Ports

Intel Quartus Prime Pro Edition synthesis requires that a port exists in the module
prior to instantiation and naming. Other Quartus software products allow you to
instantiate and name an unconnected port that does not exist in the module. Modify
your RTL to match this requirement.

To avoid syntax errors, remove all unconnected and non-existent ports for Intel
Quartus Prime Pro Edition migration.

Table 12. Unconnected, Non-Existent Port Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

Synthesis allows you to instantiate and name
unconnected or non-existent ports that do not exist on
the module.

Synthesis generates a syntax error for detection of mixed
blocking and non-blocking assignments within an ALWAYS
block.

1.2.4.11 Avoid Illegal Parameter Ranges

Intel Quartus Prime Pro Edition synthesis generates an error for detection of constant
numeric (integer or floating point) parameter values that exceed the language
specification. Other Quartus software products allow constant numeric (integer or
floating point) values for parameters that exceed the language specifications. To avoid
syntax errors, ensure that constant numeric (integer or floating point) values for
parameters conform to the language specifications.

1.2.4.12 Update Verilog HDL and VHDL Type Mapping

Intel Quartus Prime Pro Edition synthesis requires that you use 0 for "false" and 1
for "true" in Verilog HDL files (.v). Other Quartus software products map "true" and
"false" strings in Verilog HDL to TRUE and FALSE Boolean values in VHDL. Intel
Quartus Prime Pro Edition synthesis generates an error for detection of non-Verilog
HDL constructs in .v files. To avoid syntax errors, ensure that your RTL
accommodates these standards.

1.3 Document Revision History

Table 13. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Described Intel Quartus Prime tool name updates for Platform
Designer (Qsys), Interface Planner (BluePrint), Timing Analyzer
(TimeQuest), Eye Viewer (EyeQ), and Advanced Link Analyzer
(Advanced Link Analyzer).

• Added Verilog HDL Macro example.
• Updated for latest Intel branding conventions.

2017.05.08 17.0.0 • Removed statement about limitations for safe state machines.
The Compiler supports safe state machines. State machine
inference is enabled by default.

• Added reference to Block-Based Design Flows.
• Removed procedure on manaul dynamic synthesis report

generation. The Compiler automatically generates dynamic
synthesis reports when enabled.

continued...

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
30

Date Version Changes

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Added reference to Partial Reconfiguration support.
• Added to list of Intel Quartus Prime Standard Editionfeatures

unsupported by Intel Quartus Prime Pro Edition.
• Added topic on Safe State Machine encoding.
• Described unsupported Intel Quartus Prime Standard Edition

physical synthesis options.
• Removed deprecated Per-Stage Compilation (Beta)

Compilation Flow.
• Changed title from "Remove Filling Vectors" to "Remove Unsized

Constant".

2016.05.03 16.0.0 • Removed software beta status and revised feature set.
• Added topic on Safe State Machine encoding.
• Added Generating Dynamic Synthesis Reports.
• Corrected statement about Verilog Compilation Unit.
• Corrected typo in Modify Entity Name Assignments.
• Added description of Fitter Plan, Place and Route stages,

reporting, and optimization.
• Added Per-Stage Compilation (Beta) Compilation Flow.
• Added Platform Designer information.
• Added OpenCL and Signal Tap with routing preservation as

unique Pro Edition features.
• Clarified limitations for multiple Logic Lock instances in the same

region.

2015.11.02 15.1.0 • First version of document.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1 Introduction to Intel® Quartus® Prime Pro Edition

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
31

https://www.altera.com/search-archives

2 Managing Intel Quartus Prime Projects
The Intel Quartus Prime software organizes and manages the elements of your design
within a project.

Click File > New Project Wizard to quickly setup and create a new design project.

Figure 2. New Project Wizard

When you open a project, a unified GUI displays integrated project information. The
project encapsulates information about your design hierarchy, libraries, constraints,
and project settings.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 3. Project Tasks Pane
Use the Tasks pane for immediate access to all Intel Quartus Prime project settings.

Create, open, or add
design files

Add IP or Systems

Assign device, global
settings, I/Os, entity settings

Run Compiler and
View Reports

Debug and Timing
Closure

Device Programming
and Project Archive

You can save multiple revisions of your project to experiment with settings that
achieve your design goals. Intel Quartus Prime projects support team-based,
distributed work flows and a scripting interface.

2.1 Understanding Intel Quartus Prime Projects

The Intel Quartus Prime software organizes your FPGA design work within a project. A
singleIntel Quartus PrimeProject File (.qpf) represents each design project. The text-
based .qpf references the Intel Quartus Prime Settings File (.qsf). The .qsf
references the project's design, constraint, and IP files, and stores and project-wide or
entity-specific settings that you specify in the GUI. The Intel Quartus Prime organizes
and maintains these various project files.

Table 14. Intel Quartus Prime Project Files

File Type Contains To Edit Format

Project file Project and revision name File ➤ New Project
Wizard

Intel Quartus Prime Project File (.qpf)

Project settings Lists design files, entity
settings, target device,
synthesis directives,
placement constraints

Assignments ➤ Settings Intel Quartus Prime Settings File (.qsf)

continued...

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
33

File Type Contains To Edit Format

Timing
constraints

Clock properties, exceptions,
setup/hold

Tools ➤ Timing Analyzer Synopsys Design Constraints File (.sdc)

Logic design
files

RTL and other design source
files

File ➤ New All supported HDL files

Programming
files

Device programming image
and information

Tools ➤ Programmer SRAM Object File (.sof)Programmer
Object File (.pof)

Project library Project and global library
information

Tools ➤ Options ➤
Libraries

.qsf (project)
quartus2.ini (global)

IP core files IP core variation
parameterization

Tools ➤ IP Catalog Intel Quartus Prime IP File (.ip)

Platform
Designer system
files

Platform Designer system
and IP core files

Tools ➤ Platform
Designer

Platform Designer System File (.qsys)

EDA tool files Generated for third-party
EDA tools

Assignments ➤ Settings
➤ EDA Tool Settings

Verilog Output File (.vo)
VHDL Output File (.vho)
Verilog Quartus Mapping File (.vqm)

Archive files Complete project as single
compressed file

Project ➤ Archive Project Intel Quartus Prime Archive File (.qar)

2.2 Viewing Basic Project Information

View basic information about your project in the Project Navigator, Compilation
Dashboard, Report panel, and Messages window. View project elements in the
Project Navigator (View ➤ Project Navigator). The Project Navigator displays
key project information, such as design files, IP components, and your project
hierarchy. Use the Project Navigator to locate and perform actions of the elements
of your project. To access the tabs of the Project Navigator, click the toggle control at
the top of the Project Navigator window.

Table 15. Project Navigator Tabs

Project Navigator Tab Description

Files Lists all design files in the current project. Right-click design files in this tab to
run these commands:
• Open the file
• Remove the file from project
• View file Properties

Hierarchy Provides a visual representation of the project hierarchy, specific resource usage
information, and device and device family information. Right-click items in the
hierarchy to Locate, Set as Top-Level Entity, or define Logic Lock regions or
design partitions.

Design Units Displays the design units in the project. Right-click a design unit to Locate in
Design File.

IP Components Displays the design files that make up the IP instantiated in the project,
including Intel FPGA IP, Platform Designer components, and third-party IP. Click
Launch IP Upgrade Tool from this tab to upgrade outdated IP components.
Right-click any IP component to Edit in Parameter Editor.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
34

Figure 4. Project Navigator Hierarchy, Files, Design Units, and IP Components Tabs

2.2.1 Viewing Project Reports

The Compilation Report panel updates dynamically to display detailed reports during
project processing.

To access the Compilation Report, click (Processing ➤ Compilation Report).

Note: You can also access the Compilation Report from the Compilation Dashboard
(Processing ➤ Compilation Dashboard).

• Synthesis reports

• Fitter reports

• Timing analysis reports

• Power analysis reports

• Signal integrity reports

Analyze the detailed project information in these reports to determine correct
implementation. Right-click report data to locate and edit the source in project files.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
35

Figure 5. Compilation Report

Synthesis
Reports

Selected
Report

Related Links

List of Compilation Reports

2.2.2 Viewing Project Messages

The Messages window (View ➤ Messages) displays information, warning, and error
messages about Intel Quartus Prime processes. Right-click messages to locate the
source or get message help.

• Processing tab—displays messages from the most recent process

• System tab—displays messages unrelated to design processing

• Search—locates specific messages

Messages are written to stdout when you use command-line executables.

Figure 6. Messages Window

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
36

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_list_format.htm

You can suppress display of unimportant messages so they do not obscure valid
messages.

Figure 7. Message Suppression by Message ID Number

2.2.2.1 Suppressing Messages

Suppress any messages that you do not want to view. To supress messages, right-
click a message and choose any of the following:

• Suppress Message—suppresses all messages matching exact text

• Suppress Messages with Matching ID—suppresses all messages matching the
message ID number, ignoring variables

• Suppress Messages with Matching Keyword—suppresses all messages
matching keyword or hierarchy

2.2.2.2 Message Suppression Guidelines

• You cannot suppress error or Intel legal agreement messages.

• Suppressing a message also suppresses any submessages.

• Message suppression is project revision-specific. Derivative project revisions
inherit any suppression.

• You cannot edit messages or suppression rules during compilation.

2.3 Using the Compilation Dashboard

The Compilation Dashboard provides an overview of your project, and lets you change
project settings, compile your design, and view reports for each compilation stage.

The Compilation Dashboard appears by default when you open a project. To open the
Compilation Dashboard manually, click Compilation Dashboard in the Tasks window.
You can also access the Compilation Report from the Compilation Dashboard.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
37

Figure 8. Compilation Dashboard

Full Compilation
Modules

Enables Optional
Module

Opens Settings

Runs Module(s)

Reports and Analysis

2.4 Project Management Best Practices

The Intel Quartus Prime software provides various options for setting up a project. The
following best practices help ensure efficient management and portability of your
project files.

Setting and Project File Best Practices

• Be very careful if you edit any Intel Quartus Prime data files, such as the Intel
Quartus Prime Project File (.qpf), Intel Quartus Prime Settings File (.qsf),
Quartus IP File (.qip), or Platform Designer System File (.qsys). Typos in these
files can cause software errors. For example, the software may ignore settings and
assignments.

Every Intel Quartus Prime project revision automatically includes a
supporting .qpf that preserves various project settings and constraints that you
enter in the GUI or add with Tcl commands. This file contains basic information
about the current software version, date, and project-wide and entity level
settings. Due to dependencies between the .qpf and .qsf, avoid manually
editing .qsf files.

• Do not compile multiple projects into the same directory. Instead, use a separate
directory for each project.

• By default, the Intel Quartus Prime software saves all project output files, such as
Text-Format Report Files (.rpt), in the project directory. Instead of manually
moving project output files, change your project compilation settings to save them
in a separate directory.

To save these files into a different directory choose Assignments ➤ Settings ➤
Compilation Process Settings. Turn on Save project output files in specified
directory and specify a directory for the output files.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
38

Project Archive and Source Control Best Practices

Click Project ➤ Archive Project to archive your project for revision control.

As you develop your design, your Intel Quartus Prime project directory contains a
variety of source and settings files, compilation database files, output, and report files.
You can archive these files using the Archive feature and save the archive for later use
or place it under revision control.

1. Choose Project ➤ Archive Project ➤ Advanced to open the Advanced Archive
Settings dialog box.

2. Choose a file set to archive.

3. Add additional files by clicking Add (optional).

To restore your archived project, choose Project ➤ Restore Archived Project.
Restore your project into a new, empty directory.

IP Core Best Practices

• Do not manually edit or write your own .qsys, .ip, or .qip file. Use the Intel
Quartus Prime software tools to create and edit these files.

Note: When generating IP cores, do not generate files into a directory that has a
space in the directory name or path. Spaces are not legal characters for IP
core paths or names.

• When you generate an IP core using the IP Catalog, the Intel Quartus Prime
software generates a .qsys (for Platform Designer-generated IP cores) or a .ip
file (for Intel Quartus Prime Pro Edition) or a .qip file. The Intel Quartus Prime
Pro Edition software automatically adds the generated .ip to your project. In the
Intel Quartus Prime Standard Edition software, add the .qip to your project. Do
not add the parameter editor generated file (.v or .vhd) to your design without
the .qsys or .qip file. Otherwise, you cannot use the IP upgrade or IP parameter
editor feature.

• Plan your directory structure ahead of time. Do not change the relative path
between a .qsys file and it's generation output directory. If you must move
the .qsys file, ensure that the generation output directory remains with
the .qsys file.

• Do not add IP core files directly from the /quartus/libraries/megafunctions
directory in your project. Otherwise, you must update the files for each
subsequent software release. Instead, use the IP Catalog and then add the .qip
to your project.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
39

• Do not use IP files that the Intel Quartus Prime software generates for RAM or
FIFO blocks targeting older device families (even though the Intel Quartus Prime
software does not issue an error). The RAM blocks that Intel Quartus Prime
generates for older device families are not optimized for the latest device families.

• When generating a ROM function, save the resulting .mif or .hex file in the same
folder as the corresponding IP core's .qsys or .qip file. For example, moving all
of your project's .mif or .hex files to the same directory causes relative path
problems after archiving the design.

• Always use the Intel Quartus Prime ip-setup-simulation and ip-make-
simscript utilities to generate simulation scripts for each IP core or Platform
Designer system in your design. These utilities produce a single simulation script
that does not require manual update for upgrades to Intel Quartus Prime software
or IP versions.

Related Links

Generating a Combined Simulator Setup Script on page 386

2.5 Managing Project Settings

The New Project Wizard guides you to make intial project settings when you setup a
new project. Optimizing project settings helps the Compiler to generate programming
files that meet or exceed your specifications.

On the Tasks pane, click Settings to access global project settings, including:

• Project files list

• Synthesis directives and constraints

• Logic options and compiler effort levels

• Placement constraints

• Timing constraint files

• Operating temperature limits and conditions

• File generation for other EDA tools

• Target a device (click Device)

• Target a development kit

The .qsf stores each project revision’s project settings. The Intel Quartus Prime
Default Settings File (<revision name>_assignment_defaults.qdf) stores the
default settings and constraints for each new project revision.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
40

Figure 9. Settings Dialog Box for Global Project Settings

The Assignment Editor (Tools > Assignment Editor) provides a spreadsheet-like
interface for assigning all instance-specific settings and constraints.

Figure 10. Assignment Editor Spreadsheet

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
41

2.5.1 Optimizing Project Settings

Optimize project settings to meet your design goals. The Intel Quartus Prime Design
Space Explorer II iteratively compiles your project with various setting combinations
to find the optimal setting for your goals. Alternatively, you can create a project
revision or project copy to manually compare various project settings and design
combinations.

The Intel Quartus Prime software includes several advisors to help you optimize your
design and reduce compilation time. The advisors listed in the Tools ➤ Advisors
menu can provide recommendations based on your project settings and design
constraints.

2.5.1.1 Optimizing with Design Space Explorer II

Use Design Space Explorer II (Tools > Launch Design Space Explorer II) to find
optimal project settings for resource, performance, or power optimization goals.
Design Space Explorer II (DSE II) processes your design using various setting and
constraint combinations, and reports the best settings for your design.

DSE II attempts multiple seeds to identify one meeting your requirements. DSE II can
run different compilations on multiple computers in parallel to streamline timing
closure.

Figure 11. Design Space Explorer II

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
42

2.5.1.2 Optimizing with Project Revisions

You can save multiple, named project revisions within your Intel Quartus Prime project
(Project > Revisions).

Each revision captures a unique set of project settings and constraints, but does not
capture any logic design file changes. Use revisions to experiment with different
settings while preserving the original. Optimize different revisions for various
applications. Use revisions for the following:

• Create a unique revision to optimize a design for different criteria, such as by area
in one revision and by fMAX in another revision.

• When you create a new revision the default Intel Quartus Prime settings initially
apply.

• Create a revision of a revision to experiment with settings and constraints. The
child revision includes all the assignments and settings of the parent revision.

You create, delete, and edit revisions in the Revisions dialog box. Each time you
create a new project revision, the Intel Quartus Prime software creates a new .qsf
using the revision name.

2.5.1.3 Copying Your Project

Click Project > Copy Project to create a separate copy of your project, rather than
just a revision within the same project.

The project copy includes all design files, any .qsf files, and project revisions. Use
this technique to optimize project copies for different applications. For example,
optimize one project to interface with a 32-bit data bus, and optimize a project copy
to interface with a 64-bit data bus.

2.5.1.4 Copy (Back-Annotate) Compiler Assignments

The Compiler maps the elements of your design to specific device and resource during
fitting. Following compilation, you can copy the Compiler's device and resource
assignments to the .qsf to preserve that same implementation in subsequent
compilations.

Click Assignments ➤ Back-Annoate Assignments to apply the device resource
assignments to the .qsf. Select the back-annotation type in the Back-annotation
type list.

2.6 Managing Logic Design Files

The Intel Quartus Prime software helps you create and manage the logic design files in
your project. Logic design files contain the logic that implements your design. When
you add a logic design file to the project, the Compiler automatically compiles that file
as part of the project. The Compiler synthesizes your logic design files to generate
programming files for your target device.

The Intel Quartus Prime software includes full-featured schematic and text editors, as
well as HDL templates to accelerate your design work. The Intel Quartus Prime
software supports VHDL Design Files (.vhd), Verilog HDL Design Files (.v),

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
43

SystemVerilog (.sv) and schematic Block Design Files (.bdf). In addition, you can
combine your logic design files with Intel and third-party IP core design files, including
combining components into a Platform Designer system (.qsys).

The New Project Wizard prompts you to identify logic design files. Add or remove
project files by clicking Project > Add/Remove Files in Project. View the project’s
logic design files in the Project Navigator.

Figure 12. Design and IP Files in Project Navigator

Right-click files in the Project Navigator to:

• Open and edit the file

• Remove File from Project

• Set as Top-Level Entity for the project revision

• Create a Symbol File for Current File for display in schematic editors

• Edit file Properties

2.6.1 Including Design Libraries

Include design files libraries in your project. Specify libraries for a single project, or for
all Intel Quartus Prime projects. The .qsf stores project library information.

The quartus2.ini file stores global library information.

Related Links

Design Library Migration Guidelines on page 80

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
44

2.6.1.1 Specifying Design Libraries

Follow these steps to specify project libraries from the GUI.

1. Click Assignment > Settings.

2. Click Libraries and specify the Project Library name or Global Library name.
Alternatively, you can specify project libraries with SEARCH_PATH in the .qsf,
and global libraries in the quartus2.ini file.

2.7 Managing Timing Constraints

Apply appropriate timing constraints to correctly optimize fitting and analyze timing
for your design. The Fitter optimizes the placement of logic in the device to meet your
specified timing and routing constraints.

Specify timing constraints in the Timing Analyzer (Tools > Timing Analyzer), or in
an .sdc file. Specify constraints for clock characteristics, timing exceptions, and
external signal setup and hold times before running analysis. Timing Analyzer reports
the detailed information about the performance of your design compared with
constraints in the Compilation Report panel.

Save the constraints you specify in the GUI in an industry-standard Synopsys Design
Constraints File (.sdc). You can subsequently edit the text-based .sdc file directly. If
you refer to multiple .sdc files in a parent .sdc file, the Timing Analyzer reads
the .sdc files in the order you list.

2.8 Introduction to Intel FPGA IP Cores

Intel and strategic IP partners offer a broad portfolio of configurable IP cores
optimized for Intel FPGA devices.

The Intel Quartus Prime software installation includes the Intel FPGA IP library.
Integrate optimized and verified Intel FPGA IP cores into your design to shorten design
cycles and maximize performance. The Intel Quartus Prime software also supports
integration of IP cores from other sources. Use the IP Catalog (Tools ➤ IP Catalog)
to efficiently parameterize and generate synthesis and simulation files for your custom
IP variation. The Intel FPGA IP library includes the following types of IP cores:

• Basic functions

• DSP functions

• Interface protocols

• Low power functions

• Memory interfaces and controllers

• Processors and peripherals

This document provides basic information about parameterizing, generating,
upgrading, and simulating stand-alone IP cores in the Intel Quartus Prime software.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
45

Figure 13. IP Catalog

Display All IP or by Device

Double-Click for Parameters
Right-Click for IP Details

Search for IP

2.8.1 IP Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project. Use the following
features of the IP Catalog to locate and customize an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all
device families. If you have no project open, select the Device Family in IP
Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.

• Right-click an IP core name in IP Catalog to display details about supported
devices, to open the IP core's installation folder, and for links to IP documentation.

• Click Search for Partner IP to access partner IP information on the web.

The parameter editor prompts you to specify an IP variation name, optional ports, and
output file generation options. The parameter editor generates a top-level Intel
Quartus Prime IP file (.ip) for an IP variation in Intel Quartus Prime Pro Edition
projects.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
46

Figure 14. IP Parameter Editor (Intel Quartus Prime Pro Edition)

IP Parameters IP Block Symbol

Related Links

Creating a System with Platform Designer on page 327

2.8.1.1 The Parameter Editor

The parameter editor helps you to configure IP core ports, parameters, and output file
generation options. The basic parameter editor controls include the following:

• Use the Presets window to apply preset parameter values for specific applications
(for select cores).

• Use the Details window to view port and parameter descriptions, and click links to
documentation.

• Click Generate ➤ Generate Testbench System to generate a testbench system
(for select cores).

• Click Generate ➤ Generate Example Design to generate an example design
(for select cores).

• Click Validate System Integrity to validate a system's generic components
against companion files. (Platform Designer systems only)

• Click Sync All System Info to validate a system's generic components against
companion files. (Platform Designer systems only)

The IP Catalog is also available in Platform Designer (View ➤ IP Catalog). The
Platform Designer IP Catalog includes exclusive system interconnect, video and image
processing, and other system-level IP that are not available in the Intel Quartus Prime
IP Catalog. Refer to Creating a System with Platform Designer or Creating a System
with Platform Designer for information on use of IP in Platform Designer and Platform
Designer, respectively.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
47

Related Links

• Creating a System with Platform Designer

• Creating a System with Platform Designer

2.8.1.2 Adding IP Cores to IP Catalog

The IP Catalog automatically displays IP cores located in the project directory, in the
default Intel Quartus Prime installation directory, and in the IP search path.

Figure 15. Specifying IP Search Locations

Add a Global
IP Search Path

Add a Project-
Specific Search Path

The IP Catalog displays Intel Quartus Prime IP components and Platform Designer
systems, third-party IP components, and any custom IP components that you include
in the path. Use the IP Search Path option (Tools ➤ Options) to include custom
and third-party IP components in the IP Catalog.

The Intel Quartus Prime software searches the directories listed in the IP search path
for the following IP core files:

• Component Description File (_hw.tcl)—defines a single IP core.

• IP Index File (.ipx)—each .ipx file indexes a collection of available IP cores. This
file specifies the relative path of directories to search for IP cores. In
general, .ipx files facilitate faster searches.

The Intel Quartus Prime software searches some directories recursively and other
directories only to a specific depth. When the search is recursive, the search stops at
any directory that contains a _hw.tcl or .ipx file.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
48

https://www.altera.com/documentation/jbr1437426657605.html#mwh1409958596582
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958596582

In the following list of search locations, ** indicates a recursive descent.

Table 16. IP Search Locations

Location Description

PROJECT_DIR/* Finds IP components and index files in the Intel Quartus Prime project directory.

PROJECT_DIR/ip/**/* Finds IP components and index files in any subdirectory of the /ip subdirectory of the Intel
Quartus Prime project directory.

If the Intel Quartus Prime software recognizes two IP cores with the same name, the
following search path precedence rules determine the resolution of files:

1. Project directory.

2. Project database directory.

3. Project IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment for the current project revision.

4. Global IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment in the quartus2.ini file.

5. Quartus software libraries directory, such as <Quartus Installation>
\libraries.

Note: If you add an IP component to the search path, update the IP Catalog by clicking
Refresh IP Catalog in the drop-down list. In Platform Designer and Platform
Designer, click File ➤ Refresh System to update the IP Catalog.

2.8.1.3 General Settings for IP

Use the following settings to control how the Intel Quartus Prime software manages IP
cores in your project.

Table 17. IP Core General Setting Locations

Setting Location Description

Tools ➤ Options ➤ IP Settings
Or
Tasks pane ➤ Settings ➤ IP Settings
(Pro Edition Only)

• Specify the IP generation HDL preference. The parameter editor
generates the HDL you specify for IP variations.

• Increase the Maximum Platform Designer memory usage size if
you experience slow processing for large systems, or for out of memory
errors.

• Specify whether to Automatically add Intel Quartus Prime IP files
to all projects. Disable this option to manually add the IP files.

• Use the IP Regeneration Policy setting to control when synthesis files
regenerate for each IP variation. Typically, you Always regenerate
synthesis files for IP cores after making changes to an IP variation.

Tools ➤ Options ➤ IP Catalog Search
Locations
Or
Tasks pane ➤ Settings ➤ IP Catalog
Search Locations (Pro Edition Only)

• Specify additional project and global IP search locations. The Intel
Quartus Prime software searches for IP cores in the project directory, in
the Intel Quartus Prime installation directory, and in the IP search path.

2.8.1.4 Installing and Licensing Intel FPGA IP Cores

The Intel Quartus Prime software installation includes the Intel FPGA IP library. This
library provides many useful IP cores for your production use without the need for an
additional license. Some Intel FPGA IP cores require purchase of a separate license for

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
49

production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these
licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a
full production IP core license. You only need to purchase a full production license for
licensed Intel IP cores after you complete hardware testing and are ready to use the
IP in production.

The Intel Quartus Prime software installs IP cores in the following locations by default:

Figure 16. IP Core Installation Path

intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software
ip - Contains the Intel FPGA IP library and third-party IP cores

altera - Contains the Intel FPGA IP library source code
<IP name> - Contains the Intel FPGA IP source files

Table 18. IP Core Installation Locations

Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Intel Quartus Prime Pro Edition Windows*

<drive>:\intelFPGA\quartus\ip\altera Intel Quartus Prime Standard
Edition

Windows

<home directory>:/intelFPGA_pro/quartus/ip/altera Intel Quartus Prime Pro Edition Linux*

<home directory>:/intelFPGA/quartus/ip/altera Intel Quartus Prime Standard
Edition

Linux

2.8.2 Generating IP Cores (Intel Quartus Prime Pro Edition)

Quickly configure Intel FPGA IP cores in the Intel Quartus Prime parameter editor.
Double-click any component in the IP Catalog to launch the parameter editor. The
parameter editor allows you to define a custom variation of the IP core. The parameter
editor generates the IP variation synthesis and optional simulation files, and adds
the .ip file representing the variation to your project automatically.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
50

Figure 17. IP Parameter Editor (Intel Quartus Prime Pro Edition)

IP Parameters IP Block Symbol

Follow these steps to locate, instantiate, and customize an IP core in the parameter
editor:

1. Create or open an Intel Quartus Prime project (.qpf) to contain the instantiated
IP variation.

2. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the
IP core to customize. To locate a specific component, type some or all of the
component’s name in the IP Catalog search box. The New IP Variation window
appears.

3. Specify a top-level name for your custom IP variation. Do not include spaces in IP
variation names or paths. The parameter editor saves the IP variation settings in a
file named <your_ip>.ip. Click OK. The parameter editor appears.

4. Set the parameter values in the parameter editor and view the block diagram for
the component. The Parameterization Messages tab at the bottom displays any
errors in IP parameters:

• Optionally, select preset parameter values if provided for your IP core. Presets
specify initial parameter values for specific applications.

• Specify parameters defining the IP core functionality, port configurations, and
device-specific features.

• Specify options for processing the IP core files in other EDA tools.

Note: Refer to your IP core user guide for information about specific IP core
parameters.

5. Click Generate HDL. The Generation dialog box appears.

6. Specify output file generation options, and then click Generate. The synthesis and
simulation files generate according to your specifications.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
51

7. To generate a simulation testbench, click Generate ➤ Generate Testbench
System. Specify testbench generation options, and then click Generate.

8. To generate an HDL instantiation template that you can copy and paste into your
text editor, click Generate ➤ Show Instantiation Template.

9. Click Finish. Click Yes if prompted to add files representing the IP variation to
your project.

10. After generating and instantiating your IP variation, make appropriate pin
assignments to connect ports.

Note: Some IP cores generate different HDL implementations according to the IP
core parameters. The underlying RTL of these IP cores contains a unique
hash code that prevents module name collisions between different variations
of the IP core. This unique code remains consistent, given the same IP
settings and software version during IP generation. This unique code can
change if you edit the IP core's parameters or upgrade the IP core version.
To avoid dependency on these unique codes in your simulation environment,
refer to Generating a Combined Simulator Setup Script.

2.8.2.1 IP Core Generation Output (Intel Quartus Prime Pro Edition)

The Intel Quartus Prime software generates the following output file structure for
individual IP cores that are not part of a Platform Designer system.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
52

Figure 18. Individual IP Core Generation Output (Intel Quartus Prime Pro Edition)

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

synth - IP synthesis files

<IP Submodule>_<version> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.ip - Top-level IP variation file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Simulation startup scripts

*

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system *

<your_testbench>_tb.qsys - testbench system file
<your_ip>_tb - IP testbench files

your_testbench> _tb.csv or .spd - testbench file

sim - IP testbench simulation files
 * If supported and enabled for your IP core variation.

<your_ip>.qgsimc - Simulation caching file (Platform Designer)

<your_ip>.qgsynthc - Synthesis caching file (Platform Designer)

Table 19. Output Files of Intel FPGA IP Generation

File Name Description

<your_ip>.ip Top-level IP variation file that contains the parameterization of an IP core in
your project. If the IP variation is part of a Platform Designer system, the
parameter editor also generates a .qsys file.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you use in VHDL design files.

<your_ip>_generation.rpt IP or Platform Designer generation log file. Displays a summary of the
messages during IP generation.

continued...

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
53

File Name Description

<your_ip>.qgsimc (Platform Designer
systems only)

Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qgsynth (Platform
Designer systems only)

Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qip Contains all information to integrate and compile the IP component.

<your_ip>.csv Contains information about the upgrade status of the IP component.

<your_ip>.bsf A symbol representation of the IP variation for use in Block Diagram Files
(.bdf).

<your_ip>.spd Input file that ip-make-simscript requires to generate simulation scripts.
The .spd file contains a list of files you generate for simulation, along with
information about memories that you initialize.

<your_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components you create for use with the Pin Planner.

<your_ip>_bb.v Use the Verilog blackbox (_bb.v) file as an empty module declaration for use
as a blackbox.

<your_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your_ip>.regmap If the IP contains register information, the Intel Quartus Prime software
generates the .regmap file. The .regmap file describes the register map
information of master and slave interfaces. This file complements
the .sopcinfo file by providing more detailed register information about the
system. This file enables register display views and user customizable statistics
in System Console.

<your_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals that
connect to HPS within a Platform Designer system.
During synthesis, the Intel Quartus Prime software stores the .svd files for
slave interface visible to the System Console masters in the .sof file in the
debug session. System Console reads this section, which Platform Designer
queries for register map information. For system slaves, Platform Designer
accesses the registers by name.

<your_ip>.v <your_ip>.vhd HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a msim_setup.tcl script to set up and run a ModelSim simulation.

aldec/ Contains a Riviera*-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_sim.setup file to
set up and run a VCS MX* simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ Platform Designer generates /synth and /sim sub-directories for each IP
submodule directory that Platform Designer generates.

2.8.2.2 Scripting IP Core Generation

Use the qsys-script and qsys-generate utilities to define and generate an IP
core variation outside of the Intel Quartus Prime GUI.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
54

To parameterize and generate an IP core at command-line, follow these steps:

1. Run qsys-script to start a Tcl script that instantiates the IP and sets desired
parameters:

qsys-script --script=<script_file>.tcl

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

Table 20. qsys-generate Command-Line Options

Option Usage Description

<1st arg file> Required Specifies the name of the .qsys system file to generate.

--synthesis=<VERILOG|VHDL> Optional Creates synthesis HDL files that Platform Designer uses to
compile the system in an Intel Quartus Prime project.
Specify the generation language for the top-level RTL file
for the Platform Designer system. The default value is
VERILOG.

--block-symbol-file Optional Creates a Block Symbol File (.bsf) for the Platform
Designer system.

--greybox Optional If you are synthesizing your design with a third-party EDA
synthesis tool, generate a netlist for the synthesis tool to
estimate timing and resource usage for this design.

--ipxact Optional If you set this option to true, Platform Designer renders
the post-generation system as an IPXACT-compatible
component description.

--simulation=<VERILOG|VHDL> Optional Creates a simulation model for the Platform Designer
system. The simulation model contains generated HDL files
for the simulator, and may include simulation-only
features. Specify the preferred simulation language. The
default value is VERILOG.

--testbench=<SIMPLE|
STANDARD>

Optional Creates a testbench system that instantiates the original
system, adding bus functional models (BFMs) to drive the
top-level interfaces. When you generate the system, the
BFMs interact with the system in the simulator. The default
value is STANDARD.

--testbench-
simulation=<VERILOG|VHDL>

Optional After you create the testbench system, create a simulation
model for the testbench system. The default value is
VERILOG.

--example-design=<value> Optional Creates example design files. For example,
--example-design or --example-design=all. The
default is All, which generates example designs for all
instances. Alternatively, choose specific filesets based on
instance name and fileset name. For example --example-
design=instance0.example_design1,instance1.ex
ample_design 2. Specify an output directory for the
example design files creation.

--search-path=<value> Optional If you omit this command, Platform Designer uses a
standard default path. If you provide this command,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example, "/extra/dir,$".

--family=<value> Optional Sets the device family name.

continued...

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
55

Option Usage Description

--part=<value> Optional Sets the device part number. If set, this option overrides
the --family option.

--upgrade-variation-file Optional If you set this option to true, the file argument for this
command accepts a .v file, which contains a IP variant.
This file parameterizes a corresponding instance in a
Platform Designer system of the same name.

--upgrade-ip-cores Optional Enables upgrading all the IP cores that support upgrade in
the Platform Designer system.

--clear-output-directory Optional Clears the output directory corresponding to the selected
target, that is, simulation or synthesis.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-generate. You specify the value as
<size><unit>, where unit is m (or M) for multiples of
megabytes or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for --qsys-generate.

2.8.3 Modifying an IP Variation

After generating an IP core variation, use any of the following methods to modify the
IP variation in the parameter editor.

Table 21. Modifying an IP Variation

Menu Command Action

File ➤ Open Select the top-level HDL (.v, or .vhd) IP variation file to launch the
parameter editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

View ➤ Project Navigator ➤ IP Components Double-click the IP variation to launch the parameter editor and
modify the IP variation. Regenerate the IP variation to implement
your changes.

Project ➤ Upgrade IP Components Select the IP variation and click Upgrade in Editor to launch the
parameter editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

2.8.4 Upgrading IP Cores

Any Intel FPGA IP variations that you generate from a previous version or different
edition of the Intel Quartus Prime software, may require upgrade before compilation in
the current software edition or version. The Project Navigator displays a banner
indicating the IP upgrade status. Click Launch IP Upgrade Tool or Project ➤
Upgrade IP Components to upgrade outdated IP cores.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
56

Figure 19. IP Upgrade Alert in Project Navigator

Icons in the Upgrade IP Components dialog box indicate when IP upgrade is
required, optional, or unsupported for an IP variation in the project. Upgrade IP
variations that require upgrade before compilation in the current version of the Intel
Quartus Prime software.

Note: Upgrading IP cores may append a unique identifier to the original IP core entity
names, without similarly modifying the IP instance name. There is no requirement to
update these entity references in any supporting Intel Quartus Prime file, such as the
Intel Quartus Prime Settings File (.qsf), Synopsys* Design Constraints File (.sdc),
or Signal Tap File (.stp), if these files contain instance names. The Intel Quartus
Prime software reads only the instance name and ignores the entity name in paths
that specify both names. Use only instance names in assignments.

Table 22. IP Core Upgrade Status

IP Core Status Description

IP Upgraded

Indicates that your IP variation uses the latest version of the Intel FPGA IP core.

IP Component Outdated

Indicates that your IP variation uses an outdated version of the IP core.

IP End of Life

Indicates that Intel designates the IP core as end-of-life status. You may or may not be
able to edit the IP core in the parameter editor. Support for this IP core discontinues in
future releases of the Intel Quartus Prime software.

continued...

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
57

IP Core Status Description

IP Upgrade Mismatch
Warning

Provides warning of non-critical IP core differences in migrating IP to another device family.

IP has incompatible subcores

Indicates that the current version of the Intel Quartus Prime software does not support
compilation of your IP variation, because the IP has incompatible subcores

Compilation of IP Not
Supported

Indicates that the current version of the Intel Quartus Prime software does not support
compilation of your IP variation. This can occur if another edition of the Intel Quartus Prime
software, such as the Intel Quartus Prime Standard Edition, generated this IP. Replace this
IP component with a compatible component in the current edition.

Follow these steps to upgrade IP cores:

1. In the latest version of the Intel Quartus Prime software, open the Intel Quartus
Prime project containing an outdated IP core variation. The Upgrade IP
Components dialog box automatically displays the status of IP cores in your
project, along with instructions for upgrading each core. To access this dialog box
manually, click Project ➤ Upgrade IP Components.

2. To upgrade one or more IP cores that support automatic upgrade, ensure that you
turn on the Auto Upgrade option for the IP cores, and click Auto Upgrade. The
Status and Version columns update when upgrade is complete. Example designs
that any Intel FPGA IP core provides regenerate automatically whenever you
upgrade an IP core.

3. To manually upgrade an individual IP core, select the IP core and click Upgrade in
Editor (or simply double-click the IP core name). The parameter editor opens,
allowing you to adjust parameters and regenerate the latest version of the IP core.

Figure 20. Upgrading IP Cores

Runs “Auto Upgrade” on all Outdated Cores

Opens Editor for Manual IP Upgrade

Generates/Updates Combined Simulation Setup Script for all Project IP

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
58

Note: Intel FPGA IP cores older than Intel Quartus Prime software version 12.0 do
not support upgrade. Intel verifies that the current version of the Intel
Quartus Prime software compiles the previous two versions of each IP core.
The Intel FPGA IP Core Release Notes reports any verification exceptions for
Intel FPGA IP cores. Intel does not verify compilation for IP cores older than
the previous two releases.

Related Links

Intel FPGA IP Core Release Notes

2.8.4.1 Upgrading IP Cores at Command-Line

Optionally, upgrade an Intel FPGA IP core at the command-line, rather than using the
GUI. IP cores that do not support automatic upgrade do not support command-line
upgrade.

• To upgrade a single IP core at the command-line, type the following command:

quartus_sh –ip_upgrade –variation_files <my_ip>.<qsys,.v, .vhd>
<quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files mega/pll25.qsys hps_testx

• To simultaneously upgrade multiple IP cores at the command-line, type the
following command:

quartus_sh –ip_upgrade –variation_files “<my_ip1>.<qsys,.v, .vhd>>;
<my_ip_filepath/my_ip2>.<hdl>” <quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files "mega/pll_tx2.qsys;mega/
pll3.qsys" hps_testx

2.8.4.2 Migrating IP Cores to a Different Device

Migrate an Intel FPGA IP variation when you want to target a different (often newer)
device. Most Intel FPGA IP cores support automatic migration. Some IP cores require
manual IP regeneration for migration. A few IP cores do not support device migration,
requiring you to replace them in the project. The Upgrade IP Components dialog
box identifies the migration support level for each IP core in the design.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
59

http://www.altera.com/literature/rn/rn_ip.pdf

1. To display the IP cores that require migration, click Project ➤ Upgrade IP
Components. The Description field provides migration instructions and version
differences.

2. To migrate one or more IP cores that support automatic upgrade, ensure that the
Auto Upgrade option is turned on for the IP cores, and click Perform Automatic
Upgrade. The Status and Version columns update when upgrade is complete.

3. To migrate an IP core that does not support automatic upgrade, double-click the
IP core name, and click OK. The parameter editor appears. If the parameter editor
specifies a Currently selected device family, turn off Match project/default,
and then select the new target device family.

4. Click Generate HDL, and confirm the Synthesis and Simulation file options.
Verilog HDL is the default output file format. If you specify VHDL as the output
format, select VHDL to retain the original output format.

5. Click Finish to complete migration of the IP core. Click OK if the software prompts
you to overwrite IP core files. The Device Family column displays the new target
device name when migration is complete.

6. To ensure correctness, review the latest parameters in the parameter editor or
generated HDL.

Note: IP migration may change ports, parameters, or functionality of the IP
variation. These changes may require you to modify your design or to re-
parameterize your IP variant. During migration, the IP variation's HDL
generates into a library that is different from the original output location of
the IP core. Update any assignments that reference outdated locations. If a
symbol in a supporting Block Design File schematic represents your
upgraded IP core, replace the symbol with the newly generated
<my_ip>.bsf. Migration of some IP cores requires installed support for the
original and migration device families.

Related Links

Intel FPGA IP Release Notes

2.8.4.3 Troubleshooting IP or Platform Designer System Upgrade

The Upgrade IP Components dialog box reports the version and status of each IP
core and Platform Designer system following upgrade or migration.

If any upgrade or migration fails, the Upgrade IP Components dialog box provides
information to help you resolve any errors.

Note: Do not use spaces in IP variation names or paths.

During automatic or manual upgrade, the Messages window dynamically displays
upgrade information for each IP core or Platform Designer system. Use the following
information to resolve upgrade errors:

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
60

http://www.altera.com/literature/rn/rn_ip.pdf

Table 23. IP Upgrade Error Information

Upgrade IP Components
Field

Description

Status Displays the "Success" or "Failed" status of each upgrade or migration. Click the status of
any upgrade that fails to open the IP Upgrade Report.

Version Dynamically updates the version number when upgrade is successful. The text is red when
the IP requires upgrade.

Device Family Dynamically updates to the new device family when migration is successful. The text is red
when the IP core requires upgrade.

Auto Upgrade Runs automatic upgrade on all IP cores that support auto upgrade. Also, automatically
generates a <Project Directory>/ip_upgrade_port_diff_report report for IP
cores or Platform Designer systems that fail upgrade. Review these reports to determine
any port differences between the current and previous IP core version.

Use the following techniques to resolve errors if your IP core or Platform Designer
system "Failed" to upgrade versions or migrate to another device. Review and
implement the instructions in the Description field, including one or more of the
following:

• If the current version of the software does not support the IP variant, right-click
the component and click Remove IP Component from Project. Replace this IP
core or Platform Designer system with the one supported in the current version of
the software.

• If the current target device does not support the IP variant, select a supported
device family for the project, or replace the IP variant with a suitable replacement
that supports your target device.

• If an upgrade or migration fails, click Failed in the Status field to display and
review details of the IP Upgrade Report. Click the Release Notes link for the
latest known issues about the IP core. Use this information to determine the
nature of the upgrade or migration failure and make corrections before upgrade.

• Run Auto Upgrade to automatically generate an IP Ports Diff report for each IP
core or Platform Designer system that fails upgrade. Review the reports to
determine any port differences between the current and previous IP core version.
Click Upgrade in Editor to make specific port changes and regenerate your IP
core or Platform Designer system.

• If your IP core or Platform Designer system does not support Auto Upgrade, click
Upgrade in Editor to resolve errors and regenerate the component in the
parameter editor.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
61

Figure 21. IP Upgrade Report

Reports on Failed
IP Upgrades

Report Summary

2.8.5 Simulating Intel FPGA IP Cores

The Intel Quartus Prime software supports IP core RTL simulation in specific EDA
simulators. IP generation creates simulation files, including the functional simulation
model, any testbench (or example design), and vendor-specific simulator setup scripts
for each IP core. Use the functional simulation model and any testbench or example
design for simulation. IP generation output may also include scripts to compile and run
any testbench. The scripts list all models or libraries you require to simulate your IP
core.

The Intel Quartus Prime software provides integration with many simulators and
supports multiple simulation flows, including your own scripted and custom simulation
flows. Whichever flow you choose, IP core simulation involves the following steps:

1. Generate simulation model, testbench (or example design), and simulator setup
script files.

2. Set up your simulator environment and any simulation scripts.

3. Compile simulation model libraries.

4. Run your simulator.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
62

2.8.5.1 Generating IP Simulation Files

The Intel Quartus Prime software optionally generates the functional simulation model,
any testbench (or example design), and vendor-specific simulator setup scripts when
you generate an IP core. To control the generation of IP simulation files:

• To specify your supported simulator and options for IP simulation file generation,
click Assignment ➤ Settings ➤ EDA Tool Settings ➤ Simulation.

• To parameterize a new IP variation, enable generation of simulation files, and
generate the IP core synthesis and simulation files, click Tools ➤ IP Catalog.

• To edit parameters and regenerate synthesis or simulation files for an existing IP
core variation, click View ➤ Project Navigator ➤ IP Components.

Table 24. Intel FPGA IP Simulation Files

File Type Description File Name

Simulator setup
scripts

Vendor-specific scripts to compile, elaborate, and simulate
Intel FPGA IP models and simulation model library files.
Optionally, generate a simulator setup script for each
vendor that combines the individual IP core scripts into one
file. Source the combined script from your top-level
simulation script to eliminate script maintenance.

<my_dir>/aldec/
rivierapro_setup.tcl

<my_dir>/cadence/
ncsim_setup.sh

<my_dir>/mentor/msim_setup.tcl

<my_dir>/synopsys/vcs/
vcs_setup.sh

Note: Intel FPGA IP cores support a variety of cycle-accurate simulation models, including
simulation-specific IP functional simulation models and encrypted RTL models, and
plain text RTL models. The models support fast functional simulation of your IP core
instance using industry-standard VHDL or Verilog HDL simulators. For some IP cores,
generation only produces the plain text RTL model, and you can simulate that model.
Use the simulation models only for simulation and not for synthesis or any other
purposes. Using these models for synthesis creates a nonfunctional design.

2.8.5.2 Scripting IP Simulation

The Intel Quartus Prime software supports the use of scripts to automate simulation
processing in your preferred simulation environment. Use the scripting methodology
that you prefer to control simulation.

Use a version-independent, top-level simulation script to control design, testbench,
and IP core simulation. Because Intel Quartus Prime-generated simulation file names
may change after IP upgrade or regeneration, your top-level simulation script must
"source" the generated setup scripts, rather than using the generated setup scripts
directly. Follow these steps to generate or regenerate combined simulator setup
scripts:

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
63

Figure 22. Incorporating Generated Simulator Setup Scripts into a Top-Level Simulation
Script

Top-Level Simulation Script

Specify project-specific settings:
 TOP_LEVEL_NAME

Source the Combined IP Setup Simulator Script
(e.g., source msim_setup.tcl)

Elaborate
Simulate

Individual IP
Simulation Scripts

Combined IP
Simulator Script

(Includes Templates)

Click “Generate Simulator Script for IP”Additional compile and elaboration options

Compile design files:
Use generated scripts to compile device libraries
and IP files
Compile your design and testbench files

Add optional QSYS_SIMDIR variable

1. Click Project ➤ Upgrade IP Components ➤ Generate Simulator Script for IP
(or run the ip-setup-simulation utility) to generate or regenerate a combined
simulator setup script for all IP for each simulator.

2. Use the templates in the generated script to source the combined script in your
top-level simulation script. Each simulator's combined script file contains a
rudimentary template that you adapt for integration of the setup script into a top-
level simulation script.

This technique eliminates manual update of simulation scripts if you modify or
upgrade the IP variation.

2.8.5.2.1 Generating a Combined Simulator Setup Script

Run the Generate Simulator Setup Script for IP command to generate a combined
simulator setup script.

Source this combined script from a top-level simulation script. Click Tools ➤
Generate Simulator Setup Script for IP (or use of the ip-setup-simulation
utility at the command-line) to generate or update the combined scripts, after any of
the following occur:

• IP core initial generation or regeneration with new parameters

• Intel Quartus Prime software version upgrade

• IP core version upgrade

To generate a combined simulator setup script for all project IP cores for each
simulator:

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
64

1. Generate, regenerate, or upgrade one or more IP core. Refer to Generating IP
Cores or Upgrading IP Cores.

2. Click Tools ➤ Generate Simulator Setup Script for IP (or run the ip-setup-
simulation utility). Specify the Output Directory and library compilation
options. Click OK to generate the file. By default, the files generate into the /
<project directory>/<simulator>/ directory using relative paths.

3. To incorporate the generated simulator setup script into your top-level simulation
script, refer to the template section in the generated simulator setup script as a
guide to creating a top-level script:

a. Copy the specified template sections from the simulator-specific generated
scripts and paste them into a new top-level file.

b. Remove the comments at the beginning of each line from the copied template
sections.

c. Specify the customizations you require to match your design simulation
requirements, for example:

• Specify the TOP_LEVEL_NAME variable to the design’s simulation top-level
file. The top-level entity of your simulation is often a testbench that
instantiates your design. Then, your design instantiates IP cores or
Platform Designer systems. Set the value of TOP_LEVEL_NAME to the top-
level entity.

• If necessary, set the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files.

• Compile the top-level HDL file (for example, a test program) and all other
files in the design.

• Specify any other changes, such as using the grep command-line utility to
search a transcript file for error signatures, or e-mail a report.

4. Re-run Tools ➤ Generate Simulator Setup Script for IP (or ip-setup-
simulation) after regeneration of an IP variation.

Table 25. Simulation Script Utilities

Utility Syntax

ip-setup-simulation generates a
combined, version-independent simulation
script for all Intel FPGA IP cores in your project.
The command also automates regeneration of
the script after upgrading software or IP
versions. Use the compile-to-work option to
compile all simulation files into a single work
library if your simulation environment requires.
Use the --use-relative-paths option to
use relative paths whenever possible.

ip-setup-simulation
 --quartus-project=<my proj>
 --output-directory=<my_dir>
 --use-relative-paths
 --compile-to-work

--use-relative-paths and --compile-to-work are optional. For
command-line help listing all options for these executables, type:
<utility name> --help.

ip-make-simscript generates a combined
simulation script for all IP cores that you
specify on the command line. Specify one or
more .spd files and an output directory in the
command. Running the script compiles IP
simulation models into various simulation
libraries.

ip-make-simscript
 --spd=<ipA.spd,ipB.spd>
 --output-directory=<directory>

The following sections provide step-by-step instructions for sourcing each simulator
setup script in your top-level simulation script.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
65

Sourcing Aldec* Simulator Setup Scripts
Follow these steps to incorporate the generated Aldec simulation scripts into a top-
level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.tcl.

Start of template
If the copied and modified template file is "aldec.do", run it as:
vsim -c -do aldec.do

Source the generated sim script
source rivierapro_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level
vlog -sv2k5 ../../top.sv
Elaborate the design.
elab
Run the simulation
run
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "aldec.do", run it as:
vsim -c -do aldec.do

Source the generated sim script source rivierapro_setup.tcl
Compile eda/sim_lib contents first dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level vlog -sv2k5 ../../top.sv
Elaborate the design.
elab
Run the simulation
run
Report success to the shell
exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

set TOP_LEVEL_NAME sim_top
 vlog –sv2k5 ../../sim_top.sv

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation
or simulation options. Refer to the generated script for details.

5. Run the new top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
66

Sourcing Cadence* Simulator Setup Scripts
Follow these steps to incorporate the generated Cadence IP simulation scripts into a
top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, ncsim.sh.

Start of template
If the copied and modified template file is "ncsim.sh", run it as:
./ncsim.sh

Do the file copy, dev_com and com steps
source ncsim_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1

Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation
runs forever (until $finish()).
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "ncsim.sh", run it as:
./ncsim.sh

Do the file copy, dev_com and com steps
source ncsim_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1
Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"
Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation
runs forever (until $finish()).
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
67

TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=sim_top \
 ncvlog -sv "$QSYS_SIMDIR/../top.sv"

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation
or simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory by
specifying the path to ncsim.sh.

Sourcing ModelSim* Simulator Setup Scripts
Follow these steps to incorporate the generated ModelSim IP simulation scripts into a
top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.tcl.

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script
source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level
vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
68

Report success to the shell
exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

set TOP_LEVEL_NAME sim_top vlog -sv ../../sim_top.sv

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

Sourcing VCS* Simulator Setup Scripts
Follow these steps to incorporate the generated Synopsys VCS simulation scripts into
a top-level project simulation script.

1. The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
synopsys_vcs.f.

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh \
TOP_LEVEL_NAME=top \
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'" \
USER_DEFINED_SIM_OPTIONS=""

helper file: synopsys_vcs.f
+systemverilogext+.sv
../../../top.sv
End of template

2. Delete the first two characters of each line (comment and space) for the vcs.sh
file, as shown below:

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh \

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
69

TOP_LEVEL_NAME=top \
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'" \
USER_DEFINED_SIM_OPTIONS=""

3. Delete the first two characters of each line (comment and space) for the
synopsys_vcs.f file, as shown below:

helper file: synopsys_vcs.f
 +systemverilogext+.sv
 ../../../top.sv
End of template

4. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=sim_top \

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by
specifying the path to vcs_sim.sh.

Sourcing VCS* MX Simulator Setup Scripts
Follow these steps to incorporate the generated Synopsys VCS MX simulation scripts
for use in top-level project simulation scripts.

1. The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
vcsmx.sh.

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh \
SKIP_ELAB=1 \

SKIP_SIM=1

Compile the top level module vlogan +v2k
 +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="'-top top'" \
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space), as shown
below:

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
70

Do the file copy, dev_com and com steps
source vcsmx_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1

Compile the top level module
vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="'-top top'" \
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=”-top sim_top’” \

4. Make the appropriate changes to the compilation of the your top-level file, for
example:

vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../sim_top.sv"

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by
specifying the path to vcsmx_sim.sh.

2.8.6 Synthesizing IP Cores in Other EDA Tools

Optionally, use another supported EDA tool to synthesize a design that includes Intel
FPGA IP cores. When you generate the IP core synthesis files for use with third-party
EDA synthesis tools, you can create an area and timing estimation netlist. To enable
generation, turn on Create timing and resource estimates for third-party EDA
synthesis tools when customizing your IP variation.

The area and timing estimation netlist describes the IP core connectivity and
architecture, but does not include details about the true functionality. This information
enables certain third-party synthesis tools to better report area and timing estimates.
In addition, synthesis tools can use the timing information to achieve timing-driven
optimizations and improve the quality of results.

The Intel Quartus Prime software generates the <variant name>_syn.v netlist file
in Verilog HDL format, regardless of the output file format you specify. If you use this
netlist for synthesis, you must include the IP core wrapper file <variant name>.v or
<variant name> .vhd in your Intel Quartus Prime project.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
71

2.8.7 Instantiating IP Cores in HDL

Instantiate an IP core directly in your HDL code by calling the IP core name and
declaring the IP core's parameters. This approach is similar to instantiating any other
module, component, or subdesign. When instantiating an IP core in VHDL, you must
include the associated libraries.

2.8.7.1 Example Top-Level Verilog HDL Module

Verilog HDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

module MF_top (a, b, sel, datab, clock, result);
 input [31:0] a, b, datab;
 input clock, sel;
 output [31:0] result;
 wire [31:0] wire_dataa;

 assign wire_dataa = (sel)? a : b;
 altfp_mult inst1
(.dataa(wire_dataa), .datab(datab), .clock(clock), .result(result));

 defparam
 inst1.pipeline = 11,
 inst1.width_exp = 8,
 inst1.width_man = 23,
 inst1.exception_handling = "no";
endmodule

2.8.7.2 Example Top-Level VHDL Module

VHDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

library ieee;
use ieee.std_logic_1164.all;
library altera_mf;
use altera_mf.altera_mf_components.all;

entity MF_top is
 port (clock, sel : in std_logic;
 a, b, datab : in std_logic_vector(31 downto 0);
 result : out std_logic_vector(31 downto 0));
end entity;

architecture arch_MF_top of MF_top is
signal wire_dataa : std_logic_vector(31 downto 0);
begin

wire_dataa <= a when (sel = '1') else b;

inst1 : altfp_mult
 generic map (
 pipeline => 11,
 width_exp => 8,
 width_man => 23,
 exception_handling => "no")
 port map (
 dataa => wire_dataa,
 datab => datab,
 clock => clock,
 result => result);
end arch_MF_top;

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
72

2.8.8 Support for the IEEE 1735 Encryption Standard

The Intel Quartus Prime Pro Edition software supports the IEEE1735 v1 encryption
standard for IP core decryption. The Intel Quartus Prime Standard Edition software
does not support this feature.

When you add the following Verilog or VHDL pragma to your RTL, along with the public
key, the Intel Quartus Prime software uses the key to decrypt the IP core. To use this
feature, use a simulation or synthesis tool that supports the IEEE1735 standard.

Verilog/SystemVerilog Encryption Pragma:

`pragma protect key_keyowner = “Intel Corporation”
`pragma protect key_method = “rsa”
`pragma protect key_keyname = “Altera Key1”
`pragma protect key_block
<Encrypted session key>

VHDL Encryption Pragma:

`protect key_keyowner = “Intel Corporation”
`protect key_method = “rsa”
`protect key_keyname = “Altera Key1”
`protect key_block
<Encrypted session key>

For all languages, include the key value that is available from your sales
representative or FAE.

Related Links

myAltera.com

2.9 Integrating Other EDA Tools

Optionally integrate supported EDA design entry, synthesis, simulation, physical
synthesis, and formal verification tools into the Intel Quartus Prime design flow. The
Intel Quartus Prime software supports netlist files from other EDA design entry and
synthesis tools. The Intel Quartus Prime software optionally generates various files for
use in other EDA tools.

The Intel Quartus Prime software manages EDA tool files and provides the following
integration capabilities:

• Compile all RTL and gate-level simulation model libraries for your device,
simulator, and design language automatically (Tools > Launch Simulation
Library Compiler).

• Include files generated by other EDA design entry or synthesis tools in your
project as synthesized design files (Project > Add/Remove File from Project) .

• Automatically generate optional files for board-level verification (Assignments >
Settings > EDA Tool Settings).

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
73

https://www.altera.com/mal-all/mal-signin.html

2.10 Managing Team-based Projects

The Intel Quartus Prime software supports multiple designers, design iterations, and
platforms. Use the following techniques to preserve and track project changes in a
team-based environment. These techniques may also be helpful for individual
designers.

Related Links

• Using External Revision Control on page 78

• Migrating Projects Across Operating Systems on page 79

2.10.1 Preserving Compilation Results

The Intel Quartus Prime software allows you to transfer your compiled databases from
one version of the software to a newer version of the software.

You can export the results of compilation at various stages of the compilation flow,
such as synthesis, planned, early place, place, route, and finalize snapshots. A
snapshot is the compilation output of a compiler stage. Import allows you to restore
the preserved compilation database and run subsequent stages in the compiler flow.

Export the compilation snapshot by clicking Project ➤ Export Design. The exported
files are stored in a file with a .qdb extension. Import the snapshot with Project ➤
Import Design.

2.10.1.1 Exporting a Design Partition

A snapshot preserves the results of each compilation stage. To reuse the snapshot in
another project, export the snapshot as a design partition.

Follow these steps to export a snapshot as a design partition:

1. Run Analysis & Synthesis or any stage of the Fitter on your design.

2. Click Project ➤ Export Design Partition.

3. Select the Partition Name of the entity for export.

4. Select the compilation Snapshot for export. The Compiler exports the snapshot
as <project>/<partition>.qdb

5. To import the exported partition into another project, open the project and click
Project ➤ Import Design. Specify the snapshot .qdb file.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
74

Figure 23. Export Design Partition

Related Links

Block-Level Design Flows

2.10.2 Factors Affecting Compilation Results

Various changes to project settings, hardware, or software can impact compilation
results.

• Project Files—project settings (.qsf, quartus2.ini), design files, and timing
constraints (.sdc). Any setting that changes the number of processors during
compilation can impact compilation results.

• Hardware—CPU architecture, not including hard disk or memory size differences.
Windows XP x32 results are not identical to Windows XP x64 results. Linux x86
results is not identical to Linux x86_64.

• Intel Quartus Prime Software Version—including build number and installed
interim updates. Click Help > About to obtain this information.

• Operating System—Windows or Linux operating system, excluding version
updates. For example, Windows XP, Windows Vista, and Windows 7 results are
identical. Similarly, Linux RHEL, CentOS 4, and CentOS 5 results are identical.

Related Links

• Design Planning for Partial Reconfiguration

• Power-Up Level

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
75

https://www.altera.com/documentation/jbr1437426657605.ditamap.html#xdj1491668852667
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958516629
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409959857762

2.10.3 Migrating Compilation Results Across Intel Quartus Prime
Software Versions

View basic information about your project in the Project Navigator and Compilation
Dashboard.

To preserve compilation results for migration to a newer version of the Intel Quartus
Prime software, export a version-compatible database file, and then import it into the
later version of the Intel Quartus Prime software.

2.10.3.1 Exporting the Results Database

Follow these steps to save the compilation results in a version-compatible format for
import to a different version of the Intel Quartus Prime software.

1. Open the project for exporting the compilation results in the Intel Quartus Prime
software.

2. Generate the project database and netlist with one of the following:

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate a post-
synthesis netlist.

• Click Processing ➤ Start Compilation to generate a post-fit netlist.

3. Click Project ➤ Export Design. Select the Snapshot for export. A Intel
Quartus Prime Core Database Archive File (.qdb) preserves the database.
You can select one of the following Snapshots:

• synthesized—represents the output of analysis & synthesis.

• final—represents the output of the Fitter.

Figure 24. Export Design Dialog Box

2.10.3.2 Importing the Results Database

Follow these steps to import the compilation results from a previous version of the
Intel Quartus Prime software to another version of the software.

1. In a newer version of the Intel Quartus Prime software, click New Project
Wizard and create a new project with the same top-level design entity name as
the database.

2. Click Project ➤ Import Design and specify the Intel Quartus Prime Core
Database Archive File that contains the exported results.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
76

The Timing analysis mode option disables legality checks for certain
configuration rules that may have changed from prior versions of the Intel Quartus
Prime software. Use this option only if you cannot successfully import your design
without it. After you have imported a design in timing analysis mode, you cannot
use it to generate programming files.

The Overwrite existing project's databases option removes all prior
compilation databases from the current project before importing the specified
Core Database Archive File.

Figure 25. Import Design Dialog Box

2.10.4 Archiving Projects

Optionally save the elements of a project in a single, compressed Intel Quartus Prime
Archive File (.qar) by clicking Project > Archive Project.

The .qar preserves logic design, project, and settings files required to restore the
project.

Use this technique to share projects between designers, or to transfer your project to
a new version of the Intel Quartus Prime software, or to Intel support. Optionally add
compilation results, Platform Designer system files, and third-party EDA tool files to
the archive. If you restore the archive in a different version of the Intel Quartus Prime
software, you must include the original .qdf in the archive to preserve original
compilation results.

2.10.4.1 Manually Adding Files To Archives

Follow these steps to add files to an archive manually.

1. Click Project > Archive Project and specify the archive file name.

2. Click Advanced.

3. Select the File set for archive or select Custom. Turn on File subsets for
archive.

4. Click Add and select Platform Designer system or EDA tool files. Click OK.

5. Click Archive.

2.10.4.2 Archiving Projects for Service Requests

When archiving projects for a service request, include all needed file types for proper
debugging by customer support.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
77

To identify and include appropriate archive files for an Intel service request:

1. Click Project > Archive Project and specify the archive file name.

2. Click Advanced.

3. In File set, select Service request to include files for Intel Support.

• Project source and setting files
(.v, .vhd, .vqm, .qsf, .sdc, .qip, .qpf, .cmp)

• Automatically detected source files (various)

• Programming output files (.jdi, .sof, .pof)

• Report files (.rpt, .pin, .summary, .smsg)

4. Click OK, and then click Archive.

Figure 26. Archiving Project for Service Request

2.10.5 Using External Revision Control

Your project may involve different team members with distributed responsibilities,
such as sub-module design, device and system integration, simulation, and timing
closure. In such cases, it may be useful to track and protect file revisions in an
external revision control system.

While Intel Quartus Prime project revisions preserve various project setting and
constraint combinations, external revision control systems can also track and merge
RTL source code, simulation testbenches, and build scripts. External revision control
supports design file version experimentation through branching and merging different
versions of source code from multiple designers. Refer to your external revision
control documentation for setup information.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
78

2.10.5.1 Files to Include In External Revision Control

Include the following project file types in external revision control systems:

• Logic design files (.v, .vdh, .bdf, .edf, .vqm)

• Timing constraint files (.sdc)

• Quartus project settings and constraints (.qdf, .qpf, .qsf)

• IP files (.ip, .v, .sv, .vhd, .qip, .sip, .qsys)

• Platform Designer-generated files (.qsys, .ip, .sip)

• EDA tool files (.vo, .vho)

Generate or modify these files manually if you use a scripted design flow. If you use
an external source code control system, check-in project files anytime you modify
assignments and settings.

2.10.6 Migrating Projects Across Operating Systems

Consider the following cross-platform issues when moving your project from one
operating system to another (for example, from Windows to Linux).

2.10.6.1 Migrating Design Files and Libraries

Consider file naming differences when migrating projects across operating systems.

• Use appropriate case for your platform in file path references.

• Use a character set common to both platforms.

• Do not change the forward-slash (/) and back-slash (\) path separators in
the .qsf. The Intel Quartus Prime software automatically changes all back-slash
(\) path separators to forward-slashes (/)in the .qsf.

• Observe the target platform’s file name length limit.

• Use underscore instead of spaces in file and directory names.

• Change library absolute path references to relative paths in the .qsf.

• Ensure that any external project library exists in the new platform’s file system.

• Specify file and directory paths as relative to the project directory. For example,
for a project titled foo_design, specify the source files as: top.v,
foo_folder /foo1.v, foo_folder /foo2.v, and foo_folder/
bar_folder/bar1.vhdl.

• Ensure that all the subdirectories are in the same hierarchical structure and
relative path as in the original platform.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
79

Figure 27. All Inclusive Project Directory Structure

2.10.6.1.1 Use Relative Paths

Express file paths using relative path notation (.. /).

For example, in the directory structure shown you can specify top.v as ../source/
top.v and foo1.v as ../source/foo_folder/foo1.v.

Figure 28. Intel Quartus Prime Project Directory Separate from Design Files

2.10.6.2 Design Library Migration Guidelines

The following guidelines apply to library migration across computing platforms:

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
80

1. The project directory takes precedence over the project libraries.

2. For Linux, the Intel Quartus Prime software creates the file in the altera.quartus
directory under the <home> directory.

3. All library files are relative to the libraries. For example, if you specify the
user_lib1 directory as a project library and you want to add the /user_lib1/
foo1.v file to the library, you can specify the foo1.v file in the .qsf as foo1.v.
The Intel Quartus Prime software includes files in specified libraries.

4. If the directory is outside of the project directory, an absolute path is created by
default. Change the absolute path to a relative path before migration.

5. When copying projects that include libraries, you must either copy your project
library files along with the project directory or ensure that your project library files
exist in the target platform.

• On Windows, the Intel Quartus Prime software searches for the
quartus2.ini file in the following directories and order:

• USERPROFILE, for example, C:\Documents and Settings\<user name>

• Directory specified by the TMP environmental variable

• Directory specified by the TEMP environmental variable

• Root directory, for example, C:\

2.11 Scripting API

Optionally use command-line executables or scripts to execute project commands,
rather than using the GUI. The following commands are available for scripting project
management.

2.11.1 Scripting Project Settings

Optionally use a Tcl script to specify settings and constraints, rather than using the
GUI. This technique can be helpful if you have many settings and wish to track them
in a single file or spreadsheet for iterative comparison. The .qsf supports only a
limited subset of Tcl commands. Therefore, pass settings and constraints using a Tcl
script:

1. Create a text file with the extension.tcl that contains your assignments in Tcl
format.

2. Source the Tcl script file by adding the following line to the .qsf:
set_global_assignment -name SOURCE_TCL_SCR IPT_FILE <file
name>.

2.11.2 Project Revision Commands

Use the following commands for scripting project revisions.

Create Revision Command on page 82

Set Current Revision Command on page 82

Get Project Revisions Command on page 82

Delete Revision Command on page 82

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
81

2.11.2.1 Create Revision Command

create_revision <name> -based_on <revision_name> -set_current

Option Description

based_on (optional) Specifies the revision name on which the new revision bases its settings.

set_current (optional) Sets the new revision as the current revision.

2.11.2.2 Set Current Revision Command

The -force option enables you to open the revision that you specify under revision
name and overwrite the compilation database if the database version is incompatible.

set_current_revision -force <revision name>

2.11.2.3 Get Project Revisions Command

get_project_revisions <project_name>

2.11.2.4 Delete Revision Command

 delete_revision <revision name>

2.11.3 Project Archive Commands

Optionally use Tcl commands and the quartus_sh executable to create and manage
archives of a Quartus project.

2.11.3.1 Creating a Project Archive

Use the following command to create a Intel Quartus Prime archive:

project_archive <name>.qar

You can specify the following other options:

• -all_revisions - Includes all revisions of the current project in the archive.

• -auto_common_directory - Preserves original project directory structure in
archive

• -common_directory /<name> - Preserves original project directory structure in
specified subdirectory

• -include_libraries - Includes libraries in archive

• -include_outputs - Includes output files in archive

• -use_file_set <file_set> - Includes specified fileset in archive

2.11.3.2 Restoring an Archived Project

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
82

Use the following Tcl command to restore a Quartus project:

project_restore <name>.qar -destination restored -overwrite

This example restores to a destination directory named "restored".

2.11.4 Project Database Commands

Use the following commands for managing Quartus compilation results:

Import and Export Version-Compatible Designs from the Design Flow on page 83

quartus_cdb Executables to Manage Version-Compatible Databases on page 83

2.11.4.1 Import and Export Version-Compatible Designs from the Design Flow

Optionally use Tcl commands to export and import a full design. You must not open
the project or load the database before calling these commands.

These commands require the quartus_cdb executable.

• To export a design’s snapshot to a file:
design::export_design -file <archive.qdb> -snapshot
<snapshot_name>

• To import an exported design’s snapshot into a project:
design::import_design -file <archive.qdb> [-overwrite]
 [-timing_analysis_mode]

The -overwrite option removes existing project compilation databases before
importing the archived .qdb file.

The -timing_analysis_mode option is only available for Intel Arria 10 designs. The
option disables legality checks for certain configuration rules that may have changed
from prior versions of the Intel Quartus Prime software. Use this option only if you
cannot successfully import your design without the option. After you import a design
in timing analysis mode, you cannot use the imported design to generate
programming files.

2.11.4.2 quartus_cdb Executables to Manage Version-Compatible Databases

The command-line arguments to the quartus_cdb executable in the Quartus Prime
Pro software are export_design and import_design. The exported version-
compatible design files are archived in a file (with a .qdb extension). This differs from
the Intel Quartus Prime Standard Edition software, which writes all files to a directory.

In the Intel Quartus Prime Standard Edition software, the flow exports both post-map
and post-fit databases. In the Intel Quartus Prime Pro Edition software, the export
command requires the snapshot argument to indicate the target snapshot to export.
If the specified snapshot has not been compiled, the flow exits with an error. In ACDS
16.0, export is limited to “synthesized” and “final” snapshots.

quartus_cdb <project_name> [-c <revision_name>] --export_design
--snapshot <snapshot_name> --file <filename>.qdb

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
83

The import command takes the exported *.qdb file and the project to which you want
to import the design.

quartus_cdb <project_name> [-c <revision_name>] --import_design
--file <archive>.qdb [--overwrite] [--timing_analysis_mode]

The --timing_analysis_mode option is only available for Intel Arria 10 designs.
The option disables legality checks for certain configuration rules that may have
changed from prior versions of the Intel Quartus Prime software. Use this option only
if you cannot successfully import your design without it. After you have imported a
design in timing analysis mode, you cannot use it to generate programming files.

2.11.5 Project Library Commands

Use the following commands to script project library changes.

Specify Project Libraries With SEARCH_PATH Assignment on page 84

Report Specified Project Libraries Commands on page 84

2.11.5.1 Specify Project Libraries With SEARCH_PATH Assignment

In Tcl, use commands in the :: quartus ::project package to specify project
libraries, and the set_global_assignment command.

Use the following commands to script project library changes:

• set_global_assignment -name SEARCH_PATH "../other_dir/
library1"

• set_global_assignment -name SEARCH_PATH "../other_dir/
library2"

• set_global_assignment -name SEARCH_PATH "../other_dir/
library3"

2.11.5.2 Report Specified Project Libraries Commands

To report any project libraries specified for a project and any global libraries specified
for the current installation of the Quartus software, use the
get_global_assignment and get_user_option Tcl commands.

Use the following commands to report specified project libraries:

• get_global_assignment -name SEARCH_PATH

• get_user_option -name SEARCH_PATH

2.12 Document Revision History

This document has the following revision history.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
84

Table 26. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Revised product branding for Intel standards.
• Revised topics on Intel FPGA IP Evaluation Mode (formerly

OpenCore).
• Removed -compatible attribute from export_design command

content.
• Updated figure: IP Upgrade Alert in Project Navigator.
• Updated IP Core Upgrade Status table with new icons, and added

row for IP Component Outdated status.

2017.05.08 17.0.0 • Added Project Tasks pane and update New Project Wizard.
• Updated Compilation Dashboard image to show concurrent analysis.
• Removed Smart Compilation option from Settings dialog box

screenshot.
• Updated IP Catalog screenshots for latest GUIs.
• Added topic on Back-Annotate Assignments command.
• Added Exporting a Design Partition topic.
• Removed mentions to deprecated Incremental Compilation.
• Added reference to Block-Level Design Flows.

2016.10.31 16.1.0 • Added references to compilation stages and snapshots.
• Removed support for comparing revisions.
• Added references to .ip file creation during Intel Quartus Prime Pro

Edition stand-alone IP generation.
• Updated IP Core Generation Output files list and diagram.
• Added Support for IP Core Encyption topic.
• Rebranding for Intel

2016.05.03 16.0.0 • Removed statements about serial equivalence when using multiple
processors.

• Added the "Preserving Compilation Results" section.
• Added the "Migrating Results Across Quartus Prime Software"

section and its subsections for information about importing and
exporting compilation results between different versions of Quartus
Prime.

• Added the "Project Database Commands" section and its
subsections.

2016.02.09 15.1.1 • Clarified instructions for Generating a Combined Simulator Setup
Script.

• Clarified location of Save project output files in specified
directory option.

2015.11.02 15.1.0 • Added Generating Version-Independent IP Simulation Scripts topic.
• Added example IP simulation script templates for supported

simulators.
• Added Incorporating IP Simulation Scripts in Top-Level Scripts topic.
• Added Troubleshooting IP Upgrade topic.
• Updated IP Catalog and parameter editor descriptions for GUI

changes.
• Updated IP upgrade and migration steps for latest GUI changes.
• Updated Generating IP Cores process for GUI changes.
• Updated Files Generated for IP Cores and Qsys system description.
• Removed references to devices and features not supported in

version 15.1.
• Changed instances of Quartus II to Intel Quartus Prime.

continued...

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
85

Date Version Changes

2015.05.04 15.0.0 • Added description of design templates feature.
• Updated screenshot for DSE II GUI.
• Added qsys_script IP core instantiation information.
• Described changes to generating and processing of instance and

entity names.
• Added description of upgrading IP cores at the command line.
• Updated procedures for upgrading and migrating IP cores.
• Gate level timing simulation supported only for Cyclone IV and

Stratix IV devices.

2014.12.15 14.1.0 • Updated content for DSE II GUI and optimizations.
• Added information about new Assignments ➤ Settings ➤ IP

Settings that control frequency of synthesis file regeneration and
automatic addtion of IP files to the project.

2014.08.18 14.0a10.0 • Added information about specifying parameters for IP cores
targeting Arria 10 devices.

• Added information about the latest IP output for version 14.0a10
targeting Arria 10 devices.

• Added information about individual migration of IP cores to the
latest devices.

• Added information about editing existing IP variations.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager information with IP Catalog.
• Added standard information about upgrading IP cores.
• Added standard installation and licensing information.
• Removed outdated device support level information. IP core device

support is now available in IP Catalog and parameter editor.

November 2013 13.1.0 • Conversion to DITA format

May 2013 13.0.0 • Overhaul for improved usability and updated information.

June 2012 12.0.0 • Removed survey link.
• Updated information about VERILOG_INCLUDE_FILE.

November 2011 10.1.1 Template update.

December 2010 10.1.0 • Changed to new document template.
• Removed Figure 4–1, Figure 4–6, Table 4–2.
• Moved “Hiding Messages” to Help.
• Removed references about the set_user_option command.
• Removed Classic Timing Analyzer references.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2 Managing Intel Quartus Prime Projects

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
86

https://www.altera.com/search-archives

3 Design Planning with the Intel Quartus Prime Software

3.1 Design Planning with the Intel Quartus Prime Software

Platform planning—the early feasibility analysis of physical constraints—is a
fundamental early step in advanced FPGA design. FPGA device densities and
complexities are increasing and designs often involve multiple designers. System
architects must also resolve design issues when integrating design blocks. However,
you can solve potential problems early in the design cycle by following the design
planning considerations in this chapter.

Note: The Interface Planner helps you to accurately plan constraints for design
implementation. Use Interface Planner to prototype interface implementations and
rapidly define a legal device floorplan for Intel Arria 10 devices.

Before reading the design planning guidelines discussed in this chapter, consider your
design priorities. More device features, density, or performance requirements can
increase system cost. Signal integrity and board issues can impact I/O pin locations.
Power, timing performance, and area utilization all affect each other. Compilation time
is affected when optimizing these priorities.

The Intel Quartus Prime software optimizes designs for the best overall results;
however, you can change the settings to better optimize one aspect of your design,
such as power utilization. Certain tools or debugging options can lead to restrictions in
your design flow. Your design priorities help you choose the tools, features, and
methodologies to use for your design.

After you select a device family, to check if additional guidelines are available, refer to
the design guidelines section of the appropriate device documentation.

Related Links

Interface Planning

3.2 Creating Design Specifications

Before you create your design logic or complete your system design, create detailed
design specifications that define the system, specify the I/O interfaces for the FPGA,
identify the different clock domains, and include a block diagram of basic design
functions.

In addition, creating a test plan helps you to design for verification and ease of
manufacture. For example, you might need to validate interfaces incorporated in your
design. To perform any built-in self-test functions to drive interfaces, you can use a
UART interface with a Nios® II processor inside the FPGA device.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://documentation.altera.com/#/link/jbr1437427643326/jbr1410905116321
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

If more than one designer works on your design, you must consider a common design
directory structure or source control system to make design integration easier.
Consider whether you want to standardize on an interface protocol for each design
block.

Related Links

• Planning for On-Chip Debugging Tools on page 94

• Using Platform Designer and Standard Interfaces in System Design on page 88
For improved reusability and ease of integration.

3.3 Selecting Intellectual Property Cores

Intel and its third-party intellectual property (IP) partners offer a large selection of
standardized IP cores optimized for Intel devices. The IP you select often affects
system design, especially if the FPGA interfaces with other devices in the system.
Consider which I/O interfaces or other blocks in your system design are implemented
using IP cores, and plan to incorporate these cores in your FPGA design.

The Intel FPGA IP Evaluation Mode, which is available for many IP cores, allows you to
program the FPGA to verify your design in the hardware before you purchase the IP
license. The evaluation supports the following modes:

• Untethered—the design runs for a limited time.

• Tethered—the design requires an Intel serial JTAG cable connected between the
JTAG port on your board and a host computer running the Intel Quartus Prime
Programmer for the duration of the hardware evaluation period.

Related Links

Intellectual Property
For descriptions of available IP cores.

3.4 Using Platform Designer and Standard Interfaces in System
Design

You can use the Intel Quartus Prime Platform Designer system integration tool to
create your design with fast and easy system-level integration. With Platform
Designer, you can specify system components in a GUI and generate the required
interconnect logic automatically, along with adapters for clock crossing and width
differences.

Because system design tools change the design entry methodology, you must plan to
start developing your design within the tool. Ensure all design blocks use appropriate
standard interfaces from the beginning of the design cycle so that you do not need to
make changes later.

Platform Designer components use Avalon® standard interfaces for the physical
connection of components, and you can connect any logical device (either on-chip or
off-chip) that has an Avalon interface. The Avalon Memory-Mapped interface allows a
component to use an address mapped read or write protocol that enables flexible
topologies for connecting master components to any slave components. The Avalon
Streaming interface enables point-to-point connections between streaming
components that send and receive data using a high-speed, unidirectional system
interconnect between source and sink ports.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
88

http://www.altera.com/products/ip/ipm-index.html

In addition to enabling the use of a system integration tool such as Platform Designer,
using standard interfaces ensures compatibility between design blocks from different
design teams or vendors. Standard interfaces simplify the interface logic to each
design block and enable individual team members to test their individual design blocks
against the specification for the interface protocol to ease system integration.

Related Links

• System Design with Platform Designer
For more information about using Platform Designer to improve your
productivity.

• SOPC Builder User Guide
For more information about SOPC Builder.

3.5 Device Selection

The device you choose affects board specification and layout. Use the following
guidelines for selecting a device.

Choose the device family that best suits your design requirements. Families differ in
cost, performance, logic and memory density, I/O density, power utilization, and
packaging. You must also consider feature requirements, such as I/O standards
support, high-speed transceivers, global or regional clock networks, and the number
of phase-locked loops (PLLs) available in the device.

Each device family has complete documentation, including a data sheet, which
documents device features in detail. You can also see a summary of the resources for
each device in the Device dialog box in the Intel Quartus Prime software.

Carefully study the device density requirements for your design. Devices with more
logic resources and higher I/O counts can implement larger and more complex
designs, but at a higher cost. Smaller devices use lower static power. Select a device
larger than what your design requires if you want to add more logic later in the design
cycle to upgrade or expand your design, and reserve logic and memory for on-chip
debugging. Consider requirements for types of dedicated logic blocks, such as memory
blocks of different sizes, or digital signal processing (DSP) blocks to implement certain
arithmetic functions.

If you have older designs that target an Intel device, you can use their resources as
an estimate for your design. Compile existing designs in the Intel Quartus Prime
software with the Auto device selected by the Fitter option in the Settings dialog
box. Review the resource utilization to learn which device density fits your design.
Consider coding style, device architecture, and the optimization options used in the
Intel Quartus Prime software, which can significantly affect the resource utilization and
timing performance of your design.

Related Links

• Planning for On-Chip Debugging Tools on page 94
For information about on-chip debugging.

• Product Selector
You can refer to the Altera website to help you choose your device.

• Selector Guides
You can review important features of each device family in the refer to the
Altera website.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
89

https://documentation.altera.com/#/link/jbr1437426657605/mwh1409958596582
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/products/selector/psg-index.html
http://www.altera.com/literature/lit-sg.jsp

• Devices and Adapters
For a list of device selection guides.

• IP and Megafunctions
For information on how to obtain resource utilization estimates for certain
configurations of Intel’s FPGA IP, refer to the user guides for Intel FPGA
megafunctions and IP MegaCores on the literature page of the Altera website.

3.5.1 Device Migration Planning

Determine whether you want to migrate your design to another device density to allow
flexibility when your design nears completion. You may want to target a smaller (and
less expensive) device and then move to a larger device if necessary to meet your
design requirements. Other designers may prototype their design in a larger device to
reduce optimization time and achieve timing closure more quickly, and then migrate to
a smaller device after prototyping. If you want the flexibility to migrate your design,
you must specify these migration options in the Intel Quartus Prime software at the
beginning of your design cycle.

Selecting a migration device impacts pin placement because some pins may serve
different functions in different device densities or package sizes. If you make pin
assignments in the Intel Quartus Prime software, the Pin Migration View in the Pin
Planner highlights pins that change function between your migration devices.

3.6 Development Kit Selection

In addition to specifying the device you want to target for compilation, you can also
specify a target board or a development kit for your design.When you select a
development kit, the Intel Quartus Prime software provides a kit reference design, and
creates pin assignments for the kit.

You can select a development kit for your new Intel Quartus Prime project from the
New Project Wizard, or for an existing project by clicking Assignments ➤ Device.

3.6.1 Specifying a Development Kit for a New Project

Follow the steps below to select a development kit for a new Intel Quartus Prime
project:

1. To open the New Project Wizard, click File ➤ New Project Wizard.

2. Click the Board tab from Family, Device & Board Settings page.

3. Select the Family and Development Kit lists to narrow your board search. The
Available boards table lists all the available boards for the selected Family and
Development Kit type.

4. To view the development kit details for each of the listed boards, click the icons to
the left of the boards in the Available boards table. The Development Kit
Details dialog box appears, displaying all the board details.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
90

http://quartushelp.altera.com/current/index.htm#device/dev/dev_list_dev_adapt.htm
http://www.altera.com/literature/lit-ip.jsp

5. Select the desired board from the Available boards table.

6. To set the selected board design as top-level entity, click the Create top-level
design file checkbox. This option automatically sets up the pin assignments for
the selected board. If you choose to uncheck this option, the Intel Quartus Prime
software creates the design for the board and stores the design in
<current_project_dir>/devkits/<design_name>.

7. Click Finish.

Figure 29. Selecting the Desired Board from New Project Wizard

Click to open the development
 kit details in a dialog box

Note: If you are unable to find the board you are looking for in the Available Boards table,
click Design Store link at the bottom of the page. This link takes you to the design
store from where you can purchase development kits and download baseline design
examples.

Related Links

Design Store

3.6.2 Specifying a Development Kit for an Existing Project

Follow the steps below to select a development kit for your existing Intel Quartus
Prime project:

1. To open your existing project, click File ➤ Open Project.

2. To open the Device Setting Dialog Box, click Assignments ➤ Device.

3. Select the desired development kit from the Board tab and click OK.

4. If there are existing pin assignments in your current project, a message box
appears, prompting to remove all location assignments. Click Yes to remove the
Location and I/O Standard pin assignments. The Intel Quartus Prime software
creates the kit's baseline design and stores the design in
<current_project_dir>/devkits/<design_name>. To retain all your
existing pin assignments, click No.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
91

https://cloud.altera.com/devstore/board/

Note: Repeat the above steps to change the development kit of an existing project.

3.6.3 Setting Pin Assignments

The <design_name> folder contains the platform_setup.tcl file that stores all
the pin assignments and the baseline example designs for the board. In addition, the
Intel Quartus Prime software creates a .qdf file in the <current_project_dir>
folder, which stores all the default values for the pin assignments.

To manually set up the pin assignments:

1. Click View ➤ Tcl Console.

2. At the Tcl console command prompt, type the command:

source <current_project_dir>/devkits/<design_name>/platform_setup.tcl

3. At the Tcl console command prompt, type the command:

setup_project

This command populates all assignments available in the setup_platform.tcl
file to your .qsf file.

3.7 Planning for Device Programming or Configuration

System planning includes determining what companion devices, if any, your system
requires. Your board layout also depends on the type of programming or configuration
method you plan to use for programmable devices. Many programming options require
a JTAG interface to connect to the devices, so you might have to set up a JTAG chain
on the board. Additionally, the Intel Quartus Prime software uses the settings for the
configuration scheme, configuration device, and configuration device voltage to enable
the appropriate dual purpose pins as regular I/O pins after you complete
configuration. The Intel Quartus Prime software performs voltage compatibility checks
of those pins during compilation of your design. Use the Configuration tab of the
Device and Pin Options dialog box to select your configuration scheme.

The device family documentation describes the configuration options available for a
device family. For information about programming CPLD devices, refer to your device
documentation.

Related Links

Configuration Handbook
For more details about configuration options.

3.8 Estimating Power

You can use the Intel Quartus Prime power estimation and analysis tools to provide
information to PCB board and system designers. Power consumption in FPGA devices
depends on the design logic, which can make planning difficult. You can estimate
power before you create any source code, or when you have a preliminary version of
the design source code, and then perform the most accurate analysis with the Power
Analyzer when you complete your design.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
92

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

You must accurately estimate device power consumption to develop an appropriate
power budget and to design the power supplies, voltage regulators, heat sink, and
cooling system. Power estimation and analysis helps you satisfy two important
planning requirements:

• Thermal—ensure that the cooling solution is sufficient to dissipate the heat
generated by the device. The computed junction temperature must fall within
normal device specifications.

• Power supply—ensure that the power supplies provide adequate current to support
device operation.

The Early Power Estimator (EPE) spreadsheet allows you to estimate power utilization
for your design.

You can manually enter data into the EPE spreadsheet, or use the Intel Quartus Prime
software to generate device resource information for your design.

To manually enter data into the EPE spreadsheet, enter the device resources,
operating frequency, toggle rates, and other parameters for your design. If you do not
have an existing design, estimate the number of device resources used in your design,
and then enter the data into the EPE spreadsheet manually.

If you have an existing design or a partially completed design, you can use the Intel
Quartus Prime software to generate the Early Power Estimator File (.txt, .csv) to
assist you in completing the EPE spreadsheet.

The EPE spreadsheet includes the Import Data macro that parses the information in
the EPE File and transfers the information into the spreadsheet. If you do not want to
use the macro, you can manually transfer the data into the EPE spreadsheet. For
example, after importing the EPE File information into the EPE spreadsheet, you can
add device resource information. If the existing Intel Quartus Prime project represents
only a portion of your full design, manually enter the additional device resources you
use in the final design.

Estimating power consumption early in the design cycle allows planning of power
budgets and avoids unexpected results when designing the PCB.

When you complete your design, perform a complete power analysis to check the
power consumption more accurately. The Power Analyzer tool in the Intel Quartus
Prime software provides an accurate estimation of power, ensuring that thermal and
supply limitations are met.

Related Links

• Power Analysis
For more information about power estimation and analysis.

• Early Power Estimator and Power Analyzer
The EPE spreadsheets for each supported device family are available on the
Altera website.

3.9 Selecting Third-Party EDA Tools

Your complete FPGA design flow may include third-party EDA tools in addition to the
Intel Quartus Prime software. Determine which tools you want to use with the Intel
Quartus Prime software to ensure that they are supported and set up properly, and
that you are aware of their capabilities.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
93

https://www.altera.com/documentation/mwh1410385117325.html#mwh1410384023666
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp

3.9.1 Synthesis Tool

You can use supported standard third-party EDA synthesis tools to synthesize your
Verilog HDL or VHDL design, and then compile the resulting output netlist file in the
Intel Quartus Prime software.

Different synthesis tools may give different results for each design. To determine the
best tool for your application, you can experiment by synthesizing typical designs for
your application and coding style. Perform placement and routing in the Intel Quartus
Prime software to get accurate timing analysis and logic utilization results.

The synthesis tool you choose may allow you to create a Intel Quartus Prime project
and pass constraints, such as the EDA tool setting, device selection, and timing
requirements that you specified in your synthesis project. You can save time when
setting up your Intel Quartus Prime project for placement and routing.

Tool vendors frequently add new features, fix tool issues, and enhance performance
for Intel devices, you must use the most recent version of third-party synthesis tools.

3.9.2 Simulation Tool

Intel provides the Mentor Graphics ModelSim - Intel FPGA Edition with the Intel
Quartus Prime software. You can also purchase the ModelSim - Intel FPGA Edition or a
full license of the ModelSim software to support large designs and achieve faster
simulation performance. The Intel Quartus Prime software can generate both
functional and timing netlist files for ModelSim and other third-party simulators.

Use the simulator version that your Intel Quartus Prime software version supports for
best results. You must also use the model libraries provided with your Intel Quartus
Prime software version. Libraries can change between versions, which might cause a
mismatch with your simulation netlist.

3.9.3 Formal Verification Tools

Consider whether the Intel Quartus Prime software supports the formal verification
tool that you want to use, and whether the flow impacts your design and compilation
stages of your design.

Using a formal verification tool can impact performance results because performing
formal verification requires turning off certain logic optimizations, such as register
retiming, and forces you to preserve hierarchy blocks, which can restrict optimization.
Formal verification treats memory blocks as black boxes. Therefore, you must keep
memory in a separate hierarchy block so other logic does not get incorporated into the
black box for verification. If formal verification is important to your design, plan for
limitations and restrictions at the beginning of the design cycle rather than make
changes later.

3.10 Planning for On-Chip Debugging Tools

Evaluate on-chip debugging tools early in your design process, Making changes to
include debugging tools further in the design process is more time consumming and
error prone.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
94

In-system debugging tools offer different advantages and trade-offs. A particular
debugging tool may work better for different systems and designers. Consider the
following debugging requirements when you plan your design:

• JTAG connections—required to perform in-system debugging with JTAG tools. Plan
your system and board with JTAG ports that are available for debugging.

• Additional logic resources (ALR)—required to implement JTAG hub logic. If you set
up the appropriate tool early in your design cycle, you can include these device
resources in your early resource estimations to ensure that you do not overload
the device with logic.

• Reserve device memory—required if your tool uses device memory to capture data
during system operation. To ensure that you have enough memory resources to
take advantage of this debugging technique, consider reserving device memory to
use during debugging.

• Reserve I/O pins—required if you use the Logic Analyzer Interface (LAI), which
require I/O pins for debugging. If you reserve I/O pins for debugging, you do not
have to later change your design or board. The LAI can multiplex signals with
design I/O pins if required. Ensure that your board supports a debugging mode, in
which debugging signals do not affect system operation.

• Instantiate an IP core in your HDL code—required if your debugging tool uses an
Intel FPGA IP core.

• Instantiate the Signal Tap Logic Analyzer IP core—required if you want to manually
connect the Signal Tap Logic Analyzer to nodes in your design and ensure that the
tapped node names do not change during synthesis.

Table 27. Factors to Consider When Using Debugging Tools During Design Planning
Stages

Design Planning Factor Signal
Tap

Logic
Analyzer

System
Console

In-
System
Memory
Content
Editor

Logic
Analyzer
Interface

(LAI)

Signal
Probe

In-
System
Sources

and
Probes

Virtual
JTAG IP

Core

JTAG connections Yes Yes Yes Yes — Yes Yes

Additional logic resources — Yes — — — — Yes

Reserve device memory Yes Yes — — — — —

Reserve I/O pins — — — Yes Yes — —

Instantiate IP core in your HDL code — — — — — Yes Yes

Related Links

• System Debugging Tools Overview
In Intel Quartus Prime Pro Edition Handbook Volume 3

• Design Debugging Using the Signal Tap Logic Analyzer
In Intel Quartus Prime Pro Edition Handbook Volume 3

3.11 Design Practices and HDL Coding Styles

When you develop complex FPGA designs, design practices and coding styles have an
enormous impact on the timing performance, logic utilization, and system reliability of
your device.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
95

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384115727
https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384469524

3.11.1 Design Recommendations

Use synchronous design practices to consistently meet your design goals. Problems
with asynchronous design techniques include reliance on propagation delays in a
device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. When you meet all register
timing requirements, a synchronous design behaves in a predictable and reliable
manner for all process, voltage, and temperature (PVT) conditions. You can easily
target synchronous designs to different device families or speed grades.

Clock signals have a large effect on the timing accuracy, performance, and reliability of
your design. Problems with clock signals can cause functional and timing problems in
your design. Use dedicated clock pins and clock routing for best results, and if you
have PLLs in your target device, use the PLLs for clock inversion, multiplication, and
division. For clock multiplexing and gating, use the dedicated clock control block or
PLL clock switchover feature instead of combinational logic, if these features are
available in your device. If you must use internally-generated clock signals, register
the output of any combinational logic used as a clock signal to reduce glitches.

Consider the architecture of the device you choose so that you can use specific
features in your design. For example, the control signals should use the dedicated
control signals in the device architecture. Sometimes, you might need to limit the
number of different control signals used in your design to achieve the best results.

Related Links

• Recommended Design Practices on page 152

• www.sunburst-design.com/papers
You can also refer to industry papers for more information about multiple clock
design. For a good analysis, refer to Synthesis and Scripting Techniques for
Designing Multi-Asynchronous Clock Designs

3.11.2 Recommended HDL Coding Styles

HDL coding styles can have a significant effect on the quality of results for
programmable logic designs.

If you design memory and DSP functions, you must understand the target architecture
of your device so you can use the dedicated logic block sizes and configurations.
Follow the coding guidelines for inferring megafunctions and targeting dedicated
device hardware, such as memory and DSP blocks.

Related Links

Recommended HDL Coding Styles on page 100

3.11.3 Managing Metastability

Metastability problems can occur in digital design when a signal is transferred between
circuitry in unrelated or asynchronous clock domains, because the designer cannot
guarantee that the signal meets the setup and hold time requirements during the
signal transfer.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
96

http://www.sunburst-design.com/papers

Designers commonly use a synchronization chain to minimize the occurrence of
metastable events. Ensure that your design accounts for synchronization between any
asynchronous clock domains. Consider using a synchronizer chain of more than two
registers for high-frequency clocks and frequently-toggling data signals to reduce the
chance of a metastability failure.

You can use the Intel Quartus Prime software to analyze the average mean time
between failures (MTBF) due to metastability when a design synchronizes
asynchronous signals, and optimize your design to improve the metastability MTBF.
The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.
Determine an acceptable target MTBF given the context of your entire system and the
fact that MTBF calculations are statistical estimates.

The Intel Quartus Prime software can help you determine whether you have enough
synchronization registers in your design to produce a high enough MTBF at your clock
and data frequencies.

Related Links

Managing Metastability with the Intel Quartus Prime Software on page 986
For information about metastability analysis, reporting, and optimization features
in the Intel Quartus Prime software

3.12 Running Fast Synthesis

You save time when you find design issues early in the design cycle rather than in the
final timing closure stages. When the first version of the design source code is
complete, you might want to perform a quick compilation to create a kind of silicon
virtual prototype (SVP) that you can use to perform timing analysis.

If you synthesize with the Intel Quartus Prime software, you can choose to perform a
Fast synthesis, which reduces the compilation time, but may give reduced quality of
results.

If you design individual design blocks or partitions separately, you can use the Fast
synthesis and early timing estimate features as you develop your design. Any issues
highlighted in the lower-level design blocks are communicated to the system architect.
Resolving these issues might require allocating additional device resources to the
individual partition, or changing the timing budget of the partition.

Related Links

Synthesis Effort logic option
For more information about Fast synthesis, refer to Intel Quartus Prime Help.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
97

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synthesis_effort.htm

3.13 Document Revision History

Table 28. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Changed instances of OpernCore Plus to Intel FPGA IP
Evaluation Mode.

• Changed instances of Qsys to Platform Designer (Standard)

2017.05.08 17.0.0 • Removed mentions to Integrated Synthesis.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.03 16.0.0 Added information about Development Kit selection.

2015.11.02 15.1.0 • Added references to Interface Planning chapter.
• Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Remove support for Early Timing Estimate feature.

2014.06.30 14.0.0 Updated document format.

November 2013 13.1.0 Removed HardCopy device information.

November, 2012 12.1.0 Update for changes to early pin planning feature

June 2012 12.0.0 Editorial update.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Added link to System Design with Qsys in “Creating Design
Specifications” on page 1–2

• Updated “Simultaneous Switching Noise Analysis” on page 1–
8

• Updated “Planning for On-Chip Debugging Tools” on page 1–
10

• Removed information from “Planning Design Partitions and
Floorplan Location Assignments” on page 1–15

December 2010 10.1.0 • Changed to new document template
• Updated “System Design and Standard Interfaces” on

page 1–3 to include information about the Qsys system
integration tool

• Added link to the Product Selector in “Device Selection” on
page 1–3

• Converted information into new table (Table 1–1) in “Planning
for On-Chip Debugging Options” on page 1–10

• Simplified description of incremental compilation usages in
“Incremental Compilation with Design Partitions” on page 1–
14

• Added information about the Rapid Recompile option in “Flat
Compilation Flow with No Design Partitions” on page 1–14

• Removed details and linked to Intel Quartus Prime Help in
“Fast Synthesis and Early Timing Estimation” on page 1–16

continued...

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
98

Date Version Changes

July 2010 10.0.0 • Added new section “System Design” on page 1–3
• Removed details about debugging tools from “Planning for

On-Chip Debugging Options” on page 1–10 and referred to
other handbook chapters for more information

• Updated information on recommended design flows in
“Incremental Compilation with Design Partitions” on page 1–
14 and removed “Single-Project Versus Multiple-Project
Incremental Flows” heading

• Merged the “Planning Design Partitions” section with the
“Creating a Design Floorplan” section. Changed heading title
to “Planning Design Partitions and Floorplan Location
Assignments” on page 1–15

• Removed “Creating a Design Floorplan” section
• Removed “Referenced Documents” section
• Minor updates throughout chapter

November 2009 9.1.0 • Added details to “Creating Design Specifications” on page 1–2
• Added details to “Intellectual Property Selection” on page 1–2
• Updated information on “Device Selection” on page 1–3
• Added reference to “Device Migration Planning” on page 1–4
• Removed information from “Planning for Device Programming

or Configuration” on page 1–4
• Added details to “Early Power Estimation” on page 1–5
• Updated information on “Early Pin Planning and I/O Analysis”

on page 1–6
• Updated information on “Creating a Top-Level Design File for

I/O Analysis” on page 1–8
• Added new “Simultaneous Switching Noise Analysis” section
• Updated information on “Synthesis Tools” on page 1–9
• Updated information on “Simulation Tools” on page 1–9
• Updated information on “Planning for On-Chip Debugging

Options” on page 1–10
• Added new “Managing Metastability” section
• Changed heading title “Top-Down Versus Bottom-Up

Incremental Flows” to “Single-Project Versus Multiple-Project
Incremental Flows”

• Updated information on “Creating a Design Floorplan” on
page 1–18

• Removed information from “Fast Synthesis and Early Timing
Estimation” on page 1–18

March 2009 9.0.0 • No change to content

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Organization changes
• Added “Creating Design Specifications” section
• Added reference to new details in the In-System Design

Debugging section of volume 3
• Added more details to the “Design Practices and HDL Coding

Styles” section
• Added references to the new Best Practices for Incremental

Compilation and Floorplan Assignments chapter
• Added reference to the Intel Quartus Prime Language

Templates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

3 Design Planning with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
99

https://www.altera.com/search-archives

4 Recommended HDL Coding Styles
This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Intel FPGA
devices.

HDL coding styles have a significant effect on the quality of results for programmable
logic designs. Synthesis tools optimize HDL code for both logic utilization and
performance; however, synthesis tools cannot interpret the intent of your design.
Therefore, the most effective optimizations require conformance to recommended
coding styles.

Note: For style recommendations, options, or HDL attributes specific to your synthesis tool
(including other Quartus software products and other EDA tools), refer to the
synthesis tool vendor’s documentation.

Related Links

• Advanced Synthesis Cookbook

• Design Examples

• Reference Designs

4.1 Using Provided HDL Templates

The Intel Quartus Prime software provides templates for Verilog HDL, SystemVerilog,
and VHDL templates to start your HDL designs. Many of the HDL examples in this
document correspond with the Full Designs examples in the Intel Quartus Prime
Templates. You can insert HDL code into your own design using the templates or
examples.

4.1.1 Inserting HDL Code from a Provided Template

1. Click File ➤ New.

2. In the New dialog box, select the type of design file corresponding to the type of
HDL you want to use: SystemVerilog HDL File, VHDL File, or Verilog HDL
File; and click OK. A text editor tab with a blank file opens.

3. Right-click the blank file, and click Insert Template....

4. In the Insert Template dialog box, expand the section corresponding to the
appropriate HDL, then expand the Full Designs section.

5. Select a template. The HDL appears in the Preview pane.

6. To paste the HDL design into the blank Verilog or VHDL file you created, click
Insert.

7. Close the Insert Template dialog box by clicking Close.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/support/examples/exm-index.html
https://www.altera.com/products/reference-designs/all-reference-designs.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 30. Inserting a RAM Template

Note: Use the Intel Quartus Prime Text Editor to modify the HDL design or save the template
as an HDL file to edit in your preferred text editor.

4.2 Instantiating IP Cores in HDL

Intel provides parameterizable IP cores that are optimized for Intel FPGA device
architectures. Using IP cores instead of coding your own logic saves valuable design
time.

Additionally, the Intel-provided IP cores offer more efficient logic synthesis and device
implementation. Scale the IP core’s size and specify various options by setting
parameters. To instantiate the IP core directly in your HDL file code, invoke the IP core
name and define its parameters as you would do for any other module, component, or
subdesign. Alternatively, you can use the IP Catalog (Tools ➤ IP Catalog) and
parameter editor GUI to simplify customization of your IP core variation. You can infer
or instantiate IP cores that optimize device architecture features, for example:

• Transceivers

• LVDS drivers

• Memory and DSP blocks

• Phase-locked loops (PLLs)

• Double-data rate input/output (DDIO) circuitry

For some types of logic functions, such as memories and DSP functions, you can infer
device-specific dedicated architecture blocks instead of instantiating an IP core. Intel
Quartus Prime synthesis recognizes certain HDL code structures and automatically
infers the appropriate IP core or map directly to device atoms.

Related Links

Intel FPGA IP Core Literature

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
101

http://www.altera.com/literature/lit-ip.jsp

4.3 Inferring Multipliers and DSP Functions

The following sections describe how to infer multiplier and DSP functions from generic
HDL code, and, if applicable, how to target the dedicated DSP block architecture in
Intel FPGA devices.

Related Links

DSP Solutions Center

4.3.1 Inferring Multipliers

To infer multiplier functions, synthesis tools detect multiplier logic and implement this
in Intel FPGA IP cores, or map the logic directly to device atoms.

For devices with DSP blocks, Intel Quartus Prime synthesis can implement the function
in a DSP block instead of logic, depending on device utilization. The Intel Quartus
Prime fitter can also place input and output registers in DSP blocks (that is, perform
register packing) to improve performance and area utilization.

The following Verilog HDL and VHDL code examples show that synthesis tools can infer
signed and unsigned multipliers as IP cores or DSP block atoms. Each example fits
into one DSP block element. In addition, when register packing occurs, no extra logic
cells for registers are required.

Example 6. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
 output [15:0] out;
 input [7:0] a;
 input [7:0] b;
 assign out = a * b;
endmodule

Note: The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 7. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining =
2)

module signed_mult (out, clk, a, b);
 output [15:0] out;
 input clk;
 input signed [7:0] a;
 input signed [7:0] b;

 reg signed [7:0] a_reg;
 reg signed [7:0] b_reg;
 reg signed [15:0] out;
 wire signed [15:0] mult_out;

 assign mult_out = a_reg * b_reg;

 always @ (posedge clk)
 begin
 a_reg <= a;
 b_reg <= b;
 out <= mult_out;
 end
endmodule

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
102

http://www.altera.com/technology/dsp/dsp-index.jsp

Example 8. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
 PORT (
 a: IN UNSIGNED (7 DOWNTO 0);
 b: IN UNSIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 result: OUT UNSIGNED (15 DOWNTO 0)
);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);
BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr ='1') THEN
 a_reg <= (OTHERS => '0');
 b_reg <= (OTHERS => '0');
 result <= (OTHERS => '0');
 ELSIF (rising_edge(clk)) THEN
 a_reg <= a;
 b_reg <= b;
 result <= a_reg * b_reg;
 END IF;
 END PROCESS;
END rtl;

Example 9. VHDL Signed Multiplier

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
 PORT (
 a: IN SIGNED (7 DOWNTO 0);
 b: IN SIGNED (7 DOWNTO 0);
 result: OUT SIGNED (15 DOWNTO 0)
);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN
 result <= a * b;
END rtl;

4.3.2 Inferring Multiply-Accumulator and Multiply-Adder Functions

Synthesis tools detect multiply-accumulator or multiply-adder functions, and either
implement them as Intel FPGA IP cores or map them directly to device atoms. During
placement and routing, the Intel Quartus Prime software places multiply-accumulator
and multiply-adder functions in DSP blocks.

Note: Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Intel device family has dedicated DSP blocks that support these functions.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
103

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators. Addition
is always the second-level operator, if it is used. In addition to the multiply-
accumulator and multiply-adder, the Intel Quartus Prime Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

Some device families offer additional advanced multiply-adder and accumulator
functions, such as complex multiplication, input shift register, or larger multiplications.

The Verilog HDL and VHDL code samples infer multiply-accumulator and multiply-
adder functions with input, output, and pipeline registers, as well as an optional
asynchronous clear signal. Using the three sets of registers provides the best
performance through the function, with a latency of three. To reduce latency, remove
the registers in your design.

Note: To obtain high performance in DSP designs, use register pipelining and avoid
unregistered DSP functions.

Example 10. Verilog HDL Multiply-Accumulator

module sum_of_four_multiply_accumulate
 #(parameter INPUT_WIDTH=18, parameter OUTPUT_WIDTH=44)
 (
 input clk, ena,
 input [INPUT_WIDTH-1:0] dataa, datab, datac, datad,
 input [INPUT_WIDTH-1:0] datae, dataf, datag, datah,
 output reg [OUTPUT_WIDTH-1:0] dataout
);
 // Each product can be up to 2*INPUT_WIDTH bits wide.
 // The sum of four of these products can be up to 2 bits wider.
 wire [2*INPUT_WIDTH+1:0] mult_sum;

 // Store the results of the operations on the current inputs
 assign mult_sum = (dataa * datab + datac * datad) + \
 (datae * dataf + datag * datah);

 // Store the value of the accumulation
 always @ (posedge clk)
 begin
 if (ena == 1)
 begin
 dataout <= dataout + mult_sum;
 end
 end
endmodule

Related Links

• DSP Design Examples

• AN639: Inferring Stratix V DSP Blocks for FIR Filtering

4.4 Inferring Memory Functions from HDL Code

The following coding recommendations provide portable examples of generic HDL code
targeting dedicated Intel FPGA memory IP cores. However, if you want to use some of
the advanced memory features in Intel FPGA devices, consider using the IP core
directly so that you can customize the ports and parameters easily.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
104

http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/literature/an/an639.pdf

You can also use the Intel Quartus Prime templates provided in the Intel Quartus
Prime software as a starting point. Most of these designs can also be found on the
Design Examples page on the Altera website.

Table 29. Intel Memory HDL Language Templates

Language Full Design Name

VHDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)
Mixed-Width RAM
Mixed-Width True Dual-Port RAM
Byte-Enabled Simple Dual-Port RAM
Byte-Enabled True Dual-Port RAM
Single-Port ROM
Dual-Port ROM

Verilog HDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)
Single-Port ROM
Dual-Port ROM

SystemVerilog Mixed-Width Port RAM
Mixed-Width True Dual-Port RAM
Mixed-Width True Dual-Port RAM (new data on same port read during write)
Byte-Enabled Simple Dual Port RAM
Byte-Enabled True Dual-Port RAM

Related Links

• Instantiating IP Cores in HDL
In Introduction to Intel FPGA IP Cores

• Design Examples

• Memory
In Intel Stratix 10 High-Performance Design Handbook

• Embedded Memory Blocks in Intel Arria 10 Devices
In Intel Arria 10 Core Fabric and General Purpose I/Os Handbook

4.4.1 Inferring RAM functions from HDL Code

To infer RAM functions, synthesis tools recognize certain types of HDL code and map
the detected code to technology-specific implementations. For device families that
have dedicated RAM blocks, the Intel Quartus Prime software uses an Intel FPGA IP
core to target the device memory architecture.

Synthesis tools typically consider all signals and variables that have a multi-
dimensional array type and then create a RAM block, if applicable. This is based on the
way the signals or variables are assigned or referenced in the HDL source description.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
105

https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958304029
http://www.altera.com/support/examples/exm-index.html
https://www.altera.com/documentation/jbr1444752564689.html#mtr1430270859096
https://www.altera.com/documentation/sam1403483633377.html#sam1403481243928

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some synthesis tools (such as the Intel Quartus
Prime software) also recognize true dual-port (two read ports and two write ports)
RAM blocks that map to the memory blocks in certain Intel FPGA devices.

Some tools (such as the Intel Quartus Prime software) also infer memory blocks for
array variables and signals that are referenced (read/written) by two indexes, to
recognize mixed-width and byte-enabled RAMs for certain coding styles.

Note: If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.

4.4.1.1 Use Synchronous Memory Blocks

Memory blocks in Intel FPGA are synchronous. Therefore, RAM designs must be
synchronous to map directly into dedicated memory blocks. For these devices, Intel
Quartus Prime synthesis implements asynchronous memory logic in regular logic cells.

Synchronous memory offers several advantages over asynchronous memory, including
higher frequencies and thus higher memory bandwidth, increased reliability, and less
standby power. To convert asynchronous memory, move registers from the datapath
into the memory block.

A memory block is synchronous if it has one of the following read behaviors:

• Memory read occurs in a Verilog HDL always block with a clock signal or a VHDL
clocked process. The recommended coding style for synchronous memories is to
create your design with a registered read output.

• Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). Synthesis
does not always infer this logic as a memory block, or may require external
bypass logic, depending on the target device architecture. Avoid this coding style
for synchronous memories.

Note: The synchronous memory structures in Intel FPGA devices can differ from the
structures in other vendors’ devices. For best results, match your design to the target
device architecture.

This chapter provides coding recommendations for various memory types. All of the
examples in this document are synchronous to ensure that they can be directly
mapped into the dedicated memory architecture available in Intel FPGAs.

4.4.1.2 Avoid Unsupported Reset and Control Conditions

To ensure correct implementation of HDL code in the target device architecture, avoid
unsupported reset conditions or other control logic that does not exist in the device
architecture.

The RAM contents of Intel FPGA memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Do not place RAM read or write operations in an always block or process
block with a reset signal. To specify memory contents, initialize the memory or write
the data to the RAM during device operation.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
106

In addition to reset signals, other control logic can prevent synthesis from inferring
memory logic as a memory block. For example, if you use a clock enable on the read
address registers, you can alter the output latch of the RAM, resulting in the
synthesized RAM result not matching the HDL description. Use the address stall
feature as a read address clock enable to avoid this limitation. Check the
documentation for your FPGA device to ensure that your code matches the hardware
available in the device.

Example 11. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in
Device Architecture

module clear_ram
(
 input clock, reset, we,
 input [7:0] data_in,
 input [4:0] address,
 output reg [7:0] data_out
);

 reg [7:0] mem [0:31];
 integer i;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1)
 mem[address] <= 0;
 else if (we == 1'b1)
 mem[address] <= data_in;

 data_out <= mem[address];
 end
endmodule

Example 12. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(
 input clock,
 input reset,
 input we,
 input [7:0] data_in,
 input [4:0] address,
 output reg [7:0] data_out,
 input d,
 output reg q
);

 reg [7:0] mem [0:31];
 integer i;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1)
 q <= 0;
 else
 begin
 if (we == 1'b1)
 mem[address] <= data_in;

 data_out <= mem[address];
 q <= d;
 end
 end
endmodule

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
107

Related Links

Specifying Initial Memory Contents at Power-Up on page 120

4.4.1.3 Check Read-During-Write Behavior

Ensure the read-during-write behavior of the memory block described in your HDL
design is consistent with your target device architecture.

Your HDL source code specifies the memory behavior when you read and write from
the same memory address in the same clock cycle. The read returns either the old
data at the address, or the new data written to the address. This is referred to as the
read-during-write behavior of the memory block. Intel FPGA memory blocks have
different read-during-write behavior depending on the target device family, memory
mode, and block type.

Synthesis tools preserve the functionality described in your source code. Therefore, if
your source code specifies unsupported read-during-write behavior for the RAM
blocks, the Intel Quartus Prime software implements the logic in regular logic cells as
opposed to the dedicated RAM hardware.

Example 13. Continuous read in HDL code

One common problem occurs when there is a continuous read in the HDL code, as in
the following examples. Avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

This type of HDL implies that when a write operation takes place, the read
immediately reflects the new data at the address independent of the read clock, which
is the behavior of asynchronous memory blocks. Synthesis cannot directly map this
behavior to a synchronous memory block. If the write clock and read clock are the
same, synthesis can infer memory blocks and add extra bypass logic so that the
device behavior matches the HDL behavior. If the write and read clocks are different,
synthesis cannot reliably add bypass logic, so it implements the logic in regular logic
cells instead of dedicated RAM blocks. The examples in the following sections discuss
some of these differences for read-during-write conditions.

In addition, the MLAB memories in certain device logic array blocks (LABs) does not
easily support old data or new data behavior for a read-during-write in the dedicated
device architecture. Implementing the extra logic to support this behavior significantly
reduces timing performance through the memory.

Note: For best performance in MLAB memories, ensure that your design does not depend on
the read data during a write operation.

In many synthesis tools, you can declare that the read-during-write behavior is not
important to your design (for example, if you never read from the same address to
which you write in the same clock cycle). In Intel Quartus Prime Pro Edition synthesis,
set the synthesis attribute ramstyle to no_rw_check to allow Intel Quartus Prime
software to define the read-during-write behavior of a RAM, rather than use the

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
108

behavior specified by your HDL code. This attribute can prevent the synthesis tool
from using extra logic to implement the memory block, or can allow memory inference
when it would otherwise be impossible.

4.4.1.4 Controlling RAM Inference and Implementation

Intel Quartus Prime synthesis provides options to control RAM inference and
implementation for Intel FPGA devices with synchronous memory blocks. Synthesis
tools usually do not infer small RAM blocks because implementing small RAM blocks is
more efficient if using the registers in regular logic.

To direct the Intel Quartus Prime software to infer RAM blocks globally for all sizes,
enable the Allow Any RAM Size for Recognition option in the Advanced Analysis
& Synthesis Settings dialog box.

Alternatively, use the ramstyle RTL attribute to specify how an inferred RAM is
implemented, including the type of memory block or the use of regular logic instead of
a dedicated memory block. Intel Quartus Prime synthesis does not map inferred
memory into MLABs unless the HDL code specifies the appropriate ramstyle
attribute, although the Fitter may map some memories to MLABs.

Set the ramstyle attribute in the RTL or in the .qsf file.

(* ramstyle = "mlab" *) my_shift_reg

set_instance_assignment -name RAMSTYLE_ATTRIBUTE LOGIC -to ram

You can also specify the maximum depth of memory blocks for RAM or ROM inference
in RTL. Specify the max_depth synthesis attribute to the declaration of a variable that
represents a RAM or ROM in your design file. For example:

// Limit the depth of the memory blocks implement "ram" to 512
// This forces the Intel Quartus Prime software to use two M512 blocks
instead of one M4K block to implement this RAM
(* max_depth = 512 *) reg [7:0] ram[0:1023];

In addition, you can specify the no_ram synthesis attribute to prevent RAM inference
on a specific array. For example:

 (* no_ram *) logic [11:0] my_array [0:12];

Related Links

Advanced Synthesis Settings on page 230

4.4.1.5 Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code that infers simple
dual-port, single-clock synchronous RAM. Single-port RAM blocks use a similar coding
style.

The read-during-write behavior in these examples is to read the old data at the
memory address. For best performance in MLAB memories, use the appropriate
attribute so that your design does not depend on the read data during a write
operation. The simple dual-port RAM code samples map directly into Intel synchronous
memory.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
109

Single-port versions of memory blocks (that is, using the same read address and write
address signals) allow better RAM utilization than dual-port memory blocks, depending
on the device family. Refer to the appropriate device handbook for recommendations
on your target device.

Example 14. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [4:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [31:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address]; // q doesn't get d in this clock cycle
 end
endmodule

Example 15. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data Read-
During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL ram_block: MEM;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 -- VHDL semantics imply that q doesn't get data
 -- in this clock cycle
 END IF;
 END PROCESS;
END rtl;

4.4.1.6 Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

The examples in this section describe RAM blocks in which the read-during-write
behavior returns the new value being written at the memory address.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
110

To implement this behavior in the target device, synthesis tools add bypass logic
around the RAM block. This bypass logic increases the area utilization of the design,
and decreases the performance if the RAM block is part of the design’s critical path. If
the device memory supports new data read-during-write behavior when in single-port
mode (same clock, same read address, and same write address), the Verilog memory
block doesn't require any bypass logic. Refer to the appropriate device handbook for
specifications on your target device.

The following examples use a blocking assignment for the write so that the data is
assigned intermediately.

Example 16. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [6:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [127:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] = d;
 q = mem[read_address]; // q does get d in this clock
 // cycle if we is high
 end
endmodule

Example 17. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data Read-
During-Write Behavior:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY single_clock_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN
 PROCESS (clock)
 VARIABLE ram_block: MEM;
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) := data;
 END IF;
 q <= ram_block(read_address);
 -- VHDL semantics imply that q doesn't get data
 -- in this clock cycle
 END IF;
 END PROCESS;
END rtl;

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
111

It is possible to create a single-clock RAM by using an assign statement to read the
address of mem and create the output q. By itself, the RTL describes new data read-
during-write behavior. However, if the RAM output feeds a register in another
hierarchy, a read-during-write results in the old data. Synthesis tools may not infer a
RAM block if the tool cannot determine which behavior is described, such as when the
memory feeds a hard hierarchical partition boundary. Avoid this type of RTL.

Example 18. Avoid Verilog Coding Style with Vague read-during-write Behavior

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 read_address_reg <= read_address;
end
assign q = mem[read_address_reg];

Example 19. Avoid VHDL Coding Style with Vague read-during-write Behavior

The following example uses a concurrent signal assignment to read from the RAM, and
presents a similar behavior.

ARCHITECTURE rtl OF single_clock_rw_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

4.4.1.7 Simple Dual-Port, Dual-Clock Synchronous RAM

With dual-clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code.

Example 20. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module simple_dual_port_ram_dual_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
 input [(DATA_WIDTH-1):0] data,
 input [(ADDR_WIDTH-1):0] read_addr, write_addr,
 input we, read_clock, write_clock,
 output reg [(DATA_WIDTH-1):0] q
);

 // Declare the RAM variable
 reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
112

 always @ (posedge write_clock)
 begin
 // Write
 if (we)
 ram[write_addr] <= data;
 end

 always @ (posedge read_clock)
 begin
 // Read
 q <= ram[read_addr];
 end

endmodule

Example 21. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS
 PORT (
 clock1, clock2: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg : INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock1)
 BEGIN
 IF (rising_edge(clock1)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 END IF;
 END PROCESS;
 PROCESS (clock2)
 BEGIN
 IF (rising_edge(clock2)) THEN
 q <= ram_block(read_address_reg);
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
END rtl;

Related Links

Check Read-During-Write Behavior on page 108

4.4.1.8 True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories.

Intel FPGA synchronous memory blocks have two independent address ports, allowing
for operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
113

The Intel Quartus Prime software infers true dual-port RAMs in Verilog HDL and VHDL,
with the following characteristics:

• Any combination of independent read or write operations in the same clock cycle.

• At most two unique port addresses.

• In one clock cycle, with one or two unique addresses, they can perform:

— Two reads and one write

— Two writes and one read

— Two writes and two reads

In the synchronous RAM block architecture, there is no priority between the two ports.
Therefore, if you write to the same location on both ports at the same time, the result
is indeterminate in the device architecture. You must ensure your HDL code does not
imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority,
the logic cannot be implemented in the device RAM blocks and is implemented in
regular logic cells. You must also consider the read-during-write behavior of the RAM
block to ensure that it can be mapped directly to the device RAM architecture.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

• Read new data—Intel Arria 10 and Intel Stratix 10 devices support this behavior.

• Read old data—Not supported.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

• Read new data—Intel Quartus Prime Pro Edition synthesis supports this mode by
creating bypass logic around the synchronous memory block.

• Read old data—Intel Arria 10 and Intel Cyclone 10 devices support this behavior.

• Read don’t care—Synchronous memory blocks support this behavior in simple
dual-port mode.

The Verilog HDL single-clock code sample maps directly into synchronous Intel Arria
10 memory blocks. When a read and write operation occurs on the same port for the
same address, the new data being written to the memory is read. When a read and
write operation occurs on different ports for the same address, the old data in the
memory is read. Simultaneous writes to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
inferred memory in the target device presents undefined mixed port read-during-write
behavior, because it depends on the relationship between the clocks.

Example 22. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
#(parameter DATA_WIDTH = 8, ADDR_WIDTH = 6)
(
 input [(DATA_WIDTH-1):0] data_a, data_b,
 input [(ADDR_WIDTH-1):0] addr_a, addr_b,
 input we_a, we_b, clk,
 output reg [(DATA_WIDTH-1):0] q_a, q_b

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
114

);

 // Declare the RAM variable
 reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

 always @ (posedge clk)
 begin // Port a
 if (we_a)
 begin
 ram[addr_a] <= data_a;
 q_a <= data_a;
 end
 else
 q_a <= ram[addr_a];
 end
 always @ (posedge clk)
 begin // Port b
 if (we_b)
 begin
 ram[addr_b] <= data_b;
 q_b <= data_b;
 end
 else
 q_b <= ram[addr_b];
 end
endmodule

Example 23. VHDL Read Statement Example

-- Port A
process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_a = '1') then
 ram(addr_a) := data_a;
 end if;
 q_a <= ram(addr_a);
 end if;
end process;

-- Port B
process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_b = '1') then
 ram(addr_b) := data_b;
 end if;
 q_b <= ram(addr_b);
 end if;
end process;

The VHDL single-clock code sample maps directly into Intel FPGA synchronous
memory. When a read and write operation occurs on the same port for the same
address, the new data writing to the memory is read. When a read and write operation
occurs on different ports for the same address, the behavior results in old data for
Intel Arria 10 and Intel Cyclone 10 devices, and is undefined for Intel Stratix 10
devices. Simultaneous write operations to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
memory in the target device presents undefined mixed port read-during-write
behavior because it depends on the relationship between the clocks.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
115

Example 24. VHDL True Dual-Port RAM with Single Clock

LIBRARY ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is
 generic (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 6
);

port (
 clk : in std_logic;
 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 data_a : in std_logic_vector((DATA_WIDTH-1) downto 0);
 data_b : in std_logic_vector((DATA_WIDTH-1) downto 0);
 we_a : in std_logic := '1';
 we_b : in std_logic := '1';
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is
 -- Build a 2-D array type for the RAM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);

 type memory_t is array((2**ADDR_WIDTH - 1) downto 0) of word_t;
 -- Declare the RAM signal.
 signal ram : memory_t;

begin
 process(clk)
 begin
 if(rising_edge(clk)) then -- Port A
 if(we_a = '1') then
 ram(addr_a) <= data_a;
 -- Read-during-write on same port returns NEW data
 q_a <= data_a;
 else
 -- Read-during-write on mixed port returns OLD
data
 q_a <= ram(addr_a);
 end if;
 end if;
 end process;

 process(clk)
 begin
 if(rising_edge(clk)) then -- Port B
 if(we_b = '1') then
 ram(addr_b) <= data_b;
 -- Read-during-write on same port returns NEW data
 q_b <= data_b;
 else
 -- Read-during-write on mixed port returns OLD data
 q_b <= ram(addr_b);
 end if;
 end if;
 end process;
end rtl;

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
116

The port behavior inferred in the Intel Quartus Prime software for the above example
is:

PORT_A_READ_DURING_WRITE_MODE = "new_data_no_nbe_read"
PORT_B_READ_DURING_WRITE_MODE = "new_data_no_nbe_read"
MIXED_PORT_FEED_THROUGH_MODE = "old"

Related Links

Guideline: Customize Read-During-Write Behavior
In Intel Arria 10 Core Fabric and General Purpose I/Os Handbook

4.4.1.9 Mixed-Width Dual-Port RAM

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with data ports with different widths.

Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Pro Edition
synthesis.

The first dimension of the multi-dimensional packed array represents the ratio of the
wider port to the narrower port. The second dimension represents the narrower port
width. The read and write port widths must specify a read or write ratio supported by
the memory blocks in the target device. Otherwise, the synthesis tool does not infer a
RAM.

Refer to the Intel Quartus Prime HDL templates for parameterized examples with
supported combinations of read and write widths. You can also find examples of true
dual port RAMs with two mixed-width read ports and two mixed-width write ports.

Example 25. SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

module mixed_width_ram // 256x32 write and 1024x8 read
(
 input [7:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [9:0] raddr,
 output logic [7:0] q
);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr] <= wdata;
 q <= ram[raddr / 4][raddr % 4];
 end
endmodule : mixed_width_ram

Example 26. SystemVerilog Mixed-Width RAM with Read Width Larger than Write Width

module mixed_width_ram // 1024x8 write and 256x32 read
(
 input [9:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [7:0] raddr,
 output logic [9:0] q

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
117

https://www.altera.com/documentation/sam1403483633377.html#sam1403481260687

);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr / 4][waddr % 4] <= wdata;
 q <= ram[raddr];
 end
endmodule : mixed_width_ram

Example 27. VHDL Mixed-Width RAM with Read Width Smaller than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 255;
 wdata : in word_t;
 raddr : in integer range 0 to 1023;
 q : out std_logic_vector(7 downto 0));
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 ram(waddr) <= wdata;
 end if;
 q <= ram(raddr / 4)(raddr mod 4);
 end if;
 end process;
end rtl;

Example 28. VHDL Mixed-Width RAM with Read Width Larger than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 1023;
 wdata : in std_logic_vector(7 downto 0);
 raddr : in integer range 0 to 255;

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
118

 q : out word_t);
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 ram(waddr / 4)(waddr mod 4) <= wdata;
 end if;
 q <= ram(raddr);
 end if;
 end process;
end rtl;

4.4.1.10 RAM with Byte-Enable Signals

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with controls for writing single bytes into the memory word, or byte-enable
signals.

Synthesis models byte-enable signals by creating write expressions with two indexes,
and writing part of a RAM "word." With these implementations, you can also write
more than one byte at once by enabling the appropriate byte enables.

Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Pro Edition
synthesis.

Refer to the Intel Quartus Prime HDL templates for parameterized examples that you
can use for different address widths, and true dual port RAM examples with two read
ports and two write ports.

Example 29. SystemVerilog Simple Dual-Port Synchronous RAM with Byte Enable

module byte_enabled_simple_dual_port_ram
(
 input we, clk,
 input [5:0] waddr, raddr, // address width = 6
 input [3:0] be, // 4 bytes per word
 input [31:0] wdata, // byte width = 8, 4 bytes per word
 output reg [31:0] q // byte width = 8, 4 bytes per word
);
 // use a multi-dimensional packed array
 //to model individual bytes within the word
 logic [3:0][7:0] ram[0:63]; // # words = 1 << address width

 always_ff@(posedge clk)
 begin
 if(we) begin
 if(be[0]) ram[waddr][0] <= wdata[7:0];
 if(be[1]) ram[waddr][1] <= wdata[15:8];
 if(be[2]) ram[waddr][2] <= wdata[23:16];
 if(be[3]) ram[waddr][3] <= wdata[31:24];
 end
 q <= ram[raddr];
 end
endmodule

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
119

Example 30. VHDL Simple Dual-Port Synchronous RAM with Byte Enable

library ieee;
use ieee.std_logic_1164.all;
library work;

entity byte_enabled_simple_dual_port_ram is
port (
 we, clk : in std_logic;
 waddr, raddr : in integer range 0 to 63 ; -- address width = 6
 be : in std_logic_vector (3 downto 0); -- 4 bytes per word
 wdata : in std_logic_vector(31 downto 0); -- byte width = 8
 q : out std_logic_vector(31 downto 0)); -- byte width = 8
end byte_enabled_simple_dual_port_ram;

architecture rtl of byte_enabled_simple_dual_port_ram is
 -- build up 2D array to hold the memory
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 63) of word_t;

 signal ram : ram_t;
 signal q_local : word_t;

 begin -- Re-organize the read data from the RAM to match the output
 unpack: for i in 0 to 3 generate
 q(8*(i+1) - 1 downto 8*i) <= q_local(i);
 end generate unpack;

 process(clk)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 if(be(0) = '1') then
 ram(waddr)(0) <= wdata(7 downto 0);
 end if;
 if be(1) = '1' then
 ram(waddr)(1) <= wdata(15 downto 8);
 end if;
 if be(2) = '1' then
 ram(waddr)(2) <= wdata(23 downto 16);
 end if;
 if be(3) = '1' then
 ram(waddr)(3) <= wdata(31 downto 24);
 end if;
 end if;
 q_local <= ram(raddr);
 end if;
 end process;
end rtl;

4.4.1.11 Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents of an inferred
memory. There are slight power-up and initialization differences between dedicated
RAM blocks and the MLAB memory, due to the continuous read of the MLAB.

Intel FPGA dedicated RAM block outputs always power-up to zero, and are set to the
initial value on the first read. For example, if address 0 is pre-initialized to FF, the RAM
block powers up with the output at 0. A subsequent read after power-up from address
0 outputs the pre-initialized value of FF. Therefore, if a RAM powers up and an enable
(read enable or clock enable) is held low, the power-up output of 0 maintains until the
first valid read cycle. The synthesis tool implements MLAB using registers that power-
up to 0, but initialize to their initial value immediately at power-up or reset. Therefore,

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
120

the initial value is seen, regardless of the enable status. The Intel Quartus Prime
software maps inferred memory to MLABs when the HDL code specifies an appropriate
ramstyle attribute.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Intel Quartus Prime Pro Edition synthesis automatically converts the initial
block into a Memory Initialization File (.mif) for the inferred RAM.

Example 31. Verilog HDL RAM with Initialized Contents

module ram_with_init(
 output reg [7:0] q,
 input [7:0] d,
 input [4:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [0:31];
 integer i;

 initial begin
 for (i = 0; i < 32; i = i + 1)
 mem[i] = i[7:0];
 end

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address];
 end
endmodule

Intel Quartus Prime Pro Edition synthesis and other synthesis tools also support the
$readmemb and $readmemh attributes. These attributes allow RAM initialization and
ROM initialization work identically in synthesis and simulation.

Example 32. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

In VHDL, you can initialize the contents of an inferred memory by specifying a default
value for the corresponding signal. Intel Quartus Prime Pro Edition synthesis
automatically converts the default value into a .mif file for the inferred RAM.

Example 33. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
 PORT(
 clock: IN STD_LOGIC;
 data: IN UNSIGNED (7 DOWNTO 0);
 write_address: IN integer RANGE 0 to 31;
 read_address: IN integer RANGE 0 to 31;
 we: IN std_logic;
 q: OUT UNSIGNED (7 DOWNTO 0));
END;

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
121

ARCHITECTURE rtl OF ram_with_init IS

 TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
 FUNCTION initialize_ram
 return MEM is
 variable result : MEM;
 BEGIN
 FOR i IN 31 DOWNTO 0 LOOP
 result(i) := to_unsigned(natural(i), natural'(8));
 END LOOP;
 RETURN result;
 END initialize_ram;

 SIGNAL ram_block : MEM := initialize_ram;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 END IF;
 END PROCESS;
END rtl;

4.4.2 Inferring ROM Functions from HDL Code

Synthesis tools infer ROMs when a CASE statement exists in which a value is set to a
constant for every choice in the CASE statement.

Because small ROMs typically achieve the best performance when they are
implemented using the registers in regular logic, each ROM function must meet a
minimum size requirement for inference and placement in memory.

For device architectures with synchronous RAM blocks, to infer a ROM block, synthesis
must use registers for either the address or the output. When your design uses output
registers, synthesis implements registers from the input registers of the RAM block
without affecting the functionality of the ROM. If you register the address, the power-
up state of the inferred ROM can be different from the HDL design. In this scenario,
Intel Quartus Prime synthesis issues a warning.

The following ROM examples map directly to the Intel FPGA memory architecture.

Example 34. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
 input clock;
 input [7:0] address;
 output reg [5:0] data_out;
 reg [5:0] data_out;

 always @ (posedge clock)
 begin
 case (address)
 8'b00000000: data_out = 6'b101111;
 8'b00000001: data_out = 6'b110110;
 ...
 8'b11111110: data_out = 6'b000001;
 8'b11111111: data_out = 6'b101010;
 endcase
 end
endmodule

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
122

Example 35. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
 PORT (
 clock: IN STD_LOGIC;
 address: IN STD_LOGIC_VECTOR(7 downto 0);
 data_out: OUT STD_LOGIC_VECTOR(5 downto 0)
);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)
 BEGIN
 IF rising_edge (clock) THEN
 CASE address IS
 WHEN "00000000" => data_out <= "101111";
 WHEN "00000001" => data_out <= "110110";
 ...
 WHEN "11111110" => data_out <= "000001";
 WHEN "11111111" => data_out <= "101010";
 WHEN OTHERS => data_out <= "101111";
 END CASE;
 END IF;
 END PROCESS;
END rtl;

Example 36. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom
#(parameter data_width=8, parameter addr_width=8)
(
 input [(addr_width-1):0] addr_a, addr_b,
 input clk,
 output reg [(data_width-1):0] q_a, q_b
);
 reg [data_width-1:0] rom[2**addr_width-1:0];

 initial // Read the memory contents in the file
 //dual_port_rom_init.txt.
 begin
 $readmemb("dual_port_rom_init.txt", rom);
 end

 always @ (posedge clk)
 begin
 q_a <= rom[addr_a];
 q_b <= rom[addr_b];
 end
endmodule

Example 37. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
 generic (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 8
);
 port (
 clk : in std_logic;

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
123

 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end entity;

architecture rtl of dual_port_rom is
 -- Build a 2-D array type for the ROM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
 type memory_t is array(2**ADDR_WIDTH - 1 downto 0) of word_t;

 function init_rom
 return memory_t is
 variable tmp : memory_t := (others => (others => '0'));
 begin
 for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop
 -- Initialize each address with the address itself
 tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos,
DATA_WIDTH));
 end loop;
 return tmp;
 end init_rom;

 -- Declare the ROM signal and specify a default initialization value.
 signal rom : memory_t := init_rom;
begin
 process(clk)
 begin
 if (rising_edge(clk)) then
 q_a <= rom(addr_a);
 q_b <= rom(addr_b);
 end if;
 end process;
end rtl;

4.4.3 Inferring Shift Registers in HDL Code

To infer shift registers in Intel Arria 10 devices, synthesis tools detect a group of shift
registers of the same length, and convert them to an Intel FPGA shift register IP core.

For detection, all shift registers must have the following characteristics:

• Use the same clock and clock enable

• No other secondary signals

• Equally spaced taps that are at least three registers apart

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
124

Synthesis recognizes shift registers only for device families with dedicated RAM blocks.
Intel Quartus Prime Pro Edition synthesis uses the following guidelines:

• The Intel Quartus Prime software determines whether to infer the Intel FPGA shift
register IP core based on the width of the registered bus (W), the length between
each tap (L), or the number of taps (N).

• If the Auto Shift Register Recognition option is set to Auto, Intel Quartus
Prime Pro Edition synthesis determines which shift registers are implemented in
RAM blocks for logic by using:

— The Optimization Technique setting

— Logic and RAM utilization information about the design

— Timing information from Timing-Driven Synthesis

• If the registered bus width is one (W = 1), Intel Quartus Prime synthesis infers
shift register IP if the number of taps times the length between each tap is greater
than or equal to 64 (N x L > 64).

• If the registered bus width is greater than one (W > 1), and the registered bus
width times the number of taps times the length between each tap is greater than
or equal to 32 (W × N × L > 32), the Intel Quartus Prime synthesis infers Intel
FPGA shift register IP core.

• If the length between each tap (L) is not a power of two, Intel Quartus Prime
synthesis needs external logic (LEs or ALMs) to decode the read and write
counters, because of different sizes of shift registers. This extra decode logic
eliminates the performance and utilization advantages of implementing shift
registers in memory.

The registers that Intel Quartus Prime synthesis maps to the Intel FPGA shift register
IP core, and places in RAM are not available in a Verilog HDL or VHDL output file for
simulation tools, because their node names do not exist after synthesis.

Note: The Compiler cannot implement a shift register that uses a shift enable signal into
MLAB memory; instead, the Compiler uses dedicated RAM blocks. To control the type
of memory structure that implements the shift register, use the ramstyle attribute.

4.4.3.1 Simple Shift Register

The examples in this section show a simple, single-bit wide, 67-bit long shift register.

Intel Quartus Prime synthesis implements the register (W = 1 and M = 67) in an
ALTSHIFT_TAPS IP core for supported devices and maps it to RAM in supported
devices, which may be placed in dedicated RAM blocks or MLAB memory. If the length
of the register is less than 67 bits, Intel Quartus Prime synthesis implements the shift
register in logic.

Example 38. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x67 (clk, shift, sr_in, sr_out);
 input clk, shift;
 input sr_in;
 output sr_out;

 reg [66:0] sr;

 always @ (posedge clk)
 begin
 if (shift == 1'b1)

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
125

 begin
 sr[66:1] <= sr[65:0];
 sr[0] <= sr_in;
 end
 end
 assign sr_out = sr[65];
endmodule

Example 39. VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x67 IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC;
 sr_out: OUT STD_LOGIC
);
END shift_1x67;

ARCHITECTURE arch OF shift_1x67 IS
 TYPE sr_length IS ARRAY (66 DOWNTO 0) OF STD_LOGIC;
 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (rising_edge(clk)) THEN
 IF (shift = '1') THEN
 sr(66 DOWNTO 1) <= sr(65 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;
 END IF;
 END PROCESS;
 sr_out <= sr(65);
END arch;

4.4.3.2 Shift Register with Evenly Spaced Taps

The following examples show a Verilog HDL and VHDL 8-bit wide, 64-bit long shift
register (W > 1 and M = 64) with evenly spaced taps at 15, 31, and 47.

The synthesis software implements this function in a single ALTSHIFT_TAPS IP core
and maps it to RAM in supported devices, which is allowed placement in dedicated
RAM blocks or MLAB memory.

Example 40. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module top (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two,
 sr_tap_three);
 input clk, shift;
 input [7:0] sr_in;
 output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;
 reg [7:0] sr [64:0];
 integer n;
 always @ (posedge clk)
 begin
 if (shift == 1'b1)
 begin
 for (n = 64; n>0; n = n-1)
 begin
 sr[n] <= sr[n-1];
 end
 sr[0] <= sr_in;
 end
 end

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
126

 assign sr_tap_one = sr[16];
 assign sr_tap_two = sr[32];
 assign sr_tap_three = sr[48];
 assign sr_out = sr[64];
endmodule

4.5 Register and Latch Coding Guidelines

This section provides device-specific coding recommendations for Intel registers and
latches. Understanding the architecture of the target Intel device helps ensure that
your RTL produces the expected results and achieves the optimal quality of results.

4.5.1 Register Power-Up Values

Registers in the device core always power-up to a low (0) logic level on all Intel FPGA
devices. However, If your design specifies a power-up level other than 0, synthesis
tools can implement logic that causes registers to behave as if they were powering up
to a high (1) logic level.

If your design uses a preset signal, but your device does not support presets in the
register architecture, synthesis may convert the preset signal to a clear signal,
which requires to perform a NOT gate push-back optimization. NOT gate push-back
adds an inverter to the input and the output of the register, so that the reset and
power-up conditions appear high, and the device operates as expected. In this case,
your synthesis tool may issue a message about the power-up condition. The register
itself powers up low, but since the register output inverts, the signal that arrives at all
destinations is high.

Due to these effects, if you specify a non-zero reset value, your synthesis tool may
use the asynchronous clear (aclr) signals available on the registers to implement the
high bits with NOT gate push-back. In that case, the registers look as though they
power-up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, your
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load
of 1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power-up to a 0 logic level.

For additional details, refer to the appropriate device family handbook.

Optionally use an explicit reset signal for the design, which forces all registers into
their appropriate values after reset. Use this practice to reset the device after power-
up to restore the proper state.

Make your design more stable and avoid potential glitches by synchronizing external
or combinational logic of the device architecture before you drive the asynchronous
control ports of registers.

Related Links

Recommended Design Practices on page 152

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
127

4.5.1.1 Specifying a Power-Up Value

To specify a particular power-up condition for your design, use the synthesis options
available in your synthesis tool. Intel Quartus Prime Pro Edition synthesis provides the
Power-Up Level logic option.

You can also specify the power-up level with an altera_attribute assignment in
your source code. This attribute forces synthesis to perform NOT gate push-back,
because synthesis tools cannot actually change the power-up states of core registers.

You can apply the Power-Up Level logic option to a specific register, or to a design
entity, module, or subdesign. When you assign this option, every register in that block
receives the value. Registers power up to 0 by default. Therefore, you can use this
assignment to force all registers to power-up to 1 using NOT gate push-back.

Setting the Power-Up Level to a logic level of high for a large design entity could
degrade the quality of results due to the number of inverters that requires. In some
situations, this design style causes issues due to enable signal inference or
secondary control logic inference. It may also be more difficult to migrate this type of
designs.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Intel Quartus Prime Pro
Edition synthesis converts default values for registered signals into Power-Up Level
settings. When the Intel Quartus Prime software reads the default values, the
synthesized behavior matches the power-up state of the HDL code during a functional
simulation.

Example 41. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin
 q <= d;
end

Example 42. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN
 IF (rising_edge(clk)) THEN
 q <= d;
 END IF;
END PROCESS;

Your design may contain undeclared default power-up conditions based on signal type.
If you declare a VHDL register signal as an integer, Intel Quartus Prime synthesis uses
the left end of the integer range as the power-up value. For the default signed integer
type, the default power-up value is the highest magnitude negative integer (100…
001). For an unsigned integer type, the default power-up value is 0.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
128

Note: If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT gate push-back algorithm creates logic to set a register to 1, that register
powers-up high. If you set a different power-up condition through a synthesis
attribute or initial value, synthesis ignores the power-up level.

4.5.2 Secondary Register Control Signals Such as Clear and Clock Enable

The registers in Intel FPGAs provide a number of secondary control signals. Use these
signals to implement control logic for each register without using extra logic cells.
Intel FPGA device families vary in their support for secondary signals, so consult the
device family data sheet to verify which signals are available in your target device.

To make the most efficient use of the signals in the device, ensure that HDL code
matches the device architecture as closely as possible. The control signals have a
certain priority due to the nature of the architecture. Your HDL code must follow that
priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
allow flexibility in controlling use and priority of control signals, match your design to
the target device architecture to achieve the most efficient results. If the priority of
the signals in your design is not the same as that of the target architecture, you may
require extra logic to implement the control signals. This extra logic uses additional
device resources, and can cause additional delays for the control signals.

In certain cases, using logic other than the dedicated control logic in the device
architecture can have a larger impact. For example, the clock enable signal has
priority over the synchronous reset or clear signal in the device architecture. The
clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you define a register with a synchronous clear signal that has priority over the
clock enable signal, Intel Quartus Prime synthesis emulates the clock enable
functionality using data inputs to the registers. You cannot apply a Clock Enable
Multicycle constraint, because the emulated functionality does not use the clock
enable port of the register. In this case, using a different priority causes unexpected
results with an assignment to the clock enable signal.

The signal order is the same for all Intel FPGA device families. However, not all device
families provide every signal. The priority order is:

1. Asynchronous Clear (clrn)—highest priority

2. Enable (ena)

3. Synchronous Clear (sclr)

4. Synchronous Load (sload)

5. Data In (data)—lowest priority

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
129

The priority order for secondary control signals in Intel FPGA devices differs from the
order for other vendors’ FPGA devices. If your design requirements are flexible
regarding priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors. To achieve the best
results. try to match your target device architecture.

Example 43. Verilog D-type Flipflop bus with Secondary Signals

This module uses all Intel Arria 10 DFF secondary signals: clrn, ena, sclr, and
sload. Note that it instantiates 8-bit bus of DFFs rather than a single DFF, because
synthesis infers some secondary signals only if there are multiple DFFs with the same
secondary signal.

module top(clk, clrn, sclr, sload, ena, data, sdata, q);
 input clk, clrn, sclr, sload, ena;
 input [7:0] data, sdata;
 output [7:0] q;
 reg [7:0] q;
 always @ (posedge clk or posedge clrn)
 begin
 if (clrn)
 q <= 8'b0;
 else if (ena)
 begin
 if (sclr)
 q <= 8'b0;
 else if (!sload)
 q <= data;
 else
 q <= sdata;
 end
 end
endmodule

Related Links

Clock Enable Multicycle
In Intel Quartus Prime Timing Analyzer Cookbook

4.5.3 Latches

A latch is a small combinational loop that holds the value of a signal until a new value
is assigned. Synthesis tools can infer latches from HDL code when you did not intend
to use a latch. If you do intend to infer a latch, it is important to infer it correctly to
guarantee correct device operation.

Note: Design without the use of latches whenever possible.

Related Links

Avoid Unintended Latch Inference on page 155

4.5.3.1 Avoid Unintentional Latch Generation

When you design combinational logic, certain coding styles can create an unintentional
latch. For example, when CASE or IF statements do not cover all possible input
conditions, synthesis tools can infer latches to hold the output if a new output value is
not assigned. Check your synthesis tool messages for references to inferred latches.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
130

https://www.altera.com/documentation/mwh1452708879095.html#mwh1452708878224

If your code unintentionally creates a latch, modify your RTL to remove the latch:

• Synthesis infers a latch when HDL code assigns a value to a signal outside of a
clock edge (for example, with an asynchronous reset), but the code does not
assign a value in an edge-triggered design block.

• Unintentional latches also occur when HDL code assigns a value to a signal in an
edge-triggered design block, but synthesis optimizations remove that logic. For
example, when a CASE or IF statement tests a condition that only evaluates to
FALSE, synthesis removes any logic or signal assignment in that statement during
optimization. This optimization may result in the inference of a latch for the signal.

• Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE statement can
also generate a latch. Don’t care (X) assignments on the default conditions are
useful in preventing latch generation. For the best logic optimization, assign the
default CASE or final ELSE value to don’t care (X) instead of a logic value.

In Verilog HDL designs, use the full_case attribute to treat unspecified cases as
don’t care values (X). However, since the full_case attribute is synthesis-only, it can
cause simulation mismatches, because simulation tools still treat the unspecified cases
as latches.

Example 44. VHDL Code Preventing Unintentional Latch Creation

Without the final ELSE clause, the following code creates unintentional latches to
cover the remaining combinations of the SEL inputs. When you are targeting a Stratix
series device with this code, omitting the final ELSE condition can cause synthesis
tools to use up to six LEs, instead of the three it uses with the ELSE statement.
Additionally, assigning the final ELSE clause to 1 instead of X can result in slightly
more LEs, because synthesis tools cannot perform as much optimization when you
specify a constant value as opposed to a don’t care value.

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
 PORT (a,b,c: IN STD_LOGIC;
 sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 oput: OUT STD_LOGIC);
END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN
 PROCESS (a,b,c,sel) BEGIN
 IF sel = "00000" THEN
 oput <= a;
 ELSIF sel = "00001" THEN
 oput <= b;
 ELSIF sel = "00010" THEN
 oput <= c;
 ELSE --- Prevents latch inference
 oput <= 'X'; --/
 END IF;
 END PROCESS;
END rtl;

4.5.3.2 Inferring Latches Correctly

Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops. Intel Quartus Prime Pro
Edition software reports latches that synthesis inferred in the User-Specified and

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
131

Inferred Latches section of the Compilation Report. This report indicates whether or
not the latch presents a timing hazard, and the total number of user-specified and
inferred latches.

Note: Timing analysis does not completely model latch timing in some cases. Do not use
latches unless required by your design, and you fully understand the impact of using
the latches.

If a latch or combinational loop in your design doesn't appear in the User Specified
and Inferred Latches section, it means that Intel Quartus Prime synthesis didn't
infer the latch as a safe latch, so it is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are at risk of
timing hazards. These entries indicate possible problems with your design that you
should investigate. However, it is possible to have a correct design that includes
combinational loops. For example, it is possible that the combinational loop cannot be
sensitized. This occurs when there is an electrical path in the hardware, but either:

• The designer knows that the circuit never encounters data that causes that path to
be activated, or

• The surrounding logic is set up in a mutually exclusive manner that prevents that
path from ever being sensitized, independent of the data input.

For 6-input LUT-based devices, Intel Quartus Prime synthesis implements all latch
inputs with a single adaptive look-up table (ALUT) in the combinational loop.
Therefore, all latches in the User-Specified and Inferred Latches table are free of
timing hazards when a single input changes.

If Intel Quartus Prime synthesis report lists a latch as a safe latch, other
optimizations, such as physical synthesis netlist optimizations in the Fitter, maintain
the hazard-free performance. To ensure hazard-free behavior, only one control input
can change at a time. Changing two inputs simultaneously, such as deasserting set
and reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Intel Quartus Prime synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL. However, Intel Quartus Prime synthesis does not infer
latches from continuous assignments in Verilog HDL, or concurrent signal assignments
in VHDL. These rules are the same as for register inference. The Intel Quartus Prime
synthesis infers registers or flipflops only from always blocks and process
statements.

Example 45. Verilog HDL Set-Reset Latch

module simple_latch (
 input SetTerm,
 input ResetTerm,
 output reg LatchOut
);
 always @ (SetTerm or ResetTerm) begin
 if (SetTerm)
 LatchOut = 1'b1;
 else if (ResetTerm)
 LatchOut = 1'b0;
 end
endmodule

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
132

Example 46. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simple_latch IS
 PORT (
 enable, data : IN STD_LOGIC;
 q : OUT STD_LOGIC
);
END simple_latch;
ARCHITECTURE rtl OF simple_latch IS
BEGIN
 latch : PROCESS (enable, data)
 BEGIN
 IF (enable = '1') THEN
 q <= data;
 END IF;
 END PROCESS latch;
END rtl;

The following example shows a Verilog HDL continuous assignment that does not infer
a latch in the Intel Quartus Prime software:

Example 47. Verilog Continuous Assignment Does Not Infer Latch

assign latch_out = (~en & latch_out) | (en & data);

The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch, and its timing is not analyzed as a latch. Intel Quartus Prime Pro Edition
synthesis also creates safe latches when possible for instantiations of an Altera latch
IP core. Use an Altera latch IP core to define a latch with any combination of data,
enable, set, and reset inputs. The same limitations apply for creating safe latches as
for inferring latches from HDL code.

Inferring the Altera latch IP core in another synthesis tool ensures that Intel Quartus
Prime synthesis also recognizes the implementation as a latch. If a third-party
synthesis tool implements a latch using the Altera latch IP core, Intel Quartus Prime
Pro Edition synthesis reports the latch in the User-Specified and Inferred Latches
table, in the same manner as it lists latches you define in HDL source code. The
coding style necessary to produce an Altera latch IP core implementation may depend
on your synthesis tool. Some third-party synthesis tools list the number of Altera latch
IP cores that are inferred.

The Fitter uses global routing for control signals, including signals that synthesis
identifies as latch enables. In some cases the global insertion delay may decrease the
timing performance. If necessary, you can turn off the Intel Quartus Prime Global
Signal logic option to manually prevent the use of global signals. The Global & Other
Fast Signals table in the Compilation Report reports Global latch enables.

4.6 General Coding Guidelines

This section describes how coding styles impact synthesis of HDL code into the target
Intel FPGA devices. You can improve your design efficiency and performance by
following these recommended coding styles, and designing logic structures to match
the appropriate device architecture.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
133

4.6.1 Tri-State Signals

Use tri-state signals only when they are attached to top-level bidirectional or output
pins.

Avoid lower-level bidirectional pins. Also avoid using the Z logic value unless it is
driving an output or bidirectional pin. Even though some synthesis tools implement
designs with internal tri-state signals correctly in Intel FPGA devices using multiplexer
logic, do not use this coding style for Intel FPGA designs.

Note: In hierarchical block-based design flows, a hierarchical boundary cannot contain any
bidirectional ports, unless the lower-level bidirectional port is connected directly
through the hierarchy to a top-level output pin without connecting to any other design
logic. If you use boundary tri-states in a lower-level block, synthesis software must
push the tri-states through the hierarchy to the top level to make use of the tri-state
drivers on output pins of Intel FPGA devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are restricted with block-based
design methodologies.

4.6.2 Clock Multiplexing

Clock multiplexing is sometimes used to operate the same logic function with different
clock sources. This type of logic can introduce glitches that create functional problems.
The delay inherent in the combinational logic can also lead to timing problems. Clock
multiplexers trigger warnings from a wide range of design rule check and timing
analysis tools.

Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the Clock Switchover feature or the
Clock Control Block available in certain Intel FPGA devices. These dedicated hardware
blocks avoid glitches, ensure that you use global low-skew routing lines, and avoid any
possible hold time problems on the device due to logic delay on the clock line. Intel
FPGA devices also support dynamic PLL reconfiguration, which is the safest and most
robust method of changing clock rates during device operation.

If your design has too many clocks to use the clock control block, or if dynamic
reconfiguration is too complex for your design, you can implement a clock multiplexer
in logic cells. However, if you use this implementation, consider simultaneous toggling
inputs and ensure glitch-free transitions.

Figure 31. Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)

Each device datasheet describes how LUT outputs can glitch during a simultaneous
toggle of input signals, independent of the LUT function. Even though the 4:1 MUX
function does not generate detectable glitches during simultaneous data input toggles,
some cell implementations of multiplexing logic exhibit significant glitches, so this

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
134

clock mux structure is not recommended. An additional problem with this
implementation is that the output behaves erratically during a change in the
clk_select signals. This behavior could create timing violations on all registers fed
by the system clock and result in possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems.

Figure 32. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ

You can generalize this structure for any number of clock channels. The design
ensures that no clock activates until all others are inactive for at least a few cycles,
and that activation occurs while the clock is low. The design applies a
synthesis_keep directive to the AND gates on the right side, which ensures there
are no simultaneous toggles on the input of the clk_out OR gate.

Note: Switching from clock A to clock B requires that clock A continue to operate for at least
a few cycles. If clock A stops immediately, the design sticks. The select signals are
implemented as a “one-hot” control in this example, but you can use other encoding if
you prefer. The input side logic is asynchronous and is not critical. This design can
tolerate extreme glitching during the switch process.

Example 48. Verilog HDL Clock Multiplexing Design to Avoid Glitches

This example works with Verilog-2001.

module clock_mux (clk,clk_select,clk_out);

 parameter num_clocks = 4;

 input [num_clocks-1:0] clk;
 input [num_clocks-1:0] clk_select; // one hot
 output clk_out;

 genvar i;

 reg [num_clocks-1:0] ena_r0;
 reg [num_clocks-1:0] ena_r1;
 reg [num_clocks-1:0] ena_r2;
 wire [num_clocks-1:0] qualified_sel;

 // A look-up-table (LUT) can glitch when multiple inputs
 // change simultaneously. Use the keep attribute to
 // insert a hard logic cell buffer and prevent
 // the unrelated clocks from appearing on the same LUT.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
135

 wire [num_clocks-1:0] gated_clks /* synthesis keep */;

 initial begin
 ena_r0 = 0;
 ena_r1 = 0;
 ena_r2 = 0;
 end

 generate
 for (i=0; i<num_clocks; i=i+1)
 begin : lp0
 wire [num_clocks-1:0] tmp_mask;
 assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

 assign qualified_sel[i] = clk_select[i] & (~|(ena_r2 & tmp_mask));

 always @(posedge clk[i]) begin
 ena_r0[i] <= qualified_sel[i];
 ena_r1[i] <= ena_r0[i];
 end

 always @(negedge clk[i]) begin
 ena_r2[i] <= ena_r1[i];
 end

 assign gated_clks[i] = clk[i] & ena_r2[i];
 end
 endgenerate

 // These will not exhibit simultaneous toggle by construction
 assign clk_out = |gated_clks;

endmodule

Related Links

Intel FPGA IP Core Literature

4.6.3 Adder Trees

Structuring adder trees appropriately to match your targeted Intel FPGA device
architecture can provide significant improvements in your design's efficiency and
performance.

A good example of an application using a large adder tree is a finite impulse response
(FIR) correlator. Using a pipelined binary or ternary adder tree appropriately can
greatly improve the quality of your results.

4.6.3.1 Architectures with 6-Input LUTs in Adaptive Logic Modules

In Intel FPGA device families with 6-input LUT in their basic logic structure, ALMs can
simultaneously add three bits. Take advantage of this feature by restructuring your
code for better performance.

Although code targeting 4-input LUT architectures compiles successfully for 6-input
LUT devices, the implementation can be inefficient. For example, to take advantage of
the 6-input adaptive ALUT, you must rewrite large pipelined binary adder trees
designed for 4-input LUT architectures. By restructuring the tree as a ternary tree, the
design becomes much more efficient, significantly improving density utilization.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
136

http://www.altera.com/literature/lit-ip.jsp

Example 49. Verilog HDL Pipelined Ternary Tree

The example shows a pipelined adder, but partitioning your addition operations can
help you achieve better results in non-pipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal
implementation of a 3-input adder for A + B + C followed by a 3-input adder for
sum1 + D + E than the code without the parentheses. If you do not add the
parentheses, the synthesis tool may partition the addition in a way that is not optimal
for the architecture.

module ternary_adder_tree (a, b, c, d, e, clk, out);
 parameter width = 16;
 input [width-1:0] a, b, c, d, e;
 input clk;
 output [width-1:0] out;

 wire [width-1:0] sum1, sum2;
 reg [width-1:0] sumreg1, sumreg2;
 // registers

 always @ (posedge clk)
 begin
 sumreg1 <= sum1;
 sumreg2 <= sum2;
 end

 // 3-bit additions
 assign sum1 = a + b + c;
 assign sum2 = sumreg1 + d + e;
 assign out = sumreg2;
endmodule

4.6.4 State Machine HDL Guidelines

Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to secure the best results when you
use state machines.

When a synthesis tool recognizes a piece of code as a state machine, it can implement
techniques that improve the design area and performance. For example, the tool can
recode the state variables to improve the quality of results, or use the known
properties of state machines to optimize other parts of the design.

To achieve the best results, synthesis tools often use one-hot encoding for FPGA
devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
your synthesis tool documentation for specific ways to control the manner in which
state machines are encoded.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
137

To ensure proper recognition and inference of state machines and to improve the
quality of results, observe the following guidelines for both Verilog HDL and VHDL:

• Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

• Separate the state machine logic from all arithmetic functions and datapaths,
including assigning output values.

• If your design contains an operation that more than one state uses, define the
operation outside the state machine and cause the output logic of the state
machine to use this value.

• Use a simple asynchronous or synchronous reset to ensure a defined power-up
state. If your state machine design contains more elaborate reset logic, such as
both an asynchronous reset and an asynchronous load, the Intel Quartus Prime
software generates regular logic rather than inferring a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some fault in the system. A default or when others clause
does not affect this operation, assuming that your design never deliberately enters
this state. Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Intel Quartus Prime synthesis) have an option to
implement a safe state machine. The Intel Quartus Prime software inserts extra logic
to detect an illegal state and force the state machine’s transition to the reset state.
It is commonly used when the state machine can enter an illegal state. The most
common cause of this situation is a state machine that has control inputs that come
from another clock domain, such as the control logic for a dual-clock FIFO.

This option protects only state machines by forcing them into the reset state. All
other registers in the design are not protected this way. If the design has
asynchronous inputs, Intel recommends using a synchronization register chain instead
of relying on the safe state machine option.

4.6.4.1 Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state machines, observe the
following additional Verilog HDL guidelines.

Refer to your synthesis tool documentation for specific coding recommendations. If
the synthesis tool doesn't recognize and infer the state machine, the tool implements
the state machine as regular logic gates and registers, and the state machine doesn't
appear as a state machine in the Analysis & Synthesis section of the Intel Quartus
Prime Compilation Report. In this case, Intel Quartus Prime synthesis does not
perform any optimizations specific to state machines.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
138

• If you are using the SystemVerilog standard, use enumerated types to describe
state machines.

• Represent the states in a state machine with the parameter data types in
Verilog-1995 and Verilog-2001, and use the parameters to make state
assignments. This parameter implementation makes the state machine easier to
read and reduces the risk of errors during coding.

• Do not directly use integer values for state variables, such as next_state <= 0.
However, using an integer does not prevent inference in the Intel Quartus Prime
software.

• Intel Quartus Prime software doesn't infer a state machine if the state transition
logic uses arithmetic similar to the following example:

case (state)
 0: begin
 if (ena) next_state <= state + 2;
 else next_state <= state + 1;
 end
 1: begin
 ...
endcase

• Intel Quartus Prime software doesn't infer a state machine if the state variable is
an output.

• Intel Quartus Prime software doesn't infer a state machine for signed variables.

4.6.4.1.1 Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation. This state machine has five states.

The asynchronous reset sets the variable state to state_0. The sum of in_1 and
in_2 is an output of the state machine in state_1 and state_2. The difference
(in_1 – in_2) is also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in_1 and in_2.
Using these temporary variables in the various states of the state machine ensures
proper resource sharing between the mutually exclusive states.

Example 50. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
 input clk, reset;
 input [3:0] in_1, in_2;
 output [4:0] out;
 parameter state_0 = 3'b000;
 parameter state_1 = 3'b001;
 parameter state_2 = 3'b010;
 parameter state_3 = 3'b011;
 parameter state_4 = 3'b100;

 reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
 reg [2:0] state, next_state;

 always @ (posedge clk or posedge reset)
 begin
 if (reset)
 state <= state_0;
 else
 state <= next_state;
 end
 always @ (*)

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
139

 begin
 tmp_out_0 = in_1 + in_2;
 tmp_out_1 = in_1 - in_2;
 case (state)
 state_0: begin
 tmp_out_2 = in_1 + 5'b00001;
 next_state = state_1;
 end
 state_1: begin
 if (in_1 < in_2) begin
 next_state = state_2;
 tmp_out_2 = tmp_out_0;
 end
 else begin
 next_state = state_3;
 tmp_out_2 = tmp_out_1;
 end
 end
 state_2: begin
 tmp_out_2 = tmp_out_0 - 5'b00001;
 next_state = state_3;
 end
 state_3: begin
 tmp_out_2 = tmp_out_1 + 5'b00001;
 next_state = state_0;
 end
 state_4:begin
 tmp_out_2 = in_2 + 5'b00001;
 next_state = state_0;
 end
 default:begin
 tmp_out_2 = 5'b00000;
 next_state = state_0;
 end
 endcase
 end
 assign out = tmp_out_2;
endmodule

You can achieve an equivalent implementation of this state machine by using
‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, you assign `state_x instead of state_x to state and next_state,
for example:

next_state <= ‘state_3;

Note: Although Intel supports the ‘define construct, use the parameter data type,
because it preserves the state names throughout synthesis.

4.6.4.1.2 SystemVerilog State Machine Coding Example

Use the following coding style to describe state machines in SystemVerilog.

Example 51. SystemVerilog State Machine Using Enumerated Types

The module enum_fsm is an example of a SystemVerilog state machine
implementation that uses enumerated types.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
140

In Intel Quartus Prime Pro Edition synthesis, the enumerated type that defines the
states for the state machine must be of an unsigned integer type. If you do not
specify the enumerated type as int unsigned, synthesis uses a signed int type by
default. In this case, the Intel Quartus Prime software synthesizes the design, but
does not infer or optimize the logic as a state machine.

module enum_fsm (input clk, reset, input int data[3:0], output int o);
enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;
always_comb begin : next_state_logic
 next_state = S0;
 case(state)
 S0: next_state = S1;
 S1: next_state = S2;
 S2: next_state = S3;
 S3: next_state = S3;
 endcase
end
always_comb begin
 case(state)
 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];
 endcase
end
always_ff@(posedge clk or negedge reset) begin
 if(~reset)
 state <= S0;
 else
 state <= next_state;
end
endmodule

4.6.4.2 VHDL State Machines

To ensure proper recognition and inference of VHDL state machines, represent the
different states with enumerated types, and use the corresponding types to make
state assignments.

This implementation makes the state machine easier to read, and reduces the risk of
errors during coding. If your RTL does not represent states with an enumerated type,
Intel Quartus Prime synthesis (and other synthesis tools) do not recognize the state
machine. Instead, synthesis implements the state machine as regular logic gates and
registers. Consequently, and the state machine does not appear in the state machine
list of the Intel Quartus Prime Compilation Report, Analysis & Synthesis section.
Moreover, Intel Quartus Prime synthesis does not perform any of the optimizations
that are specific to state machines.

4.6.4.2.1 VHDL State Machine Coding Example

The following state machine has five states. The asynchronous reset sets the variable
state to state_0.

The sum of in1 and in2 is an output of the state machine in state_1 and state_2.
The difference (in1 - in2) is also used in state_1 and state_2. The temporary
variables tmp_out_0 and tmp_out_1 store the sum and the difference of in1 and
in2. Using these temporary variables in the various states of the state machine
ensures proper resource sharing between the mutually exclusive states.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
141

Example 52. VHDL State Machine

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY vhdl_fsm IS
 PORT(
 clk: IN STD_LOGIC;
 reset: IN STD_LOGIC;
 in1: IN UNSIGNED(4 downto 0);
 in2: IN UNSIGNED(4 downto 0);
 out_1: OUT UNSIGNED(4 downto 0)
);
END vhdl_fsm;
ARCHITECTURE rtl OF vhdl_fsm IS
 TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
 SIGNAL state: Tstate;
 SIGNAL next_state: Tstate;
BEGIN
 PROCESS(clk, reset)
 BEGIN
 IF reset = '1' THEN
 state <=state_0;
 ELSIF rising_edge(clk) THEN
 state <= next_state;
 END IF;
 END PROCESS;
PROCESS (state, in1, in2)
 VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
 VARIABLE tmp_out_1: UNSIGNED (4 downto 0);
 BEGIN
 tmp_out_0 := in1 + in2;
 tmp_out_1 := in1 - in2;
 CASE state IS
 WHEN state_0 =>
 out_1 <= in1;
 next_state <= state_1;
 WHEN state_1 =>
 IF (in1 < in2) then
 next_state <= state_2;
 out_1 <= tmp_out_0;
 ELSE
 next_state <= state_3;
 out_1 <= tmp_out_1;
 END IF;
 WHEN state_2 =>
 IF (in1 < "0100") then
 out_1 <= tmp_out_0;
 ELSE
 out_1 <= tmp_out_1;
 END IF;
 next_state <= state_3;
 WHEN state_3 =>
 out_1 <= "11111";
 next_state <= state_4;
 WHEN state_4 =>
 out_1 <= in2;
 next_state <= state_0;
 WHEN OTHERS =>
 out_1 <= "00000";
 next_state <= state_0;
 END CASE;
 END PROCESS;
END rtl;

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
142

4.6.5 Multiplexer HDL Guidelines

Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation.

This section addresses common problems and provides design guidelines to achieve
optimal resource utilization for multiplexer designs. The section also describes various
types of multiplexers, and how they are implemented.

For more information, refer to the Advanced Synthesis Cookbook.

4.6.5.1 Intel Quartus Prime Software Option for Multiplexer Restructuring

Intel Quartus Prime Pro Edition synthesis provides the Restructure Multiplexers
logic option that extracts and optimizes buses of multiplexers during synthesis. The
default Auto for this option setting uses the optimization whenever beneficial for your
design. You can turn the option on or off specifically to have more control over use.

Even with this Intel Quartus Prime-specific option turned on, it is beneficial to
understand how your coding style can be interpreted by your synthesis tool, and avoid
the situations that can cause problems in your design.

4.6.5.2 Multiplexer Types

This section addresses how Intel Quartus Prime synthesis creates multiplexers from
various types of HDL code.

State machines, CASE statements, and IF statements are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers, including binary multiplexers, selector multiplexers, and priority
multiplexers.

The first step toward optimizing multiplexer structures for best results is to
understand how Intel Quartus Prime infers and implements multiplexers from HDL
code.

4.6.5.2.1 Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.

Device families featuring 6-input look up tables (LUTs) are perfectly suited for 4:1
multiplexer building blocks (4 data and 2 select inputs). The extended input mode
facilitates implementing 8:1 blocks, and the fractured mode handles residual 2:1
multiplexer pairs.

Example 53. Verilog HDL Binary-Encoded Multiplexers

case (sel)
 2'b00: z = a;
 2'b01: z = b;
 2'b10: z = c;
 2'b11: z = d;
endcase

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
143

4.6.5.2.2 Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Intel Quartus Prime commonly builds selector
multiplexers as a tree of AND and OR gates.

Even though the implementation of a tree-shaped, N-input selector multiplexer is
slightly less efficient than a binary multiplexer, in many cases the select signal is the
output of a decoder. Intel Quartus Prime synthesis combines the selector and decoder
into a binary multiplexer.

Example 54. Verilog HDL One-Hot-Encoded CASE Statement

case (sel)
 4'b0001: z = a;
 4'b0010: z = b;
 4'b0100: z = c;
 4'b1000: z = d;
 default: z = 1'bx;
endcase

4.6.5.2.3 Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority.

Synthesis tools commonly infer these structures from IF, ELSE, WHEN, SELECT,
and ?: statements in VHDL or Verilog HDL.

Example 55. VHDL IF Statement Implying Priority

The multiplexers form a chain, evaluating each condition or select bit sequentially.

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

Figure 33. Priority Multiplexer Implementation of an IF Statement

sel[1:0]

Binary MUX
sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

z

a b c d

Depending on the number of multiplexers in the chain, the timing delay through this
chain can become large, especially for device families with 4-input LUTs.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
144

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

4.6.5.3 Implicit Defaults in IF Statements

The IF statements in Verilog HDL and VHDL can be a convenient way to specify
conditions that do not easily lend themselves to a CASE-type approach.

However, using IF statements can result in complicated multiplexer trees that are not
easy for synthesis tools to optimize. In particular, every IF statement has an implicit
ELSE condition, even when it is not specified. These implicit defaults can cause
additional complexity in a multiplexed design.

There are several ways you can simplify multiplexed logic and remove unneeded
defaults. The optimal method may be to recode the design so the logic takes the
structure of a 4:1 CASE statement. Alternatively, if priority is important, you can
restructure the code to reduce default cases and flatten the multiplexer. Examine
whether the default "ELSE IF" conditions are don’t care cases. You may be able to
create a default ELSE statement to make the behavior explicit. Avoid unnecessary
default conditions in your multiplexer logic to reduce the complexity and logic
utilization required to implement your design.

4.6.5.4 default or OTHERS CASE Assignment

To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment.

This assignment is especially important in one-hot encoding schemes where many
combinations of the select lines are unused. Specifying a case for the unused select
line combinations gives the synthesis tool information about how to synthesize these
cases, and is required by the Verilog HDL and VHDL language specifications.

For some designs you do not need to consider the outcome in the unused cases,
because these cases are unreachable. For these types of designs, you can specify any
value for the default or OTHERS assignment. However, the assignment value you
choose can have a large effect on the logic utilization required to implement the
design.

To obtain best results, explicitly define invalid CASE selections with a separate
default or OTHERS statement, instead of combining the invalid cases with one of the
defined cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

4.6.6 Cyclic Redundancy Check Functions

CRC computations are used heavily by communications protocols and storage devices
to detect any corruption of data. These functions are highly effective; there is a very
low probability that corrupted data can pass a 32-bit CRC check

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
145

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in devices
with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Intel FPGA devices.

4.6.6.1 If Performance is Important, Optimize for Speed

To minimize area and depth of levels of logic, synthesis tools flatten XOR gates.

By default, Intel Quartus Prime Pro Edition synthesis targets area optimization for XOR
gates. Therefore, for more focus on depth reduction, set the synthesis optimization
technique to speed.

Note: Flattening for depth sometimes causes a significant increase in area.

4.6.6.2 Use Separate CRC Blocks Instead of Cascaded Stages

Some designs optimize CRC to use cascaded stages (for example, four stages of 8
bits). In such designs, Intel Quartus Prime synthesis uses intermediate calculations
(such as the calculations after 8, 24, or 32 bits) depending on the data width.

This design is not optimal for FPGA devices. The XOR cancellations that Intel Quartus
Prime synthesis performs in CRC designs mean that the function does not require all
the intermediate calculations to determine the final result. Therefore, forcing the use
of intermediate calculations increases the area required to implement the function, as
well as increasing the logic depth because of the cascading. It is typically better to
create full separate CRC blocks for each data width that you require in the design, and
then multiplex them together to choose the appropriate mode at a given time

4.6.6.3 Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic.

The CRC logic allows significant reductions, but this works best when each CRC
function is optimized separately. Check for duplicate extraction behavior if you have
different CRC functions that are driven by common data signals or that feed the same
destination signals.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
146

If you are having problems with the quality of results and you see that two CRC
functions are sharing logic, ensure that the blocks are synthesized independently
using one of the following methods:

• Define each CRC block as a separate design partition in an hierarchical compilation
design flow.

• Synthesize each CRC block as a separate project in your third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each.

4.6.6.4 Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC functionality, adding
registers and retiming the design can help reduce area, improve performance, and
reduce power utilization.

If your synthesis tool offers a retiming feature (such as the Intel Quartus Prime
software Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the registers for
better results. You can also build the CRC unit half as wide and alternate between
halves of the data in each clock cycle.

4.6.6.5 Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design.

To save power, use clock enables to disable the CRC function for every clock cycle that
the logic is not required. Some designs don’t check the CRC results for a few clock
cycles while other logic is performing. It is valuable to disable the CRC function even
for this short amount of time.

4.6.6.6 Use the Device Synchronous Load (sload) Signal to Initialize

The data in many CRC designs must be initialized to 1’s before operation. If your
target device supports the use of the sload signal, use it to set all the registers in
your design to 1’s before operation.

To enable use of the sload signal, follow the coding guidelines in this chapter. You can
check the register equations in the Chip Planner to ensure that the signal was used as
expected.

If you must force a register implementation using an sload signal, refer toDesigning
with Low-Level Primitives User Guide to see how you can use low-level device
primitives.

Related Links

• Secondary Register Control Signals Such as Clear and Clock Enable on page 129

• Designing with Low-Level Primitives User Guide

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
147

http://www.altera.com/literature/ug/ug_low_level.pdf

4.6.7 Comparator HDL Guidelines

This section provides information about the different types of implementations
available for comparators (<, >, or ==), and provides suggestions on how you can
code your design to encourage a specific implementation. Synthesis tools, including
Intel Quartus Prime Pro Edition synthesis, use device and context-specific
implementation rules, and select the best one for your design.

Synthesis tools implement the == comparator in general logic cells. Additionally,
synthesis tools implement the < comparison either using the carry chain or general
logic cells. In devices with 6-input ALUTs, the carry chain is capable of comparing up
to three bits per cell. The carry chain implementation tends to be faster than the
general logic on standalone benchmark test cases, but can result in lower performance
when it is part of a larger design due to the increased restriction on the Fitter. The
area requirement is similar for most input patterns. The synthesis tools select an
appropriate implementation based on the input pattern.

If you are using Intel Quartus Prime synthesis, you can guide the tool by using specific
coding styles. To select a carry chain implementation explicitly, rephrase your
comparison in terms of addition. As a simple example, the following coding style
allows the synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short or the signals a and b minimize to the
same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in twos
complement logic if a is less than b, because the subtraction a – b results in a
negative number.

If you have any information about the range of the input, you have “don’t care” values
that you can use to optimize the design. Because this information is not available to
the synthesis tool, you can often reduce the device area required to implement the
comparator with specific hand implementation of the logic.

You can also check whether a bus value is within a constant range with a small
amount of logic area by using the following logic structure . This type of logic occurs
frequently in address decoders.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
148

Figure 34. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

4.6.8 Counter HDL Guidelines

The Intel Quartus Prime synthesis engine implements counters in HDL code as an
adder followed by registers, and makes available register control signals such as
enable (ena), synchronous clear (sclr), and synchronous load (sload). For best
area utilization, ensure that the up and down control or controls are expressed in
terms of one addition operator, instead of two separate addition operators.

If you use the following coding style, your synthesis engine may implement two
separate carry chains for addition:

out <= count_up ? out + 1 : out - 1;

For simple designs, the synthesis engine identifies this coding style and optimizes the
logic. However, in complex designs, or designs with preserve pragmas, the Compiler
cannot optimize all logic, so more careful coding becomes necessary.

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

This style makes more efficient use of resources and area, since it uses only one carry
chain adder, and the –1 constant logic is implemented in the LUT before the adder.

4.7 Designing with Low-Level Primitives

Low-level HDL design is the practice of using low-level primitives and assignments to
dictate a particular hardware implementation for a piece of logic. Low-level primitives
are small architectural building blocks that assist you in creating your design.

With the Intel Quartus Prime software, you can use low-level HDL design techniques
to force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.

Note: Using low-level primitives is an optional advanced technique to help with specific
design challenges. For many designs, synthesizing generic HDL source code and Intel
FPGA IP cores give you the best results.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
149

Low-level primitives allow you to use the following types of coding techniques:

• Instantiate the logic cell or LCELL primitive to prevent Intel Quartus Prime Pro
Edition synthesis from performing optimizations across a logic cell

• Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE
primitives

• Instantiate registers with specific control signals using DFF primitives

• Specify the creation of LUT functions by identifying the LUT boundaries

• Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

• Use I/O buffers to specify differential pin names in your HDL code, instead of using
the automatically-generated negative pin name for each pair

For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

Related Links

Designing with Low-Level Primitives User Guide

4.8 Document Revision History

The following revisions history applies to this chapter.

Table 30. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Described new no_ram synthesis attribute.

2017.05.08 17.0.0 • Updated example: Verilog HDL Multiply-Accumulator
• Updated information about use of safe state machine.
• Revised Check Read-During-Write Behavior.
• Revised Controlling RAM Inference and Implementation.
• Revised Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior.
• Revised Single-Clock Synchronous RAM with New Data Read-During-Write

Behavior.
• Updated and moved template for VHDL Single-Clock Simple Dual Port Synchronous

RAM with New Data Read-During-Write Behavior.
• Revised Inferring ROM Functions from HDL Code.
• Removed example: VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly

Spaced Taps.
• Removed example: Verilog HDL D-Type Flipflop (Register) With ena, aclr, and aload

Control Signals
• Removed example: VHDL D-Type Flipflop (Register) With ena, aclr, and aload

Control Signals
• Added example: Verilog D-type Flipflop bus with Secondary Signals
• Removed references to 4-input LUT-based devices.
• Removed references to Integrated Synthesis.
• Created example: Avoid this VHDL Coding Style.

2016.10.31 16.1.0 • Provided corrected Verilog HDL Pipelined Binary Tree and Ternary Tree examples.
• Implemented Intel rebranding.

2016.05.03 16.0.0 • Added information about use of safe state machine.
• Updated example code templates with latest coding styles.

continued...

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
150

http://www.altera.com/literature/ug/ug_low_level.pdf

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Added information and reference about ramstyle attribute for sift register inference.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Optimization Settings to Compiler Settings.

2014.08.18 14.0.a10.0 • Added recommendation to use register pipelining to obtain high performance in
DSP designs.

2014.06.30 14.0.0 Removed obsolete MegaWizard Plug-In Manager support.

November 2013 13.1.0 Removed HardCopy device support.

June 2012 12.0.0 • Revised section on inserting Altera templates.
• Code update for Example 11-51.
• Minor corrections and updates.

November 2011 11.1.0 • Updated document template.
• Minor updates and corrections.

December 2010 10.1.0 • Changed to new document template.
• Updated Unintentional Latch Generation content.
• Code update for Example 11-18.

July 2010 10.0.0 • Added support for mixed-width RAM
• Updated support for no_rw_check for inferring RAM blocks
• Added support for byte-enable

November 2009 9.1.0 • Updated support for Controlling Inference and Implementation in Device RAM
Blocks

• Updated support for Shift Registers

March 2009 9.0.0 • Corrected and updated several examples
• Added support for Arria II GX devices
• Other minor changes to chapter

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 Updates for the Intel Quartus Prime software version 8.0 release, including:
• Added information to “RAM
• Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from HDL Code”

on page 6–13
• Added information to “Avoid Unsupported Reset and Control Conditions” on

page 6–14
• Added information to “Check Read-During-Write Behavior” on page 6–16
• Added two new examples to “ROM Functions—Inferring ALTSYNCRAM and

LPM_ROM Megafunctions from HDL Code” on page 6–28: Example 6–24 and
Example 6–25

• Added new section: “Clock Multiplexing” on page 6–46
• Added hyperlinks to references within the chapter
• Minor editorial updates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

4 Recommended HDL Coding Styles

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
151

https://www.altera.com/search-archives

5 Recommended Design Practices
This chapter provides design recommendations for Intel FPGA devices.

Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of complex system designs, design
practices have an enormous impact on the timing performance, logic utilization, and
system reliability of a device. Well-coded designs behave in a predictable and reliable
manner even when retargeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and ASIC
implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Intel FPGA devices, you should adhere to the following guidelines:

• Understand the impact of synchronous design practices

• Follow recommended design techniques, including hierarchical design partitioning,
and timing closure guidelines

• Take advantage of the architectural features in the targeted device

5.1 Following Synchronous FPGA Design Practices

The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other approaches.

Good synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in a
device, which can lead to race conditions, incomplete timing analysis, and possible
glitches.

In a synchronous design, a clock signal triggers every event. If you ensure that all the
timing requirements of the registers are met, a synchronous design behaves in a
predictable and reliable manner for all process, voltage, and temperature (PVT)
conditions. You can easily migrate synchronous designs to different device families or
speed grades.

5.1.1 Implementing Synchronous Designs

In a synchronous design, the clock signal controls the activities of all inputs and
outputs.

On every active edge of the clock (usually the rising edge), the data inputs of registers
are sampled and transferred to outputs. Following an active clock edge, the outputs of
combinational logic feeding the data inputs of registers change values. This change
triggers a period of instability due to propagation delays through the logic as the

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

signals go through several transitions and finally settle to new values. Changes that
occur on data inputs of registers do not affect the values of their outputs until after
the next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design if you meet the
following timing requirements:

• Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

• After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all of your clock frequencies and other timing requirements, the
Intel Quartus Prime Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin in your design. By meeting
these external pin requirements and following synchronous design techniques, you
ensure that you satisfy the setup and hold times for all registers in your device.

Tip: To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous
relationship with the clock of the register. If signals are asynchronous, you
can register the signals at the inputs of the device to help prevent a violation
of the required setup and hold times.

When you violate the setup or hold time of a register, you might oscillate the
output, or set the output to an intermediate voltage level between the high
and low levels called a metastable state. In this unstable state, small
perturbations such as noise in power rails can cause the register to assume
either the high or low voltage level, resulting in an unpredictable valid state.
Various undesirable effects can occur, including increased propagation delays
and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

5.1.2 Asynchronous Design Hazards

Some designers use asynchronous techniques such as ripple counters or pulse
generators in programmable logic device (PLD) designs, enabling them to take “short
cuts” to save device resources.

Asynchronous design techniques have inherent problems such as relying on
propagation delays in a device, which can vary with temperature and voltage
fluctuations, resulting in incomplete timing constraints and possible glitches and
spikes.

Some asynchronous design structures depend on the relative propagation delays of
signals to function correctly. In these cases, race conditions arise where the order of
signal changes affect the output of the logic. Depending on how the design is placed
and routed in the device, PLD designs can have varying timing delays with each
compilation. Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices become faster due
to process improvements, the delays in an asynchronous design may decrease,
resulting in a design that does not function as expected. Relying on a particular delay
also makes asynchronous designs difficult to migrate to different architectures,
devices, or speed grades.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
153

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms used by your synthesis and place-
and-route tools may not be able to perform the best optimizations, and the reported
results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses
that are very short compared to clock periods. Most glitches are generated by
combinational logic. When the inputs to the combinational logic change, the outputs
exhibit several glitches before they settle to their new values. These glitches can
propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of
registers are normal events that have no negative consequences because the data is
not processed until the next clock edge.

5.2 HDL Design Guidelines

When designing with HDL code, you should understand how a synthesis tool interprets
different HDL design techniques and what results to expect.

Your design style can affect logic utilization and timing performance, as well as the
design’s reliability. This section describes basic design techniques that ensure optimal
synthesis results for designs targeted to Intel FPGA devices while avoiding several
common causes of unreliability and instability. Intel recommends to design your
combinational logic carefully to avoid potential problems. Pay attention to your
clocking schemes so that you can maintain synchronous functionality and avoid timing
problems.

5.2.1 Considerations for the Intel Hyperflex FPGA Architecture

The Intel Hyperflex FGPA architecture and the Hyper-Retimer require a review of the
best design practices to achieve the highest clock rates possible.

While most common techniques of high-speed design apply to designing for the Intel
Hyperflex architecture, you must use some new approaches to achieve the highest
performance. Follow these general RTL design guidelines to enable the Hyper-Retimer
to optimize design performance:

• Design in a way that facilitates register retiming by the Hyper-Retimer.

• Use a latency-insensitive design that supports the addition of pipeline stages at
clock domain boundaries, top-level I/Os, and at the boundaries of functional
blocks.

• Restructure RTL to avoid performance-limiting loops.

For more information about best design practices targeting Intel Stratix 10 devices,
refer to the Intel Stratix 10 High-Performance Design Handbook.

Related Links

RTL Design Guidelines
In Intel Stratix 10 High-Performance Design Handbook

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
154

https://www.altera.com/documentation/jbr1444752564689.html#esc1445879361242

5.2.2 Optimizing Combinational Logic

Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Intel FPGAs, these functions are implemented in the
look-up tables (LUTs) with either logic elements (LEs) or adaptive logic modules
(ALMs).

For cases where combinational logic feeds registers, the register control signals can
implement part of the logic function to save LUT resources. By following the
recommendations in this section, you can improve the reliability of your combinational
design.

5.2.2.1 Avoid Combinational Loops

Combinational loops are among the most common causes of instability and
unreliability in digital designs. Combinational loops generally violate synchronous
design principles by establishing a direct feedback loop that contains no registers.

Avoid combinational loops whenever possible. In a synchronous design, feedback
loops should include registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic.

Figure 35. Combinational Loop Through Asynchronous Control Pin

Logic

D Q

Tip: Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as clear or reset in the Intel Quartus Prime software.

Combinational loops are inherently high-risk design structures for the following
reasons:

• Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

• In many design tools, combinational loops can cause endless computation loops .
Most tools break open combinational loops to process the design. The various tools
used in the design flow may open a given loop differently, and process it in a way
inconsistent with the original design intent.

5.2.2.2 Avoid Unintended Latch Inference

Avoid using latches to ensure that you can completely analyze the timing performance
and reliability of your design. A latch is a small circuit with combinational feedback
that holds a value until a new value is assigned. You can implement latches with the
Intel Quartus Prime Text Editor or Block Editor.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
155

A common mistake in HDL code is unintended latch inference; Intel Quartus Prime
Synthesis issues a warning message if this occurs. Unlike other technologies, a latch in
FPGA architecture is not significantly smaller than a register. However, the architecture
is not optimized for latch implementation and latches generally have slower timing
performance compared to equivalent registered circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
a negative latch). In transparent mode, glitches on the input can pass through to the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

The Timing Analyzer analyzes latches as synchronous elements clocked on the falling
edge of the positive latch signal by default. It allows you to treat latches as having
nontransparent start and end points. Be aware that even an instantaneous transition
through transparent mode can lead to glitch propagation. The Timing Analyzer cannot
perform cycle-borrowing analysis.

Due to various timing complexities, latches have limited support in formal verification
tools. Therefore, you should not rely on formal verification for a design that includes
latches.

Related Links

Avoid Unintentional Latch Generation on page 130

5.2.2.3 Avoid Delay Chains in Clock Paths

Delays in PLD designs can change with each placement and routing cycle. Effects such
as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Avoid using delay chains to prevent these kinds of problems.

You require delay chains when you use two or more consecutive nodes with a single
fan-in and a single fan-out to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

5.2.2.4 Use Synchronous Pulse Generators

Use synchronous techniques to design pulse generators.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
156

Figure 36. Asynchronous Pulse Generators
The figure shows two methods for asynchronous pulse generation. The first method uses a delay chain to
generate a single pulse (pulse generator). The second method generates a series of pulses (multivibrators).

Trigger

Pulse Trigger
Pulse

Clock

Using an AND Gate Using a Register

In the first method, a trigger signal feeds both inputs of a 2-input AND gate, and the
design adds inverters to one of the inputs to create a delay chain. The width of the
pulse depends on the time differences between the path that feeds the gate directly
and the path that goes through the delay chain. This is the same mechanism
responsible for the generation of glitches in combinational logic following a change of
input values. This technique artificially increases the width of the glitch.

In the second method, a register’s output drives its asynchronous reset signal through
a delay chain. The register resets itself asynchronously after a certain delay. The
Compiler can determine the pulse width only after placement and routing, when
routing and propagation delays are known. You cannot reliably create a specific pulse
width when creating HDL code, and it cannot be set by EDA tools. The pulse may not
be wide enough for the application under all PVT conditions. Also, the pulse width
changes if you change to a different device. Additionally, verification is difficult
because static timing analysis cannot verify the pulse width.

Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This method creates additional problems
because of the number of pulses involved. Additionally, when the structures generate
multiple pulses, they also create a new artificial clock in the design that must be
analyzed by design tools.

Figure 37. Recommended Synchronous Pulse-Generation Technique

Trigger Signal

Clock

Pulse

The pulse width is always equal to the clock period. This pulse generator is
predictable, can be verified with timing analysis, and is easily moved to other
architectures, devices, or speed grades.

5.2.3 Optimizing Clocking Schemes

Like combinational logic, clocking schemes have a large effect on the performance and
reliability of a design.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
157

Avoid using internally generated clocks (other than PLLs) wherever possible because
they can cause functional and timing problems in the design. Clocks generated with
combinational logic can introduce glitches that create functional problems, and the
delay inherent in combinational logic can lead to timing problems.

Tip: Specify all clock relationships in the Intel Quartus Prime software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their relationship
to the base clock.

Use global device-wide, low-skew dedicated routing for all internally-generated clocks,
instead of routing clocks on regular routing lines.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Intel Quartus Prime software to compensate for the variable delays
between clock domains. Consider setting a clock setup uncertainty and clock hold
uncertainty value of 10% to 15% of the clock delay.

The following sections provide specific examples and recommendations for avoiding
clocking scheme problems.

5.2.3.1 Register Combinational Logic Outputs

If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, you can expect to see glitches in your design. In a synchronous design,
glitches on data inputs of registers are normal events that have no consequences.
However, a glitch or a spike on the clock input (or an asynchronous input) to a register
can have significant consequences.

Narrow glitches can violate the register’s minimum pulse width requirements. Setup
and hold requirements might also be violated if the data input of the register changes
when a glitch reaches the clock input. Even if the design does not violate timing
requirements, the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

To avoid these problems, you should always register the output of combinational logic
before you use it as a clock signal.

Figure 38. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q
Clock

Generation
Logic

Registering the output of combinational logic ensures that glitches generated by the
combinational logic are blocked at the data input of the register.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
158

5.2.3.2 Avoid Asynchronous Clock Division

Designs often require clocks that you create by dividing a master clock. Most Intel
FPGAs provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, and route the clock on global clock resources. To avoid
glitches, do not decode the outputs of a counter or a state machine to generate clock
signals.

5.2.3.3 Avoid Ripple Counters

To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because the
counters are easy to design and may use fewer gates than their synchronous
counterparts.

Ripple counters use cascaded registers, in which the output pin of one register feeds
the clock pin of the register in the next stage. This cascading can cause problems
because the counter creates a ripple clock at each stage. These ripple clocks must be
handled properly during timing analysis, which can be difficult and may require you to
make complicated timing assignments in your synthesis and placement and routing
tools.

You can often use ripple clock structures to make ripple counters out of the smallest
amount of logic possible. However, in all Intel devices supported by the Intel Quartus
Prime software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

5.2.3.4 Use Multiplexed Clocks

Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source.

For example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
159

Figure 39. Multiplexing Logic and Clock Sources

Clock 1
Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q

Adding multiplexing logic to the clock signal can create the problems addressed in the
previous sections, but requirements for multiplexed clocks vary widely, depending on
the application. Clock multiplexing is acceptable when the clock signal uses global
clock routing resources and if the following criteria are met:

• The clock multiplexing logic does not change after initial configuration

• The design uses multiplexing logic to select a clock for testing purposes

• Registers are always reset when the clock switches

• A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no
race conditions or other logical problems. By default, the Intel Quartus Prime software
optimizes and analyzes all possible paths through the multiplexer and between both
internal clocks that may come from the multiplexer. This may lead to more restrictive
analysis than required if the multiplexer is always selecting one particular clock. If you
do not require the more complete analysis, you can assign the output of the
multiplexer as a base clock in the Intel Quartus Prime software, so that all register-to-
register paths are analyzed using that clock.

Tip: Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Intel FPGA devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

Note: For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook on the Literature page of the Altera website.

5.2.3.5 Use Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry. When a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
160

Figure 40. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Intel FPGA devices to shut
down an entire clock network. Dedicated hardware blocks ensure that you use global
routing with low skew, and avoid any possible hold time problems on the device due to
logic delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using a
synchronous clock enable scheme, the clock network continues toggling. This practice
does not reduce power consumption as much as gating the clock at the source does.
In most cases, use a synchronous scheme.

5.2.3.5.1 Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power reduction and
gated clocks provide the required reduction in your device architecture. If you must
use clocks gated by logic, follow a robust clock-gating methodology and ensure the
gated clock signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Since the clock network contributes to switching power
consumption, gate the clock at the source whenever possible to shut down the entire
clock network instead of further along.

Figure 41. Recommended Clock-Gating Technique for Clock Active on Rising Edge

D Q

Clock

Enable Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
161

To generate a gated clock with the recommended technique, use a register that
triggers on the inactive edge of the clock. With this configuration, only one input of
the gate changes at a time, preventing glitches or spikes on the output. If the clock is
active on the rising edge, use an AND gate. Conversely, for a clock that is active on
the falling edge, use an OR gate to gate the clock and register

Pay attention to the delay through the logic generating the enable signal, because the
enable command must be ready in less than one-half the clock cycle. This might cause
problems if the logic that generates the enable command is particularly complex, or if
the duty cycle of the clock is severely unbalanced. However, careful management of
the duty cycle and logic delay may be an acceptable solution when compared with
problems created by other methods of gating clocks.

In the Timing Analyzer, ensure to apply a clock setting to the output of the AND gate.
Otherwise, the timing analyzer might analyze the circuit using the clock path through
the register as the longest clock path and the path that skips the register as the
shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enable pins may help reduce
glitch and clock skew, and eventually produce a more accurate timing analysis. You
can set the Intel Quartus Prime software to automatically convert gated clocks to clock
enable pins by turning on the Auto Gated Clock Conversion option. The conversion
applies to two types of gated clocking schemes: single-gated clock and cascaded-
gated clock.

Related Links

• Advanced Synthesis Settings on page 230

• Auto Gated Clock Conversion logic option
In Intel Quartus Prime Help

5.2.3.6 Use Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers.

This scheme does not reduce power consumption as much as gating the clock at the
source because the clock network keeps toggling, and performs the same function as
a gated clock by disabling a set of registers. Insert a multiplexer in front of the data
input of every register to either load new data, or copy the output of the register.

Figure 42. Synchronous Clock Enable

D Q

Enable

Data

When designing for Intel Stratix 10 devices, consider that high fan-out clock enable
signals can limit the performance achievable by the Hyper- Retimer. For specific
recommendations, refer to the Intel Stratix 10 High-Performance Design Handbook.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
162

http://quartushelp.altera.com/current/#logicops/logicops/def_synth_gated_clock_conversion.htm

Related Links

Clock Enable Strategies
In Intel Stratix 10 High-Performance Design Handbook

5.2.4 Optimizing Physical Implementation and Timing Closure

This section provides design and timing closure techniques for high speed or complex
core logic designs with challenging timing requirements. These techniques may also
be helpful for low or medium speed designs.

5.2.4.1 Planning Physical Implementation

When planning a design, consider the following elements of physical implementation:

• The number of unique clock domains and their relationships

• The amount of logic in each functional block

• The location and direction of data flow between blocks

• How data routes to the functional blocks between I/O interfaces

Interface-wide control or status signals may have competing or opposing constraints.
For example, when a functional block's control or status signals interface with physical
channels from both sides of the device. In such cases you must provide enough
pipeline register stages to allow these signals to traverse the width of the device. In
addition, you can structure the hierarchy of the design into separate logic modules for
each side of the device. The side modules can generate and use registered control
signals per side. This simplifies floorplanning, particularly in designs with transceivers,
by placing per-side logic near the transceivers.

When adding register stages to pipeline control signals, turn off Auto Shift Register
Replacement in the Assignment Editor (Assignments ➤ Assignment Editor) for
each register as needed. By default, chains of registers can be converted to a RAM-
based implementation based on performance and resource estimates. Since pipelining
helps meet timing requirements over long distance, this assignment ensures that
control signals are not converted.

5.2.4.2 Planning FPGA Resources

Your design requirements impact the use of FPGA resources. Plan functional blocks
with appropriate global, regional, and dual-regional network signals in mind.

In general, after allocating the clocks in a design, use global networks for the highest
fan-out control signals. When a global network signal distributes a high fan-out control
signal, the global signal can drive logic anywhere in the device. Similarly, when using
a regional network signal, the driven logic must be in one quadrant of the device, or
half the device for a dual-regional network signal. Depending on data flow and
physical locations of the data entry and exit between the I/Os and the device,
restricting a functional block to a quadrant or half the device may not be practical for
performance or resource requirements.

When floorplanning a design, consider the balance of different types of device
resources, such as memory, logic, and DSP blocks in the main functional blocks. For
example, if a design is memory intensive with a small amount of logic, it may be
difficult to develop an effective floorplan. Logic that interfaces with the memory would

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
163

https://www.altera.com/documentation/jbr1444752564689.html#mta1457985698471

have to spread across the chip to access the memory. In this case, it is important to
use enough register stages in the data and control paths to allow signals to traverse
the chip to access the physically disparate resources needed.

5.2.4.3 Optimizing for Timing Closure

To achieve timing closure for your design, you can enable compilation settings in the
Intel Quartus Prime software, or you can directly modify your timing constraints.

Compilation Settings for Timing Closure

Note: Changes in project settings can significantly increase compilation time. You can view
the performance gain versus runtime cost by reviewing the Fitter messages after
design processing.

Table 31. Compilation Settings that Impact Timing Closure

Setting Location Effect on Timing Closure

Allow Register Duplication Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

This technique is most useful where registers have
high fan-out, or where the fan-out is in physically
distant areas of the device.
Review the netlist optimizations report and consider
manually duplicating registers automatically added by
physical synthesis. You can also locate the original and
duplicate registers in the Chip Planner. Compare their
locations, and if the fan-out is improved, modify the
code and turn off register duplication to save compile
time.

Prevent Register Retiming Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

Useful if some combinatorial paths between registers
exceed the timing goal while other paths fall short.
If a design is already heavily pipelined, register
retiming is less likely to provide significant
performance gains, since there should not be
significantly unbalanced levels of logic across pipeline
stages.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
164

Guidelines for Optimizing Timing Closure using Timing Constraints

Appropriate timing constraints are essential to achieving timing closure. Use the
following general guidelines in applying timing constraints:

• Apply multicycle constraints in your design wherever single-cycle timing analysis is
not necessary.

• Apply False Path constraints to all asynchronous clock domain crossings or resets
in the design. This technique prevents overconstraining and the Fitter focuses only
on critical paths to reduce compile time. However, overconstraining timing critical
clock domains can sometimes provide better timing results and lower compile
times than physical synthesis.

• Overconstrain rather than using physical synthesis when the slack improvement
from physical synthesis is near zero. Overconstrain the frequency requirement on
timing critical clock domains by using setup uncertainty.

• When evaluating the effect of constraint changes on performance and runtime,
compile the design with at least three different seeds to determine the average
performance and runtime effects. Different constraint combinations produce
various results. Three samples or more establish a performance trend. Modify your
constraints based on performance improvement or decline.

• Leave settings at the default value whenever possible. Increasing performance
constraints can increase the compile time significantly. While those increases may
be necessary to close timing on a design, using the default settings whenever
possible minimizes compile time.

Related Links

Design Evaluation for Timing Closure
In Intel Quartus Prime Pro Edition Handbook Volume 2

5.2.4.4 Optimizing Critical Timing Paths

To close timing in high speed designs, review paths with the largest timing failures.
Correcting a single, large timing failure can result in a very significant timing
improvement.

Review the register placement and routing paths by clicking Tools ➤ Chip Planner.
Large timing failures on high fan-out control signals can be caused by any of the
following conditions:

• Sub-optimal use of global networks

• Signals that traverse the chip on local routing without pipelining

• Failure to correct high fan-out by register duplication

For high-speed and high-bandwidth designs, optimize speed by reducing bus width
and wire usage. To reduce wire usage, move the data as little as possible. For
example, if a block of logic functions on a few bits of a word, store inactive bits in a
FIFO or memory. Memory is cheaper and denser than registers, and reduces wire
usage.

Related Links

Exploring Paths in the Chip Planner
In Intel Quartus Prime Pro Edition Handbook Volume 2

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
165

https://www.altera.com/documentation/jbr1437427643326.html#mwh1410471229890
https://www.altera.com/documentation/jbr1437427643326.html#mwh1410471320677

5.2.5 Optimizing Power Consumption

The total FPGA power consumption is comprised of I/O power, core static power, and
core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption.

You can use various optimization techniques and tools to minimize power consumption
when applied during FPGA design implementation. The Intel Quartus Prime software
offers power-driven compilation features to fully optimize device power consumption.
Power-driven compilation focuses on reducing your design’s total power consumption
using power-driven synthesis and power-driven placement and routing.

Related Links

Power Optimization
In Intel Quartus Prime Pro Edition Handbook Volume 2

5.2.6 Managing Design Metastability

In FPGA designs, synchronization of asynchronous signals can cause metastability. You
can use the Intel Quartus Prime software to analyze the mean time between failures
(MTBF) due to metastability. A high metastability MTBF indicates a more robust
design.

Related Links

• Managing Metastability with the Intel Quartus Prime Software on page 986

• Metastability Analysis and Optimization Techniques
In Intel Quartus Prime Pro Edition Handbook Volume 2

5.3 Use Clock and Register-Control Architectural Features

In addition to following general design guidelines, you must code your design with the
device architecture in mind. FPGAs provide device-wide clocks and register control
signals that can improve performance.

5.3.1 Use Global Reset Resources

ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

The following are three types of resets used in synchronous circuits:

• Synchronous Reset

• Asynchronous Reset

• Synchronized Asynchronous Reset—preferred when designing an FPGA circuit

5.3.1.1 Use Synchronous Resets

The synchronous reset ensures that the circuit is fully synchronous. You can easily
time the circuit with the Intel Quartus Prime Timing Analyzer.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
166

https://www.altera.com/documentation/jbr1437427643326.html#mwh1410471266057
https://www.altera.com/documentation/jbr1437427643326.html#mwh1410471229485

Because clocks that are synchronous to each other launch and latch the reset signal,
the data arrival and data required times are easily determined for proper slack
analysis. The synchronous reset is easier to use with cycle-based simulators.

There are two methods by which a reset signal can reach a register; either by being
gated in with the data input, or by using an LAB-wide control signal (synclr). If you
use the first method, you risk adding an additional gate delay to the circuit to
accommodate the reset signal, which causes increased data arrival times and
negatively impacts setup slack. The second method relies on dedicated routing in the
LAB to each register, but this is slower than an asynchronous reset to the same
register.

Figure 43. Synchronous Reset

DFF
AND2

inst1

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
167

Figure 44. LAB-Wide Control Signals

Dedicated Row LAB Clocks

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

There are two unique
clock signals per LAB

6

6

6

labclk0

labclkena0

labclk1 labclk2 syncload labclr1

labclkena1 labclkena2 labclr0 synclr

Consider two types of synchronous resets when you examine the timing analysis of
synchronous resets—externally synchronized resets and internally synchronized
resets. Externally synchronized resets are synchronized to the clock domain outside
the FPGA, and are not very common. A power-on asynchronous reset is dual-rank
synchronized externally to the system clock and then brought into the FPGA. Inside
the FPGA, gate this reset with the data input to the registers to implement a
synchronous reset.

Figure 45. Externally Synchronized Reset

por_n

clock
reset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock

VCC
INPUTdata_b

AND2

lc 1

AND2

lc 2

OUTPUT out_a

out_bOUTPUT

FPGA

The following example shows the Verilog HDL equivalent of the schematic. When you
use synchronous resets, the reset signal is not put in the sensitivity list.

The following example shows the necessary modifications that you should make to the
internally synchronized reset.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
168

Example 56. Verilog HDL Code for Externally Synchronized Reset

module sync_reset_ext (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
assign out_a = reg1;
assign out_b = reg2;
always @ (posedge clock)
begin
 if (!reset_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1’b0;
 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_reset_ext

The following example shows the constraints for the externally synchronous reset.
Because the external reset is synchronous, you only need to constrain the reset_n
signal as a normal input signal with set_input_delay constraint for -max and -
min.

Example 57. SDC Constraints for Externally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}
Input constraints on low-active reset
and data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]

More often, resets coming into the device are asynchronous, and must be
synchronized internally before being sent to the registers.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
169

Figure 46. Internally Synchronized Reset

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

AND2

lc 1

AND2

lc 2

OUTPUT

OUTPUT

The following example shows the Verilog HDL equivalent of the schematic. Only the
clock edge is in the sensitivity list for a synchronous reset.

Example 58. Verilog HDL Code for Internally Synchronized Reset

module sync_reset (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
reg reg3, reg4

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock)
begin
 if (!rst_n)
 begin
 reg1 <= 1’bo;
 reg2 <= 1’b0;
 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end

always @ (posedge clock)
begin
 reg3 <= reset_n;
 reg4 <= reg3;
end
endmodule // sync_reset

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
170

The SDC constraints are similar to the external synchronous reset, except that the
input reset cannot be constrained because it is asynchronous. Cut the input path with
a set_false_path statement to avoid these being considered as unconstrained
paths.

Example 59. SDC Constraints for Internally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}
Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

An issue with synchronous resets is their behavior with respect to short pulses (less
than a period) on the asynchronous input to the synchronizer flipflops. This can be a
disadvantage because the asynchronous reset requires a pulse width of at least one
period wide to guarantee that it is captured by the first flipflop. However, this can also
be viewed as an advantage in that this circuit increases noise immunity. Spurious
pulses on the asynchronous input have a lower chance of being captured by the first
flipflop, so the pulses do not trigger a synchronous reset. In some cases, you might
want to increase the noise immunity further and reject any asynchronous input reset
that is less than n periods wide to debounce an asynchronous input reset.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
171

Figure 47. Internally Synchronized Reset with Pulse Extender

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

AND2

lc 1

AND2

lc 2

OUTPUT

OUTPUT

BNAND2

Synchronizer Flipflops n Pulse Extender Flipflops

lc 3

Junction dots indicate the number of stages. You can have more flipflops to get a
wider pulse that spans more clock cycles.

Many designs have more than one clock signal. In these cases, use a separate reset
synchronization circuit for each clock domain in the design. When you create
synchronizers for PLL output clocks, these clock domains are not reset until you lock
the PLL and the PLL output clocks are stable. If you use the reset to the PLL, this reset
does not have to be synchronous with the input clock of the PLL. You can use an
asynchronous reset for this. Using a reset to the PLL further delays the assertion of a
synchronous reset to the PLL output clock domains when using internally synchronized
resets.

5.3.1.2 Using Asynchronous Resets

Asynchronous resets are the most common form of reset in circuit designs, as well as
the easiest to implement. Typically, you can insert the asynchronous reset into the
device, turn on the global buffer, and connect to the asynchronous reset pin of every
register in the device.

This method is only advantageous under certain circumstances—you do not need to
always reset the register. Unlike the synchronous reset, the asynchronous reset is not
inserted in the datapath, and does not negatively impact the data arrival times
between registers. Reset takes effect immediately, and as soon as the registers
receive the reset pulse, the registers are reset. The asynchronous reset is not
dependent on the clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or
removal (µtH) time check (the Timing Analyzer recovery and removal analysis checks
both times), the edge is said to have fallen into the metastability zone. Additional time
is required to determine the correct state, and the delay can cause the setup time to
fail to register downstream, leading to system failure. To avoid this, add a few follower
registers after the register with the asynchronous reset and use the output of these
registers in the design. Use the follower registers to synchronize the data to the clock
to remove the metastability issues. You should place these registers close to each
other in the device to keep the routing delays to a minimum, which decreases data
arrival times and increases MTBF. Ensure that these follower registers themselves are
not reset, but are initialized over a period of several clock cycles by “flushing out” their
current or initial state.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
172

Figure 48. Asynchronous Reset with Follower Registers

DFF DFF DFF

INPUT
VCC

INPUT
VCC

INPUT
VCC

out_aOUTPUT

The following example shows the equivalent Verilog HDL code. The active edge of the
reset is now in the sensitivity list for the procedural block, which infers a clock enable
on the follower registers with the inverse of the reset signal tied to the clock enable.
The follower registers should be in a separate procedural block as shown using non-
blocking assignments.

Example 60. Verilog HDL Code of Asynchronous Reset with Follower Registers

module async_reset (
 input clock,
 input reset_n,
 input data_a,
 output out_a,
);
reg reg1, reg2, reg3;
assign out_a = reg3;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 reg1 <= 1’b0;
 else
 reg1 <= data_a;
end
always @ (posedge clock)
begin
 reg2 <= reg1;
 reg3 <= reg2;
end
endmodule // async_reset

You can easily constrain an asynchronous reset. By definition, asynchronous resets
have a non-deterministic relationship to the clock domains of the registers they are
resetting. Therefore, static timing analysis of these resets is not possible and you can
use the set_false_path command to exclude the path from timing analysis.
Because the relationship of the reset to the clock at the register is not known, you
cannot run recovery and removal analysis in the Timing Analyzer for this path.
Attempting to do so even without the false path statement results in no paths
reported for recovery and removal.

Example 61. SDC Constraints for Asynchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
173

Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}]\
 [get_ports {data_a}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced
and filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.

5.3.1.3 Use Synchronized Asynchronous Reset

To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets.

These resets are asynchronously asserted and synchronously deasserted. This takes
effect almost instantaneously, and ensures that no datapath for speed is involved.
Also, the circuit is synchronous for timing analysis and is resistant to noise.

The following example shows a method for implementing the synchronized
asynchronous reset. You should use synchronizer registers in a similar manner as
synchronous resets. However, the asynchronous reset input is gated directly to the
CLRN pin of the synchronizer registers and immediately asserts the resulting reset.
When the reset is deasserted, logic “1” is clocked through the synchronizers to
synchronously deassert the resulting reset.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
174

Figure 49. Schematic of Synchronized Asynchronous Reset

DFF

reg3

VCC
DFF

reg4
DFF

reg1

DFF

reg2

data_a

clock

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

reset_n

data_b

out_aOUTPUT

out_bOUTPUT

The following example shows the equivalent Verilog HDL code. Use the active edge of
the reset in the sensitivity list for the blocks.

Example 62. Verilog HDL Code for Synchronized Asynchronous Reset

module sync_async_reset (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2;
reg reg3, reg4;
assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 begin
 reg3 <= 1’b0;
 reg4 <= 1’b0;
 end
 else
 begin
 reg3 <= 1’b1;
 reg4 <= reg3;
 end
end
always @ (posedge clock, negedge rst_n)
begin
 if (!rst_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1;b0;

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
175

 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_async_reset

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (reset_n) must be excluded with a set_false_path
command:
set_false_path -from [get_ports {reset_n}] -to [all_registers]

The set_false_path command used with the specified constraint excludes
unnecessary input timing reports that would otherwise result from specifying an input
delay on the reset pin.

The instantaneous assertion of synchronized asynchronous resets is susceptible to
noise and runt pulses. If possible, you should debounce the asynchronous reset and
filter the reset before it enters the device. The circuit ensures that the synchronized
asynchronous reset is at least one full clock period in length. To extend this time to n
clock periods, you must increase the number of synchronizer registers to n + 1. You
must connect the asynchronous input reset (reset_n) to the CLRN pin of all the
synchronizer registers to maintain the asynchronous assertion of the synchronized
asynchronous reset.

5.3.2 Use Global Clock Network Resources

Intel FPGAs provide device-wide global clock routing resources and dedicated inputs.
Use the FPGA’s low-skew, high fan-out dedicated routing where available.

By assigning a clock input to one of these dedicated clock pins or with a Intel Quartus
Prime assignment to assign global routing, you can take advantage of the dedicated
routing available for clock signals.

In an ASIC design, you should balance the clock delay distributed across the device.
Because Intel FPGAs provide device-wide global clock routing resources and dedicated
inputs, there is no need to manually balance delays on the clock network.

You should limit the number of clocks in your design to the number of dedicated global
clock resources available in your FPGA. Clocks feeding multiple locations that do not
use global routing may exhibit clock skew across the device leading to timing
problems. In addition, when you use combinational logic to generate an internal clock,
it adds delays on the clock path. In some cases, delay on a clock line can result in a
clock skew greater than the data path length between two registers. If the clock skew
is greater than the data delay, you violate the timing parameters of the register (such
as hold time requirements) and the design does not function correctly.

FPGAs offer a number of low-skew global routing resources to distribute high fan-out
signals to help with the implementation of large designs with many clock domains.
Many large FPGA devices provide dedicated global clock networks, regional clock
networks, and dedicated fast regional clock networks. These clocks are organized into
a hierarchical clock structure that allows many clocks in each device region with low

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
176

skew and delay. There are typically several dedicated clock pins to drive either global
or regional clock networks, and both PLL outputs and internal clocks can drive various
clock networks.

Intel Stratix 10 devices have a newer architecture. You can configure Intel Stratix 10
clocking resources to create efficiently balanced clock trees of various sizes, ranging
from a single clock sector to the entire device. By default, the Intel Quartus Prime
Software automatically determines the size and location of the clock tree.
Alternatively, you can directly constrain the clock tree size and location either with a
Clock Region assignment or by Logic Lock Regions.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Intel Quartus Prime software automatically
uses global routing for high fan-out control signals, PLL outputs, and signals feeding
the global clock pins on the device. You can make explicit Global Signal logic option
settings by turning on the Global Signal option setting. Use this option when it is
necessary to force the software to use the global routing for particular signals.

Note: A Global Signal assignment only controls whether a signal should be promoted using
the specified dedicated resources or not, but does not control which or how many
resources get used.

To take full advantage of these routing resources, the sources of clock signals in a
design (input clock pins or internally-generated clocks) need to drive only the clock
input ports of registers. In older Intel device families, if a clock signal feeds the data
ports of a register, the signal may not be able to use dedicated routing, which can lead
to decreased performance and clock skew problems. In general, allowing clock signals
to drive the data ports of registers is not considered synchronous design and can
complicate timing closure.

5.3.3 Use Clock Region Assignments to Optimize Clock Constraints

The Intel Quartus Prime software determines how clock regions are assigned. You can
override these assignments with Clock Region assignments to specify that a signal
routed using global routing paths must use the specified clock region.

Use Clock Region assignments when you want to control the placement of the clock
region for floorplanning reasons. For example, use a Clock Region assignment to
ensure that a certain area of the device has access to a global signal, throughout your
design iterations. A Clock Region assignment can also be used in cases of congestion
involving global signal resources. By specifying a smaller clock region size, the
assignment prevents a signal using spine clock resources in the excluded sectors that
may be encountering clock-related congestion.

You can specify Clock Region assignments in the assignment editor.

Intel Arria 10 and Older Device Families

In device families with dedicated clock network resources and predefined clock
regions, this assignment takes as its value the names of those Global, Regional,
Periphery or Spine Clock regions. These region names are visible in Chip Planner by
enabling the appropriate Clock Region layer in the Layers Settings dialog box.
Examples of valid values include Regional Clock Region 1 or Periphery Clock
Region 1.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
177

When constraining a global signal to a smaller than normal region, for example, to
avoid clock congestion, you may specify a clock region of a different type than the
global resources being used. For example, a signal with a Global Signal assignment of
Global Clock, but a Clock Region assignment of Regional Clock Region 0,
constrains the clock to use global network routing resources, but only to the region
covered by Regional Clock Region 0. To provide a finer level of control, you can
also list multiple smaller clock regions, separated by commas. For example:
Periphery Clock Region 0, Periphery Clock Region 1 constrains a signal
to only the area reachable by those two periphery clock networks.

Intel Stratix 10 Devices

In Intel Stratix 10 devices, clock networks are constructed using programmable clock
routing. As with other Intel device families, you can use Clock Region assignments for
floorplanning, controlling the size and location of each clock tree.

Although the Intel Quartus Prime Pro Edition software generates balanced clock trees,
there are sources of timing variation, such as process variation and jitter, which
prevents clock trees from being perfectly skew balanced. Longer paths, with higher
insertion delay, have more timing variation. However the Timing Analyzer can account
for and eliminate some sources of variation in timing along common clock paths. In
practice, this means that the size of the clock region has a significant impact on the
worst-case skew of the clock tree; a larger clock tree experiences higher insertion
delay and worst-case clock skew when compared to a smaller clock region. The
distance between the clock region and the clock source also increases insertion delay,
but the impact of distance on worst-case clock skew is much smaller than the impact
of the size of the clock region.

One case to consider is when a design contains high-speed clock domains that are
expected to grow during the design process. Specifying a clock region constraint to
create a larger clock region than the compiler generates automatically helps ensure
that timing closure is robust with higher clock insertion delays and clock skews.

An additional design consideration is the minimum pulse width constraint on clock
signals. For a clock signal to propagate correctly on the Intel Stratix 10 clock network,
a minimum delay must be met between the rising edge and falling edge of the clock
pulse. If the Timing Analyzer cannot guarantee that this constraint is met, the clock
signal may not propagate as expected under all operating conditions. This can happen
when the delay variation on a clock path becomes too great. This situation does not
normally occur, but may arise if clock signals are routed through core logic elements
or core routing resources.

In designs that target Intel Stratix 10 devices, clock regions can be constrained to a
rectangle whose dimensions are defined by the sector grid, as seen in the Clock Sector
Region layer of the Chip Planner.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
178

This assignment specifies the bottom left and top right coordinates of the rectangle in
the format "SX# SY# SX# SY#". For example, "SX0 SY0 SX1 SY1" constrains the
clock to a 2x2 region, from the bottom left of sector (0,0) to the top right of sector
(1,1). For a constraint spanning only one sector, it is sufficient to specify the location
of that sector, for example "SX1 SY1". The bounding rectangle can also be specified
by the bottom left and top right corners in chip coordinates, for example, "X37 Y181
X273 Y324". However, such a constraint should be sector aligned (using sector
coordinates guarantees this) or the Fitter automatically snaps to the smallest sector
aligned rectangle that still encompasses the original assignment. The "SX# SY# SX#
SY#"|"X# Y# X# Y#" strings are case-insensitive.

5.3.4 Avoid Asynchronous Register Control Signals

Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid using
both asynchronous clear and preset if the architecture provides only one of these
control signals.

Some Intel devices directly support an asynchronous clear function, but not a preset
or load function. When the target device does not directly support the signals, the
synthesis or placement and routing software must use combinational logic to
implement the same functionality. In addition, if you use signals in a priority other
than the inherent priority in the device architecture, combinational logic may be
required to implement the necessary control signals. Combinational logic is less
efficient and can cause glitches and other problems; it is best to avoid these
implementations.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
179

5.4 Implementing Embedded RAM

Intel’s dedicated memory architecture offers many advanced features that you can
enable with Intel-provided IP cores. Use synchronous memory blocks for your design,
so that the blocks can be mapped directly into the device dedicated memory blocks.

You can use single-port, dual-port, or three-port RAM with a single- or dual-clocking
method. You should not infer the asynchronous memory logic as a memory block or
place the asynchronous memory logic in the dedicated memory block, but implement
the asynchronous memory logic in regular logic cells.

Intel memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.

You should check how you specify the memory in your HDL code when you use read-
during-write behavior. The HDL code that describes the read returns either the old
data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port RAM
in Arria GX devices and the Cyclone and Stratix series of devices to avoid this extra
logic implementation.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle.

Related Links

Inferring RAM functions from HDL Code on page 105

5.5 Document Revision History

Table 32. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Updated topic: Optimizing Timing Closure.
• Updated topic Use Global Clock Network Resources and

added topic Use Clock Region Assignments to Optimize
Clock Constraints for Intel Stratix 10support.

2017.05.08 17.0.0 • Removed information about Integrated Synthesis.
• Removed information about quartus_drc.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.03 16.0.0 • Replaced Internally Synchronized Reset code sample
with corrected version.

• Removed information about deprecated physical
synthesis options.

• Removed information about unsupported Design
Assistant.

continued...

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
180

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis
Settings, and Physical Optimization Settings to Compiler
Settings.

June 2014 14.0.0 Removed references to obsolete MegaWizard Plug-In
Manager.

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Removed PrimeTime support.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Added information to Reset Resources .

December 2010 10.1.0 • Title changed from Design Recommendations for Intel
Devices and the Intel Quartus Prime Design Assistant.

• Updated to new template.
• Added references to Intel Quartus Prime Help for

“Metastability” on page 9–13 and “Incremental
Compilation” on page 9–13.

• Removed duplicated content and added references to
Intel Quartus Prime Help for “Custom Rules” on page 9–
15.

July 2010 10.0.0 • Removed duplicated content and added references to
Intel Quartus Prime Help for Design Assistant settings,
Design Assistant rules, Enabling and Disabling Design
Assistant Rules, and Viewing Design Assistant reports.

• Removed information from “Combinational Logic
Structures” on page 5–4

• Changed heading from “Design Techniques to Save
Power” to “Power Optimization” on page 5–12

• Added new “Metastability” section
• Added new “Incremental Compilation” section
• Added information to “Reset Resources” on page 5–23
• Removed “Referenced Documents” section

November 2009 9.1.0 • Removed documentation of obsolete rules.

March 2009 9.0.0 • No change to content.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Added new section “Custom Rules Coding Examples” on

page 5–18
• Added paragraph to “Recommended Clock-Gating

Methods” on page 5–11
• Added new section: “Design Techniques to Save Power”

on page 5–12

May 2008 8.0.0 • Updated Figure 5–9 on page 5–13; added custom rules
file to the flow

• Added notes to Figure 5–9 on page 5–13
• Added new section: “Custom Rules Report” on page 5–

34
• Added new section: “Custom Rules” on page 5–34
• Added new section: “Targeting Embedded RAM

Architectural Features” on page 5–38
• Minor editorial updates throughout the chapter
• Added hyperlinks to referenced documents throughout

the chapter

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
181

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

5 Recommended Design Practices

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
182

https://www.altera.com/search-archives

6 Design Compilation
The Intel Quartus Prime Compiler synthesizes, places, and routes your design before
ultimately generating a device programming file. The Compiler supports a variety of
high-level, HDL, and schematic design entry. The modules of the Compiler include IP
Generation, Analysis & Synthesis, Fitter, Timing Analyzer, and Assembler.

Figure 50. Intel Arria 10 Design in Compilation Dashboard

Full Compilation
Modules

Enables Optional
Module

Opens Settings

Runs Module(s)

Reports
and Analysis

The Intel Quartus Prime Pro Edition Compiler supports these advanced features:

• Latest compilation support for Intel Arria 10, Intel Cyclone 10 GX, and Intel Stratix
10 devices.

• Incremental Fitter optimization—analyze the design and optimize after Fitter each
stage to maximize performance and shorten total compilation time.

• Hyper-Aware Design Flow—use Hyper-Retiming and Fast Forward compilation for
the highest performance in Intel Stratix 10 devices.

• Partial Reconfiguration—supports dynamic reconfiguration of a portion of the
FPGA, while the remaining FPGA continues to function.

• Block-Based Design Flows—enables preservation of design blocks within a project,
and reuse of those design blocks in other projects.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

6.1 Compilation Overview

The Compiler is modular, allowing you to run only the process that you need. Each
Compiler module performs a specific function in the full compilation process. When
you run any module, the Compiler runs any prerequisite modules automatically. The
Compiler generates detailed reports and preserves a "snapshot" of the compilation
results of each stage.

Table 33. Compilation Modules

Compilation Process Description

IP Generation Identifies the status and version IP components in the project.

Analysis & Synthesis Synthesizes, optimizes, minimizes, and maps design logic to device resources.
Analysis & Elaboration is a stage of Analysis & Synthesis. This stage checks for design file
and project errors.

Fitter (Place & Route) Assigns the placement and routing of the design to specific device resources, while
honoring timing and placement constraints. The Fitter includes the following stages:
• Plan—places all periphery elements (such as I/Os and PLLs) and determines a legal

clock plan, without core placement or routing.
• Early Place—places all core elements in an approximate location to facilitate design

planning. Finalizes clock planning for Intel Stratix 10 designs.
• Place—places all core elements in a legal location.
• Route—creates all routing between the elements in the design.
• Retime—moves (retimes) existing registers into Hyper-Registers for fine-grained

performance improvement.(2)

• Finalize—for Intel Arria 10 and Intel Cyclone 10 devices, converts unnecessary tiles to
High-Speed or Low-Power. For Intel Stratix 10 devices, performs post-Route fix-up.

Fast Forward Timing Closure
Recommendations

Generates detailed reports that estimate performance gains achievable by making specific
RTL modifications.

Timing Analyzer Analyzes and validates the timing performance of all design logic.

Power Analysis Optional module that estimates device power consumption. Specify the electrical standard
on each I/O cell and the board trace model on each I/O standard in your design.

Assembler Converts the Fitter's placement and routing assignments into a programming image for
the FPGA device.

EDA Netlist Writer Generates output files for use in other EDA tools.

6.1.1 Compilation Flows

The Intel Quartus Prime Pro Edition Compiler supports a variety of flows to help you
maximize performance and minimize compilation processing time. The modular
Compiler is flexible and efficient, allowing you to run all modules in sequence with a
single command, or to run and optimize each stage of compilation separately.

As you develop and optimize your design, run only the Compiler stages that you need,
rather than waiting for full compilation. Run full compilation only when your design is
complete and you are ready to run all Compiler modules and generate a device
programming image.

(2) Retiming and Fast Forward compilation available only for Intel Stratix 10 devices.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
184

Table 34. Compilation Flows

Compiler Flow Function

Early Place Flow Places all core elements in an approximate location to facilitate design planning. Run Early
Place to review initial high-level placement of design elements in the Chip Planner. This
information is useful to guide your floorplanning decisions.

Implement Flow Runs the Plan, Early Place, Place, Route, and Retime stages. Run this flow when you are
ready to implement placement, routing, and retiming.(3)

Finalize Flow Runs the Plan, Early Place, Place, Route, and Retime Compilation stages. Run this flow when
you are ready to verify final timing closure results and generate a device programming file to
implement the design in the target device.

Incremental Optimization
Flow

Incremental optimization allows you to stop processing after each stage, analyze the results,
and adjust settings or RTL before proceeding to the next compilation stage. This iterative
flow optimizes at each stage, without waiting for full compilation results.

Hyper-Aware Design Flow Combines automated register retiming (Hyper-Retiming), with implementation of targeted
timing closure recommendations (Fast Forward Compilation), to maximize use of Hyper-
Registers and drive the highest performance in Intel Stratix 10 devices.

Full Compilation Flow Launches all Compiler modules in sequence to synthesize, fit, analyze final timing, and
generate a device programming file.

Partial Reconfiguration Reconfigures a portion of the FPGA dynamically, while the remaining FPGA design continues
to function.

Block-Based Design Flows Supports preservation and reuse of design blocks in one or more projects. You can reuse
synthesized, placed, or routed design blocks within the same project, or export the block to
other projects. Reusable design blocks can include device core or periphery resources.

Related Links

• Incremental Optimization Flow on page 194

• Creating a Partial Reconfiguration Design

• Block-Based Design Flows

• Intel Stratix 10 High Performance Design Handbook

6.1.2 Design Synthesis

Design synthesis is the process that translates design source files into an atom netlist
for mapping to device resources. The Intel Quartus Prime Compiler synthesizes
standards-compliant Verilog HDL (.v), VHDL (.vhd), and SystemVerilog (.sv). The
Compiler also synthesizes Block Design File (.bdf) schematic files, and the Verilog
Quartus Mapping (.vqm) files generated by other EDA tools.

Synthesis examines the logical completeness and consistency of the design, and
checks for boundary connectivity and syntax errors. Synthesis also minimizes and
optimizes design logic. For example, synthesis infers D flip flops, latches, and state
machines from "behavioral" languages, such as Verilog HDL, VHDL, and
SystemVerilog. Synthesis may replace operators, such as + or –, with modules from
the Intel Quartus Prime IP library, when advantageous. During synthesis, the Compiler
may change or remove user logic and design nodes. Intel Quartus Prime synthesis
minimizes gate count, removes redundant logic, and ensures efficient use of device
resources.

(3) Retiming and Hyper-Aware design flow only for Intel Stratix 10 devices.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
185

https://www.altera.com/documentation/jbr1437426657605.html#jka1466533251124
https://www.altera.com/documentation/jbr1437426657605.ditamap.html#xdj1491668852667
https://www.altera.com/documentation/jbr1444752564689.html#jbr1444836431097

Figure 51. Design Synthesis

VHDL
(.vhd)

Schematic
(.bdf)

Verilog HDL
(.v or .sv)

Third Party
(.vqm)

Logic Cells DFFsI/O RAM DSP Atom Connections

Synthesis

At the end of synthesis, the Compiler generates an atom netlist. Atom refers to the
most basic hardware resource in the FPGA device. Atoms include logic cells organized
into look-up tables, D flip flops, I/O pins, block memory resources, DSP blocks, and
the connections between the atoms. The atom netlist is a database of the atom
elements that design synthesis requires to implement the design in silicon.

The Analysis & Synthesis module of the Compiler synthesizes design files and creates
one or more project databases for each design partition. You can specify various
settings that affect synthesis processing.

The Compiler preserves the results of Analysis & Synthesis in the synthesis snapshot.

6.1.3 Design Place and Route

The Compiler's Fitter module (quartus_fit) performs design placement and routing.
During place and route, the Fitter determines the best placement and routing of logic
in the target FPGA device, while respecting any Fitter settings or constraints that you
specify.

By default, the Fitter selects appropriate resources, interconnection paths, and pin
locations. If you assign logic to specific device resources, the Fitter attempts to match
those requirements, and then fits and optimizes any remaining unconstrained design
logic. If the Fitter cannot fit the design in the current target device, the Fitter
terminates compilation and issues an error message.

The Intel Quartus Prime Pro Edition Fitter introduces a hybrid placement technique
that combines analytical and annealing placement techniques. Analytical placement
determines an initial mathematical starting placement. The annealing technique then
fine-tunes logic block placement in high resource utilization scenarios.

The Intel Quartus Prime Pro Edition Compiler allows control and optimization of each
individual Fitter stage, including the Plan, Early Place, Place, and Route stages. After
running a Fitter stage, view detailed report data and analyze the timing of that stage.
The Compiler preserves the results of Fitter stages in the planned, early placed,
placed, routed, retimed, and final snapshots.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
186

Related Links

• Running the Fitter on page 192

• Viewing Fitter Reports on page 204

6.1.4 Compilation Hierarchy

The Intel Quartus Prime Pro Edition Compiler generates a hierarchical project structure
that isolates results of each compilation stage, for each design entity. For example,
the synthesized directory contains a snapshot of the Analysis & Synthesis stage. If
you use design partitions, such as in block-based design, the Compiler also isolates
the results for each design partition. The Compiler fully preserves routing and
placement within a partition. Changes to other portions of the design hierarchy do not
impact the partition. This hierarchical structure allows you to optimize specific design
elements without impacting placement and routing in other partitions. The hierarchical
project structure also supports distributed work groups and compilation processing
across multiple machines.

Figure 52. Hierarchical Project Structure (Intel Stratix 10 Design)

<My_Project>

_flat - flat design compilation database

<version> - software version

final

- synthesis stage compilation snapshot

planned

placed

synthesized

routed

qdb

_compiler

<revision_name>

- top-level project directory

- Intel Quartus project database

- compilation database

- compilation database for revision

- Plan stage compilation snapshot

- Place stage compilation snapshot

- Route stage compilation snapshot

- Final stage compilation snapshot

output_files - reports and other Compiler-generated files

- Retime stage compilation snapshotretimed

early placed - Early Place stage compilation snapshot

root_partition - Root partition compilation database

- (same subdirectories as _flat partition)

<user_partition> - User partition compilation database

- (same subdirectories as _flat partition)

Related Links

Block-Based Design Flows
for information on team-based design and design block reuse

6.1.5 Reducing Compilation Time

The Intel Quartus Prime Pro Edition software supports various strategies to reduce
overall design compilation time. Running a full compilation including all Compiler
modules on a large design can be time consuming. Use any the following techniques
to reduce the overall compilation times of your design:

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
187

https://www.altera.com/documentation/jbr1437426657605.html#gs1492466788304

• Rapid Recompile of changed blocks—the Compiler reuses previous compilation
results and does not reprocess unchanged design blocks.

Note: Rapid Recompile does not support Intel Stratix 10 devices.

• Parallel compilation—the Compiler detects and uses multiple processors to reduce
compilation time (for systems with multiple processor cores).

• Incremental optimization—breaks compilation into separate stages, allowing
iterative analysis of results and optimization of settings at various compilation
stages, prior to running a full compilation.

6.1.6 Programming File Generation

The Compiler's Assembler module generates files for device programming. Run the
Assembler automatically as part of a full compilation, or run the Assembler module
independently after design place and route. After running the Assembler, use the
Programmer to download configuration data to a device. The Assembler generates one
or more of the following files according to your specification in the Device & Pin
Options dialog box.

Table 35. Assembler Generated Programming Files

Programming File Description

SRAM Object Files (.sof) A binary file containing the data for configuring all SRAM-based Intel FPGA devices.

Programmer Object Files (.pof) A binary file containing the data for programming an EEPROM-based Intel
configuration device. For example, the EPCS16 and EPCS64 devices, which
configure SRAM-based Intel FPGA devices.

Hexadecimal (Intel-Format) Output
Files (.hexout)

Contains configuration data that you can program into a parallel data source, such
as an EPROM or a mass storage device, which configures an SRAM-based Intel
FPGA device.

Raw Binary Files (.rbf) Contains configuration data that an intelligent external controller uses to configure
an SRAM-based Intel FPGA device.

Tabular Text Files (.ttf) Contains configuration data that an intelligent external controller uses to configure
an SRAM-based Intel FPGA device.
Note: Generation of these files not available for Intel Stratix 10 designs.Serial Vector Format File (.svf)

Related Links

Generating Programming Files on page 222

6.2 Running Full Compilation

Use these steps to run a full compilation of an Intel Quartus Prime project. A full
compilation includes IP Generation, Analysis & Synthesis, Fitter, Timing Analyzer, and
any optional modules you enable.

1. Before running a full compilation, specify any of the following project settings:

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
188

• To specify the target FPGA device or development kit, click Assignments ➤
Device.

• To specify device and pin options for the target FPGA device, click
Assignments ➤ Device ➤ Device and Pin Options.

• To specify options that affect compilation processing time and netlist
preservation, click Assignments ➤ Settings ➤ Compilation Process
Settings.

• To specify synthesis algorithm and other Advanced Settings for synthesis
and fitting, click Assignments ➤ Settings ➤ Compiler Settings.

• To specify required timing conditions for proper operation of your design, click
Tools ➤ Timing Analyzer.

2. To run full compilation, click Processing ➤ Start Compilation.

Note: Early Place does not run during full compilation by default. To enable Early
Place during full compilation, click Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter) to modify the Run Early Place
during compilation option.

Related Links

• Interface Planning

• The Timing Analyzer

• Managing Device I/O Pins

6.3 Running Synthesis

Run design synthesis as part of a full compilation, or as an independent process.
Before running synthesis, specify settings that control synthesis processing. The
Messages window dynamically displays processing information, warnings, or errors.
Following Analysis and Synthesis processing, the Synthesis report provides detailed
information about the synthesis of each design partition.

To run synthesis:

1. Create or open an Intel Quartus Prime project with valid design files for
compilation.

2. Before running synthesis, specify any of the following settings and constraints that
impact synthesis:

• To specify options for the synthesis of Verilog HDL input files, click
Assignments ➤ Settings ➤ Verilog HDL Input.

• To specify options for the synthesis of VHDL input files, click Assignments ➤
Settings ➤ VHDL Input.

• To specify options that affect compilation processing time, click Assignments
➤ Settings ➤ Compilation Process Settings.

• To specify advanced synthesis settings, click Assignments ➤ Settings ➤
Compiler Settings, and then click Advanced Settings (Synthesis).
Optionally, enable Timing-Driven Synthesis to account for timing constraints
during synthesis.

3. To run synthesis, click Synthesis on the Compilation Dashboard.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
189

https://www.altera.com/documentation/jbr1437427643326.html#jbr1410905116321
https://www.altera.com/documentation/jbr1437428483891.html#mwh1410383515225
https://www.altera.com/documentation/jbr1437427643326.html#mwh1410471036713

Related Links

Synthesis Settings Reference on page 229

6.3.1 Preserve Registers During Synthesis

Intel Quartus Prime synthesis minimizes gate count, merges redundant logic, and
ensures efficient use of device resources. If you need to preserve specific registers
through synthesis processing, you can specify any of the following entity-level
assignments. Use Preserve Resisters in Synthesis or Preserve Fan-Out Free
Register Node to allow Fitter optimization of the preserved registers. Preserve
Resisters restricts Fitter optimization of the preserved registers. Specify synthesis
preservation assignments by clicking Assignments ➤ Assignment Editor, by
modifying the .qsf file, or by specifying synthesis attributes in your RTL.

Table 36. Synthesis Preserve Options

Assignment Description Allows Fitter
Optimization?

Assignment Syntax

Preserve
Registers in
Synthesis

Prevents removal of registers during
synthesis. This settings does not
affect retiming or other
optimizations in the Fitter.

Yes • PRESERVE_REGISTER_SYN_ONLY ON|Off
-to <entity> (.qsf)

• preserve_syn_only or
syn_preservesyn_only (synthesis
attributes)

Preserve
Fan-Out Free
Register
Node

Prevents removal of assigned
registers without fan-out during
synthesis.

Yes • PRESERVE_REGISTER_FANOUT_FREE_NODE
ON|Off -to <entity> (.qsf)

• no_prune on (synthesis attribute)

Preserve
Resisters

Prevents removal and sequential
optimization of assigned registers
during synthesis. Sequential netlist
optimizations can eliminate
redundant registers and registers
with constant drivers.

No • PRESERVE_REGISTER ON|Off -to
<entity> (.qsf)

• preserve, syn_preserve, or keep on
(synthesis attributes)

6.3.2 Enabling Timing-Driven Synthesis

Timing-driven synthesis directs the Compiler to account for your timing constraints
during synthesis. Timing-driven synthesis runs initial timing analysis to obtain netlist
timing information. Synthesis then focuses performance efforts on timing-critical
design elements, while optimizing non-timing-critical portions for area.

Timing-driven synthesis preserves timing constraints, and does not perform
optimizations that conflict with timing constraints. Timing-driven synthesis may
increase the number of required device resources. Specifically, the number of adaptive
look-up tables (ALUTs) and registers may increase. The overall area can increase or
decrease. Runtime and peak memory use increases slightly.

Intel Quartus Prime Pro Edition runs timing-driven synthesis by default. To enable or
disable this option manually, click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Synthesis).

Related Links

• Running Synthesis on page 189

• Synthesis Language Support on page 223

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
190

6.3.3 Enabling Multi-Processor Compilation

The Compiler can detect and use multiple processors to reduce total compilation time.
You specify the number of processors the Compiler uses. The Intel Quartus Prime
software can use up to 16 processors to run algorithms in parallel. The Compiler uses
parallel compilation by default. To reserve some processors for other tasks, specify a
maximum number of processors that the software uses.

This technique reduces the compilation time by up to 10% on systems with two
processing cores, and by up to 20% on systems with four cores. When running timing
analysis independently, two processors reduce the timing analysis time by an average
of 10%. This reduction reaches an average of 15% when using four processors.

The Intel Quartus Prime software does not necessarily use all the processors that you
specify during a given compilation. Additionally, the software never uses more than
the specified number of processors. This fact enables you to work on other tasks
without slowing down your computer. The use of multiple processors does not affect
the quality of the fit. For a given Fitter seed, and given Maximum processors
allowed setting on a specific design, the fit is exactly the same and deterministic.
This remains true, regardless of the target machine, and the number of available
processors. Different Maximum processors allowed specifications produce different
results of the same quality. The impact is similar to changing the Fitter seed setting.

To enable multiprocessor compilation, follow these steps:

1. Open or create an Intel Quartus Prime project.

2. To enable multiprocessor compilation, click Assignments ➤ Settings ➤
Compilation Process Settings.

3. Under Parallel compilation, specify options for the number of processors the
Compiler uses.

4. View detailed information about processor in the Parallel Compilation report
following compilation.

To specify the number of processors for compilation at the command line, use the
following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value>

In this case, <value> is an integer from 1 to 16.

If you want the Intel Quartus Prime software to detect the number of processors
and use all the processors for the compilation, include the following Tcl command
in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL

Note: The Compiler detects Intel Hyper-Threading as a single processor. If your
system includes a single processor with Intel Hyper-Threading, set the
number of processors to one. Do not use the Intel Hyper-Threading feature
for Intel Quartus Prime compilations.

6.3.4 Synthesis Reports

The Compilation Report window opens automatically during compilation processing.
The Report window displays detailed synthesis results for each partition in the current
project revision.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
191

Figure 53. Synthesis Reports

Synthesis
Reports

Selected
Report

Table 37. Synthesis Reports (Design Dependent)

Generated Report Description

Summary Shows summary information about synthesis, such as the status, date, software
version, entity name, device family, timing model status, and various types of logic
utilization.

Synthesis Settings Lists the values of all synthesis settings during design processing.

Parallel Compilation Lists specifications for any use of parallel processing during synthesis.

Resource Utilization By Entity Lists the quantity of all types of logic usage for each entity in design synthesis.

Multiplexer Restructuring
Statistics

Provides statistics for the amount of multiplexer restructuring that synthesis performs.

IP Cores Summary Lists details about each IP core instance in design synthesis. Details include IP core
name, vendor, version, license type, entity instance, and IP include file.

Synthesis Source Files Read Lists details about all source files in design synthesis. Details include file path, file type,
and any library information.

Resource Usage Summary for
Partition

Lists the quantity of all types of logic usage for each design partition in design synthesis.

RAM Summary for Partition Lists RAM usage details for each design partition in design synthesis. Details include the
name, type, mode, and density.

Register Statistics Lists the number of registers using various types of global signals.

Synthesis Messages Lists all information, warning, and error messages that report conditions observed
during the Analysis & Synthesis process.

6.4 Running the Fitter

The Compiler's Fitter module performs all stages of design place and route, including
the Plan, Early Place, Place, Route and Retime stages. Run all stages of the Fitter as
part of a full design compilation, or run any Fitter stage independently after design
synthesis. You can analyze the results of some Fitter stages, while downstream stages
are still running. Before running the Fitter, you specify settings that tailor placement
and routing results for your requirements.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
192

1. Specify initial Fitter constraints:

a. To assign device I/O pins, click Assignments ➤ Pin Planner.

b. To assign device periphery, clocks, and I/O interfaces, click Tools ➤
Interface Planner.

c. To constrain logic placement regions, click Tools ➤ Chip Planner.

d. To specify general performance, power, or logic usage focus for fitting, click
Assignments ➤ Settings ➤ Compiler Settings.

e. To fine-tune place and route with advanced Fitter options, click Assignments
➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter)

2. To run one or more stages of the Fitter, click any of the following commands on
the Compilation Dashboard:

• To begin device periphery placement and routing, click Plan.

• To run early placement, click Early Place.

• To fully place design logic, click Place.

• To fully route the design, click Route.

• To retime ALM registers into Hyper-Registers, click Retime.(4)

• To run the Implement flow (Plan, Place, Route, and Retime stages), click
Fitter (Implement).

• To run the Finalize flow (Plan, Early Place, Place, Route, Retime, and Finalize
stages), click Fitter (Finalize).

• To run all Fitter stages in sequence, click Fitter.

Related Links

• Fitter Settings Reference on page 236

• Step 2: Review Retiming Results on page 211

6.4.1 Fitter Stage Commands

Launch Fitter processes from the Processing menu or Compilation Dashboard.

Table 38. Fitter Stage Commands

Command Description

Fitter (Implement) Runs the Plan, Early Place, Place, Route, and Retime stages.

Start Fitter (Plan) Loads synthesized periphery placement data and constraints, and assigns periphery
elements to device I/O resources. After this stage, you can run post-Plan timing
analysis to verify timing constraints, and validate cross-clock timing windows. View
the placement and properties of periphery (I/O) and perform clock planning for
Intel Arria 10 and Intel Cyclone 10 designs. This command creates the planned
snapshot.

Start Fitter (Early Place) Places all core elements in an approximate location to facilitate design planning.
After this stage, the Chip Planner displays initial high-level placement of design
elements. The Compilation reports identifies high fan-out signals that increase
placement complexity. Use this information to guide your floorplanning decisions.
For Intel Stratix 10 designs, you can also do early clock planning after this stage.

continued...

(4) Retime available for Intel Stratix 10 devices only.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
193

Command Description

This command creates the early placed snapshot. Early Place does not run during
the full compilation flow by default, but you can enable by default or run directly
from the Compilation Dashboard.

Start Fitter (Place) Places all core elements in a legal location. This command creates the placed
snapshot.

Start Fitter (Route) Creates all routing between the elements in the design. After this stage, validate
delay chain settings and analyze routing resources. Perform detailed setup and hold
timing closure in the Timing Analyzer and view routing congestion via the Chip
Planner. This command creates the routed snapshot.

Start Fitter (Retime) Retimes existing registers in the design into Hyper-Registers to increase
performance by removing retiming restrictions and eliminate critical paths. The
Compiler may report hold violations for short paths following the Retime stage. The
Fitter identifies and corrects the short paths with hold violations during the Fitter
(Finalize) stage by adding routing wire along the paths. This command creates the
retimed snapshot.

Start Fitter (Finalize) Performs post-routing optimization on the design. This stage converts unneeded
tiles from High Speed to Low Power. This command creates the final snapshot. For
Intel Stratix 10 designs, the Fitter also runs post-route fix-up to correct any short
path hold violations remaining from retiming.

6.4.2 Incremental Optimization Flow

Intel Quartus Prime Pro Edition supports incremental optimization at each stage of
design compilation. In incremental optimization, you run and optimize each
compilation stage independently before running the next compilation module in
sequence. The Compiler preserves the results of each stage as a snapshot for
analysis. When you make changes to your design or constraints, the Compiler only
runs stages impacted by the change. Following synthesis or any Fitter stage, view
results and perform timing analysis. Modify design RTL or Compiler settings, as
needed. Then, re-run synthesis or the Fitter and evaluate the results of these
changes. Repeat this process until the module performance meets requirements. This
flow maximizes the results at each stage, without waiting for full compilation results.

Figure 54. Incremental Optimization Flow

Plan Early
Place Place Route

optimizeoptimize optimize optimize optimize

Retime

Table 39. Incremental Optimization at Fitter Stages

Fitter Stage Incremental Optimization

Plan After this stage, you can run post-Plan timing analysis to verify timing constraints, and
validate cross-clock timing windows. View the placement and properties of periphery (I/O)
and perform clock planning for Intel Arria 10 and Intel Cyclone 10 designs.

Early Place After this stage, the Chip Planner can display initial high-level placement of design
elements. Use this information to guide your floorplanning decisions. For Intel Stratix 10
designs, you can also do early clock planning after running this stage.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
194

Fitter Stage Incremental Optimization

Place After this stage, validate resource and logic utilization in the Compilation Reports, and
review placement of design elements in the Chip Planner.

Route After this stage, perform detailed setup and hold timing closure in the Timing Analyzer, and
view routing congestion via the Chip Planner.

Retime After this stage, review the Retiming results in the Fitter report and correct any restrictions
limiting further retiming optimization.(5)

6.4.2.1 Early Place Flow

Early Place begins assigning core logic to device resources. Run Early Place to quickly
view the effect of iterative floorplanning changes, without waiting for full placement or
full compilation. The Compiler preserves a snapshot of the Early Place results.
Following Early Place, click the Timing Analyzer icon to validate your .sdc constraints.
Do not use the Early Place timing results to compare with Final timing results, as
timing between early snapshots and the final snapshot are not well correlated. Early
Place runs automatically during Fitter processing if you enable the Early Place stage
on the compilation dashboard, or by enabling Settings ➤ Compiler Settings ➤
Fitter Settings (Advanced) ➤ Run Early Place During Compilation.

Concurrent Analysis of Early Place Results

If you run the Fitter (or Place or Route stages) without previously running Early
Place, you can access the Early Place results while downstream Fitter stages are still
running. Click the Concurrent Analysis icon on the Dashboard to analyze Early Place
timing while the Fitter continues processing. You cannot modify timing constraints
during concurrent analysis. However, stop compilation processing at any time, modify
your .sdc constraints, and then click the Timing Analyzer icon to analyze the design
with the modified constraints.

(5) Retiming available only for Intel Stratix 10 devices.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
195

Figure 55. Early Place Flow in Compilation Dashboard

Click to Run Early
Place Flow

Early Place
Flow Stages

Reports and Timing

 Concurrent Analysis
(Enabled During Place and Route)

6.4.2.2 Running late_place After Early Place

After running the Early Place stage, you can run late_place, rather than the full
Place stage, to reduce total compilation time. late_place skips the placements that
Early Place makes. The Place stage includes the Early Place and late_place stages.
The is no GUI support for the Fitter's late_place option. The late_place option is
only available at the command line, after running the Early Place stage from the GUI
or command-line. Running late_place generates the placed snapshot. Access
command-line help to display details about the late_place argument.

Note: Type quartus_fit –help=late_place for command-line help on this argument.

To run late_place after Early Place:

1. To run the Early Place stage and generate the Early Place snapshot, perform one
of the following:

• To run Early Place in the GUI, click Early Place on the Compilation
Dashboard. The Compiler runs any required prerequisite stages.

• To run Early Place (and prerequisite stages) at the command-line, run the
following commands. The "-" character equals double hyphens:

quartus_ipgenerate <design_name>
quartus_syn <design name>
quartus_fit -plan <design name>
quartus_fit -early_place <design name>

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
196

Note: You must generate the early placed snapshot before running late_place,
or the Fitter reports an error.

2. View Early Place results in the Early Placed Fitter reports of the Compilation
Report, and in the Chip Planner (Tools ➤ Chip Planner).

3. When satisfied with the Early Place results, type one of the following commands to
continue to the late_place stage and beyond. View late_place results and
processing messages in the <design name>.fit.place.rpt file.

• quartus_fit –late_place <design name>
(runs late_place)

• quartus_fit –late_place –route <design name>
(runs late_place and route)

• quartus_fit –late_place –route –finalize <design name>
(runs late_place and finalize)

6.4.3 Analyzing Fitter Snapshots

Analyze the results of Fitter stages to evaluate your design before running the next
stage, or before running a full compilation. Use this technique to isolate potential
problems and reduce the overall time you spend running design compilation. The
following topics describe typical use cases for analyzing Fitter snapshots.

6.4.3.1 Validating SDC Constraints after the Plan Stage

The Fitter's Plan stage performs initial validation of your project's .sdc constraints.
The Compiler generates messages during the plan stage that warn you about any
possible invalid .sdc constraints. Stop compilation following the Plan stage to validate
and make any necessary changes to .sdc constraints, before moving on to the next
Fitter stage. To validate .sdc constraints after the Plan stage, follow these steps:

1. To run the Fitter's Plan stage, click Plan on the Compilation Dashboard. The
Compiler automatically runs prerequisite compilation stages, if necessary.

2. On the Compilation Dashboard, click the Timing Analyzer icon adjacent to the
Fitter stage. The Create Timing Netlist dialog box appears and loads the
corresponding stage snapshot.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
197

Figure 56. Plan Stage Timing Analyzer Icon in Compilation Dashboard

Open Reports and
Timing Analysis for Stage

3. In the Create Timing Netlist dialog box, click OK. The planned database loads in
the Timing Analyzer.

Figure 57. Planned Snapshot in Create Timing Netlist Dialog Box

Loads the Planned Snapshot
for Timing Analysis

4. On the Tasks pane, click Read SDC File. The Timing Analyzer reads and
processes any .sdc files. For multiple .sdc files, the report also includes
the .sdc processing sequence.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
198

Figure 58. Read SDC File Command

Click to Load .sdc Files

5. To report the .sdc constraints that apply to the project, click Report SDC under
the Diagnostic folder, in the Tasks pane.

Figure 59. SDC File List Report

6. Conversely, to report the constraints in the .sdc files that the Timing Analyzer
ignores, click Report Ignored Constraints under the Diagnostic folder, in the
Tasks pane.

7. To report all paths in your design that have no constraints, click Report
Unconstrained Paths under the Diagnostic folder, in the Tasks pane.

Figure 60. Unconstrained Paths Summary

The Compilation Report displays the Timing Analysis that you run for each stage.

Figure 61. Plan and Retime Stage Timing Analysis Reports in Compilation Report

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
199

Compilation Report Lists
Timing Analyses You Run

6.4.3.2 Validating Periphery (I/O) after the Plan Stage

The Compiler begins periphery placement during the plan stage, and reports data
about periphery elements, such as I/O pins and PLLs. After the Plan stage, view the
Compilation Report to evaluate the placement of periphery elements before
proceeding to the next compilation stage.

Figure 62. Plan Stage Periphery Placement Message

1. In the Compilation Dashboard, click the Plan stage.

2. In the Compilation Report, under the Plan Stage folder, click the Input Pins,
Output Pins, I/O Bank Usage, PLL Usage Summary, or other reports. Verify
attributes of the I/O pins, such as the physical pin location, I/O standards, and PLL
placement.

Figure 63. Input Pins Report

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
200

Figure 64. PLL Usage Summary Report

3. For Intel Arria 10 and Intel Cyclone 10 designs, click Global & Other Fast
Signals Summary report to verify which clocks the Compiler promotes to global
clocks. Clock planning occurs after the Early Place stage for Intel Stratix 10
designs.

Figure 65. Global & Other Fast Signals Report Shows Clock Promotion (Intel Arria 10
and Intel Cyclone 10)

6.4.3.3 Clock Planning after Early Place (Intel Stratix 10 only)

Intel Stratix 10 devices support clock planning after the Early Place stage, rather than
after the Plan stage. After running Early Place, view the Global & Other Fast Signals
report to view details and plan the clocks in your project. To view clock details after
Early Place, follow these steps:

1. In the Compilation Dashboard, click the Early Place stage.

2. In the Compilation Report, under the Early Place Stage folder, click the Global &
Other Fast Signals Details or Global & Other Fast Signals Summary report.

Figure 66. Global & Other Fast Signal Details Report

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
201

The report provides clock tree path length and depth. The shortest path length
from clock source to clock tree, and the smallest clock tree depth, results in the
best clock performance.

3. To visualize the clock path length and clock tree depth, click Tools ➤ Chip
Planner.

4. In the Chip Planner Tasks pane, click Report Clock Details under the Clock
Reports folder. The Report pane lists all the clocks in the design.

5. In the Report pane, select one or more clocks to highlight the clock elements in
Chip Planner.

Figure 67. Visualizing Clocks in Chip Planner

After running the Early Place stage, you can run late_place, rather than the full
Place stage, to reduce total compilation time.

6.4.3.4 Identifying High Fan-Out Signals after Early Place

High fan-out signals increase placement difficulty. After Early Place, identify and
consider moving high fan-out signals to global resources.

1. In the Compilation Dashboard, click the Early Place stage.

2. In the Compilation Report, under the Early Place Stage folder, click the Non-
Global High Fan-Out Signals report. The report lists the number of fan-outs for
each signal.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
202

Figure 68. Non-Global High Fan-Out Signals Report

3. To visualize the clock fan-out, right-click the signal name in the report, and then
click Locate Node ➤ Locate in Chip Planner.

Figure 69. Non-Global High Fan-Out Signal in Chip Planner

4. To place those high fan-out signals on global resources, click Assignments ➤
Assignment Editor, and then assign the high fan-out signal to a global signal
before re-starting compilation.

Figure 70. Assigning High Fan-Out Signal in Assignment Editor

6.4.4 Enabling Physical Synthesis Optimization

Physical synthesis optimization improves circuit performance by performing
combinational and sequential optimization and register duplication.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
203

To enable physical synthesis options, follow these steps:

1. Click Assignments ➤ Settings ➤ Compiler Settings.

2. To enable retiming, combinational optimization, and register duplication, click
Advanced Settings (Fitter). Next, enable Physical Synthesis.

3. View physical synthesis results in the Netlist Optimizations report.

6.4.5 Viewing Fitter Reports

The Fitter generates detailed reports and messages for each stage of place and route.
The Fitter Summary reports basic information about the Fitter run, such as date,
software version, device family, timing model, and logic utilization.

6.4.5.1 Plan Stage Reports

The Plan stage reports describe the I/O, interface, and control signals discovered
during the periphery planning stage of the Fitter.

Figure 71. Plan Stage Reports (Intel Arria 10 and Intel Cyclone 10 GX Designs)

For Intel Arria 10 and Intel Cyclone 10 designs, the Plan stage includes the Global &
Other Fast Signals Summary report that allows you to verify which clocks the
Compiler promotes to global clocks. Clock planning occurs after the Early Place stage
for Intel Stratix 10 designs.

6.4.5.2 Early Place Stage Reports

During Early Place the Fitter begins assigning core design logic to device resources.
For Intel Stratix 10 designs, the Early Place stage reports include the Global & Other
Fast Signals Summary and Global & Other Fast Signals Details reports. Use
these reports to verify which clocks the Compiler promotes to global clocks. Clock
planning occurs after the Plan stage for Intel Arria 10 and Intel Cyclone 10 designs.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
204

Figure 72. Early Place Stage Reports (Intel Stratix 10 Design)

6.4.5.3 Place Stage Reports

The Place stage reports describe all device resources the Fitter allocates during logic
placement. The report details include the type, number, and overall percentage of
each resource type.

Figure 73. Place Stage Reports

6.4.5.4 Route Stage Reports

The Route stage reports describe all device resources that the Fitter allocates during
routing. Details include the type, number, and overall percentage of each resource
type. The Route stage also reports delay chain summary information.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
205

Figure 74. Route Stage Reports

6.4.5.5 Retime Stage Reports

The Fitter generates detailed reports showing the results of the Retime stage,
including the Retiming Limit Details report. This report lists hold violations for short
paths following the Retime stage. The Fitter identifies and corrects the short paths
with hold violations during the Fitter (Finalize) stage by adding routing wire along the
paths.

Figure 75. Retiming Limit Details

Reason for
Retiming
Limit

Critical chain
details

Right-click to
 locate in
viewer

6.4.5.6 Finalize Stage Reports

The Finalize stage reports describe final placement and routing operations, including:

• HSLP Summary. For Intel Arria 10 designs, the Compiler converts unnecessary
tiles to High-Speed or Low-Power (HSLP) tiles.

• Post-route hold fix-up data. For Intel Stratix 10 designs, the Compiler reports hold
violations for short paths following the Retime stage. The Fitter identifies and
corrects the short paths with hold violations during the Fitter (Finalize) stage by
adding routing wire along the paths.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
206

Figure 76. Finalize Stage Reports (Intel Stratix 10 Design)

Related Links

Step 2: Review Retiming Results on page 211
For information on Retiming and Fast Forward compilation reports

6.5 Running the Hyper-Aware Design Flow

The Intel Quartus Prime Pro Edition Compiler helps you to take full advantage of the
Intel Stratix 10 Intel Hyperflex architecture. Use the Hyper-Aware design flow to
shorten design cycles and optimize performance.

The Hyper-Aware design flow combines automated register retiming (Hyper-Retiming),
with implementation of targeted timing closure recommendations (Fast Forward
compilation), to maximize use of Hyper-Registers and drive the highest performance
for Intel Stratix 10 designs.

Figure 77. Hyper-Aware Design Flow

Synthesis Plan Early
Place Place Route Retime*

Fast Forward*
(Hyper-Retiming)RTL *Intel Stratix 10

 Devices Only

optimizeoptimize optimize optimize optimize optimize

Finalize
 (Hold Fixup)

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
207

Hyper-Retiming

A key innovation of the Intel Stratix 10 architecture is the addition of multiple Hyper-
Registers in every routing segment and block input. Maximizing the use of Hyper-
Registers improves design performance. The prevalence of Hyper-Registers improves
balance of time delays between registers and mitigates critical path delays. Hyper-
Retiming moves registers out of ALMs and retimes them into Hyper-Registers,
wherever advantageous. Hyper-Retiming runs automatically during fitting, requires
minimal effort, and can result in significant performance improvement.

Figure 78. Hyper-Register Architecture

ALM ALM

ALM ALM

New Hyper-Registers throughout the core fabric
Potential routing path

clk Configuration
CRAM

Hyper-Register Detail

Fast Forward Compilation

If you require optimization beyond Hyper-Retiming, run Fast Forward compilation to
generate timing closure recommendations that break key performance bottlenecks.
Fast Forward compilation shows precisely where to make the most impact with RTL
changes, and reports the performance benefits you can expect from each change. The
Fitter does not automatically retime registers across RAM and DSP blocks. However,
Fast Forward analysis shows the potential performance benefit from this optimization.

Fast-Forward compilation identifies the best location to add pipeline stages (Hyper-
Pipelining), and the expected performance benefit in each case. After you modify the
RTL to place pipeline stages at the boundaries of each clock domain, the Hyper-
Retimer automatically places the registers within the clock domain at the optimal
locations to maximize performance. Implement the recommendations in RTL to
achieve similar results. After implementing any changes, re-run the Hyper-Retimer
until the results meet performance and timing requirements. Fast Forward compilation
does not run automatically as part of a full compilation. Enable or run Fast Forward
compilation in the Compilation Dashboard.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
208

Table 40. HyperFlex Optimization Steps

Optimization Step Technique Description

Step 1 Hyper-Retiming Retimer moves existing registers into Hyper-Registers.

Step 2 Fast Forward Compile Compiler generates design-specific timing closure recommendations
and predicts performance improvement.

Step 3 Hyper-Pipelining Use Fast Forward compilation to identify where to add new registers
and pipeline stages in RTL.

Step 4 Hyper-Optimization Design optimization beyond Hyper-Retiming and Hyper-Pipelining,
such as restructuring loops, removing control logic limits, and
reducing the delay along long paths.

The Hyper-Aware design flow includes the following high-level steps this chapter
covers in detail:

1. Run the Retime stage during the Fitter to automatically retime ALM registers into
Hyper-Registers.

2. Review Retiming Results in the Compilation Report.

3. If you require further performance optimization, run Fast Forward compilation.

4. Review Fast Forward timing closure recommendations.

5. Implement appropriate Fast Forward recommendations in your RTL.

6. Recompile the design through the Retime stage.

Figure 79. Hyper-Aware Design Flow

No

Yes

Run Fitter with Retime Stage

Analyze
Timing

Fitter
Finalize

Review Retiming Results

Performance
 Met?

Run Fast Forward Compile

Performance
 Met?

Recompile the Design

Yes No

Register Retiming

Fast Forward Compile

Run Design Synthesis

Review Recommendations

Modify RTL

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
209

6.5.1 Step 1: Run Register Retiming

Register retiming improves design performance by moving registers out of ALMs and
retimes them into Hyper-Registers in the Intel Stratix 10 device interconnect.

The Fitter runs the Retime stage automatically following place and route when you
target an Intel Stratix 10 device. Alternatively, start or stop the individual Retime
stage in the Compilation Dashboard. After running register retiming, view the Fitter
reports to optimize remaining critical paths.

To run register retiming:

1. Create or open an Intel Quartus Prime project that is ready for design synthesis
and fitting.

2. To run register retiming, click Retime on the Compilation Dashboard. The
Compiler runs prerequisite stages automatically, as needed. The Compiler
generates detailed reports and timing analysis data for each stage. Click the
Report or Timing Analyzer icons to review results of each stage. Rerun any
stage to apply any setting or design changes.

3. If register retiming achieves all performance goals for your design, proceed to
Fitter (Finalize) and timing analysis stages of compilation. If your design requires
further optimization, run Fast Forward Timing Closure Recommendations.

Figure 80. Retiming Stage in Compilation Dashboard

Click to
Run Flow

Click to Open
Stage Reports

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
210

6.5.2 Step 2: Review Retiming Results

The Fitter generates detailed reports showing the results of the Retime stage. Follow
these steps to review the results and make additional performance improvements with
register retiming.

1. To open the Retiming Limit Details report, click the Report icon for the Retime
stage in the Compilation Dashboard. The Retiming Limit Details lists the
number of registers moved, their paths, and the limiting reason preventing further
retiming.

2. To further optimize, resolve any Limiting Reason in your design, and then rerun
the Retime stage, as necessary.

3. If register retiming achieves all performance goals for your design, proceed to
Fitter (Finalize) and Timing Analysis stages of compilation.

4. If your design requires further optimization, run Fast Forward Timing Closure
Recommendations.

Table 41. Retiming Limit Details Report Data

Report Data Description

Clock Transfer Lists each clock domain in your design. Click the domain to display data about each entry.

Limiting Reason Specifies any design condition that prevent further register retiming improvement, such as
any of the following conditions:
• Insufficient Registers—indicates insufficient quantity of registers at either end of the

chain for retiming. Adding more registers can improve performance.
• Short Path/Long Path—indicates that the critical chain has dependent paths with

conflicting characteristics. For example, one path improves performance with more
registers, and another path has no place for additional registers.

• Path Limit—indicates that there are no further Hyper-Register locations available on the
critical path, or the design reached a performance limit of the current place and route.

• Loops—indicates a feedback path in a circuit. When the critical chain includes a feedback
loop, retiming cannot change the number of registers in the loop without changing
functionality. The Compiler can retime around the loop without changing functionality.
However, the Compiler cannot place additional registers in the loop.

Critical Chain Details Lists register timing path associated with the retiming limitations. Right-click any path to
Locate Critical Chain in Technology Map Viewer.

Figure 81. Retiming Limit Details

Reason for
Retiming
Limit

Critical chain
details

Right-click to
 locate in
viewer

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
211

Note: The Compiler reports any hold violations for short paths following the
Retime stage. The Fitter identifies and corrects the short paths with hold
violations during the Fitter (Finalize) stage by adding routing wire along the
paths.

6.5.2.1 Locate Critical Chains

The Retiming Limit Details reports the design paths that limit further register
retiming. Right-click any path to locate to the path in the Technology Map Viewer -
Post-fitting view. This viewer displays a schematic representation of the complete
design after place, route, and register retiming. To view the retimed netlist in the
Technology Map Viewer, follow these steps:

1. To open the Retiming Limit Details report, click the Report icon next to the
Retime stage in the Compilation Dashboard.

2. Right-click any path in the Retiming Limit Details report and click Locate
Critical Chain in Technology Map Viewer. The netlist displays as a schematic
in the Technology Map Viewer.

Figure 82. Technology Map Viewer

Schematic View of Design Netlist

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
212

Figure 83. Post-Fit Viewer After Retiming

Hyper-RegisterBypassed ALM Registers

Used ALM Register

6.5.3 Step 3: Run Fast Forward Compile and Hyper-Retiming

When you run Fast Forward compilation, the Compiler predictively removes signals
from registers to allow mobility within in the netlist for subsequent retiming. Fast
Forward compilation generates design-specific timing closure recommendations, and
predicts maximum performance with removal of all timing restrictions. After you
complete Fast Forward explorations, determine which recommendations you can
implement to provide the most benefit. Implement appropriate recommendations in
your RTL, and recompile the design to realize the performance levels that Fast Forward
reports.

To generate Fast Forward timing closure recommendations, follow these steps:

1. On the Compilation Dashboard, click Fast Forward Timing Closure
Recommendations. The Compiler runs prerequisite synthesis or Fitter stages
automatically, as needed, and generates timing closure recommendations in the
Compilation Report.

2. View timing closure recommendations in the Compilation Report to evaluate
design performance and implement key RTL performance improvements.

3. Optionally, specify any of the following any of the following options if you want to
automate or refine Fast Forward analysis:

• If you want to run Fast Forward compilation during each full compilation, click
Assignments ➤ Settings ➤ Compiler Settings ➤ HyperFlex and enable
Run Fast Forward Timing Closure Recommendations during
compilation.

• If you want to modify how Fast Forward compilation interprets specific I/O and
block types, click Assignments ➤ Settings ➤ Compiler Settings ➤
HyperFlex ➤ Advanced Settings.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
213

Figure 84. Running Fast Forward Compilation

Fast Forward
Flow

Figure 85. HyperFlex Settings

Run Fast Forward
During Compilation

Fast Forward
Advanced Options

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
214

6.5.3.1 Advanced HyperFlex Settings

The Advanced HyperFlex Settings control how Fast Forward Compilation analyzes
and reports results for specific logical structures in the Intel Hyperflex architecture of
the Intel Stratix 10 FPGA. To access the settings, click Assignments ➤ Settings ➤
HyperFlex ➤ Advanced Settings.

Table 42. Advanced HyperFlex Settings

Option Description

Fast Forward Compile
Asynchronous Clears

Specifies how Fast Forward analysis accounts for registers with asynchronous clear signals.
The options are:
• Auto—the Compiler identifies asynchronous clears as asynchronous until they limit

timing performance during Fast Forward Compilation, at which point the Compiler
itentifies the asynchonous clears as removed.

• Preserve—the Compiler never assumes removal or conversion of asynchronous clears
for Fast Forward analysis.

Fast Forward Compile
Fully Registered DSP
Blocks

Specifies how Fast Forward analysis accounts for DSP blocks that limit performance. Enable
this option to generate results as if all DSP blocks are fully registered.

Fast Forward Compile
Fully Registered RAM
Blocks

Specifies how Fast Forward analysis accounts for RAM blocks that limit performance. Enable
this option to analyze the blocks as fully registered.

Fast Forward Compile
Maximum Additional
Pipeline Stages

Specifies the maximum number of pipeline stages that Fast Forward compilation explores.

Fast Forward Compile
User Preserve Directives

Specifies how Fast Forward compilation accounts for restrictions from user-preserve
directives.

6.5.4 Step 4: Review Hyper-Retiming Results

After running Fast Forward Compilation, review the reports to determine which
recommendations are appropriate and practical for your design functionality and
performance goals.

6.5.4.1 Clock Fmax Summary Report

The Clock Fmax Summary reports the current fmax and potential performance
achievable for each clock domain after Hyper-Retiming, Hyper-Pipelining, and Hyper-
Optimization steps. Review the Clock Fmax Summary data to determine whether each
potential performance improvement warrants further investigation and potential
optimization of design RTL.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
215

Figure 86. Current and Potential Performance in Clock Fmax Summary

Predicts Optimized Performance After
Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization

6.5.4.2 Fast Forward Details Report

The Fast Forward Details report recommends the design modifications necessary to
achieve Fast Forward compilation performance levels. Some recommendations may be
functionally impossible or impractical for your design. Consider which
recommendations you can implement in RTL to achieve similar performance
improvement. Click any optimization Step to view the implementation details and
performance calculations for that step.

Table 43. Fast Forward Details Report Data

Report Field Description

Step Displays the pre-optimized Base Performance fMAX, the recommended Fast
Forward optimization steps, and the Fast Forward Limit critical path that
prevents further optimization.

Fast Forward Optimizations Analyzed Summarizes the optimizations necessary to implement each optimization
step.

Estimated Fmax Specifies the potential fMAX performance if you implement all Fast Forward
optimization steps.

Optimizations Analyzed For Fast
Forward Step

Lists design recommendations hierarchically for the selected Step. Click the
text to expand the report and view the clock domain, the affected module,
and the bus and bits that require modification.

Optimizations Analyzed (Cumulative) Accumulated list of all design changes necessary to reach the selected Step.

Critical Chain at Fast Forward Limit Displays information about any path that continues to limit Hyper-Retiming
even after application of all Fast Forward steps. The critical chain is any path
that limits further Hyper-Retiming. Click the Fast Forward Limit step to
display this field.

Recommendations for Critical Chain Lists register timing path associated with the retiming limitations. Right-click
any path to Locate Critical Chain in Fast Forward Viewer.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
216

Figure 87. Fast-Forward Details Report

Right-click any path to locate to the critical chain in the Fast Forward Viewer. The Fast
Forward Viewer displays a predictive representation of the complete design, after
implementation of all Fast Forward recommendations.

Figure 88. Recommendations for Critical Chain

Implement Fast Forward Timing Closure Recommendations

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
217

Figure 89. Locate Critical Chain in Fast Forward Viewer

Locate Critical Chain in Fast Forward Viewer

Figure 90. Fast Forward Viewer Shows Predictive Results

6.5.5 Step 5: Implement Fast Forward Recommendations

Implement the Fast Forward timing closure recommendations in your design RTL and
rerun the Retime stage to realize the predictive performance gains. The amount and
type of changes that you implement depends on your performance goals. For
example, if you can achieve the target fMAX with simple asynchronous clear removal or
conversion, you can stop design optimization after making those changes. However, if
you require additional performance, implement more Fast Forward recommendations,
such as any of the following techniques:

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
218

• Remove limitations of control logic, such as long feedback loops and state
machines.

• Restructure logic to use functionally equivalent feed-forward or pre-compute
paths, rather than long combinatorial feedback path.

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Excessive combinational logic, sub-optimal placement,
and routing congestion cause delay on paths.

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths have the most
delay between registers in the critical chain.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

• Explore performance and implement the RTL changes to your code until you reach
the desired performance target.

6.5.5.1 Retiming Restrictions and Workarounds

The Compiler identifies the register chains in your design that limit further
optimization through Hyper-Retiming. The Compiler refers to these related register-to-
register paths as a critical chain. The fMAX of the critical chain and its associated clock
domain is limited by the average delay of a register-to-register path, and quantization
delays of indivisible circuit elements like routing wires. There are a variety of
situations that cause retiming restrictions. Retiming restrictions exist because of
hardware characteristics, software behavior, or are inherent to the design. The
Retiming Limit Details report the limiting reasons preventing further retiming, and
the registers and combinational nodes that comprise the chain. The Fast Forward
recommendations list the steps you can take to remove critical chains and enable
additional register retiming.

Figure 91. Sample Critical Chain
In this figure the red line represents a same critical chain. Timing restrictions prevent register A from retiming
forward. Timing restrictions also prevent register B from retiming backwards. A loop occurs when register A
and register B are the same register.

A B

Fast Forward recommendations for the critical chain include:

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Combinational logic, sub-optimal placement, and
routing congestion, are among the reasons for path delay..

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths are the parts
of the critical chain that have the most delay between registers.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
219

Particular registers in critical chains can limit performance for many other reasons.
The Compiler classifies the following types of reasons that limit further optimization by
retiming:

• Insufficient Registers

• Loop

• Short path/long path

• Path limit

After understanding why a particular critical chain limits your design’s performance,
you can then make RTL changes to eliminate that bottleneck and increase
performance.

Table 44. Hyper-Register Support for Various Design Conditions

Design Condition Hyper-Register Support

Initial conditions that cannot be preserved Hyper-Registers do have initial condition support. However, you cannot
perform some retiming operations while preserving the initial condition stage
of all registers (that is, the merging and duplicating of Hyper-Registers). If
this condition occurs in the design, the Fitter does not retime those registers.
This retiming limit ensures that the register retiming does not affect design
functionality.

Register has an asynchronous clear Hyper-Registers support only data and clock inputs. Hyper-Registers do not
have control signals such as asynchronous clears, presets, or enables. The
Fitter cannot retime any register that has an asynchronous clear. Use
asynchronous clears only when necessary, such as state machines or control
logic. Often, you can avoid or remove asynchronous clears from large parts
of a datapath.

Register drives an asynchronous signal This design condition is inherent to any design that uses asynchronous
resets. Focus on reducing the number of registers that are reset with an
asynchronous clear.

Register has don’t touch or preserve
attributes

The Compiler does not retime registers with these attributes. If you use the
preserve attribute to manage register duplication for high fan-out signals, try
removing the preserve attribute. The Compiler may be able to retime the
high fan-out register along each of the routing paths to its destinations.
Alternatively, use the dont_merge attribute. The Compiler retimes registers
in ALMs, DDIOs, single port RAMs, and DSP blocks.

Register is a clock source This design condition is uncommon, especially for performance-critical parts
of a design. If this retiming restriction prevents you from achieving the
required performance, consider whether a PLL can generate the clock, rather
than a register.

Register is a partition boundary This condition is inherent to any design that uses design partitions. If this
retiming restriction prevents you from achieving the required performance,
add additional registers inside the partition boundary for Hyper-Retiming.

Register is a block type modified by an
ECO operation

This restriction is uncommon. Avoid the restriction by making the functional
change in the design source and recompiling, rather than performing an
ECO.

Register location is an unknown block This restriction is uncommon. You can often work around this condition by
adding extra registers adjacent to the specified block type.

Register is described in the RTL as a latch Hyper-Registers cannot implement latches. The Compiler infers latches
because of RTL coding issues, such as incomplete assignments. If you do not
intend to implement a latch, change the RTL.

Register location is at an I/O boundary All designs contain I/O, but you can add additional pipeline stages next to
the I/O boundary for Hyper-Retiming.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
220

Design Condition Hyper-Register Support

Combinational node is fed by a special
source

This condition is uncommon, especially for performance-critical parts of a
design.

Register is driven by a locally routed clock Only the dedicated clock network clocks Hyper-Registers. Using the routing
fabric to distribute clock signals is uncommon, especially for performance-
critical parts of a design. Consider implementing a small clock region instead.

Register is a timing exception end-point The Compiler does not retime registers that are sources or destinations
of .sdc constraints.

Register with inverted input or output This condition is uncommon.

Register is part of a synchronizer chain The Fitter optimizes synchronizer chains to increase the mean time between
failure (MTBF), and the Compiler does not retime registers that are detected
or marked as part of a synchronizer chain. Add more pipeline stages at the
clock domain boundary adjacent to the synchronizer chain to provide
flexibility for the retiming.

Register with multiple period requirements
for paths that start or end at the register
(cross-clock boundary)

This situation occurs at any cross-clock boundary, where a register latches
data on a clock at one frequency, and fans out to registers running at
another frequency. The Compiler does not retime registers at cross-clock
boundaries. Consider adding additional pipeline stages at one side of the
clock domain boundary, or the other, to provide flexibility for retiming.

The following topics describes RTL design techniques that you can use to remove
retiming restrictions.

6.6 Running Rapid Recompile

During Rapid Recompile the Compiler reuses previous synthesis and fitting results
whenever possible, and does not reprocess unchanged design blocks. Use Rapid
Recompile to reduce timing variations and the total recompilation time after making
small design changes.

Figure 92. Rapid Recompile

Regular Compile

A

B
C

D

E

J G
x y z

Unchanged

Changed

Rapid
Recompile

Note: Rapid Recompile does not support Intel Stratix 10 devices.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
221

To run Rapid Recompile, follow these steps:

1. To start Rapid Recompile following an initial compilation (or after running the
Route stage of the Fitter), click Processing ➤ Start ➤ Start Rapid Recompile.
Rapid Recompile implements the following types of design changes without full
recompilation:

• Changes to nodes tapped by the Signal Tap Logic Analyzer

• Changes to combinational logic functions

• Changes to state machine logic (for example, new states, state transition
changes)

• Changes to signal or bus latency or addition of pipeline registers

• Changes to coefficients of an adder or multiplier

• Changes register packing behavior of DSP, RAM, or I/O

• Removal of unnecessary logic

• Changes to synthesis directives

2. Click the Rapid Recompile Preservation Summary report to view detailed
information about the percentage of preserved compilation results.

Figure 93. Rapid Recompile Preservation Summary

6.7 Generating Programming Files

The Compiler's Assembler module generates device programming files. Run the
Assembler to generate device programming files following successful design place and
route.

1. Before running the Assembler, specify settings to customize programming file
generation. Click Assignments ➤ Device ➤ Device & Pin Options to enable or
disable generation of optional programming files.

2. To generate device programming files, click Processing ➤ Start ➤ Start
Assembler, or click Assembler on the Compilation Dashboard. The Compiler
confirms that prerequisite modules are complete, and launches the Assembler
module to generate the programming files that you specify. The Messages window
dynamically displays processing information, warnings, or errors. After Assembler
processing,

After running the Assembler, the Compilation report provides detailed information
about programming file generation, including programming file Summary and
Encrypted IP information.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
222

Figure 94. Assembler Reports

Figure 95. Device & Pin Options

Related Links

Programming Intel FPGA Devices

6.8 Synthesis Language Support

The Intel Quartus Prime software synthesizes standard Verilog HDL, VHDL, and
SystemVerilog design files.

6.8.1 Verilog and SystemVerilog Synthesis Support

Intel Quartus Prime synthesis supports the following Verilog HDL language standards:

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
223

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410385041468

• Verilog-1995 (IEEE Standard 1364-1995)

• Verilog-2001 (IEEE Standard 1364-2001)

• SystemVerilog-2005 (IEEE Standard 1800-2005)

• SystemVerilog-2009 (IEEE Standard 1800-2009)

The following important guidelines apply to Intel Quartus Prime synthesis of Verilog
HDL and SystemVerilog:

• The Compiler uses the Verilog-2001 standard by default for files with an extension
of .v, and the SystemVerilog standard for files with the extension of .sv.

• If you use scripts to add design files, you can use the -HDL_VERSION command
to specify the HDL version for each design file.

• Compiler support for Verilog HDL is case sensitive in accordance with the Verilog
HDL standard.

• The Compiler supports the compiler directive `define, in accordance with the
Verilog HDL standard.

• The Compiler supports the include compiler directive to include files with
absolute paths (with either “/” or “\” as the separator), or relative paths.

• When searching for a relative path, the Compiler initially searches relative to the
project directory. If the Compiler cannot find the file, the Compiler next searches
relative to all user libraries. Finally, the Compiler searches relative to the current
file's directory location.

• Intel Quartus Prime Pro Edition synthesis searches for all modules or entities
earlier in the synthesis process than other Quartus software tools. This earlier
search produces earlier syntax errors for undefined entities than other Quartus
software tools.

Related Links

• The Quartus Prime Timing Analyzer

• Recommended Design Practices

• Recommended HDL Coding Styles

6.8.1.1 Verilog HDL Input Settings (Settings Dialog Box)

Click Assignments ➤ Settings ➤ Verilog HDL Input to specify options for the
synthesis of Verilog HDL input files.

Figure 96. Verilog HDL Input Settings Dialog Box

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
224

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410383638859
https://www.altera.com/documentation/jbr1437426657605.html#mwh1409959483992
https://www.altera.com/documentation/jbr1437426657605.html#mwh1409959570946

Table 45. Verilog HDL Input Settings

Setting Description

Verilog Version Directs synthesis to process Verilog HDL input design files using the specified standard.
You can select any of the supported language standards to match your Verilog HDL files
or SystemVerilog design files.

Library Mapping File Allows you to optionally specify a provided Library Mapping File (.lmf) for use in
synthesizing Verilog HDL files that contain non-Intel FPGA functions mapped to IP
cores. You can specify the full path name of the LMF in the File name box.

Verilog HDL Macro Verilog HDL macros are pre-compiler directives which can be added to Verilog HDL files
to define constants, flags, or other features by Name and Setting. Macros that you
add appear in the Existing Verilog HDL macro settings list.

6.8.1.2 Design Libraries

By default, the Compiler processes all design files into one or more libraries.

• When compiling a design instance, the Compiler initially searches for the entity in
the library associated with the instance (which is the work library if you do not
specify any library).

• If the Compiler cannot locate the entity definition, the Compiler searches for a
unique entity definition in all design libraries.

• If the Compiler finds more than one entity with the same name, the Compiler
generates an error. If your design uses multiple entities with the same name, you
must compile the entities into separate libraries.

6.8.1.3 Verilog HDL Configuration

Verilog HDL configuration is a set of rules that specify the source code for particular
instances. Verilog HDL configuration allows you to perform the following tasks:

• Specify a library search order for resolving cell instances (as does a library
mapping file).

• Specify overrides to the logical library search order for specified instances.

• Specify overrides to the logical library search order for all instances of specified
cells.

Related Links

Configuration Syntax

6.8.1.3.1 Hierarchical Design Configurations

A design can have more than one configuration. For example, you can define a
configuration that specifies the source code you use in particular instances in a sub-
hierarchy, and then define a configuration for a higher level of the design.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
225

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409959853121

For example, suppose a subhierarchy of a design is an eight-bit adder, and the RTL
Verilog code describes the adder in a logical library named rtllib. The gate-level
code describes the adder in the gatelib logical library. If you want to use the gate-
level code for the 0 (zero) bit of the adder and the RTL level code for the other seven
bits, the configuration might appear as follows:

Example 63. Gate-level code for the 0 (zero) bit of the adder

config cfg1;
design aLib.eight_adder;
default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig

If you are instantiating this eight-bit adder eight times to create a 64-bit adder, use
configuration cfg1 for the first instance of the eight-bit adder, but not in any other
instance. A configuration that performs this function is shown below:

Example 64. Use configuration cfg1 for first instance of eight-bit adder

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig

Note: The name of the unbound module may be different from the name of the cell that is
bounded to the instance.

6.8.1.4 Initial Constructs and Memory System Tasks

The Intel Quartus Prime software infers power-up conditions from the Verilog HDL
initial constructs. The Intel Quartus Prime software also creates power-up settings
for variables, including RAM blocks. If the Intel Quartus Prime software encounters
non-synthesizable constructs in an initial block, it generates an error.

To avoid such errors, enclose non-synthesizable constructs (such as those intended
only for simulation) in translate_off and translate_on synthesis directives.
Synthesis of initial constructs enables the power-up state of the synthesized design to
match the power-up state of the original HDL code in simulation.

Note: Initial blocks do not infer power-up conditions in some third-party EDA synthesis tools.
If you convert between synthesis tools, you must set your power-up conditions
correctly.

Intel Quartus Prime synthesis supports the $readmemb and $readmemh system tasks
to initialize memories.

Example 65. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
226

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, and then specify the memory word such as
110101 or abcde on the next line.

The following example shows a portion of a Memory Initialization File (.mif) for the
RAM.

Example 66. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

Related Links

• Translate Off and On / Synthesis Off and On

• Incremental Compilation for Hierarchical and Team-Based Design

6.8.1.5 Verilog HDL Macros

The Intel Quartus Prime software fully supports Verilog HDL macros, which you can
define with the 'define compiler directive in your source code. You can also define
macros in the Intel Quartus Prime software or on the command line.

To set Verilog HDL macros at the command line for the Intel Quartus Prime Pro Edition
synthesis (quartus_syn) executable, use the following format:

quartus_syn <PROJECT_NAME> --set=VERILOG_MACRO=a=2

This command adds the following new line to the project .qsf file:

set_global_assignment -name VERILOG_MACRO "a=2"

To avoid adding this line to the project .qsf, add this option to the quartus_syn
command:

--write_settings_files=off

6.8.2 VHDL Synthesis Support

Intel Quartus Prime synthesis supports the following VHDL language standards.

• VHDL 1987 (IEEE Standard 1076-1987)

• VHDL 1993 (IEEE Standard 1076-1993)

• VHDL 2008 (IEEE Standard 1076-2008)

The Intel Quartus Prime Compiler uses the VHDL 1993 standard by default for files
that have the extension .vhdl or .vhd.

Note: The VHDL code samples follow the VHDL 1993 standard.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
227

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409959856901
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958382198

Related Links

Migrating to Quartus Prime Pro Edition

6.8.2.1 VHDL Input Settings (Settings Dialog Box)

Click Assignments ➤ Settings ➤ VHDL Input to specify options for the synthesis of
VHDL input files.

Table 46. VHDL Input Settings

Setting Description

VHDL Version Specifies the VHDL standard for use during synthesis of VHDL input design files. Select
the language standards that corresponds with the VHDL files.

Library Mapping File Specifies a Library Mapping File (.lmf) for use in synthesizing VHDL files that contain
IP cores. Specify the full path name of the LMF in the File name box.

Figure 97. VHDL Input Settings Dialog Box

6.8.2.2 VHDL Standard Libraries and Packages

The Intel Quartus Prime software includes the standard IEEE libraries and several
vendor-specific VHDL libraries. The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, numeric_bit, and math_real.

The STD library is part of the VHDL language standard and includes the packages
standard (included in every project by default) and textio. For compatibility with
older designs, the Intel Quartus Prime software also supports the following vendor-
specific packages and libraries:

• Synopsys packages such as std_logic_arith and std_logic_unsigned in
the IEEE library.

• Mentor Graphics* packages such as std_logic_arith in the ARITHMETIC
library.

• Primitive packages altera_primitives_components (for primitives such as
GLOBAL and DFFE) and maxplus2 in the ALTERA library.

• IP core packages altera_mf_components in the ALTERA_MF library for specific
IP cores including LCELL. In addition, lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

Note: Import component declarations for primitives such as GLOBAL and DFFE from the
altera_primitives_components package and not the altera_mf_components
package.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
228

https://www.altera.com/documentation/jbr1437426657605.html#jbr1442806931610

6.8.2.3 VHDL wait Constructs

The Intel Quartus Prime software supports one VHDL wait until statement per
process block. However, the Intel Quartus Prime software does not support other
VHDL wait constructs, such as wait for and wait on statements, or processes with
multiple wait statements.

Example 67. VHDL wait until construct example

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;

6.9 Synthesis Settings Reference

This section provides a reference to all synthesis settings. Use these settings to
customize synthesis processing for your design goals.

6.9.1 Optimization Modes

The following options direct the focus of Compiler optimization efforts during
synthesis. The settings affect synthesis and fitting.

Table 47. Optimization Modes (Compiler Settings Page)

Optimization Mode Description

Balanced (Normal Flow) Optimizes synthesis for balanced implementation that respects timing constraints.

Performance (High effort -
increases runtime)

Makes high effort to optimize synthesis for speed performance. High effort increases
synthesis run time.

Performance (Aggressive -
increases runtime and area)

Makes aggressive effort to optimize synthesis for speed performance. Aggressive effort
increases synthesis run time and device resource use.

Power (High effort - increases
runtime)

Makes high effort to optimize synthesis for low power. High effort increases synthesis
run time.

Power (Aggressive -
increases runtime, reduces
performance)

Makes aggressive effort to optimize synthesis for low power. Aggressive effort
increases synthesis time and reduces speed performance.

Area (Aggressive - reduces
performance)

Makes aggressive effort to reduce the device area required to implement the design.

6.9.2 Prevent Register Retiming

The Prevent Register Retiming option controls whether or not to globally disable
retiming. When set to disabled, the Compiler automatically performs register
retiming optimizations, moving registers through combinational logic. When set to
enabled, the Compiler prevents any retiming optimizations on a global scale.
Optionally, assign Allow Register Retiming to any design entity or instance to
override Prevent Register Retiming for specific portions of the design. Click
Assignments ➤ Assignment Editor to specify entity- and instance-level
assignments, or use the following syntax to make the assignment in the .qsf directly.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
229

Example 68. Disable register retiming for entity abc

set_global_assignment –name ALLOW_REGISTER_RETIMING ON

set_instance_assignment –name ALLOW_REGISTER_RETIMING OFF –to “abc|”

set_instance_assignment –name ALLOW_REGISTER_RETIMING ON –to “abc|def|”

Example 69. Disable register retiming for the whole design, except for registers in entity
abc

set_global_assignment –name ALLOW_REGISTER_RETIMING OFF

set_instance_assignment –name ALLOW_REGISTER_RETIMING ON –to “abc|”

set_instance_assignment –name ALLOW_REGISTER_RETIMING OFF –to “abc|def|”

6.9.3 Advanced Synthesis Settings

The following section is a quick reference of all Advanced Synthesis Settings. Click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis) to modify these settings.

Table 48. Advanced Synthesis Settings (1 of 13)

Option Description

Allow Any RAM Size for
Recognition

Allows the Compiler to infer RAMs of any size, even if the RAMs do not meet the current
minimum requirements.

Allow Any ROM Size for
Recognition

Allows the Compiler to infer ROMs of any size even if the ROMs do not meet the design's
current minimum size requirements.

Allow Any Shift Register
Size for Recognition

Allows the Compiler to infer shift registers of any size even if they do not meet the
design's current minimum size requirements.

Allow Register Duplication Controls whether the Compiler duplicates registers to improve design performance.
When enabled, the Compiler performs optimization that creates a second copy of a
register and move a portion of its fan-out to this new node. This technique improves
routability and reduces the total routing wire required to route a net with many fan-
outs. If you disable this option, retiming of registers is also disabled.
Note: Not available for Intel Stratix 10 devices.

Allow Register Merging Controls whether the Compiler removes (merges) identical registers. When enabled, in
cases where two registers generate the same logic, the Compiler may delete one
register and fan-out the remaining register to the deleted register's destinations. This
option is useful if you want to prevent the Compiler from removing duplicate registers
that you have used deliberately. When disabled, retiming optimizations are also
disabled.
Note: Not available for Intel Stratix 10 devices.

Allow Shift Register Merging
Across Hierarchies

Allows the Compiler to take shift registers from different hierarchies of the design and
put the registers in the same RAM.

Allow Synchronous Control
Signals

Allows the Compiler to utilize synchronous clear and synchronous load signals in normal
mode logic cells. Turning on this option helps to reduce the total number of logic cells
used in the design, but can negatively impact the fitting. This negative impact occurs
because all the logic cells in a LAB share synchronous control signals.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
230

Table 49. Advanced Synthesis Settings (2 of 13)

Option Description

Analysis & Synthesis
Message Level

Specifies the type of Analysis & Synthesis messages the Compiler display. Low displays
only the most important Analysis & Synthesis messages. Medium displays most
messages, but hides the detailed messages. High displays all messages.

Auto Carry Chains Allows the Compiler to create carry chains automatically by inserting CARRY_SUM buffers
into the design. The Carry Chain Length option controls the length of the chains. When
this option is off, the Compiler ignores CARRY buffers, but CARRY_SUM buffers are
unaffected. The Compiler ignores the Auto Carry Chains option if you select Product
Term or ROM as the setting for the Technology Mapper option.
Note: Not available for Intel Stratix 10 devices.

Auto Clock Enable
Replacement

Allows the Compiler to locate logic that feeds a register and move the logic to the
register's clock enable input port.

Auto DSP Block
Replacement

Allows the Compiler to find a multiply-accumulate function or a multiply-add function
that can be replaced with a DSP block.

Auto Gated Clock Conversion Automatically converts gated clocks to use clock enable pins. Clock gating logic can
contain AND, OR, MUX, and NOT gates. Turning on this option may increase memory use
and overall run time. You must use the Timing Analyzer for timing analysis, and you
must define all base clocks in Synopsys Design Constraints (.sdc) format.

Table 50. Advanced Synthesis Settings (3 of 13)

Option Description

Auto Open-Drain Pins Allows the Compiler to automatically convert a tri-state buffer with a strong low data
input into the equivalent open-drain buffer.

Auto RAM Replacement Allows the Compiler to identify sets of registers and logic that it can replace with the
altsyncram or the lpm_ram_dp IP core. Turning on this option may change the
functionality of the design.

Auto ROM Replacement Allows the Compiler to identify logic that it can replace with the altsyncram or the
lpm_rom IP core. Turning on this option may change the power-up state of the design.

Auto Resource Sharing Allows the Compiler to share hardware resources among many similar, but mutually
exclusive, operations in your HDL source code. If you enable this option, the Compiler
merges compatible addition, subtraction, and multiplication operations. Merging
operations may reduce the area your design requires. Because resource sharing
introduces extra muxing and control logic on each shared resource, it may negatively
impact the final fMAX of your design.

Auto Shift Register
Placement

Allows the Compiler to find a group of shift registers of the same length that are
replaceable with the altshift_taps IP core. The shift registers must all use the same clock
and clock enable signals. The registers must not have any other secondary signals. The
registers must have equally spaced taps that are at least three registers apart.

Automatic Parallel Synthesis Option to enable/disable automatic parallel synthesis. Use this option to speed up
synthesis compile time by using multiple processors when available.

Table 51. Advanced Synthesis Settings (4 of 13)

Option Description

Block Design Naming Specifies the naming scheme for the block design. The Compiler ignores the option if
you assign the option to anything other than a design entity.

Carry Chain Length Specifies the maximum allowable length of a chain for CARRY_SUM buffers, including
those that you or the Compiler instantiate. The Compiler breaks carry chains that
exceed this length into separate chains.
Note: Not available for Intel Stratix 10 devices.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
231

Option Description

Clock MUX Protection Causes the multiplexers in the clock network to decompose to 2-to-1 multiplexer trees.
The Compiler protects these trees from merging with, or transferring to, other logic. This
option helps the Timing Analyzer to analyze clock behavior.

Create Debugging Nodes for
IP Cores

Makes certain nodes (for example, important registers, pins, and state machines) visible
for all the IP cores in a design. Use IP core nodes to effectively debug the IP core. This
technique is effective when using the IP core with the Signal Tap Logic Analyzer. The
Node Finder, using Signal Tap Logic Analyzer filters, displays all the nodes that Analysis
& Synthesis makes visible. When making the debugging nodes visible, Analysis &
Synthesis can change the fMAX and number of logic cells in IP cores.

DSP Block Balancing Allows you to control the conversion of certain DSP block slices during DSP block
balancing.

Table 52. Advanced Synthesis Settings (5 of 13)

Option Description

Disable DSP Negate
Inferencing

Allows you to specify whether to use the negate port on an inferred DSP block.

Disable Register Merging
Across Hierarchies

Specifies whether the Compiler allows merging of registers that are in different
hierarchies if their inputs are the same.

Enable State Machines
Inference

Allows the Compiler to infer state machines from VHDL or Verilog HDL design files. The
Compiler optimizes state machines to reduce area and improve performance. If set to
Off, the Compiler extracts and optimizes state machines in VHDL or Verilog HDL design
files as regular logic.

Force Use of Synchronous
Clear Signals

Forces the Compiler to utilize synchronous clear signals in normal mode logic cells.
Enabling this option helps to reduce the total number of logic cells in the design, but can
negatively impact the fitting. All the logic cells in a LAB share synchronous control
signals.

HDL Message Level Specifies the type of HDL messages you want to view, including messages that display
processing errors in the HDL source code. Level1 displays only the most important HDL
messages. Level2 displays most HDL messages, including warning and information
based messages. Level3 displays all HDL messages, including warning and information
based messages and alerts about potential design problems or lint errors.

Ignore CARRY Buffers Ignores CARRY_SUM buffers in the design. The Compiler ignores this option if you apply
the option to anything other than an individual CARRY_SUM buffer, or to a design entity
containing CARRY_SUM buffers.

Ignore CASCADE Buffers Ignores CASCADE buffers that are instantiated in the design. The Compiler ignores this
option if you apply the option to anything other than an individual CASCADE buffer, or a
design entity containing CASCADE buffers.

Table 53. Advanced Synthesis Settings (6 of 13)

Option Description

Ignore GLOBAL Buffers Ignores GLOBAL buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual GLOBAL buffer, or a design entity containing
GLOBAL buffers.

Ignore LCELL Buffers Ignores LCELL buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual LCELL buffer, or a design entity containing
LCELL buffers.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
232

Option Description

Ignore Maximum Fan-Out
Assignments

Directs the Compiler to ignore the Maximum Fan-Out Assignments on a node, an entity,
or the whole design.

Ignore ROW GLOBAL Buffers Ignores ROW GLOBAL buffers in the design. The Compiler ignores this option if you apply
the option to anything other than an individual GLOBAL buffer or a design entity
containing GLOBAL buffers.

Ignore SOFT Buffers Ignores SOFT buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual SOFT buffer or a design entity containing
SOFT buffers.

Table 54. Advanced Synthesis Settings (7 of 13)

Option Description

Ignore translate_off and
synthesis_off Directives

Ignores all translate_off/synthesis_off synthesis directives in Verilog HDL and
VHDL design files. Use this option to disable these synthesis directives and include
previously ignored code during elaboration.

Infer RAMs from Raw Logic Infers RAM from registers and multiplexers. The Compiler initially converts some HDL
patterns differing from RAM templates into logic. However, these structures function as
RAM. As a result, when you enable this option, the Compiler may substitute the
altsyncram IP core instance for them at a later stage. When you enable this assignment,
the Compiler may use more device RAM resources and fewer LABs.

Iteration Limit for Constant
Verilog Loops

Defines the iteration limit for Verilog loops with loop conditions that evaluate to compile-
time constants on each loop iteration. This limit exists primarily to identify potential
infinite loops before they exhaust memory or trap the software in an actual infinite loop.

Iteration Limit for non-
Constant Verilog Loops

Defines the iteration limit for Verilog HDL loops with loop conditions that do not evaluate
to compile-time constants on each loop iteration. This limit exists primarily to identify
potential infinite loops before they exhaust memory or trap the software in an actual
infinite loop.

Table 55. Advanced Synthesis Settings (8 of 13)

Option Description

Limit AHDL integers to 32
Bits

Specifies whether an AHDL-based design must have a limit on integer size of 32 bits.
The Compiler provides this option for backward compatibility with pre-2000.09 releases
of the Intel Quartus Prime software. Such registers do not support integers larger than
32 bits in AHDL.

Maximum DSP Block Usage Specifies the maximum number of DSP blocks that the DSP block balancer assumes
exist in the current device for each partition. This option overrides the usual method of
using the maximum number of DSP blocks the current device supports.

Maximum Number of LABs Specifies the maximum number of LABs that Analysis & Synthesis should try to utilize
for a device. This option overrides the usual method of using the maximum number of
LABs the current device supports, when the value is non-negative and is less than the
maximum number of LABs available on the current device.

Maximum Number of
M4K/M9K/M20K/M10K
Memory Blocks

Specifies the maximum number of M4K, M9K, M20K, or M10K memory blocks that the
Compiler may use for a device. This option overrides the usual method of using the
maximum number of M4K, M9K, M20K, or M10K memory blocks the current device
supports, when the value is non-negative and is less than the maximum number of M4K,
M9K, M20K, or M10K memory blocks available on the current device.

Table 56. Advanced Synthesis Settings (9 of 13)

Option Description

Maximum Number of
Registers Created from
Uninferred RAMs

Specifies the maximum number of registers that Analysis & Synthesis uses for
conversion of uninferred RAMs. Use this option as a project-wide option or on a specific
partition by setting the assignment on the instance name of the partition root. The
assignment on a partition overrides the global assignment (if any) for that particular

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
233

Option Description

partition. This option prevents synthesis from causing long compilations and running out
of memory when many registers are used for uninferred RAMs. Instead of continuing the
compilation, the Intel Quartus Prime software issues an error and exits.

NOT Gate Push-Back Allows the Compiler to push an inversion (that is, a NOT gate) back through a register
and implement it on that register's data input if it is necessary to implement the design.
When this option is on, a register may power-up to an active-high state, and may need
explicit clear during initial operation of the device. The Compiler ignores this option if
you apply it to anything other than an individual register or a design entity containing
registers. When you apply this option to an output pin that is directly fed by a register,
the assignment automatically transfers to that register.

Number of Inverted
Registers Reported in
Synthesis Report

Specifies the maximum number of inverted registers that the Synthesis report displays.

Number of Protected
Registers Reported in
Synthesis Report

Specifies the maximum number of protected registers that the Synthesis Report
displays.

Number of Removed
Registers Reported in
Synthesis Migration Checks

Specifies the maximum number of rows that the Synthesis Migration Check report
displays.

Number of Swept Nodes
Reported in Synthesis
Report

Specifies the maximum number of swept nodes that the Synthesis Report displays. A
swept node is any node which was eliminated from your design because the Compiler
found the node to be unnecessary.

Number of Rows Reported in
Synthesis Report

Specifies the maximum number of rows that the Synthesis report displays.
Note: Not available for Intel Stratix 10 devices.

Optimization Technique Specifies an overall optimization goal for Analysis & Synthesis. The Compiler can
maximize synthesis processing for performance, minimize logic usage, or balance high
performance with minimal logic usage.

Table 57. Advanced Synthesis Settings (10 of 13)

Option Description

Perform WYSIWYG Primitive
Resynthesis

Specifies whether to perform WYSIWYG primitive resynthesis during synthesis. This
option uses the setting specified in the Optimization Technique logic option.

Power-Up Don't Care Causes registers that do not have a Power-Up Level logic option setting to power-up
with a do not care logic level (X). When the Power-Up Don't Care option is on, the
Compiler determines when it is beneficial to change the power-up level of a register to
minimize the area of the design. The Compiler maintains a power-up state of zero,
unless there is an immediate area advantage.

Power Optimization During
Synthesis

Controls the power-driven compilation setting of Analysis & Synthesis. This option
determines how aggressively Analysis & Synthesis optimizes the design for power. When
this option is Off, the Compiler does not perform any power optimizations. Normal
compilation performs power optimizations provided that they are not expected to
reduce design performance. Extra effort performs additional power optimizations which
may reduce design performance.

Table 58. Advanced Synthesis Settings (11 of 13)

Option Description

Remove Duplicate Registers Removes a register if it is identical to another register. If two registers generate the
same logic, the Compiler deletes the duplicate. The first instance fans-out to the
duplicates destinations. Also, if the deleted register contains different logic option
assignments, the Compiler ignores the options. This option is useful if you want to

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
234

Option Description

prevent the Compiler from removing intentionally duplicate registers. The Compiler
ignores this option if you apply it to anything other than an individual register or a
design entity containing registers.

Remove Redundant Logic
Cells

Removes redundant LCELL primitives or WYSIWYG primitives. Turning this option on
optimizes a circuit for area and speed. The Compiler ignores this option if you apply it to
anything other than a design entity.

Report Connectivity Checks Specifies whether the Synthesis report includes reports under the Connectivity Checks
folder.
Note: Not available for Intel Stratix 10 devices.

Report Parameter Settings Specifies whether the Synthesis report includes the reports in the Parameter Settings
by Entity Instance folder.

Report Source Assignments Specifies whether the Synthesis report includes reports in the Source Assignments
folder.

Table 59. Advanced Synthesis Settings (12 of 13)

Option Description

Resource Aware Inference
for Block RAM

Specifies whether RAM, ROM, and shift-register inference should take the design and
device resources into account.

Restructure Multiplexers Reduces the number of logic elements synthesis requires to implement multiplexers in a
design. This option is useful if your design contains buses of fragmented multiplexers.
This option repacks multiplexers more efficiently for area, allowing the design to
implement multiplexers with a reduced number of logic elements:
• On—minimizes your design area, but may negatively affect design clock speed

(fMAX).
• Off—disables multiplexer restructuring; it does not decrease logic element usage and

does not affect design clock speed (fMAX).
• Auto—allows the Intel Quartus Prime software to determine whether multiplexer

restructuring should be enabled. The Auto setting decreases logic element usage,
but may negatively affect design clock speed (fMAX).

SDC Constraint Protection Verifies.sdc constraints in register merging. This option helps to maintain the validity
of .sdc constraints through compilation.

Safe State Machine Directs the Compiler to implement state machines that can recover from an illegal state.

Shift Register Replacement
– Allow Asynchronous Clear
Signal

Allows the Compiler to find a group of shift registers of the same length that can be
replaced with the altshift_taps IP core. The shift registers must all use the same aclr
signals, must not have any other secondary signals, and must have equally spaced taps
that are at least three registers apart. To use this option, you must turn on the Auto
Shift Register Replacement logic option.

Table 60. Advanced Synthesis Settings (13 of 13)

Option Description

State Machine Processing Specifies the processing style the Compiler uses to process a state machine. You can use
your own User-Encoded style, or select One-Hot, Minimal Bits, Gray, Johnson,
Sequential, or Auto (Compiler-selected) encoding.

Strict RAM Replacement When this option is On, the Compiler replace RAM only if the hardware matches the
design exactly.

Synchronization Register
Chain Length

Specifies the maximum number of registers in a row that the Compiler considers as a
synchronization chain. Synchronization chains are sequences of registers with the same
clock and no fan-out in between, such that the first register is fed by a pin, or by logic in
another clock domain. The Compiler considers these registers for metastability analysis.
The Compiler prevents optimizations of these registers, such as retiming. When gate-
level retiming is enabled, the Compiler does not remove these registers. The default
length is set to two.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
235

Option Description

Synthesis Effort Controls the synthesis trade-off between compilation speed, performance, and area. The
default is Auto. You can select Fast for faster compilation speed at the cost of
performance and area.

Synthesis Migration Check
for Stratix 10

Enables synthesis checks on Intel Arria 10 to Intel Stratix 10 design migration.

Timing-Driven Synthesis Allows synthesis to use timing information to better optimize the design. The Timing-
Driven Synthesis logic option impacts the following Optimization Technique options:
• Optimization Technique Speed—optimizes timing-critical portions of your design

for performance at the cost of increasing area (logic and register utilization)
• Optimization Technique Balanced—also optimizes the timing-critical portions of

your design for performance, but the option allows only limited area increase
• Optimization Technique Area—optimizes your design only for area

6.10 Fitter Settings Reference

Use Fitter settings to customize the place and route of your design. Click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter) to
access Fitter settings.

Table 61. Advanced Fitter Settings (1 of 8)

Option Description

ALM Register Packing Effort Guides aggressiveness of the Fitter in packing ALMs during register placement. Use this
option to increase secondary register locations. Increasing ALM packing density may
lower the number of ALMs needed to fit the design, but it may also reduce routing
flexibility and timing performance.
• Low—the Fitter avoids ALM packing configurations that combine LUTs and registers

which have no direct connectivity. Avoiding these configurations may improve timing
performance but increases the number of ALMs to implement the design.

• Medium—the Fitter allows some configurations that combine unconnected LUTs and
registers to be implemented in ALM locations. The Fitter makes more use of
secondary register locations within the ALM.

• High—the Fitter enables all legal and desired ALM packing configurations. In dense
designs, the Fitter automatically increases the ALM register packing effort as required
to enable the design to fit.

Allow Register Duplication Allows the Compiler to duplicate registers to improve design performance. When you
enable this option, the Compiler copies registers and moves some fan-out to this new
node. This optimization improves routability and can reduce the total routing wire in nets
with many fan-outs. If you disable this option, this disables optimizations that retime
registers.
Note: Not available for Intel Stratix 10 devices.

Allow Register Merging Allows the Compiler to remove registers that are identical to other registers in the
design. When you enable this option, in cases where two registers generate the same
logic, the Compiler deletes one register, and the remaining registers fan-out to the
deleted register's destinations. This option is useful if you want to prevent the Compiler
from removing intentional use of duplicate registers.
If you disable register merging, the Compiler disables optimizations that retime registers.
Note: Not available for Intel Stratix 10 devices.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
236

Option Description

Allow Delay Chains Allows the Fitter to choose the optimal delay chain to meet tSU and tCO timing
requirements for all I/O elements. Enabling this option may reduce the number of tSU
violations, while introducing a minimal number of tH violations. Enabling this option does
not override delay chain settings on individual nodes.

Auto Delay Chains for High
Fanout Input Pins

Allows the Fitter to choose how to optimize the delay chains for high fan-out input pins.
You must enable Auto Delay Chains to enable this option. Enabling this option may
reduce the number of tSU violations, but the compile time increases significantly, as the
Fitter tries to optimize the settings for all fan-outs.

Auto Fit Effort Desired Slack
Margin

Specifies the default worst-case slack margin the Fitter maintains for. If the design is
likely to have at least this much slack on every path, the Fitter reduces optimization
effort to reduce compilation time.

Table 62. Advanced Fitter Settings (2 of 8)

Option Description

Auto Global Clock Allows the Compiler to choose the global clock signal. The Compiler chooses the signal
that feeds the most clock inputs to flip-flops. This signal is available throughout the
device on the global routing paths. To prevent the Compiler from automatically selecting
a particular signal as global clock, set the Global Signal option to Off on that signal.

Auto Global Register
Control Signals

Allows the Compiler to choose global register control signals. The Compiler chooses
signals that feed the most control signal inputs to flip-flops (excluding clock signals) as
the global signals. These global signals are available throughout the device on the global
routing paths. Depending on the target device family, these control signals can include
asynchronous clear and load, synchronous clear and load, clock enable, and preset
signals. If you want to prevent the Compiler from automatically selecting a particular
signal as a global register control signal, set the Global Signal option to Off on that
signal.

Auto Packed Registers Allows the Compiler to combine a register and a combinational function, or to implement
registers using I/O cells, RAM blocks, or DSP blocks instead of logic cells. This option
controls how aggressively the Fitter combines registers with other function blocks to
reduce the area of the design. Generally, the Auto or Sparse Auto settings are
appropriate.
The other settings limit the flexibility of the Fitter to combine registers with other
function blocks and can result in no fits.
• Auto—the Fitter attempts to achieve the best performance with good area. If

necessary, the Fitter combines additional logic to reduce the area of the design to
within the current device.

• Sparse Auto—the Fitter attempts to achieve the highest performance, but may
increase device usage without exceeding the device logic capacity.

• Off—the Fitter does not combine registers with other functions. The Off setting
severely increases the area of the design and may cause a no fit.

• Sparse—the Fitter combines functions in a way which improves performance for
many designs.

• Normal—the Fitter combines functions that are expected to maximize design
performance and reduce area.

• Minimize Area—the Fitter aggressively combines unrelated functions to reduce the
area required for placing the design, at the expense of performance.

• Minimize Area with Chains—the Fitter even more aggressively combines functions
that are part of register cascade chains or can be converted to register cascade
chains.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
237

Option Description

If this option is set to any value but Off, registers combine with I/O cells to improve I/O
timing. This remains true provided that the Optimize IOC Register Placement For
Timing option is enabled.

Auto RAM to MLAB
Conversion

Specifies whether the Fitter converts RAMs of Auto block type to use LAB locations. If
this option is set to Off, only MLAB cells or RAM cells with a block type setting of MLAB
use LAB locations to implement memory.

Auto Register Duplication Allows the Fitter to automatically duplicate registers within a LAB that contains empty
logic cells. This option does not alter the functionality of the design. The Compiler
ignores the Auto Register Duplication option if you select OFF as the setting for the
Logic Cell Insertion -- Logic Duplication logic option. Turning on this option allows
the Logic Cell Insertion -- Logic Duplication logic option to improve a design's
routability, but can make formal verification of a design more difficult.

Table 63. Advanced Fitter Settings (3 of 8)

Option Description

Enable Bus-Hold Circuitry Enables bus-hold circuitry during device operation. When this option is On, a pin retains
its last logic level when it is not driven, and does not go to a high impedance logic level.
Do not use this option at the same time as the Weak Pull-Up Resistor option. The
Compiler ignores this option if you apply it to anything other than a pin.

Enable Critical Chain
Viewer

For Intel Stratix 10 designs, enables location to the Critical Chain Viewer from the Fast
Forward Timing Closure Recommendations report. Use the Critical Chain Viewer to
visualize the critical chains limiting further performance improvement.

Equivalent RAM and MLAB
Paused Read Capabilities

Specifies whether RAMs implemented in MLAB cells must have equivalent paused read
capabilities as RAMs implemented in block RAM. Pausing a read is the ability to keep
around the last read value when reading is disabled. Allowing differences in paused read
capabilities provides the Fitter more flexibility in implementing RAMs using MLAB cells.
To allow the Fitter the most flexibility in deciding which RAMs are implemented using
MLAB cells, set this option to Don't Care. The following options are available:
• Don't Care—the Fitter can convert RAMs to MLAB cells, even if they do not have

equivalent paused read capabilities to a block RAM implementation. The Fitter
generates an information message about RAMs with different paused read capabilities.

• Care—the Fitter does not convert RAMs to MLAB cells unless they have the equivalent
paused read capabilities to a block RAM implementation.

Equivalent RAM and MLAB
Power Up

Specifies whether RAMs implemented in MLAB cells must have equivalent power-up
conditions as RAMs implemented in block RAM. Power-up conditions occur when the
device powers-up or globally resets. Allowing non-equivalent power-up conditions
provides the Fitter more flexibility in implementing RAMs using MLAB cells.
To allow the Fitter the most flexibility in deciding which RAMs are implemented using
MLAB cells, set this option to Auto or Don't Care. The following options are available:
• Auto—the Fitter may convert RAMs to MLAB cells, even if the MLAB cells lack

equivalent power-up conditions to a block RAM implementation. The Fitter also
outputs a warning message about RAMs with non-equivalent power up conditions.

• Don't Care—the same behavior as Auto applies, but the message is an information
message.

• Care—the Fitter does not convert RAMs to MLAB cells unless they have equivalent
power up conditions to a block RAM implementation.

Final Placement
Optimizations

Specifies whether the Fitter performs final placement optimizations. Performing final
placement optimizations may improve timing and routability, but may also require longer
compilation time.

Fitter Aggressive
Routability Optimizations

Specifies whether the Fitter aggressively optimizes for routability. Performing aggressive
routability optimizations may decrease design speed, but may also reduce routing wire
usage and routing time. The Automatically setting allows the Fitter to decide whether
aggressive routability is beneficial.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
238

Table 64. Advanced Fitter Settings (4 of 8)

Option Description

Fitter Effort Specifies the level of physical synthesis optimization during fitting:
• Auto—adjusts the Fitter optimization effort to minimize compilation time, while still

achieving the design timing requirements. Use the Auto Fit Effort Desired Slack
Margin option to apply sufficient optimization effort to achieve additional timing
margin.

• Standard—uses maximum effort regardless of the design's requirements, leading to
higher compilation time and more margin on easier designs. For difficult designs, Auto
and Standard both use maximum effort.

Fitter Initial Placement
Seed

Specifies the seed for the current design. The value can be any non-negative integer
value. By default, the Fitter uses a seed of 1.
The Fitter uses the seed as the initial placement configuration when optimizing design
placement to meet timing requirements fMAX. Because each different seed value results in
a somewhat different fit, you can try several different seeds to attempt to obtain superior
fitting results.
The seeds that lead to the best fits for a design may change if the design changes. Also,
changing the seed may or may not result in a better fit. Therefore, specify a seed only if
the Fitter is not meeting timing requirements by a small amount.
Note: You can also use the Design Space Explorer II (DSEII) to sweep complex flow

parameters, including the seed, in the Intel Quartus Prime software to optimize
design performance.

Logic Cell Insertion Allows the Fitter to automatically insert buffer logic cells between two nodes without
altering the functionality of the design. The Compiler creates buffer logic cells from unused
logic cells in the device. This option also allows the Fitter to duplicate a logic cell within a
LAB when there are unused logic cells available in a LAB. Using this option can increase
compilation time. The default setting of Auto allows these operations to run when the
design requires them to fit the design.

MLAB Add Timing
Constraints for Mixed-Port
Feed-Through Mode
Setting Don't Care

Specifies whether the Timing Analyzer evaluates timing constraints between the write and
the read operations of the MLAB memory block. Performing a write and read operation
simultaneously at the same address might result in metastability issues because no timing
constraints between those operations exist by default. Turning on this option introduces
timing constraints between the write and read operations on the MLAB memory block and
thereby avoids metastability issues. However, turning on this option degrades the
performance of the MLAB memory blocks. If your design does not perform write and read
operations simultaneously at the same address, you do not need to set this option.

Table 65. Advanced Fitter Settings (5 of 8)

Option Description

Optimize Design for
Metastability

This setting improves the reliability of the design by increasing its Mean Time Between
Failures (MTBF). When you enable this setting, the Fitter increases the output setup slacks
of synchronizer registers in the design. This slack can exponentially increase the design
MTBF. This option only applies when using the Timing Analyzer for timing-driven
compilation. Use the Timing Analyzer report_metastability command to review the
synchronizers detected in your design and to produce MTBF estimates.

Optimize Hold Timing Directs the Fitter to optimize hold time within a device to meet timing requirements and
assignments. The following settings are available:
• I/O Paths and Minimum TPD Paths—directs the Fitter to meet the following timing

requirements and assignments:
— tH from I/O pins to registers.
— Minimum tCO from registers to I/O pins.
— Minimum tPD from I/O pins or registers to I/O pins or registers.

• All Paths—directs the Fitter to meet the following timing requirements and
assignments:
— tH from I/O pins to registers.
— Minimum tCO from registers to I/O pins.
— Minimum tPD from I/O pins or registers to I/O pins or registers.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
239

Option Description

When you disable the Optimize Timing logic option, the Optimize Hold Timing option is
not available.

Optimize IOC Register
Placement for Timing

Specifies whether the Fitter optimizes I/O pin timing by automatically packing registers into
I/Os to minimize delays.
• Normal—the Fitter opportunistically packs registers into I/Os that should improve I/O

timing.
• Pack All I/O Registers— the Fitter aggressively packs any registers connected to

input, output, or output enable pins into I/Os, unless prevented by your constraints or
other legality restrictions.

• Off—performs no periphery to core optimization.

Optimize Multi-Corner
Timing

Directs the Fitter to consider all timing corners during optimization to meet timing
requirements. These timing delay corners include both fast-corner timing and slow-corner
timing. By default, this option is On, and the Fitter optimizes designs considering multi-
corner delays in addition to slow-corner delays. When this option is Off, the Fitter
optimizes designs considering only slow-corner delays from the slow-corner timing model
(slowest manufactured device for a given speed grade, operating in low-voltage
conditions). Turning this option On typically creates a more robust design implementation
across process, temperature, and voltage variations.
When you turn Off the Optimize Timing option, the Optimize Multi-Corner Timing
option is not available.

Optimize Timing Specifies whether the Fitter optimizes to meet the maximum delay timing requirements
(for example, clock cycle time). By default, this option is set to Normal compilation.
Turning this option Off helps fit designs that with extremely high interconnect
requirements. Turning this option Off can also reduce compilation time at the expense of
timing performance (because the Fitter ignores the design's timing requirements). If this
option is Off, other Fitter timing optimization options have no effect (such as Optimize
Hold Timing).

Table 66. Advanced Fitter Settings (6 of 8)

Option Description

Optimize Timing for ECOs Controls whether the Fitter optimizes to meet your maximum delay timing requirements
(for example, clock cycle time, tSU, tCO) during ECO compiles. By default, this option is set
to Off. Turning it On can improve timing performance at the cost of compilation time.

Perform Clocking
Topology Analysis During
Routing

Directs the Fitter to perform an analysis of the design's clocking topology and adjust the
optimization approach on paths with significant clock skew. Enabling this option may
improve hold timing at the cost of increased compile time.

Periphery to Core
Placement and Routing
Optimization

Specifies whether the Fitter should perform targeted placement and routing optimization on
direct connections between periphery logic and registers in the FPGA core. The following
options are available:
• Auto—the Fitter automatically identifies transfers with tight timing windows, places the

core registers, and routes all connections to or from the periphery. The Fitter performs
these placement and routing decisions before the rest of core placement and routing.
This sequence ensures that these timing-critical connections meet timing, and also
avoids routing congestion.

• On— the Fitter optimizes all transfers between the periphery and core registers,
regardless of timing requirements. Do not set this option to On globally. Instead, use
the Assignment Editor to assign optimization to a targeted set of nodes or entities.

• Off—the Fitter performs no periphery to core optimization.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
240

Option Description

Physical Synthesis Increases circuit performance by performing combinational and sequential optimization
during fitting.

Placement Effort
Multiplier

Specifies the relative time the Fitter spends in placement. The default value is 1.0, and legal
values must be greater than 0. Specifying a floating-point number allows you to control the
placement effort. A higher value increases CPU time but may improve placement quality.
For example, a value of '4' increases fitting time by approximately 2 to 4 times but may
increase quality.

Power Optimization
During Fitting

Directs the Fitter to perform optimizations targeted at reducing the total power devices
consume. The available settings for power-optimized fitting are:
• Off—performs no power optimizations.
• Normal compilation—performs power optimizations that are unlikely to adversely

affect compilation time or design performance.
• Extra effort—performs additional power optimizations that might affect design

performance or result in longer compilation time.

Table 67. Advanced Fitter Settings (7 of 8)

Option Description

Programmable Power
Maximum High-Speed
Fraction of Used LAB
Tiles

Sets the upper limit on the fraction of the high-speed LAB tiles. Legal values must be
between 0.0 and 1.0. The default value is 1.0. A value of 1.0 means that there is no
restriction on the number of high-speed tiles, and the Fitter uses the minimum number
needed to meet the timing requirements of your design. Specifying a value lower than 1.0
might degrade timing quality, because some timing critical resources might be forced into
low-power mode.

Programmable Power
Technology Optimization

Controls how the Fitter configures tiles to operate in high-speed mode or low-power mode.
The following options are available:
• Automatic—specifies that the Fitter minimizes power without sacrificing timing

performance.
• Minimize Power Only—specifies that the Fitter sets the maximum number of tiles to

operate in low-power mode.
• Force All Used Tiles to High Speed—specifies that the Fitter sets all used tiles to

operate in high-speed mode.
• Force All Tiles with Failing Timing Paths to High Speed—sets all failing paths to

high-speed mode. For designs that meet timing, the behavior of this setting is similar to
the Automatic setting.

For designs that fail timing, all paths with negative slack are put in high-speed mode. This
mode likely does not increase the speed of the design, and it may increase static power
consumption. This mode may assist in determining which logic paths need to be re-designed
to close timing.
Note: Not available for Intel Stratix 10 devices.

Regenerate Full Fit
Reports During ECO
Compiles

Controls whether the Fitter report is regenerated during ECO compilation. By default, this
option is set to Off. Turning it On regenerates the report at the cost of compilation time.

Router Timing
Optimization Level

Controls how aggressively the router tries to meet timing requirements. Setting this option
to Maximum can increase design speed slightly, at the cost of increased compile time.
Setting this option to Minimum can reduce compile time, at the cost of slightly reduced
design speed. The default value is Normal.

Run Early Place during
compilation

Enables the Early Place Fitter stage during full compilation. Turning on this setting may
increase Fitter processing time.

Table 68. Advanced Fitter Settings (8 of 8)

Option Description

Synchronizer
Identification

Specifies how the Compiler identifies synchronization register chain registers for metastability
analysis. A synchronization register chain is a sequence of registers with the same clock with
no fan-out in between, which is driven by a pin or logic from another clock domain.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
241

Option Description

The following options are available:
• Off—the Timing Analyzer does not identify the specified registers, or the registers within

the specified entity, as synchronization registers.
• Auto—the Timing Analyzer identifies valid synchronization registers that are part of a

chain with more than one register that contains no combinational logic. Use the Auto
setting to generate a report of possible synchronization chains in your design.

• Forced if Asynchronous—the Timing Analyzer identifies synchronization register chains
if the software detects an asynchronous signal transfer, even if there is combinational logic
or only one register in the chain.

• Forced—the Timing Analyzer identifies the specified register, or all registers within the
specified entity, as synchronizers. Only apply the Forced option to the entire design.
Otherwise, all registers in the design identify as synchronizers.

The Fitter optimizes the registers that it identifies as synchronizers for improved Mean Time
Between Failure (MTBF), provided that you enable Optimize Design for Metastability.
If a synchronization register chain is identified with the Forced or Forced if Asynchronous
option, then the Timing Analyzer reports the metastability MTBF for the chain when it meets
the design timing requirements.

Treat Bidirectional Pin
as Output Pin

Specifies that the Fitter treats the bidirectional pin as an output pin, meaning that the input
path feeds back from the output path.

Weak Pull-Up Resistor Enables the weak pull-up resistor when the device is operating in user mode. This option pulls
a high-impedance bus signal to VCC. Do not enable this option simultaneously with the
Enable Bus-Hold Circuitry option. The Fitter ignores this option if you apply to anything
other than a pin.

6.11 Document Revision History

This document has the following revision history.

Table 69. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Added support for Intel Stratix 10 Hyper-Aware design flow, Hyper-
Retiming, Fast Forward compilation, and Fast Forward Viewer.

• Added Advanced HyperFlex Settings topic.
• Added Retiming Restrictions and Workarounds topic.
• Added statement about Fast Forward compilation support for

retiming across RAM and DSP blocks.
• Added Concurrent Analysis topic.
• Added Analyzing Fitter Snapshots topic.
• Added Compilation Dashboard Early Place stage control image.
• Added Running late_place After Early Place topic.
• Updated for latest Intel naming conventions.

2017.05.08 17.0.0 • Added reference to initial compilation support for Cyclone 10 GX
devices.

• Described concurrent analysis following Early Place.
• Updated Compilation Dashboard images for Timing Analyzer,

Report, Setting, and Concurrent Analysis controls.
• Updated description for Auto DSP Block Replacement in Advanced

Synthesis Settings.
• Updated Advanced Fitter Settings for Allow Register Retiming, and

for removal of obsolete SSN Optimization option.
• Added Prevent Register Retiming topic.
• Added Preserve Registers During Synthesis topic.
• Removed limitation for Safe State Machine logic option.
• Added references to Partial Reconfiguration and Block-Based Design

Flows.

continued...

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
242

Date Version Changes

2016.10.31 16.1.0 • Implemented Intel re-branding.
• Described Compiler snapshots and added Analyzing Snapshot

Timing topic.
• Updated project directory structure diagram.
• Described new Fitter stage menu commands and reports.
• Added description of Early Place Flow, Implement Flow, and Finalize

Flow.
• Added description of Incremental Optimization in the Fitter.
• Reorganized order of topics in chapter.
• Removed deprecated Per-Stage Compilation (Beta) Compilation

Flow.

2016.05.03 16.0.0 • Added description of Fitter Plan, Place and Route stages, reporting,
and optimization.

• Added Per-Stage Compilation (Beta) Compilation Flow
• Added Compilation Dashboard information.
• Removed support for Safe State Machine logic option. Encode safe

states in RTL.
• Added Generating Dynamic Synthesis Reports topic.
• Updated Quartus project directory structure.

2015.11.02 15.1.0 • First version of document.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

6 Design Compilation

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
243

https://www.altera.com/search-archives

7 Block-Based Design Flows
The Intel Quartus Prime Pro Edition software supports block-based design flows, also
known as modular or hierarchical design flows. These flows enable preservation of
design blocks (or logic that comprises a hierarchical design instance) within a project,
as well as reuse of design blocks in other projects.

You can reuse design blocks with the same periphery interface, share a synthesized
design block with another designer, or replicate placed and routed IP in another
project. Design, implement, and verify core or periphery blocks once, and then reuse
those blocks multiple times across different projects that use the same device.

In block-based design flows, you assign hierarchical instances of logic blocks in the
design as design partitions. The design partition is a logical, named, hierarchical
boundary assignment.

Design Block Reuse

In design block reuse flows, you export a core or root partition for reuse in another
project that targets the same Intel FPGA device. You can share specific compilation
snapshots of the partitions with other projects and designers, such as synthesized,
placed, or final snapshot.

Root partition reuse enables preservation of compilation results for a top-level (or
root) partition that describes the device periphery, along with associated core logic.
Reuse of the periphery allows a board developer to create and optimize a platform
design with device periphery logic once, and then share that root partition with other
board users who create custom core logic. The periphery resources include all the
hardened IP in the device periphery, such as general purpose I/O, PLLs, high-speed
transceivers, PCIe, and external memory interfaces.

Team members can work on different partitions separately, and then bring them
together later, facilitating a team-based design environment. A team lead integrates
the partitions in the system and provides guidance to ensure that each partition uses
the appropriate device resource and achieves design requirements during the full
design integration. A partition Developer initially develops and exports a block as a
partition in one Intel Quartus Prime Developer project. Subsequently, a partition
Consumer reuses the partition in a different Consumer project.(6) To avoid resource
conflicts, floorplanning is essential when reusing placed or routed partitions.

(6) For brevity, this document uses Developer to indicate the person or project that originates a
reusable block, and uses Consumer to indicate the person or project that consumes a reusable
block.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Incremental Block-Based Compilation

The incremental block-based compilation flow enables you to preserve or empty a
partition that contains FPGA core logic. FPGA core resources include LUTs, registers,
memory blocks, and DSP blocks. Core partitions can include only core resources, and
cannot include any periphery resources.

Incremental block-based compilation can improve the predictability of results during
design iterations. You can preserve partitions at the synthesis, placement, or final
snapshot. The preserved partitions remain at the same preservation level in
subsequent compilations. The Compiler modifies only the non-preserved partitions in
the design.

You can target optimization techniques to specific design partitions, while leaving
other partitions unchanged. When you preserve the compilation results for a partition,
the preserved partition database acts as the source for subsequent compilations.

You can use empty partitions to represent parts of your design are incomplete or
missing, while you compile the rest of your design. Setting a partition to Empty can
also reduce the compilation time for the other parts of the design because the
Compiler does not process design logic associated with an empty partition.

Related Links

• Design Compilation

• Creating a Partial Reconfiguration Design

7.1 Block-Based Design Examples

Core Block Reuse Example

In a typical core partition reuse example, a Developer preserves and reuses a core
partition that already meets design requirements, or reuses a core partition that
another Developer designs. The Developer optimizes and preserves the block, and
then the Consumer can simply reuse the block without requiring re-optimization in the
Consumer project.

Figure 98. Core Reuse Example

Core Partition

Developer Design

Reused
Core Partition

Consumer Design

Export Core
Partition

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
245

https://www.altera.com/documentation/jbr1437426657605.html#jbr1443197641054
https://www.altera.com/documentation/jbr1437426657605.html#jka1466533251124

Periphery Reuse Example

In a typical periphery reuse example, a Developer defines a root partition that
includes periphery and core resources that are appropriate for reuse in other projects.
An example of this scenario is a development kit that multiple Developers and projects
can use.

Figure 99. Root Partition Reuse Example

Periphery Reuse
Core Partition

(shell)

Root
Partition

Consumer Project

Export
Root

Partition

Reused
Root

Partition

Developer Project

Periphery Reuse
Core Partition

(Consumer Logic)

In root partition reuse, each project must target the same Intel FPGA part number,
must have the same interfaces, and use the same version of the Intel Quartus Prime
Pro Edition software. The following example shows reuse of an optimized root partition
that contains various periphery interfaces. Only the periphery reuse core partition that
contains custom logic changes between Consumer projects.

Figure 100. Periphery Reuse Example

Periphery Reuse Core

Nios II

10G
Ethernet

10G
Ethernet

Packet
Buffer

Interlaken Interlaken

PCIe DMA

Device Periphery
(root partition)

You can preserve a block with unique characteristics that you want to retain, and then
replicate that functionality or physical implementation in other projects. In the
following figure, a Developer reuses the red-colored partition in the floorplan in
another project shown in green in the floorplan on the right.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
246

Figure 101. IP Replication and Physical Implementation

7.2 Design Partitioning

To use block-based design flows, you must first create design partitions from your
design’s hierarchical instances. The Intel Quartus Prime Compiler then treats the
design partitions separately to allow the block-based functionality.

When you define partitions, every hierarchy within that partition becomes part of the
parent partition. When you create child partitions for hierarchies within an existing
partition, the logic within the new child partition is no longer part of the parent
partition.

By default, every Intel Quartus Prime project includes a single, root partition. The root
partition contains all the periphery resources, and may also include core resources.
When you export the root partition for reuse, the exported partition includes all logic
that you do not include in periphery reuse core partitions. Therefore, to export and
reuse periphery elements, you export the root partition.

Figure 102. Design Partitions in Design Hierarchy
In the following example, instances B and F are designated design partitions. Partition B includes sub-instances
D and E. The root partition contains the top-level instance A and instance C, because C is unassigned to any
partition.

A

B C

D E F

Root Partition

Partition B Partition F

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
247

Design partitions facilitate incremental block-based compilation and design block reuse
by logically separating instances. This logical separation allows the Compiler to
synthesize and optimize each partition separately from the other parts of the design.
The logical separation can also prevent Compiler optimizations across partition
boundaries.

7.2.1 Planning Design Partitions

Block-based design flows require more up-front planning than full flat compilation. For
example, you must structure the source code and design hierarchy to ensure proper
logic grouping for optimization. Implementing the correct logic grouping is easiest
early in the design cycle.

Creating or removing a design partition changes the synthesis and subsequent
physical implementation and quality of results. When planning the design hierarchy, be
aware of the size and scope of each partition, and the possibility of different parts of
the design changing during development. Separate logic that changes frequently from
the fixed parts of the design.

Group design blocks in your design hierarchy so that highly-connected blocks have a
shared level of design hierarchy for assignment to one partition. Structuring your
design hierarchy appropriately reduces the required number of partition boundaries,
and allows maximum optimization within the partition.

The Design Partition Planner (Tools ➤ Design Partition Planner) helps you to
visualize and refine a design's partitioning scheme by showing timing information,
relative connectivity densities, and the physical placement of partitions. You can locate
partitions in other viewers, or modify or delete partitions in the Design Partition
Planner.

Figure 103. Design Partition Planner

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
248

Consider creating each design entity that represents a partition instance in a separate
source file. This approach helps you correlate which partitions require recompilation,
instead of reusing preserved results, when you make source code changes. As you
make design changes, you can designate partitions as empty or preserved to instruct
the Compiler which partitions to recompile from source code, as Creating and
Modifying Design Partitions on page 250 describes.

If your design has timing-critical partitions that are changing through the design flow,
or partitions exported from another project, use design floorplan assignments to
constrain the placement of the affected partitions. A properly partitioned and floor-
planned design enables partitions to meet top-level design requirements when you
integrate the partitions with the rest of your design. Poorly planned partitions or
floorplan assignments negatively impact design area utilization and performance,
thereby increasing the difficulty of timing closure.

The following design partition guidelines help ensure the most effective and efficient
results. Block-based design flows add steps and requirements to the design process,
but can provide significant benefits in design productivity.

Related Links

• Interface Planning

• Design Floorplan Analysis in the Chip Planner

7.2.1.1 Planning Core and Root Partitions

By default, every Intel Quartus Prime project has a single, root partition. The root
partition contains all the periphery resources, and may also include core resources.
Each project can include multiple core partitions.

Planning Partitions for Periphery IP

• Plan the design periphery to segregate and implement periphery resources in the
root partition. Ensure that IP blocks that utilize both core and periphery resources
(such as transceiver and external memory interface Intel FPGA IP) are part of the
root partition.

• When creating design partitions for an existing design, remove all periphery
resources from any entity you want to designate as a core partition. Also, tunnel
any periphery resource ports to the top level of the design. Implement the
periphery resource in the root partition.

• You cannot designate instances that use periphery resources as separate
partitions. In addition, you cannot split an Intel FPGA IP core into more than one
partition.

• The Intel Quartus Prime software generates an error if you include periphery
interface Intel FPGA IP cores in any partition other than the top-level root
partition.

• You must include Intel FPGA IP cores for the Hybrid Memory Cube (HBM) or Hard
Processor System (HPS) in the root partition.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
249

https://www.altera.com/documentation/jbr1437427643326.html#jbr1410905116321
https://www.altera.com/documentation/jbr1437427643326.html#mwh1410471314015

Planning Partitions for Clocks and PLLs

• Plan clocking structures to keep all PLLs and corresponding clocking logic in the
root partition. This technique allows the Compiler to control PLLs in the root
partition, if necessary.

• Consider creating a design block for all clocking logic that you instantiate in the
top-level of the design. This technique ensures that the Compiler groups clocking
logic together, and that the Compiler treats clocking logic as part of the root
partition. Clock routing resources belong to the root partition, but the Compiler
does not preserve routing resources with a partition.

• Include any signal that you want to drive globally in the root partition, rather than
the core partition. Signals (such as clocks or resets) that you generate inside core
partitions cannot drive to global networks without a clock buffer in the root
partition.

• To support existing Intel Arria 10 designs, the Compiler allows I/O PLLs in core
partitions. However, creating a partition boundary prevents such PLLs from
merging with other PLLs. The design may use more PLLs without this merging,
and may have suboptimal clocking architecture.

7.2.1.2 Design Partition Guidelines

Designating a hierarchical design instance as a design partition creates a logical
hierarchical boundary around that instance. This partition boundary limits the
Compiler's ability to merge the partition's logic with other parts of the design. A
partition boundary can also prevent optimization that reduces cell and interconnect
delay, which can reduce design performance. Follow these guidelines when creating
your design hierarchy and assigning partitions:

• Register partition boundary ports. This practice can reduce unnecessary long
delays by confining register-to-register timing paths to a single partition for
optimization. This technique also minimizes the effect of the physical placement
for boundary logic that the Compiler might place without knowledge about the
other partition.

• Minimize the timing-critical paths passing in or out of design partitions. For timing
critical-paths that cross partition boundaries, rework the partition boundaries to
avoid these paths. Isolate timing-critical logic inside a single partition, so the
Compiler can effectively optimize each partition independently.

• Avoid creating a large number of small partitions throughout the design. Excessive
partitioning can impact performance by preventing design optimizations.

• Avoid grouping unrelated logic into a large partition. If you are working to
optimize an independent block of your design, assigning that block as a small
partition provides you more flexibility during optimization.

• When using incremental block-based design within a single project, the child
partition must have an equal or higher preservation level than the parent. If the
parent partition has a higher preservation level the child, the Compiler ignores the
preservation level.

7.2.2 Creating and Modifying Design Partitions

A design partition is a logical, named, hierarchical boundary assignment. You can
create a partition that preserves the results of the synthesized, placed, or final
compilation snapshot. Before creating a partition you must elaborate the design
hierarchy. You can view and modify all design partitions for a project in the Design

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
250

Partitions Window. The Compiler assigns a default partition name, which you can edit.
All design partition names must be unique, and can consist of only alphanumeric and
underscore (_) characters. Follow these steps to create and modify design partitions:

1. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

2. In the Project Navigator, right-click an instance in the Hierarchy tab, click Design
Partition ➤ Set as Design Partition. A design partition icon appears next to
each instance you assign.

This setting corresponds to the following assignment in the .qsf:

set_instance_assignment -name PARTITION <name> \
 -to <partition hierarchical path>

3. To view and edit all design partitions, click Assignments ➤ Design Partitions
Window. You can also define new partitions in this window.

4. To specify a partition Type, double-click the Type for a partition, and then select
Default, Reconfigurable, or Periphery Reuse Core.

This setting corresponds to the following assignment in the .qsf:

set_instance_assignment -name PARTITION <name> -to \
 <partition hierarchical path>

5. If you specify the Default partition Type, specify one or more of the following
options according to the type of information you want to preserve in the partition.
If you specify a partition Type other than Default, retain the default settings for
these options:

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
251

• To preserve the compilation results for a partition, double-click the
Preservation Level column for a partition, and then select synthesized or
final. Setting the Preservation Level to Not Set indicates no preservation.

This setting corresponds to the following assignment in the .qsf:

set_instance_assignment -name PRESERVE <FINAL|SYNTHESIZED> \
 -to <partition hierarchical path>

• To specify a Partition Database File (.qdb) for design reuse, double-click the
Partition Database File column for a partition, and then browse to the
appropriate .qdb file for your partition. To remove a .qdb from subsequent
compilation, remove the Partition Database File setting.

6. View the partition names, hierarchy paths, and instances after compilation in the
Compilation View tab. The synthesis and final partitions reports provide
additional information about preservation levels and .qdb file assignments.

Note: Refer to Define Empty Partitions to Reduce Compilation Time on page 256
for information about empty partitions.

7.2.3 Defining an Empty Partition

You can define an empty partition for core partitions that are incomplete, or that you
want to ignore during compilation. When a core partition is set to Empty, the
Compiler ties the partition output ports off to ground, and removes the input ports.

The Compiler removes any existing synthesis, placement, and routing information for
an empty partition. If you remove the Empty setting from a partition, the Compiler
re-implements the partition from the source.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
252

To define an empty partition, follow these steps in the Design Partitions Window:

1. Set the partition Type to Default. Any other setting is incompatible with empty
partitions.

2. Set the Preservation Level to Not Set. If you set the Preservation Level to
Synthesized or Final, the Compiler ignores the Empty option.

3. Set the Empty option to Yes.

This setting corresponds to the following assignment in the .qsf:

set_instance_assignment -name EMPTY ON -to \
 <hierarchal path of partition> -entity <name>

4. Remove any .qdb specification for the Partition Database File option.

7.2.4 Top-Down, Bottom-Up, and Team-Based Design Methods

In top-down hierarchical design methodologies, you plan the design at the top level,
and then split the design into lower-level design blocks. Different developers or
intellectual property (IP) providers can create and verify HDL code for lower-level
design blocks separately, but one team lead manages the implementation project for
the entire design.

In the traditional concept of bottom-up design, you create lower-level design blocks
independently of one another, and then integrate the blocks at the top-level. To
implement a bottom-up design flow, individual developers or IP providers can
complete the placement and routing optimization of their design in separate projects,
and then reuse each lower-level block in one top-level project. These methodologies
can be useful for team-based design flows with developers in other locations, or when
third-parties create the design partitions.

However, when developing design blocks independently in a bottom-up design flow,
individual developers may initially lack information about the overall design, or how
their block connects with other blocks. This lack of information can lead to problems
during system integration, such as difficulties with timing closure, or resource
conflicts. To reduce such difficulties, plan the design at the top level, whether
optimizing within a single project, or optimizing blocks independently in separate
projects for subsequent top-level integration.

You can meet some of the goals of a bottom-up flow with a design that is planned top-
down if you need to compile and optimize design blocks, when other parts of the
design are missing or incomplete. Designate missing or incomplete design blocks as
empty partitions, as Defining an Empty Partition on page 252 describes.

7.2.4.1 Team-Based Design

You can use elements of both top-down and bottom-up design methodologies to
implement a successful team-based design flow.

A top-level design can include one or more partitions that different designers or IP
providers create and optimize, as well as partitions for development as part of a
standard incremental block-based design compilation. In a team-based environment,
portions of your design may initially be undefined with the expectation of developing
those portions later. The team lead or system architect creates empty partitions in the
top-level design for any incomplete partitions. Developers or IP providers can then
create and verify HDL code separately, and the team lead later integrates the code
into the single Consumer project.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
253

For easiest integration of partitions, add the completed partitions to the design
incrementally, and confine the optimization to the top-level design. Use a single Intel
Quartus Prime project for the partition integration, whenever possible. Using multiple
projects for integration can add significant debugging time.

If you cannot use a single project, you can create the partition in a copy of the top-
level Intel Quartus Prime project, and then export the completed partition. The team
lead then integrates each design block as a design partition into the top-level design.
To simplify full design optimization by allowing full-chip placement and routing of the
partition at the top-level, export and reuse only the synthesis snapshot, unless the
top-level design requires optimized post-fit results.

Teams that use a bottom-up design method can optimize placement and routing of
design partitions independently. However, the following drawbacks can occur when
optimizing the design partitions in separate projects:

• Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
Avoiding this problem requires careful manual timing budgeting and observance of
design rules, such as always registering the ports at the module boundaries.

• The design requires resource budgeting and allocation to avoid resource conflicts
and overuse. Floorplanning with Logic Lock regions can help you avoid resource
conflicts while developing each part independently in a separate Intel Quartus
Prime project.

• Maintaining consistency of assignments and timing constraints is more difficult if
you use separate Intel Quartus Prime projects. The team lead must ensure that
the assignments and constraints of the top-level design, and those Developers
define in the separate projects and reuse at the top-level, are consistent.

Partitions that you develop independently all must share a common set of resources.
To minimize issues that can arise when sharing a common set of resources between
different partitions create the partitions within in a single project, or in copies of the
top-level project, with full design-level constraints, to ensure that resources do not
overlap. Correct use of partitions and Logic Lock regions can help to minimize issues
that can arise when integrating into the top-level design.

The use of a common project ensures that each Developer has a consistent view of
the top-level design framework. When another Developer provides and optimizes
timing-critical portions of the design, each Developer must have the complete top-
level design framework to maintain timing closure and achieve the best results during
integration.

If a Developer has no information about the top-level design, the team lead must at
least communicate a specific Intel FPGA device part number, along with any physical
timing constraints. The Developer can then create and export the partition from a
separate project. When a Developer lacks information, it is prudent to overconstrain or
create additional timing margin on the individual partitions. The technique reduces the
chance of timing problems when integrating the partitions with other blocks.

Related Links

Creating a Top-Level Project for a Team-Based Design on page 269

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
254

7.3 Incremental Block-Based Compilation

Incremental block-based compilation flows allow you to iteratively preserve partitions
as they meet your design requirements, which provides more predictable results. After
initial project setup, define the design periphery in the top-level hierarchy of the
design. Next, create a design hierarchy that allows you to create the core partitions
that your design requires.

After you define the initial project structure and add source design files, run Analysis
& Elaboration to display the project Hierarchy in the Project Navigator and begin
defining partitions. Following design compilation, analyze partitions for specific results,
such as timing closure, or resource utilization. When the partition meets the design
requirements, you can preserve the partitions at the synthesized, placed, or final
stage, depending on the requirements of the design.

Figure 104. Incremental Block-Based Design Flow

Meets
Requirements

No

Yes

Create Design and Plan Periphery

Define and Create Core Partitions

Compile the Design

Verify Results

Preserve

Complete
No

Yes

Implement

Modify the Design
or Partitions

Elaborate/Synthesize Design

Related Links

Design Partition Guidelines on page 250

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
255

7.3.1 Define Empty Partitions to Reduce Compilation Time

You can define empty partitions to reduce compilation time in incremental block-based
compilation flows. Setting a partition to Empty reduces design compilation time
because the top-level design netlist does not include the partition design logic.
Therefore, the Compiler does not run full synthesis and fitting algorithms on the
empty partition logic.

To save the compilation results for a partition before setting to Empty, export
the .qdb for the partition, and then reuse the .qdb file when you no longer require
the empty partition. Emptying a preserved partition removes all preserved
information.

Note: The following guidelines apply to empty partitions:

1. Do not set a partition that has a .qdb assignment to Empty. To empty a partition
that has a .qdb assignment, first remove the .qdb file specification in the Design
Partitions Window.

2. You may want to create a Reserved Logic Lock region constraint for empty
partitions to avoid resource conflicts with other partitions. This constraint can help
avoid fragmentation of the partition upon reintegration with the top-level design.
This constraint ensures that the Compiler does not place other logic in the area
that you reserve for the empty partition.

Related Links

Design Block Reuse on page 256

7.4 Design Block Reuse

Design block reuse allows you to preserve a design partition as an exported .qdb file,
and reuse this partition in another project. Reuse of core or root partitions involves
partitioning and constraining the block prior to compilation, exporting, and reusing the
block. Effective design block reuse requires careful planning to ensure that the source
code and design hierarchy support the physical partitioning of device resources that
these flows require.

• Core partition reuse—allows reuse of synthesized, placed, or final snapshots of
design blocks in another project.

• Root partition reuse—allows reuse of a synthesized, placed, or final snapshots
of the root partition. The root partition includes periphery resources (including I/O,
HSSIO, PCIe, PLLs), as well as any associated core resources, while leaving a core
partition open for subsequent development.

At a high level, the core and root partition reuse flows are similar. Both flows preserve
and reuse a design partition as a .qdb file. The design block Developer defines,
compiles, and preserves the block in the Developer project, and the Consumer reuses
the block in one or more Consumer projects.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
256

7.4.1 Reusing Core Partitions

Reusing core partitions involves exporting the core partition from the Developer
project as a .qdb, and then reusing that core partition in a different Consumer
project. You assign the .qdb to an instance in the Consumer project. In the Consumer
project, the Compiler only runs Analysis and other compilation stages that occur after
the stage you preserve in the .qdb from the Developer project.

Figure 105. Core Partition Reuse Flow

Partition
.qdb

1. Create a Project and Elaborate Design

3. Compile and Export Core Partition

5. Add to Intel Quartus Prime project:
 • Partition Definition
 • Black Box File
 • .qdb Core Partition File
 • .sdc File (optional)

6. Full Compilation of Entire Design

Developer Project Consumer Project

Core Partition Export Core Partition Add

2. Define the Core Partition

4. Create a Black Box File

The following steps describe the core partition reuse flow in detail.

7.4.1.1 Step 1: Developer: Define a Core Partition

Define design partitions to create logical boundaries in the design hierarchy. Confine
each core instance for export within a design partition. You can define partition
instances from the Project Navigator or in the Design Partitions Window.

To define a core design partition:

1. Review the project to determine design elements suitable for reuse, and the
appropriate snapshot for export.

2. Follow the steps in Creating and Modifying Design Partitions on page 250 to define
a core partition. Select Default for the partition Type.

7.4.1.2 Step 2: Developer: Compile and Export a Core Partition

This step describes generating a final snapshot for export. Following compilation, you
can export a partition as a .qdb at the synthesized, placed, or final stage. You can
then reuse the core partition in the same project or in another project.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
257

To compile and export a core partition

1. To run all compilation stages through Fitter (Finalize) and generate the final
snapshot, click Processing ➤ Start ➤ Start Fitter.

2. To export the core partition, click Project ➤ Export Design Partition. Select the
Design Partition name and the compilation Snapshot for export.

3. Confirm the File name for the Partition Database File, and then click OK.

Figure 106. Export Design Partition

The following command corresponds to partition export in the GUI:

quartus_cdb <project name> -c <revision name> \
 --export_partition "<name>" --snapshot <synthesized|placed|final> \
 --file <name>.qdb –-preserve_sdc

7.4.1.3 Step 3: Developer: Create a Black Box File

Integrating a core partition .qdb file also requires that you add a supporting black box
file to the consumer project. The black box file defines the ports and port interface
types for synthesis in the Consumer project. Follow these steps to create a block box
port definitions file for the partition.

1. Create an HDL file (.v, .vhd, .sv) that contains only the port definitions for the
exported core partition. Include parameters passed to the module. For example:

module bus_shift #(
 parameter DEPTH=256,
 parameter WIDTH=8
)(
 input clk,
 input enable,
 input reset,
 input [WIDTH-1:0] sr_in,

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
258

 output [WIDTH-1:0] sr_out
);
endmodule

2. Provide the black box file and core partition .qdb file to the Consumer.

7.4.1.4 Step 4: Consumer: Add the Core Partition and Compile

To add the core partition to the Consumer project, add the black box as a source file in
the project, and assign the core partition .qdb to an instance in the Design Partitions
Window. Because the exported .qdb includes compiled netlist information, the
Consumer project must target the same FPGA device part number and use the same
Intel Quartus Prime version as the Developer project. The Consumer project must
supply a clock and any other constraints required for the interface to the core
partition.

1. Create or open an Intel Quartus Prime project to reuse the core partition.

2. To add one or more black box files to the consumer project, click Project ➤ Add/
Remove Files in Project and select these files.

3. Follow the steps in Creating and Modifying Design Partitions on page 250 to define
core partition for the black box file.

4. To run all compilation stages through Fitter (Finalize) and generate the final
snapshot, click Processing ➤ Start ➤ Start Fitter.

5. The Fitter Partition Summary report lists partition information, such as the
partition name, hierarchy path, snapshot preservation level, and any
associated .qdb file.

Figure 107. Fitter Partition Summary Report

7.4.2 Reusing Root Partitions

The root partition contains all the periphery resources, and may also include some
core resources. To export and reuse periphery elements, you export the root partition.
Reuse of root partitions allows you to design an FPGA-to-board interface and
associated logic once, and then replicate that interface in other projects.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
259

Figure 108. Root Partition Reuse Flow

root_partition
.qdb

1. Create a Project and Elaborate

4. Compile and Export root_partition

5. Add to Project Directory:
 • Core partition RTL
 • .sdc file (optional)

Developer Project Consumer Project

Root Partition Export Root Partition Reuse

2. Define a Periphery Reuse
Core Partition

3. Define a Logic Lock Region

6. Add root partition
Assignments > Settings > General Options

7. Compile Consumer Design

7.4.2.1 Step 1: Developer: Create a Periphery Reuse Core Partition

To export and reuse the root partition, first create a periphery reuse core partition for
later core logic development in the Consumer project.

To create a periphery reuse core partition:

1. Follow the steps in Creating and Modifying Design Partitions on page 250 to define
a periphery reuse core partition.

2. When defining the partition, select Periphery Reuse Core for the partition Type.

7.4.2.2 Step 2: Developer: Define a Logic Lock Region

You must define a core-only, reserved, fixed routing region to reserve core resources
in the Consumer project for the periphery reuse core partition. The Consumer uses
this area for non-periphery development, and the area can contain only core logic.
Ensure that the exclusive placement region size can contain all core logic. For projects
with multiple core partitions, constrain each partition in a non-overlapping routing
region.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
260

Follow these steps to define a core-only, reserved, fixed routing region to reserve core
resources in the Developer project for non-periphery development:

1. Right-click the design instance in the Project Navigator and click Logic Lock
Region ➤ Create New Logic Lock Region. The region appears in the Logic Lock
Regions Window. You can also verify the region in the Chip Planner (Locate Node
➤ Locate in Chip Planner).

2. Specify the placement region co-ordinates in the Origin column.

3. Enable the Reserved and Core-Only options.

4. Click the Routing Region cell. The Logic Lock Routing Region Settings dialog
box appears.

Specify Height and Width

Specify the Routing Region Type and Expansion Length
Specify Core-Only as On

Specify Origin Coordinates
Specify Reserved as On

5. Specify Fixed with expansion with Expansion Length of 0 for the Routing
Type.

6. Click OK.

7. Click File ➤ Save Project.

7.4.2.3 Step 3: Developer: Compile and Export the Root Partition

After compilation. you can export the root partition at the synthesized, placed, or final
stage. You can optionally supply any Synopsys Design Constraints (.sdc) file for the
partition you export. If you supply an .sdc with the partition, the Consumer project
uses the file for evaluation for all snapshots. In addition, the Consumer project uses
the .sdc to drive placement and routing for synthesis snapshots, and to drive routing
for placed snapshots.

1. To run all compilation stages through Fitter (Finalize), click Processing ➤ Start ➤
Start Fitter.

2. To export the root partition to a .qdb file, click Project ➤ Export Design
Partition. Select the root_partition and the synthesized, placed, or final
snapshot. For Intel Stratix 10 designs, the Include entity-bound SDC files for
the selected partition option is on by default.

The following command corresponds to root partition export in the GUI:

quartus_cdb <project name> -c <revision name> \
 --export_partition "root_partition" --snapshot final \
 --file root_partition.qdb –-preserve_sdc

3. The Developer provides the exported .qdb file, any optional .sdc files, and black
box file for the periphery reuse core to the Consumer.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
261

7.4.2.4 Step 4: Consumer: Add the Root Partition and Compile

To add the root partition to a Consumer project, you assign the exported
root_partition.qdb to the project in the New Project Wizard, or by clicking
Assignments ➤ Settings ➤ General. In addition, you must add the core partition
RTL, .ip, or .qsys files as project source files. The root_partition.qdb includes
all Logic Lock constraints from the Developer project. There is no need to recreate
these constraints in the Consumer project. After assigning the .qdb, the Consumer
project includes all additional information from the Developer project compilation
snapshot, including synthesis, placement, or final compilation results.

Follow these steps to reuse the root partition to a Consumer project:

1. The Consumer obtains from the Developer the exported .qdb file, any
optional .sdc files, and a port list for the periphery reuse core.

2. Click File ➤ New Project Wizard to create an Intel Quartus Prime project to
reuse the exported root partition.

3. On the Directory, Name, and Top-Level Entity page, enable This project
uses a Partition Database (.qdb) file for the root partition, and specify
the .qdb file for root partition.

4. On the Add Files wizard page, add all design-level .sdc files from the Developer
project as source files in the Consumer project. For Intel Arria 10 designs only,
also optionally add the .sdc files for Intel FPGA IP cores to the Consumer project.

Note: For Intel Stratix 10 designs, the Include entity-bound SDC files for the
selected partition option is enabled by default, and there is no
requirement to separately add the IP core .sdc files to the Consumer
project. All Intel FPGA IP cores use entity-bound .sdc files for Intel Stratix
10 designs. This connection enables automatic bundling of the .sdc that
you use in the partition .qdb file.

5. Specify the remaining settings in the wizard and click Finish.

6. To run all compilation stages, click Processing ➤ Start Compilation. The
Compiler implements the reused root partition and constraints.

7.5 Debugging Block-Based Designs

You can use the Signal Tap logic analyzer to debug block-based designs. The following
section describes Signal Tap debugging of designs that include reusable blocks.

When reusing core blocks, you can expose potential Signal Tap nodes to partition
boundary ports for tapping the block in a Consumer project. In the core block reuse
flow, the Developer creates the partition boundary ports for each point that Signal Tap
uses. All boundary ports that the Developer creates are then available in the
Consumer project for debugging.

In addition, when reusing periphery blocks, the Developer and Consumer instantiate a
debug bridge to extend Signal Tap debugging into the core partition. The Consumer of
a root partition can then use Signal Tap to debug in the periphery reuse core partition
by connecting to this debug bridge. To use this bridge, you must instantiate an SLD
JTAG Bridge Agent and Host pair for each periphery reuse core boundary in your
design, as SLD JTAG Bridge Intel FPGA IP on page 267 describes. You instantiate the

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
262

SLD JTAG Bridge Agent in the parent partition, and the SLD JTAG Bridge Host in the
child partition. You can then connect to a Signal Tap instance through the bridge via
the bridge agent and host pair.

For more information about the SLD JTAG bridge instantiation, refer to Instantiating a
SLD JTAG Bridge Agent and Instantiating a SLD JTAG Bridge Host in the Intel Quartus
Prime Pro Edition handbook.

Related Links

• Debugging Designs with the Signal Tap Logic Analyzer

• Introduction to Intel FPGA IP Cores

• Instantiating a SLD JTAG Bridge Agent

• Instantiating a SLD JTAG Bridge Host

7.5.1 Signal Tap with Core Partition Reuse

The Intel Quartus Prime software supports different methods for using Signal Tap to
debug of core partitions, depending on usage of the partition's .qdb file. The following
sections describe each core partition debugging method.

7.5.1.1 Using HDL Signal Tap Instances

You can instantiate HDL Signal Tap instances in reusable core partitions without any
additional steps. Simply instantiate the Signal Tap component in the HDL of the
Developer and Consumer projects and compile.

When using HDL Signal Tap instances, the Signal Tap instance is part of the project
and the exported partition. When you export a .qdb file, the file includes any Signal
Tap HDL instances, unless you remove them, recompile the core, and re-export.

7.5.1.2 Partition Boundary Ports

The core block Developer must identify and expose the potential Signal Tap points to
the block Consumer. The Consumer uses the ports that you expose for Signal Tap
debugging in the Consumer project.

7.5.1.2.1 Debugging with the Synthesis Snapshot

If the .qdb you reuse is for the synthesized snapshot, adding pre-synthesis Signal Tap
nodes is not possible, because that requires resynthesis of the core. However, you can
add post-fit Signal Tap nodes, because the Fitter can connect and route the post-fit
nodes.

To tap the post-fit nodes, the Consumer must:

1. Add the root partition to a Consumer project, as Step 4: Consumer: Add the Root
Partition and Compile on page 262 describes.

2. Compile the partition through the Fitter stage in the Consumer project.

3. Instantiate Signal Tap in the Consumer design and add the post-fit Signal Tap
nodes.

4. To recompile the design from the Place stage, click Processing ➤ Start ➤ Start
Fitter (Place). The Fitter attaches the Signal Tap nodes to the existing
synthesized nodes.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
263

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384469524
https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958250601
https://www.altera.com/documentation/jbr1437428483891.html#clc1490637166752
https://www.altera.com/documentation/jbr1437428483891.html#rmu1492825155793

7.5.1.2.2 Debugging with the Final Snapshot

If the partition you reuse contains the final snapshot, the Consumer project placement
and routing is complete, and adding new Signal Tap nodes is not possible. This
limitation requires the partition Developer define additional boundary ports, before
exporting the partition, that enable subsequent connection to the Signal Tap nodes.
The partition Consumer then taps these ports for Signal Tap debugging in the
Consumer project.

The Developer must create additional ports at the partition boundary, and connect the
logic for probing to the new ports. Manual tunneling of connections through layers of
RTL requires design changes, and can create issues with different versions of code. To
avoid these complexities, use the Create Boundary Partition Ports assignment in
the Assignment Editor to automatically create the additional ports and tunnel the logic
without making RTL changes. The following figure shows two new boundary ports:
Module_A|Reg_C and Module_A|Module_B|Reg_C|

Figure 109. Adding Ports at Partition Boundary

Module_A

Module_B

Reg_C

New Port

Module_A|Reg_C

Top

The debug ports that the Developer creates with Create Boundary Partition Ports
make a connection to the logic and tunnel the ports to the top-level partition. A new
boundary port is then available at every child partition boundary. Any boundary ports
you create become regular output ports on the exported partition.

7.5.1.2.3 Defining Partition Boundary Ports

Follow these steps to define partition boundary ports in a Developer project for
subsequent Signal Tap debugging in a Consumer project.

1. Create the Developer project with the core partition for export.

2. Elaborate the design hierarchy.

3. To connect a design port to a partition boundary port, click Assignments ➤
Assignment Editor, and then assign Create Partition Boundary Ports to one
or more ports. When you assign a bus, the assignment applies to the root name of
the debug port, with each bit enumerated. When the Consumer synthesizes the
reused partition, all valid ports with the Create Partition Boundary Ports are
visible in the Consumer project.

4. Compile the design. Following synthesis, view the partition boundary ports in the
Create Partition Boundary Ports report. This report generates in the In-System
Debugging folder under Synthesis reports.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
264

5. To export the partition from the Developer project, click Project ➤ Export
Design Partition.

6. From the original core partition source file, create a black box port definitions file
that contains only port declarations. Add the partition boundary ports to the black
box file.

7. Add the partition's .qdb, black box file, and any other data you require to the
Consumer project.

7.5.1.2.4 Connecting to Debug Ports in a Reused Partition

After defining partition boundary ports, follow these steps to use the debug ports from
a .qdb in a Consumer project.

1. Define the boundary ports in the Developer project, as Defining Partition Boundary
Ports on page 264 describes.

2. Create the Consumer project and add the black box file the Developer provides.
The black box file must include the boundary ports from the Developer project. If
the ports are not present in the ports list, the Consumer cannot add Signal Tap to
the ports.

3. Elaborate the design hierarchy.

4. Click Assignments ➤ Design Partitions Window, and then define one or more
partitions for the hierarchy branches that use the .qdb files. Specify the .qdb for
the Partition Database File option for each partition that uses them, as Creating
and Modifying Design Partitions on page 250 describes.

5. Click File ➤ New ➤ and then define a new Signal Tap Logic Analyzer file (.stp).

6. In the Signal Tap logic analyzer, use the Node Finder to locate the debug ports
with the Signal Tap Pre-synthesis ports filter.

7. Add the clock source to your Signal Tap file.

8. Compile the design.

9. In the Compilation Report, under Synthesis, view the In-System Debugging
report to verify the connection of the ports.

10. Debug your design in the Signal Tap logic analyzer.

7.5.2 Signal Tap with Root Partition Reuse

Root partition reuse with Signal Tap requires a JTAG debug bridge to extend Signal Tap
debugging from the root partition into the core partition. The Consumer of a root
partition then uses Signal Tap to debug into the periphery reuse core partition by
connecting to the debug bridge. The debug bridge allows independent debugging in
the root and core partitions, using isolated Signal Tap logic in root and (optionally)
core regions.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
265

Figure 110. Signal Tap with JTAG Debug Bridge

Root Partition

Periphery Reuse Core

JTAG
Bridge
Host

JTAG
HUB

JTAG
HUB

JTAG
TAP

JTAG
Bridge
Agent

Signal
Tap

Signal
Tap

In root partition reuse, treat each partition individually at the time of integration. Each
instance of Signal Tap can only connect within the partition that the instance resides.
Therefore, the root partition and periphery reuse core partition each require separate
Signal Tap files in this flow.

Although the root and core partitions share the same JTAG interface, use separate
Signal Tap files for each reused partition. Use the core partition Signal Tap file only to
debug the core partition. Each Signal Tap instance operates independently, and you
must use each instance separately.

When configuring the Signal Tap logic analyzer, for the root partition, set the Bridge
Index value to None in the JTAG Chain Configuration window.

Note: You must connect the SLD JTAG Bridge Agent to an SLD JTAG Bridge Host, or the
Compiler generates an error.

Figure 111. JTAG Chain Configuration Bridge Index

To directly debug the partition in the Developer project, the periphery Developer may
include one or more Signal Tap and SLD JTAG Bridge instances in the Developer
project. Then, any Signal Tap or SLD JTAG Bridge component the Developer
instantiates in the periphery exports with the root partition, and is available in the
Consumer project. If you do not want to expose Signal Tap points in the exported root
partition, remove the Signal Tap file and recompile the Developer project prior to
exporting the .qdb.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
266

7.5.2.1 SLD JTAG Bridge Intel FPGA IP

The SLD JTAG Bridge Intel FPGA IP cores include the SLD JTAG Bridge Agent and SLD
JTAG Bridge Host components. Instantiate one pair of SLD Bridge Agent and Host IP at
the boundary of each periphery reuse core partition that requires debug.

Figure 112. SLD JTAG Bridge Agent and SLD Bridge Host IP Components

SLD JTAG
Bridge Agent

IP
(parent)

ena
tck

tdi
tms

vir_tdi

ena
tck

tdi

tms
vir_tdi

tdotdo
SLD JTAG

Bridge Host
IP

(child)

• SLD JTAG Bridge Agent—enables debug of partial reconfiguration or periphery
reuse core partitions, by extending the JTAG debug fabric from a higher-level
partition to a partial reconfiguration or periphery reuse core partition containing
the SLD JTAG Bridge Host. Instantiate the SLD JTAG Bridge Agent in the higher-
level partition and connect the interface to an SLD JTAG Bridge Host in the child
partition.

• SLD JTAG Bridge Host—enables debug of partial reconfiguration or periphery reuse
core partitions by connecting the JTAG debug fabric in a partial reconfiguration or
periphery reuse core partition to a higher-level partition containing the SLD JTAG
Bridge Agent. Instantiate the SLD JTAG Bridge Host in the child partition and
connect the interface to an SLD JTAG Bridge Agent in the higher-level partition.

When configuring the Signal Tap logic analyzer, for a periphery reuse core partition,
set the bridge index according to the Synthesis ➤ In-System Debugging ➤ JTAG
Bridge Instance Agent Information report in the Developer project.

Figure 113. SLD JTAG Bridge Component Configuration

Module_A (periphery reuse core)

Reg_C

Top (Root Partition)

SLD JTAG
Bridge Agent

Signal
Tap

SLD JTAG
Bridge host

Automatic Signal Tap Connections
User Made Connections

Signal
Tap

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
267

7.5.2.1.1 SLD JTAG Bridge Index

The Intel Quartus Prime software supports multiple instances of the SLD JTAG Bridge
in partitions and their children. The Compiler assigns an index number to distinguish
each instance. The bridge index for the root partition is always None. The Compilation
Report lists the index numbers for the SLD JTAG Bridge Agents in the core partition.

Figure 114. SLD JTAG Bridge Index

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

Bridge
Index 1-1

Bridge
Index 1

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

Bridge
Index 0

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

Bridge
Index 0-1

Bridge
Index 0

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

Bridge
Index 0-1

Signal
Tap

Bridge
None

Automatic Signal Tap Connections

User Made Connections

Note: Following design synthesis, view the Synthesis ➤ In-System Debugging ➤ JTAG
Bridge Instance Agent Information report in the Developer project. This report
details how the bridge indexes are enumerated. The reports shows the hierarchy path
and the associated index. The Developer must provide this information to the
Consumer, so the Consumer understands the index mapping.

7.5.2.2 Instantiating the SLD JTAG Bridge in the Periphery Reuse Root Partition

Follow these steps to instantiate Signal Tap in the root partition:

1. Create an Intel Quartus Prime project that is setup for periphery reuse, as the
steps in Reusing Root Partitions on page 259 describe.

2. From the IP Catalog, select, parameterize, and instantiate the SLD JTAG Bridge
Agent IP core in the parent module of the core partition. Similarly, instantiate the
SLD JTAG Bridge Host IP in the core partition. To display IP Catalog, click Tools ➤
IP Catalog.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
268

Note: You must connect the SLD JTAG Bridge Agent to an SLD JTAG Bridge Host,
or the Compiler generates an error.

3. To export the root partition, click Project ➤ Export Design Partition. Specify
the Partition name (root), the Snapshot level, and the .qdb file name for
export. After the Developer creates the .qdb, the Consumer can reuse the
exported .qdb file and optionally add Signal Tap to the core partition.

4. Compile and debug the Developer project. To run full compilation, click
Processing ➤ Start Compilation.

Related Links

• Debugging Designs with the Signal Tap Logic Analyzer

• Introduction to Intel FPGA IP Cores

• Reusing Root Partitions on page 259

7.5.2.3 Instantiating Signal Tap in the Periphery Reuse Core Partition

Signal Tap debugging in the core partition requires the SLD JTAG Bridge IP in the root
and core partitions. The SLD JTAG Bridge extends the JTAG connectivity into core
partition in a Consumer project. The partition Consumer instantiates SLD JTAG Bridge
Host to communicate with the SLD JTAG Bridge Agent that the partition Developer
provides. After design synthesis, the Consumer can insert pre-synthesis Signal Tap
points in the consumer project core partition.

1. In the New Project Wizard, create the Consumer project, assign the root partition
with the This project uses a Partition Database (.qdb) file for the root
partition setting, and then run Analysis & Elaboration.

2. In the core partition, instantiate the SLD JTAG Bridge Host IP core from the IP
Catalog.

3. To run synthesis, click Processing ➤ Start ➤ Start Analysis & Synthesis.

4. Create a new Signal Tap file and add the pre-synthesis Signal Tap points from the
core partition.

Note: Adding new Signal Tap points to the root partition is invalid. Any new Signal
Tap points that you add to the root partition are unusable in the core
partition's Signal Tap file.

5. To run full compilation, click Processing ➤ Start Compilation.

7.6 Creating a Top-Level Project for a Team-Based Design

In team-based designs that reuse design blocks, all contributors to the design ideally
work within the same top-level project framework. Using the same project framework
among team members ensures that all contributors have the correct settings and
constraints that their partition requires.

This method helps to simplify timing closure when integrating the partitions into the
top-level design. If some Developers do not have access to the top-level project
framework, the team lead must communicate information about the project and
constraints to those Developers.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
269

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384469524
https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958250601

The following steps describe preparing a top-level project that enables other
Developers to provide optimized lower-level design partitions. The top-level project
specifies the top-level entity, and then instantiates other design entities that other
Developers optimize in a separate Intel Quartus Prime project.

1. Set up the top-level project and add source files, as normal. If the source files are
incomplete, also create and add a black-box file to define the port directions for
each incomplete module or entity, as Step 3: Developer: Create a Black Box File
on page 258 describes.

2. Define design partitions for any instance that you want to maintain as a separate
Intel Quartus Prime project, as Creating and Modifying Design Partitions on page
250 describes.

3. Define an empty partition for each design partition with unknown or incomplete
definition, as Defining an Empty Partition on page 252 describes.

4. Create a Logic Lock region constraint for each partition that you maintain as a
separate Intel Quartus Prime project. This physical partitioning of the device
allows multiple team members to design independently without placement
conflicts, as Step 2: Developer: Define a Logic Lock Region on page 260 describes.

5. To run full compilation, click Processing ➤ Start Compilation.

6. Use one of the following methods to provide the top-level project information to
design Developers:

• If Developers have access to the top-level project framework, the team lead
includes all settings and constraints the design requires. This framework
includes clocks, PLLs, and other periphery interface logic that the Developer
requires to optimize their partition. If Developers are part of the same design
environment, they can check out a copy of the project files they require from
the same source control system. This is the best method for sharing a set of
project files. Otherwise, the team lead provides a copy of the top-level project
(the design and corresponding .qsf assignments), so that each Developer
creates their partition within the same project framework.

• If a Developer does not have access to the top-level project framework, the
team lead provides a Tcl script or other specifications to create a separate
Intel Quartus Prime project that matches the top-level. The team lead also
adds logic around the design block for export, so that the partition is
consistent with the key characteristics of the top-level design environment. For
example, the team lead can include a top-level PLL in the project, outside of
the partition for export, so that Developers can optimize the design with
information about the clocks and PLL parameters. This technique provides
more accurate timing requirements. Export the partition for the top-level
design, without exporting any auxiliary components that you instantiate
outside the partition you are exporting.

7.6.1 Preparing a Lower-Level Partition for Integration

A Developer can follow these steps to prepare a lower-level design partition for
integration with the top-level project:

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
270

1. Obtain a copy of the top-level project, or create a new project with the same
assignments and constraints as the top-level project. Constrain the partition
placement within a Logic Lock region, as Step 2: Developer: Define a Logic Lock
Region on page 260 describes. Ensure that the design only uses the resources that
the project lead allocates.

2. For each design partition that is not available or incomplete in the top-level
project, set the Empty option to Yes in the Design Partitions Window. This setting
creates an empty partition for later development.

3. For the low-level design partition under development, set the Empty option to No.

4. If the top-level project includes an empty wrapper stub file for the lower-level
design partition, use that file as a template to create the partition logic, or replace
the wrapper file with the appropriate source code that matches the same port
definition.

5. When the lower level partition design is complete, follow the procedures in Step 2:
Developer: Compile and Export a Core Partition on page 257. The project lead can
now reuse the partition in the top-level project.

7.7 Document Revision History

This document has the following revision history.

Table 70. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Reorganization of introduction and Incremental Block-Based
Compilation.

• Added Design Partitioning section.
• Added Debugging Block-Based Designs section.
• Added Use Empty Partitions to Reduce Compilation Time topic.
• Removed requirement to add .psmf, .msf, and .sof to Consumer

project.
• Added Intel Stratix 10 support, including information about bundling

of .sdc with exported partitions for Intel Stratix 10 designs.
• Documented changes to Design Partitions window, Export Design

Partition dialog box, and Logic Lock Regions window.
• Added reference to new Design Partition Planner.
• Updated references to corresponding .qsf assignments.
• Changed references from periphery reuse to root partition reuse.
• Rebranded for latest Intel standards.

2017.05.08 17.0.0 • First public release.

7 Block-Based Design Flows

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
271

8 Creating a Partial Reconfiguration Design
Partial reconfiguration (PR) allows you to reconfigure a portion of the FPGA
dynamically, while the remaining FPGA design continues to function. You can define
multiple personas for a particular region in your design, without impacting operation in
areas outside this region. This methodology is effective in systems with multiple
functions that time-share the same FPGA device resources. PR enables the
implementation of more complex FPGA systems. The Intel Quartus Prime Pro Edition
software supports the PR feature for the Intel Arria 10 and Intel Stratix 10 device
families.

Figure 115. Partial Reconfiguration Design

Static
Region

chip_top

PR Region A

PR Region B

PR Persona A1

PR Persona A2

PR Persona A3

PR Persona B1

PR Persona B2

PR provides the following advancements over a flat design:

• Allows run-time design reconfiguration

• Increases scalability of the design through time-multiplexing

• Lowers cost and power consumption through efficient use of board space

• Supports dynamic time-multiplexing functions in the design

• Improves initial programming time through smaller bitstreams

• Reduces system down-time through line upgrades

• Enables easy system update by allowing remote hardware change

Intel Quartus Prime Pro Edition software also supports hierarchical partial
reconfiguration (HPR), with multiple parent and child design partitions, or multiple
levels of partitions in a design. In HPR designs, a static region instantiates a parent PR
region, and a parent PR region instantiates a child PR region. The same PR region
reprogramming is possible for the child and parent partitions.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

In addition, static update partial reconfiguration (SUPR) allows you to define and
modify a specialized static region, without requiring recompilation of all personas. This
technique is useful for a portion of a design that you may possibly want to change for
risk mitigation, but that never requires runtime reconfiguration. In traditional PR, you
must recompile all personas for any change to the static region. Refer to the Partial
Reconfiguration Tutorials for complete information.

The Intel Quartus Prime Pro Edition software supports simulating the delivery of a
partial reconfiguration bitstream to the PR control block for Intel Arria 10 designs. This
simulation allows you to observe the resulting change and the intermediate effect in a
reconfigurable partition. Refer to Partial Reconfiguration Simulation and Verification on
page 317 for complete PR simulation details.

Related Links

• Partial Reconfiguration Tutorials

• Intel Stratix 10 Device Overview

• Intel Stratix 10 Configuration User Guide

• Intel Arria 10 Device Overview

• Intel Arria 10 Configuration User Guide

• Intel Arria 10 Reconfiguration Interface and Dynamic Reconfiguration

8.1 Partial Reconfiguration Basic Concepts

Implementing a PR design requires understanding the FPGA device capabilities and the
Intel Quartus Prime IP components and compilation flow. The Intel Quartus Prime
software includes the following IP cores that simplify PR implementation. You can
instantiate one or more of these IP cores, or create your own PR handshake and
freeze logic that interfaces with the PR region.

Table 71. Partial Reconfiguration IP Cores

IP Description Usage

Intel Arria 10 Partial
Reconfiguration Controller

Dedicated IP component that sends the partial
reconfiguration bitstream to the PR Control Block in the
Intel Arria 10 FPGA. The PR bitstream performs
reconfiguration by adjusting CRAM bits in the FPGA.
Instantiate the IP in the static region of your design.
This IP core interfaces with the PR control block to
manage the bitstream source, and has a maximum clock
frequency of 100MHz.

One instance per FPGA,
internal or external
configuration.

Intel Stratix 10 Partial
Reconfiguration Controller

Dedicated IP component that sends the partial
reconfiguration bitstream for to the Secure Device
Manager in the Intel Stratix 10 FPGA. The PR bitstream
performs reconfiguration by adjusting CRAM bits in the
FPGA. Instantiate the IP in the static region of your
design. The IP core interfaces with the Intel Stratix 10
FPGA secure device manager (SDM), and has a
maximum clock frequency of 250MHz.

One instance per FPGA,
internal configuration only.

continued...

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
273

https://github.com/alterasoftware/design-flows/tree/master/partial_reconfig
https://www.altera.com/documentation/joc1442261161666.html#joc1443027925492
https://www.altera.com/documentation/sss1439972793861.html#sss1439972952426
https://www.altera.com/documentation/sam1403480274650.html#sam1403480009265
https://www.altera.com/documentation/sam1403483633377.html#sam1403482889098
https://www.altera.com/documentation/nik1398707230472.html#nik1398707190694

IP Description Usage

Partial Reconfiguration
Region Controller

Provides a standard Avalon® Memory Mapped (Avalon-
MM) interface to the block that controls handshaking
with the PR region. Ensures that PR region stops, resets,
and restarts, according to the PR handshake.

One instance per PR region.

Avalon-MM Partial
Reconfiguration Freeze
Bridge

Provides freeze capabilities to the PR region for Avalon
Memory Mapped (Avalon-MM) interfaces.

One instance for each Avalon-
MM interface in each PR
region.

Avalon-ST Partial
Reconfiguration Freeze
Bridge

Provides freeze capabilities to the PR region for Avalon
Streaming (Avalon-ST) interfaces.

One instance for each Avalon-
ST interface in each PR region.

Table 72. Partial Reconfiguration Terminology

Term Description

Floorplan The layout of physical resources on the device. Creating a design floorplan, or
floorplanning, is the process of mapping logical design hierarchy to physical
regions in the device.

Hierarchical Partial Reconfiguration Partial reconfiguration that includes multiple parent and child design
partitions, or nesting of partitions in the same design.

PR control block (Intel Arria 10 only) A dedicated block in the Intel Arria 10 FPGA. The PR control block processes
the PR requests, handshake protocols, and verifies the cyclic redundancy
check (CRC).

PR host The system for coordinating PR. The PR host communicates with the PR
control block. Implement the PR host within the FPGA (internal PR host) or in
a chip or microprocessor (external PR host for Intel Arria 10 designs only).

PR partition Design partition you designate for PR. A PR project can contain one or more
partially reconfigurable PR partitions.

PR persona A specific PR partition implementation in a PR region. A PR region can contain
multiple personas. Static regions contain only one persona.

PR region An area in the FPGA that you associate with a partially reconfigurable
partition. A PR region contains the core locations of the device you want to
reconfigure. A device can contain more than one PR region. A PR region can
be core-only, such as LAB, RAM, or DSP.

Revision A collection of settings and constraints for one version of your project. An
Intel Quartus Prime Settings File (.qsf) preserves each revision of your
project. Your Intel Quartus Prime project can contain several revisions.
Revisions allow you to organize several versions of your design within a single
project.

Secure Device Manager (SDM) (Intel
Stratix 10 only)

A triple-redundant processor-based Intel Stratix 10 FPGA block that performs
authentication, decryption, and decompression on the configuration data the
block receives, before sending the data over to the configurable nodes
through the configuration network.

Snapshot The output of a Compiler stage. The Intel Quartus Prime Pro Edition Compiler
generates a snapshot of the compiled database for each partition, after each
compilation stage. Export the snapshot at various stages of the compilation
flow, such as synthesis or final.

Static region All areas outside the PR regions in your project. You associate the static
region with the top-level partition of the design. The static region contains
both the core and periphery locations of the device.

Static update partial reconfiguration A specialized static region that allows change, without requiring the
recompilation of all personas. This technique is useful for a portion of a
design that you may possibly want to change for risk mitigation, but that
never requires runtime reconfiguration.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
274

Related Links

Partial Reconfiguration IP Solutions User Guide

8.2 Internal Host Partial Reconfiguration

In internal host control, an internal controller, a Nios II processor, or an interface such
as PCI Express (PCIe) or ethernet, communicates directly with the Intel Arria 10 PR
control block, or with the Intel Stratix 10 SDM.

To transfer the PR bitstream into the PR control block or SDM, use the Avalon-MM
interface on the Intel Arria 10 or Intel Stratix 10 Partial Reconfiguration IP core. When
the device enters user mode, initiate partial reconfiguration through the FPGA core
fabric using the PR internal host.

Note: If you create your own control logic for the PR host, the logic must meet the PR
interface requirements.

Figure 116. Internal Host PR

 PR
Region

 PR Controller
IP Core

PR Bitstream File (.rbf)
 In External Memory

top

FPGA

When performing partial reconfiguration with an internal host, use the dedicated PR
pins (PR_REQUEST, PR_READY, PR_DONE, and PR_ERROR) as regular I/Os. Implement
your static region logic to retrieve the PR programming bitstreams from an external
memory, for processing by the internal host.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
275

https://www.altera.com/documentation/bwh1481838825775.html#yom1486073324557

Figure 117. Intel Arria 10 FPGA System Using an Internal PR Host

 User PR
Control Logic

 PR Controller
 IP Core

nSTATUS
CONF_DONE
nCONFIG
nCE

MSEL[4:0]

Partial Reconfiguration Data Received
 Through PCI Express* Link

Intel Arria 10® Device

Send the programming bitstreams for partial reconfiguration through the PCI Express
link. Then, you process the bitstreams with your PR control logic and send the
bitstreams to the PR IP core for programming.

8.3 External Host Partial Reconfiguration (Intel Arria 10 Designs
Only)

In external host control, an external FPGA or CPU controls the PR configuration using
external dedicated PR pins on the target device. The current version of the Intel
Quartus Prime Pro Edition software supports external host PR configuration only for
Intel Arria 10 devices. When using an external host, you must implement the control
logic for sending the bitstream to the hard FPGA programming pins.

Figure 118. PR System Using an External Host

PR Control
 Block (CB)

PR Region

External
 Host

PR Bitstream File
(.rbf) In External
 Memory

top

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
276

8.4 Partial Reconfiguration Design Flow

The PR design flow requires initial planning. This planning involves setting up one or
more design partitions, and then determining the placement assignments in the
floorplan. Well-planned PR partitions improve design area utilization and performance.
The Intel Quartus Prime software also allows you to create nested PR regions as part
of an HPR flow. Reprogramming a child PR region does not affect the parent or the
static region. In the HPR flow, reprogramming the parent region, reprograms the
associated child region with the default child persona, without affecting the static
region. The HPR flow does not impose any restrictions on the number of sub-partitions
you can create in your design.

The PR design flow uses the project revisions feature in the Intel Quartus Prime
software. Your initial design is the base revision, where you define the static region
boundaries and reconfigurable regions on the FPGA. From the base revision, you
create multiple revisions. These revisions contain the different implementations for the
PR regions. However, all PR implementation revisions use the same top-level
placement and routing results from the base revision.

Figure 119. Partial Reconfiguration Design Flow

Plan the PR System

Identify PR Resources

Code the Design

Simulate the Design

Functionality
Verified?

No

Timing Met ?

Yes

Specify All Core-Only Place
 Regions as Exclusive 1

Yes

 Create Routing Region for Each
 Place Region 1

Specify All Partitions as
 Reconfigurable Partitions 1

Create Design Partition(s) 1

Assign All PR Partition(s) to
 Core-only Logic Lock Regions1

Yes

Yes

Yes
Yes

Yes

Generate Configuration Files

Program the Device

Timing Met
for Each Revision?

Create Revisions and Compile the
Design for Each Revision

Yes

 (1) Recommended to compile the base revision before verifying timing closure

Timing Met ?

Timing Met ?

Timing Met ?

Timing Met ?

Timing Met ?

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
277

To debug your design at a later stage using the Signal Tap Logic Analyzer, you must
instantiate the SLD JTAG bridge Intel FPGA IP for each PR region in your design. The
SLD JTAG Bridge consists of two IP components - SLD JTAG Bridge Agent and SLD
JTAG Bridge Host. Perform the following steps during the early planning stage, to
ensure you can signal tap your static as well as PR region, at a later stage:

1. Instantiate the SLD JTAG Bridge Agent IP in the static region.

2. Instantiate the SLD JTAG Bridge Host IP in the PR region of the default persona.

3. Then, instantiate the SLD JTAG Bridge Host IP for each of the personas during the
synthesis revision creation for the personas.

For more information about the SLD JTAG bridge instantiation, refer to Instantiating a
SLD JTAG Bridge Agent and Instantiating a SLD JTAG Bridge Host sections in the Intel
Quartus Prime Pro Edition handbook.

Note: The Intel Quartus Prime software does not support the use of PR in combination with
any other hierarchical design flow.

Related Links

• Instantiating a SLD JTAG Bridge Agent

• Instantiating a SLD JTAG Bridge Host

8.4.1 Identifying Partial Reconfiguration Resources

When designing for partial reconfiguration, you must first determine the logical
hierarchy boundaries that you can define as reconfigurable partitions. Next, set up the
design hierarchy and source code to support this partitioning.

Reconfigurable partitions can contain only core resources, such as LABs, embedded
memory blocks (M20Ks and MLABs), and DSP blocks in the FPGA. All periphery
resources, such as transceivers, external memory interfaces, GPIOs, I/O receivers,
and hard processor system (HPS), must be in the static portion of the design. Partial
reconfiguration of global network buffers for clocks and resets is not possible.

Table 73. Supported Reconfiguration Methods in Intel Arria 10 and Intel Stratix 10
Devices

Hardware Resource Block Reconfiguration Method

Logic Block Partial reconfiguration

Digital Signal Processing Partial reconfiguration

Memory Block Partial reconfiguration

Core Routing Partial reconfiguration

Transceivers Dynamic reconfiguration

PLL Dynamic reconfiguration

I/O Blocks Not supported

Clock Control Blocks Not supported

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
278

https://www.altera.com/documentation/jbr1437428483891.html#clc1490637166752
https://www.altera.com/documentation/jbr1437428483891.html#rmu1492825155793

Figure 120. Available Resource Types in Intel Arria 10 Devices

Co
re

 Lo
gic

 Fa
br

ic

M
20

K I
nt

er
na

l M
em

or
y B

loc
ks

Tra
ns

ce
ive

r C
ha

nn
els

Ha
rd

 IP
 Pe

r T
ra

ns
ce

ive
r:

St
an

da
rd

 PC
S,

PC
Ie

Ge
n3

 P
CS

, E
nh

an
ce

d P
CS

PC
I E

xp
re

ss
Ge

n3
 H

ar
d I

P
 PL

Ls

M
20

K I
nt

er
na

l M
em

or
y B

loc
ks

PC
I E

xp
re

ss
Ge

n3
 H

ar
d I

P

Va
ria

ble
 Pr

ec
isi

on
 D

SP
 Bl

oc
ks

I/O
 PL

Ls
Ha

rd
 M

em
or

y C
on

tro
lle

rs,
 G

en
er

al-
Pu

rp
os

e I
/O

 Ce
lls

, L
VD

S

M
20

K I
nt

er
na

l M
em

or
y B

loc
ks

M
20

K I
nt

er
na

l M
em

or
y B

loc
ks

Va
ria

ble
 Pr

ec
isi

on
 D

SP
 Bl

oc
ks

Co
re

 Lo
gic

 Fa
br

ic

I/O
 PL

Ls
Ha

rd
 M

em
or

y C
on

tro
lle

rs,
 G

en
er

al-
Pu

rp
os

e I
/O

 Ce
lls

, L
VD

S

M
20

K I
nt

er
na

l M
em

or
y B

loc
ks

M
20

K I
nt

er
na

l M
em

or
y B

loc
ks

Va
ria

ble
 Pr

ec
isi

on
 D

SP
 Bl

oc
ks

Tra
ns

ce
ive

r C
ha

nn
els

PC
I E

xp
re

ss
Ge

n3
 H

ar
d I

P
PC

I E
xp

re
ss

Ge
n3

 H
ar

d I
P

 PL
Ls

Ha
rd

 IP
 Pe

r T
ra

ns
ce

ive
r:

St
an

da
rd

 PC
S,

PC
Ie

Ge
n3

 PC
S,

En
ha

nc
ed

 PC
S

Use any Intel Quartus Prime-supported design entry method to create core-only logic
for a PR partition, including Platform Designer, the Intel HLS Compiler, or standard
SystemVerilog, Verilog HDL, and VHDL design files.

The following Intel FPGA IP cores support system-level debugging in the static region:

• In-System Memory Content Editor

• In-System Sources and Probes Editor

• Virtual JTAG

• Nios II JTAG Debug Module

• Signal Tap Logic Analyzer

Note: Only Signal Tap Logic Analyzer allows simultaneous debugging of the static and PR
regions.

8.4.2 Defining PR Partitions

Create design partitions for each PR region that you want to partially reconfigure. You
can create any number of independent partitions or PR regions in your design. Create
design partitions for partial reconfiguration from the Project Navigator, or the Design
Partitions Window.

A design partition is the logical partitioning of the design, and does not specify a
physical area on the device. Associate the partition with a specific area of the FPGA
using Logic Lock Region floorplan assignments. To avoid partitions obstructing design
optimization, group the logic together within the same partition. If your design
includes a hierarchical PR flow with parent and child partitions, you can assign multiple
parent or child partitions to your design, as well as multiple levels of PR partitions.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
279

Standard hierarchical design practices help achieve successful partial reconfiguration.
Follow these guidelines when creating partitions for PR regions in your design:

• Register all the partition boundaries, and all the inputs and outputs of each
partition.

• Minimize the number of paths crossing the partition boundaries.

• Minimize the timing-critical paths passing in or out of the PR regions. In case of
timing critical-paths crossing the PR region boundaries, rework the PR regions to
avoid these paths.

• Avoid creating reset or clock signals inside the PR regions.

Follow these steps to create and modify design partitions:

Creating a Partition from the Project Navigator

1. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

2. In the Project Navigator, right-click an instance in the Hierarchy tab, click Design
Partition ➤ Set as Design Partition. A design partition icon appears next to
each instance that is set as a partition.

Figure 121. Creating Design Partitions from Project Navigator

3. To define the partition Type, right-click the instance in the Hierarchy tab, click
Design Partition ➤ Reconfigurable. You can only define the partition Type
after setting the instance as a partition.

Defining Partitions in the Design Partitions Window

1. To view and edit all design partitions in the project, click Assignments ➤ Design
Partitions Window.

2. To define a new partition, double-click the <<new>> button in the Partition
Name column.

3. Select the design instance to partition and click OK.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
280

Figure 122. Create New Partition Window

4. For PR partitions, double-click the Type column and select the Reconfigurable
partition type.

Figure 123. Design Partitions Window

The Color column indicates the color of each partition. The Design Partition Planner
and Chip Planner also display this color for the partition. Right-click a partition in the
window to perform various tasks, such as deleting the partition, locating the node, or
creating Logic Lock regions for the partition.

The Intel Quartus Prime software automatically generates a partition name, based on
the instance name and hierarchy path. This default partition name varies with each
instance. Edit the partition name in the Design Partitions Window by double-clicking
the name.

The following assignments in the .qsf file correspond to the design partition creation
in the Design Partitions Window:

set_instance_assignment -name PARTITION pr_partition -to <design_instance>
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON -to /
 <design_instance>

8.4.3 Defining Personas

Your partial reconfiguration design can have multiple PR partitions, each with multiple
personas. Each of these personas function differently. However, all the PR personas
must use the same set of signals to interact with the static region. Ensure that the
signals interacting with the static region are a super-set of all the signals in all the
personas. A PR design requires an identical I/O interface for each persona in the PR
region.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
281

8.4.3.1 Creating Wrapper Logic for PR Regions

If all personas for your design do not have identical top-level interfaces, you must
create the wrapper logic to ensure that all the personas appear similar to the static
region. Define a wrapper for each persona, and instantiate the persona logic within the
wrapper. If all personas have identical top-level interfaces, the personas do not require
wrapper logic. In this wrapper, you can create dummy ports to ensure that all the
personas of a PR region have the same connection to the static region.

During the PR compilation, the Compiler converts each of the non-global ports on
interfaces of the PR region into boundary port wire LUTS. The naming convention for
boundary port wire LUTs are <input_port>~IPORT for input ports, and
<output_port>~OPORT for output ports. For example, the instance name of the wire
LUT for an input port with the name my_input, on a PR region with the name
my_region, is my_region|my_input~IPORT.

1. Manually floorplan the boundary ports using the Logic Lock region assignments, or
place the boundary ports automatically using the Fitter. The Fitter places the
boundary ports during the base revision compile. The boundary LUTs are invariant
locations the Fitter derives from the persona you compile. These LUTs represent
the boundaries between the static region and the PR routing and logic. The
placement remains stationary regardless of the underlying persona, because the
routing from the static logic does not vary with a different persona
implementation.

2. To constrain all boundary ports within a given region, use a wildcard assignment.
For example:

set_instance_assignment -name PLACE_REGION "65 59 65 85" -to \
 u_my_top|design_inst|pr_inst|pr_inputs.data_in*~IPORT

This assignment constrains all the wire LUTS corresponding to the IPORTS that
you specify within the place region, between the coordinates (65 59) and (65 85).

Figure 124. Wire-LUTs at the PR Region Boundary

 PR Region Static Region

Optionally, floorplan the boundary ports down to the LAB level, or individual LUT
level. To floorplan to the LAB level, create a 1x1 Logic Lock PLACE_REGION
constraint (single LAB tall and a single LAB wide). Optionally, specify a range
constraint by creating a Logic Lock placement region that spans the range. For
more information about floorplan assignments, refer to Floorplan the Partial
Reconfiguration Design.

Related Links

Floorplanning a Partial Reconfiguration Design on page 295
For more information on floorplanning your design.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
282

8.4.3.1.1 Freeze Logic for PR Regions

When partially reconfiguring a design, freeze all the outputs of each PR region to a
known constant value. This freezing prevents the signal receivers in the static region
from receiving undefined signals during the partial reconfiguration process.

The PR region cannot drive valid data until the partial reconfiguration process is
complete, and the PR region is reset. Freezing is important for control signals that you
drive from the PR region.

The freeze technique that you choose is optional, depending on the particular
characteristics of your design. The freeze logic must reside in the static region of your
design. A common freeze technique is to instantiate 2-to-1 multiplexers on each
output of the PR region, to hold the output constant during partial reconfiguration.

Figure 125. Freeze Technique #1 for Intel Arria 10 Devices

PR Logic

Known
 Value

0

1Inputs

Freeze

Outputs

Static Region

An alternative freeze technique is to register all outputs of the PR region in the static
region. Then, use an enable signal to hold the output of these registers constant
during partial reconfiguration.

Figure 126. Freeze Technique #2 for Intel Arria 10 Devices

PR Region

En

Static Region

 Freeze
Generation

The Partial Reconfiguration Region Controller IP core includes a freeze port for the
region that it controls. Include this IP component with your system-level control logic
to freeze the PR region output. For designs with multiple PR regions, instantiate one

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
283

PR Region Controller IP core for each PR region in the design. The Intel Quartus Prime
software includes the Avalon-MM Freeze Bridge and Avalon-ST Freeze Bridge Intel
FPGA IP cores. You can use these IP cores to implement freeze logic, or design your
own freeze logic.

The static region logic must be independent of all the outputs from the PR regions for
a continuous operation. Control the outputs of the PR regions by adding the
appropriate freeze logic for your design.

Note: There is no requirement to freeze the global and non-global inputs of a PR region for
Intel Arria 10 or Intel Stratix 10 devices.

Related Links

Partial Reconfiguration IP Solutions User Guide

8.4.3.2 Implementing Clock Enable for On-Chip Memories with Initialized
Contents

Follow these guidelines to implement clock enable for on-chip memories with
initialized contents:

1. To avoid spurious writes during PR programming for memories with initialized
contents, implement the clock enable circuit in the same PR region as the M20K or
MLAB RAM. This circuit depends on an active-high clear signal from the static
region.

2. Before you begin the PR programming, assert this signal to disable the memory’s
clock enable. Your system PR controller must deassert the clear signal on PR
programming completion. You can use the freeze signal for this purpose.

3. Use the Intel Quartus Prime IP Catalog or Platform Designer to instantiate the On-
Chip Memory and RAM Intel FPGA IP cores that include an option to automatically
add this circuitry.

Figure 127. RAM Clock Enable Circuit for PR Region

M20K/LUTRAM

D

D

CLR

CLRCLR

1

Global Clock

Clear Signal
To Safely
Exit PR

Clock Enable
Logic

CEQ

Q Q

Q
–

Q
–

Q
–

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
284

https://www.altera.com/documentation/bwh1481838825775.html#yom1486073324557

Example 70. Verilog RTL for Clock Enable

 reg ce_reg;
 reg [1:0] ce_delay;

 always @(posedge clock, posedge freeze) begin
 if (freeze) begin
 ce_delay <= 2'b0;
 end
 else begin
 ce_delay <= {ce_delay[0], 1'b1};
 end
 end

 always @(posedge clock, negedge ce_delay[1]) begin
 if (~ce_delay[1]) begin
 ce_reg <= 1'b0;
 end
 else begin
 ce_reg <= clken_in;
 end
 end

 wire ram_wrclocken;
 assign ram_wrclocken = ce_reg;

Related Links

Embedded Memory User Guide

8.4.3.2.1 Clock Gating

An alternate method to avoid spurious writes of initialized content memories is to gate
the clock feeding the memories in the static region of your design. Clock gating is
logically equivalent to using clock enable on the memories. This method provides the
following features:

• Uses the enable port of the global clock buffers to disable the clock before starting
the partial reconfiguration operation. Also enables the clock on PR completion.

• Ensures that the clock does not switch during reconfiguration, and requires no
additional logic to avoid spurious writes.

Figure 128. Global Clock Control Block

PLL Counter Outputs

CLKSELECT [1..0]
 (1)

GCLK

Internal Logic

CLKp Pin

CLKn Pin

Internal Logic

Static Clock Select
 (2)

Enable/
Disable

2

2
2

This Multiplexer Supports
User-Controlled Dynamic
Switching

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
285

https://www.altera.com/documentation/eis1413425716965.html#eis1413185370899

Related Links

Clock Control Block (ALTCLKCTRL) Intel FPGA IP User Guide

8.4.4 Instantiating the Intel Arria 10 PR Controller IP

When you instantiate the Intel Arria 10 Partial Reconfiguration Controller IP core from
the IP Catalog (Tools ➤ IP Catalog), the Intel Quartus Prime software automatically
connects the IP core to the PR control block. If you create your own custom logic to
perform the function of the IP core, manually instantiate the control block to
communicate with the FPGA system.

Figure 129. Intel Arria 10 Partial Reconfiguration Controller

CRC BLOCK PR BLOCK

CB Interface Controller

JTAG Debug
Interface

PR Data
Interface

FPGA Control
Block (CB)
Interface Module

Main Controller
Module

PR Data Source
Interface Module

Data Source Controller

Bitstream Decoder

The Intel Arria 10 Partial Reconfiguration Controller IP core interfaces with the PR
control block to manage the bitstream source. Use this IP core in an Intel Arria 10
design when performing partial reconfiguration using an internal PR host, Nios II, PCI
Express, or Ethernet. Instantiate the IP core from the Intel Quartus Prime IP Catalog
or Platform Designer.

During partial reconfiguration, send a PR bitstream stored outside the FPGA to the PR
control block inside the FPGA. This communication enables the control block to update
the CRAM bits necessary for configuring the PR region in the FPGA. The PR bitstream
contains the instructions (opcodes) and the configuration bits necessary for
reconfiguring a specific PR region.

Related Links

Partial Reconfiguration Solutions IP User Guide

8.4.4.1 PR Control Block and CRC Block VHDL Component Declaration (Intel Arria
10 Designs Only)

To manually instantiate the PR control block and the CRC block in your Intel Arria 10
PR design:

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
286

https://www.altera.com/en_US/pdfs/literature/ug/ug_altclock.pdf
https://www.altera.com/documentation/bwh1481838825775.html#yom1486073324557

1. Use the code sample below, containing the component declaration in VHDL. This
code performs the PR function from within the core (code block within Core_Top).

module Chip_Top is port (
 --User I/O signals (excluding signals that relate to PR)
 ..
 ..
)
-- Following shows the connectivity within the Chip_Top module
Core_Top : Core_Top
port_map (
 ..
 ..
);

m_pr : twentynm_prblock
port map(
 clk => dclk,
 corectl =>'1', --1 - when using PR from inside
 --0 - for PR from pins; You must also enable
 -- the appropriate option in Quartus Prime settings
 prrequest => pr_request,
 data => pr_data,
 error => pr_error,
 ready => pr_ready,
 done => pr_done
);

m_crc : twentynm_crcblock
port map(
 shiftnld => '1', --If you want to read the EMR register when
 clk => dummy_clk, --error occurrs, refer to AN539 for the
 --connectivity forthis signal. If you only want
 --to detect CRC errors, but plan to take no
 --further action, you can tie the shiftnld
 --signal to logical high.
 crcerror => crc_error
);

Note: This VHDL example is adaptable for Verilog HDL instantiation.

2. Add additional ports to Core_Top to connect to both components.

3. Follow these rules when connecting the PR control block to the rest of your design:

• Set the corectl signal to ‘1’ (when using partial reconfiguration from core) or
to ‘0’ (when using partial reconfiguration from pins).

• The corectl signal must match the Enable PR pins option setting in the
Device and Pin Options dialog box (Assignments ➤ Device ➤ Device and
Pin Options).

• When performing partial reconfiguration from pins, the Fitter automatically
assigns the PR unassigned pins. Assign all the dedicated PR pins using Pin
Planner (Assignments ➤ Pin Planner) or Assignment Editor (Assignments
➤ Assignment Editor).

• When performing partial reconfiguration from the core logic, connect the
prblock signals to either core logic or I/O pins, excluding the dedicated
programming pin, such as DCLK.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
287

8.4.4.1.1 PR Control Block and CRC Block VHDL Instantiation (Intel Arria 10 Designs Only)

The following example instantiates a PR control block inside your top-level Intel Arria
10 project, Chip_Top, in VHDL:

module Chip_Top is port (
 --User I/O signals (excluding signals that relate to PR)
 ..
 ..
)
-- Following shows the connectivity within the Chip_Top module
Core_Top : Core_Top
 port_map (
 ..
 ..
);
m_pr : twentynm_prblock
 port map(
clk => dclk,
 corectl =>'1', --1 - when using PR from inside
 --0 - for PR from pins; You must also enable
 -- the appropriate option in Quartus Prime settings
 prrequest => pr_request,
 data => pr_data,
 error => pr_error,
 ready => pr_ready,
 done => pr_done
);
m_crc : twentynm_crcblock
 port map(
 shiftnld => '1', --If you want to read the EMR register when
 clk => dummy_clk, --error occurrs, refer to AN539 for the
 --connectivity for this signal. If you only want
 --to detect CRC errors, but plan to take no
 --further action, you can tie the shiftnld
 --signal to logical high.
 crcerror => crc_error
);

8.4.4.1.2 PR Control Block and CRC Block Verilog HDL Instantiation (Intel Arria 10 Designs
Only)

The following example instantiates a PR control block inside your top-level Intel Arria
10 PR project, Chip_Top, in Verilog HDL:

Chip_Top:
module Chip_Top (
 //User I/O signals (excluding PR related signals)
..
..
//PR interface and configuration signals declaration
 wire pr_request;
 wire pr_ready;
 wire pr_done;
 wire crc_error;
 wire dclk;
 wire [31:0] pr_data;

twentynm_prblock m_pr
 (
 .clk (dclk),
 .corectl (1'b1),
 .prrequest(pr_request),
 .data (pr_data),
 .error (pr_error),
 .ready (pr_ready),
 .done (pr_done)

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
288

);

twentynm_crcblock m_crc
 (
 .clk (clk),
 .shiftnld (1'b1),
 .crcerror (crc_error)
);
endmodule

For more information about port connectivity for reading the Error Message Register
(EMR), refer to the AN539: Test Methodology of Error Detection and Recovery using
CRC.

Related Links

AN539: Test Methodology of Error Detection and Recovery using CRC in Altera FPGA
Devices

8.4.4.2 Partial Reconfiguration Control Block Signals (Intel Arria 10 Designs
Only)

The following table lists the partial reconfiguration control block interface signals:

Table 74. PR Control Block Interface Signals

Signal Width Direction Description

pr_data [31:0] Input Carries the configuration
bitstream.

pr_done 1 Output Indicates that the PR
process is complete.

pr_ready 1 Output Indicates that the control
block is ready to accept PR
data from the control logic.

pr_error 1 Output Indicates a partial
reconfiguration error.

pr_request 1 Input Indicates that the PR
process is ready to begin.

corectl 1 Input Determines whether you are
performing the partial
reconfiguration internally, or
through pins.

Note: • Use data signal width of x8, x16, or x32 in your PR design.

• All the inputs and outputs are asynchronous to the PR clock (clk), except data
signal. data signal is synchronous to clk signal.

• PR clock must be free-running.

• data signal must be 0 while waiting for ready signal.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
289

http://www.altera.com/literature/an/an539.pdf
http://www.altera.com/literature/an/an539.pdf

8.4.4.2.1 PR Control Block Signals Timing Diagrams (Intel Arria 10 Designs Only)

Successful PR Session (Intel Arria 10 Example)

The following flow describes a successful Intel Arria 10 PR session:

1. Assert PR_REQUEST and wait for PR_READY; drive PR_DATA to 0.

2. The PR control block asserts PR_READY, asynchronous to clk.

3. Start sending Raw Binary File (.rbf) to the PR control block, with 1 valid word per
clock cycle. On .rbf file transfer completion, drive PR_DATA to 0. The PR control
block asynchronously asserts PR_DONE when the control block completes the
reconfiguration operation. The PR control block deasserts PR_READY on
configuration completion.

4. Deassert PR_REQUEST. The PR control block acknowledges the end of
PR_REQUEST, and deasserts PR_DONE. The host can now initiate another PR
session.

Figure 130. Timing Diagram for Successful Intel Arria 10 PR Session

S0 S1

S2

S3

S4

S5 S6

PR_REQUEST

PR_CLK

PR_READY

PR_DONE

New PR Session

 First Data Last Data

Minimum Width Requirement of 6 cycles on
PR_REQUEST to Initiate a PR Session

PR_DATA [x:0]

Related Links

Generating Raw Binary Programming Files on page 316

Unsuccessful PR Session with Configuration Frame Readback Error (Intel Arria 10
Example)

The following flow describes an Intel Arria 10 PR session with error in the EDCRC
verification of a configuration frame readback:

1. The PR control block internally detects a CRC error.

2. The CRC control block then asserts CRC_ERROR.

3. The PR control block asserts the PR_ERROR.

4. The PR control block deasserts PR_READY, so that the host can withdraw the
PR_REQUEST.

5. The PR control block deasserts CRC_ERROR and clears the internal CRC_ERROR
signal to get ready for a new PR session. The host can now initiate another PR
session.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
290

Figure 131. Timing Diagram for Unsuccessful Intel Arria 10 PR Session with Configuration
Frame Readback Error

PR_REQUESTPR_REQUEST

S0S0 S1S1

S2S2

S3S3

S4S4

S5S5

S6S6

S7S7

PR_CLKPR_CLK

PR_DATA [x:0]PR_DATA [x:0]

PR_READYPR_READY

Internal CRC_ERRORInternal CRC_ERROR

CRC_ERRORCRC_ERROR

PR_ERRORPR_ERROR

Error Occurs

New PR Session

Unsuccessful PR Session with PR_ERROR (Intel Arria 10 Example)

The following flow describes an Intel Arria 10 PR session with transmission error or
configuration CRC error:

1. The PR control block asserts PR_ERROR.

2. The PR control block deasserts PR_READY, so that the host can withdraw
PR_REQUEST.

3. The PR control block deasserts PR_ERROR to get ready for a new PR session. The
host can now initiate another PR session.

Figure 132. Timing Diagram for Unsuccessful Intel Arria 10 PR Session with PR_ERROR

S0 S1

S2

S3

S4

S5

S6

PR_REQUESTPR_REQUEST

PR_CLKPR_CLK

PR_DATA [x:0]PR_DATA [x:0]

PR_READYPR_READY

PR_ERRORPR_ERROR

New PR Session

Error Occurs

Late Withdrawal PR Session (Intel Arria 10 Example)

The following flow describes a late withdrawal Intel Arria 10 PR session:

1. The PR host can withdraw the request after the PR control block asserts
PR_READY.

2. The PR control block deasserts PR_READY. The host can now initiate another PR
session.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
291

Figure 133. Timing Diagram for Late Withdrawal Intel Arria 10 PR Session

S0 S1

S2

S3 S4

PR_REQUESTPR_REQUEST

PR_CLKPR_CLK

PR_DATA [x:0]PR_DATA [x:0]

PR_READYPR_READY

PR_ERRORPR_ERROR

New PR SessionWithdrawal
Minimum = 1 PR_CLK

Note: The PR host can withdraw the request any time before the controller asserts
PR_READY. Therefore, the PR host must not return until the PR control block asserts
PR_READY. Provide at least 10 PR_CLK cycles after deassertion of PR_REQUEST,
before requesting a new PR session.

8.4.5 Instantiating the Intel Stratix 10 PR Controller IP

When you instantiate the Intel Stratix 10 Partial Reconfiguration Controller IP core
from the IP catalog (Tools ➤ IP Catalog), the Intel Quartus Prime software
automatically connects the IP core to the SDM in the FPGA.

Figure 134. Intel Stratix 10 Partial Reconfiguration Controller

PR Data
 Interface

Secure
Device

Manager
Interface

Intel Stratix® 10 PR Controller IP

avst_sink_data[31:0]

avst_sink_valid

Secure Device
Manager

avst_sink_ready
pr_start

status[2:0]

clk
reset

PR Flow
Handler

Data Source
 Controller

FPGA
Mailbox
Driver

User Input/Output

The SDM performs authentication, decryption, and decompression on the configuration
data. The Quartus Prime software currently supports PR over the core interface using
the Intel Stratix 10 PR Controller IP core, or PR over the JTAG device pins. PR over
JTAG does not require the Intel Stratix 10 PR Controller IP core.

The Intel Stratix 10 PR Controller IP core interfaces with the SDM to manage the
bitstream source. Instantiate this IP core in an Intel Stratix 10 design when
performing partial reconfiguration using an internal PR host, Nios II, PCI Express, or
Ethernet. Instantiate the IP core from the Intel Quartus Prime IP Catalog or Platform
Designer.

8.4.6 Promoting Global Signals in a PR Region

In standard designs, the Intel Quartus Prime software automatically promotes high
fan-out signals onto dedicated global networks. This global promotion happens during
the Plan stage of design compilation.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
292

In PR designs, the Compiler disables global promotion for signals originating within the
logic of a PR region. Instantiate the clock control blocks only in the static region,
because the clock floorplan and the clock buffers must be a part of the static region of
the design. Manually instantiating a clock control block in a PR region, or assigning a
signal in a PR region with the GLOBAL_SIGNAL assignment, results in compilation
error. To drive a signal originating from the PR region onto a global network:

1. Expose the signal from the PR region.

2. Drive the signal onto the global network from the static region

3. Drive the signal back into the PR region.

You can drive a maximum of 33 clocks (for Intel Arria 10 devices) or 32 clocks (for
Intel Stratix 10 devices) into any PR region, but you cannot share a row clock
between two PR regions. Use the Chip Planner to visualize the row clock region
boundaries, and to ensure that no two PR regions share a row clock region.

When promoting global signals, the Compiler allows only certain signals to be
global inside the PR regions. Use only global signals to route certain secondary
signals into a PR region. The following table lists the restriction for each block:

Table 75. Supported Signal Types for Driving Clock Networks in a PR Region

Block Type Supported Global Network Signals

LAB, MLAB Clock, ACLR, SCLR(7)

RAM, ROM (M20K) Clock, ACLR, Write Enable (WE), Read Enable (RE), SCLR

DSP Clock, ACLR, SCLR

8.4.7 Partial Reconfiguration Process Sequence

The partial reconfiguration design initiates the PR operation, and delivers the
configuration file to the PR control block or SDM as part of the system level design.
Before partial reconfiguration, ensure that the FPGA device is in user mode, and in a
functional state. The following steps describe the PR sequence:

1. Send a stop_req signal to the PR region from the sequential PR control logic to
prepare for the PR operation. This signal informs the PR regions to complete any
pending transactions and stop accepting new transactions.

2. Wait for the stop_ack signal to indicate that the PR region is ready for partial
reconfiguration.

3. Use PR control logic to freeze all necessary outputs of the PR regions. Additionally,
drive the clock enable for any initialized RAMs to disabled state.

4. To initiate the PR process for the PR region, send the PR bitstream to the PR
control block or SDM. When using the Partial Reconfiguration IP core, the Avalon-
MM or Avalon-ST interface on the IP core handles the process. When directly
instantiating the PR control block for Intel Arria 10 designs, follow the PR control
block interface protocol timings to ensure that the PR process progresses correctly.

5. On successful completion of the PR operation, reset the PR region.

(7) Only Intel Stratix 10 designs support global SCLR.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
293

6. Signal the PR region to start operating by asserting the start_req signal, and
deasserting the freeze signal.

7. Wait for the start_ack signal to indicate that the PR region is ready for
operation.

8. Resume operation of the FPGA with the newly reconfigured PR region.

Figure 135. Recommended Process Sequence Timing Diagram

stop_req

stop_ack

freeze

region_reset

start_req

start_ack

Partial
Reconfiguration

Unbounded time between
stop_req and stop_ack

Unbounded time between
start_req and start_ack

 stop_req is deasserted
when stop_ack is asserted

 start_req is asserted
when freeze is deasserted

 start_req deasserted
when start_ack asserted

region_reset is fully
user controlled

8.4.8 Resetting the PR Region Registers

Upon partial reconfiguration of a PR region, the status of the PR region registers
become indeterminate. Bring the registers in the PR region to a known state by
applying a reset sequence for the PR region. This reset ensures that the system
behaves to your specifications. Simply reset the control path of the PR region, if the
datapath eventually flushes out within a finite number of cycles.

Table 76. Supported PR Reset Implementation Guideline

PR Reset Type Active-High
Synchronous Reset

Active-High
Asynchronous Reset

Active-Low
Synchronous Reset

Active-Low
Asynchronous Reset

On local signal Yes Yes Yes Yes

On global signal • No (Intel Arria 10)
• Yes (Intel Stratix

10)

Yes • No (Intel Arria 10)
• Yes (Intel Stratix

10)

Yes

Note: Use active-high local reset instead of active-low, wherever applicable. This technique
allows you to automatically hold the PR region in reset, by virtue of the boundary port
wire LUT.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
294

8.4.9 Floorplanning a Partial Reconfiguration Design

The floorplan constraints in your partial reconfiguration design physically partition the
device. This partitioning ensures that the resources available to the PR region are the
same for any persona that you implement.

Note: Complete the periphery and clock floorplan before core floorplanning.

Your PR region must include only core logic, such as LABs, RAMs, ROMs, and DSPs in a
PR region. Intel Stratix 10 designs can also include Hyper-Registers in the PR
partition. Instantiate all periphery design elements, such as transceivers, external
memory interfaces, and clock networks in the static region of the design. Logic Lock
regions can cross periphery locations, such as the I/O columns and the HPS, because
the constraint is core-only. The following figure shows the PR region floorplan covering
the I/O columns in the middle of the device:

Figure 136. PR Region Floorplan

Logic Lock Region (Fabric)
Available to the PR Region

To create periphery floorplan assignments for your design, use the Interface Planner
(Tools ➤ Interface Planner).

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
295

Figure 137. Floorplanning your PR Design

Static
Region

PR Region

Static Logic

Route region

Place Region

Each PR partition in your design must have a corresponding, exclusive physical
partition. Assign any Logic Lock regions to define the physical partition for your PR
region. There are two region types:

• Placement regions—use these regions to constrain logic to a specific area of the
device. The Fitter places the logic in the region you specify. The Fitter can also
place other logic in the region unless you designate the region as Reserved.

• Routing regions—use these regions to constrain routing to a specific area.

The routing region must fully enclose the placement region. Additionally, the routing
regions for the PR regions cannot overlap.

Create Logic Lock regions from the Project Navigator, Logic Lock Regions window, or
Chip Planner. For complete information on creating Logic Lock regions, refer to
Creating Logic Lock Regions in the Intel Quartus Prime Pro Edition Handbook.

Follow these guidelines when floorplanning your PR design:

• Define a routing region that is at least 1 unit larger than the placement region in
all directions.

• Do not overlap the routing regions of multiple PR regions.

• Select the PR region row-wise for least bitstream overhead. In Intel Arria 10
devices, the short, wide regions have smaller bitstream size than tall, narrow
regions. Intel Stratix 10 configuration occurs on sectors. For the least bitstream
overhead, ensure that you align the PR region to sectors.

• Define sub Logic Lock regions within PR regions to improve timing closure.

• For Intel Arria 10, the height of your floorplan affects the reconfiguration time. A
floorplan larger in the Y direction takes longer to reconfigure. This condition does
not apply to Intel Stratix 10 devices because they configure according to sectors.

• If your design includes HPR parent and child partitions, placement region of the
parent region must fully enclose the routing and placement region of its child
region. Also, the parent wire LUTs must be in an area, outside the child PR region.
This requirement is because the child PR region is exclusive to all other logic,
which includes the parent and the static region.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
296

To create a Logic Lock region for your PR partition:

1. Right-click the design instance in the Project Navigator and click Logic Lock
Region ➤ Create New Logic Lock Region. The region appears on the Logic
Lock Regions Window.

2. In the Logic Lock Regions window, specify the placement region coordinates in the
Origin column. The origin corresponds to the lower-left corner of the region. For
example, to set a placement region with lower-left corner co-ordinates of (184
420), specify the Origin as X184_Y420. The Compiler automatically calculates
the upper-right corner coordinates for the placement region, based on the height
and width you specify.

3. Enable the Reserved and Core-Only options for the region.

4. Double-click the Routing Region option. The Logic Lock Routing Region
Settings dialog box appears.

5. Specify the Routing type. The Logic Lock region supports the following routing
types:

• Whole chip—allocates the entire chip for the routing shape.

• Fixed with expansion—allocates an expansion length of 1 for the routing
shape.

• Custom—allows you to manually add a custom routing shape and specify the
Height, Width, and Origin.

Note: The routing shape must be larger than the placement shape.

6. Click OK.

Figure 138. Logic Lock Regions Window

Specify the Height and
Width for Placement Region Specify the Routing Region Type

Specify Reserved and Core-Only as On

The following assignments in the .qsf file correspond to creating a core-only,
reserved Logic Lock region with placement and routing regions:

set_instance_assignment -name PARTITION supr_partition -to u_top_counter
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON -to \
 u_top_counter
set_instance_assignment -name PLACE_REGION "X191 Y420 X195 Y424" -to \
 u_top_counter
set_instance_assignment -name RESERVE_PLACE_REGION ON -to u_top_counter
set_instance_assignment -name CORE_ONLY_PLACE_REGION ON -to u_top_counter
set_instance_assignment -name ROUTE_REGION "X190 Y419 X196 Y425" -to \
 u_top_counter

set_instance_assignment -name PARTITION pr_partition -to u_blinking_led
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON -to \
 u_blinking_led

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
297

Related Links

• Analyzing and Optimizing the Design Floorplan
For complete information on how to create Logic Lock regions.

• Interface Planner
For complete information on interface planning.

8.4.9.1 Applying Floorplan Constraints Incrementally

PR implementation requires additional constraints that identify the reconfigurable
partitions of the design and device. These constraints significantly impact the
Compiler's timing closure ability. You can avoid and more easily correct timing closure
issues by incrementally implementing each constraint, running the Compiler, then
verifying timing closure.

Note: PR designs require a more constrained floorplan, compared to a flat design. The
overall density and performance of a PR design may be lower than an equivalent flat
design.

The following steps describe incrementally developing the requirements for your PR
design:

1. Implement the base revision using the most complex persona for each PR
partition. This initial implementation must include the complete design with all
periphery constraints, and top-level .sdc timing constraints. Do not include any
Logic Lock region constraints for the PR regions with this implementation.

2. Create partitions by setting the region Type option to Default in the Design
Partitions Window, for all the PR partitions.

3. Register the boundaries of each partition to ensure adequate timing margin.

4. Verify successful timing closure using the Timing Analyzer.

5. Ensure that all the desired signals are driven on global networks. Disable the Auto
Global Clock option in the Fitter (Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter)), to avoid promoting non-global signals.

6. Create Logic Lock core-only placement regions for each of the partitions.

7. Recompile the base revision with the Logic Lock constraints, and then verify timing
closure.

8. Enable the Reserved option for each Logic Lock region to ensure the exclusive
placement of the PR partitions within the placement regions. Enabling the
Reserved option avoids placing the static region logic in the placement region of
the PR partition.

9. Recompile the base revision with the Reserved constraint, and then verify timing
closure.

10. In the Design Partitions Window, specify each of the PR partitions as the
Reconfigurable Type. This assignment ensures that the Compiler adds wire LUTs
for each interface of the PR partition, and performs additional compilation checks
for partial reconfiguration.

11. Recompile the base revision with the Reconfigurable constraint, and then verify
timing closure. You can now export the top-level partition for reuse in the PR
implementation compilation of the different personas.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
298

https://www.altera.com/documentation/jbr1437427643326.html#mwh1410471303170
https://documentation.altera.com/#/link/jbr1437427643326/jbr1410905116321

8.4.10 Creating Revisions for Personas

To compile a partial reconfiguration project, create a base revision for the design. Also,
create synthesis and PR implementation revisions for each of the personas.

Figure 139. Partial Reconfiguration Compilation Flow for Intel Arria 10 and Intel Stratix
10 Devices

Compile the Base Revision with the Most
 Complex Persona for Each PR Region

Export the root_partition at the “final”
 Snapshot of the Base Revision

Create Synthesis Revisions for the Other
 Personas of the PR Regions

Synthesize Each Synthesis Revision

 Export the root_partition of Synthesis
 Revision in the Synthesized Snapshot

Create Revisions to Implement Each
 PR Persona

 Import Base Revision root_partition and
Synthesized Snapshot for Each PR Partition

 Analyze Timing on Each
PR Implementation Revision

To create the PR implementation revisions:

1. Click Project ➤ Revisions.

2. To create a new revision, double-click <<new revision>>.

3. Specify a unique Revision name.

4. Select an existing revision for the Based on revision option.

5. Enable Set as current revision to specify the persona as your current revision,
and click OK.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
299

Figure 140. Create Revisions Dialog Box

6. To set the revision type, click Assignments ➤ Settings ➤ General.

7. Select the persona for setting the revision type from the Recently selected top-
level entities list.

8. Select the revision type:

• Partial Reconfiguration - Base

• Partial Reconfiguration - Persona Synthesis

• Partial Reconfiguration - Persona Implementation

Figure 141. Specify Revision Type

9. Click Apply and OK.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
300

The following assignments in the respective revision's .qsf file correspond to
specifying the revision type from the Settings dialog box:

set_global_assignment -name REVISION_TYPE PR_BASE
set_global_assignment -name REVISION_TYPE PR_SYN
set_global_assignment -name REVISION_TYPE PR_IMPL

8.4.11 Compiling the Partial Reconfiguration Design

The number of compilations a PR design requires depends on the number of PR
personas. Use the base revision compilation, and each PR implementation compilation
for timing analysis.

Typically, compile a partial reconfiguration design in two phases:

1. From the Compilation Dashboard, run the Place and Route compilation stages on
the static partitions, along with a set of default personas for each PR partition.

2. Compile the alternate personas, while preserving the static partition’s placing and
routing blocks.

When reusing or preserving a design block, always specify the precise compilation
snapshot to reuse. For example, when compiling the alternate personas of a PR
design, specify the snapshot for that compilation as the “final” snapshot of the
static region. Otherwise, the Compiler cannot preserve the routing information.

Related Links

Design Compilation
For more information on how to analyze, synthesize, place, and route your design.

8.4.11.1 Generating the Partial Reconfiguration Flow Script

The Intel Quartus Prime Pro Edition software provides a flow template for compiling a
partial reconfiguration design for Intel Arria 10 and Intel Stratix 10 devices.

To create and run a PR flow script in your Intel Quartus Prime project directory, follow
these steps:

1. Type one of the following commands from the Intel Quartus Prime shell:

quartus_sh --write_flow_template –flow s10_partial_reconfig

quartus_sh --write_flow_template -flow s10_hier_partial_reconfig

quartus_sh --write_flow_template –flow a10_partial_reconfig

quartus_sh --write_flow_template -flow a10_hier_partial_reconfig

2. To run the script type one of the following commands:

quartus_sh –t s10_partial_reconfig/flow.tcl

quartus_sh –t s10_hier_partial_reconfig/flow.tcl

quartus_sh –t a10_partial_reconfig/flow.tcl

quartus_sh –t a10_hier_partial_reconfig/flow.tcl

Use the following options when running this script:

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
301

https://documentation.altera.com/#/link/jbr1437426657605/jbr1443197641054

Table 77. Partial Reconfiguration Flow Script Options

Option Description

-all Default option that compiles the base revision and all the PR
implementation revisions.

--impl[=<name>] Compiles a specified PR implementation. Specify the
revision name of the implementation to compile.

-all_impl Compiles all PR implementations. Skips the base revision
compilation.

-base Compiles the base revision. Skips all the PR
implementations compilation.

-check Checks the script configuration and exits without performing
any compilation.

-setup_script[=<file_name>] Allows you to customize the script settings with your partial
reconfiguration project details. The settings you define in
this file override the variable settings in the script template.

8.4.11.1.1 Configuring the Partial Reconfiguration Flow Script

To configure the PR flow script for your design:

1. Rename the generated PR flow script:

Table 78. PR Script Renaming

Rename This File To This File

a10_partial_reconfig/setup.tcl.example a10_partial_reconfig/setup.tcl

s10_partial_reconfig/setup.tcl.example s10_partial_reconfig/setup.tcl

2. Edit the setup.tcl file with configuration that overrides the variable settings in
the a10_partial_reconfig/flow.tcl or s10_partial_reconfig/
flow.tcl file. To define the name of your Intel Quartus Prime partial
reconfiguration project, modify the following line:

define_project <project_name>

Note: All revisions must be present in the corresponding .qpf file.

3. To define the base revision name, modify the following line:

define_base_revision <base_revision_name>

This revision represents the static region of the design.

4. To define each of the partial reconfiguration implementation revisions, along with
the PR partition names and the synthesis revision that implements the revisions,
modify the following line:

define_pr_impl_partition -impl_rev_name <implementation_revision_name> \
 -partition_name <pr_partition_name\
 -source_rev_name <synthesis_revision_name>
...
...

Note: Alternatively, use the setup_script option while running the flow.tcl
script to specify the setup.tcl configuration file location.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
302

8.4.11.1.2 Running the Partial Reconfiguration Flow Script

To run the partial reconfiguration flow script with your setup file:

1. Click Tools ➤ Tcl Scripts. The Tcl Scripts dialog box appears.

2. Click Add to Project, browse and select a10_partial_reconfig/flow.tcl or
s10_partial_reconfig/flow.tcl

3. Select a10_partial_reconfig/flow.tcl or s10_partial_reconfig/
flow.tcl in the Libraries pane, and then click Run.

Alternatively, to run the script from the Intel Quartus Prime command shell, type one
of the following commands:

quartus_sh -t a10_partial_reconfig/flow.tcl -setup_script setup.tcl

quartus_sh -t s10_partial_reconfig/flow.tcl -setup_script setup.tcl

8.4.11.2 Hierarchical Partial Reconfiguration Compilation Flow

Intel Arria 10 and Intel Stratix 10 devices support hierarchical partial reconfiguration
(HPR), which allows multiple parent and child design partitions, or multiple levels of
partitions in the same design. Similar to compiling a standard PR design, you must
create a base revision for your design. Then, you create dedicated synthesis revisions
for each parent and child partition in your design. Specify the design file of the parent
and child partition as the top-level entity for the corresponding synthesis revision.
Also, ensure that the synthesis revisions for the parent PR partitions include the
partition assignments for its child PR regions.

When compiling the implementation revision for an HPR design, you must fully
floorplan the child partition, in the same manner as the PR region of a base revision.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
303

Figure 142. Hierarchical Partial Reconfiguration Compilation Flow

 Implement Base Revision

 Synthesize Parent
 Synthesis Revisions

 Synthesize Child
 Synthesis Revisions

Implement Implementation
 Revisions

Generate .sof and .rbf Files
For Implementation

Revisions

Export Root Partition
(Static Region)

As Final Snapshot

Export Root Partition
(Parent PR Region)

As Synthesized Snapshot

Export Root Partition
(Child PR Region)

As Synthesized Snapshot

Generate .sof and .rbf Files
For Base Revision

Export Parent PR Partition
As Final Snapshot

(If Necessary)

8.4.11.2.1 Configuring the Hierarchical Partial Reconfiguration Flow Script

To configure the HPR flow script for your design:

1. Rename the generated script files:

Table 79. PR Script Renaming

Rename This File To This File

a10_hier_partial_reconfig/setup.tcl.example a10_hier_partial_reconfig/setup.tcl

s10_hier_partial_reconfig/setup.tcl.example s10_hier_partial_reconfig/setup.tcl

2. Edit the setup.tcl file with a configuration that overrides the variable settings in
the a10_hier_partial_reconfig/flow.tcl or
s10_hier_partial_reconfig/flow.tcl file. To define the name of your Intel
Quartus Prime hierarchical partial reconfiguration project, modify the following
line:

define_project <project_name>

Note: All revisions must be present in the corresponding .qpf file.

3. To define the base revision name, modify the following line:

define_base_revision <base_revision_name>

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
304

This revision represents the static region of the design.

4. To define each parent and child partition in each revision, along with the partition
names, the implementation revision name, source revision name, source revision
partition name, and the source snapshot, modify the following lines:

define_pr_impl_partition -impl_rev_name <implementation revision name> \
 -partition_name <partition_name> \
 -source_rev_name <source_revision_name> \
 -source_partition <source_partition_name> \
 -source_snapshot <source_snapshot>

Note: Alternatively, use the setup_script option while running the flow.tcl
script to specify the setup.tcl configuration file location.

Table 80. Implementation Revision Definition Arguments

Argument Description

-impl_rev_name Defines the implementation revision name.

-partition_name Defines the partition name.

-source_rev_name Defines the name of the source revision. This revision can be a
synthesis or implementation revision, from which this partition
imports the exported synthesis/final snapshot, for implementation.

-source_partition Defines the partition in the source revision, which the Compiler
exports, later in the flow. This partition can either be a root partition
for synthesis source revisions, or a parent PR partition for
implementation source revisions.

-source_snapshot Defines the snapshot of the source partition that the Compiler
exports, later in the flow. Usually, you define this argument as the
final snapshot for parent PR partitions exported from
implementation revisions, and synthesized snapshot for root
partitions exported from synthesis revisions.

Note: Alternatively, use the setup_script option while running the flow.tcl
script to specify the setup.tcl configuration file location.

Related Links

• AN 805: Hierarchical Partial Reconfiguration of a Design on Intel Arria 10 SoC
Development Board

• AN 816: Hierarchical Partial Reconfiguration Tutorial for Intel Stratix 10 GX FPGA
Development Board

8.4.11.2.2 Running the Hierarchical Partial Reconfiguration Flow Script

To run the hierarchical partial reconfiguration flow script with your setup file:

1. Click Tools ➤ Tcl Scripts. The Tcl Scripts dialog box appears.

2. Click Add to Project, browse and select the a10_hier_partial_reconfig/
flow.tcl or s10_hier_partial_reconfig/flow.tcl file.

3. Select the a10_hier_partial_reconfig/flow.tcl or
s10_hier_partial_reconfig/flow.tcl in the Libraries pane, and click Run.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
305

https://www.altera.com/documentation/aww1488919248320.html#xgt1488919228546
https://www.altera.com/documentation/aww1488919248320.html#xgt1488919228546
https://www.altera.com/documentation/aww1488919248320.html#xgt1488919228546
https://www.altera.com/documentation/aww1488919248320.html#xgt1488919228546

Alternatively, to run the script from the Intel Quartus Prime command shell, type one
of the following commands:

quartus_sh -t a10_hier_partial_reconfig/flow.tcl -setup_script /
 a10_hier_partial_reconfig/setup.tcl

quartus_sh -t s10_hier_partial_reconfig/flow.tcl -setup_script /
 s10_hier_partial_reconfig/setup.tcl

Table 81. Hierarchical Partial Reconfiguration Flow Script Options

Option Description

-all Default option that compiles the base revision and all the PR
implementation revisions.

-all_syn Compiles all the HPR synthesis revisions. Skips the base revision
compilation.

-impl[=<name>] Compiles a specified HPR implementation revision. Specify the
revision name of the implementation to compile.

-all_impl Compiles all HPR implementations. Skips the base revision
compilation.

-base Compiles the base revision. Skips all the HPR implementations
compilation.

-check Checks the script configuration and exits without performing any
compilation.

-setup_script[=<file_name>] Allows you to customize the script settings with your partial
reconfiguration project details. The settings you define in this file
override the variable settings in a10_hier_partial_reconfig/
setup.tcl or s10_hier_partial_reconfig/setup.tcl
template.

8.4.12 Timing Analysis with Partial Reconfiguration

The interface between partial and static partitions remains the same for each PR
implementation revision. Perform timing analysis on each PR implementation revision
to ensure that there are no timing violations.

To meet various timing requirements for multiple PR personas, create separate .sdc
files for each persona. If you need timing constraints for the synthesis persona,
include the constraints in the synthesis revision. The target name must match the
hierarchy of the persona at the top-level.

Note: Logic Lock regions impose placement constraints that affect the performance and
resource utilization of your PR design. Ensure that the design has additional timing
allowance and available device resources. Selecting the largest and most timing-
critical persona as your base persona optimizes the timing closure.

Related Links

The Intel Quartus Prime Timing Analyzer

8.4.12.1 Running Timing Analysis on a Design with PR Partitions

To ensure timing closure of designs with multiple PR regions, you create aggregate
revisions for all possible PR region combinations.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
306

https://documentation.altera.com/#/link/jbr1437428483891/mwh1410383638859

To create an aggregate revision and perform timing analysis on the aggregate
revision:

1. To open the Revisions dialog box, click Project ➤ Revisions.

2. To create a new revision, double-click <<new revision>>.

3. Specify the Revision name and select the base revision for Based on Revision.

4. Ensure that you include all the .sdc and .ip files for the static and PR region.

Note: To detect the clocks, the .sdc file for the PR Controller IP must follow
any .sdc that creates the clocks that the IP core uses. You facilitate this
order by ensuring the .ip file for the PR Controller IP core comes after
any .ip files or .sdc files that you use to create these clocks in the .qsf
file for your Intel Quartus Prime project revision. For more information, refer
to the Partial Reconfiguration Solutions IP User Guide.

5. To export the post-fit database from the base compile (static partition), type the
following command in the Intel Quartus Prime shell:

quartus_cdb <base_revision> --export_block "root_partition" --snapshot \
 final --file "<base revision name>.qdb" --exclude_pr_subblocks

Note: The static partition post-fit database is already available in the base
revision. You can use this <base revision name>.qdb file from the base
revision project folder, instead of regenerating the .qdb file using the above
command.

6. To export the post-fit database from the multiple personas (PR implementation
revisions), type the following commands in the Intel Quartus Prime shell:

quartus_cdb <PR1 Fit revision> --export_block <PR1 Partition name> \
 --snapshot final --file "pr1.qdb"

quartus_cdb <PR2 Fit revision> --export_block <PR2 Partition name> \
 --snapshot final --file "pr2.qdb"

7. To import the post-fit databases of the static and PR region as aggregate revision,
type the following commands in the Intel Quartus Prime shell:

quartus_cdb <aggr_rev> --import_block "root_partition" --file \
 "<base revision name>.qdb"

quartus_cdb <aggr_rev> --import_block <PR1 partition name> --file "pr1.qdb"

quartus_cdb <aggr_rev> --import_block <PR2 Partition name> --file "pr2.qdb"

8. To integrate post-fit database of all the partitions, type the following command in
the Intel Quartus Prime shell:

quartus_fit <proj name> -c <aggr_rev>

Note: The Fitter verifies the legality of the post-fit database, and combines the
netlist for timing analysis. The Fitter does not reroute the design.

9. To perform timing analysis on the aggregate revision, type the following command
in the Intel Quartus Prime shell:

quartus_sta <proj name> -c <aggr_rev>

10. Run timing analysis on aggregate revision for all possible PR persona combination.
If a specific persona fails timing closure, recompile the persona and perform
timing analysis again.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
307

Related Links

Partial Reconfiguration Solutions IP User Guide

8.4.13 External Host Configuration (Intel Arria 10 Designs Only)

The current version of the Intel Quartus Prime Pro Edition software supports external
host PR configuration only for Intel Arria 10 devices. During user mode, the external
host initiates partial reconfiguration, and monitors the PR status using the external PR
dedicated pins. In this mode, the external host must respond appropriately to the
handshake signals for successful partial reconfiguration. The external host writes the
partial bitstream data from external memory into the Intel Arria 10 device. Co-
ordinate system-level partial reconfiguration by ensuring that you prepare the correct
PR region for partial reconfiguration. After reconfiguration, return the PR region into
operating state.

To use an external host for your design:

1. Click Assignments ➤ Device ➤ Device & Pin Options.

2. Select the Enable PR Pins option in the Device & Pin Options dialog box. This
option automatically creates the special partial reconfiguration pins, and defines
the pins in the device pin-out. This option also automatically connects the pins to
PR control block internal path.

Note: If you do not select this option, you must use an internal or HPS host. You
do not need to define pins in your design top-level entity.

3. Connect these top-level pins to the specific ports in the PR control block.

The following table lists the automatically constrained PR pins when you select Enable
PR Pins option, and the specific PR control block port to connect these pins to:

Table 82. Partial Reconfiguration Dedicated Pins

Pin Name Type PR Control Block Port
Name

Description

PR_REQUEST Input prrequest Logic high on this pin
indicates that the PR host is
requesting partial
reconfiguration.

PR_READY Output ready Logic high on this pin
indicates that the PR control
block is ready to begin
partial reconfiguration.

PR_DONE Output done Logic high on this pin
indicates that the partial
reconfiguration is complete.

PR_ERROR Output error Logic high on this pin
indicates an error in the
device during partial
reconfiguration.

DATA[31:0] Input data These pins provide
connectivity for PR_DATA to
transfer the PR bitstream to
the PR controller.

DCLK Input clk Receives synchronous
PR_DATA.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
308

https://www.altera.com/documentation/bwh1481838825775.html#yom1486073324557

Note: 1. PR_DATA can be 8, 16, or 32-bits in width.

2. Ensure that you connect the corectl port of the PR control block to 0.

Example 71. Verilog RTL for External Host PR

module top(
 // PR control block signals
 input logic pr_clk,
 input logic pr_request,
 input logic [31:0] pr_data,
 output logic pr_error,
 output logic pr_ready,
 output logic pr_done,

 // User signals
 input logic i1_main,
 input logic i2_main,
 output logic o1
);

// Instantiate the PR control block
twentynm_prblock m_prblock
(
 .clk(pr_clk),
 .corectl(1'b0),
 .prrequest(pr_request),
 .data(pr_data),
 .error(pr_error),
 .ready(pr_ready),
 .done(pr_done)
);

// PR Interface partition
pr_v1 pr_inst(
 .i1(i1_main),
 .i2(i2_main),
 .o1(o1)
);

endmodule

Example 72. VHDL RTL for External Host PR

library ieee;
use ieee.std_logic_1164.all;

entity top is
port(
 -- PR control block signals
 pr_clk: in std_logic;
 pr_request: in std_logic;
 pr_data: in std_logic_vector(31 downto 0);

 pr_error: out std_logic;
 pr_ready: out std_logic;
 pr_done: out std_logic;

 -- User signals
 i1_main: in std_logic;
 i2_main: in std_logic;
 o1: out std_logic
);
end top;

architecture behav of top is

component twentynm_prblock is

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
309

port(
 clk: in std_logic;
 corectl: in std_logic;
 prrequest: in std_logic;
 data: in std_logic_vector(31 downto 0);
 error: out std_logic;
 ready: out std_logic;
 done: out std_logic
);
end component;

component pr_v1 is
port(
 i1: in std_logic;
 i2: in std_logic;
 o1: out std_logic
);
end component;

signal pr_gnd : std_logic;

begin

pr_gnd <= '0';

-- Instantiate the PR control block
m_prblock: twentynm_prblock port map
(
 pr_clk,
 pr_gnd,
 pr_request,
 pr_data,
 pr_error,
 pr_ready,
 pr_done
);

-- PR Interface partition
pr_inst : pr_v1 port map
(
 i1_main,
 i2_main,
 o1
);

end behav;

8.4.14 Programming File Generation

The Intel Quartus Prime Pro Edition Assembler generates the PR bitstreams for your
design personas. For Intel Arria 10 designs, you send the bitstreams to the PR control
block. For Intel Stratix 10 designs, you send the bitstreams to the SDM. You must
compile the PR project, including the base revision, and at least one reconfigurable
revision, before generating the PR bitstreams.

Note: For Intel Stratix 10 designs, the Assembler generates a configuration .rbf
automatically at the end of compilation. For Intel Arria 10 designs, you must click File
➤ Convert Programming Files to convert the Partial-Masked SRAM Object Files
(.pmsf) that the Assembler generates to an .rbf file.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
310

Example 73. Programming File Generation for a Partial Reconfiguration Design
This example design contains a PR region and the following revisions:

• Base revision with persona A

• PR revision with persona B

• PR revision with persona C

Base
Revision with

Persona A

Revision B

Revision C

pr_region.pmsf
static.msf
base.sof

B.sof
B.pmsf

C.sof
C.pmsf

Partial
Reconfiguration

Design

Table 83. Programming Files for PR Designs

Programming File Description

<rev>.<pr_region>.pmsf Contains the partial-mask bits for the PR region. The .pmsf
file contains all the information for creating PR bitstreams.
Note: The default file name corresponds to the partition

name.

<rev>.<static_region>.msf Contains the mask bits for the static region.

<rev>.sof Contains configuration information for the entire device.

8.4.14.1 Generating PR Bitstreams

After creating the .pmsf files, process the PR bitstreams to generate the Raw Binary
File (.rbf) files for reconfiguration. Convert the .pmsf file for every PR region in your
Intel Arria 10 design to .rbf file format. Using the .rbf format stores the bitstream
in an external flash memory.

Note: If you use the partial reconfiguration flow script, the script automatically performs the
following steps according to the options you set.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
311

Figure 143. Generating PR Bitstreams

a.rbfa.pmsf b.rbfb.pmsf c.rbfc.pmsf

To generate the .rbf file:

1. Click File ➤ Convert Programming Files. The Convert Programming Files
dialog box appears.

2. Specify the output file name and Programming file type as Raw Binary File
for Partial Reconfiguration (.rbf).

3. To add the input .pmsf file to convert, click Add File.

4. Select the newly added .pmsf file, and click Properties.

5. For Intel Arria 10 designs, enable or disable any of the following options:

• Compression—enables compression on PR bitstream.

• Enhanced compression—enables enhanced compression on PR bitstream.

• Generate encrypted bitstream—generates encrypted independent
bitstreams for base image and PR image. You can encrypt the PR image even
if your base image has no encryption. The PR image can have a separate
encryption key file (.ekp).

Note: Enabling the Generate encrypted bitstream option automatically
disables Compression and Enhanced compression. Conversely,
enabling Compression or Enhanced compression automatically
disables Generate encrypted bitstream. You cannot use compression
and encryption at the same time.

If you enable the Generate encrypted bitstream option, specify the
following options:

— Enable volatile security key

— Use encryption lock file

— Generate key programming file

Note: • Enabling the Use encryption lock file option requires that you import
the encryption lock (.qlk) file generated from the base image.

• If you configure the device using JTAG, the Programmer does not
support base encryption.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
312

Figure 144. PMSF File Properties Bitstream Encryption

Alternatively, to convert your .pmsf file to .rbf file from Intel Quartus Prime
shell, type the following command:

quartus_cpf -c <pr_pmsf_file> <pr_rbf_file>

8.4.14.2 Generating a Merged .pmsf File from Multiple .pmsf Files

Use a single merged .rbf file to reconfigure two PR regions simultaneously. To merge
two or more .pmsf files:

1. Open the Convert Programming Files dialog box.

2. Specify the output file name and programming file type as Merged Partial-Mask
SRAM Object File (.pmsf).

3. In the Input files to convert dialog box, select PMSF Data.

4. To add input files, click Add File. You must specify two or more files for merging.

5. To generate the merged file, click Generate.

Alternatively, to merge two or more .pmsf files from the Intel Quartus Prime shell,
type the following command:

quartus_cpf --merge_pmsf=<number of merged files> <pmsf_input_file_1> /
 <pmsf_input_file_2> <pmsf_input_file_etc> <pmsf_output_file>

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
313

For example, to merge two .pmsf files, type the following command:

quartus_cpf --merge_pmsf=<2> <pmsf_input_file_1> <pmsf_input_file_2> /
 <pmsf_output_file>

8.4.14.3 CD Ratio for Bitstream Encryption and Compression (Intel Arria 10 Only)

When instantiating the Partial Reconfiguration Controller IP core in your design, you
cannot use both data compression and encryption simultaneously. Enhanced
decompression uses the same Clock-to-Data (CD) ratio as plain bitstreams (that is,
with both encryption and compression off).

Note: Intel Quartus Prime software does not support both bitstream encryption and
compression for Intel Stratix 10 designs.

The following table lists the valid combinations of bitstream encryption and
compression. when enhance compression is enabled, always refer to x16 data width.
If you use compression and enhanced compression together, the CD ratio follows the
compression bitstream - 4. If you use plain and enhanced compression together, the
CD ratio follows the plain bitstream - 1.

Table 84. Valid Combinations and CD Ratio for Bitstream Encryption and Compression

Configuration Data Width AES Encryption Basic Compression CD Ratio

x8 Off Off 1

Off On 2

On Off 1

x16 Off Off 1

Off On 4

On Off 2

x32 Off Off 1

Off On 8

On Off 4

Use the exact CD ratio that the Valid combinations and CD Ratio for Bitstream
Encryption and Compression table specifies for different bitstream types. The CD ratio
for plain .rbf must be 1. The CD ratio for compressed .rbf must be 2, 4 or 8,
depending on the width. Do not specify the CD ratio as the necessary minimum to
support different bitstream types.

8.4.14.3.1 Generating an Encrypted PR Bitstream

To partially reconfigure your Intel Arria 10 device with encrypted bitstream:

Note: Intel Quartus Prime software does not support bitstream encryption and compression
for Intel Stratix 10 designs.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
314

1. Create a 256-bit key file (.key).

2. To generate the key programming file (.ekp) from the Intel Quartus Prime shell,
type the following command:

quartus_cpf --key <keyfile>:<keyid> /
 <base_sof_file> <output_ekp_file>

For example:

quartus_cpf --key my_key.key:key1 base.sof key.ekp

3. To generate the encrypted PR bitstream (.rbf), run the following command:

quartus_cpf -c <pr_pmsf_file> <pr_rbf_file>
qcrypt -e --keyfile=<keyfile> --keyname=<keyid> –lockto=/
 <qlk file> --keystore=<battery|OTP> /
 <pr_rbf_file> <pr_encrypted_rbf_file>

• lockto—specifies the encryption lock.

• keystore—specifies the volatile key (battery) or the non-volatile key (OTP).

For example:

quartus_cpf -c top_v1.pr_region.pmsf top_v1.pr_region.rbf /
 qcrypt -e --keyfile=my_key.key --keyname=key1 --keystore=battery /
 top_v1.pr_region.rbf top_v1_encrypted.rbf

4. To program the key file as volatile key (default) into the device, type the following
command:

quartus_pgm -m jtag -o P;<output_ekp_file>

For example:

quartus_pgm -m jtag -o P;key.ekp

5. To program the base image into the device, type the following command:

quartus_pgm -m jtag -o P;<base_sof_file>

For example:

quartus_pgm -m jtag -o P;base.sof

6. To partially reconfigure the device with the encrypted bitstream, type the following
command:

quartus_pgm -m jtag --pr <output_encrypted_rbf_file>

For example:

quartus_pgm -m jtag --pr top_v1_encrypted.rbf

For more information about the design security features in Intel Arria 10 devices,
refer to Using the Design Security Features in Intel FPGAs.

Related Links

Using the Design Security Features in Intel FPGAs

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
315

https://documentation.altera.com/#/link/bhc1410500804155/bhc1410500731946

8.4.14.3.2 Data Compression Comparison (Intel Arria 10 Designs Only)

Standard compression results in a 30-45% decrease in .rbf size. Use of the
enhanced data compression algorithm results in 55-75% decrease in .rbf size. The
algorithm increases the compression at the expense of additional core area required to
implement the compression algorithm.

The following figure shows the compression ratio comparison across PR designs with
varying degrees of Logic Element (LE):

Figure 145. Compression Ratio Comparison between Standard Compression and
Enhanced Compression

Co
m

pr
es

sio
n R

at
io

(%
)

LE Utilization (%)

 Standard Compression Enhanced Compression

Note: Intel Quartus Prime software does not support both bitstream encryption and
compression for Intel Stratix 10 designs.

8.4.14.4 Generating Raw Binary Programming Files

The raw binary programming file (.rbf) file contains the device configuration data in
little-endian raw binary format. For Intel Stratix 10 designs, the Assembler
automatically generates the programming .rbf. For Intel Arria 10 designs, you
generate the .rbf by converting the .pmsf file for every PR region in your design
to .rbf file format.

The following examples show transmitting the .rbf byte sequence 02 1B EE 01, in
x8, x16, and x32 modes respectively:

Table 85. Writing to the PR control block or SDM in x16 mode
In x16 mode, the first byte in the file is the least significant byte of the configuration word, and the second
byte is the most significant byte of the configuration word.

WORD0 = 1B02 WORD1 = 01EE

LSB: BYTE0 = 02 MSB: BYTE1 = 1B LSB: BYTE2 = EE MSB: BYTE3 = 01

D[7..0] D[15..8] D[7..0] D[15..8]

0000 0010 0001 1011 1110 1110 0000 0001

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
316

Table 86. Writing to the PR control block or SDM in x32 mode
In x32 mode, the first byte in the file is the least significant byte of the configuration double word, and the
fourth byte is the most significant byte.

Double Word = 01EE1B02

LSB: BYTE0 = 02 BYTE1 = 1B BYTE2 = EE MSB: BYTE3 = 01

D[7..0] D[15..8] D[23..16] D[31..24]

0000 0010 0001 1011 1110 1110 0000 0001

8.4.15 Partial Reconfiguration Design Debugging

Use the Intel Quartus Prime software on-chip debugging tools, such as the Signal Tap
logic analyzer, In-System Sources and Probes Editor, In-System Memory Content
Editor, or JTAG Avalon Master Bridge to verify your partial reconfiguration design.

Note: Only the Signal Tap logic analyzer allows debugging of both the static and PR regions.
Other tools support debugging only in the static region.

Related Links

System Debugging Tools Overview
In Intel Quartus Prime Pro Edition Handbook Volume 3

8.4.15.1 Debugging a Partial Reconfiguration Design with Signal Tap Logic
Analyzer

Unlike other debugging tools, Signal Tap Logic Analyzer uses the hierarchical debug
capabilities provided by Intel Quartus Prime software. This feature allows you to tap
signals in the static and PR regions simultaneously.

You can debug multiple personas present in your PR region, as well as multiple PR
regions. For complete information on the debug infrastructure using hierarchical hubs,
refer to Debugging Partial Reconfiguration Designs Using Signal Tap Logic Analyzer in
the Intel Quartus Prime Pro Edition handbook.

Related Links

Debugging Partial Reconfiguration Designs Using Signal Tap Logic Analyzer

8.4.16 Partial Reconfiguration Simulation and Verification

Simulation verifies the behavior of your design before device programming. The Intel
Quartus Prime Pro Edition software supports simulating the delivery of a partial
reconfiguration bitstream to the PR control block. This simulation allows you to
observe the resulting change and the intermediate effect in a reconfigurable partition.

Similar to non-PR design simulations, preparing for a PR simulation involves setting up
your simulator working environment, compiling simulation model libraries, and
running your simulation. The Intel Quartus Prime software provides simulation
components to help simulate a PR design, and can generate the gate-level PR
simulation models for each persona. Use either the behavioral RTL or the gate level PR
simulation model for simulation of the PR personas. The gate-level PR simulation
model allows for accurate simulation of registers in your design, and reset sequence
verification. These technology-mapped registers do not assume initial conditions.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
317

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384115727
https://www.altera.com/documentation/jbr1437428483891.html#jau1487371469413

Related Links

Simulating Intel FPGA Designs

8.4.16.1 Partial Reconfiguration Simulation Flow

At a high-level, a PR operation consists of the following steps:

1. System-level preparation for a PR event.

2. Retrieval of the partial bitstream from memory.

3. Transmission of the partial bitstream to the Intel Arria 10 PR control block or Intel
Stratix 10 SDM.

4. Resulting change in the design as a new persona becomes active.

5. Post-PR system coordination.

6. Use of the new persona in the system.

You can simulate each of these process steps in isolation, or as a larger sequence
depending on your verification type requirement.

8.4.16.1.1 Simulating PR Persona Replacement

The logical operation of the PR partition changes when a new persona loads during the
partial reconfiguration process. Simulate the replacement of personas using
multiplexers on the input and output of the persona under simulation. Create RTL
wrapper logic to represent the top-level of the persona. The wrapper instantiates the
default persona during compilation. During simulation, the wrapper allows the
replacement of the active persona with another persona. Instantiate each persona as
the behavioral RTL in the PR simulation model the Intel Quartus Prime EDA Netlist
Writer generates. The Intel Quartus Prime software includes simulation modules to
interface with your simulation testbench:

• altera_pr_wrapper_mux_in

• altera_pr_wrapper_mux_out

• altera_pr_persona_if (SystemVerilog interface allows you to connect the
wrapper multiplexers to a testbench driver)

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
318

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410383407761

Figure 146. Simulation of PR Persona Switching

Persona 1
(.vo or RTL)

Inputs Outputs

PR Activate
PR Logic Wrapper

PR Sel
PR Region IF

Persona 2
(.vo or RTL)

Persona 3
(.vo or RTL)

m
ux

_i
n

m
ux

_o
ut

Example 74. RTL Wrapper for PR Persona Switching Simulation

The pr_activate input of the altera_pr_wrapper_mux_out module enables the
MUX to output X. This functionality allows the simulation of unknown outputs from the
PR persona, and also verifies the normal operation of the design’s freeze logic. The
following code corresponds to the simulation of PR persona switching, shown in the
above figure:

module pr_core_wrapper
(
 input wire a,
 input wire b,
 output wire o
);

localparam ENABLE_PERSONA_1 = 1;
localparam ENABLE_PERSONA_2 = 1;
localparam ENABLE_PERSONA_3 = 1;
localparam NUM_PERSONA = 3;

logic pr_activate;
int persona_select;

altera_pr_persona_if persona_bfm();
assign pr_activate = persona_bfm.pr_activate;
assign persona_select = persona_bfm.persona_select;

wire a_mux [NUM_PERSONA-1:0];
wire b_mux [NUM_PERSONA-1:0];
wire o_mux [NUM_PERSONA-1:0];

generate
 if (ENABLE_PERSONA_1) begin
 localparam persona_id = 0;

 `ifdef ALTERA_ENABLE_PR_MODEL
 assign u_persona_0.altera_sim_pr_activate = pr_activate;
 `endif

 pr_and u_persona_0
 (
 .a(a_mux[persona_id]),
 .b(b_mux[persona_id]),

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
319

 .o(o_mux[persona_id])
);
 end
endgenerate

generate
 if (ENABLE_PERSONA_2) begin
 localparam persona_id = 1;

 `ifdef ALTERA_ENABLE_PR_MODEL
 assign u_persona_1.altera_sim_pr_activate = pr_activate;
 `endif

 pr_or u_persona_1
 (
 .a(a_mux[persona_id]),
 .b(b_mux[persona_id]),
 .o(o_mux[persona_id])
);

 end
endgenerate

generate
 if (ENABLE_PERSONA_3) begin
 localparam persona_id = 2;

 `ifdef ALTERA ENABLE PR MODEL
 assign u_persona_2.altera_sim_pr_activate = pr_activate;
 `endif

 pr_empty u_persona_2
 (
 .a(a_mux[persona_id]),
 .b(b_mux[persona_id]),
 .o(o_mux[persona_id])
);

 end
endgenerate

altera_pr_wrapper_mux_in #(.NUM_PERSONA(NUM_PERSONA), .WIDTH(1)) /
 u_a_mux(.sel(persona_select), .mux_in(a), .mux_out(a_mux));

altera_pr_wrapper_mux_in #(.NUM_PERSONA(NUM_PERSONA), .WIDTH(1)) /
 u_b_mux(.sel(persona_select), .mux_in(b), .mux_out(b_mux));

altera_pr_wrapper_mux_out #(.NUM_PERSONA(NUM_PERSONA), .WIDTH(1)) /
 u_o_mux(.sel(persona_select), .mux_in(o_mux), .mux_out(o), .pr_activate /
 (pr_activate));

endmodule

8.4.16.1.2 PR Simulation Wrapper Modules

altera_pr_persona_if Module

Instantiate the altera_pr_persona_if SystemVerilog interface in a PR region
simulation wrapper to connect to all the wrapper multiplexers. Optionally, connect
pr_activate to the PR simulation model.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
320

Connect the interface’s persona_select to the sel port of all input and output
multiplexers. Connect the pr_activate to the pr_activate of all the output
multiplexers. Optionally, connect the report events to the report event ports of the PR
simulation model. Then, the PR region driver testbench component can drive the
interface.

interface altera_pr_persona_if;
 logic pr_activate;
 int persona_select;

 event report_storage_if_x_event;
 event report_storage_if_1_event;
 event report_storage_if_0_event;
 event report_storage_event;

 initial begin
 pr_activate <= 1'b0;
 end
endinterface : altera_pr_persona_if

The <QUARTUS_INSTALL_DIR>/eda/sim_lib/altera_lnsim.sv file defines the
altera_pr_persona_if component.

altera_pr_wrapper_mux_out Module

The altera_pr_wrapper_mux_out module allows you to multiplex the outputs of all
PR personas to the outputs of the PR region wrapper.

Instantiate one multiplexer per output port. Specify the active persona using the sel
port of the multiplexer. The pr_activate port allows you to drive the multiplexer
output to “x”, to emulate the unknown value of PR region outputs during a PR
operation. Parameterize the component to specify the number of persona inputs, the
multiplexer width, and the MUX output value when pr_activate asserts.

module altera_pr_wrapper_mux_out #(
 parameter NUM_PERSONA = 1,
 parameter WIDTH = 1,
 parameter [0:0] DISABLED_OUTPUT_VAL = 1'bx
) (
 input int sel,
 input wire [WIDTH-1 : 0] mux_in [NUM_PERSONA-1:0],
 output reg [WIDTH-1:0] mux_out,
 input wire pr_activate
);

 always_comb begin
 if ((sel < NUM_PERSONA) && (!pr_activate))
 mux_out = mux_in[sel];
 else
 mux_out = {WIDTH{DISABLED_OUTPUT_VAL}};
 end

endmodule : altera_pr_wrapper_mux_out

The <QUARTUS_INSTALL_DIR>/eda/sim_lib/altera_lnsim.sv file defines the
altera_pr_wrapper_mux_out component.

altera_pr_wrapper_mux_in Module

The altera_pr_wrapper_mux_in module allows you to de-multiplex inputs to a PR
partition wrapper for all PR personas.

Instantiate one multiplexer per input port. Specify the active persona using the sel
port of the multiplexer. Parameterize the component to specify the number of persona
outputs, the multiplexer width, and the MUX output for any disabled output. When

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
321

using the altera_pr_wrapper_mux_in to mux a clock input, use the
DISABLED_OUTPUT_VAL of 0, to ensure there are no simulation clock events of the
disabled personas.

module altera_pr_wrapper_mux_in#(
 parameter NUM_PERSONA = 1,
 parameter WIDTH = 1,
 parameter [0:0] DISABLED_OUTPUT_VAL = 1'bx
) (

 input int sel,
 input wire [WIDTH-1:0] mux_in,
 output reg [WIDTH-1 : 0] mux_out [NUM_PERSONA-1:0]
);
 always_comb begin
 for (int i = 0; i < NUM_PERSONA; i++)
 if (i == sel)
 mux_out[i] = mux_in;
 else
 mux_out[i] = {WIDTH{DISABLED_OUTPUT_VAL}};
 end

endmodule : altera_pr_wrapper_mux_in

The <QUARTUS_INSTALL_DIR>/eda/sim_lib/altera_lnsim.sv file defines the
altera_pr_wrapper_mux_in component.

8.4.16.1.3 Generating the PR Persona Simulation Model

Use the Intel Quartus Prime EDA Netlist Writer to create the simulation model for a PR
persona. The simulation model represents the post-synthesis, gate-level netlist for the
persona.

When using the PR simulation model for the persona, the netlist includes a new
altera_sim_pr_activate top-level signal for the model. You can asynchronously
drive this signal to load all registers in the model with X. This feature allows you to
verify the reset sequence of the new persona on PR event completion. Verify the reset
sequence through inspection, using SystemVerilog assertions, or using other checkers.

By default, the PR simulation model asynchronously loads X into the register’s storage
element on pr_activate signal assertion. You can parameterize this behavior on a
per register basis, or on a simulation-wide default basis. The simulation model
supports four built-in modes:

• load X

• load 1

• load 0

• load rand

Specify these modes using the SystemVerilog classes:

• dffeas_pr_load_x

• dffeas_load_1

• dffeas_load_0

• dffeas_load_rand

Optionally, you can create your own PR activation class, where your class must define
the pr_load variable to specify the PR activation value.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
322

Follow these steps to generate the simulation model for a PR design:

1. To run synthesis and generate the simulation netlist for your EDA simulator, click
Synthesis on the Compilation Dashboard.

Note: The current version of the Intel Quartus Prime software supports the PR
simulation model only in SystemVerilog.

2. To generate the PR simulation model, type the following from the command-line:

quartus_eda --pr --simulation --tool={your_tool} project -c pr_syn_revision

3. To specify a simulation-wide behavior, set the
ALTERA_DEFAULT_DFFEAS_PR_ACTIVATE_CLASS macro to the name of the
class to use for initialization. For example:

define ALTERA_DEFAULT_DFFEAS_PR_ACTIVATE_CLASS dffeas_pr_load_1

4. To specify the behavior for an individual register, set the PR_ACTIVATE_CLASS
parameter of the specific dffeas_pr register to the desired initialization class.
For more information, refer to the dffeas_pr model in the altera_lnsim.sv
file, located in <QUARTUS_INSTALL_DIR>/eda/sim_lib/altera_lnsim.sv.

Note: The Aldec Riviera-PRO* Simulator does not support selecting different
PR_ACTIVATE_CLASS parameters, and only supports registers going to X
during pr_activate.

Example 75. Built-in Initialization Classes

class dffeas_pr_load_x;
 reg pr_load = 1'bx;

 function new();
 endfunction

endclass

class dffeas_pr_load_0;
 reg pr_load = 1'b0;

 function new();
 endfunction

endclass

class dffeas_pr_load_1;
 reg pr_load = 1'b1;

 function new();
 endfunction

endclass

class dffeas_pr_load_rand;
 rand bit pr_load;

 function new(int seed = $random());
 this.srandom(seed);
 endfunction

endclass

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
323

8.5 Partial Reconfiguration Design Recommendations

When designing for partial reconfiguration, consider the system-level behavior to
maintain the integrity and correctness of the static region operation. For example,
during PR programming, ensure that the system does not read or write to the PR
region. In addition, freeze the write enable output from the PR region into the static
region. This freezing avoids interference with the static region operation.

Table 87. Partial Reconfiguration Design Guidelines

Scenario Guideline Reasoning

Designing for partial reconfiguration Do not assume initial states in
registers. Ensure that you reset all the
registers.

The registers contain undefined values
after reconfiguration.

Reset the registers that drive control
signals to a known state, after partial
reconfiguration.

Registers contain undefined values
after reconfiguration. In addition,
synthesis can duplicate registers.

You cannot define synchronous reset
as a global signal for Intel Arria 10
partial reconfiguration.

PR regions do not support synchronous
reset of registers as a global signal,
because the Intel Arria 10 LAB does
not support synchronous clear (sclr)
signal on a global buffer. The LAB
supports the asynchronous clear
(aclr) signal driven from a local input,
or from a global network row clock. As
a result, only the aclr can be a global
signal, feeding registers in a PR region.

Partitioning the design Register all the inputs and outputs for
your PR region.

Improves timing closure and time
budgeting.

Reduce the number of signals
interfacing the PR region with the static
region in your design.

Reduces the wire LUT count.

Create a wrapper for your PR region. The wrapper creates common footprint
to static region.

Drive all the PR region output ports to
inactive state.

Prevents the static region logic from
receiving random data during the
partial reconfiguration operation.

PR boundary I/O interface must be a
superset of all the PR persona I/O
interfaces.

Ensures that each PR partition
implements the same ports.

Preparing for partial reconfiguration Complete all pending transactions. Ensures that the static region is not in
a wait state.

Maintaining a partially working system
during partial reconfiguration

Hold all outputs to known constant
values.

Ensures that the undefined values the
PR region receives during and after the
reconfiguration do not affect the PR
control logic.

Initializing after partial reconfiguration Initialize after reset. Retrieves state from memory or other
device resources.

Debugging the design using Signal Tap
Logic Analyzer

• Do not tap signals in the default
personas.

• Store all the tapped signals from a
persona in one .stp file.

The current version of the Intel
Quartus Prime software supports only
one .stp (Signal Tap file) per revision.
This limitation requires you to select
partitions, one at a time, to tap.

continued...

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
324

Scenario Guideline Reasoning

Do not tap across regions in the
same .stp file.

Ensures consistent interface
(boundary) across all personas.

Tap only the pre-synthesis signals. In
the Node Finder, filter for Signal Tap:
pre-synthesis.

Ensures that the signal tapping of PR
personas start from synthesis.

Only include the .stp file in the PR
synthesis revision.

Supports only pre-synthesis tapping.

8.6 Partial Reconfiguration Design Considerations

Partial reconfiguration is an advanced design flow in the Intel Quartus Prime Pro
Edition software. Successfully creating a partial reconfiguration design requires
understanding the requirements and best design practices for the PR flow.

The following list summarizes the design considerations for partial reconfiguration:

• Reconfigurable partitions can only contain core resources, such as LABs, RAMs,
and DSPs. All periphery resources, such as the transceivers, external memory
interface, HPS, and clocks must be in the static portion of the design.

• To physically partition the device between static and individual PR regions,
floorplan each PR region into exclusive, core-only, placement regions, with
associated routing regions.

• A reconfiguration partition must contain the super-set of all ports that you use
across all PR personas.

• To minimize Intel Arria 10 programming files size, ensure that the PR regions are
short and wide. For Intel Stratix 10 designs, use sector-aligned PR regions.

• The maximum number of clocks or other global signals for any Intel Arria 10 PR
region is 33. he maximum number of clocks or other global signals for any Intel
Stratix 10 PR region is 32 .In the current version of the Intel Quartus Prime Pro
Edition software, no two PR regions can share a row-clock.

• PR regions do not require any input freeze logic. However, you must freeze all the
outputs of each PR region to a known constant value to avoid unknown data
during partial reconfiguration.

• Your PR design must consider all the system-level coordination of partial
reconfiguration.

• The current version of the Intel Quartus Prime Pro Edition software supports only
one .stp (signal tap file) per revision. Only include the .stp file in the PR
synthesis revision.

• Increase the reset length by 1 cycle to account for register duplication in the
Fitter.

• Only Intel Arria 10 devices in -1, -2 and -3 speed grade support partial
reconfiguration. All Intel Stratix 10 devices support PR.

• Use the nominal VCC of 0.9V or 0.95V as per the datasheet, including VID enabled
devices.

• Intel Quartus Prime Standard Edition software does not support partial
reconfiguration for Intel Arria 10 devices or Intel Stratix 10 devices.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
325

8.7 Document Revision History

This document has the following revision history.

Table 88. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Added partial reconfiguration support for Intel Stratix 10
devices.

• Added descriptions of Intel Stratix 10 Partial Reconfiguration
Controller IP, SUPR, HPR, and SDM to terms list.

• Updated for latest Intel branding and software user interface.

2017.05.08 17.0.0 • Added information about Hierarchical Partial Reconfiguration.
• Added new topic Partial Reconfiguration Simulation and

Verification.
• Added new topic 'Run Timing Analysis on a Design with

Multiple PR Partitions'.
• Updated Freeze Logic for PR Regions.
• Added new topic Debugging Using Signal Tap Logic Analyzer.
• Other minor updates.

10.31.2016 16.1.0 • Implemented Intel rebranding.
• Initial release.

Related Links

Altera Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the Altera
documentation archives.

8 Creating a Partial Reconfiguration Design

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
326

https://www.altera.com/search-archives

9 Creating a System with Platform Designer
Platform Designer is a system integration tool included as part of the Intel Quartus
Prime software.

Note: Intel now refers to Qsys Pro as Platform Designer.

Platform Designer simplifies the task of defining and integrating customized IP
Components (IP Cores) into your designs. Platform Designer simplifies the task of
defining and integrating customized IP Components (IP Cores) into your designs.

Platform Designer facilitates design reuse by packaging and integrating your custom
IP components with Intel and third-party IP components. Platform Designer
automatically creates interconnect logic from the high-level connectivity that you
specify, which eliminates the error-prone and time-consuming task of writing HDL to
specify system-level connections.

Platform Designer introduces hierarchical isolation between system interconnect and
IP components. Platform Designer stores the instantiated IP component in a
separate .ip file and the system connectivity information in the .qsys file. This
hierarchical isolation ensures that changing the parameters of a single IP component
does not necessitate regeneration of the enclosing system or any other IP component
within that system. Likewise, a change to system connectivity does not require
regeneration of any of the IP components. Platform Designer references the
parameterized IP component for instantiation in the system by the component's entity
name, and generates the RTL of the IP component and the RTL of the system
separately.

Platform Designer is a more powerful tool if you design your custom IP components
using standard interfaces available in the Platform Designer IP Catalog. Standard
interfaces inter-operate efficiently with the Intel FPGA IP components, and you can
take advantage of bus functional models (BFMs), monitors, and other verification IP to
verify your systems.

Platform Designer supports Avalon, Arm* AMBA* 3 AXI (version 1.0), AMBA 4 AXI
(version 2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and
AMBA 3 APB (version 1.0) interface specifications.

Platform Designer provides the following advantages:

• Simplifies the process of customizing and integrating IP components into systems

• Provides isolation between the system and IP component, maintaining all the
parameter information of the IP component in a separate .ip file.

• Supports generic components, allowing the instantiation of IP components without
an HDL implementation.

• Generates an IP core variation for use in your Intel Quartus Prime software
projects

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Supports incremental generation of the system and IP components.

• Allows specifying interface requirements for the system.

• Supports up to 64-bit addressing

• Supports modular system design

• Supports visualization of systems

• Supports optimization of interconnect and pipelining within the system

• Supports auto-adaptation of different data widths and burst characteristics

• Supports inter-operation between standard protocols

• Fully integrated with the Intel Quartus Prime software

Note: For information on how to define and generate stand-alone IP cores for use in your
Intel Quartus Prime software projects, refer to Introduction to Intel FPGA IP Cores and
Managing Intel Quartus Prime Projects.

Related Links

• Introduction to Intel FPGA IP Cores

• Managing Intel Quartus Prime Projects on page 32

• Avalon Interface Specifications

• AMBA Protocol Specifications

9.1 Interface Support in Platform Designer

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

Platform Designer IP components can include the following interface types:

Table 89. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master devices may
be processors and DMAs, while slave memory devices may be RAMs, ROMs, and control
registers. Data transfers between master and slave may be uni-directional (read only or write
only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data, as
well as high-bandwidth, low-latency IP components. Streaming creates datapaths for
unidirectional traffic, including multichannel streams, packets, and DSP data. The Avalon-ST
interconnect is flexible and can implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet, Interlaken, and video.
You can define bus widths, packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
328

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html

Interface Type Description

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that are exported from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection, or conduit interfaces can be exported
and brought to the top-level of the system as top-level system I/O. You can use conduits to
connect to external devices, for example external DDR SDRAM memory, and to FPGA logic
defined outside of the Platform Designer system.

9.2 Introduction to the Platform Designer IP Catalog

The Platform Designer IP Catalog offers a broad range of configurable IP Cores
optimized for Intel devices to use in your Platform Designer designs.

The Intel Quartus Prime software installation includes the Intel FPGA IP library. You
can integrate optimized and verified Intel FPGA IP cores into your design to shorten
design cycles and maximize performance. The IP Catalog can include Intel-provided IP
components, third-party IP components, custom IP components that you create in the
Platform Designer Component Editor, and previously generated Platform Designer
systems.

The Platform Designer IP Catalog includes the following IP component types:

• Microprocessors, such as the Nios II processor

• DSP IP cores, such as the Reed Solomon Decoder II

• Interface protocols, such as the IP Compiler for PCI Express

• Memory controllers, such as the RLDRAM II Controller with UniPHY

• Avalon Streaming (Avalon-ST) IP cores, such as the Avalon-ST Multiplexer

• Platform Designer Interconnect

• Verification IP (VIP) Bus Functional Models (BFMs)

Related Links

Introduction to Intel FPGA IP Cores

9.2.1 Installing and Licensing IP Cores

The Intel Quartus Prime software includes the Intel FPGA IP Library. The library
provides many useful IP core functions for production use without additional license.
You can fully evaluate any licensed Intel FPGA IP core in simulation and in hardware
until you are satisfied with its functionality and performance. The HDMI IP core is part
of the Intel FPGA IP Library, which is distributed with the Intel Quartus Prime software
and downloadable from www.altera.com.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
329

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf

After you purchase a license for the IP core, you can request a license file from the
licensing site and install it on your computer. When you request a license file, Intel
emails you a license.dat file. If you do not have Internet access, contact your
local Intel representative.

9.2.2 Adding IP Cores to IP Catalog

The IP Catalog automatically displays IP cores located in the project directory, in the
default Intel Quartus Prime installation directory, and in the IP search path.

Figure 147. Specifying IP Search Locations

Add a Global
IP Search Path

Add a Project-
Specific Search Path

The IP Catalog displays Intel Quartus Prime IP components and Platform Designer
systems, third-party IP components, and any custom IP components that you include
in the path. Use the IP Search Path option (Tools ➤ Options) to include custom
and third-party IP components in the IP Catalog.

The Intel Quartus Prime software searches the directories listed in the IP search path
for the following IP core files:

• Component Description File (_hw.tcl)—defines a single IP core.

• IP Index File (.ipx)—each .ipx file indexes a collection of available IP cores. This
file specifies the relative path of directories to search for IP cores. In
general, .ipx files facilitate faster searches.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
330

The Intel Quartus Prime software searches some directories recursively and other
directories only to a specific depth. When the search is recursive, the search stops at
any directory that contains a _hw.tcl or .ipx file.

In the following list of search locations, ** indicates a recursive descent.

Table 90. IP Search Locations

Location Description

PROJECT_DIR/* Finds IP components and index files in the Intel Quartus Prime project directory.

PROJECT_DIR/ip/**/* Finds IP components and index files in any subdirectory of the /ip subdirectory of the Intel
Quartus Prime project directory.

If the Intel Quartus Prime software recognizes two IP cores with the same name, the
following search path precedence rules determine the resolution of files:

1. Project directory.

2. Project database directory.

3. Project IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment for the current project revision.

4. Global IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment in the quartus2.ini file.

5. Quartus software libraries directory, such as <Quartus Installation>
\libraries.

Note: If you add an IP component to the search path, update the IP Catalog by clicking
Refresh IP Catalog in the drop-down list. In Platform Designer and Platform
Designer, click File ➤ Refresh System to update the IP Catalog.

9.2.3 General Settings for IP

Use the following settings to control how the Intel Quartus Prime software manages IP
cores in your project.

Table 91. IP Core General Setting Locations

Setting Location Description

Tools ➤ Options ➤ IP Settings
Or
Tasks pane ➤ Settings ➤ IP Settings
(Pro Edition Only)

• Specify the IP generation HDL preference. The parameter editor
generates the HDL you specify for IP variations.

• Increase the Maximum Platform Designer memory usage size if
you experience slow processing for large systems, or for out of memory
errors.

• Specify whether to Automatically add Intel Quartus Prime IP files
to all projects. Disable this option to manually add the IP files.

• Use the IP Regeneration Policy setting to control when synthesis files
regenerate for each IP variation. Typically, you Always regenerate
synthesis files for IP cores after making changes to an IP variation.

Tools ➤ Options ➤ IP Catalog Search
Locations
Or
Tasks pane ➤ Settings ➤ IP Catalog
Search Locations (Pro Edition Only)

• Specify additional project and global IP search locations. The Intel
Quartus Prime software searches for IP cores in the project directory, in
the Intel Quartus Prime installation directory, and in the IP search path.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
331

9.2.4 Set up the IP Index File (.ipx) to Search for IP Components

An IP Index File (.ipx) contains a search path that Platform Designer uses to search
for IP components. You can use the ip-make-ipx command to create an .ipx file for
any directory tree, which can reduce the startup time for Platform Designer.

You can specify a search path in the user_components.ipx file in either in the Intel
Quartus Prime software (Tools ➤ Options ➤ IP Catalog Search Locations). This
method of discovering IP components allows you to add a locations dependent of the
default search path. The user_components.ipx file directs Platform Designer to the
location of an IP component or directory to search.

A <path> element in the .ipx file specifies a directory where multiple IP components
may be found. A <component> entry specifies the path to a single component. A
<path> element can use wildcards in its definition. An asterisk matches any file name.
If you use an asterisk as a directory name, it matches any number of subdirectories.

Example 76. Path Element in an .ipx File

<library>
 <path path="…<user directory>" />
 <path path="…<user directory>" />
 …
 <component … file="…<user directory>" />
 …
</library>

A <component> element in an .ipx file contains several attributes to define a
component. If you provide the required details for each component in an .ipx file, the
startup time for Platform Designer is less than if Platform Designer must discover the
files in a directory. The example below shows two <component> elements. Note that
the paths for file names are specified relative to the .ipx file.

Example 77. Component Element in an .ipx File

<library>
 <component
 name="A Platform Designer Component"
 displayName="Platform Designer FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component
 name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"
 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

Note: You can verify that IP components are available with the ip-catalog command.

Related Links

Create an .ipx File with ip-make-ipx on page 398

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
332

9.2.5 Integrate Third-Party IP Components into the Platform Designer IP
Catalog

You can use IP components created by Intel partners in your Platform Designer
systems. These IP components have interfaces that are supported by Platform
Designer, such as Avalon-MM or AXI. Additionally, some include timing and placement
constraints, software drivers, simulation models, and reference designs.

To locate supported third-party IP components on Altera's web page, navigate to the
Intellectual Property & Reference Designs page, type Platform Designer
Certified in the Search box, select IP Core & Reference Designs, and then
press Enter.

Refer to Intel's Intellectual Property & Reference Designs page for more information.

Related Links

Intellectual Property & Reference Designs

9.3 Create a Platform Designer System

Click Tools ➤ Platform Designer in the Intel Quartus Prime software to open
Platform Designer. A .qsys file represents your Platform Designer system in your
Intel Quartus Prime software project.

Related Links

• Creating Platform Designer Components on page 608

• Component Interface Tcl Reference on page 791

9.3.1 Create/Open Project in Platform Designer

The Intel Quartus Prime software tightly links with Platform Designer system creation.
Platform Designer requires you to specify a Intel Quartus Prime project at time of
system creation.

To create a new system, or open an existing system in Platform Designer:

1. To create a new Intel Quartus Prime project to associate with your Platform
Designer system, click . To select an existing project, browse for the project.
Alternatively, select an existing project from the drop-down list in the Quartus
project field.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
333

http://www.altera.com/products/ip/ipm-index.html

Note: Selecting None from the drop-down list in the Quartus project field opens
the Platform Designer tool in view-only mode.(8)

2. To create a new revision for the Intel Quartus Prime project, click . To specify
an existing revision for the project, select an existing revision from the drop-down
list in the Revision field.

3. When creating a new Intel Quartus Prime project, specify the Device family and
Device part to associate with your Platform Designer system by selecting the
device name and device part number from the respective fields. If you are opening
an existing Intel Quartus Prime project to associate with your Platform Designer
system, click Retrieve Values to populate the fields with the device information
of the Intel Quartus Prime project.

4. To create a new Platform Designer system, click . To open an existing .qsys
file, browse for the file. Alternatively, select an existing file from the drop-down
list.

Note: Similarly, you can open an existing IP file, or create a new IP variant by selecting the
IP Variant tab in the Create New System dialog box. To create a new IP variant,
you must specify a Component type for the .ip file.

Figure 148. Platform Designer Create New System

Note: • To change the Intel Quartus Prime project associated with your current Platform
Designer system, click File ➤ Select Quartus Project.

9.3.1.1 Convert your Existing System to Platform Designer Format

When you open an existing system with incompatible components, Platform Designer
prompts you to convert these components to the Platform Designer format. On
conversion, the Platform Designer Conversion Results dialog box appears, listing
all the converted system and IP source files.

(8) View-only mode restricts the following functionality:

• Adding new IP components to the system or subsystem.

• Removing the instantiated IP components from the system or subsystem.

• Creating a new system, subsystem, or IP file.

• Executing system scripts.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
334

Figure 149. Platform Designer Conversion Results Dialog Box

Platform Designer stores the .ip files inside an ip folder, relative to the .qsys
system file location. Platform Designer prefixes the system name to the .ip file name.
Platform Designer automatically adds these converted files to the associated Intel
Quartus Prime project. Ensure that you maintain these .ip files, along with your
system files.

Figure 150. System and IP Files Associated with a Intel Quartus Prime Project

9.3.2 Modify the Target Device

The Platform Designer system inherits the device family from the associated Intel
Quartus Prime project.

You can modify the device settings of your Platform Designer system from the Device
Family tab. Changing the Device family or Device options from this tab
automatically updates the associated Intel Quartus Prime project.

9.3.3 Modify the IP Search Path

Platform Designer allows you to view and modify the IP search locations specified for
the Intel Quartus Prime project associated with your system. To specify the IP search
path from Platform Designer:

1. Click Tools ➤ Options ➤ IP Search Path. The Intel Quartus Prime Global IP
Search Path and Quartus Project IP Search Path panes display the IP search
locations specified for your associated Intel Quartus Prime project.

2. Click Add or Remove to add/remove new search locations. The Intel Quartus
Prime project automatically updates to reflect these modifications. In Platform
Designer, click File ➤ Refresh System to propagate these changes.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
335

9.3.4 Platform Designer System Design flow

The Platform Designer design flow involves creating, instantiating and generating, and
simulating system output for IP components.

Figure 151. Platform Designer System Design Flow

No

Yes

Simulation at Unit-Level,
Possibly Using BFMs

Debug Design

Does
Simulation Give

Expected Results?

Complete System, Add and
Connect All IP Components,

Define Memory Map
If Needed

1

2

3

4

Are
there any System

 Connectivity or Component
instantiation Errors?

Update System Information

No

Debug Design

Does
Simulation Give

Expected Results?

Perform System-Level
Simulation

Generate Platform Designer
System

Yes

No

Modify Design or
Constraints

Does
HW Testing Give

Expected Results?
Platform Designer
System Complete

Constrain, Compile
in Quartus Prime

Download .sof to PCB
with FPGA

7

10

11

12

8

9

Generating .sof

 Validate System IntegrityYes

No

5
Does the

system information
match?

No Yes

6

Yes

Yes

Create IP Component
 and/or Generic Component
in your Platform Designer

 System

Note: For information on how to define and generate single IP cores for use in your Intel
Quartus Prime software projects, refer to Introduction to Intel FPGA IP Cores.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
336

Related Links

Introduction to Intel FPGA IP Cores

9.3.5 Add IP Components (IP Cores) to a Platform Designer System

The Platform Designer IP Catalog displays IP components (IP cores) available for your
target device. Double-click any component in the IP Catalog to launch the parameter
editor. The parameter editor allows you to create a custom IP component variation of
the selected component. A Platform Designer system can contain a single instance of
an IP component, or multiple, individually parameterized variations of multiple or the
same IP components.

Platform Designer preserves each of the IP component's parameters as a .ip file. A
Platform Designer system instantiates a generic component in place of the actual IP
core with a reference to the HDL entity name, module and interface assignments,
compilation library, HDL ports, interfaces, and system-info parameters.

Follow these steps to locate, instantiate, and customize an IP component in your
Platform Designer system:

1. Right-click any IP component name in the Platform Designer IP Catalog to display
details about device support, installation location, versions, and links to
documentation.

2. To locate a specific type of component, type some or all of the component’s name
in the IP Catalog search box.
For example, type memory to locate memory-mapped IP components, or axi to
locate AXI IP. You can also filter the IP Catalog display with options on the right-
click menu.

3. To launch the parameter editor, double-click any component. You can set the
parameter values in the parameter editor and view the block diagram for the
component. The Parameterization Messages tab at the bottom displays any
errors in the parameterization of the IP component.

4. For IP components that have preset parameter values, select the preset file in the
preset editor, and then click Apply. This option allows you to instantly apply
preset parameter values for the IP component appropriate for a specific
application.

5. To complete customization of the IP component, click Finish. The IP component
appears in the System Contents and Component Instantiation tabs.

Note: Platform Designer creates a corresponding .ip file for the IP component on
instantiation, and stores the file in the <ip> folder in your project directory.

The IP component appears in the System Contents tab.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
337

https://documentation.altera.com/#/link/mwh1409960636914/mwh1409958250601

Figure 152. Platform Designer IP Catalog

9.3.6 Specify Implementation Type for IP Components

A Platform Designer system instantiates a generic component in place of the actual IP
core with a reference to the HDL entity name, module and interface assignments,
compilation library, HDL ports, interfaces, and system-info parameters.

The Component Instantiation tab allows you to configure the system representation
of an IP core. To open the Component Instantiation tab, click View ➤ Component
Instantiation.

Table 92. Component Instantiation GUI Information

Name Description

Implementation Type Allows you to decide how to define the implementation of your IP component.
Platform Designer has the following implementation types:

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
338

Name Description

• IP—The default implementation type for any IP core. With IP
Implementation Type, Platform Designer performs the following functions:
— Runs background checks against the port widths between the IP

component and the .ip file to ensure continuity.
— Scans the .ip file for the error flag to understand if any component has

parameterization errors.
— Checks for system-info mismatches between the IP file and the IP

component in the system and prompts you to resolve these through IP
instantiation warnings in the Instantiation Messages tab.

• HDL—Allows you to quickly import RTL to your Platform Designer system.
You can populate the signals and interfaces parameters of the generic
component from an RTL file.

• Blackbox—By choosing this implementation type, you specify a component
that represents the signal and interface boundary of an entity, without
providing the component's implementation. You must provide the
implementation of the component in a downstream compiler such as Intel
Quartus Prime software or your RTL simulator.

• HLS—Select to add an existing high level synthesis (HSL) file, compile an
HLS file, import a previously compiled HLS file, perform verification on an
HLS project, or display the resulting compilation report.

Compilation Info Allows you to specify the HDL Entity name and HDL compilation library
name for the implementation. These are fixed values for the IP
Implementation Type.

Signals & Interfaces Allows you to define the port boundary of the component. Click <<add
interface>> or <<add signal>> to add the interfaces and signals.

System Information Allows you to specify the address map of the interfaces, input clock rate, and
other necessary system information associated with the component.

Block symbol Allows you to visualize the signals and interfaces added in the Signals &
Interfaces tab.

Implementation Templates Allows you to export implementation templates in the form of a pre-populated
HDL entity, or a template Platform Designer system which contains the boundary
information (signals and interfaces) as interface requirements.

Export Allows you to export the signals and interfaces of an IP component as an IP-
XACT file or a _hw.tcl file.

Note: Remember to click Apply in the Component Instantiation tab for any of your
changes to take effect. Alternatively, click Revert to undo all the changes you have
made to the component.

Related Links

Adding a Generic Component to the Platform Designer System on page 644

9.3.7 Connect IP Components in Your Platform Designer System

Use the System Contents tab to connect and configure components. Platform
Designer supports connections between interfaces of compatible types and opposite
directions. For example, you can connect a memory-mapped master interface to a
slave interface, and an interrupt sender interface to an interrupt receiver interface.
You can connect any interfaces exported from a Platform Designer system within a
parent system.

Note: You cannot both export and connect interfaces internally within the same Platform
Designer system.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
339

Possible connections between interfaces appear as gray lines and open circles. To
make a connection, click the open circle at the intersection of the interfaces. When
you make a connection, Platform Designer draws the connection line in black and fills
the connection circle. Clicking a filled-in circle removes the connection.

Platform Designer takes the high-level connectivity you specify, and instantiates a
suitable HDL fabric to perform the needed adaptation and arbitration between
components. Platform Designer includes this interconnect fabric in the generated RTL
system output. The Connections tab (View ➤ Connections) shows a list of current
and possible connections for selected instances or interfaces in the Hierarchy or
System Contents tabs. You can add and remove connections by clicking the check
box for each connection. Each column provides specific information about the
connection. For example, the Clock Crossing, Data Width, and Burst columns
provide interconnect information about added adapters that can result in slower fMAX
or increased area utilization.

To prevent additional connectivity changes to your system, you can deselect Allow
Connection Editing in the right-click menu. This option sets the Connections
column to read-only and hides the possible connections.

Figure 153. Connections Column in the System Contents Tab

When you double-click an interface in the Export column to export it, all possible
connections in the Connections column are displayed as a pin.

Figure 154. Connection Display for Exported Interfaces

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
340

Click the pin to restore the representation of the connections, and remove the
interface from the Export column. You can also use the Connections tab to view and
make connections for exported interfaces.

9.3.7.1 Create Connections Between Masters and Slaves

The Address Map tab specifies the address range that each memory-mapped master
uses to connect to a slave in a Platform Designer system. Platform Designer shows the
slaves on the left, the masters across the top, and the address span of the connection
in each cell. If there is no connection between a master and a slave, the table cell is
empty. In this case, use the Address Map tab to view the individual memory
addresses for each connected master.

Platform Designer enables you to design a system where two masters access the same
slave at different addresses. If you use this feature, Platform Designer labels the Base
and End address columns in the System Contents tab as "mixed" rather than
providing the address range.

Follow these steps to change or create a connection between master and slave IP
components:

1. In Platform Designer, click the Address Map tab.

2. Locate the table cell that represents the connection between the master and slave
component pair.

3. Either type in a base address, or update the current base address in the cell.

Note: The base address of a slave component must be a multiple of the address span of the
component. This restriction is a requirement of the Platform Designer interconnect,
which provides an efficient address decoding logic, which in turn allows Platform
Designer to achieve the best possible fMAX.

9.3.8 Validate System Integrity

The System Messages tab displays all the errors and warnings associated with your
current Platform Designer system. Double-click the warning or error messages to open
the relevant System Contents or Parameters tabs to fix the issue. You can also
click validate button in the Hierarchy tab, or the Validate System Integrity button
at the bottom of the main Platform Designer panel to perform system integrity check
for the entire system.

Table 93. System Messages Types in Platform Designer

System Messages Types Description

Component Instantiation Warning Indicates the mismatches between system information
parameters or IP core parameterization errors. A system
information parameters mismatch refers to the mismatch

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
341

System Messages Types Description

between an IP component's system parameter expectations
and the component's saved system information parameters
in the corresponding .ip file.

Component Instantiation Error Indicates the mismatches between HDL entity name,
compilation library, or ports which results in downstream
compilation errors. The component instantiation errors
always indicate the fundamental mismatches between
generated system and interconnect fabric RTL.

System Connectivity Warning Platform Designer system connectivity warnings.

System Connectivity Error Platform Designer system connectivity errors.

9.3.8.1 Component Instantiation Warning Messages

Component Instantiation Warnings report the following inconsistencies:

• Interface types do not match

• Interface is missing

• Port has been moved to another interface

• Port role has changed

• Interface assignment is mismatched

• Interface assignment is missing

9.3.8.2 Component Instantiation Error Messages

Component Instantiation Errors report the following inconsistencies:

• Port is missing from the ip file

• Port is missing from instantiation

• Port direction has changed

• Port VHDL type has changed

• Port width has changed

• Interface Parameter is mismatched

• Interface Parameter is missing

9.3.8.3 Validate System Integrity for Individual Components in the System

To validate the system integrity for your IP components:

1. Select the IP component in the System Contents tab.

2. Right-click and select Validate Component Footprint to check for any
mismatches between the IP component and its .ip file representation.

3. If there are any errors, click Reload Component Footprint to reload the signals
and interfaces for the component from the .ip file.

Note: To perform system integrity check for the entire system, right-click the System
Contents tab and select Validate System Integrity. You can also click the validate
button in the Hierarchy tab, or the Validate System Integrity button at the bottom
of the main Platform Designer panel.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
342

Figure 155. Validating System Integrity

9.3.9 Propagate System Information to IP Components

When system information doesn’t match the requirements of an IP component, use
the System Info tab to synchronize the IP component with mismatches. To open the
System Info tab, click View ➤ System Info.

Table 94. System Info GUI Information

Name Description

Component Instantiation This table shows the signals and interfaces for the selected IP component within the
system. Mismatches are highlighted in blue. Missing elements are highlighted in green.

IP file This table shows the signal and interface information for the selected IP component
from its corresponding .ip file. Mismatches are highlighted in blue. Missing elements
are highlighted in green.

Component Instantiation
Value

This table shows the selected interface parameter value of the IP component within the
system.

IP File Value This table shows the selected interface parameter value of the IP component from the
corresponding .ip file.

>> This button allows you to manually synchronize the mismatches in signals and
interfaces, one at a time, between the IP file and the IP component.

Sync All This button allows you to synchronize all the system info mismatches for the IP
component.

Note: To update the system information for all the IP components in your current system
simultaneously, click the update icon in the Hierarchy tab or the Sync All System
Info button at the bottom of the main Platform Designer panel.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
343

9.3.9.1 Update System Information

If the system information does not match the saved requirements of the
corresponding .ip file for an IP component, the mismatches appear as Component
Instantiation Warnings in the System Messages tab. In Platform Designer, you must
manually synchronize these system info dependencies:

1. To open the System Info tab, select the signal or interface in the System
Contents tab and click View ➤ System Info. You can also double-click the
corresponding Component Instantiation Warning in the System Messages tab to
open the system-info mismatch information in the System Info tab.

2. To update the .ip file with the current system information, select the mismatched
parameter and click >>. Alternatively, you can synchronize all the mismatches for
the component by clicking the Sync All button.

3. To update the system information for all the IP components in your current
system, click Sync All System Info in the bottom right corner of the Platform
Designer main frame.

Note: Clicking the update icon near the search field in the Hierarchy tab also
synchronizes the system information for all the IP components in your
system.

Figure 156. Updating System Information

9.3.10 View Your Platform Designer System

Platform Designer allows you to change the display of your system to match your
design development. Each tab on View menu allows you to view your design with a
unique perspective. Multiple tabs open in your workspace allows you to focus on a
selected element in your system under different perspectives.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
344

The Platform Designer GUI supports global selection and edit. When you make a
selection or apply an edit in the Hierarchy tab, Platform Designer updates all other
open tabs to reflect your action. For example, when you select cpu_0 in the
Hierarchy tab, Platform Designer updates the Parameters tab to show the
parameters for cpu_0.

• By default, when you open Platform Designer, the IP Catalog, Hierarchy, and
the Device Family tabs appear to the left of the main frame.

• The System Contents, Address Map, Interconnect Requirements, and
Details tabs display in the main frame.

• Parameters, System Info, and Component Instantiation tabs appear to the
right of the main frame.

• The System Messages tab displays in the lower portion of Platform Designer.

• The Parameterization Messages tab appears in the lower portion of the
Parameter tab when you select an IP component, displaying parameter warnings
and error messages, specific to that component.

Note: The Parameterization Messages tab also appears in the bottom pane of
the parameter editor when you double-click an IP component from the IP
Catalog.

You can dock tabs in the main frame as a group, or individually by clicking the tab
control in the upper-right corner of the main frame. You can arrange your workspace
by dragging and dropping, and then grouping tabs in an order appropriate to your
design development, or close or dock tabs that you are not using. Tool tips on the
upper-right corner of the tab describe possible workspace arrangements, for example,
restoring or disconnecting a tab to or from your workspace. When you save your
system, Platform Designer also saves the current workspace configuration. When you
re-open a saved system, Platform Designer restores the last saved workspace.

The Reset to System Layout command on the View menu restores the workspace
to its default configuration for Platform Designer system design. The Reset to IP
Layout command restores the workspace to its default configuration for defining and
generating single IP cores.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
345

Figure 157. Platform Designer GUI

Allows you to specify the expected signal and interface boundary
requirements your system must satisfy.

Synchronizes the IP component with mismatchesDisplays only system-conectivity warnings and error messages. Parameter warnings
and errors display separately in Parameterization Messages tab.

Appears when you double-click
“Generic Component” from
the IP catalog

9.3.10.1 Manage Platform Designer Window Views with Layouts

Platform Designer Layout controls what tabs are open in your Platform Designer
design window. When you create a Platform Designer window configuration that you
want to keep, Platform Designer allows you to save that configuration as a custom
layout. The Platform Designer GUI and features are well-suited for Platform Designer
system design. You can also use Platform Designer to define and generate single IP
cores for use in your Intel Quartus Prime software projects.

1. To configure your Platform Designer window with a layout suitable for Platform
Designer system design, click View ➤ Reset to System Layout.
The System Contents, Address Map, Interconnect Requirements, and
Messages tabs open in the main pane, and the IP Catalog and Hierarchy tabs
along the left pane.

2. To configure your Platform Designer window with a layout suitable for single IP
core design, click View ➤ Reset to IP Layout.
The Parameters and Messages tabs open in the main pane, and the Details,
Block Symbol and Presets tabs along the right pane.

3. To save your current Platform Designer window configuration as a custom layout,
click View ➤ Custom Layouts ➤ Save.
Platform Designer saves your custom layout in your project directory, and adds
the layout to the custom layouts list, and the layouts.ini file. The
layouts.ini file controls the order in which the layouts appear in the list.

4. To reset your Platform Designer window configuration to a previously saved
configuration, click View ➤ Custom Layouts, and then select the custom layout
in the list.
The Platform Designer windows opens with your previously saved Platform
Designer window configuration.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
346

Figure 158. Save Your Platform Designer Window Views and Layouts

5. To manage your saved custom layouts, click View ➤ Custom Layouts.

The Manage Custom Layouts dialog box opens and allows you to apply a variety
of functions that facilitate custom layout management. For example, you can
import or export a layout from or to a different directory.

Figure 159. Manage Custom Layouts
The shortcut, Ctrl-3, for example, allows you to quickly change your Platform Designer window view with a
quick keystroke.

9.3.10.2 Filter the Display of the System Contents Tab

You can use the Filters dialog box to filter the display of your system by interface
type, instance name, or by using custom tags.

For example, in the System Contents tab, you can show only instances that include
memory-mapped interfaces or instances connected to a particular Nios II processor.
The filter tool also allows you to temporarily hide clock and reset interfaces to simplify
the display.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
347

Figure 160. Filter Icon in the System Contents Tab

Related Links

Filters Dialog Box

9.3.10.3 Display Details About a Component or Parameter

The Details tab provides information for a selected component or parameter. Platform
Designer updates the information in the Details tab as you select different
components.

As you click through the parameters for a component in the parameter editor, Platform
Designer displays the description of the parameter in the Details tab. To return to the
complete description for the component, click the header in the Parameters tab.

9.3.10.4 Display a Graphical Representation of a Component

In the Block Symbol tab, Platform Designer displays a graphical representation of the
element that you select in the Hierarchy or System Contents tabs. You can view the
selected component's port interfaces and signals. The Show signals option allows
you to turn on or off signal graphics.

The Block Symbol tab appears by default in the parameter editor when you add a
component to your system. When the Block Symbol tab is open in your workspace, it
reflects changes that you make in other tabs.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
348

http://quartushelp.altera.com/current/index.htm#system/qsys/qsys_db_filter.htm

9.3.10.5 View a Schematic of Your Platform Designer System

The Schematic tab displays a schematic representation of your Platform Designer
system. Tab controls allow you to zoom into a component or connection, or to obtain
tooltip details for your selection. You can use the image handles in the right panel to
resize the schematic image.

If your selection is a subsystem, use the Hierarchy tool to navigate to the parent
subsystem, move up one level, or to drill into the currently open subsystem.

Figure 161. Platform Designer Schematic Tab

Related Links

Edit a Platform Designer Subsystem on page 360

9.3.10.6 View Connections in Your Platform Designer System

The Connections tab displays a lists of connections in your Platform Designer system.
On the Connections tab (View ➤ Connections), you can choose to connect or un-
connect a module in your system, and then view the results in the System Contents
tab.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
349

Figure 162. Connections tabs in Platform Designer

9.3.11 Navigate Your Platform Designer System

The Hierarchy tab is a full system hierarchical navigator that expands the Platform
Designer system contents to show all elements in your system.

You can use the Hierarchy tab to browse, connect, parameterize IP, and drive
changes in other open tabs. Expanding each interface in the Hierarchy tab allows you
to view sub-components, associated elements, and signals for the interface. You can
focus on a particular area of your system by coordinating selections in the Hierarchy
tab with other open tabs in your workspace.

Navigating your system using the Hierarchy tab in conjunction with relevant tabs is
useful during the debugging phase. Viewing your system with mutiple tabs open
allows you to focus your debugging efforts to a single element in your system.

The Hierarchy tab provides the following information and functionality:

• Connections between signals.

• Names of signals in exported interfaces.

• Right-click menu to connect, edit, add, remove, or duplicate elements in the
hierarchy.

• Internal connections of Platform Designer subsystems that are included as IP
components. In contrast, the System Contents tab displays only the exported
interfaces of Platform Designer subsystems.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
350

Figure 163. Expanding System Contents in the Hierarchy Tab
The Hierarchy tab displays a unique icon for each element in the system. Context sensitivity between tabs
facilitates design development and debugging. For example, when you select an element in the Hierarchy tab,
Platform Designer selects the same element in other open tabs. This allows you to interact with your system in
more detail. In the example below, the ram_master selection appears selected in both the System Contents
and Hierarchy tabs.

Related Links

Create and Manage Hierarchical Platform Designer Systems on page 358

9.3.12 Specify IP Component Parameters

The Parameters tab allows you to configure parameters that define an IP
component's functionality.

When you add a component to your system, or when you double-click a component in
an open tab, the parameter editor opens. In the parameter editor, you can configure
the parameters of the component to align with the requirements of your design. If you
create your own IP components, use the Hardware Component Description File
(_hw.tcl) to specify configurable parameters.

Whenever you add an IP component to your system, Platform Designer stores the
instantiated IP component in a separate .ip file. Any changes you make to the
component's parameters from the Parameters tab, automatically updates the
corresponding .ip file.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
351

With the Parameters tab open, when you select an element in the Hierarchy tab,
Platform Designer shows the same element in the Parameters tab. You can then
make changes to the parameters that appear in the parameter editor, including
changing the name for top-level instance that appears in the System Contents tab.
Changes that you make in the Parameters tab affect your entire system and appear
dynamically in other open tabs in your workspace.

In the parameter editor, the Documentation button provides information about a
component's parameters, including the version.

At the top of the parameter editor, Platform Designer shows the hierarchical path for
the component and its elements. This feature is useful when you navigate deep within
your system with the Hierarchy tab.

Below the hierarchical path, the parameter editor shows the HDL entity name and the
IP file path for the selected IP component.

The Parameters tab also allows you to review the timing for an interface and displays
the read and write waveforms at the bottom of the Parameters tab.

The Parameterization Messages appears at lower portion of the parameter editor,
displaying parameter warnings and error messages, specific to the selected IP
component.

Figure 164. Avalon-MM Write Master Timing Waveforms in the Parameters Tab

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
352

9.3.12.1 Configure Your IP Component with a Pre-Defined Set of Parameters

The Presets tab allows you to apply a pre-defined set of parameters to your IP
component to create a unique variation. The Presets tab opens the preset editor and
allows you to create, modify, and save custom component parameter values as a
preset file. Not all IP components have preset files.

When you add a new component to your system, if there are preset files available for
the component, the preset editor opens in the parameter editor. The name of each
preset file describes a particular protocol.

1. In your Platform Designer system, select an element in the Hierarchy tab.

2. Click View ➤ Presets.

3. Type text in the Presets search box to filter the list of preset files.
For example, if you add the DDR3 SDRAM Controller with UniPHY component
to your system, type 1g micron 256 in the search box, The Presets list displays
only those preset files associated with 1g micron 256.

4. Click Apply to assign the selected presets to the component.
Presets whose parameter values match the current parameter settings appear in
bold.

5. In the Presets tab, click New to create a custom preset file if the available
presets do not meet the requirements of your design.

a. In the New Preset dialog box, specify the Preset name and Preset
description.

b. Check or uncheck the parameters you want to include in the preset file.

c. Specify where you want to save the new preset file.
If the file location that you specify is not already in the IP search path,
Platform Designer adds the location of the new preset file to the IP search
path.

d. Click Save.

6. In the Presets tab, click Update to update a custom preset.

Note: Custom presets are preset files that you create by clicking New in the
Presets tab.

7. In the Presets tab, click Delete to delete a custom preset.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
353

Figure 165. Specifying Presets

Filter the list of
preset files

9.3.13 Modify an Instantiated IP Component

Platform Designer allows you to manipulate the system representation of IP
components. For example, you can modify the interfaces of an instantiated IP
component to change its properties.

The example below shows how to instantiate a PLL in your system and then modify its
conduit interface so that the conduit becomes a reset.

9.3.13.1 Change a Conduit to a Reset

1. In the IP Catalog search box, locate Altera IOPLL and double-click to add the
component to your system.

2. Select the PLL component in the System Contents tab.

3. Open the Component Instantiation tab for the selected component.

Note: The Component Instantiation tab displays in the right pane of the
Platform Designer window. If you can’t find the tab on the main frame of
Platform Designer, click View ➤ Component Instantiation to open the
tab.

4. In the Signals & Interfaces tab, select the locked conduit interface.

5. Change the Type from Conduit to Reset Input, and the Synchronous edges
from Deassert to None.

6. Select the locked [1] signal below the locked interface.

7. Change the Signal Type from export to reset_n. Change the Direction from
output to input.

8. Click Apply.

The conduit interface changes to reset for the instantiated PLL component.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
354

Figure 166. Changing Conduit to a Reset

 Interface type for the input
 changed from Conduit to Reset
 after instantiation

9.3.14 Save your System

To save your Platform Designer system, click File ➤ Save. To save a standalone .ip
file that you open in the IP Parameter Editor Pro window, click File ➤ Save. To create
a copy of the standalone .ip file, click File ➤ Save As.

Note: • To save a copy of the Platform Designer system, refer to the Archive your System
section.

• To save the system as a Platform Designer script, click File ➤ Export System as
qsys script (.tcl). You can restore this system by executing the .tcl script from
the System Scripting tab.

Related Links

Archive your System on page 355

9.3.15 Archive your System

Platform Designer allows you to archive your system in a .zip format. To archive your
system, click File ➤ Archive System.

In the Archive System dialog box, the Collect to common directory option is
turned on by default. This option allows Platform Designer to collect all the .qsys files
in the root directory of the archive, and all the .ip files to a single ip directory, while
updating all the references to match. Disable this option to maintain the current
directory structure for the archive.

To extract all the archived files in a given system to a specified folder, click File ➤
Restore Archive System. Select the source archive file, and the destination folder.
Upon successful extraction, Platform Designer automatically launches the Open
System dialog box, with the extracted .qsys file and the associated .qpf file,
preloaded.

Note: You can also archive your system using command-line options. For more information,
refer to Archive a System with qsys-archive section.

Related Links

Archive a Platform Designer System with qsys-archive on page 602

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
355

9.4 Synchronize IP File References

Whenever you load a system, Platform Designer ensures that the referenced IP files in
your Platform Designer system matches the IP files list in the associated Intel Quartus
Prime project.

The IP Synchronization Result dialog box displays the discrepancies list whenever
IP synchronization mismatches occur in your Platform Designer system. To manually
check for these mismatches, click File ➤ Synchronize IP File References.

Platform Designer identifies the following types of mismatches with the IP
synchronization:

Table 95. IP Synchronization Results

Mismatch Type Description

Duplicate IP files The list of same IP files references specified in both your
Platform Designer system and the associated Intel Quartus
Prime project. These IP files contain the same name, but
are present in different locations. In such cases, the IP files
referenced in the Intel Quartus Prime project takes
precedence. Platform Designer replaces the IP file reference
in the system with the one in the Intel Quartus Prime
project.
Note: If the Intel Quartus Prime project contains more

than one IP of the same file name, Platform
Designer retains the first instance and removes all
other occurrences of the IP file with the specific
name.

Missing IP files The list of missing IP file references specified in both your
Platform Designer system and the corresponding Intel
Quartus Prime project. In such cases, Platform Designer
allows you to select a replacement IP file.

Missing Platform Designer IP files The list of missing IP file references in your Platform
Designer system whose associated Intel Quartus Prime
project contains valid IP files of the same names. If Platform
Designer locates a valid reference in the Intel Quartus Prime
project, it replaces the missing reference in the Platform
Designer system with IP file reference from the Intel
Quartus Prime project.

Missing Quartus IP files The list of IP file references in your Platform Designer
system which are not listed in the associated Intel Quartus
Prime project's .qsf file. Platform Designer adds the
missing IP file reference to the Intel Quartus Prime project.
If the project's .qsf file already contains reference to the
missing IP file, but the file cannot be located in the specified
path, Platform Designer removes the reference in the .qsf
file, and adds the reference to the IP file in the Platform
Designer system.

9.5 Upgrade Outdated IP Components in Platform Designer

When you open a Platform Designer system containing outdated IP components, you
can retain and use the RTL of previously generated IP components within the Platform
Designer system. If Platform Designer is unable to locate the IP core’s original version,
you cannot re-parametrize the IP core without upgrading the IP core to the latest
version. However, Platform Designer allows you to view the parametrization of the
original core without upgrading.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
356

To upgrade individual IP components in your Platform Designer system:

1. Click View ➤ Parameters

2. Select the outdated IP component in the Hierarchy or the System Contents tab.

3. Click the Parameters tab. This tab displays information on the current version, as
well as the installed version of the selected IP component.

4. Click Upgrade. Platform Designer upgrades the IP component to the installed
version, and deletes all the RTL files associated with the IP component.

Figure 167. Upgrade IP Component in your Platform Designer System

To upgrade an IP component from the command-line, type the following:

qsys-generate --upgrade-ip-cores <ip_file>

To upgrade all the IP components in your Platform Designer system, open the
associated project in the Intel Quartus Prime software, and click Project ➤ Upgrade
IP Components.

Related Links

Introduction to the Platform Designer IP Catalog on page 329

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
357

9.6 Create and Manage Hierarchical Platform Designer Systems

Platform Designer supports hierarchical system design. You can add any Platform
Designer system as a subsystem in another Platform Designer system. Platform
Designer hierarchical system design allows you to create, explore and edit hierarchies
dynamically within a single instance of the Platform Designer editor. Platform Designer
generates the complete hierarchy during the top-level system’s generation.

Note: You can explore parameterizable Platform Designer systems and _hw.tcl files, but
you cannot edit their elements.

Your Platform Designer systems appear in the IP Catalog under the System category
under Project. You can reuse systems across multiple designs. In a team-based
hierarchical design flow, you can divide large designs into subsystems and have team
members develop subsystems simultaneously.

Related Links

Navigate Your Platform Designer System on page 350

9.6.1 Add a Subsystem to Your Platform Designer Design

You can create a child subsystem or nest subsystems at any level in the hierarchy.
Platform Designer adds a subsystem to the system you are currently editing. This can
be the top-level system, or a subsystem.

To create or nest subsystems in your Platform Designer design, use the following
methods within the System Contents tab:

• Right-click command: Add a new subsystem to the current system.

• Left panel icon.

• CTRL+SHIFT+N.

Figure 168. Add a Subsystem to Your Platform Designer Design

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
358

9.6.2 Drill into a Platform Designer Subsystem to Explore its Contents

The ability to drill into a system provides visibility into its elements and connections.
When you drill into an instance, you open the system it instantiates for editing.

You can drill into a subsystem with the following commands:

• Double-click a system in the Hierarchy tab.

• Right-click a system in the System Contents or Schematic tabs, and then select
Drill into subsystem.

• CTRL+SHIFT+D in the System Contents tab.

Note: You can only drill into .qsys files, not parameterizable Platform Designer systems or
_hw.tcl files.

The Hierarchy tab is rooted at the top-level and drives global selection. You can
manage a hierarchical Platform Designer system that you build across multiple
Platform Designer files, and view and edit their interconnected paths and address
maps simultaneously. As an example, you can select a path to a subsystem in the
Hierarchy tab, and then drill deeper into the subsystem in the System Contents or
Schematic tabs.

Views that manage system-level editing, for example, the System Contents and
Schematic tabs, contain the hierarchy widget, which allows you to efficiently navigate
your subsystems. The hierarchy widget also displays the name of the current
selection, and its path in the context of the system or subsystem.

The widget contains the following controls and information:

• Top—Navigates to the project-level .qsys file that contains the subsystem.

• Up—Navigates up one level from the current selection.

• Drill Into—Allows you to drill into an editable system.

• System—Displays the hierarchical location of the system you are currently
editing.

• Path—Displays the relative path to the current selection.

Note: In the System Contents tab, you can use CTRL+SHIFT+U to navigate up one level,
and CTRL+SHIFT+D to drill into a system.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
359

Figure 169. Drill into a Platform Designer System to Explore its Contents

Double-click the Subsystem from the Hierarchy Tab or
Select Drill into Subsytem Option by Right-Clicking
System Contents Tab to Switch Subsystems

9.6.3 Edit a Platform Designer Subsystem

You can double-click a Platform Designer subsystem in the Hierarchy tab to edit its
contents in any tab. When you make a change, open tabs refresh their content to
reflect your edit. You can change the level of a subsystem, or push it into another
subsystem with commands in the System Contents tab.

Note: To edit a .qsys file, the file must be writeable and reside outside of the ACDS
installation directory. You cannot edit systems that you create from composed
_hw.tcl files, or systems that define instance parameters.

1. In the System Contents or Schematic tabs, use the hierarchy widget to
navigate to the top-level system, up one level, or down one level (drill into a
system).
All tabs refresh and display the requested hierarchy level.

2. To edit a system, double-click the system in the Hierarchy tab. You can also drill
into the system with the Hierarchy tool or right-click commands, which are
available in the Hierarchy, Schematic, System Contents tabs.
The system is open and available for edit in all Platform Designer views. A system
currently open for edit appears as bold in the Hierarchy tab.

3. In the System Contents tab, you can rename any element, add, remove, or
duplicate connections, and export interfaces, as appropriate.
Changes to a subsystem affect all instances. Platform Designer identifies unsaved
changes to a subsystem with an asterisk next to the subsystem in the Hierarchy
tab.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
360

Related Links

View a Schematic of Your Platform Designer System on page 349

9.6.4 Change the Hierarchy Level of a Platform Designer Component

You can push selected components down into their own subsytem, which can simplify
your top-level system view. Similarly, you can pull a component up out of a subsystem
to perhaps share it between two unique subsystems. Hierarchical-level management
facilitates system optimization and can reduce complex connectivity in your
subsystems. When you make a change, open tabs refresh their content to reflect your
edit.

1. In the System Contents tab, to group multiple components that perhaps share a
system-level component, select the components, right-click, and then select Push
down into new subsystem.
Platform Designer pushes the components into their own subsystem and re-
establishes the exported signals and connectivity in the new location.

2. In the System Contents tab, to pull a component up out of a subsystem, select
the component, and then click Pull up.
Platform Designer pulls the component up out of the subsystem and re-establishes
the exported signals and connectivity in the new location.

9.6.5 Save New Platform Designer Subsystem

When you save a subsystem to your Platform Designer design, Platform Designer
confirms the new subsystem in the Confirm New System Filenames dialog box. The
Confirm New System Filenames dialog box appears when you save your Platform
Designer design. Platform Designer uses the name that you give a subsystem
as .qsys filename, and saves the subsystem in the project’s ip directory.

1. Click File ➤ Save to save your Platform Designer design.

2. In the Confirm New System Filenames dialog box, click OK to accept the
subsystem file names.

Note: If you have not yet saved your top-level system, or multiple subsystems,
you can type a name, and then press Enter, to move to the next un-named
system.

3. In the Confirm New System Filenames dialog box, to edit the name of a
subsystem, click the subsystem, and then type the new name.

4. To cancel the save process, click Cancel in the Confirm New System Filenames
dialog box.

9.7 Specify Signal and Interface Boundary Requirements

The Interface Requirements tab allows you to specify the expected signal and
interface boundary requirements that your Platform Designer system must satisfy. Use
this tab to view and resolve any interface requirement mismatches in your current
system. You can also edit the names of the exported signals and interfaces in your
system from the Interface Requirements tab.

To open the Interface Requirements tab, click View ➤ Interface Requirements.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
361

Table 96. Interface Requirements GUI Information

Name Description

Current System This table displays all the exported interfaces in your current Platform Designer
system. Add or remove the interfaces in the Current System table by adding or
removing instances to the system in the System Contents tab.

Interface Requirements This table shows all the interface requirements set for the current Platform
Designer system.

Parameter Differences This table lists the Parameter Name, Current System Value, and Interface
Requirement Value for the selected mismatched interface.
Note: The Interface Requirements tab highlights in blue the signals and

interfaces that are the same, but have different parameter values.
Selecting a blue item populates the Parameter Differences table.

Import Interface Requirements This button allows you to populate the Interface Requirements table from an
IP-XACT file representing a generic component or an entire Platform Designer
system.

Parameters This table lists the signal and interface parameters for the selected interface. You
can view the table as Current Parameters when you select an interface or
signal from the Current System table, and as Required Parameters when you
select the signal or interface from Interface Requirements table. You can
modify the name of your exported signal or interface from this table. For more
information about how to edit the name of an exported signal or interface, refer
to Editing the Name of Exported Interfaces and Signals in volume 1 of the Intel
Quartus Prime Pro Edition Handbook.

9.7.1 Match the Exported Interface with Interface Requirements

If an exported interface does not match the interface requirements of the system,
Platform Designer generates component instantiation errors. You must match all the
exported interfaces with the interface requirements of the system:

1. To open the Interface Requirements tab, click View ➤ Interface
Requirements.

2. To load the interface requirements from a Platform Designer system, click Import
Interface Requirements in the Interface Requirements table. A dialog box
appears from which you can choose the .ipxact representation of the Platform
Designer system.

3. To add new interface requirements, click <<add interface>> or <<add signal>>
in the Interface Requirements table.

4. To correct the mismatches, select the missing or mismatched interface or signal in
the Current System table and click >>.

Note: Platform Designer highlights the mismatches between the system and
interface requirements in blue, and highlights the missing interfaces and
signals in green.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
362

Figure 170. Interface Requirements Tab

Related Links

• Specify Signal and Interface Boundary Requirements on page 361

• Creating System Template for a Generic Component on page 655

9.7.2 Edit the Name of Exported Interfaces and Signals

To rename the exported signal or interface:

• Double-click the signal or interface in Current System table.

• Select the signal or interface in the Current System table and press F2.

• Select the signal or interface in the Current System table and rename from the
Current Parameters pane at the bottom of the tab. The Current Parameters
pane displays all the parameters of the selected interface or signal.

Note: All other parameters in the Current Parameters except Name are read-only for the
current system.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
363

Figure 171. Editing the Name of Exported Interfaces and Signals

Double click to edit the
signal or interface name

Name - Editable
Other parameters - Read-only

9.8 Run System Scripts

The System Scripting tab allows you to execute Tcl scripts on your Platform Designer
system. To open the System Scripting tab, click View ➤ System Scripting.

Table 97. System Scripting GUI Information

Name Description

Platform Designer Built-in Scripts Scripts that the Platform Designer tool provides. You cannot
edit these scripts.

User Scripts You can add your own scripts to this entry. Platform
Designer saves these scripts to your user preference file,
available in your home directory. The scripts that you add to
this entry are available every time you open Platform
Designer. Click <<add script>> to add a new script file to
this entry. Double-click the Description field to add a
description. Right-click the added script and click Rename
to set a display name for the script.

Project Scripts You can add your own scripts to this entry. Platform
Designer saves these scripts to your current system. The
scripts that you add to this entry are available only when
you open this specific Platform Designer system. Click
<<add script>> to add a new script file to this entry.
Double-click the Description field to add a description or
additional commands to the script. Right-click the added
script and click Rename to set a display name for the
script.

Edit File Selecting the script in the File field displays the script in the
pane below. Click Edit File to edit the script.

Revert File Discards all your changes to the edited file.

Save File Saves your changes to the edited file.

Run Script Executes the selected script.

System Scripting Messages Displays the warning and error messages when running the
script.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
364

Figure 172. System Scripting Tab

Note: • To add additional commands to run before the script, right-click the column header
and enable Additional Commands. Selecting this option displays a third column,
in addition to File and Description. Double-click the entry in this field to add
commands to execute before running your script. Alternatively, you can add the
additional commands to your script, directly through the display pane in the
middle, in the specified section.

• You can drag and drop items between the Project Scripts and User Scripts
fields.

9.9 View and Filter Clock and Reset Domains in Your Platform
Designer System

The Platform Designer clock and reset domains tabs allow you to see clock domains
and reset domains in your Platform Designer system. Platform Designer determines
clock and reset domains by the associated clocks and resets, which are displayed in
tooltips for each interface in your system. You can filter your system to display
particular components or interfaces within a selected clock or reset domain. The clock
and reset domain tabs also provide quick access to performance bottlenecks by
indicating connection points where Platform Designer automatically inserts clock
crossing adapters and reset synchronizers during system generation. With these tools,
you can more easily create optimal connections between interfaces.

Click View ➤ Clock Domains, or View ➤ Reset Domains to open the respective
tabs in your workspace. The domain tools display as a tree with the current system at
the root. You can select each clock or reset domain in the list to view associated
interfaces.

When you select an element in the Clock Domains tab, the corresponding selection
appears in the System Contents tab. You can select one or more single or multiple
interfaces and modules. Mouse over tooltips in the System Contents tab to provide

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
365

detailed information for all elements and connections. Colors that appear for the
clocks and resets in the domain tools correspond to the colors in the System
Contents and Schematic tabs.

Clock and reset control tools at the bottom on the System Contents tab allow you to
toggle between highlighting clock or reset domains. You can further filter your view
with options in the Filters dialog box, which is accessible by clicking the filter icon at
the bottom of the System Contents tab. In the Filters dialog box, you can choose to
view a single interface, or to hide clock, reset, or interrupt interfaces.

Clock and reset domain tools respond to global selection and edits, and help to
provide answers to the following system design questions:

• How many clock and reset domains do you have in your Platform Designer
system?

• What interfaces and modules does each clock or reset domain contain?

• Where do clock or reset crossings occur?

• At what connection points does Platform Designer automatically insert clock or
reset adapters?

• Where do you have to manually insert a clock or reset adapter?

Figure 173. Platform Designer Clock and Reset Domains

9.9.1 View Clock Domains in Your Platform Designer System

With the Clock Domains tab, you can filter the System Contents tab to display a
single clock domain, or multiple clock domains. You can further filter your view with
selections in the Filters dialog box. When you select an element in the Clock
Domains tab, the corresponding selection appears highlighted in the System
Contents tab.

1. To view clock domain interfaces and their connections in your Platform Designer
system, click View ➤ Clock Domains to open the Clock Domains tab.

2. To enable and disable highlighting of the clock domains in the System Contents
tab, click the clock control tool at the bottom of the System Contents tab.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
366

Figure 174. Clock Control Tool

3. To view a single clock domain, or multiple clock domains and their modules and
connections, click the clock name or names in the Clock Domains tab.
The modules for the selected clock domain or domains and their connections
appear highlighted in the System Contents tab. Detailed information for the
current selection appears in the clock domain details pane. Red dots in the
Connections column indicate auto insertions by Platform Designer during system
generation, for example, a reset synchronizer or clock crossing adapter.

Figure 175. Clock Domains

4. To view interfaces that cross clock domains, expand the Clock Domain
Crossings icon in the Clock Domains tab, and select each element to view its
details in the System Contents tab.

Platform Designer lists the interfaces that cross clock domain under Clock
Domain Crossings. As you click through the elements, detailed information
appears in the clock domain details pane. Platform Designer also highlights the
selection in the System Contents tab.

If a connection crosses a clock domain, the connection circle appears as a red dot
in the System Contents tab. Mouse over tooltips at the red dot connections
provide details about the connection, as well as what adapter type Platform
Designer automatically inserts during system generation.

9.9.2 View Reset Domains in Your Platform Designer System

With the Reset Domains tab, you can filter the System Contents tab to display a
single reset domain, or multiple reset domains. When you select an element in the
Reset Domains tab, the corresponding selection appears in the System Contents
tab.

1. To view reset domain interfaces and their connections in your Platform Designer
system, click View ➤ Reset Domains to open the Reset Domains tab.

2. To show reset domains in the System Contents tab, click the reset control tool at
the bottom of the System Contents tab.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
367

Figure 176. Reset Control Tool

3. To view a single reset domain, or multiple reset domains and their modules and
connections, click the reset names in the Reset Domain tab.

Platform Designer displays your selection according to the following rules:

• When you select multiple reset domains, the System Contents tab shows
interfaces and modules in both reset domains.

• When you select a single reset domain, the other reset domains are grayed
out, unless the two domains have interfaces in common.

• Reset interfaces appear black when connected to multiple reset domains.

• Reset interfaces appear gray when they are not connected to all of the
selected reset domains.

• If an interface is contained in multiple reset domains, the interface is grayed
out.

Detailed information for your selection appears in the reset domain details pane.

Note: Red dots in the Connections column between reset sinks and sources
indicate auto insertions by Platform Designer during system generation, for
example, a reset synchronizer. Platform Designer decides when to display a
red dot with the following protocol, and ends the decision process at first
match.

• Multiple resets fan into a common sink.

• Reset inputs are associated with different clock domains.

• Reset inputs have different synchronicity.

9.9.3 Filter Platform Designer Clock and Reset Domains in the System
Contents Tab

You can filter the display of your Platform Designer clock and reset domains in the
System Contents tab.

1. To filter the display in the System Contents tab to view only a particular
interface and its connections, or to choose to hide clock, reset, or interrupt
interfaces, click the Filters icon in the clock and reset control tool to open the
Filters dialog box.
The selected interfaces appear in the System Contents tab.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
368

Figure 177. Filters Dialog Box

2. To clear all clock and reset filters in the System Contents tab and show all
interfaces, click the Filters icon with the red "x" in the clock and reset control
tool.

Figure 178. Show All Interfaces

9.9.4 View Avalon Memory Mapped Domains in Your Platform Designer
System

The Avalon Memory Mapped Domains tab (View ➤ Avalon Memory Mapped
Domains) displays a list of all the Avalon domains in the system.

With the Avalon Memory Mapped Domains tab, you can filter the System
Contents tab to display a single Avalon domain, or multiple domains. You can further
filter your view with selections in the Filters dialog box. When you select a domain in
the Avalon Memory Mapped Domains tab, the corresponding selection is
highlighted in the System Contents tab.

To rename an Avalon memory mapped domain, double-click the domain name.
Detailed information for the current selection appears in the Avalon domain details
pane. Also, you can choose to view only the selected domain's interfaces in the
System Contents tab.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
369

Figure 179. Avalon Memory Mapped Domains Tab

Shows only the Interfaces in the Selected Avalon Memory Mapped Domain in the System Contents Tab

Displays Information about the Current Domain Selection

Double-Click to Rename Domain Name

To enable and disable the highlighting of the Avalon domains in the System Contents
tab, click the domain control tool at the bottom of the System Contents tab.

Figure 180. Avalon Memory Mapped Domains Control Tool

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
370

Figure 181. System Contents Tab with Avalon Memory Mapped Domains Selected

9.10 Specify Platform Designer Interconnect Requirements

The Interconnect Requirements tab allows you to apply system-wide, $system,
and interface interconnect requirements for IP components in your system. Options in
the Setting column vary depending on what you select in the Identifier column.
Click the drop-down menu to select the settings, and to assign the corresponding
values to the settings.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
371

Table 98. Specifying System-Wide Interconnect Requirements

Option Description

Limit interconnect
pipeline stages to

Specifies the maximum number of pipeline stages that Platform Designer may insert in each
command and response path to increase the fMAX at the expense of additional latency. You can
specify between 0–4 pipeline stages, where 0 means that the interconnect has a combinational
datapath. Choosing 3 or 4 pipeline stages may significantly increase the logic utilization of the
system. This setting is specific for each Platform Designer system or subsystem, meaning that
each subsystem can have a different setting. Additional latency is added once on the command
path, and once on the response path. You can manually adjust this setting in the Memory-
Mapped Interconnect tab. Access this tab by clicking Show System With Platform
Designer Interconnect command on the System menu.

Clock crossing
adapter type

Specifies the default implementation for automatically inserted clock crossing adapters:
• Handshake—This adapter uses a simple hand-shaking protocol to propagate transfer

control signals and responses across the clock boundary. This methodology uses fewer
hardware resources because each transfer is safely propagated to the target domain before
the next transfer can begin. The Handshake adapter is appropriate for systems with low
throughput requirements.

• FIFO—This adapter uses dual-clock FIFOs for synchronization. The latency of the
FIFO-based adapter is a couple of clock cycles more than the handshaking clock crossing
component. However, the FIFO-based adapter can sustain higher throughput because it
supports multiple transactions at any given time. FIFO-based clock crossing adapters
require more resources. The FIFO adapter is appropriate for memory-mapped transfers
requiring high throughput across clock domains.

• Auto—If you select Auto, Platform Designer specifies the FIFO adapter for bursting links,
and the Handshake adapter for all other links.

Automate default
slave insertion

Specifies whether you want Platform Designer to automatically insert a default slave for
undefined memory region accesses during system generation.

Enable
instrumentation

When you set this option to TRUE, Platform Designer enables debug instrumentation in the
Platform Designer interconnect, which then monitors interconnect performance in the system
console.

Burst Adapter
Implementation

Allows you to choose the converter type that Platform Designer applies to each burst.
• Generic converter (slower, lower area)—Default. Controls all burst conversions with a

single converter that is able to adapt incoming burst types. This results in an adapter that
has lower fMAX, but smaller area.

• Per-burst-type converter (faster, higher area)—Controls incoming bursts with a
particular converter, depending on the burst type. This results in an adapter that has higher
fMAX, but higher area. This setting is useful when you have AXI masters or slaves and you
want a higher fMAX.

Enable ECC protection Specifies the default implementation for ECC protection for memory elements. Currently
supports only Read Data FIFO (rdata_FIFO) instances..
• FALSE—Default. ECC protection is disabled for memory elements in the Platform Designer

interconnect.
• TRUE—ECC protection is enabled for memory elements. Platform Designer interconnect

sends ECC errors that cannot be corrected as DECODEERROR (DECERR) on the Avalon
response bus. This setting may increase logic utilization and cause lower fMAX, but provides
additional protection against data corruption.

Note: For more information about Error Correction Coding (ECC), refer to Error Correction
Coding in Platform Designer Interconnect.

Interconnect type Allows you to select the implementation of Platform Designer interconnect. You can select one
of the following options:
• Standard—suitable for all devices
• (Alpha release) Hyperflex-optimized—suitable for latency-tolerant Intel Stratix 10

applications. This option has higher potential fmax and bandwidth, at the expense of
increased latency

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
372

Table 99. Specifying Interface Interconnect Requirements
You can apply the following interconnect requirements when you select a component interface as the
Identifier in the Interconnect Requirements tab, in the All Requirements table.

Option Value Description

Security • Non-secure
• Secure
• Secure ranges
• TrustZone-aware

After you establish connections between the masters
and slaves, allows you to set the security options, as
needed, for each master and slave in your system.
Note: You can also set these values in the Security

column in the System Contents tab.

Secure address ranges Accepts valid address
range.

Allows you to type in any valid address range.

Related Links

Error Correction Coding (ECC) in Platform Designer Interconnect on page 718

9.11 Manage Platform Designer System Security

Arm TrustZone is the security extension of the Arm-based architecture. It includes
secure and non-secure transactions designations, and a protocol for processing
between the designations. TrustZone security support is a part of the Platform
Designer interconnect.

The AXI AxPROT protection signal specifies a secure or non-secure transaction. When
an AXI master sends a command, the AxPROT signal specifies whether the command
is secure or non-secure. When an AXI slave receives a command, the AxPROT signal
determines whether the command is secure or non-secure. Determining the security
of a transaction while sending or receiving a transaction is a run-time protocol.

The Avalon specification does not include a protection signal as part of its
specification. When an Avalon master sends a command, it has no embedded security
and Platform Designer recognizes the command as non-secure. When an Avalon slave
receives a command, it also has no embedded security, and the slave always accepts
the command and responds.

AXI masters and slaves can be TrustZone-aware. All other master and slave interfaces,
such as Avalon-MM interfaces, are non-TrustZone-aware. You can set compile-time
security support for all components (except AXI masters, including AMBA 3 AXI, AMBA
3 AXI,and AMBA 3 AXI-Lite) in the Security column in the System Contents tab, or
in the Interconnect Requirements tab under the Identifier column for the master
or slave interface. To begin creating a secure system, you must first add masters and
slaves to your system, and the connections between them. After you establish
connections between the masters and slaves, you can then set the security options, as
needed

An example of when you may need to specify compile-time security support is when
an Avalon master needs to communicate with a secure AXI slave, and you can specify
whether the connection point is secure or non-secure. You can specify a compile-time
secure address ranges for a memory slave if an interface-level security setting is not
sufficient.

Related Links

• Platform Designer Interconnect on page 659

• Platform Designer System Design Components on page 914

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
373

9.11.1 Configure Platform Designer Security Settings Between Interfaces

The AXI AxPROT signal specifies a transaction as secure or non-secure at runtime
when a master sends a transaction. Platform Designer identifies AXI master interfaces
as TrustZone-aware. You can configure AXI slaves as TrustZone-aware, secure, non-
secure, or secure ranges.

Table 100. Compile-Time Security Options
For non-TrustZone-aware components, compile-time security support options are available in Platform Designer
on the System Contents tab, or on the Interconnect Requirements tab.

Compile-Time Security Options Description

Non-secure Master sends only non-secure transactions, and the slave receives any
transaction, secure or non-secure.

Secure Master sends only secure transactions, and the slave receives only secure
transactions.

Secure ranges Applies to only the slave interface. The specified address ranges within the
slave's address span are secure, all other address ranges are not. The
format is a comma-separated list of inclusive-low and inclusive-high
addresses, for example, 0x0:0xfff,0x2000:0x20ff.

After setting compile-time security options for non-TrustZone-aware master and slave
interfaces, you must identify those masters that require a default slave before
generation. To designate a slave interface as the default slave, turn on Default Slave
in the System Contents tab. A master can have only one default slave.

Note: The Security and Default Slave columns in the System Contents tab are hidden by
default. Right-click the System Contents header to select which columns you want to
display.

The following are descriptions of security support for master and slave interfaces.
These description can guide you in your design decisions when you want to create
secure systems that have mixed secure and non-TrustZone-aware components:

• All AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite masters are TrustZone-aware.

• You can set AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite slaves as TrustZone-aware,
secure, non-secure, or secure range ranges.

• You can set non-AXI master interfaces as secure or non-secure.

• You can set non-AXI slave interfaces as secure, non-secure, or secure address
ranges.

9.11.2 Specify a Default Slave in a Platform Designer System

If a master issues "per-access" or "not allowed" transactions, your design must
contain a default slave. Per-access refers to the ability of a TrustZone-aware master to
allow or disallow access or transactions. A transaction that violates security is rerouted
to the default slave and subsequently responds to the master with an error. You can
designate any slave as the default slave.

You can share a default slave between multiple masters. You should have one default
slave for each interconnect domain. An interconnect domain is a group of connected
memory-mapped masters and slaves that share the same interconnect. The
altera_error_response_slave component includes the required TrustZone
features.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
374

You can achieve an optimized secure system by partitioning your design and carefully
designating secure or non-secure address maps to maintain reliable data. Avoid a
design where, under the same hierarchy, a non-secure master initiates transactions to
a secure slave resulting in unsuccessful transfers.

Table 101. Secure and Non-Secure Access Between Master, Slave, and Memory
Components

Transaction Type TrustZone-aware
Master

Non-TrustZone-aware
Master
Secure

Non-TrustZone-aware
Master

Non-Secure

TrustZone-aware slave/memory OK OK OK

Non-TrustZone-aware slave (secure) Per-access OK Not allowed

Non-TrustZone-aware slave (non-
secure)

OK OK OK

Non-TrustZone-aware memory
(secure region)

Per-access OK Not allowed

Non-TrustZone-aware memory (non-
secure region)

OK OK OK

Related Links

• Error Response Slave on page 937

• Designating a Default Slave in the System Contents Tab on page 942

9.11.3 Access Undefined Memory Regions

When a transaction from a master targets a memory region that is not specified in the
slave memory map, it is known as an access to an undefined memory region. To
ensure predictable response behavior when this occurs, you must add a default slave
to your design. Platform Designer then routes undefined memory region accesses to
the default slave, which terminates the transaction with an error response.

You can designate any memory-mapped slave as a default slave. Intel recommends
that you have only one default slave for each interconnect domain in your system.
Accessing undefined memory regions can occur in the following cases:

• When there are gaps within the accessible memory map region that are within the
addressable range of slaves, but are not mapped.

• Accesses by a master to a region that does not belong to any slaves that is
mapped to the master.

• When a non-secured transaction is accessing a secured slave. This applies to only
slaves that are secured at compilation time.

• When a read-only slave is accessed with a write command, or a write-only slave is
accessed with a read command.

To designate a slave as the default slave, for the selected component, turn on Default
Slave in the Systems Content tab.

Note: If you do not specify the default slave, Platform Designer automatically assigns the
slave at the lowest address within the memory map for the master that issues the
request as the default slave.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
375

9.12 Integrating a Platform Designer System with a Intel Quartus
Prime Project

The Intel Quartus Prime software tightly links with Platform Designer system creation.
Platform Designer requires you to specify a Intel Quartus Prime project at time of
system creation. The Intel Quartus Prime software automatically adds all .qsys and
all .ip files for the associated Platform Designer system to your Intel Quartus Prime
project. When you open your Intel Quartus Prime project, the project automatically
lists all the files related to the Platform Designer system.

Figure 182. Platform Designer System Files in Intel Quartus Prime Project

9.13 Manage IP Settings in the Intel Quartus Prime Software

To specify the following IP Settings in the Intel Quartus Prime software, click Tools ➤
Option ➤ IP Settings:

Table 102. IP Settings

Setting Description

Maximum Platform Designer memory usage Allows you to increase memory usage for Platform Designer
if you experience slow processing for large systems, or if
Platform Designer reports an Out of Memory error.

IP generation HDL preference The Intel Quartus Prime software uses this setting when
the .qsys file appears in the Files list for the current
project in the Settings dialog box and you run Analysis &
Synthesis. Platform Designer uses this setting when you
generate HDL files.

Automatically add Intel Quartus Prime IP files to all
projects

The Intel Quartus Prime software uses this setting when you
create an IP core file variation with options in the Intel
Quartus Prime IP Catalog and parameter editor. When
turned on, the Intel Quartus Prime software adds the IP
variation files to the project currently open.

IP Catalog Search Locations The Intel Quartus Prime software uses the settings that you
specify for global and project search paths under IP Search
Locations, to populate the Intel Quartus Prime software IP
Catalog.
Platform Designer uses the settings that you specify for
global search paths under IP Search Locations to
populate the Platform Designer IP Catalog, which appears in
Platform Designer (Tools ➤ Options). Platform Designer
uses the project search path settings to populate the
Platform Designer IP Catalog when you open Platform
Designer from within the Intel Quartus Prime software
(Tools ➤ Platform Designer), but not when you open
Platform Designer from the command-line.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
376

Note: You can also access IP Settings by clicking Assignments ➤ Settings ➤ IP
Settings. This access is available only when you have a Intel Quartus Prime project
open. This allows you access to IP Settings when you want to create IP cores
independent of a Intel Quartus Prime project. Settings that you apply or create in
either location are shared.

9.13.1 Opening Platform Designer with Additional Memory

If your Platform Designer system requires more than the 512 megabytes of default
memory, you can increase the amount of memory either in the Intel Quartus Prime
software Options dialog box, or at the command-line.

• When you open Platform Designer from within the Intel Quartus Prime software,
you can increase memory for your Platform Designer system, by clicking Tools ➤
Options ➤ IP Settings, and then selecting the appropriate amount of memory
with the Maximum Platform Designer memory usage option.

• When you open Platform Designer from the command-line, you can add an option
to increase the memory. For example, the following qsys-edit command allows
you to open Platform Designer with 1 gigabytes of memory.

qsys-edit --jvm-max-heap-size=1g

9.14 Generate a Platform Designer System

In Platform Designer, you can choose options for generation of synthesis, simulation
and testbench files for your Platform Designer system.

Platform Designer system generation creates the interconnect between IP components
and generates synthesis and simulation HDL files. You can generate a testbench
system that adds Bus Functional Models (BFMs) that interact with your system in a
simulator.

When you make changes to a system, Platform Designer gives you the option to exit
without generating. If you choose to generate your system before you exit, the
Generation dialog box opens and allows you to select generation options.

The Generate HDL button in the lower-right of the Platform Designer window allows
you to quickly generate synthesis and simulation files for your system.

Note: If you cannot find the memory interface generated by Platform Designer when you use
EMIF (External Memory Interface Debug Toolkit), verify that the .sopcinfo file
appears in your Platform Designer project folder.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
377

Figure 183. Generating IP-XACT file for the system

 Generate IP-XACT file
 and add it
 to IP Catalog

Related Links

• Avalon Verification IP Suite User Guide

• Mentor Verification IP (VIP) Altera Edition (AE)

• External Memory Interface Debug Toolkit

9.14.1 Set the Generation ID

The Generation Id parameter is a unique integer value that is set to a timestamp
during Platform Designer system generation. System tools, such as Nios II or HPS
(Hard Processor System) use the Generation ID to ensure software-build
compatibility with your Platform Designer system.

To set the Generation Id parameter, select the top-level system in the Hierarchy
tab, and then locating the parameter in the open Parameters tab.

9.14.2 Generate Files for Synthesis and Simulation

Platform Designer generates files for synthesis in Intel Quartus Prime software and
simulation in a third-party simulator.

In Platform Designer, you can generate simulation HDL files (Generate ➤ Generate
HDL), which can include simulation-only features targeted towards your simulator. You
can generate simulation files as Verilog or VHDL.

Note: For a list of Intel-supported simulators, refer to Simulating Intel Designs.

Platform Designer supports standard and legacy device generation. Standard device
generation refers to generating files for the Intel Arria 10 and later device families.
Legacy device generation refers to generating files for device families prior to the
release of the Intel Arria 10 device family, including MAX 10 devices.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
378

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/ug/mentor_vip_ae_usr.pdf
https://www.altera.com/documentation/hco1416493470528.html#hco1416492284855

The Output Directory option applies to both synthesis and simulation generation. By
default, the path of the generation output directory is fixed relative to the .qsys file.
You can change the default directory in the Generation dialog box for legacy devices.
For standard devices, the generation directory is fixed to the Platform Designer project
directory.

Note: If you need to change top-level I/O pin or instance names, create a top-level HDL file
that instantiates the Platform Designer system. The Platform Designer-generated
output is then instantiated in your design without changes to the Platform Designer-
generated output files.

The following options in the Generation dialog box (Generate ➤ Generate HDL)
allow you to generate synthesis and simulation files:

Table 103. Generation Dialog Box Options

Option Description

Create HDL design files for synthesis Generates Verilog HDL or VHDL design files for the system's
top-level definition and child instances for the selected
target language. Synthesis file generation is optional.

Create timing and resource estimates for third-party
EDA synthesis tools

Generates a non-functional Verilog Design File (.v) for use
by some third-party EDA synthesis tools. Estimates timing
and resource usage for your IP component. The generated
netlist file name is <your_ip_component_name>_syn.v.

Create Block Symbol File (.bsf) Allows you to optionally create a (.bsf) file to use in a
schematic Block Diagram File (.bdf).

IP-XACT Generates an IP-XACT file for the system, and adds the file
to the IP Catalog.

Create simulation model Allows you to optionally generate Verilog HDL or VHDL
simulation model files, and simulation scripts.

Clear output directories for selected generation
targets

Clears previous generation attempts for current synthesis or
simulation.

Note: ModelSim - Intel FPGA Edition now supports native mixed-language (VHDL/Verilog/
SystemVerilog) simulation. Therefore, Intel simulation libraries may not be compatible
with single language simulators. If you have a VHDL-only license, some versions of
Mentor simulators may not be able to simulate IP written in Verilog. As a workaround,
you can use ModelSim - Intel FPGA Edition, or purchase a mixed language simulation
license from Mentor.

Related Links

Simulating Intel Designs

9.14.2.1 Files Generated for Intel FPGA IP Cores and Platform Designer Systems

The Intel Quartus Prime Pro Edition software generates the following output file
structure for IP cores and Platform Designer systems. The Intel Quartus Prime Pro
Edition Platform Designer software automatically adds the generated .ip and .qsys
files to your Intel Quartus Prime project.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
379

https://www.altera.com/documentation/mwh1410385117325.html#mwh1410383407761

Figure 184. Files generated for IP cores and Platform Designer Systems

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

<your_ip>.debuginfo - Post-generation debug data

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.html - Memory map data

<your_ip>.cmp - VHDL component declaration

<your_ip>.sip - NativeLink simulation integration file

<your_ip>.spd - Combines individual simulation startup scripts

<your_system>.qsys - System File
<your_subsystem>.qsys - Subsystem File

<your_system_directory>

<your_subsystem_directory>

<your_ip>.ipxact - IP XACT File

sim - IP simulation files

<simulator vendor> - Simulator setup scripts

<your_ip>.v or vhd - Top-level simulation file

synth - IP synthesis files

<your_ip>.v or .vhd - Top-level IP synthesis file

ip - IP files

<your_system> - - Your system directory

 <your_system>.ip - Parameter file for system IP component

<your_subsystem> - Your Subsystem directory

 <your_subsystem>.ip - Parameter file for subsystem IP component

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>.qgsimc - Simulation caching file

<your_ip>.qgsynthc - Synthesis caching file

Table 104. IP Core and Platform Designer Simulation Files

File Name Description

<my_system>.qsys The Platform Designer system.

<my_subsystem>.qsys The Platform Designer subsystem.

ip/ Contains the parameter files for the IP components in the system and
subsystem(s).

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
380

File Name Description

<my_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you can use in VHDL design files.

<my_ip>_generation.rpt IP or Platform Designer generation log file. A summary of the messages during
IP generation.

<my_ip>.qgsimc Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<my_ip>.qgsynth Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<my_ip>.qip Contains all the required information about the IP component to integrate and
compile the IP component in the Intel Quartus Prime software.

<my_ip>.csv Contains information about the upgrade status of the IP component.

.bsf A Block Symbol File (.bsf) representation of the IP variation for use in Block
Diagram Files (<my_ip>.bdf).

<my_ip<>.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files generated for
simulation, along with information about memories that you can initialize.

<my_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components created for use with the Pin Planner.

<my_ip>_bb.v Use the Verilog black box (_bb.v) file as an empty module declaration for use
as a black box.

<my_ip>.sip Contains information required for NativeLink simulation of IP components. Add
the .sip file to your Intel Quartus Prime Standard Edition project to enable
NativeLink for supported devices. The Intel Quartus Prime Pro Edition software
does not support NativeLink simulation.

<my_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<my_ip>.regmap If the IP contains register information, the Intel Quartus Prime software
generates the .regmap file. The .regmap file describes the register map
information of master and slave interfaces. This file complements
the .sopcinfo file by providing more detailed register information about the
system. This file enables register display views and user customizable statistics
in System Console.

<my_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Platform Designer system.
During synthesis, the Intel Quartus Prime software stores the .svd files for
slave interface visible to the System Console masters in the .sof file in the
debug session. System Console reads this section, which Platform Designer can
query for register map information. For system slaves, Platform Designer can
access the registers by name.

<my_ip>.v <my_ip>.vhd HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a simulation.

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS simulation.
Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to
set up and run a VCS MX® simulation.

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
381

File Name Description

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ For each generated IP submodule directory, Platform Designer generates /
synth and /sim sub-directories.

9.14.3 Generate Files for a Testbench Platform Designer System

Platform Designer testbench is a new system that instantiates the current Platform
Designer system by adding BFMs to drive the top-level interfaces. BFMs interact with
the system in the simulator. You can use options in the Generation dialog box
(Generate ➤ Generate Testbench System) to generate a testbench Platform
Designer system.

You can generate a standard or simple testbench system with BFM or Mentor
Verification IP (for AMBA 3 AXI or AMBA 3 AXI) IP components that drive the external
interfaces of your system. Platform Designer generates a Verilog HDL or VHDL
simulation model for the testbench system to use in your simulation tool. You should
first generate a testbench system, and then modify the testbench system in Platform
Designer before generating its simulation model. In most cases, you should select only
one of the simulation model options.

By default, the path of the generation output directory is fixed relative to the .qsys
file. You can change the default directory in the Generation dialog box for legacy
devices. For standard devices, the generation directory is fixed to the Platform
Designer project directory.

The following options are available for generating a Platform Designer testbench
system:

Option Description

Create testbench Platform Designer
system

• Standard, BFMs for standard Platform Designer Interconnect
—Creates a testbench Platform Designer system with BFM IP
components attached to exported Avalon and AMBA 3 AXI or AMBA 3
AXI interfaces. Includes any simulation partner modules specified by
IP components in the system. The testbench generator supports AXI
interfaces and can connect AMBA 3 AXI or AMBA 3 AXI interfaces to
Mentor Graphics AMBA 3 AXI or AMBA 3 AXI master/slave BFMs.
However, BFMs support address widths only up to 32-bits.

• Simple, BFMs for clocks and resets—Creates a testbench Platform
Designer system with BFM IP components driving only clock and
reset interfaces. Includes any simulation partner modules specified
by IP components in the system.

Create testbench simulation model Creates Verilog HDL or VHDL simulation model files and simulation
scripts for the testbench Platform Designer system currently open in
your workspace. Use this option if you do not need to modify the
Platform Designer-generated testbench before running the simulation.

Note: ModelSim - Intel FPGA Edition now supports native mixed-language (VHDL/Verilog/
SystemVerilog) simulation. Therefore, Intel simulation libraries may not be compatible
with single language simulators. If you have a VHDL-only license, some versions of
Mentor simulators may not be able to simulate IP written in Verilog. As a workaround,
you can use ModelSim - Intel FPGA Edition, or purchase a mixed language simulation
license from Mentor.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
382

9.14.3.1 Files Generated for Platform Designer Testbench

Table 105. Platform Designer-Generated Testbench Files

File Name or Directory Name Description

<system>_tb.qsys The Platform Designer testbench system.

<system>_tb.v

or
<system>_tb.vhd

The top-level testbench file that connects BFMs to the top-level interfaces of
<system>_tb.qsys.

<system>_tb.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files generated for
simulation and information about memory that you can initialize.

<system>.html

and
<system>_tb.html

A system report that contains connection information, a memory map showing
the address of each slave with respect to each master to which it is connected,
and parameter assignments.

<system>_generation.rpt Platform Designer generation log file. A summary of the messages that Platform
Designer issues during testbench system generation.

<system>.ipx The IP Index File (.ipx) lists the available IP components, or a reference to
other directories to search for IP components.

<system>.svd Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Platform Designer system.
Similarly, during synthesis the .svd files for slave interfaces visible to System
Console masters are stored in the .sof file in the debug section. System Console
reads this section, which Platform Designer can query for register map
information. For system slaves, Platform Designer can access the registers by
name.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a simulation

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS simulation.
Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to set
up and run a VCS MX simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and run
an NCSIM simulation.

/submodules Contains HDL files for the submodule of the Platform Designer testbench system.

<child IP cores>/ For each generated child IP core directory, Platform Designer testbench
generates /synth and /sim subdirectories.

9.14.3.2 Platform Designer Testbench Simulation Output Directories

The /sim and /simulation directories contain the Platform Designer-generated
output files to simulate your Platform Designer testbench system.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
383

Figure 185. Platform Designer Simulation Testbench Directory Structure

<system>.qsys

<system>.sopcinfo

<system>_tb

 <system>.html

 <system>.ipx

 <system>.regmap

 <system>_generation.rpt

 <system>_tb.html

 <system>_tb.qsys

 <system>_tb

 <system>_tb.csv

 <system>_tb.spd

 sim

 <HDL files>

 aldec

 cadence

 mentor

 synopsys

 <Child IP core>

 sim

 <HDL files>

Output Directory Structure

9.14.3.3 Generate and Modify a Platform Designer Testbench System

You can use the following steps to create a Platform Designer testbench system of
your Platform Designer system.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
384

1. Create a Platform Designer system.

2. Generate a testbench system in the Platform Designer Generation dialog box
(Generate ➤ Generate Testbench System).

3. Open the testbench system in Platform Designer. Make changes to the BFMs, as
needed, such as changing the instance names and VHDL ID value. For example,
you can modify the VHDL ID value in the Altera Avalon Interrupt Source IP
component.

4. If you modify a BFM, regenerate the simulation model for the testbench system.

5. Create a custom test program for the BFMs.

6. Compile and load the Platform Designer system and testbench into your simulator,
and then run the simulation.

9.14.4 Platform Designer Simulation Scripts

Platform Designer generates simulation scripts to set up the simulation environment
for Mentor Graphics Modelsim and Questasim, Synopsys VCS and VCS MX, Cadence
Incisive Enterprise Simulator® (NCSIM), and the Aldec Riviera-PRO Simulator.

Platform Designer generates simulation scripts for all .ip and .qsys files of a system
and places the files in the simulation script output folder (<top-level system
name>/sim/<simulator name>).

Platform Designer always generates the simulation scripts from the currently loaded
system down. You can open a subsystem and choose to generate a simulation script
just for that subsystem.

You can use scripts to compile the required device libraries and system design files in
the correct order and elaborate or load the top-level system for simulation.

Table 106. Simulation Script Variables
The simulation scripts provide variables that allow flexibility in your simulation environment.

Variable Description

TOP_LEVEL_NAME If the testbench Platform Designer system is not the top-level instance in your simulation
environment because you instantiate the Platform Designer testbench within your own top-
level simulation file, set the TOP_LEVEL_NAME variable to the top-level hierarchy name.

QSYS_SIMDIR If the simulation files generated by Platform Designer are not in the simulation working
directory, use the QSYS_SIMDIR variable to specify the directory location of the Platform
Designer simulation files.

QUARTUS_INSTALL_DIR Points to the Quartus installation directory that contains the device family library.

Example 78. Top-Level Simulation HDL File for a Testbench System

The example below shows the pattern_generator_tb generated for a Platform
Designer system called pattern_generator. The top.sv file defines the top-level
module that instantiates the pattern_generator_tb simulation model, as well as a
custom SystemVerilog test program with BFM transactions, called test_program.

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
385

Note: The VHDL version of the Altera Tristate Conduit BFM is not supported in Synopsys
VCS, NCSim, and Riviera-PRO in the Intel Quartus Prime software version 14.0. These
simulators do not support the VHDL protected type, which is used to implement the
BFM. For a workaround, use a simulator that supports the VHDL protected type.

Note: ModelSim - Intel FPGA Edition now supports native mixed-language (VHDL/Verilog/
SystemVerilog) simulation. Therefore, Intel simulation libraries may not be compatible
with single language simulators. If you have a VHDL-only license, some versions of
Mentor simulators may not be able to simulate IP written in Verilog. As a workaround,
you can use ModelSim - Intel FPGA Edition, or purchase a mixed language simulation
license from Mentor.

Related Links

Incorporating IP Simulation Scripts in Top-Level Scripts

9.14.4.1 Generating a Combined Simulator Setup Script

Run the Generate Simulator Setup Script for IP command to generate a combined
simulator setup script.

Source this combined script from a top-level simulation script. Click Tools ➤
Generate Simulator Setup Script for IP (or use of the ip-setup-simulation
utility at the command-line) to generate or update the combined scripts, after any of
the following occur:

• IP core initial generation or regeneration with new parameters

• Intel Quartus Prime software version upgrade

• IP core version upgrade

To generate a combined simulator setup script for all project IP cores for each
simulator:

1. Generate, regenerate, or upgrade one or more IP core. Refer to Generating IP
Cores or Upgrading IP Cores.

2. Click Tools ➤ Generate Simulator Setup Script for IP (or run the ip-setup-
simulation utility). Specify the Output Directory and library compilation
options. Click OK to generate the file. By default, the files generate into the /
<project directory>/<simulator>/ directory using relative paths.

3. To incorporate the generated simulator setup script into your top-level simulation
script, refer to the template section in the generated simulator setup script as a
guide to creating a top-level script:

a. Copy the specified template sections from the simulator-specific generated
scripts and paste them into a new top-level file.

b. Remove the comments at the beginning of each line from the copied template
sections.

c. Specify the customizations you require to match your design simulation
requirements, for example:

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
386

https://www.altera.com/documentation/jbr1437426657605.html#jbr1441153598434

• Specify the TOP_LEVEL_NAME variable to the design’s simulation top-level
file. The top-level entity of your simulation is often a testbench that
instantiates your design. Then, your design instantiates IP cores or
Platform Designer systems. Set the value of TOP_LEVEL_NAME to the top-
level entity.

• If necessary, set the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files.

• Compile the top-level HDL file (for example, a test program) and all other
files in the design.

• Specify any other changes, such as using the grep command-line utility to
search a transcript file for error signatures, or e-mail a report.

4. Re-run Tools ➤ Generate Simulator Setup Script for IP (or ip-setup-
simulation) after regeneration of an IP variation.

Table 107. Simulation Script Utilities

Utility Syntax

ip-setup-simulation generates a
combined, version-independent simulation
script for all Intel FPGA IP cores in your project.
The command also automates regeneration of
the script after upgrading software or IP
versions. Use the compile-to-work option to
compile all simulation files into a single work
library if your simulation environment requires.
Use the --use-relative-paths option to
use relative paths whenever possible.

ip-setup-simulation
 --quartus-project=<my proj>
 --output-directory=<my_dir>
 --use-relative-paths
 --compile-to-work

--use-relative-paths and --compile-to-work are optional. For
command-line help listing all options for these executables, type:
<utility name> --help.

ip-make-simscript generates a combined
simulation script for all IP cores that you
specify on the command line. Specify one or
more .spd files and an output directory in the
command. Running the script compiles IP
simulation models into various simulation
libraries.

ip-make-simscript
 --spd=<ipA.spd,ipB.spd>
 --output-directory=<directory>

The following sections provide step-by-step instructions for sourcing each simulator
setup script in your top-level simulation script.

9.14.5 Simulating Software Running on a Nios II Processor

To simulate the software in a system driven by a Nios II processor, generate the
simulation model for the Platform Designer testbench system with the following steps:

1. In the Generation dialog box (Generate ➤ Generate Testbench System),
select Simple, BFMs for clocks and resets.

2. For the Create testbench simulation model option select Verilog or VHDL.

3. Click Generate.

4. Open the Nios II Software Build Tools for Eclipse.

5. Set up an application project and board support package (BSP) for the
<system>.sopcinfo file.

6. To simulate, right-click the application project in Eclipse, and then click Run as ➤
Nios II ModelSim.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
387

Sets up the ModelSim simulation environment, and compiles and loads the Nios II
software simulation.

7. To run the simulation in ModelSim, type run -all in the ModelSim transcript
window.

8. Set the ModelSim settings and select the Platform Designer Testbench Simulation
Package Descriptor (.spd) file, < system >_tb.spd. The .spd file is generated
with the testbench simulation model for Nios II designs and specifies the files
required for Nios II simulation.

Related Links

• Getting Started with the Graphical User Interface
In Nios II Gen2 Software Developer's Handbook

• Getting Started from the Command Line
In Nios II Gen2 Software Developer's Handbook

9.14.6 Add Assertion Monitors for Simulation

You can add monitors to Avalon-MM, AXI, and Avalon-ST interfaces in your system to
verify protocol and test coverage with a simulator that supports SystemVerilog
assertions.

Note: ModelSim - Intel FPGA Edition does not support SystemVerilog assertions. If you want
to use assertion monitors, you must use a supported third-party simulators such as
Mentor Questasim, Synopsys VCS, or Cadence Incisive. For more information, refer to
Introduction to Intel FPGA IP Cores.

Figure 186. Inserting an Avalon-MM Monitor Between an Avalon-MM Master and Slave
Interface
This example demonstrates the use of a monitor with an Avalon-MM monitor between the pcie_compiler
bar1_0_Prefetchable Avalon-MM master interface, and the dma_0 control_port_slave Avalon-MM
slave interface.

Similarly, you can insert an Avalon-ST monitor between Avalon-ST source and sink
interfaces.

Related Links

Introduction to Intel FPGA IP Cores

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
388

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946583818
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946650595
http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf

9.14.7 CMSIS Support for the HPS IP Component

Platform Designer systems that contain an HPS IP component generate a System View
Description (.svd) file that lists peripherals connected to the ARM processor.

The .svd (or CMSIS-SVD) file format is an XML schema specified as part of the Cortex
Microcontroller Software Interface Standard (CMSIS) provided by ARM. The .svd file
allows HPS system debug tools (such as the DS-5 Debugger) to view the register
maps of peripherals connected to HPS in a Platform Designer system.

Related Links

• Component Interface Tcl Reference on page 791

• CMSIS - Cortex Microcontroller Software

9.14.8 Generate Header Files

You can use the sopc-create-header-files command from the Nios II command
shell to create header files for any master component in your Platform Designer
system. The Nios II tool chain uses this command to create the processor's system.h
file. You can also use this command to generate system level information for a hard
processing system (HPS) in Intel's SoC devices or other external processors. The
header file includes address map information for each slave, relative to each master
that accesses the slave. Different masters may have different address maps to access
a particular slave component. By default, the header files are in C format and have
a .h suffix. You can select other formats with appropriate command-line options.

Table 108. sopc-create-header-files Command-Line Options

Option Description

<sopc> Path to Platform Designer .sopcinfo file, or the file directory. If you omit
this option, the path defaults to the current directory. If you specify a
directory path, you must make sure that there is a .sopcinfo file in the
directory.

--separate-masters Does not combine a module's masters that are in the same address space.

--output-dir[=<dirname>] Allows you to specify multiple header files in dirname. The default output
directory is '.'

--single[=<filename>] Allows you to create a single header file, filename.

--single-prefix[=<prefix>] Prefixes macros from a selected single master.

--module[=<moduleName>] Specifies the module name when creating a single header file.

--master[=<masterName>] Specifies the master name when creating a single header file.

--format[=<type>] Specifies the header file format. Default file format is .h.

--silent Does not display normal messages.

--help Displays help for sopc-create-header-files.

By default, the sopc-create-header-files command creates multiple header
files. There is one header file for the entire system, and one header file for each
master group in each module. A master group is a set of masters in a module in the
same address space. In general, a module may have multiple master groups.
Addresses and available devices are a function of the master group.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
389

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

Alternatively, you can use the --single option to create one header file for one
master group. If there is one CPU module in the Platform Designer system with one
master group, the command generates a header file for that CPU's master group. If
there are no CPU modules, but there is one module with one master group, the
command generates the header file for that module's master group.

You can use the --module and --master options to override these defaults. If your
module has multiple master groups, use the --master option to specify the name of
a master in the desired master group.

Table 109. Supported Header File Formats

Type Suffix Uses Example

h .h C/C++ header files #define FOO 12

m4 .m4 Macro files for m4 m4_define("FOO", 12)

sh .sh Shell scripts FOO=12

mk .mk Makefiles FOO := 12

pm .pm Perl scripts $macros{FOO} = 12;

Note: You can use the sopc-create-header-files command when you want to generate
C macro files for DMAs that have access to memory that the Nios II does not have
access to.

9.14.9 Incrementally Generate the System

You can modify the parameters of an IP component and regenerate the RTL for just
that particular IP component.

The example below demonstrates the incremental generation flow of a Platform
Designer System:

1. In Platform Designer, click File ➤ New System. The Create New System dialog
box appears, from which you create your new Platform Designer system and
associate your system with a specific Intel Quartus Prime project.

2. In the IP Catalog search box, locate the On-Chip Memory (RAM or ROM) and
double-click to add the component to your system.

3. Similarly, locate the Reset Bridge and Clock Bridge components and double-
click to add the components to your system.

4. Make the necessary system connections between the IP components added to the
system.

Note: For more information about connecting IP components, refer to Connecting
IP Components.

5. To save and close the system without generating, click File ➤ Save.

6. In the Intel Quartus Prime software, click File ➤ Open Project.

7. Select the Intel Quartus Prime project associated with your saved Platform
Designer system. The Intel Quartus Prime software opens the project and the
associated Platform Designer system.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
390

8. To start the compilation of the Intel Quartus Prime project, click Processing ➤
Start Compilation.

9. To open the Status window, click View ➤ Status. From this window, track the
time for Full Compilation, as well as IP components Generation.

10. Once the compilation finishes, in Platform Designer, click File ➤ Open.

11. Select the .ip file for any one of the IP components in your saved system.

12. Modify some parameter in this .ip file.

Note: Make sure your modifications do not affect the parent system, requiring a
system update by running Validate System Integrity from within the
Platform Designer system after loading the parent system, or by running
qsys-validate from the command-line.

13. To save the IP file, click File ➤ Save.

14. To restart the compilation of the same Intel Quartus Prime project with modified
Platform Designer system, click Processing ➤ Start Compilation in the Intel
Quartus Prime software. Platform Designer generates the RTL only for the
modified IP component, skipping the generation of the other components in the
system.

Figure 187. Incremental Generation of Platform Designer System

Full system generation time = 45 secs

Full system generation time after
making parameter changes to an
 IP component = 12 secs

Related Links

Connect IP Components in Your Platform Designer System on page 339

9.15 Explore and Manage Platform Designer Interconnect

The System with Platform Designer Interconnect window allows you to see the
contents of the Platform Designer interconnect before you generate your system. In
this display of your system, you can review a graphical representation of the
generated interconnect. Platform Designer converts connections between interfaces to
interconnect logic during system generation.

You access the System with Platform Designer Interconnect window by clicking Show
System With Platform Designer Interconnect command on the System menu.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
391

The System with Platform Designer Interconnect window has the following tabs:

• System Contents—Displays the original instances in your system, as well as the
inserted interconnect instances. Connections between interfaces are replaced by
connections to interconnect where applicable.

• Hierarchy—Displays a system hierarchical navigator, expanding the system
contents to show modules, interfaces, signals, contents of subsystems, and
connections.

• Parameters—Displays the parameters for the selected element in the Hierarchy
tab.

• Memory-Mapped Interconnect—Allows you to select a memory-mapped
interconnect module and view its internal command and response networks. You
can also insert pipeline stages to achieve timing closure.

The System Contents, Hierarchy, and Parameters tabs are read-only. Edits that
you apply on the Memory-Mapped Interconnect tab are automatically reflected on
the Interconnect Requirements tab.

The Memory-Mapped Interconnect tab in the System with Platform Designer
Interconnect window displays a graphical representation of command and response
datapaths in your system. Datapaths allow you precise control over pipelining in the
interconnect. Platform Designer displays separate figures for the command and
response datapaths. You can access the datapaths by clicking their respective tabs in
the Memory-Mapped Interconnect tab.

Each node element in a figure represents either a master or slave that communicates
over the interconnect, or an interconnect sub-module. Each edge is an abstraction of
connectivity between elements, and its direction represents the flow of the commands
or responses.

Click Highlight Mode (Path, Successors, Predecessors) to identify edges and
datapaths between modules. Turn on Show Pipelinable Locations to add greyed-out
registers on edges where pipelining is allowed in the interconnect.

Note: You must select more than one module to highlight a path.

9.15.1 Manually Controlling Pipelining in the Platform Designer
Interconnect

The Memory-Mapped Interconnect tab allows you to manipulate pipeline
connections in the Platform Designer interconnect. Access the Memory-Mapped
Interconnect tab by clicking System ➤ Show System With Platform Designer
Interconnect

Note: To increase interconnect frequency, you should first try increasing the value of the
Limit interconnect pipeline stages to option on the Interconnect Requirements
tab. You should only consider manually pipelining the interconnect if changes to this
option do not improve frequency, and you have tried all other options to achieve
timing closure, including the use of a bridge. Manually pipelining the interconnect
should only be applied to complete systems.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
392

1. In the Interconnect Requirements tab, first try increasing the value of the
Limit interconnect pipeline stages to option until it no longer gives significant
improvements in frequency, or until it causes unacceptable effects on other parts
of the system.

2. In the Intel Quartus Prime software, compile your design and run timing analysis.

3. Using the timing report, identify the critical path through the interconnect and
determine the approximate mid-point. The following is an example of a timing
report:

2.800 0.000 cpu_instruction_master|out_shifter[63]|q
3.004 0.204 mm_domain_0|addr_router_001|Equal5~0|datac
3.246 0.242 mm_domain_0|addr_router_001|Equal5~0|combout
3.346 0.100 mm_domain_0|addr_router_001|Equal5~1|dataa
3.685 0.339 mm_domain_0|addr_router_001|Equal5~1|combout
4.153 0.468 mm_domain_0|addr_router_001|src_channel[5]~0|datad
4.373 0.220 mm_domain_0|addr_router_001|src_channel[5]~0|combout

4. In Platform Designer, click System ➤ Show System With Platform Designer
Interconnect.

5. In the Memory-Mapped Interconnect tab, select the interconnect module that
contains the critical path. You can determine the name of the module from the
hierarchical node names in the timing report.

6. Click Show Pipelinable Locations. Platform Designer display all possible pipeline
locations in the interconnect. Right-click the possible pipeline location to insert or
remove a pipeline stage.

7. Locate the possible pipeline location that is closest to the mid-point of the critical
path. The names of the blocks in the memory-mapped interconnect tab
correspond to the module instance names in the timing report.

8. Right-click the location where you want to insert a pipeline, and then click Insert
Pipeline.

9. Regenerate the Platform Designer system, recompile the design, and then rerun
timing analysis. If necessary, repeat the manual pipelining process again until
timing requirements are met.

Manual pipelining has the following limitations:

• If you make changes to your original system's connectivity after manually
pipelining an interconnect, your inserted pipelines may become invalid. Platform
Designer displays warning messages when you generate your system if invalid
pipeline stages are detected. You can remove invalid pipeline stages with the
Remove Stale Pipelines option in the Memory-Mapped Interconnect tab.
Intel recommends that you do not make changes to the system's connectivity
after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Platform
Designer. Manually-inserted pipelines in one version of Platform Designer may not
be valid in a future version.

Related Links

Specify Platform Designer Interconnect Requirements on page 371

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
393

9.16 Implement Performance Monitoring

Use the Platform Designer Instrumentation tab (View ➤ Instrumentation) in to
set up real-time performance monitoring using throughput metrics such as read and
write transfers. The Add debug instrumentation to the Platform Designer
Interconnect option allows you to interact with the Bus Analyzer Toolkit, which you
can access on the Tools menu in the Intel Quartus Prime software.

Platform Designer supports performance monitoring for only Avalon-MM interfaces. In
your Platform Designer system, you can monitor the performance of no less than
three, and no greater than 15 components at one time. The performance monitoring
feature works with Intel Quartus Prime software devices 13.1 and newer.

Note: For more information about the Bus Analyzer Toolkit and the Platform Designer
Instrumentation tab, refer to the Bus Analyzer Toolkit page.

Related Links

Bus Analyzer Toolkit

9.17 Platform Designer 64-Bit Addressing Support

Platform Designer interconnect supports up to 64-bit addressing for all Platform
Designer interfaces and IP components, with a range of: 0x0000 0000 0000 0000
to 0xFFFF FFFF FFFF FFFF, inclusive.

Address parameters appear in the Base and End columns in the System Contents
tab, on the Address Map tab, in the parameter editor, and in validation messages.
Platform Designer displays as many digits as needed in order to display the top-most
set bit, for example, 12 hex digits for a 48-bit address.

A Platform Designer system can have multiple 64-bit masters, with each master
having its own address space. You can share slaves between masters and masters can
map slaves to different addresses. For example, one master can interact with slave 0
at base address 0000_0000_0000, and another master can see the same slave at
base address c000_000_000.

Intel Quartus Prime debugging tools provide access to the state of an addressable
system via the Avalon-MM interconnect. These are also 64-bit compatible, and process
within a 64-bit address space, including a JTAG to Avalon master bridge.

Related Links

Address Span Extender on page 932

9.17.1 Support for Avalon-MM Non-Power of Two Data Widths

Platform Designer requires that you connect all multi-point Avalon-MM connections to
interfaces with data widths that are equal to powers of two.

Platform Designer issues a validation error if an Avalon-MM master or slave interface
on a multi-point connection is parameterized with a non-power of two data width.

Note: Avalon-MM point-to-point connections between an Avalon-MM master and an Avalon-
MM slave are an exception and may set their data widths to a non-power of two.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
394

http://www.alterawiki.com/wiki/Bus_Analyzer_Toolkit

9.18 Platform Designer System Example Designs

Click the Example Design button in the parameter editor to generate an example
design.

If there are multiple example designs for an IP component, then there is a button for
each example in the parameter editor. When you click the Example Design button,
the Select Example Design Directory dialog box appears, where you can select the
directory to save the example design.

The Example Design button does not appear in the parameter editor if there is no
example. For some IP components, you can click Generate ➤ Generate Example
Design to access an example design.

The following Platform Designer system example designs demonstrate various design
features and flows that you can replicate in your Platform Designer system.

Related Links

• Nios II Platform Designer Example Design

• PCI Express Avalon-ST Platform Designer Example Design

• Triple Speed Ethernet Platform Designer Example Design

9.19 Platform Designer Command-Line Utilities

You can perform many of the functions available in the Platform Designer GUI at the
command-line, with Platform Designer command-line utilities.

You run Platform Designer command-line executables from the Intel Quartus Prime
installation directory:

<Intel Quartus Prime installation directory>\quartus\sopc_builder
\bin

For command-line help listing of all the options for any executable, type the following
command:

<Intel Quartus Prime installation directory>\quartus\sopc_builder
\bin\<executable name> --help

Note: You must add $QUARTUS_ROOTDIR/sopc_builder/bin/ to the PATH variable to
access command-line utilities. Once you add this PATH variable, you can launch the
utility from any directory location.

9.19.1 Run the Platform Designer Editor with qsys-edit

You can use the qsys-edit utility to run the Platform Designer editor from
command-line.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
395

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/refdesigns/ip/interface/ref-pciexpress-hp.html
http://www.altera.com/support/examples/nios2/exm-tse-sgdma.html

You can use the following options with the qsys-edit utility:

Table 110. qsys-edit Command-Line Options

Option Usage Description

1st arg file Optional Specifies the name of the .qsys system or .qvar
variation file to edit.

--search-path[=<value>] Optional If you omit this command, Platform Designer uses a
standard default path. If you provide a search path,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example: /extra/dir,$.

--quartus-project[=<value>] Required This option is mandatory if you are associating your
Platform Designer system with an existing Intel Quartus
Prime project. Specifies the name of the Intel Quartus
Prime project file. If you do not provide the revision via
--rev, Platform Designer uses the default revision as
the Intel Quartus Prime project name.

--new-quartus-project[=<value>] Required This option is mandatory if you are associating your
Platform Designer system with a new Intel Quartus Prime
project. Specifies the name and path of the new Intel
Quartus Prime project. Creates a new Intel Quartus
Prime project at the specified path. You can also provide
the revision name.

--rev[=<value>] Optional Specifies the name of the Intel Quartus Prime project
revision.

--family[=<value>] Optional Sets the device family.

--part[=<value>] Optional Sets the device part number. If set, this option overrides
the --family option.

--new-component-type[=<value>] Optional Specifies the instance type for parameterization in a
variation.

--require-generation Optional Marks the loading system as requiring generation.

--debug Optional Enables debugging features and output.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-edit. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for qsys-edit.

9.19.2 Scripting IP Core Generation

Use the qsys-script and qsys-generate utilities to define and generate an IP
core variation outside of the Intel Quartus Prime GUI.

To parameterize and generate an IP core at command-line, follow these steps:

1. Run qsys-script to start a Tcl script that instantiates the IP and sets desired
parameters:

qsys-script --script=<script_file>.tcl

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
396

Table 111. qsys-generate Command-Line Options

Option Usage Description

<1st arg file> Required Specifies the name of the .qsys system file to generate.

--synthesis=<VERILOG|VHDL> Optional Creates synthesis HDL files that Platform Designer uses to
compile the system in an Intel Quartus Prime project.
Specify the generation language for the top-level RTL file
for the Platform Designer system. The default value is
VERILOG.

--block-symbol-file Optional Creates a Block Symbol File (.bsf) for the Platform
Designer system.

--greybox Optional If you are synthesizing your design with a third-party EDA
synthesis tool, generate a netlist for the synthesis tool to
estimate timing and resource usage for this design.

--ipxact Optional If you set this option to true, Platform Designer renders
the post-generation system as an IPXACT-compatible
component description.

--simulation=<VERILOG|VHDL> Optional Creates a simulation model for the Platform Designer
system. The simulation model contains generated HDL files
for the simulator, and may include simulation-only
features. Specify the preferred simulation language. The
default value is VERILOG.

--testbench=<SIMPLE|
STANDARD>

Optional Creates a testbench system that instantiates the original
system, adding bus functional models (BFMs) to drive the
top-level interfaces. When you generate the system, the
BFMs interact with the system in the simulator. The default
value is STANDARD.

--testbench-
simulation=<VERILOG|VHDL>

Optional After you create the testbench system, create a simulation
model for the testbench system. The default value is
VERILOG.

--example-design=<value> Optional Creates example design files. For example,
--example-design or --example-design=all. The
default is All, which generates example designs for all
instances. Alternatively, choose specific filesets based on
instance name and fileset name. For example --example-
design=instance0.example_design1,instance1.ex
ample_design 2. Specify an output directory for the
example design files creation.

--search-path=<value> Optional If you omit this command, Platform Designer uses a
standard default path. If you provide this command,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example, "/extra/dir,$".

--family=<value> Optional Sets the device family name.

--part=<value> Optional Sets the device part number. If set, this option overrides
the --family option.

--upgrade-variation-file Optional If you set this option to true, the file argument for this
command accepts a .v file, which contains a IP variant.
This file parameterizes a corresponding instance in a
Platform Designer system of the same name.

--upgrade-ip-cores Optional Enables upgrading all the IP cores that support upgrade in
the Platform Designer system.

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
397

Option Usage Description

--clear-output-directory Optional Clears the output directory corresponding to the selected
target, that is, simulation or synthesis.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-generate. You specify the value as
<size><unit>, where unit is m (or M) for multiples of
megabytes or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for --qsys-generate.

9.19.3 Display Available IP Components with ip-catalog

The ip-catalog command displays a list of available IP components relative to the
current Intel Quartus Prime project directory, as either text or XML.

You can use the following options with the ip-catalog utility:

Table 112. ip-catalog Command-Line Options

Option Usage Description

--project-dir= <directory> Optional Finds IP components relative to the Intel Quartus Prime project
directory. By default, Platform Designer uses ‘.’ as the current
directory. To exclude a project directory, leave the value empty.

--type Optional Provides a pattern to filter the type of available plug-ins. By
default, Platform Designer shows only IP components. To look
for a partial type string, surround with *, for instance,
connection.

--name=<value> Optional Provides a pattern to filter the names of the IP components
found. To show all IP components, use a * or ‘ ‘. By default,
Platform Designer shows all IP components. The argument is
not case sensitive. To look for a partial name, surround with *,
for instance, *uart*

--verbose Optional Reports the progress of the command.

--xml Optional Generates the output in XML format, in place of colon-
delimited format.

--search-path=<value> Optional If you omit this command, Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, "/
extra/dir,$".

<1st arg value> Optional Specifies the directory or name fragment.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses for
when running ip-catalog. You specify the value as <size
><unit>, where unit is m (or M) for multiples of megabytes
or g (or G) for multiples of gigabytes. The default value is
512m.

--help Optional Displays help for the ip-catalog command.

9.19.4 Create an .ipx File with ip-make-ipx

The ip-make-ipx command creates an .ipx index file. This file provides a convenient
way to include a collection of IP components from an arbitrary directory. You can edit
the .ipx file to disable visibility of one or more IP components in the IP Catalog.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
398

You can use the following options with the ip-make-ipx utility:

Table 113. ip-make-ipx Command-Line Options

Option Usage Description

--source-directory=<directory> Optional Specifies the directory containing your IP components. The
default directory is ‘.’. You can provide a comma-separated
list of directories.

--output=<file> Optional Specifies the name of the index file to generate. The default
name is /component.ipx. Set as --output=<""> to print
the output to the console.

--relative-vars=<value> Optional Causes the output file to include references relative to the
specified variable(s) wherever possible. You can specify
multiple variables as a comma-separated list.

--thorough-descent Optional If you set this option, Platform Designer searches all the
component files, without skipping the sub-directories.

--message-before=<value> Optional Prints a log message at the start of reading an index file.

--message-after=<value> Optional Prints a log message at the end of reading an index file.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses when
running ipr-make-ipx. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for the ip-make-ipx command.

Related Links

Set up the IP Index File (.ipx) to Search for IP Components on page 332

9.19.5 Generate Simulation Scripts

You can use the ip-make-simscript utility to generate simulation scripts for one or
more simulators, given one or more Simulation Package Descriptor file(s).

You can use the following options with the ip-make-simscript utility:

Table 114. ip-make-simscript Command-Line Options

Option Usage Description

--spd[=<file>] Required/Repeatable The SPD files describe the list of files that require
compilation, and memory models hierarchy. This
argument can either be a single path to an SPD file or a
comma-separated list of paths of SPD files. For
instance, --spd=ipcore_1.spd,ipcore_2.spd

--output-
directory[=<directory>]

Optional Specifies the directory path for the location of output
files. If you do not specify a directory, the output
directory defaults to the directory from which --ip-
make-simscript runs.

--compile-to-work Optional Compiles all design files to the default library - work.

--use-relative-paths Optional Uses relative paths whenever possible.

--cache-file[=<file>] Optional Generates cache file for managed flow.

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
399

Option Usage Description

--quiet Optional Quiet reporting mode. Does not report generated files.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses
when running ip-make-simscript. You specify this
value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Displays help for --ip-make-simscript.

9.19.6 Generate a Platform Designer System with qsys-script

You can use the qsys-script utility to create and manipulate a Platform Designer
system with Tcl scripting commands. If you specify a system, Platform Designer loads
that system before executing any of the scripting commands.

Note: You must provide a package version for the qsys-script. If you do not specify the
--package-version=<value> command, you must then provide a Tcl script and
request the system scripting API directly with the package require -exact qsys
< version > command.

Example 79. Platform Designer Command-Line Scripting Example

qsys-script --script=my_script.tcl \
--system-file=fancy.qsys my_script.tcl contains:
package require -exact qsys 16.0
get all instance names in the system and print one by one
set instances [get_instances]
foreach instance $instances {
 send_message Info "$instance"
}

You can use the following options with the qsys-script utility:

Table 115. qsys-script Command-Line Options

Option Usage Description

--system-file=<file> Optional Specifies the path to a .qsys file. Platform Designer loads the
system before running scripting commands.

--script=<file> Optional A file that contains Tcl scripting commands that you can use to
create or manipulate a Platform Designer system. If you specify
both --cmd and --script, Platform Designer runs the --cmd
commands before the script specified by --script.

--cmd=<value> Optional A string that contains Tcl scripting commands that you can use
to create or manipulate a Platform Designer system. If you
specify both --cmd and --script, Platform Designer runs the
--cmd commands before the script specified by --script.

--package-version=<value> Optional Specifies which Tcl API scripting version to use and determines
the functionality and behavior of the Tcl commands. The Intel
Quartus Prime software supports Tcl API scripting commands.
The minimum supported version is 12.0. If you do not specify
the version on the command-line, your script must request the
scripting API directly with the package require -exact
qsys <version > command.

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
400

Option Usage Description

--search-path=<value> Optional If you omit this command, a Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, /<
directory path >/dir,$. Separate multiple directory
references with a comma.

--quartus-project=<value> Optional Specifies the path to a .qpf Intel Quartus Prime project file.
Utilizes the specified Intel Quartus Prime project to add the file
saved using save_system command. If you omit this
command, Platform Designer uses the default revision as the
project name.

--new-quartus-project=<value> Optional Specifies the name of the new Intel Quartus Prime project.
Creates a new Intel Quartus Prime project at the specified path
and adds the file saved using save_system command to the
project. If you omit this command, Platform Designer uses the
Intel Quartus Prime project revision as the new Intel Quartus
Prime project name.

--rev=<value> Optional Allows you to specify the name of the Intel Quartus Prime
project revision.

--jvm-max-heap-size=<value> Optional The maximum memory size that the qsys-script tool uses.
You specify this value as <size><unit>, where unit is m (or M)
for multiples of megabytes, or g (or G) for multiples of
gigabytes.

--help Optional Displays help for the qsys-script utility.

Related Links

Altera Wiki Platform Designer Scripts

9.19.7 Platform Designer Scripting Command Reference

Platform Designer system scripting provides Tcl commands to manipulate your
system. The qsys-script provides a command-line alternative to the Platform
Designer tool. Use the qsys-script commands to create and modify your system,
as well as to create reports about the system.

To use the current version of the Tcl commands, include the following line at the top of
your script:

package require -exact qsys <version>

For example, for the current release of the Intel Quartus Prime software, include:

package require -exact qsys 17.0

The Platform Designer scripting commands fall under the following categories:

System on page 403

Subsystems on page 416

Instances on page 425

Instantiations on page 458

Components on page 497

Connections on page 523

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
401

http://www.alterawiki.com/wiki/Qsys_Scripts

Top-level Exports on page 535

Validation on page 549

Miscellaneous on page 560

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
402

9.19.7.1 System

This section lists the commands that allow you to manipulate your Platform Designer
system.

create_system on page 404

export_hw_tcl on page 405

get_device_families on page 406

get_devices on page 407

get_module_properties on page 408

get_module_property on page 409

get_project_properties on page 410

get_project_property on page 411

load_system on page 412

save_system on page 413

set_module_property on page 414

set_project_property on page 415

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
403

9.19.7.1.1 create_system

Description
Replaces the current system with a new system of the specified name.

Usage
create_system [<name>]

Returns
No return value.

Arguments

name (optional) The new system name.

Example

create_system my_new_system_name

Related Links

• load_system on page 412

• save_system on page 413

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
404

9.19.7.1.2 export_hw_tcl

Description
Allows you to save the currently open system as an _hw.tcl file in the project
directory. The saved systems appears under the System category in the IP Category.

Usage
export_hw_tcl

Returns
No return value.

Arguments
No arguments

Example

export_hw_tcl

Related Links

• load_system on page 412

• save_system on page 413

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
405

9.19.7.1.3 get_device_families

Description
Returns the list of installed device families.

Usage
get_device_families

Returns

String[] The list of device families.

Arguments
No arguments

Example

get_device_families

Related Links

get_devices on page 407

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
406

9.19.7.1.4 get_devices

Description
Returns the list of installed devices for the specified family.

Usage
get_devices <family>

Returns

String[] The list of devices.

Arguments

family Specifies the family name to get the devices for.

Example

get_devices exampleFamily

Related Links

get_device_families on page 406

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
407

9.19.7.1.5 get_module_properties

Description
Returns the properties that you can manage for a top-level module of the Platform
Designer system.

Usage
get_module_properties

Returns
The list of property names.

Arguments
No arguments.

Example

get_module_properties

Related Links

• get_module_property on page 409

• set_module_property on page 414

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
408

9.19.7.1.6 get_module_property

Description
Returns the value of a top-level system property.

Usage
get_module_property <property>

Returns
The property value.

Arguments

property The property name to query. Refer to Module Properties.

Example

get_module_property NAME

Related Links

• get_module_properties on page 408

• set_module_property on page 414

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
409

9.19.7.1.7 get_project_properties

Description
Returns the list of properties that you can query for properties pertaining to the Intel
Quartus Prime project.

Usage
get_project_properties

Returns
The list of project properties.

Arguments
No arguments

Example

get_project_properties

Related Links

• get_project_property on page 411

• set_project_property on page 415

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
410

9.19.7.1.8 get_project_property

Description
Returns the value of a Intel Quartus Prime project property.

Usage
get_project_property <property>

Returns
The property value.

Arguments

property The project property name. Refer to Project properties.

Example

get_project_property DEVICE_FAMILY

Related Links

• get_module_properties on page 408

• get_module_property on page 409

• set_module_property on page 414

• Project Properties on page 588

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
411

9.19.7.1.9 load_system

Description
Loads the Platform Designer system from a file, and uses the system as the current
system for scripting commands.

Usage
load_system <file>

Returns
No return value.

Arguments

file The path to the .qsys file.

Example

load_system example.qsys

Related Links

• create_system on page 404

• save_system on page 413

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
412

9.19.7.1.10 save_system

Description

Saves the current system to the specified file. If you do not specify the file, Platform
Designer saves the system to the same file opened with the load_system command.

Usage
save_system <file>

Returns
No return value.

Arguments

file If available, the path of the .qsys file to save.

Example

save_system

save_system file.qsys

Related Links

• load_system on page 412

• create_system on page 404

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
413

9.19.7.1.11 set_module_property

Description
Specifes the Tcl procedure to evaluate changes in Platform Designer system instance
parameters.

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Module Properties.

value The new value of the property.

Example

set_module_property COMPOSITION_CALLBACK "my_composition_callback"

Related Links

• get_module_properties on page 408

• get_module_property on page 409

• Module Properties on page 582

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
414

9.19.7.1.12 set_project_property

Description
Sets the project property value, such as the device family.

Usage
set_project_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Project Properties.

value The new property value.

Example

set_project_property DEVICE_FAMILY "Cyclone IV GX"

Related Links

• get_project_properties on page 410

• get_project_property on page 411

• Project Properties on page 588

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
415

9.19.7.2 Subsystems

This section lists the commands that allow you to obtain the connection and parameter
information of instances in your Platform Designer subsystem.

get_composed_connections on page 417

get_composed_connection_parameter_value on page 418

get_composed_connection_parameters on page 419

get_composed_instance_assignment on page 420

get_composed_instance_assignments on page 421

get_composed_instance_parameter_value on page 422

get_composed_instance_parameters on page 423

get_composed_instances on page 424

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
416

9.19.7.2.1 get_composed_connections

Description
Returns the list of all connections in the subsystem for an instance that contains the
subsystem of the Platform Designer system.

Usage
get_composed_connections <instance>

Returns
The list of connection names in the subsystem.

Arguments

instance The child instance containing the subsystem.

Example

get_composed_connections subsystem_0

Related Links

• get_composed_connection_parameter_value on page 418

• get_composed_connection_parameters on page 419

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
417

9.19.7.2.2 get_composed_connection_parameter_value

Description
Returns the parameter value of a connection in a child instance containing the
subsystem.

Usage
get_composed_connection_parameter_value <instance> <child_connection>
<parameter>

Returns
The parameter value.

Arguments

instance The child instance that contains the subsystem.

child_connection The connection name in the subsystem.

parameter The parameter name to query for the connection.

Example

get_composed_connection_parameter_value subsystem_0 cpu.data_master/memory.s0
baseAddress

Related Links

• get_composed_connection_parameters on page 419

• get_composed_connections on page 417

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
418

9.19.7.2.3 get_composed_connection_parameters

Description
Returns the list of parameters of a connection in the subsystem, for an instance that
contains the subsystem.

Usage
get_composed_connection_parameters <instance> <child_connection>

Returns
The list of parameter names.

Arguments

instance The child instance containing the subsystem.

child_connection The name of the connection in the subsystem.

Example

get_composed_connection_parameters subsystem_0 cpu.data_master/memory.s0

Related Links

• get_composed_connection_parameter_value on page 418

• get_composed_connections on page 417

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
419

9.19.7.2.4 get_composed_instance_assignment

Description
Returns the assignment value of the child instance in the subsystem.

Usage
get_composed_instance_assignment <instance> <child_instance>
<assignment>

Returns
The assignment value.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

assignment The assignment key.

Example

get_composed_instance_assignment subsystem_0 video_0
"embeddedsw.CMacro.colorSpace"

Related Links

• get_composed_instance_assignments on page 421

• get_composed_instances on page 424

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
420

9.19.7.2.5 get_composed_instance_assignments

Description
Returns the list of assignments of the child instance in the subsystem.

Usage
get_composed_instance_assignments <instance> <child_instance>

Returns
The list of assignment names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_assignments subsystem_0 cpu

Related Links

• get_composed_instance_assignment on page 420

• get_composed_instances on page 424

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
421

9.19.7.2.6 get_composed_instance_parameter_value

Description
Returns the parameter value of the child instance in the subsystem.

Usage
get_composed_instance_parameter_value <instance> <child_instance>
<parameter>

Returns
The parameter value of the instance in the subsystem.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

parameter The parameter name to query on the child instance in the subsystem.

Example

get_composed_instance_parameter_value subsystem_0 cpu DATA_WIDTH

Related Links

• get_composed_instance_parameters on page 423

• get_composed_instances on page 424

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
422

9.19.7.2.7 get_composed_instance_parameters

Description
Returns the list of parameters of the child instance in the subsystem.

Usage
get_composed_instance_parameters <instance> <child_instance>

Returns
The list of parameter names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_parameters subsystem_0 cpu

Related Links

• get_composed_instance_parameter_value on page 422

• get_composed_instances on page 424

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
423

9.19.7.2.8 get_composed_instances

Description
Returns the list of child instances in the subsystem.

Usage
get_composed_instances <instance>

Returns
The list of instance names in the subsystem.

Arguments

instance The subsystem containing the child instance.

Example

get_composed_instances subsystem_0

Related Links

• get_composed_instance_assignment on page 420

• get_composed_instance_assignments on page 421

• get_composed_instance_parameter_value on page 422

• get_composed_instance_parameters on page 423

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
424

9.19.7.3 Instances

This section lists the commands that allow you to manipulate the instances of IP
components in your Platform Designer system.

add_instance on page 426

apply_instance_preset on page 427

create_ip on page 428

add_component on page 429

duplicate_instance on page 430

enable_instance_parameter_update_callback on page 431

get_instance_assignment on page 432

get_instance_assignments on page 433

get_instance_documentation_links on page 434

get_instance_interface_assignment on page 435

get_instance_interface_assignments on page 436

get_instance_interface_parameter_property on page 437

get_instance_interface_parameter_value on page 438

get_instance_interface_parameters on page 439

get_instance_interface_port_property on page 440

get_instance_interface_ports on page 441

get_instance_interface_properties on page 442

get_instance_interface_property on page 443

get_instance_interfaces on page 444

get_instance_parameter_property on page 445

get_instance_parameter_value on page 446

get_instance_parameter_values on page 447

get_instance_parameters on page 448

get_instance_port_property on page 449

get_instance_properties on page 450

get_instance_property on page 451

get_instances on page 452

is_instance_parameter_update_callback_enabled on page 453

remove_instance on page 454

set_instance_parameter_value on page 455

set_instance_parameter_values on page 456

set_instance_property on page 457

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
425

9.19.7.3.1 add_instance

Description
Adds an instance of a component, referred to as a child or child instance, to the
system.

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the instance.
Platform Designer uses this name in the generated HDL to identify the
instance.

type Refers to a kind of instance available in the IP Catalog, for example
altera_avalon_uart.

version (optional) The required version of the specified instance type. If you do not
specify any instance, Platform Designer uses the latest version.

Example

add_instance uart_0 altera_avalon_uart 16.1

Related Links

• get_instance_property on page 451

• get_instances on page 452

• remove_instance on page 454

• set_instance_parameter_value on page 455

• get_instance_parameter_value on page 446

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
426

9.19.7.3.2 apply_instance_preset

Description
Applies the settings in a preset to the specified instance.

Usage
apply_instance_preset <preset_name>

Returns
No return value.

Arguments

preset_name The preset name.

Example

apply_preset "Custom Debug Settings"

Related Links

set_instance_parameter_value on page 455

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
427

9.19.7.3.3 create_ip

Description
Creates a new IP Variation system with the given instance.

Usage
create_ip <type> [<instance_name> <version>]

Returns
No return value.

Arguments

type Kind of instance available in the IP catalog, for example,
altera_avalon_uart.

instance_name
(optional)

A unique local name that you can use to manipulate the
instance. If not specified, Platform Designer uses a default
name.

version (optional) The required version of the specified instance type. If not
specified, Platform Designer uses the latest version.

Example

create_ip altera_avalon_uart altera_avalon_uart_inst 17.0

Related Links

• add_component on page 429

• load_system on page 412

• save_system on page 413

• set_instance_parameter_value on page 455

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
428

9.19.7.3.4 add_component

Description
Adds a new IP Variation component to the system.

Usage
add_component <instance_name> <file_name> [<component_type>
<component_instance_name> <component_version>]

Returns
No return value.

Arguments

instance_name A unique local name that you can use to manipulate the instance.

file_name The IP variation file name. If a path is not specified, Platform Designer
saves the file in the ./ip/system/ sub-folder of your system.

component_type
(optional)

The kind of instance available in the IP catalog, for
example altera_avalon_uart.

component_instance_name
(optional)

The instance name of the component in the IP
variation file. If not specified, Platform Designer
uses a default name.

component_version
(optional)

The required version of the specified instance type. If
not specified, Platform Designer uses the latest
version.

Example

add_component myuart_0 myuart.ip altera_avalon_uart altera_avalon_uart_inst
17.0

Related Links

• load_component on page 518

• load_instantiation on page 485

• save_system on page 413

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
429

9.19.7.3.5 duplicate_instance

Description
Creates a duplicate instance of the specified instance.

Usage
duplicate_instance <instance> [<name>]

Returns

String The new instance name.

Arguments

instance Specifies the instance name to duplicate.

name (optional) Specifies the name of the duplicate instance.

Example

duplicate_instance cpu cpu_0

Related Links

• add_instance on page 426

• remove_instance on page 454

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
430

9.19.7.3.6 enable_instance_parameter_update_callback

Description
Enables the update callback for instance parameters.

Usage
enable_instance_parameter_update_callback [<value>]

Returns
No return value.

Arguments

value (optional) Specifies whether to enable/disable the instance parameters
callback. Default option is "1".

Example

enabled_instance_parameter_update_callback

Related Links

• is_instance_parameter_update_callback_enabled on page 453

• set_instance_parameter_value on page 455

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
431

9.19.7.3.7 get_instance_assignment

Description
Returns the assignment value of a child instance. Platform Designer uses assignments
to transfer information about hardware to embedded software tools and applications.

Usage
get_instance_assignment <instance> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The instance name.

assignment The assignment key to query.

Example

get_instance_assignment video_0 embeddedsw.CMacro.colorSpace

Related Links

get_instance_assignments on page 433

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
432

9.19.7.3.8 get_instance_assignments

Description
Returns the list of assignment keys for any defined assignments for the instance.

Usage
get_instance_assignments <instance>

Returns

String[] The list of assignment keys.

Arguments

instance The instance name.

Example

get_instance_assignments sdram

Related Links

get_instance_assignment on page 432

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
433

9.19.7.3.9 get_instance_documentation_links

Description
Returns the list of all documentation links provided by an instance.

Usage
get_instance_documentation_links <instance>

Returns

String[] The list of documentation links.

Arguments

instance The instance name.

Example

get_instance_documentation_links cpu_0

Notes
The list of documentation links includes titles and URLs for the links. For instance, a
component with a single data sheet link may return:

{Data Sheet} {http://url/to/data/sheet}

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
434

9.19.7.3.10 get_instance_interface_assignment

Description
Returns the assignment value for an interface of a child instance. Platform Designer
uses assignments to transfer information about hardware to embedded software tools
and applications.

Usage
get_instance_interface_assignment <instance> <interface> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The child instance name.

interface The interface name.

assignment The assignment key to query.

Example

get_instance_interface_assignment sdram s1 embeddedsw.configuration.isFlash

Related Links

get_instance_interface_assignments on page 436

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
435

9.19.7.3.11 get_instance_interface_assignments

Description
Returns the list of assignment keys for any assignments defined for an interface of a
child instance.

Usage
get_instance_interface_assignments <instance> <interface>

Returns

String[] The list of assignment keys.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_assignments sdram s1

Related Links

get_instance_interface_assignment on page 435

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
436

9.19.7.3.12 get_instance_interface_parameter_property

Description
Returns the property value for a parameter in an interface of an instance. Parameter
properties are metadata about how Platform Designer uses the parameter.

Usage
get_instance_interface_parameter_property <instance> <interface>
<parameter> <property>

Returns

various The parameter property value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

property The property name for the parameter. Refer to Parameter Properties.

Example

get_instance_interface_parameter_property uart_0 s0 setupTime ENABLED

Related Links

• get_instance_interface_parameters on page 439

• get_instance_interfaces on page 444

• get_parameter_properties on page 566

• Parameter Properties on page 583

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
437

9.19.7.3.13 get_instance_interface_parameter_value

Description
Returns the parameter value of an interface in an instance.

Usage
get_instance_interface_parameter_value <instance> <interface>
<parameter>

Returns

various The parameter value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

Example

get_instance_interface_parameter_value uart_0 s0 setupTime

Related Links

• get_instance_interface_parameters on page 439

• get_instance_interfaces on page 444

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
438

9.19.7.3.14 get_instance_interface_parameters

Description
Returns the list of parameters for an interface in an instance.

Usage
get_instance_interface_parameters <instance> <interface>

Returns

String[] The list of parameter names for parameters in the interface.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_parameters uart_0 s0

Related Links

• get_instance_interface_parameter_value on page 438

• get_instance_interfaces on page 444

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
439

9.19.7.3.15 get_instance_interface_port_property

Description
Returns the property value of a port in the interface of a child instance.

Usage
get_instance_interface_port_property <instance> <interface> <port>
<property>

Returns

various The port property value.

Arguments

instance The child instance name.

interface The interface name.

port The port name.

property The property name of the port. Refer to Port Properties.

Example

get_instance_interface_port_property uart_0 exports tx WIDTH

Related Links

• get_instance_interface_ports on page 441

• get_port_properties on page 544

• Port Properties on page 587

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
440

9.19.7.3.16 get_instance_interface_ports

Description
Returns the list of ports in an interface of an instance.

Usage
get_instance_interface_ports <instance> <interface>

Returns

String[] The list of port names in the interface.

Arguments

instance The instance name.

interface The interface name.

Example

get_instance_interface_ports uart_0 s0

Related Links

• get_instance_interface_port_property on page 440

• get_instance_interfaces on page 444

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
441

9.19.7.3.17 get_instance_interface_properties

Description
Returns the list of properties that you can query for an interface in an instance.

Usage
get_instance_interface_properties

Returns

String[] The list of property names.

Arguments
No arguments.

Example

get_instance_interface_properties

Related Links

• get_instance_interface_property on page 443

• get_instance_interfaces on page 444

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
442

9.19.7.3.18 get_instance_interface_property

Description
Returns the property value for an interface in a child instance.

Usage
get_instance_interface_property <instance> <interface> <property>

Returns

String The property value.

Arguments

instance The child instance name.

interface The interface name.

property The property name. Refer to Element Properties.

Example

get_instance_interface_property uart_0 s0 DESCRIPTION

Related Links

• get_instance_interface_properties on page 442

• get_instance_interfaces on page 444

• Element Properties on page 578

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
443

9.19.7.3.19 get_instance_interfaces

Description
Returns the list of interfaces in an instance.

Usage
get_instance_interfaces <instance>

Returns

String[] The list of interface names.

Arguments

instance The instance name.

Example

get_instance_interfaces uart_0

Related Links

• get_instance_interface_ports on page 441

• get_instance_interface_properties on page 442

• get_instance_interface_property on page 443

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
444

9.19.7.3.20 get_instance_parameter_property

Description
Returns the property value of a parameter in an instance. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns

various The parameter property value.

Arguments

instance The instance name.

parameter The parameter name.

property The property name of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property uart_0 baudRate ENABLED

Related Links

• get_instance_parameters on page 448

• get_parameter_properties on page 566

• Parameter Properties on page 583

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
445

9.19.7.3.21 get_instance_parameter_value

Description
Returns the parameter value in a child instance.

Usage
get_instance_parameter_value <instance> <parameter>

Returns

various The parameter value.

Arguments

instance The instance name.

parameter The parameter name.

Example

get_instance_parameter_value pixel_converter input_DPI

Related Links

• get_instance_parameters on page 448

• set_instance_parameter_value on page 455

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
446

9.19.7.3.22 get_instance_parameter_values

Description
Returns a list of the parameters' values in a child instance.

Usage
get_instance_parameter_values <instance> <parameters>

Returns

String[] A list of the parameters' value.

Arguments

instance The child instance name.

parameter A list of parameter names in the instance.

Example

get_instance_parameter_value uart_0 [list param1 param2]

Related Links

• get_instance_parameters on page 448

• set_instance_parameter_value on page 455

• set_instance_parameter_values on page 456

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
447

9.19.7.3.23 get_instance_parameters

Description
Returns the names of all parameters for a child instance that the parent can
manipulate. This command omits derived parameters and parameters that have the
SYSTEM_INFO parameter property set.

Usage
get_instance_parameters <instance>

Returns

instance The list of parameters in the instance.

Arguments

instance The instance name.

Example

get_instance_parameters uart_0

Related Links

• get_instance_parameter_property on page 445

• get_instance_parameter_value on page 446

• set_instance_parameter_value on page 455

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
448

9.19.7.3.24 get_instance_port_property

Description
Returns the property value of a port contained by an interface in a child instance.

Usage
get_instance_port_property <instance> <port> <property>

Returns

various The property value for the port.

Arguments

instance The child instance name.

port The port name.

property The property name. Refer to Port Properties.

Example

get_instance_port_property uart_0 tx WIDTH

Related Links

• get_instance_interface_ports on page 441

• get_port_properties on page 544

• Port Properties on page 587

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
449

9.19.7.3.25 get_instance_properties

Description
Returns the list of properties for a child instance.

Usage
get_instance_properties

Returns

String[] The list of property names for the child instance.

Arguments
No arguments.

Example

get_instance_properties

Related Links

get_instance_property on page 451

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
450

9.19.7.3.26 get_instance_property

Description
Returns the property value for a child instance.

Usage
get_instance_property <instance> <property>

Returns

String The property value.

Arguments

instance The child instance name.

property The property name. Refer to Element Properties.

Example

get_instance_property uart_0 ENABLED

Related Links

• get_instance_properties on page 450

• Element Properties on page 578

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
451

9.19.7.3.27 get_instances

Description
Returns the list of the instance names for all the instances in the system.

Usage
get_instances

Returns

String[] The list of child instance names.

Arguments
No arguments.

Example

get_instances

Related Links

• add_instance on page 426

• remove_instance on page 454

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
452

9.19.7.3.28 is_instance_parameter_update_callback_enabled

Description
Returns true if you enable the update callback for instance parameters.

Usage
is_instance_parameter_update_callback_enabled

Returns

boolean 1 if you enable the callback; 0 if you disable the callback.

Arguments
No arguments

Example

is_instance_parameter_update_callback_enabled

Related Links

enable_instance_parameter_update_callback on page 431

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
453

9.19.7.3.29 remove_instance

Description
Removes an instance from the system.

Usage
remove_instance <instance>

Returns
No return value.

Arguments

instance The child instance name to remove.

Example

remove_instance cpu

Related Links

• add_instance on page 426

• get_instances on page 452

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
454

9.19.7.3.30 set_instance_parameter_value

Description
Sets the parameter value for a child instance. You cannot set derived parameters and
SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
No return value.

Arguments

instance The child instance name.

parameter The parameter name.

value The parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Related Links

• get_instance_parameter_value on page 446

• get_instance_parameter_property on page 445

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
455

9.19.7.3.31 set_instance_parameter_values

Description
Sets a list of parameter values for a child instance. You cannot set derived parameters
and SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter_value_pairs>

Returns
No return value.

Arguments

instance The child instance name.

parameter_value_pairs The pairs of parameter name and value to set.

Example

set_instance_parameter_value uart_0 [list baudRate 9600 parity odd]

Related Links

• get_instance_parameter_value on page 446

• get_instance_parameter_values on page 447

• get_instance_parameters on page 448

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
456

9.19.7.3.32 set_instance_property

Description
Sets the property value of a child instance. Most instance properties are read-only and
can only be set by the instance itself. The primary use for this command is to update
the ENABLED parameter, which includes or excludes a child instance when generating
Platform Designer interconnect.

Usage
set_instance_property <instance> <property> <value>

Returns
No return value.

Arguments

instance The child instance name.

property The property name. Refer to Instance Properties.

value The property value.

Example

set_instance_property cpu ENABLED false

Related Links

• get_instance_parameters on page 448

• get_instance_property on page 451

• Instance Properties on page 579

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
457

9.19.7.4 Instantiations

This section lists the commands that allow you to manipulate the loaded instantiations
in your Platform Designer system.

add_instantiation_hdl_file on page 460

add_instantiation_interface on page 461

add_instantiation_interface_port on page 462

copy_instance_interface_to_instantiation on page 463

get_instantiation_assignment_value on page 464

get_instantiation_assignments on page 465

get_instantiation_hdl_file_properties on page 466

get_instantiation_hdl_file_property on page 467

get_instantiation_hdl_files on page 468

get_instantiation_interface_assignment_value on page 469

get_instantiation_interface_assignments on page 470

get_instantiation_interface_parameter_value on page 471

get_instantiation_interface_parameters on page 472

get_instantiation_interface_port_properties on page 473

get_instantiation_interface_port_property on page 474

get_instantiation_interface_ports on page 475

get_instantiation_interface_property on page 476

get_instantiation_interface_properties on page 477

get_instantiation_interface_sysinfo_parameter_value on page 478

get_instantiation_interface_sysinfo_parameters on page 479

get_instantiation_interfaces on page 480

get_instantiation_properties on page 481

get_instantiation_property on page 482

get_loaded_instantiation on page 483

import_instantiation_interfaces on page 484

load_instantiation on page 485

remove_instantiation_hdl_file on page 486

remove_instantiation_interface on page 487

remove_instantiation_interface_port on page 488

save_instantiation on page 489

set_instantiation_assignment_value on page 490

set_instantiation_hdl_file_property on page 491

set_instantiation_interface_assignment_value on page 492

set_instantiation_interface_parameter_value on page 493

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
458

set_instantiation_interface_port_property on page 494

set_instantiation_interface_sysinfo_parameter_value on page 495

set_instantiation_property on page 496

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
459

9.19.7.4.1 add_instantiation_hdl_file

Description
Adds an HDL file to the loaded instantiation.

Usage
add_instantiation_hdl_file <file> [<kind>]

Returns
No return value.

Arguments

file Specifies the HDL file name.

kind(optional) Indicates the file set kind to add the file to. If you do not specify this
option, the command adds the file to all the file sets. Refer to File Set
Kind.

Example

add_instantiation_hdl_file my_nios2_gen2.vhdl quartus_synth

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• File Set Kind on page 594

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
460

9.19.7.4.2 add_instantiation_interface

Description
Adds an interface to the loaded instantiation.

Usage
add_instantiation_interface <interface> <type> <direction>

Returns
No return value.

Arguments

interface Specifies the interface name.

type Specifies the interface type.

direction Specifies the interface direction. Refer to Interface Direction.

Example

add_instantiation_interface clk_0 clock OUTPUT

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Interface Direction on page 593

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
461

9.19.7.4.3 add_instantiation_interface_port

Description
Adds a port to a loaded instantiation's interface.

Usage
add_instantiation_interface_port <interface> <port> <role> <width>
<vhdl_type><direction>

Returns
No return value.

Arguments

interface Specifies the interface name.

port Specifies the port name.

role Specifies the port role.

width Specifies the port width.

vhdl_type Specifies the VHDL type of the port. Refer to VHDL Type.

direction Specifies the port direction. Refer to Direction Properties.

Example

add_instantiation_interface_port avs_s0 avs_s0_address address 8 {standard
logic vector} input

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• VHDL Type on page 601

• Direction Properties on page 577

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
462

9.19.7.4.4 copy_instance_interface_to_instantiation

Description
Adds an interface to a loaded instantiation by copying the specified interface of
another instance.

Usage
copy_instance_interface_to_instantiation <instance> <interface> <type>

Returns

String The name of the newly added interface.

Arguments

instance Specifies the name of the instance to copy the interface from.

interface Specifies the name of the interface to copy.

type Specifies the type of copy to make. Refer to Instantiation Interface Duplicate
Type.

Example

copy_instance_interface_to_instantiation cpu_0 data_master CLONE

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Instantiation Interface Duplicate Type on page 597

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
463

9.19.7.4.5 get_instantiation_assignment_value

Description
Gets the assignment value on the loaded instantiation.

Usage
get_instantiation_assignment_value <name>

Returns

String The assignment value.

Arguments

name Specifies the name of the assignment to get the value of.

Example

get_instantiation_assignment_value embeddedsw.configuration.exceptionOffset

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
464

9.19.7.4.6 get_instantiation_assignments

Description
Gets the assignment names in the loaded instantiation.

Usage
get_instantiation_assignments

Returns

String[] The list of assignment names.

Arguments
No arguments

Example

get_instantiation_assignments

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
465

9.19.7.4.7 get_instantiation_hdl_file_properties

Description
Returns the list of properties in an HDL file associated with an instantiation.

Usage
get_instantiation_hdl_file_properties

Returns

String[] The list of property names.

Arguments
No arguments

Example

get_instantiation_hdl_file_properties

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
466

9.19.7.4.8 get_instantiation_hdl_file_property

Description
Returns the property value of an HDL file associated with the loaded instantiation.

Usage
get_instantiation_hdl_file_property <file> <property>

Returns

various The property value.

Arguments

file Specifies the HDL file name.

property Specifies the property name. Refer to Instantiation Hdl File Properties.

Example

get_instantiation_hdl_file_property my_nios2_gen2.vhdl OUTPUT_PATH

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Instantiation Hdl File Properties on page 596

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
467

9.19.7.4.9 get_instantiation_hdl_files

Description
Returns the list of HDL files of the loaded instantiation.

Usage
get_instantiation_hdl_files [<kind>]

Returns

String[] The list of HDL file names.

Arguments

kind (optional) Specifies the file set kind to get the files of. If you do not specify this
option, the command gets the QUARTUS_SYNTH files. Refer to File Set
Kind.

Example

get_instantiation_hdl_files quartus_synth

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• File Set Kind on page 594

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
468

9.19.7.4.10 get_instantiation_interface_assignment_value

Description
Gets the assignment value of the loaded instantiation's interface.

Usage
get_instantiation_interface_assignment_value <interface> <name>

Returns

String The assignment value

Arguments

interface Specifies the interface name.

name Specifies the assignment name to get the value of.

Example

get_instantiation_interface_assignment_value avs_s0
embeddedsw.configuration.exceptionOffset

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
469

9.19.7.4.11 get_instantiation_interface_assignments

Description
Gets the assignment names of the loaded instantiation's interface.

Usage
get_instantiation_interface_assignments <interface>

Returns

String[] The list of assignment names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_assignments avs_s0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
470

9.19.7.4.12 get_instantiation_interface_parameter_value

Description
Returns the parameter value of a loaded instantiation's interface.

Usage
get_instantiation_interface_parameter_value <interface> <parameter>

Returns

String The parameter value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

Example

get_instantiation_interface_parameter_value avs_s0 associatedClock

Related Links

• get_instantiation_interface_parameters on page 472

• set_instantiation_interface_parameter_value on page 493

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
471

9.19.7.4.13 get_instantiation_interface_parameters

Description
Returns the list of parameters of an instantiation's interface.

Usage
get_instantiation_interface_parameters <interface>

Returns

String[] The list of parameter names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_parameters avs_s0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• get_instantiation_interface_parameter_value on page 471

• set_instantiation_interface_parameter_value on page 493

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
472

9.19.7.4.14 get_instantiation_interface_port_properties

Description
Returns the list of port properties of an instantiation's interface.

Usage
get_instantiation_interface_port_properties

Returns

String[] The list of port properties.

Arguments
No arguments

Example

get_instantiation_interface_port_properties

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
473

9.19.7.4.15 get_instantiation_interface_port_property

Description
Returns the port property value of a loaded instantiation's interface.

Usage
get_instantiation_interface_port_property <interface> <port>
<property>

Returns

various The property value.

Arguments

interface Specifies the interface name.

port Specifies the port name.

property Specifies the property name. Refer to Port Properties.

Example

get_instantiation_interface_port_property avs_s0 avs_s0_address WIDTH

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Port Properties on page 600

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
474

9.19.7.4.16 get_instantiation_interface_ports

Description
Returns the list of ports of the loaded instantiation's interface.

Usage
get_instantiation_interface_ports <interface>

Returns

String[] The list of port names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_ports avs_s0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
475

9.19.7.4.17 get_instantiation_interface_property

Description
Returns the value of a single interface property from the specified instantiation
interface.

Usage
get_instantiation_interface_property <interface> <property>

Returns

various The property value.

Arguments

interface The interface name on the currently loaded interface.

property The property name. Refer to Instantiation Interface Properties.

Example

get_instantiation_interface_property in_clk TYPE

Related Links

• get_instantiation_interface_properties on page 477

• load_instantiation on page 485

• Instantiation Interface Properties on page 598

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
476

9.19.7.4.18 get_instantiation_interface_properties

Description
Returns the names of all the available instantiation interface properties, common to all
interface types.

Usage
get_instantiation_interface_properties

Returns

String[] A list of instantiation interface properties.

Arguments
No arguments.

Example

get_instantiation_interface_properties

Related Links

get_instantiation_interface_property on page 476

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
477

9.19.7.4.19 get_instantiation_interface_sysinfo_parameter_value

Description
Gets the system info parameter value for a loaded instantiation's interface.

Usage
get_instantiation_interface_sysinfo_parameter_value <interface>
<parameter>

Returns

various The system info property value.

Arguments

interface Specifies the interface name.

parameter Specifies the system info parameter name. Refer to System Info Type.

Example

get_instantiation_interface_sysinfo_parameter_value debug_mem_slave
max_slave_data_width

Related Links

• get_instantiation_interface_sysinfo_parameters on page 479

• set_instantiation_interface_sysinfo_parameter_value on page 495

• System Info Type Properties on page 589

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
478

9.19.7.4.20 get_instantiation_interface_sysinfo_parameters

Description
Returns the list of system info parameters for the loaded instantiation's interface.

Usage
get_instantiation_interface_sysinfo_parameters <interface> [<type>]

Returns

String[] The list of system info parameter names.

Arguments

interface Specifies the interface name.

type (optional) Specifies the parameters type to return. If you do not specify this
option, the command returns all the parameters. Refer to Access
Type.

Example

get_instantiation_interface_sysinfo_parameters debug_mem_slave

Related Links

• get_instantiation_interface_sysinfo_parameter_value on page 478

• set_instantiation_interface_sysinfo_parameter_value on page 495

• Access Type on page 595

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
479

9.19.7.4.21 get_instantiation_interfaces

Description
Returns the list of interfaces for the loaded instantiation.

Usage
get_instantiation_interfaces

Returns

String[] The list of interface names.

Arguments
No arguments.

Example

get_instantiation_interfaces

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
480

9.19.7.4.22 get_instantiation_properties

Description
Returns the list of properties for the loaded instantiation.

Usage
get_instantiation_properties

Returns

String[] The list of property names.

Arguments
No arguments.

Example

get_instantiation_properties

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
481

9.19.7.4.23 get_instantiation_property

Description
Returns the value of the specified property for the loaded instantiation.

Usage
get_instantiation_property <property>

Returns

various The value of an instantiation property.

Arguments

property Specifies the property name to get the value of. Refer to Instantiation
Properties.

Example

get_instantiation_property HDL_ENTITY_NAME

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Instantiation Properties on page 599

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
482

9.19.7.4.24 get_loaded_instantiation

Description
Returns the instance name of the loaded instantiation.

Usage
get_loaded_instantiation

Returns

String The instance name.

Arguments
No arguments

Example

get_loaded_instantiation

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
483

9.19.7.4.25 import_instantiation_interfaces

Description
Sets the interfaces of a loaded instantiation, by importing the interfaces from the
specified file.

Usage
import_instantiation_interfaces <file>

Returns
No return value

Arguments

file Specifies the The IP or IP-XACT file to import the interfaces from.

Example

import_instantiation_interfaces ip/my_system/my_system_nios2_gen2_0.ip

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
484

9.19.7.4.26 load_instantiation

Description
Loads the instantiation of an instance, so that you can modify the instantiation if
necessary.

Usage
load_instantiation <instance>

Returns

boolean 1 if successful; 0 if unsuccessful.

Arguments

instance Specifies the instance name.

Example

load_instantiation cpu

Related Links

save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
485

9.19.7.4.27 remove_instantiation_hdl_file

Description
Removes an HDL file from the loaded instantiation.

Usage
remove_instantiation_hdl_file <file> [<kind>]

Returns
No return value.

Arguments

file Specifies the HDL file name.

kind (optional) Specifies the kind of file set to remove the file from. If you do not
specify this option, the command removes the file from all the file
sets. Refer to File Set Kind.

Example

remove_instantiation_hdl_file my_nios2_gen2.vhdl quartus_synth

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• File Set Kind on page 594

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
486

9.19.7.4.28 remove_instantiation_interface

Description
Removes an interface from a loaded instantiation.

Usage
remove_instantiation_interface <interface>

Returns
No return value

Arguments

interface Specifies the interface name.

Example

remove_instantiation_interface avs_s0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
487

9.19.7.4.29 remove_instantiation_interface_port

Description
Removes a port from a loaded instantiation's interface.

Usage
remove_instantiation_interface_port <interface> <port>

Returns
No return value

Arguments

interface Specifies the interface name.

port Specifies the port name.

Example

remove_instantiation_interface_port avs_s0 avs_s0_address

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
488

9.19.7.4.30 save_instantiation

Description
Saves the loaded instantiation.

Usage
save_instantiation

Returns
No return value

Arguments
No arguments

Example

save_instantiation

Related Links

load_instantiation on page 485

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
489

9.19.7.4.31 set_instantiation_assignment_value

Description
Sets the assignment value for the loaded instantiation.

Usage
set_instantiation_assignment_value <name> [<value>]

Returns
No return value

Arguments

instance Specifies the assignment name to set value for.

value (optional) Specifies the assignment value. If you do not specify this option, the
command removes the assignment.

Example

set_instantiation_assignment_value embeddedsw.configuration.exceptionOffset 32

Related Links

get_instantiation_assignment_value on page 464

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
490

9.19.7.4.32 set_instantiation_hdl_file_property

Description
Sets the property value for an HDL file associated with a loaded instantiation.

Usage
set_instantiation_hdl_file_property<file> <property> <value>

Returns
No return value

Arguments

file Specifies the HDL file name.

property Specifies the property name. Refer to Instantiation Hdl File Properties.

value Specifies the property value.

Example

set_instantiation_hdl_file_property my_nios2_gen2.vhdl OUTPUT_PATH
my_nios2_gen2.vhdl

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Instantiation Hdl File Properties on page 596

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
491

9.19.7.4.33 set_instantiation_interface_assignment_value

Description
Sets the assignment value for the loaded instantiation's interface.

Usage
set_instantiation_interface_assignment_value <interface> <name>
[<value>]

Returns
No return value

Arguments

interface Specifies the interface name.

name Specifies the assignment name to set the value of.

value (optional) Specifies the new assignment value. If you do not specify this value,
the command removes the assignment.

Example

set_instantiation_interface_assignment_value
embeddedsw.configuration.exceptionOffset 32

Related Links

get_instantiation_assignment_value on page 464

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
492

9.19.7.4.34 set_instantiation_interface_parameter_value

Description
Sets the parameter value for the loaded instantiation's interface.

Usage
set_instantiation_interface_parameter_value <interface> <parameter>
<value>

Returns
No return value

Arguments

instance Specifies the interface name.

parameter Specifies the parameter name.

value Specifies the parameter value.

Example

set_instantiation_interface_parameter avs_s0 associatedClock clk

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• get_instantiation_interface_parameter_value on page 471

• get_instantiation_interface_parameters on page 472

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
493

9.19.7.4.35 set_instantiation_interface_port_property

Description
Sets the port property value on a loaded instantiation's interface.

Usage
set_instantiation_interface_port_property <interface> <port>
<property> <value>

Returns
No return value

Arguments

interface Specifies the interface name.

port Specifies the port name.

property Specifies the property name. Refer to Port Properties.

value Specifies the property value.

Example

set_instantiation_interface_port_property avs_s0 avs_s0_address WIDTH 1

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Port Properties on page 600

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
494

9.19.7.4.36 set_instantiation_interface_sysinfo_parameter_value

Description
Sets the system info parameter value for the loaded instantiation's interface.

Usage
set_instantiation_interface_sysinfo_parameter_value <interface>
<parameter> <value>

Returns
No return value

Arguments

interface Specifies the interface name.

parameter Specifies the system info parameter name. Refer to System Info Type.

value Specifies the system info parameter value.

Example

set_instantiation_interface_sysinfo_parameter_value debug_mem_slave
max_slave_data_width 64

Related Links

• get_instantiation_interface_sysinfo_parameter_value on page 478

• get_instantiation_interface_sysinfo_parameters on page 479

• System Info Type Properties on page 589

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
495

9.19.7.4.37 set_instantiation_property

Description
Sets the property value for the loaded instantiation.

Usage
set_instantiation_property <property> <value>

Returns
No return value

Arguments

property Specifies the property name. Refer to Instantiation Properties.

value Specifies the value to set.

Example

set_instantiation_property HDL_ENTITY_NAME my_system_nios2_gen2_0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• Instantiation Properties on page 599

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
496

9.19.7.5 Components

This section lists the commands that allow you to manipulate the loaded IP
components in your Platform Designer system.

apply_component_preset on page 498

get_component_assignment on page 499

get_component_assignments on page 500

get_component_documentation_links on page 501

get_component_interface_assignment on page 502

get_component_interface_assignments on page 503

get_component_interface_parameter_property on page 504

get_component_interface_parameter_value on page 505

get_component_interface_parameters on page 506

get_component_interface_port_property on page 507

get_component_interface_ports on page 508

get_component_interface_property on page 509

get_component_interfaces on page 510

get_component_parameter_property on page 511

get_component_parameter_value on page 512

get_component_parameters on page 513

get_component_project_properties on page 514

get_component_project_property on page 515

get_component_property on page 516

get_loaded_component on page 517

load_component on page 518

reload_component_footprint on page 519

save_component on page 520

set_component_parameter_value on page 521

set_component_project_property on page 522

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
497

9.19.7.5.1 apply_component_preset

Description
Applies the settings in a preset to the loaded component.

Usage
apply_component_preset<preset_name>

Returns
No return value

Arguments

preset_name Specifies the preset name.

Example

apply_component_preset "Custom Debug Settings"

Related Links

• load_component on page 518

• set_component_parameter_value on page 521

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
498

9.19.7.5.2 get_component_assignment

Description
Returns the assignment value for the loaded component.

Usage
get_component_assignment <assignment>

Returns

String The specified assignment value.

Arguments

assignment Specifies the assignment key value to query.

Example

get_component_assignment embeddedsw.CMacro.colorSpace

Related Links

• load_component on page 518

• get_component_assignments on page 500

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
499

9.19.7.5.3 get_component_assignments

Description
Returns the list of assignment keys for the loaded component.

Usage
get_component_assignments

Returns

String[] The list of assignment keys.

Arguments
No arguments

Example

get_component_assignments

Related Links

• get_instance_assignment on page 432

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
500

9.19.7.5.4 get_component_documentation_links

Description
Returns the list of all documentation links that the loaded component provides.

Usage
get_component_documentation_links

Returns

String[] The list of documentation links.

Arguments
No arguments

Example

get_component_documentation_links

Related Links

load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
501

9.19.7.5.5 get_component_interface_assignment

Description
Returns the assignment value of an interface of the loaded component.

Usage
get_component_interface_assignment <interface> <assignment>

Returns

String The specified assignment value.

Arguments

interface Specifies the interface name.

assignment Specifies the assignment key to the query.

Example

get_component_interface_assignment s1 embeddedsw.configuration.isFlash

Related Links

• get_component_interface_assignments on page 503

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
502

9.19.7.5.6 get_component_interface_assignments

Description
Returns the list of assignment keys for any assignments that you define for an
interface on the loaded component.

Usage
get_component_interface_assignments <interface>

Returns

String[] The list of assignment keys.

Arguments

interface Specifies the interface name.

Example

get_component_interface_assignments s1

Related Links

• get_component_interface_assignment on page 502

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
503

9.19.7.5.7 get_component_interface_parameter_property

Description
Returns the property value of a parameter in a loaded component's interface.
Parameter properties are metadata about how the Intel Quartus Prime uses the
parameters.

Usage
get_component_interface_parameter_property <interface> <parameter>
<property>

Returns

various The parameter property value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

property Specifies the parameter property. Refer to Parameter Properties.

Example

get_component_interface_parameter_property s0 setupTime ENABLED

Related Links

• get_component_interface_parameters on page 506

• get_component_interfaces on page 510

• load_component on page 518

• Parameter Properties on page 583

• get_parameter_properties on page 566

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
504

9.19.7.5.8 get_component_interface_parameter_value

Description
Returns the parameter value of an interface of the loaded component.

Usage
get_component_interface_parameter_value <interface> <parameter>

Returns

various The parameter value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

Example

get_component_interface_parameter_value s0 setupTime

Related Links

• get_component_interface_parameters on page 506

• get_component_interfaces on page 510

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
505

9.19.7.5.9 get_component_interface_parameters

Description
Returns the list of parameters for an interface of the loaded component.

Usage
get_component_interface_parameters <interface>

Returns

String[] The list of parameter names.

Arguments

interface Specifies the interface name.

Example

get_component_interface_parameters s0

Related Links

• get_component_interface_parameter_value on page 505

• get_component_interfaces on page 510

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
506

9.19.7.5.10 get_component_interface_port_property

Description
Returns the property value of a port in the interface of the loaded component.

Usage
get_component_interface_port_property <interface> <port> <property>

Returns

various The port property value

Arguments

interface Specifies the interface name.

port Specifies the port name of the interface.

property Specifies the property name of the port. Refer to Port Properties.

Example

get_component_interface_port_property exports tx WIDTH

Related Links

• get_component_interface_ports on page 508

• load_component on page 518

• Port Properties on page 600

• get_port_properties on page 544

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
507

9.19.7.5.11 get_component_interface_ports

Description
Returns the list of interface ports of the loaded component.

Usage
get_component_interface_ports <interface>

Returns

String[] The list of port names

Arguments

interface Specifies the interface name.

Example

get_component_interface_ports s0

Related Links

• get_component_interface_port_property on page 507

• get_component_interfaces on page 510

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
508

9.19.7.5.12 get_component_interface_property

Description
Returns the value of a single property from the specified interface for the loaded
component.

Usage
get_component_interface_property <interface> <property>

Returns

String The property value.

Arguments

interface Specifies the interface name.

property Specifies the property name. Refer to Element Properties.

Example

get_interface_property clk_in DISPLAY_NAME

Related Links

• load_component on page 518

• Element Properties on page 578

• get_interface_properties on page 541

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
509

9.19.7.5.13 get_component_interfaces

Description
Returns the list of interfaces in the loaded component.

Usage
get_component_interfaces

Returns

String[] The list of interface names.

Arguments
No arguments

Example

get_component_interfaces

Related Links

• get_component_interface_ports on page 508

• get_component_interface_property on page 509

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
510

9.19.7.5.14 get_component_parameter_property

Description
Returns the property value of a parameter in the loaded component.

Usage
get_component_parameter_property <parameter> <property>

Returns

Various The parameter property value.

Arguments

parameter Specifies the parameter name in the component.

property Specifies the property name of the parameter. Refer to Parameter
Properties.

Example

get_component_parameter_property baudRate ENABLED

Related Links

• get_component_parameters on page 513

• get_parameter_properties on page 566

• load_component on page 518

• Parameter Properties on page 583

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
511

9.19.7.5.15 get_component_parameter_value

Description
Returns the parameter value in the loaded component.

Usage
get_component_parameter_value <parameter>

Returns

various The parameter value

Arguments

parameter Specifies the parameter name in the component.

Example

get_component_parameter_value baudRate

Related Links

• get_component_parameters on page 513

• load_component on page 518

• set_component_parameter_value on page 521

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
512

9.19.7.5.16 get_component_parameters

Description
Returns the list of parameters in the loaded component.

Usage
get_component_parameters

Returns

String[] The list of parameters in the component.

Arguments
No arguments

Example

get_instance_parameters

Related Links

• get_component_parameter_property on page 511

• get_component_parameter_value on page 512

• load_component on page 518

• set_component_parameter_value on page 521

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
513

9.19.7.5.17 get_component_project_properties

Description
Returns the list of properties that you query about the loaded component's Intel
Quartus Prime project.

Usage
get_component_project_properties

Returns

String[] The list of project properties.

Arguments
No arguments

Example

get_component_project_properties

Related Links

• get_component_project_property on page 515

• load_component on page 518

• set_component_project_property on page 522

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
514

9.19.7.5.18 get_component_project_property

Description
Returns the project property value of the loaded component. Only select project
properties are available.

Usage
get_component_project_property <property>

Returns

String The property value.

Arguments

property Specifies the project property name. Refer to Project Properties.

Example

get_component_project_property HIDE_FROM_IP_CATALOG

Related Links

• get_component_project_properties on page 514

• load_component on page 518

• set_component_project_property on page 522

• Project Properties on page 588

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
515

9.19.7.5.19 get_component_property

Description
Returns the property value of the loaded component.

Usage
get_component_property <property>

Returns

String The property value.

Arguments

property The property name on the loaded component. Refer to Element Properties.

Example

get_component_property CLASS_NAME

Related Links

• load_component on page 518

• get_instance_properties on page 450

• Element Properties on page 578

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
516

9.19.7.5.20 get_loaded_component

Description
Returns the instance name associated with the loaded component.

Usage
get_loaded_component

Returns

String The instance name.

Arguments
No arguments

Example

get_loaded_component

Related Links

• load_component on page 518

• save_component on page 520

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
517

9.19.7.5.21 load_component

Description
Loads the actual component inside of a generic component, so that you can modify
the component parameters.

Usage
load_component <instance>

Returns

boolean 1 if successful; 0 if unsuccessful.

Arguments

instance Specifies the instance name.

Example

load_component cpu

Related Links

• get_loaded_component on page 517

• save_component on page 520

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
518

9.19.7.5.22 reload_component_footprint

Description
Validates the footprint of a specified child instance, and updates the footprint of the
instance in case of issues.

Usage
reload_component_footprint [<instance>]

Returns

String[] A list of validation messages.

Arguments

instance
(optional)

Specifies the child instance name to validate. If you do not specify
this option, the command validates all the generic components in
the system.

Example

reload_component_footprint cpu_0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• validate_component_footprint on page 558

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
519

9.19.7.5.23 save_component

Description
Saves the loaded component.

Usage
save_component

Returns
No return value

Arguments
No arguments

Example

save_component

Related Links

• get_loaded_component on page 517

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
520

9.19.7.5.24 set_component_parameter_value

Description
Sets the parameter value for the loaded component.

Usage
set_component_parameter_value <parameter> <value>

Returns
No return value

Arguments

parameter Specifies the parameter name.

parameter Specifies the new parameter value.

Example

set_component_parameter_value baudRate 9600

Related Links

• get_component_parameter_value on page 512

• get_component_parameters on page 513

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
521

9.19.7.5.25 set_component_project_property

Description
Sets the project property value of the loaded component, such as hiding from the IP
catalog.

Usage
set_component_project_property <property> <value>

Returns
No return value

Arguments

property Specifies the property name. Refer to Project Properties.

value Specifies the new property value.

Example

set_component_project_property HIDE_FROM_IP_CATALOG false

Related Links

• get_component_project_properties on page 514

• get_component_project_property on page 515

• load_component on page 518

• Project Properties on page 588

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
522

9.19.7.6 Connections

This section lists the commands that allow you to manipulate the interface connections
in your Platform Designer system.

add_connection on page 524

auto_connect on page 525

get_connection_parameter_property on page 526

get_connection_parameter_value on page 527

get_connection_parameters on page 528

get_connection_properties on page 529

get_connection_property on page 530

get_connections on page 531

remove_connection on page 532

remove_dangling_connections on page 533

set_connection_parameter_value on page 534

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
523

9.19.7.6.1 add_connection

Description
Connects the named interfaces using an appropriate connection type. Both interface
names consist of an instance name, followed by the interface name that the module
provides.

Usage
add_connection <start> [<end>]

Returns
No return value.

Arguments

start The start interface that you connect, in
<instance_name>.<interface_name> format. If you do not specify the end
argument, the connection must be of the form <instance1>.<interface>/
<instance2>.<interface>.

end (optional) The end interface that you connect, in
<instance_name>.<interface_name> format.

Example

add_connection dma.read_master sdram.s1

Related Links

• get_connection_parameter_value on page 527

• get_connection_property on page 530

• get_connections on page 531

• remove_connection on page 532

• set_connection_parameter_value on page 534

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
524

9.19.7.6.2 auto_connect

Description
Creates connections from an instance or instance interface to matching interfaces of
other instances in the system. For example, Avalon-MM slaves connect to Avalon-MM
masters.

Usage
auto_connect <element>

Returns
No return value.

Arguments

element The instance interface name, or the instance name.

Example

auto_connect sdram
auto_connect uart_0.s1

Related Links

add_connection on page 524

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
525

9.19.7.6.3 get_connection_parameter_property

Description
Returns the property value of a parameter in a connection. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_connection_parameter_property <connection> <parameter> <property>

Returns

various The parameter property value.

Arguments

connection The connection to query.

parameter The parameter name.

property The property of the connection. Refer to Parameter Properties.

Example

get_connection_parameter_property cpu.data_master/dma0.csr baseAddress UNITS

Related Links

• get_connection_parameter_value on page 527

• get_connection_property on page 530

• get_connections on page 531

• get_parameter_properties on page 566

• Parameter Properties on page 583

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
526

9.19.7.6.4 get_connection_parameter_value

Description
Returns the parameter value of the connection. Parameters represent aspects of the
connection that you can modify, such as the base address for an Avalon-MM
connection.

Usage
get_connection_parameter_value <connection> <parameter>

Returns

various The parameter value.

Arguments

connection The connection to query.

parameter The parameter name.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Links

• get_connection_parameters on page 528

• get_connections on page 531

• set_connection_parameter_value on page 534

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
527

9.19.7.6.5 get_connection_parameters

Description
Returns the list of parameters of a connection.

Usage
get_connection_parameters <connection>

Returns

String[] The list of parameter names.

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Links

• get_connection_parameter_property on page 526

• get_connection_parameter_value on page 527

• get_connection_property on page 530

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
528

9.19.7.6.6 get_connection_properties

Description
Returns the properties list of a connection.

Usage
get_connection_properties

Returns

String[] The list of connection properties.

Arguments
No arguments.

Example

get_connection_properties

Related Links

• get_connection_property on page 530

• get_connections on page 531

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
529

9.19.7.6.7 get_connection_property

Description
Returns the property value of a connection. Properties represent aspects of the
connection that you can modify, such as the connection type.

Usage
get_connection_property <connection> <property>

Returns

String The connection property value.

Arguments

connection The connection to query.

property The connection property name. Refer to Connection Properties.

Example

get_connection_property cpu.data_master/dma0.csr TYPE

Related Links

• get_connection_properties on page 529

• Connection Properties on page 575

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
530

9.19.7.6.8 get_connections

Description
Returns the list of all connections in the system if you do not specify any element. If
you specify a child instance, for example cpu, Platform Designer returns all
connections to any interface on the instance. If you specify an interface of a child
instance, for example cpu.instruction_master, Platform Designer returns all
connections to that interface.

Usage
get_connections [<element>]

Returns

String[] The list of connections.

Arguments

element (optional) The child instance name, or the qualified interface name on a
child instance.

Example

get_connections
get_connections cpu
get_connections cpu.instruction_master

Related Links

• add_connection on page 524

• remove_connection on page 532

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
531

9.19.7.6.9 remove_connection

Description
Removes a connection from the system.

Usage
remove_connection <connection>

Returns
No return value.

Arguments

connection The connection name to remove.

Example

remove_connection cpu.data_master/sdram.s0

Related Links

• add_connection on page 524

• get_connections on page 531

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
532

9.19.7.6.10 remove_dangling_connections

Description

Removes connections where both end points of the connection no longer exist in the
system.

Usage
remove_dangling_connections

Returns
No return value.

Arguments
No arguments.

Example

remove_dangling_connections

Related Links

• add_connection on page 524

• get_connections on page 531

• remove_connection on page 532

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
533

9.19.7.6.11 set_connection_parameter_value

Description
Sets the parameter value for a connection.

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection The connection name.

parameter The parameter name.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress
"0x000a0000"

Related Links

• get_connection_parameter_value on page 527

• get_connection_parameters on page 528

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
534

9.19.7.7 Top-level Exports

This section lists the commands that allow you to manipulate the exported interfaces
in your Platform Designer system.

add_interface on page 536

get_exported_interface_sysinfo_parameter_value on page 537

get_exported_interface_sysinfo_parameters on page 538

get_interface_port_property on page 539

get_interface_ports on page 540

get_interface_properties on page 541

get_interface_property on page 542

get_interfaces on page 543

get_port_properties on page 544

remove_interface on page 545

set_exported_interface_sysinfo_parameter_value on page 546

set_interface_port_property on page 547

set_interface_property on page 548

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
535

9.19.7.7.1 add_interface

Description
Adds an interface to your system, which Platform Designer uses to export an interface
from within the system. You specify the exported internal interface with
set_interface_property <interface> EXPORT_OF instance.interface.

Usage
add_interface <name> <type> <direction>.

Returns
No return value.

Arguments

name The name of the interface that Platform Designer exports from the system.

type The type of interface.

direction The interface direction.

Example

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Related Links

• get_interface_ports on page 540

• get_interface_properties on page 541

• get_interface_property on page 542

• set_interface_property on page 548

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
536

9.19.7.7.2 get_exported_interface_sysinfo_parameter_value

Description
Gets the value of a system info parameter for an exported interface.

Usage
get_exported_interface_sysinfo_parameter_value <interface>
<parameter>

Returns

various The system info parameter value.

Arguments

interface Specifies the name of the exported interface.

parameter Specifies the name of the system info parameter. Refer to System Info
Type.

Example

get_exported_interface_sysinfo_parameter_value clk clock_rate

Related Links

• get_exported_interface_sysinfo_parameters on page 538

• set_exported_interface_sysinfo_parameter_value on page 546

• System Info Type Properties on page 589

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
537

9.19.7.7.3 get_exported_interface_sysinfo_parameters

Description
Returns the list of system info parameters for an exported interface.

Usage
get_exported_interface_sysinfo_parameters <interface> [<type>]

Returns

String[] The list of system info parameter names.

Arguments

interface Specifies the name of the exported interface.

type (optional) Specifies the parameters type to return. If you do not specify this
option, the command returns all the parameters. Refer to Access
Type.

Example

get_exported_interface_sysinfo_parameters clk

Related Links

• get_exported_interface_sysinfo_parameter_value on page 537

• set_exported_interface_sysinfo_parameter_value on page 546

• Access Type on page 595

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
538

9.19.7.7.4 get_interface_port_property

Description
Returns the value of a property of a port contained by one of the top-level exported
interfaces.

Usage
get_interface_port_property <interface> <port> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

port The port name in the interface.

property The property name on the port. Refer to Port Properties.

Example

get_interface_port_property uart_exports tx DIRECTION

Related Links

• get_interface_ports on page 540

• get_port_properties on page 544

• Port Properties on page 587

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
539

9.19.7.7.5 get_interface_ports

Description
Returns the names of all the added ports to a given interface.

Usage
get_interface_ports <interface>

Returns

String[] The list of port names.

Arguments

interface The top-level interface name of the system.

Example

get_interface_ports export_clk_out

Related Links

• get_interface_port_property on page 539

• get_interfaces on page 543

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
540

9.19.7.7.6 get_interface_properties

Description
Returns the names of all the available interface properties common to all interface
types.

Usage
get_interface_properties

Returns

String[] The list of interface properties.

Arguments
No arguments.

Example

get_interface_properties

Related Links

• get_interface_property on page 542

• set_interface_property on page 548

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
541

9.19.7.7.7 get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Usage
get_interface_property <interface> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

property The name of the property. Refer to Interface Properties.

Example

get_interface_property export_clk_out EXPORT_OF

Related Links

• get_interface_properties on page 541

• set_interface_property on page 548

• Interface Properties on page 580

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
542

9.19.7.7.8 get_interfaces

Description
Returns the list of top-level interfaces in the system.

Usage
get_interfaces

Returns

String[] The list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Links

• add_interface on page 536

• get_interface_ports on page 540

• get_interface_property on page 542

• remove_interface on page 545

• set_interface_property on page 548

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
543

9.19.7.7.9 get_port_properties

Description
Returns the list of properties that you can query for ports.

Usage
get_port_properties

Returns

String[] The list of port properties.

Arguments
No arguments.

Example

get_port_properties

Related Links

• get_instance_interface_port_property on page 440

• get_instance_interface_ports on page 441

• get_instance_port_property on page 449

• get_interface_port_property on page 539

• get_interface_ports on page 540

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
544

9.19.7.7.10 remove_interface

Description
Removes an exported top-level interface from the system.

Usage
remove_interface <interface>

Returns
No return value.

Arguments

interface The name of the exported top-level interface.

Example

remove_interface clk_out

Related Links

• add_interface on page 536

• get_interfaces on page 543

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
545

9.19.7.7.11 set_exported_interface_sysinfo_parameter_value

Description
Sets the system info parameter value for an exported interface.

Usage
set_exported_interface_sysinfo_parameter_value <interface>
<parameter> <value>

Returns
No return value

Arguments

interface Specifies the name of the exported interface.

parameter Specifies the name of the system info parameter. Refer to System Info
Type.

value Specifies the system info parameter value.

Example

set_exported_interface_sysinfo_parameter_value clk clock_rate 5000000

Related Links

• get_exported_interface_sysinfo_parameter_value on page 537

• get_exported_interface_sysinfo_parameters on page 538

• System Info Type Properties on page 589

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
546

9.19.7.7.12 set_interface_port_property

Description
Sets the port property in a top-level interface of the system.

Usage
set_interface_port_property <interface> <port> <property> <value>

Returns
No return value

Arguments

interface Specifies the top-level interface name of the system.

port Specifies the port name in a top-level interface of the system.

property Specifies the property name of the port. Refer to Port Properties.

value Specifies the property value.

Example

set_interface_port_property clk clk_clk NAME my_clk

Related Links

• Port Properties on page 600

• get_interface_ports on page 540

• get_interfaces on page 543

• get_port_properties on page 544

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
547

9.19.7.7.13 set_interface_property

Description
Sets the value of a property on an exported top-level interface. You use this command
to set the EXPORT_OF property to specify which interface of a child instance is
exported via this top-level interface.

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property. Refer to Interface Properties.

value The property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out

Related Links

• add_interface on page 536

• get_interface_properties on page 541

• get_interface_property on page 542

• Interface Properties on page 580

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
548

9.19.7.8 Validation

This section lists the commands that allow you to validate the components, instances,
interfaces and connections in your Platform Designer system.

set_validation_property on page 550

sync_sysinfo_parameters on page 551

validate_component on page 552

validate_component_interface on page 553

validate_connection on page 554

validate_instance on page 555

validate_instance_interface on page 556

validate_system on page 557

validate_component_footprint on page 558

reload_component_footprint on page 519

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
549

9.19.7.8.1 set_validation_property

Description
Sets a property that affects how and when validation is run. To disable system
validation after each scripting command, set AUTOMATIC_VALIDATION to False.

Usage
set_validation_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Validation Properties.

value The new property value.

Example

set_validation_property AUTOMATIC_VALIDATION false

Related Links

• validate_system on page 557

• Validation Properties on page 592

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
550

9.19.7.8.2 sync_sysinfo_parameters

Description
Updates the system info parameters of the specified generic component.

Usage
sync_sysinfo_parameters [<instance>]

Returns

String[] A list of update messages.

Arguments

instance
(optional)

Specifies the name of the instance to sync. If you do not specify
this option, the command synchronizes all the generic
components in the system.

Example

sync_sysinfo_parameters cpu_0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
551

9.19.7.8.3 validate_component

Description
Validates the loaded component.

Usage
validate_component

Returns

String[] A list of validation messages.

Arguments
No arguments

Example

validate_component

Related Links

• validate_component_interface on page 553

• load_component on page 518

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
552

9.19.7.8.4 validate_component_interface

Description
Validates an interface of the loaded component.

Usage
validate_component_interface <interface>

Returns

String[] List of validation messages

Arguments

instance Specifies the name of the instance for the loaded component.

Example

validate_instance_interface data_master

Related Links

• load_component on page 518

• validate_component on page 552

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
553

9.19.7.8.5 validate_connection

Description
Validates the specified connection and returns validation messages.

Usage
validate_connection <connection>

Returns
A list of validation messages.

Arguments

connection The connection name to validate.

Example

validate_connection cpu.data_master/sdram.s1

Related Links

• validate_instance on page 555

• validate_instance_interface on page 556

• validate_system on page 557

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
554

9.19.7.8.6 validate_instance

Description
Validates the specified child instance and returns validation messages.

Usage
validate_instance <instance>

Returns
A list of validation messages.

Arguments

instance The child instance name to validate.

Example

validate_instance cpu

Related Links

• validate_connection on page 554

• validate_instance_interface on page 556

• validate_system on page 557

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
555

9.19.7.8.7 validate_instance_interface

Description
Validates an interface of an instance and returns validation messages.

Usage
validate_instance_interface <instance> <interface>

Returns
A list of validation messages.

Arguments

instance The child instance name.

interface The interface to validate.

Example

validate_instance_interface cpu data_master

Related Links

• validate_connection on page 554

• validate_instance on page 555

• validate_system on page 557

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
556

9.19.7.8.8 validate_system

Description
Validates the system and returns validation messages.

Usage
validate_system

Returns
A list of validation messages.

Arguments
No arguments.

Example

validate_system

Related Links

• validate_connection on page 554

• validate_instance on page 555

• validate_instance_interface on page 556

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
557

9.19.7.8.9 validate_component_footprint

Description
Validates the footprint of the specified child instance.

Usage
validate_component_footprint <instance>

Returns

String[] List of validation messages.

Arguments

instance (optional) Specifies the child instance name. If you omit this option, the
command validates all generic components in the system.

Example

validate_component_footprint cpu_0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
558

9.19.7.8.10 reload_component_footprint

Description
Validates the footprint of a specified child instance, and updates the footprint of the
instance in case of issues.

Usage
reload_component_footprint [<instance>]

Returns

String[] A list of validation messages.

Arguments

instance
(optional)

Specifies the child instance name to validate. If you do not specify
this option, the command validates all the generic components in
the system.

Example

reload_component_footprint cpu_0

Related Links

• load_instantiation on page 485

• save_instantiation on page 489

• validate_component_footprint on page 558

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
559

9.19.7.9 Miscellaneous

This section lists the miscellaneous commands that you can use for your Platform
Designer systems.

auto_assign_base_addresses on page 561

auto_assign_irqs on page 562

auto_assign_system_base_addresses on page 563

get_interconnect_requirement on page 564

get_interconnect_requirements on page 565

get_parameter_properties on page 566

lock_avalon_base_address on page 567

send_message on page 568

set_interconnect_requirement on page 569

set_use_testbench_naming_pattern on page 570

unlock_avalon_base_address on page 571

get_testbench_dutname on page 572

get_use_testbench_naming_pattern on page 573

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
560

9.19.7.9.1 auto_assign_base_addresses

Description
Assigns base addresses to all memory-mapped interfaces of an instance in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_base_addresses <instance>

Returns
No return value.

Arguments

instance The name of the instance with memory-mapped interfaces.

Example

auto_assign_base_addresses sdram

Related Links

• auto_assign_system_base_addresses on page 563

• lock_avalon_base_address on page 567

• unlock_avalon_base_address on page 571

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
561

9.19.7.9.2 auto_assign_irqs

Description
Assigns interrupt numbers to all connected interrupt senders of an instance in the
system.

Usage
auto_assign_irqs <instance>

Returns
No return value.

Arguments

instance The name of the instance with an interrupt sender.

Example

auto_assign_irqs uart_0

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
562

9.19.7.9.3 auto_assign_system_base_addresses

Description
Assigns legal base addresses to all memory-mapped interfaces of all instances in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_system_base_addresses

Returns
No return value.

Arguments
No arguments.

Example

auto_assign_system_base_addresses

Related Links

• auto_assign_base_addresses on page 561

• lock_avalon_base_address on page 567

• unlock_avalon_base_address on page 571

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
563

9.19.7.9.4 get_interconnect_requirement

Description
Returns the value of an interconnect requirement for a system or interface of a child
instance.

Usage
get_interconnect_requirement <element_id> <requirement>

Returns

String The value of the interconnect requirement.

Arguments

element_id {$system} for the system, or the qualified name of the interface of an
instance, in <instance>.<interface> format. In Tcl, the system
identifier is escaped, for example, {$system}.

requirement The name of the requirement.

Example

get_interconnect_requirement {$system} qsys_mm.maxAdditionalLatency

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
564

9.19.7.9.5 get_interconnect_requirements

Description
Returns the list of all interconnect requirements in the system.

Usage
get_interconnect_requirements

Returns

String[] A flattened list of interconnect requirements. Every sequence of three
elements in the list corresponds to one interconnect requirement. The first
element in the sequence is the element identifier. The second element is the
requirement name. The third element is the value. You can loop over the
returned list with a foreach loop, for example:

foreach { element_id name value } $requirement_list { loop_body
 }

Arguments
No arguments.

Example

get_interconnect_requirements

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
565

9.19.7.9.6 get_parameter_properties

Description
Returns the list of properties that you can query for any parameters, for example
parameters of instances, interfaces, instance interfaces, and connections.

Usage
get_parameter_properties

Returns

String[] The list of parameter properties.

Arguments
No arguments.

Example

get_parameter_properties

Related Links

• get_connection_parameter_property on page 526

• get_instance_interface_parameter_property on page 437

• get_instance_parameter_property on page 445

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
566

9.19.7.9.7 lock_avalon_base_address

Description
Prevents the memory-mapped base address from being changed for connections to
the specified interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
lock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

lock_avalon_base_address sdram.s1

Related Links

• auto_assign_base_addresses on page 561

• auto_assign_system_base_addresses on page 563

• unlock_avalon_base_address on page 571

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
567

9.19.7.9.8 send_message

Description
Sends a message to the user of the component. The message text is normally HTML.
You can use the element to provide emphasis. If you do not want the message
text to be HTML, then pass a list like { Info Text } as the message level,

Usage
send_message <level> <message>

Returns
No return value.

Arguments

level Intel Quartus Prime supports the following message levels:

• ERROR—provides an error message.

• WARNING—provides a warning message.

• INFO—provides an informational message.

• PROGRESS—provides a progress message.

• DEBUG—provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
568

9.19.7.9.9 set_interconnect_requirement

Description
Sets the value of an interconnect requirement for a system or an interface of a child
instance.

Usage
set_interconnect_requirement <element_id> <requirement> <value>

Returns
No return value.

Arguments

element_id {$system} for the system, or qualified name of the interface of an
instance, in <instance>.<interface> format. In Tcl, the system
identifier is escaped, for example, {$system}.

requirement The name of the requirement.

value The requirement value.

Example

set_interconnect_requirement {$system} qsys_mm.clockCrossingAdapter HANDSHAKE

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
569

9.19.7.9.10 set_use_testbench_naming_pattern

Description
Use this command to create testbench systems so that the generated file names for
the test system match the system's original generated file names. Without setting this
command, the generated file names for the test system receive the top-level
testbench system name.

Usage
set_use_testbench_naming_pattern <value>

Returns
No return value.

Arguments

value True or false.

Example

set_use_testbench_naming_pattern true

Notes
Use this command only to create testbench systems.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
570

9.19.7.9.11 unlock_avalon_base_address

Description
Allows the memory-mapped base address to change for connections to the specified
interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
unlock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

unlock_avalon_base_address sdram.s1

Related Links

• auto_assign_base_addresses on page 561

• auto_assign_system_base_addresses on page 563

• lock_avalon_base_address on page 567

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
571

9.19.7.9.12 get_testbench_dutname

Description
Returns the currently set dutname for the test-bench systems. Use this command only
when creating test-bench systems.

Usage
get_testbench_dutname

Returns

String The currently set dutname. Returns NULL if empty.

Arguments
No arguments.

Example

get_testbench_dutname

Related Links

• get_use_testbench_naming_pattern on page 573

• set_use_testbench_naming_pattern on page 570

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
572

9.19.7.9.13 get_use_testbench_naming_pattern

Description
Verifies if the test-bench naming pattern is set to be used. Use this command only
when creating test-bench systems.

Usage
get_use_testbench_naming_pattern

Returns

boolean True, if the test-bench naming pattern is set to be used.

Arguments
No arguments.

Example

get_use_testbench_naming_pattern

Related Links

• get_testbench_dutname on page 572

• set_use_testbench_naming_pattern on page 570

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
573

9.19.8 Platform Designer Scripting Property Reference

Interface properties work differently for _hw.tcl scripting than with Platform Designer
scripting. In _hw.tcl, interfaces do not distinguish between properties and
parameters. In Platform Designer scripting, the properties and parameters are unique.

The following are the Platform Designer scripting properties:

Connection Properties on page 575

Design Environment Type Properties on page 576

Direction Properties on page 577

Element Properties on page 578

Instance Properties on page 579

Interface Properties on page 580

Message Levels Properties on page 581

Module Properties on page 582

Parameter Properties on page 583

Parameter Status Properties on page 585

Parameter Type Properties on page 586

Port Properties on page 587

Project Properties on page 588

System Info Type Properties on page 589

Units Properties on page 591

Validation Properties on page 592

Interface Direction on page 593

File Set Kind on page 594

Access Type on page 595

Instantiation Hdl File Properties on page 596

Instantiation Interface Duplicate Type on page 597

Instantiation Interface Properties on page 598

Instantiation Properties on page 599

Port Properties on page 600

VHDL Type on page 601

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
574

9.19.8.1 Connection Properties

Type Name Description

string END Indicates the end interface of the connection.

string NAME Indicates the name of the connection.

string START Indicates the start interface of the connection.

String TYPE The type of the connection.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
575

9.19.8.2 Design Environment Type Properties

Description
IP cores use the design environment to identify the most appropriate interfaces to
connect to the parent system.

Name Description

NATIVE Supports native IP interfaces.

QSYS Supports standard Platform Designer interfaces.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
576

9.19.8.3 Direction Properties

Name Description

BIDIR Indicates the direction for a bidirectional signal.

INOUT Indicates the direction for an input signal.

OUTPUT Indicates the direction for an output signal.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
577

9.19.8.4 Element Properties

Description
Element properties are, with the exception of ENABLED and NAME, read-only
properties of the types of instances, interfaces, and connections. These read-only
properties represent metadata that does not vary between copies of the same type.
ENABLED and NAME properties are specific to particular instances, interfaces, or
connections.

Type Name Description

String AUTHOR The author of the component or interface.

Boolean AUTO_EXPORT Indicates whether unconnected interfaces on the instance are automatically
exported.

String CLASS_NAME The type of the instance, interface or connection, for example, altera_nios2
or avalon_slave.

String DESCRIPTION The description of the instance, interface or connection type.

String DISPLAY_NAME The display name for referencing the type of instance, interface or connection.

Boolean EDITABLE Indicates whether you can edit the component in the Platform Designer
Component Editor.

Boolean ENABLED Indicates whether the instance is enabled.

String GROUP The IP Catalog category.

Boolean INTERNAL Hides internal IP components or sub-components from the IP Catalog..

String NAME The name of the instance, interface or connection.

String VERSION The version number of the instance, interface or connection, for example, 16.1.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
578

9.19.8.5 Instance Properties

Type Name Description

String AUTO_EXPORT Indicates whether Platform Designer automatically exports the unconnected
interfaces on the instance.

Boolean ENABLED If true, Platform Designer includes this instance in the generated system.

String NAME The name of the system, which Platform Designer uses as the name of the top-
level module in the generated HDL.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
579

9.19.8.6 Interface Properties

Type Name Description

String EXPORT_OF Indicates which interface of a child instance to export through the top-level interface.
Before using this command, you must create the top-level interface using the
add_interface command. You must use the format:
<instanceName.interfaceName>. For example:

set_interface_property CSC_input EXPORT_OF my_colorSpaceConverter.input_port

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
580

9.19.8.7 Message Levels Properties

Name Description

COMPONENT_INFO Reports an informational message only during component editing.

DEBUG Provides messages when debug mode is enabled.

ERROR Provides an error message.

INFO Provides an informational message.

PROGRESS Reports progress during generation.

TODOERROR Provides an error message that indicates the system is incomplete.

WARNING Provides a warning message.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
581

9.19.8.8 Module Properties

Type Name Description

String GENERATION_ID The generation ID for the system.

String NAME The name of the instance.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
582

9.19.8.9 Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a parameter
changes and AFFECTS_ELABORATION is false, the elaboration phase
does not repeat and improves performance. When
AFFECTS_ELABORATION is set to true, the default value, Platform
Designer reanalyzes the HDL file to determine the port widths and
configuration each time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you provide a
top-level HDL module. The default value is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property determines whether a
parameter's value sets derived parameters, and whether the value
affects validation messages. Setting this property to false may
improve response time in the parameter editor when the value
changes.

String[] ALLOWED_RANGES Indicates the range or ranges of the parameter. For integers, each
range is a single value, or a range of values defined by a start and
end value, and delimited by a colon, for example, 11:15. This
property also specifies the legal values and description strings for
integers, for example, {0:None 1:Monophonic 2:Stereo
4:Quadrophonic}, where 0, 1, 2, and 4 are the legal values. You
can assign description strings in the parameter editor for string
variables. For example,

ALLOWED_RANGES {"dev1:Cyclone IV GX""dev2:Stratix V
 GT"}

String DEFAULT_VALUE The default value.

Boolean DERIVED When True, indicates that the parameter value is set by the
component and cannot be set by the user. Derived parameters are not
saved as part of an instance's parameter values. The default value is
False.

String DESCRIPTION A short user-visible description of the parameter, suitable for a tooltip
description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property.
• boolean--For integer parameters whose value are 0 or 1. The

parameter displays as an option that you can turn on or off.
• radio—displays a parameter with a list of values as radio buttons.
• hexadecimal—for integer parameters, displays and interprets

the value as a hexadecimal number, for example: 0x00000010
instead of 16.

• fixed_size—for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
Add and Remove buttons from tables.

String DISPLAY_NAME The GUI label that appears to the left of this parameter.

String DISPLAY_UNITS The GUI label that appears to the right of the parameter.

Boolean ENABLED When False, the parameter is disabled. The parameter displays in
the parameter editor but is grayed out, indicating that you cannot edit
this parameter.

String GROUP Controls the layout of parameters in the GUI.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
583

Type Name Description

Boolean HDL_PARAMETER When True, Platform Designer passes the parameter to the HDL
component description. The default value is False.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to DESCRIPTION,
but allows a more detailed explanation.

String NEW_INSTANCE_VALUE Changes the default value of a parameter without affecting older
components that do not explicitly set a parameter value, and use the
DEFAULT_VALUE property. Oder instances continue to use
DEFAULT_VALUE for the parameter and new instances use the value
assigned by NEW_INSTANCE_VALUE.

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to a
parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information. For example:

SYSTEM_INFO <info-type>

String SYSTEM_INFO_ARG Defines an argument to pass to SYSTEM_INFO. For example, the
name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies the types of system information that you can query. Refer to
System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the parameter
editor.

String WIDTH Indicates the width of the logic vector for the STD_LOGIC_VECTOR
parameter.

Related Links

• System Info Type Properties on page 589

• Parameter Type Properties on page 586

• Units Properties on page 591

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
584

9.19.8.10 Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates that this parameter is an active parameter.

Boolean DEPRECATED Indicates that this parameter exists only for backwards compatibility, and may
not have any effect.

Boolean EXPERIMENTAL Indicates that this parameter is experimental and not exposed in the design
flow.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
585

9.19.8.11 Parameter Type Properties

Name Description

BOOLEAN A boolean parameter set to true or false.

FLOAT A signed 32-bit floating point parameter. (Not supported for HDL parameters.)

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. (Not supported for HDL
parameters.)

LONG A signed 64-bit integer parameter. (Not supported for HDL parameters.)

NATURAL A 32-bit number that contains values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter set to 0 or 1.

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. (Not supported for HDL parameters.)

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
586

9.19.8.12 Port Properties

Type Name Description

(various) DIRECTION The direction of the signal. Refer to Direction Properties.

String ROLE The type of the signal. Each interface type defines a set of interface types for its
ports.

Integer WIDTH The width of the signal in bits.

Related Links

Direction Properties on page 577

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
587

9.19.8.13 Project Properties

Type Name Description

String DEVICE The device part number in the Intel Quartus Prime project that contains the
Platform Designer system.

String DEVICE_FAMILY The device family name in the Intel Quartus Prime project that contains the
Platform Designer system.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
588

9.19.8.14 System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string that describes the address map
for the interface specified in the SYSTEM_INFO
parameter property.

Integer ADDRESS_WIDTH The number of address bits that Platform Designer
requires to address memory-mapped slaves connected
to the specified memory-mapped master in this
instance.

String AVALON_SPEC The version of the Platform Designer interconnect. Refer
to Avalon Interface Specifications.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the SYSTEM_INFO parameter
property. If this instance has interfaces on multiple clock
domains, you can use this property to determine which
interfaces are on each clock domain. The absolute value
of the integer is arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the SYSTEM_INFO parameter property. If
zero, the clock rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. You use this property to determine the reset
sink for global reset when you use SOPC Builder
interconnect that conforms to Avalon Interface
Specifications.

String CUSTOM_INSTRUCTION_SLAVES Provides slave information, including the name, base
address, address span, and clock cycle type.

String DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the selected device.

String DEVICE_FAMILY The family name of the selected device.

String DEVICE_FEATURES A list of key/value pairs delimited by spaces that
indicate whether a device feature is available in the
selected device family. The format of the list is suitable
for passing to the array command. The keys are device
features. The values are 1 if the feature is present, and
0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the selected device.

Integer GENERATION_ID An integer that stores a hash of the generation time that
Platform Designer uses as a unique ID for a generation
run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer representing the reset domain for the
interface specified in the SYSTEM_INFO parameter
property If this instance has interfaces on multiple reset

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
589

Type Name Description

domains, you can use this property to determine which
interfaces are on each reset domain. The absolute value
of the integer is arbitrary.

String TRISTATECONDUIT_INFO An XML description of the tri-state conduit masters
connected to a tri-state conduit slave. The slave is
specified as the SYSTEM_INFO parameter property. The
value contains information about the slave, connected
master instance and interface names, and signal names,
directions, and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Links

• Design Environment Type Properties on page 576

• Avalon Interface Specifications

• Platform Designer Interconnect on page 659

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
590

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

9.19.8.15 Units Properties

Name Description

ADDRESS A memory-mapped address.

BITS Memory size in bits.

BITSPERSECOND Rate in bits per second.

BYTES Memory size in bytes.

CYCLES A latency or count in clock cycles.

GIGABITSPERSECOND Rate in gigabits per second.

GIGABYTES Memory size in gigabytes.

GIGAHERTZ Frequency in GHz.

HERTZ Frequency in Hz.

KILOBITSPERSECOND Rate in kilobits per second.

KILOBYTES Memory size in kilobytes.

KILOHERTZ Frequency in kHz.

MEGABITSPERSECOND Rate, in megabits per second.

MEGABYTES Memory size in megabytes.

MEGAHERTZ Frequency in MHz.

MICROSECONDS Time in microseconds.

MILLISECONDS Time in milliseconds.

NANOSECONDS Time in nanoseconds.

NONE Unspecified units.

PERCENT A percentage.

PICOSECONDS Time in picoseconds.

SECONDS Time in seconds.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
591

9.19.8.16 Validation Properties

Type Name Description

Boolean AUTOMATIC_VALIDATION When true, Platform Designer runs system validation and
elaboration after each scripting command. When false, Platform
Designer runs system validation with validation scripting commands.
Some queries affected by system elaboration may be incorrect if
automatic validation is disabled. You can disable validation to make a
system script run faster.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
592

9.19.8.17 Interface Direction

Type Name Description

String INPUT Indicates that the interface is a slave (input, transmitter, sink, or end).

String OUTPUT Indicates that the interface is a master (output, receiver, source, or start).

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
593

9.19.8.18 File Set Kind

Name Description

EXAMPLE_DESIGN This file-set contains example design files.

QUARTUS_SYNTH This file-set contains files that Platform Designer uses for Intel Quartus Prime Synthesis

SIM_VERILOG This file-set contains files that Platform Designer uses for Verilog HDL Simulation.

SIM_VHDL This file-set contains files that Platform Designer uses for VHDL Simulation.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
594

9.19.8.19 Access Type

Name Type Description

String READ_ONLY Indicates that the parameter can be only read-only.

String WRITABLE Indicates that the parameter has read/write properties.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
595

9.19.8.20 Instantiation Hdl File Properties

Name Type Description

Boolean CONTAINS_INLINE_CONFIGURATION Returns True if the HDL file contains inline configuration.

Boolean IS_CONFIGURATION_PACKAGE Returns True if the HDL file is a configuration package.

Boolean IS_TOP_LEVEL Returns True if the HDL file is the top-level HDL file.

String OUTPUT_PATH Specifies the output path of the HDL file.

String TYPE Specifies the HDL file type of the HDL file.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
596

9.19.8.21 Instantiation Interface Duplicate Type

Type Name Description

String CLONE Creates a copy of an interface and all the interface ports.

String MIRROR Creates a copy of an interface with all the port roles and directions reversed.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
597

9.19.8.22 Instantiation Interface Properties

Name Type Description

String DIRECTION The direction of the interface.

String TYPE The type of the interface.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
598

9.19.8.23 Instantiation Properties

Name Type Description

String HDL_COMPILATION_LIBRARY Indicates the HDL compilation library name of the generic
component.

String HDL_ENTITY_NAME Indicates the HDL entity name of the Generic Component.

String IP_FILE Indicates the .ip file path that implements the generic component.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
599

9.19.8.24 Port Properties

Name Type Description

String DIRECTION Specifies the direction of the signal

String NAME Renames a top-level port. Only use with set_interface_port_property

String ROLE Specifies the type of the signal. Each interface type defines a set of interface types
for its ports.

String VHDL_TYPE Specifies the VHDL type of the signal. Can be either STANDARD_LOGIC, or
STANDARD_LOGIC_VECTOR.

Integer WIDTH Specifies the width of the signal in bits.

Related Links

Direction Properties on page 577

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
600

9.19.8.25 VHDL Type

Name Description

STD_LOGIC Represents the value of a digital signal in a wire.

STD_LOGIC_VECTOR Represents an array of digital signals and variables.

9.19.9 Parameterizing an Instantiated IP Core after save_system
Command

When you call the save_system command in your Tcl script, Platform Designer
converts all the instantiated IP cores in your system to generic components.

To modify these IP cores after saving your system, you must first load the actual
component within the instantiated generic component. Re-parameterize an
instantiated IP core using one of the following methods:

1. Load the component in the Platform Designer system, modify the component's
parameter value, and save the component:

…
save_system kernel_system.qsys
…
load_component cra_root
set_component_parameter_value DATA_W 64
save_component
…

2. Load the .ip file specific to the component, modify the instance's parameter
value, and save the .ip file:

…
save_system kernel_system.qsys
…
load_system cra_root.ip
set_instance_parameter_value cra_root DATA_W 64
save_system
…

Note: To directly modify an instance parameter value after the save_system
command, you must load the .ip file corresponding to the IP component.

Related Links

• set_component_parameter_value on page 521

• load_component on page 518

• save_component on page 520

• save_system on page 413

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
601

9.19.10 Validate the Generic Components in a System with qsys-validate

Use the qsys-validate utility to run IP component footprint validation on the .qsys
file for the system.

Table 116. qsys-validate Command-Line Options

Option Usage Description

1st arg file Optional The name of the .qsys system file to validate.

--search-path[=<value>] Optional If omitted, Platform Designer uses a standard default
path. If provided, Platform Designer searches a comma-
separated list of paths. To include the standard path in
your replacement, use "$", for
example: /extra/dir.$.

--strict Optional Enables strict validation. All warnings are reported as
errors

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses for
allocations when running qsys-edit. You specify this
value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Display help for qsys-validate.

9.19.11 Archive a Platform Designer System with qsys-archive

The qsys-archive command allows you to archive a system, extract an archived
system, and retrieve information about the system's dependencies.

Table 117. qsys-archive Command-Line Options

Option Usage Description

<1st arg file> Required The filename of the root Platform Designer system,
Platform Designer file archive, or the Intel Quartus Prime
project file.

--search-path[=<value>] Optional If you omit this option, Platform Designer uses a
standard default path. If you specify this option, Platform
Designer searches a comma-separated list of paths. To
include the standard path in your replacement, use "$",
for example: /extra/dir,$.

--archive Optional Creates a zip archive of the specified Platform Designer
system or the Intel Quartus Prime project.

--report-file[=<value>] Optional Lists the files that the Platform Designer system or the
Intel Quartus Prime project references, and writes the
files list to the specified name in .txt format.

--output-directory[=<file>] Optional Specifies the output directory to save the archive.

--extract Optional Extracts all the files in the given archive.

--output-name[=<value>] Optional Specifies the output name to save the archive or report.

collect-to-common-
directory[=<true|false>]

Optional When archiving, collects all the .qsys files in the root
directory of the archive and all .ip files in a single ip
directory, and updates all the matching references. The
default option is true.

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
602

Option Usage Description

new-quartus-project[=<value>] Optional Creates a new Intel Quartus Prime project which contains
all the .ip and system files referenced by the Platform
Designer system or the Intel Quartus Prime project.

quartus-project[=<value>] Optional When you use this command in combination with:
• --report-file—adds all the referenced files to the

Intel Quartus Prime project.
• --extract—adds all extracted files to the specified

project.
• --archive—archives all the system and .ip files

referenced in the Intel Quartus Prime project.

--rev Optional Specifies the name of the Intel Quartus Prime project
revision.

--include-generated-files Optional Includes all the generated files of the Platform Designer
system.

--force Optional Forcefully creates the specified archive or report,
overwriting any existing archives or reports.

--jvm-max-heap-size=<value> Optional Specifies the maximum memory size Platform Designer
uses for allocations when running qsys-edit. Specify
this value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Displays help for qsys-archive.

Alternatively, you can archive and restore your system using the Platform Designer
GUI. For more information, refer to Archive your System section.

Related Links

Archive your System on page 355

9.19.12 Generate an IP Component or Platform Designer System with
quartus_ipgenerate

The quartus_ipgenerate command allows you to generate IP components or a
Platform Designer system in your Intel Quartus Prime project. Ensure that you include
the IP component or the Platform Designer system you wish to generate in your Intel
Quartus Prime project.

To run the quartus_ipgenerate command from the Intel Quartus Prime shell, type:

quartus_ipgenerate <project name> [<options>]

Use any of the following options with the quartus_ipgenerate utility:

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
603

Table 118. quartus_ipgenerate Command-Line Options

Option Usage Description

<1st arg file> Required Specifies the name of the Intel Quartus Prime project file (.qpf).
This option generates all the .qsys and .ip files in the specified
Intel Quartus Prime project (<project name>).

-f [<argument file>] Optional Specifies a file containing additional command-line arguments.
Arguments that you specify after this option can conflict or override
the options you specify in the argument file.

--rev[=<revision name>] or
-c[=<revision name>]

Optional Specifies the Intel Quartus Prime project revision and the
associated .qsf file to use. If you omit this option, Platform
Designer uses the same revision name as your Intel Quartus Prime
project.

--clear_ip_generation_dirs or
--clean

Optional Clears the generation directories of all the .qsys or the .ip files in
the specified Intel Quartus Prime project. For example, to clear the
generation directories in the project test, run the following
command:

quartus_ipgenerate --clear_ip_generation_dirs test

or

quartus_ipgenerate --clean test

--generate_ip_file --
ip_file[=<ip file name>]

Optional Generates the files for <file name>.ip file in the specified Intel
Quartus Prime project.
Use the following optional flags with --generate_ip_file:
• -synthesis[=<value>]—optional argument that specifies the

synthesis target type. Specify the value as either verilog or vhdl.
The default value is verilog.

• -simulation[=<value>]—optional argument that specifies the
simulation target type. Specify the value as either verilog or vhdl.
If you omit this flag, Platform Designer does not generate any
simulation files.

• --clear_ip_generation_dirs—clears the preexisting
generation directories before generation. If you omit this
command, Platform Designer does not clear the generation
directories.

For example, to generate the files for a test.qsys file within the
project, test:

 quartus_ipgenerate --generate_ip_file --synthesis=vhdl --
simulation=verilog --clear_ip_generation_dirs --
ip_file=test.qsys test

--generate_project_ip_files
[<project name>]

Optional Generates the files for all the .qsys and .ip files in the specified
Intel Quartus Prime project.
Use any of the following optional flags with
--generate_project_ip_files:
• -synthesis[=<value>]—optional argument that specifies the

synthesis target type. Specify the value as either verilog or vhdl.
The default value is verilog.

• -simulation[=<value>]—optional argument that specifies the
simulation target type. Specify the value as either verilog or vhdl.
If you omit this flag, Platform Designer does not generate any
simulation files.

• --clear_ip_generation_dirs—clears the preexisting
generation directories before generation. If you omit this
command, Platform Designer does not clear the generation
directories.

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
604

Option Usage Description

For example, to generate all the .qsys and .ip files within the
project, test:

quartus_ipgenerate --generate_project_ip_files --
synthesis=vhdl --simulation=verilog --
clear_ip_generation_dirs test

--get_project_ip_files Optional Returns a list of the .qsys or .ip files in the specified Intel Quartus
Prime project. This option displays each file in a separate Intel
Quartus Prime message line. For example, to get a list of .qsys files
in the project test, and revision rev:

quartus_ipgenerate --get_project_ip_files test -c rev

--lower_priority Optional Allows you to lower the priority of the current process. This option is
useful if you use a single-processor computer, allowing you to use
other applications more easily while the Intel Quartus Prime software
runs the command in the background.

9.19.13 Generate an IP Variation File with ip-deploy

Use the ip-deploy utility to generate an IP variation file (.ip file) in the specified
location.

Table 119. ip-deploy Command-Line Options

Option Usage Description

--component-name[=<value>] Required The name of a component you instantiate.

--output-name[=<value>] Optional Name for the resulting component; defaults to the
component's type name.

--component-parameter[=<value>] Optional Repeatable. A single value assignment, like
--component-param=WIDTH=11. To assign multiple
parameters, use this option several times.

--preset[=<value>] Optional Repeatable. The name of a saved preset to use in
creating a variation of the IP component. Presets are
additive and repeatable.

--family[=<value>] Optional Sets the device family

--part[=<value>] Optional Sets the device part number. You can also use this
command to set the base device, device speed-grade,
device family, and device feature's system information.

--output-directory[=<value>] Optional This directory contains the output IP variation file.
Platform Designer automatically creates the directory if
the directory does not exist. If you don't specify an
output directory, the output directory is the current
working directory.

--search-path[=<value>] Optional If you do not specify the search path, the command uses
a standard default path. If you provide a search path,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", like /extra/dir,$.

--jvm-max-heap-size[=<value>] Optional The maximum memory size Platform Designer uses for
allocations when running qsys-edit. You specify this
value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Displays help for ip-deploy

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
605

9.20 Document Revision History

The table below indicates edits made to the Creating a System With Platform Designer
content since its creation.

Table 120. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer

2017.05.06 17.0.0 • Updated the topic - Create/Open Project in Qsys Pro
• Updated the topic - Modify the Target Device
• Updated the topic - Modify the IP Search Path
• Added new topic - Save your System
• Added new topic - Archive your System
• Added new topic - Synchronize IP File References
• Updated the topic - Upgrade Outdated IP Components in Qsys Pro.
• Added new topic - Run System Scripts
• Added new topic - View Avalon Memory Mapped Domains in Your

Qsys Pro System
• Updated the topic - Qsys Pro Scripting Command Reference for new

Tcl scripting commands
• Updated the topic - Qsys Pro Scripting Property Reference for new Tcl

scripting property

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.
• Integrated Qsys Pro chapter with Qsys.
• Added command-line options for qsys-archive.
• Added command-line options for quartus_ipgenerate.
• Updated the Qsys Pro scripting commands.
• Added topic on Qsys Pro design conversion.

2016.05.03 16.0.0 • Qsys Command-Line Utilities updated with latest supported
command-line options.

• Added: Generate Header Files

2015.11.02 15.1.0 • Added: Troubleshooting IP or Qsys Pro System Upgrade.
• Added: Generating Version-Agnostic IP and Qsys Pro Simulation

Scripts.
• Changed instances of Quartus II to Intel Quartus Prime.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • New figure: Avalon-MM Write Master Timing Waveforms in the
Parameters Tab.

• Added Enable ECC protection option, Specify Qsys Interconnect
Requirements.

• Added External Memory Interface Debug Toolkit note, Generate a
Qsys System.

• Modelsim-Altera now supports native mixed-language (VHDL/Verilog/
SystemVerilog) simulation, Generating Files for Synthesis and
Simulation.

December 2014 14.1.0 • Create and Manage Hierarchical Qsys Systems.
• Schematic tab.
• View and Filter Clock and Reset Domains.
• File ➤ Recent Projects menu item.
• Updated example: Hierarchical System Using Instance Parameters

continued...

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
606

Date Version Changes

August 2014 14.0a10.0 • Added distinction between legacy and standard device generation.
• Updated: Upgrading Outdated IP Components.
• Updated: Generating a Qsys System.
• Updated: Integrating a Qsys System with the Quartus II Software.
• Added screen shot: Displaying Your Qsys System.

June 2014 14.0.0 • Added tab descriptions: Details, Connections.
• Added Managing IP Settings in the Quartus II Software.
• Added Upgrading Outdated IP Components.
• Added Support for Avalon-MM Non-Power of Two Data Widths.

November 2013 13.1.0 • Added Integrating with the .qsys File.
• Added Using the Hierarchy Tab.
• Added Managing Interconnect Requirements.
• Added Viewing Qsys Interconnect.

May 2013 13.0.0 • Added AMBA APB support.
• Added qsys-generate utility.
• Added VHDL BFM ID support.
• Added Creating Secure Systems (TrustZones) .
• Added CMSIS Support for Qsys Systems With An HPS Component.
• Added VHDL language support options.

November 2012 12.1.0 • Added AMBA AXI4 support.

June 2012 12.0.0 • Added AMBA AX3I support.
• Added Preset Editor updates.
• Added command-line utilities, and scripts.

November 2011 11.1.0 • Added Synopsys VCS and VCS MX Simulation Shell Script.
• Added Cadence Incisive Enterprise (NCSIM) Simulation Shell Script.
• Added Using Instance Parameters and Example Hierarchical System

Using Parameters.

May 2011 11.0.0 • Added simulation support in Verilog HDL and VHDL.
• Added testbench generation support.
• Updated simulation and file generation sections.

December 2010 10.1.0 Initial release.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

9 Creating a System with Platform Designer

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
607

https://www.altera.com/search-archives

10 Creating Platform Designer Components

You can create a Hardware Component Definition File (_hw.tcl) to describe and
package IP components for use in a Platform Designer system.

Note: Intel now refers to Qsys Pro as Platform Designer.

A _hw.tcl describes IP components, interfaces and HDL files. Platform Designer
provides the Component Editor to help you create a simple _hw.tcl file.

The Demo AXI Memory example on the Platform Designer Design Examples
page of the Altera® web site provides the full code examples that appear in the
following topics.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Related Links

• Avalon Interface Specifications

• Protocol Specifications

• Demo AXI Memory Example

10.1 Platform Designer Components

A Platform Designer component includes the following elements:

• Information about the component type, such as name, version, and author.

• HDL description of the component’s hardware, including SystemVerilog, Verilog
HDL, or VHDL files.

• A Synopsys Design Constraints File .sdc that defines the component for synthesis
and simulation.

• A .ip file that defines the component's parameters.

• A component’s interfaces, including I/O signals.

10.1.1 Interface Support in Platform Designer

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Platform Designer IP components can include the following interface types:

Table 121. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master devices may
be processors and DMAs, while slave memory devices may be RAMs, ROMs, and control
registers. Data transfers between master and slave may be uni-directional (read only or write
only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data, as
well as high-bandwidth, low-latency IP components. Streaming creates datapaths for
unidirectional traffic, including multichannel streams, packets, and DSP data. The Avalon-ST
interconnect is flexible and can implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet, Interlaken, and video.
You can define bus widths, packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that are exported from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection, or conduit interfaces can be exported
and brought to the top-level of the system as top-level system I/O. You can use conduits to
connect to external devices, for example external DDR SDRAM memory, and to FPGA logic
defined outside of the Platform Designer system.

10.1.2 Component Structure

Intel provides components automatically installed with the Intel Quartus Prime
software. You can obtain a list of Platform Designer-compliant components provided
by third-party IP developers on Altera's Intellectual Property & Reference
Designs page by typing: qsys certified in the Search box, and then selecting IP
Core & Reference Designs. Components are also provided with Intel development
kits, which are listed on the All Development Kits page.

Every component is defined with a <component_name>_hw.tcl file, a text file
written in the Tcl scripting language that describes the component to Platform
Designer. When you design your own custom component, you can create the _hw.tcl
file manually, or by using the Platform Designer Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a
file that you can edit outside of the Component Editor to add advanced procedures.
When you edit a previously saved _hw.tcl file, Platform Designer automatically backs
up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so
that other users can use the component in their systems. The _hw.tcl file contains
relative paths to the other files, so if you move an _hw.tcl file, you should also move
all the HDL and other files associated with it.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
609

There are four component types:

• Static— static components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

• Generated—generated component's fileset callback allows an instance of the
component to create unique HDL design files based on the instance's parameter
values.

• Composed—composed components are subsystems constructed from instances of
other components. You can use a composition callback to manage the subsystem
in a composed component.

• Generic—generic components allow instantiation of IP components without an
HDL implementation. Generic components enable hierarchical isolation between
system interconnect and IP components.

Related Links

• Create a Composed Component or Subsystem on page 638

• Add Component Instances to a Static or Generated Component on page 640

10.1.3 Component File Organization

A typical component uses the following directory structure where the names of the
directories are not significant:

<component_directory>/

• <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd
files that contain the top-level module, along with any required constraint files.

• <component_name> _hw.tcl—The component description file.

• <component_name> _sw.tcl—The software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component, when
required.

• <software>/—Contains software drivers or libraries related to the component.

Note: Refer to the Nios II Software Developer’s Handbook for information about writing a
device driver or software package suitable for use with the Nios II processor.

Related Links

Nios II Software Developer’s Handbook
Refer to the "Nios II Software Build Tools" and "Overview of the Hardware
Abstraction Layer" chapters.

10.1.4 Component Versions

Platform Designer systems support multiple versions of the same component within
the same system; you can create and maintain multiple versions of the same
component.

If you have multiple _hw.tcl files for components with the same NAME module
properties and different VERSION module properties, both versions of the component
are available.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
610

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf

If multiple versions of the component are available in the IP Catalog, you can add a
specific version of a component by right-clicking the component, and then selecting
Add version <version_number>.

10.1.4.1 Upgrade IP Components to the Latest Version

When you open a Platform Designer design, if Platform Designer detects IP
components that require regeneration, the Upgrade IP Cores dialog box appears and
allows you to upgrade outdated components.

Components that you must upgrade in order to successfully compile your design
appear in red. Status icons indicate whether a component is currently being
regenerated, the component is encrypted, or that there is not enough information to
determine the status of component. To upgrade a component, in the Upgrade IP
Cores dialog box, select the component that you want to upgrade, and then click
Upgrade. The Intel Quartus Prime software maintains a list of all IP components
associated with your design on the Components tab in the Project Navigator.

Related Links

Upgrade IP Components Dialog Box
In Intel Quartus Prime Help

10.2 Design Phases of an IP Component

When you define a component with the Platform Designer Component Editor, or a
custom _hw.tcl file, you specify the information that Platform Designer requires to
instantiate the component in a Platform Designer system and to generate the
appropriate output files for synthesis and simulation.

The following phases describe the process when working with components in Platform
Designer:

• Discovery—During the discovery phase, Platform Designer reads the _hw.tcl
file to identify information that appears in the IP Catalog, such as the component's
name, version, and documentation URLs. Each time you open Platform Designer,
the tool searches for the following file types using the default search locations and
entries in the IP Search Path:

— _hw.tcl files—Each _hw.tcl file defines a single component.

— IP Index (.ipx) files—Each .ipx file indexes a collection of available
components, or a reference to other directories to search.

• Static Component Definition—During the static component definition phase,
Platform Designer reads the _hw.tcl file to identify static parameter declarations,
interface properties, interface signals, and HDL files that define the component. At
this stage of the life cycle, the component interfaces may be only partially defined.

• Parameterization—During the parameterization phase, after an instance of the
component is added to a Platform Designer system, the user of the component
specifies parameters with the component’s parameter editor.

• Validation—During the validation phase, Platform Designer validates the values
of each instance's parameters against the allowed ranges specified for each
parameter. You can use callback procedures that run during the validation phase
to provide validation messages. For example, if there are dependencies between
parameters where only certain combinations of values are supported, you can
report errors for the unsupported values.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
611

http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_com_regenerate_ip.htm

• Elaboration—During the elaboration phase, Platform Designer queries the
component for its interface information. Elaboration is triggered when an instance
of a component is added to a system, when its parameters are changed, or when
a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based
on the values of parameters. For example, interfaces defined with static
declarations can be enabled or disabled during elaboration. When elaboration is
complete, the component's interfaces and design logic must be completely
defined.

• Composition—During the composition phase, a component can manipulate the
instances in the component's subsystem. The _hw.tcl file uses a callback
procedure to provide parameterization and connectivity of sub-components.

• Generation—During the generation phase, Platform Designer generates synthesis
or simulation files for each component in the system into the appropriate output
directories, as well as any additional files that support associated tools

10.3 Create IP Components in the Platform Designer Component
Editor

The Platform Designer Component Editor allows you to create and package an IP
component. When you use the Component Editor to define a component, Platform
Designer writes the information to an _hw.tcl file.

The Platform Designer Component Editor allows you to perform the following tasks:

• Specify component’s identifying information, such as name, version, author, etc.

• Specify the SystemVerilog, Verilog HDL, VHDL files, and constraint files that define
the component for synthesis and simulation.

• Create an HDL template to define a component interfaces, signals, and
parameters.

• Set parameters on interfaces and signals that can alter the component's structure
or functionality.

If you add the top-level HDL file that defines the component on Files tab in the
Platform Designer Component Editor, you must define the component's parameters
and signals in the HDL file. You cannot add or remove them in the Component Editor.

If you do not have a top-level HDL component file, you can use the Platform Designer
Component Editor to add interfaces, signals, and parameters. In the Component
Editor, the order in which the tabs appear reflects the recommended design flow for
component development. You can use the Prev and Next buttons to guide you
through the tabs.

In a Platform Designer system, the interfaces of a component are connected in the
system, or exported as top-level signals from the system.

If the component is not based on an existing HDL file, enter the parameters, signals,
and interfaces first, and then return to the Files tab to create the top-level HDL file
template. When you click Finish, Platform Designer creates the component _hw.tcl
file with the details that you enter in the Component Editor.

When you save the component, it appears in the IP Catalog.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
612

If you require custom features that the Platform Designer Component Editor does not
support, for example, an elaboration callback, use the Component Editor to create the
_hw.tcl file, and then manually edit the file to complete the component definition.

Note: If you add custom coding to a component, do not open the component file in the
Platform Designer Component Editor. The Platform Designer Component Editor
overwrites your custom edits.

Example 80. Platform Designer Creates an _hw.tcl File from Entries in the Component
Editor

connection point clock

add_interface clock clock end
set_interface_property clock clockRate 0
set_interface_property clock ENABLED true

add_interface_port clock clk clk Input 1

connection point reset

add_interface reset reset end
set_interface_property reset associatedClock clock
set_interface_property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_interface_port reset reset_n reset_n Input 1

connection point streaming

add_interface streaming avalon_streaming start
set_interface_property streaming associatedClock clock
set_interface_property streaming associatedReset reset
set_interface_property streaming dataBitsPerSymbol 8
set_interface_property streaming errorDescriptor ""
set_interface_property streaming firstSymbolInHighOrderBits true
set_interface_property streaming maxChannel 0
set_interface_property streaming readyLatency 0
set_interface_property streaming ENABLED true

add_interface_port streaming aso_data data Output 8
add_interface_port streaming aso_valid valid Output 1
add_interface_port streaming aso_ready ready Input 1

connection point slave

add_interface slave axi end
set_interface_property slave associatedClock clock
set_interface_property slave associatedReset reset
set_interface_property slave readAcceptanceCapability 1
set_interface_property slave writeAcceptanceCapability 1
set_interface_property slave combinedAcceptanceCapability 1
set_interface_property slave readDataReorderingDepth 1
set_interface_property slave ENABLED true

add_interface_port slave axs_awid awid Input AXI_ID_W
...
add_interface_port slave axs_rresp rresp Output 2

Related Links

Component Interface Tcl Reference on page 791

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
613

10.3.1 Save an IP Component and Create the _hw.tcl File

You save a component by clicking Finish in the Platform Designer Component Editor.
The Component Editor saves the component as <component_name> _hw.tcl file.

Intel recommends that you move _hw.tcl files and their associated files to an ip/
directory within your Intel Quartus Prime project directory. You can use IP components
with other applications, such as the C compiler and a board support package (BSP)
generator.

Refer to Creating a System with Platform Designer for information on how to search
for and add components to the IP Catalog for use in your designs.

Related Links

• Publishing Component Information to Embedded Software (Nios II Gen 2 Software
Developer’s Handbook)

• Creating a System with Platform Designer on page 327

• Publishing Component Information to Embedded Software (Nios II Software
Developer’s Handbook)

• Creating a System with Platform Designer on page 327

10.3.2 Edit an IP Component with the Platform Designer Component
Editor

In Platform Designer, you make changes to a component by right-clicking the
component in the System Contents tab, and then clicking Edit. After making
changes, click Finish to save the changes to the _hw.tcl file.

You can open an _hw.tcl file in a text editor to view the hardware Tcl for the
component. If you edit the _hw.tcl file to customize the component with advanced
features, you cannot use the Component Editor to make further changes without over-
writing your customized file.

You cannot use the Component Editor to edit components installed with the Intel
Quartus Prime software, such as Intel-provided components. If you edit the HDL for a
component and change the interface to the top-level module, you must edit the
component to reflect the changes you make to the HDL.

10.4 Specify IP Component Type Information

The Component Type tab in the Platform Designer Component Editor allows you to
specify the following information about the component:

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
614

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

• Name—Specifies the name used in the _hw.tcl filename, as well as in the top-
level module name when you create a synthesis wrapper file for a non HDL-based
component.

• Display name—Identifies the component in the parameter editor, which you use
to configure and instance of the component, and also appears in the IP Catalog
under Project and on the System Contents tab.

• Version—Specifies the version number of the component.

• Group—Represents the category of the component in the list of available
components in the IP Catalog. You can select an existing group from the list, or
define a new group by typing a name in the Group box. Separating entries in the
Group box with a slash defines a subcategory. For example, if you type
Memories and Memory Controllers/On-Chip, the component appears in the IP
Catalog under the On-Chip group, which is a subcategory of the Memories and
Memory Controllers group. If you save the component in the project directory,
the component appears in the IP Catalog in the group you specified under
Project. Alternatively, if you save the component in the Intel Quartus Prime
installation directory, the component appears in the specified group under IP
Catalog.

• Description—Allows you to describe the component. This description appears
when the user views the component details.

• Created By—Allows you to specify the author of the component.

• Icon—Allows you to enter the relative path to an icon file (.gif, .jpg, or .png
format) that represents the component and appears as the header in the
parameter editor for the component. The default image is the Intel FPGA IP
function icon.

• Documentation—Allows you to add links to documentation for the component,
and appears when you right-click the component in the IP Catalog, and then select
Details.

— To specify an Internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html.

— To specify a file in the file system, begin your path with file:/// for Linux,
and file://// for Windows; for example (Windows): file:////
company_server/datasheets my_memory_controller.pdf.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
615

Figure 188. Component Type Tab in the Component Editor
The Display name, Group, Description, Created By, Icon, and Documentation entries are optional.

When you use the Component Editor to create a component, it writes this basic
component information in the _hw.tcl file. The package require command
specifies the Intel Quartus Prime software version that Platform Designer uses to
create the _hw.tcl file, and ensures compatibility with this version of the Platform
Designer API in future ACDS releases.

Example 81. _hw.tcl Created from Entries in the Component Type Tab

The component defines its basic information with various module properties using the
set_module_property command. For example, set_module_property NAME
specifies the name of the component, while set_module_property VERSION allows
you to specify the version of the component. When you apply a version to the
_hw.tcl file, it allows the file to behave exactly the same way in future releases of
the Intel Quartus Prime software.

request TCL package from ACDS 14.0

package require -exact qsys 14.0

demo_axi_memory

set_module_property DESCRIPTION \
"Demo AXI-3 memory with optional Avalon-ST port"

set_module_property NAME demo_axi_memory
set_module_property VERSION 1.0
set_module_property GROUP "My Components"
set_module_property AUTHOR Altera
set_module_property DISPLAY_NAME "Demo AXI Memory"

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
616

Related Links

Component Interface Tcl Reference on page 791

10.5 Create an HDL File in the Platform Designer Component Editor

If you do not have an HDL file for your component, you can use the Platform Designer
Component Editor to define the component signals, interfaces, and parameters of your
component, and then create a simple top-level HDL file.

You can then edit the HDL file to add the logic that describes the component's
behavior.

1. In the Platform Designer Component Editor, specify the information about the
component in the Signals & Interfaces, and Interfaces, and Parameters tabs.

2. Click the Files tab.

3. Click Create Synthesis File from Signals.
The Component Editor creates an HDL file from the specified signals, interfaces,
and parameters, and the .v file appears in the Synthesis File table.

Related Links

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 618

10.6 Create an HDL File Using a Template in the Platform Designer
Component Editor

You can use a template to create interfaces and signals for your Platform Designer
component

1. In Platform Designer, click New Component in the IP Catalog.

2. On the Component Type tab, define your component information in the Name,
Display Name, Version, Group, Description, Created by, Icon, and
Documentation boxes.

3. Click Finish.
Your new component appears in the IP Catalog under the category that you define
for "Group".

4. In Platform Designer, right-click your new component in the IP Catalog, and then
click Edit.

5. In the Platform Designer Component Editor, click any interface from the Templates
drop-down menu.
The Component Editor fills the Signals and Interfaces tabs with the component
interface template details.

6. On the Files tab, click Create Synthesis File from Signals.

7. Do the following in the Create HDL Template dialog box as shown below:

a. Verify that the correct files appears in File path, or browse to the location
where you want to save your file.

b. Select the HDL language.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
617

c. Click Save to save your new interface, or Cancel to discard the new interface
definition.

Create HDL Template Dialog Box

8. Verify the <component_name>.v file appears in the Synthesis Files table on
the Files tab.

Related Links

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 618

10.7 Specify Synthesis and Simulation Files in the Platform
Designer Component Editor

The Files tab in the Platform Designer Component Editor allows you to specify
synthesis and simulation files for your custom component.

If you already have an HDL file that describes the behavior and structure of your
component, you can specify those files on the Files tab.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
618

If you do not yet have an HDL file, you can specify the signals, interfaces, and
parameters of the component in the Component Editor, and then use the Create
Synthesis File from Signals option on the Files tab to create the top-level HDL file.
The Component Editor generates the _hw.tcl commands to specify the files.

Note: After you analyze the component's top-level HDL file (on the Files tab), you cannot
add or remove signals or change the signal names on the Signals & Interfaces tab.
If you need to edit signals, edit your HDL source, and then click Create Synthesis
File from Signals on the Files tab to integrate your changes.

A component uses filesets to specify the different sets of files that you can generate
for an instance of the component. The supported fileset types are: QUARTUS_SYNTH,
for synthesis and compilation in the Intel Quartus Prime software, SIM_VERILOG, for
Verilog HDL simulation, and SIM_VHDL, for VHDL simulation.

In an _hw.tcl file, you can add a fileset with the add_fileset command. You can
then list specific files with the add_fileset_file command. The
add_fileset_property command allows you to add properties such as
TOP_LEVEL.

You can populate a fileset with a a fixed list of files, add different files based on a
parameter value, or even generate an HDL file with a custom HDL generator function
outside of the _hw.tcl file.

Related Links

• Create an HDL File in the Platform Designer Component Editor on page 617

• Create an HDL File Using a Template in the Platform Designer Component Editor
on page 617

10.7.1 Specify HDL Files for Synthesis in the Platform Designer
Component Editor

In the Platform Designer Component Editor, you can add HDL files and other support
files with options on the Files tab.

A component must specify an HDL file as the top-level file. The top-level HDL file
contains the top-level module. The Synthesis Files list may also include supporting
HDL files, such as timing constraints, or other files required to successfully synthesize
and compile in the Intel Quartus Prime software. The synthesis files for a component
are copied to the generation output directory during Platform Designer system
generation.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
619

Figure 189. Using HDL Files to Define a Component
In the Synthesis Files section on the Files tab in the Platform Designer Component Editor, the
demo_axi_memory.sv file should be selected as the top-level file for the component.

10.7.2 Analyze Synthesis Files in the Platform Designer Component Editor

After you specify the top-level HDL file in the Platform Designer Component Editor,
click Analyze Synthesis Files to analyze the parameters and signals in the top-level,
and then select the top-level module from the Top Level Module list. If there is a
single module or entity in the HDL file, Platform Designer automatically populates the
Top-level Module list.

Once analysis is complete and the top-level module is selected, you can view the
parameters and signals on the Parameters and Signals & Interfaces tabs. The
Component Editor may report errors or warnings at this stage, because the signals
and interfaces are not yet fully defined.

Note: At this stage in the Component Editor flow, you cannot add or remove parameters or
signals created from a specified HDL file without editing the HDL file itself.

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type
QUARTUS_SYNTH in the _hw.tcl file created by the Component Editor. The top-level
module is used to specify the TOP_LEVEL fileset property. Each synthesis file is
individually added to the fileset. If the source files are saved in a different directory
from the working directory where the _hw.tcl is located, you can use standard fixed
or relative path notation to identify the file location for the PATH variable.

Example 82. _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set_fileset_property QUARTUS_SYNTH TOP_LEVEL demo_axi_memory

add_fileset_file demo_axi_memory.sv
SYSTEM_VERILOG PATH demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
620

Related Links

• Specify HDL Files for Synthesis in the Platform Designer Component Editor on
page 619

• Component Interface Tcl Reference on page 791

10.7.3 Name HDL Signals for Automatic Interface and Type Recognition in
the Platform Designer Component Editor

If you create the component's top-level HDL file before using the Component Editor,
the Component Editor recognizes the interface and signal types based on the signal
names in the source HDL file. This auto-recognition feature eliminates the task of
manually assigning each interface and signal type in the Component Editor.

To enable auto-recognition, you must create signal names using the following naming
convention:

<interface type prefix>_<interface name>_<signal type>

Specifying an interface name with <interface name> is optional if you have only one
interface of each type in the component definition. For interfaces with only one signal,
such as clock and reset inputs, the <interface type prefix> is also optional.

Table 122. Interface Type Prefixes for Automatic Signal Recognition
When the Component Editor recognizes a valid prefix and signal type for a signal, it automatically assigns an
interface and signal type to the signal based on the naming convention. If no interface name is specified for a
signal, you can choose an interface name on the Signals & Interfaces tab in the Component Editor.

Interface Prefix Interface Type

asi Avalon-ST sink (input)

aso Avalon-ST source (output)

avm Avalon-MM master

avs Avalon-MM slave

axm AXI master

axs AXI slave

apm APB master

aps APB slave

coe Conduit

csi Clock Sink (input)

cso Clock Source (output)

inr Interrupt receiver

ins Interrupt sender

ncm Nios II custom instruction master

ncs Nios II custom instruction slave

rsi Reset sink (input)

continued...

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
621

Interface Prefix Interface Type

rso Reset source (output)

tcm Avalon-TC master

tcs Avalon-TC slave

Refer to the Avalon Interface Specifications or the AMBA Protocol Specification for the
signal types available for each interface type.

Related Links

• Avalon Interface Specifications

• Protocol Specifications

10.7.4 Specify Files for Simulation in the Component Editor

To support Platform Designer system generation for your custom component, you
must specify VHDL or Verilog simulation files.

You can choose to generate Verilog or VHDL simulation files. In most cases, these files
are the same as the synthesis files. If there are simulation-specific HDL files or
simulation models, you can use them in addition to, or in place of the synthesis files.
To use your synthesis files as your simulation files, click Copy From Synthesis Files
on the Files tab in the Platform Designer Component Editor.

Note: The order that you add files to the fileset determines the order of compilation. For
VHDL filesets with VHDL files, you must add the files bottom-up, adding the top-level
file last.

Figure 190. Specifying the Simulation Output Files on the Files Tab

You specify the simulation files in a similar way as the synthesis files with the fileset
commands in a _hw.tcl file. The code example below shows SIM_VERILOG and
SIM_VHDL filesets for Verilog and VHDL simulation output files. In this example, the
same Verilog files are used for both Verilog and VHDL outputs, and there is one
additional SystemVerilog file added. This method works for designers of Verilog IP to

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
622

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl

support users who want to generate a VHDL top-level simulation file when they have a
mixed-language simulation tool and license that can read the Verilog output for the
component.

Example 83. _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add_fileset SIM_VERILOG SIM_VERILOG "" ""
set_fileset_property SIM_VERILOG TOP_LEVEL demo_axi_memory
add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset SIM_VHDL SIM_VHDL "" ""
set_fileset_property SIM_VHDL TOP_LEVEL demo_axi_memory
set_fileset_property SIM_VHDL ENABLE_RELATIVE_INCLUDE_PATHS false

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Related Links

Component Interface Tcl Reference on page 791

10.7.5 Include an Internal Register Map Description in the .svd for Slave
Interfaces Connected to an HPS Component

Platform Designer supports the ability for IP component designers to specify register
map information on their slave interfaces. This allows components with slave
interfaces that are connected to an HPS component to include their internal register
description in the generated .svd file.

To specify their internal register map, the IP component designer must write and
generate their own .svd file and attach it to the slave interface using the following
command:

set_interface_property <slave interface> CMSIS_SVD_FILE <file path>

The CMSIS_SVD_VARIABLES interface property allows for variable substitution inside
the .svd file. You can dynamically modify the character data of the .svd file by using
the CMSIS_SVD_VARIABLES property.

Example 84. Setting the CMSIS_SVD_VARIBLES Interface Property

For example, if you set the CMSIS_SVD_VARIABLES in the _hw tcl file, then in
the .svd file if there is a variable {width} that describes the element <size>$
{width}</size>, it is replaced by <size>23</size> during generation of
the .svd file. Note that substitution works only within character data (the data
enclosed by <element>...</element>) and not on element attributes.

set_interface_property <interface name> \
CMSIS_SVD_VARIABLES "{width} {23}"

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
623

Related Links

• Component Interface Tcl Reference on page 791

• CMSIS - Cortex Microcontroller Software

10.8 Add Signals and Interfaces in the Platform Designer
Component Editor

In the Platform Designer Component Editor, the Signals & Interfaces tab allows you
to add signals and interfaces for your custom IP component.

As you select interfaces and associated signals, you can customize the parameters.
Messages appear as you add interfaces and signals to guide you when customizing the
component. In the parameter editor, a block diagram displays for each interface.
Some interfaces display waveforms to show the timing of the interface. If you update
timing parameters, the waveforms update automatically.

1. In Platform Designer, click New Component in the IP Catalog.

2. In the Platform Designer Component Editor, click the Signals & Interfaces tab.

3. To add an interface, click <<add interface>> in the left pane.
A drop-down list appears where you select the interface type.

4. Select an interface from the drop-down list.
The selected interface appears in the parameter editor where you can specify its
parameters.

5. To add signals for the selected interface click <<add signal>> below the selected
interface.

6. To move signals between interfaces, select the signal, and then drag it to another
interface.

7. To rename a nsignal or interface, select the element, and then press F2.

8. To remove a signal or interface, right-click the element, and then click Remove.
Alternatively, to remove an signal or interface, you can select the element, and
then press Delete. When you remove an interface, Platform Designer also
removes all of its associated signals.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
624

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

Figure 191. Platform Designer Signals & Interfaces tab

10.9 Specify Parameters in the Platform Designer Component Editor

Components can include parameterized HDL, which allow users of the component
flexibility in meeting their system requirements. For example, a component may have
a configurable memory size or data width, where one HDL implementation can be
used in different systems, each with unique parameters values.

The Parameters tab allows you specify the parameters that are used to configure
instances of the component in a Platform Designer system. You can specify various
properties for each parameter that describe how to display and use the parameter. You
can also specify a range of allowed values that are checked during the validation
phase. The Parameters table displays the HDL parameters that are declared in the
top-level HDL module. If you have not yet created the top-level HDL file, the
parameters that you create on the Parameters tab are included in the top-level
synthesis file template created from the Files tab.

When the component includes HDL files, the parameters match those defined in the
top-level module, and you cannot be add or remove them on the Parameters tab. To
add or remove the parameters, edit your HDL source, and then re-analyze the file.

If you used the Component Editor to create a top-level template HDL file for synthesis,
you can remove the newly-created file from the Synthesis Files list on the Files tab,
make your parameter changes, and then re-analyze the top-level synthesis file.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
625

You can use the Parameters table to specify the following information about each
parameter:

• Name—Specifies the name of the parameter.

• Default Value—Sets the default value used in new instances of the component.

• Editable—Specifies whether or not the user can edit the parameter value.

• Type—Defines the parameter type as string, integer, boolean, std_logic, logic
vector, natural, or positive.

• Group—Allows you to group parameters in parameter editor.

• Tooltip—Allows you to add a description of the parameter that appears when the
user of the component points to the parameter in the parameter editor.

Figure 192. Parameters Tab in the Platform Designer Components Editor

On the Parameters tab, you can click Preview the GUI at any time to see how the
declared parameters appear in the parameter editor. Parameters with their default
values appear with checks in the Editable column, indicating that users of this
component are allowed to modify the parameter value. Editable parameters cannot
contain computed expressions. You can group parameters under a common heading or
section in the parameter editor with the Group column, and a tooltip helps users of
the component understand the function of the parameter. Various parameter
properties allow you to customize the component’s parameter editor, such as using
radio buttons for parameter selections, or displaying an image.

Example 85. _hw.tcl Created from Entries in the Parameters Tab

In this example, the first add_parameter command includes commonly-specified
properties. The set_parameter_property command specifies each property
individually. The Tooltip column on the Parameters tab maps to the DESCRIPTION
property, and there is an additional unused UNITS property created in the code. The

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
626

HDL_PARAMETER property specifies that the value of the parameter is specified in the
HDL instance wrapper when creating instances of the component. The Group column
in the Parameters tab maps to the display items section with the
add_display_item commands.

Note: If a parameter <n> defines the width of a signal, the signal width must follow the
format: <n-1>:0.

parameters

add_parameter AXI_ID_W INTEGER 4 "Width of ID fields"
set_parameter_property AXI_ID_W DEFAULT_VALUE 4
set_parameter_property AXI_ID_W DISPLAY_NAME AXI_ID_W
set_parameter_property AXI_ID_W TYPE INTEGER
set_parameter_property AXI_ID_W UNITS None
set_parameter_property AXI_ID_W DESCRIPTION "Width of ID fields"
set_parameter_property AXI_ID_W HDL_PARAMETER true
add_parameter AXI_ADDRESS_W INTEGER 12
set_parameter_property AXI_ADDRESS_W DEFAULT_VALUE 12

add_parameter AXI_DATA_W INTEGER 32
...

display items

add_display_item "AXI Port Widths" AXI_ID_W PARAMETER ""

Note: If an AXI slave's ID bit width is smaller than required for your system, the AXI slave
response may not reach all AXI masters. The formula of an AXI slave ID bit width is
calculated as follows:

maximum_master_id_width_in_the_interconnect + log2
(number_of_masters_in_the_same_interconnect)

For example, if an AXI slave connects to three AXI masters and the maximum AXI
master ID length of the three masters is 5 bits, then the AXI slave ID is 7 bits, and is
calculated as follows:

5 bits + 2 bits (log2(3 masters)) = 7

Table 123. AXI Master and Slave Parameters
Platform Designer refers to AXI interface parameters to build AXI interconnect. If these parameter settings are
incompatible with the component's HDL behavior, Platform Designer interconnect and transactions may not
work correctly. To prevent unexpected interconnect behavior, you must set the AXI component parameters.

AXI Master Parameters AXI Slave Parameters

readIssuingCapability readAcceptanceCapability

writeIssuingCapability writeAcceptanceCapability

combinedIssuingCapability combinedAcceptanceCapability

readDataReorderingDepth

Related Links

Component Interface Tcl Reference on page 791

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
627

10.9.1 Valid Ranges for Parameters in the _hw.tcl File

In the _hw.tcl file, you can specify valid ranges for parameters.

Platform Designer validation checks each parameter value against the
ALLOWED_RANGES property. If the values specified are outside of the allowed ranges,
Platform Designer displays an error message. Specifying choices for the allowed
values enables users of the component to choose the parameter value from a drop-
down list or radio button in the parameter editor GUI instead of entering a value.

The ALLOWED_RANGES property is a list of valid ranges, where each range is a single
value, or a range of values defined by a start and end value.

Table 124. ALLOWED_RANGES Property

ALLOWED_RANGES Property Values

{a b c} a, b, or c

{"No Control" "Single Control" "Dual Controls"} Unique string values. Quotation marks are required if the
strings include spaces .

{1 2 4 8 16} 1, 2, 4, 8, or 16

{1:3} 1 through 3, inclusive.

{1 2 3 7:10} 1, 2, 3, or 7 through 10 inclusive.

Related Links

Declare Parameters with Custom _hw.tcl Commands on page 630

10.9.2 Types of Platform Designer Parameters

Platform Designer uses the following parameter types: user parameters, system
information parameters, and derived parameters.

Platform Designer User Parameters on page 628

Platform Designer System Information Parameters on page 629

Platform Designer Derived Parameters on page 629

Related Links

Declare Parameters with Custom _hw.tcl Commands on page 630

10.9.2.1 Platform Designer User Parameters

User parameters are parameters that users of a component can control, and appear in
the parameter editor for instances of the component. User parameters map directly to
parameters in the component HDL. For user parameter code examples, such as
AXI_DATA_W and ENABLE_STREAM_OUTPUT, refer to Declaring Parameters with
Custom hw.tcl Commands.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
628

10.9.2.2 Platform Designer System Information Parameters

A SYSTEM_INFO parameter is a parameter whose value is set automatically by the
Platform Designer system. When you define a SYSTEM_INFO parameter, you provide
an information type, and additional arguments.

For example, you can configure a parameter to store the clock frequency driving a
clock input for your component. To do this, define the parameter as SYSTEM_INFO of
type CLOCK_RATE:

set_parameter_property <param> SYSTEM_INFO CLOCK_RATE

You then set the name of the clock interface as the SYSTEM_INFO argument:

set_parameter_property <param> SYSTEM_INFO_ARG <clkname>

10.9.2.2.1 Obtaining Device Trait Information Using PART_TRAIT System Information
Parameter

Within Platform Designer, an IP core can obtain information on the particular traits of
a device using the PART_TRAIT system info parameter. This system info parameter
takes an argument corresponding to the desired part trait. The requested trait must
match the trait name as specified in the device database.

Note: Using this API declares your core as dependent on the requested trait.

To get the part number setting of Platform Designer system, use the value DEVICE,
with the SYSTEM_INFO_ARG parameter property:

add_parameter part_trait_device string ""
set_parameter_property part_trait_device SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_device SYSTEM_INFO_ARG DEVICE

To get the base device of the part number setting of Platform Designer system, use
the value BASE_DEVICE, with the SYSTEM_INFO_ARG parameter property:

add_parameter part_trait_bd string ""
set_parameter_property part_trait_bd SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_bd SYSTEM_INFO_ARG BASE_DEVICE

To get the device speed-grade of the part number setting of Platform Designer
system, use the value DEVICE_SPEEDGRADE, with the SYSTEM_INFO_ARG parameter
property:

add_parameter part_trait_sg string ""
set_parameter_property part_trait_sg SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_sg SYSTEM_INFO_ARG DEVICE_SPEEDGRADE

10.9.2.3 Platform Designer Derived Parameters

Derived parameter values are calculated from other parameters during the Elaboration
phase, and are specified in the hw.tcl file with the DERIVED property. Derived
parameter values are calculated from other parameters during the Elaboration phase,
and are specified in the hw.tcl file with the DERIVED property. For example, you can
derive a clock period parameter from a data rate parameter. Derived parameters are

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
629

sometimes used to perform operations that are difficult to perform in HDL, such as
using logarithmic functions to determine the number of address bits that a component
requires.

Related Links

Declare Parameters with Custom _hw.tcl Commands on page 630

10.9.2.3.1 Parameterized Parameter Widths

Platform Designer allows a std_logic_vector parameter to have a width that is
defined by another parameter, similar to derived parameters. The width can be a
constant or the name of another parameter.

10.9.3 Declare Parameters with Custom _hw.tcl Commands

The example below illustrates a custom _hw.tcl file, with more advanced parameter
commands than those generated when you specify parameters in the Component
Editor. Commands include the ALLOWED_RANGES property to provide a range of values
for the AXI_ADDRESS_W (Address Width) parameter, and a list of parameter values
for the AXI_DATA_W (Data Width) parameter. This example also shows the
parameter AXI_NUMBYTES (Data width in bytes) parameter; that uses the DERIVED
property. In addition, these commands illustrate the use of the GROUP property, which
groups some parameters under a heading in the parameter editor GUI. You use the
ENABLE_STREAM_OUTPUT_GROUP (Include Avalon streaming source port)
parameter to enable or disable the optional Avalon-ST interface in this design, and is
displayed as a check box in the parameter editor GUI because the parameter is of type
BOOLEAN. Refer to figure below to see the parameter editor GUI resulting from these
hw.tcl commands.

Example 86. Parameter Declaration

In this example, the AXI_NUMBYTES parameter is derived during the Elaboration
phase based on another parameter, instead of being assigned to a specific value.
AXI_NUMBYTES describes the number of bytes in a word of data. Platform Designer
calculates the AXI_NUMBYTES parameter from the DATA_WIDTH parameter by
dividing by 8. The _hw.tcl code defines the AXI_NUMBYTES parameter as a derived
parameter, since its value is calculated in an elaboration callback procedure. The
AXI_NUMBYTES parameter value is not editable, because its value is based on another
parameter value.

add_parameter AXI_ADDRESS_W INTEGER 12

set_parameter_property AXI_ADDRESS_W DISPLAY_NAME \
"AXI Slave Address Width"

set_parameter_property AXI_ADDRESS_W DESCRIPTION \
"Address width."

set_parameter_property AXI_ADDRESS_W UNITS bits
set_parameter_property AXI_ADDRESS_W ALLOWED_RANGES 4:16
set_parameter_property AXI_ADDRESS_W HDL_PARAMETER true

set_parameter_property AXI_ADDRESS_W GROUP \
"AXI Port Widths"

add_parameter AXI_DATA_W INTEGER 32
set_parameter_property AXI_DATA_W DISPLAY_NAME "Data Width"

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
630

set_parameter_property AXI_DATA_W DESCRIPTION \
"Width of data buses."

set_parameter_property AXI_DATA_W UNITS bits

set_parameter_property AXI_DATA_W ALLOWED_RANGES \
{8 16 32 64 128 256 512 1024}

set_parameter_property AXI_DATA_W HDL_PARAMETER true
set_parameter_property AXI_DATA_W GROUP "AXI Port Widths"

add_parameter AXI_NUMBYTES INTEGER 4
set_parameter_property AXI_NUMBYTES DERIVED true

set_parameter_property AXI_NUMBYTES DISPLAY_NAME \
"Data Width in bytes; Data Width/8"

set_parameter_property AXI_NUMBYTES DESCRIPTION \
"Number of bytes in one word"

set_parameter_property AXI_NUMBYTES UNITS bytes
set_parameter_property AXI_NUMBYTES HDL_PARAMETER true
set_parameter_property AXI_NUMBYTES GROUP "AXI Port Widths"

add_parameter ENABLE_STREAM_OUTPUT BOOLEAN true

set_parameter_property ENABLE_STREAM_OUTPUT DISPLAY_NAME \
"Include Avalon Streaming Source Port"

set_parameter_property ENABLE_STREAM_OUTPUT DESCRIPTION \
"Include optional Avalon-ST source (default),\
or hide the interface"

set_parameter_property ENABLE_STREAM_OUTPUT GROUP \
"Streaming Port Control"

...

Figure 193. Resulting Parameter Editor GUI from Parameter Declarations

Related Links

• Control Interfaces Dynamically with an Elaboration Callback on page 635

• Component Interface Tcl Reference on page 791

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
631

10.9.4 Validate Parameter Values with a Validation Callback

You can use a validation callback procedure to validate parameter values with more
complex validation operations than the ALLOWED_RANGES property allows. You define
a validation callback by setting the VALIDATION_CALLBACK module property to the
name of the Tcl callback procedure that runs during the validation phase. In the
validation callback procedure, the current parameter values is queried, and warnings
or errors are reported about the component's configuration.

Example 87. Demo AXI Memory Example

If the optional Avalon streaming interface is enabled, then the control registers must
be wide enough to hold an AXI RAM address, so the designer can add an error
message to ensure that the user enters allowable parameter values.

set_module_property VALIDATION_CALLBACK validate
proc validate {} {
if {
 [get_parameter_value ENABLE_STREAM_OUTPUT] &&
 ([get_parameter_value AXI_ADDRESS_W] >
 [get_parameter_value AV_DATA_W])
}
send_message error "If the optional Avalon streaming port\
is enabled, the AXI Data Width must be equal to or greater\
than the Avalon control port Address Width"
}
}

Related Links

• Component Interface Tcl Reference on page 791

• Demo AXI Memory Example

10.10 Declaring SystemVerilog Interfaces in _hw.tcl

Platform Designer supports interfaces written in SystemVerilog.

The following example is _hw.tcl for a module with a SystemVerilog interface. The
sample code is divided into parts 1 and 2.

Part 1 defines the normal array of parameters, Platform Designer interface, and ports

Example 88. Example Part 1: Parameters, Platform Designer Interface, and Ports in
_hw.tcl

request TCL package from ACDS 17.1
#
package require -exact qsys 17.1

#
module ram_ip_sv_ifc_hw
#
set_module_property DESCRIPTION ""
set_module_property NAME ram_ip_sv_ifc_hw
set_module_property VERSION 1.0
set_module_property INTERNAL false
set_module_property OPAQUE_ADDRESS_MAP true
set_module_property AUTHOR ""
set_module_property DISPLAY_NAME ram_ip_hw_with_SV_d0
set_module_property INSTANTIATE_IN_SYSTEM_MODULE true

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
632

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html

set_module_property EDITABLE true
set_module_property REPORT_TO_TALKBACK false
set_module_property ALLOW_GREYBOX_GENERATION false
set_module_property REPORT_HIERARCHY false

Part 1 – Add parameter, platform designer interface and ports
Adding parameter
add_parameter my_interface_parameter STRING "" "I am an interface parameter"

Adding platform designer interface clk
add_interface clk clock end
set_interface_property clk clockRate 0
Adding ports to clk interface
add_interface_port clk clk clk Input 1

Adding platform designer interface reset
add_interface reset reset end
set_interface_property reset associatedClock clk
#Adding ports to reset interface
add_interface_port reset reset reset Input 1

Adding platform designer interface avalon_slave
add_interface avalon_slave avalon end
set_interface_property avalon_slave addressUnits WORDS
Adding ports to avalon_slave interface
add_interface_port avalon_slave address address Input 10
add_interface_port avalon_slave write write Input 1
add_interface_port avalon_slave readdata readdata Output 32
add_interface_port avalon_slave writedata writedata Input 32
set_interface_property avalon_slave associatedClock clk
set_interface_property avalon_slave associatedReset reset

#Adding ram_ip files
add_fileset synthesis_fileset QUARTUS_SYNTH
set_fileset_property synthesis_fileset TOP_LEVEL ram_ip
add_fileset_file ram_ip.sv SYSTEM_VERILOG PATH ram_ip.sv

Part 2 defines the interface name, ports, and parameters of the SystemVerilog
interface.

Example 89. Example Part 2: SystemVerilog Interface Parameters in _hw.tcl

Part 2 – Adding SV interface and its properties.
Adding SV interface
add_sv_interface bus mem_ifc

Setting the parameter property to add SV interface parameters
set_parameter_property my_interface_parameter SV_INTERFACE_PARAMETER bus

Setting the port properties to add them to SV interface port
set_port_property clk SV_INTERFACE_PORT bus
set_port_property reset SV_INTERFACE_PORT bus

Setting the port properties to add them as signals inside SV interface
set_port_property address SV_INTERFACE_SIGNAL bus
set_port_property write SV_INTERFACE_SIGNAL bus
set_port_property writedata SV_INTERFACE_SIGNAL bus
set_port_property readdata SV_INTERFACE_SIGNAL bus

#Adding the SV Interface File
add_fileset_file mem_ifc.sv SYSTEM_VERILOG PATH mem_ifc.sv
SYSTEMVERILOG_INTERFACE

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
633

10.11 User Alterable HDL Parameters in _hw.tcl

Platform Designer supports the ability to reconfigure features of parameterized
modules, such as data bus width or FIFO depth. Platform Designer creates an HDL
wrapper when you perform Generate HDL. By modifying your _hw.tcl files to
specify parameter attributes and port properties, you can use Platform Designer to
generate reusable RTL.

1. To define an alterable HDL parameter, you must declate the following two
attributes for the parameter:

• set_parameter_property <parameter_name> HDL_PARAMETER true

• set_parameter_property <parameter_name> AFFECTS_GENERATION
false

2. To have parameterized ports created in the instantiation wrapper, you can either
set the width expression when adding a port to an interface, or set the width
expression in the port property in _hw.tcl:

• To set the width expression when adding a port:

add_interface_port <interface> <port> <signal_type> <direction>
<width_expression>

• To set the width expression in the port property:

set_port_property <port> WIDTH_EXPR <width_expression>

3. To create and generate the IP component in Platform Designer editor, click the
Open System ➤ IP Variant tab, specify the new IP variant name in the IP
Variant field and choose the _hw.tcl file that defines user alterable HDL
parameters in the Component type field.

4. Click Generate HDL to generate the IP core. Platform Designer generates a
parameterized HDL module for you directly.

To instantiate the IP component in your HDL file, click Generate ➤ Show
Instantiation Template in the Platform Designer editor to display an instantiation
template in Verilog or VHDL. Now you can instantiate the IP core in your top-level
design HDL file with the template code.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
634

Figure 194. Instantiation Template Dialog Box

The following sample contains _hw.tcl to set exportable width values:

Example 90. Sample _hw.tcl Component with User Alterable Expressions

package require -exact qsys 17.1

set_module_property NAME demo
set_module_property DISPLAY_NAME "Demo"
set_module_property ELABORATION_CALLBACK elaborate

add exportable hdl parameter RECONFIG_DATA_WIDTH
add_parameter RECONFIG_DATA_WIDTH INTEGER 48
set_parameter_property RECONFIG_DATA_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_DATA_WIDTH HDL_PARAMETER true

add exportable hdl parameter RECONFIG_ADDR_WIDTH
add_parameter RECONFIG_ADDR_WIDTH INTEGER 32
set_parameter_property RECONFIG_ADDR_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_ADDR_WIDTH HDL_PARAMETER true

add non-exportable hdl parameter
add_parameter l_addr INTEGER 32
set_parameter l_addr HDL_PARAMETER false

add interface
add_interface s0 conduit end

proc elaborate {} {
 add_interface_port s0 rdata readdata output "reconfig_data_width*2 +
l_addr"
 add_interface_port s0 raddr readaddress output [get_parameter_value
RECONFIG_ADDR_WIDTH]
 set_port_property raddr WIDTH_EXPR "RECONFIG_ADDR_WIDTH"
}

10.12 Control Interfaces Dynamically with an Elaboration Callback

You can allow user parameters to dynamically control your component's behavior with
a an elaboration callback procedure during the elaboration phase. Using an elaboration
callback allows you to change interface properties, remove interfaces, or add new
interfaces as a function of a parameter value. You define an elaboration callback by

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
635

setting the module property ELABORATION_CALLBACK to the name of the Tcl callback
procedure that runs during the elaboration phase. In the callback procedure, you can
query the parameter values of the component instance, and then change the
interfaces accordingly.

Example 91. Avalon-ST Source Interface Optionally Included in a Component Specified
with an Elaboration Callback

set_module_property ELABORATION_CALLBACK elaborate

proc elaborate {} {

 # Optionally disable the Avalon- ST data output

 if{[get_parameter_value ENABLE_STREAM_OUTPUT] == "false" }{
 set_port_property aso_data termination true
 set_port_property aso_valid termination true
 set_port_property aso_ready termination true
 set_port_property aso_ready termination_value 0
 }
 # Calculate the Data Bus Width in bytes

 set bytewidth_var [expr [get_parameter_value AXI_DATA_W]/8]
 set_parameter_value AXI_NUMBYTES $bytewidth_var
}

Related Links

• Declare Parameters with Custom _hw.tcl Commands on page 630

• Validate Parameter Values with a Validation Callback on page 632

• Component Interface Tcl Reference on page 791

10.13 Control File Generation Dynamically with Parameters and a
Fileset Callback

You can use a fileset callback to control which files are created in the output
directories during the generation phase based on parameter values, instead of
providing a fixed list of files. In a callback procedure, you can query the values of the
parameters and use them to generate the appropriate files. To define a fileset
callback, you specify a callback procedure name as an argument in the add_fileset
command. You can use the same fileset callback procedure for all of the filesets, or
create separate procedures for synthesis and simulation, or Verilog and VHDL.

Example 92. Fileset Callback Using Parameters to Control Filesets in Two Different Ways

The RAM_VERSION parameter chooses between two different source files to control
the implementation of a RAM block. For the top-level source file, a custom Tcl routine
generates HDL that optionally includes control and status registers, depending on the
value of the CSR_ENABLED parameter.

During the generation phase, Platform Designer creates a a top-level Platform
Designer system HDL wrapper module to instantiate the component top-level module,
and applies the component's parameters, for any parameter whose parameter
property HDL_PARAMETER is set to true.

#Create synthesis fileset with fileset_callback and set top level

add_fileset my_synthesis_fileset QUARTUS_SYNTH fileset_callback

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
636

set_fileset_property my_synthesis_fileset TOP_LEVEL \
demo_axi_memory

Create Verilog simulation fileset with same fileset_callback
and set top level

add_fileset my_verilog_sim_fileset SIM_VERILOG fileset_callback

set_fileset_property my_verilog_sim_fileset TOP_LEVEL \
demo_axi_memory

Add extra file needed for simulation only

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Create VHDL simulation fileset (with Verilog files
for mixed-language VHDL simulation)

add_fileset my_vhdl_sim_fileset SIM_VHDL fileset_callback
set_fileset_property my_vhdl_sim_fileset TOP_LEVEL demo_axi_memory

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH
verification_lib/verbosity_pkg.sv

Define parameters required for fileset_callback

add_parameter RAM_VERSION INTEGER 1
set_parameter_property RAM_VERSION ALLOWED_RANGES {1 2}
set_parameter_property RAM_VERSION HDL_PARAMETER false
add_parameter CSR_ENABLED BOOLEAN enable
set_parameter_property CSR_ENABLED HDL_PARAMETER false

Create Tcl callback procedure to add appropriate files to
filesets based on parameters

proc fileset_callback { entityName } {
 send_message INFO "Generating top-level entity $entityName"
 set ram [get_parameter_value RAM_VERSION]
 set csr_enabled [get_parameter_value CSR_ENABLED]

 send_message INFO "Generating memory
 implementation based on RAM_VERSION $ram "

 if {$ram == 1} {
 add_fileset_file single_clk_ram1.v VERILOG PATH \
 single_clk_ram1.v
 } else {
 add_fileset_file single_clk_ram2.v VERILOG PATH \
 single_clk_ram2.v
 }

send_message INFO "Generating top-level file for \
CSR_ENABLED $csr_enabled"

generate_my_custom_hdl $csr_enabled demo_axi_memory_gen.sv

add_fileset_file demo_axi_memory_gen.sv VERILOG PATH \
demo_axi_memory_gen.sv
}

Related Links

• Specify Synthesis and Simulation Files in the Platform Designer Component Editor
on page 618

• Component Interface Tcl Reference on page 791

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
637

10.14 Create a Composed Component or Subsystem

A composed component is a subsystem containing instances of other components.
Unlike an HDL-based component, a composed component's HDL is created by
generating HDL for the components in the subsystem, in addition to the Platform
Designer interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

With a composition callback, you can also instantiate and parameterize sub-
components as a function of the composed component’s parameter values. You define
a composition callback by setting the COMPOSITION_CALLBACK module property to
the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the
subsystem is generated by generating all of the sub-components and the top-level
that combines them.

To connect instances of your component, you must define the component's interfaces.
Unlike an HDL-based component, a composed component does not directly specify the
signals that are exported. Instead, interfaces of submodules are chosen as the
external interface, and each internal interface's ports are connected through the
exported interface.

Exporting an interface means that you are making the interface visible from the
outside of your component, instead of connecting it internally. You can set the
EXPORT_OF property of the externally visible interface from the main program or the
composition callback, to indicate that it is an exported view of the submodule's
interface.

Exporting an interface is different than defining an interface. An exported interface is
an exact copy of the subcomponent’s interface, and you are not allowed to change
properties on the exported interface. For example, if the internal interface is a 32-bit
or 64-bit master without bursting, then the exported interface is the same. An
interface on a subcomponent cannot be exported and also connected within the
subsystem.

When you create an exported interface, the properties of the exported interface are
copied from the subcomponent’s interface without modification. Ports are copied from
the subcomponent’s interface with only one modification; the names of the exported
ports on the composed component are chosen to ensure that they are unique.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
638

Figure 195. Top-Level of a Composed Component

Reset
Bridge

clk

rst

slave
my_regs_microcore my_phy_microcore

pins

my_component

Clock
Bridge

Example 93. Composed _hw.tcl File that Instantiates Two Sub-Components

Platform Designer connects the components, and also connects the clocks and resets.
Note that clock and reset bridge components are required to allow both sub-
components to see common clock and reset inputs.

package require -exact qsys 14.0
set_module_property name my_component
set_module_property COMPOSITION_CALLBACK composed_component

proc composed_component {} {
 add_instance clk altera_clock_bridge
 add_instance reset altera_reset_bridge
 add_instance regs my_regs_microcore
 add_instance phy my_phy_microcore

 add_interface clk clock end
 add_interface reset reset end
 add_interface slave avalon slave
 add_interface pins conduit end

 set_interface_property clk EXPORT_OF clk.in_clk
 set_instance_property_value reset synchronous_edges deassert
 set_interface_property reset EXPORT_OF reset.in_reset
 set_interface_property slave EXPORT_OF regs.slave
 set_interface_property pins EXPORT_OF phy.pins

 add_connection clk.out_clk reset.clk
 add_connection clk.out_clk regs.clk
 add_connection clk.out_clk phy.clk
 add_connection reset.out_reset regs.reset
 add_connection reset.out_reset phy.clk_reset
 add_connection regs.output phy.input
 add_connection phy.output regs.input
}

Related Links

Component Interface Tcl Reference on page 791

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
639

10.15 Add Component Instances to a Static or Generated
Component

You can create nested components by adding component instances to an existing
component. Both static and generated components can create instances of other
components. You can add child instances of a component in a _hw.tcl using
elaboration callback.

With an elaboration callback, you can also instantiate and parameterize sub-
components with the add_hdl_instance command as a function of the parent
component's parameter values.

When you instantiate multiple nested components, you must create a unique variation
name for each component with the add_hdl_instance command. Prefixing a
variation name with the parent component name prevents conflicts in a system. The
variation name can be the same across multiple parent components if the generated
parameterization of the nested component is exactly the same.

Note: If you do not adhere to the above naming variation guidelines, Platform Designer
validation-time errors occur, which are often difficult to debug.

Related Links

• Static Components on page 640

• Generated Components on page 641

10.15.1 Static Components

Static components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

A design file that is static between all parameterizations of a component can only
instantiate other static design files. Since static IPs always render the same HDL
regardless of parameterization, Platform Designer generates static IPs only once
across multiple instantiations, meaning they have the same top-level name set.

Example 94. Typical Usage of the add_hdl_instance Command for Static Components

package require -exact qsys 14.0

set_module_property name add_hdl_instance_example
add_fileset synth_fileset QUARTUS_SYNTH synth_callback
set_fileset_property synth_fileset TOP_LEVEL basic_static
set_module_property elaboration_callback elab

proc elab {} {
 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 }
proc synth_callback { output_name } {
 add_fileset_file "basic_static.v" VERILOG PATH basic_static.v
}

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
640

Example 95. Top-Level HDL Instance and Wrapper File Created by Platform Designer

In this example, Platform Designer generates a wrapper file for the instance name
specified in the _hw.tcl file.

//Top Level Component HDL
module basic_static (input_wire, output_wire, inout_wire);
input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added via
// the add_hdl_instance command can be used
// in the top-level file of the component.

emif_instance_name fixed_name_instantiation_in_top_level(
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

//Wrapper for added HDL instance
// emif_instance_name.v
// Generated using ACDS version 14.0

`timescale 1 ps / 1 ps
module emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system
_add_hdl_instance_example_0_emif_instance
_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

10.15.2 Generated Components

A generated component's fileset callback allows an instance of the component to
create unique HDL design files based on the instance's parameter values. For example,
you can write a fileset callback to include a control and status interface based on the
value of a parameter. The callback overcomes a limitation of HDL languages, which do
not allow run-time parameters.

Generated components change their generation output (HDL) based on their
parameterization. If a component is generated, then any component that may
instantiate it with multiple parameter sets must also be considered generated, since
its HDL changes with its parameterization. This case has an effect that propagates up
to the top-level of a design.

Since generated components are generated for each unique parameterized
instantiation, when implementing the add_hdl_instance command, you cannot use
the same fixed name (specified using instance_name) for the different variants of

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
641

the child HDL instances. To facilitate unique naming for the wrapper of each unique
parameterized instantiation of child HDL instances, you must use the following
command so that Platform Designer generates a unique name for each wrapper. You
can then access this unique wrapper name with a fileset callback so that the instances
are instantiated inside the component's top-level HDL.

• To declare auto-generated fixed names for wrappers, use the command:

set_instance_property instance_name HDLINSTANCE_USE_GENERATED_NAME \
true

Note: You can only use this command with a generated component in the global
context, or in an elaboration callback.

• To obtain auto-generated fixed name with a fileset callback, use the command:

get_instance_property instance_name HDLINSTANCE_GET_GENERATED_NAME

Note: You can only use this command with a fileset callback. This command
returns the value of the auto-generated fixed name, which you can then use
to instantiate inside the top-level HDL.

Example 96. Typical Usage of the add_hdl_instance Command for Generated Components

Platform Designer generates a wrapper file for the instance name specified in the
_hw.tcl file.

package require -exact qsys 14.0
set_module_property name generated_toplevel_component
set_module_property ELABORATION_CALLBACK elaborate
add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

proc elaborate {} {

 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 # instruct Platform Designer to use auto generated fixed name
 set_instance_property emif_instance_name \
 HDLINSTANCE_USE_GENERATED_NAME 1
}

proc generate { entity_name } {

 # get the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 set autogeneratedfixedname [get_instance_property \
 emif_instance_name HDLINSTANCE_GET_GENERATED_NAME]

 set fileID [open "generated_toplevel_component.v" r]
 set temp ""

 # read the contents of the file

 while {[eof $fileID] != 1} {
 gets $fileID lineInfo

 # replace the top level entity name with the name provided
 # during generation

 regsub -all "substitute_entity_name_here" $lineInfo \

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
642

 "${entity_name}" lineInfo

 # replace the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 regsub -all "substitute_autogenerated_emifinstancename_here" \
 $lineInfo"${autogeneratedfixedname}" lineInfo \
 append temp "${lineInfo}\n"
}

adding a top level component file

add_fileset_file ${entity_name}.v VERILOG TEXT $temp
}

Example 97. Top-Level HDL Instance and Wrapper File Created By Platform Designer

// Top Level Component HDL

module substitute_entity_name_here (input_wire, output_wire,
inout_wire);

input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added
// via add_hdl_instance command can be used
// in the top-level file of the component.

substitute_autogenerated_emifinstancename_here
fixed_name_instantiation_in_top_level (
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

// Wrapper for added HDL instance
// generated_toplevel_component_0_emif_instance_name.v is the
// auto generated //emif_instance_name
// Generated using ACDS version 13.

`timescale 1 ps / 1 ps
module generated_toplevel_component_0_emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system_add_hdl_instance_example_0_emif
_instance_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Related Links

• Control File Generation Dynamically with Parameters and a Fileset Callback on
page 636

• Intellectual Property & Reference Designs

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
643

http://www.altera.com/products/ip/ipm-index.html

10.15.3 Design Guidelines for Adding Component Instances

In order to promote standard and predictable results when generating static and
generated components, Intel recommends the following best-practices:

• For two different parameterizations of a component, a component must never
generate a file of the same name with different instantiations. The contents of a
file of the same name must be identical for every parameterization of the
component.

• If a component generates a nested component, it must never instantiate two
different parameterizations of the nested component using the same instance
name. If the parent component's parameterization affects the parameters of the
nested component, the parent component must use a unique instance name for
each unique parameterization of the nested component.

• Static components that generate differently based on parameterization have the
potential to cause problems in the following cases:

— Different file names with the same entity names, results in same entity
conflicts at compilation-time

— Different contents with the same file name results in overwriting other
instances of the component, and in either file, compile-time conflicts or
unexpected behavior.

• Generated components that generate files not based on the output name and that
have different content results in either compile-time conflicts, or unexpected
behavior.

10.16 Adding a Generic Component to the Platform Designer
System

The generic component is a type of Platform Designer component that enables
hierarchical isolation of IP components. This component is available in the IP Catalog.
Use this component as a mechanism to quickly define a custom component or import
your RTL into a Platform Designer system.

By default, the generic component's Implementation Type is set to Blackbox. This
mode specifies that the RTL implementation is not provided in the generated RTL
output of the Platform Designer system. When you generate a system containing a
generic component, the system's RTL instantiates the component, but does not
provide an implementation for the component. You must provide an implementation
for the component in a downstream compiler such as Intel Quartus Prime software or
RTL code.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
644

Figure 196. Adding a Generic Component to the Platform Designer System

To add a generic component to your system:

1. Type generic component in the IP Catalog.

2. To launch the Component Instantiation editor, double-click Generic
Component. The default option is to create a Blackbox component.

The Component Instantiation editor allows you to select one of four implementation
types:

• IP—Use the IP option to create a component from a .ip file.

• HDL—Use the HDL option to istantiate a component from RTL (.v/.sv/.vhd)
without using _hw.tcl.

• Blackbox—The default option. Use the Blackbox option to create a generic
component. You can either add interfaces and signals manually, clone/mirror from
existing components in the current system, or import from an .ipxact file.

• HLS—Use the HLS option to add and compile High Level Synthesis (HLS) files, or
add and import HLS files.

Related Links

• Creating Custom Interfaces in a Generic Component on page 646

• Instantiating RTL in a System as a Generic Component on page 649

• Implementing Generic Components Using High Level Synthesis Files on page 650

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
645

10.16.1 Creating Custom Interfaces in a Generic Component

The Signals & Interfaces tab of the Component Instantiation editor allows you to
customize signals and interfaces for your generic component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. To add an interface, click <<add interface>> in the left pane and select the
interface. The selected interface appears in the parameter editor to the right,
where you specify its parameters.

4. To add signals to the selected interface, click <<add signal>> below the selected
interface.

5. To move signals between interfaces, select the signal and drag it to another
interface.

6. To rename a signal or interface, select the element, and then press F2.

7. To remove a signal or interface, right-click the element, and then click Remove.

Note: Alternatively, to remove a signal or interface, select the element and press
Delete. When you remove an interface, Platform Designer also removes all
of its associated signals.

Figure 197. Creating Custom Interfaces

Note: To add existing template interfaces to your generic component, select the interface
from Templates menu in the Component Instantiation editor.

10.16.1.1 Mirroring Interfaces in a Generic Component

To mirror existing signals and interfaces from an IP component to your generic
component:

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
646

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Mirror button. A list appears which lists all the available components in
the system and their associated interfaces.

4. Select the desired interface. Platform Designer mirrors the interface and its
associated signals and adds the mirrored interfaces and signals to the Signals &
Interfaces tab of the generic component.

Example 98. Mirroring Interfaces in a Generic Component Example

Selected Interface Mirrored Interface

Avalon Memory-Mapped Master (avalon_master) Avalon Memory-Mapped Slave
(avalon_slave)

Signals of the Selected Interface Signals of the Mirrored Interface

waitrequest(Input 1) waitrequest(Output 1)

readdata(Input 32) readdata(Output 32)

readdatavalid(Input 1) readdatavalid(Output 1)

burstcount(Output 32) burstcount(Input 32)

Figure 198. Mirroring Interfaces

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
647

10.16.1.2 Cloning Interfaces in a Generic Component

To clone existing signals and interfaces from an IP component to your generic
component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Clone button. A list appears which lists all the available components in
the system and their associated interfaces.

4. Select the desired interface. Platform Designer clones the interface and adds an
exact replica of the interface and its associated signals to the Signals &
Interfaces tab of the generic component.

Figure 199. Cloning Interfaces

10.16.1.3 Importing Interfaces to a Generic Component

To import interfaces from an existing IP or IP-XACT file to your generic component:

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
648

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Import button. A dialog box appears from where you choose the IP/IP-
XACT file to import to your generic component.

4. Select the desired interface. Platform Designer populates the Signals &
Interfaces tab with the signals and interfaces defined in the selected file.

Figure 200. Importing Interfaces

10.16.2 Instantiating RTL in a System as a Generic Component

To add an RTL file as a generic component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, set the Implementation Type as HDL.

3. Select the Files tab.

4. Click Add File and select the RTL file to load to the generic component.

a. If you are importing an HDL file with SystemVerilog interface definition, you
should set the Attributes of this file to File contains SystemVerilog
interface definition used by the Top-level Module.

5. Click Analyze HDL files. This option analyzes and populates the Signals &
Interfaces tab of the generic component from the RTL file.

6. Verify, and modify the signals and interfaces if needed, in the Signals &
Interfaces tab.

Note: You must treat a generic component with an HDL Implementation Type as a
customized and centralized RTL, specific to your current system. When you set a
generic component's Implementation Type to HDL, the output of any RTL that you
add to the component is within the system's output directory.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
649

Figure 201. Instantiating an RTL as a Generic Component

10.16.3 Implementing Generic Components Using High Level Synthesis
Files

High Level Synthesis (HLS) files can be compiled to create Platform Designer
components and are written according to the i++ specification. HLS files can be in
.c,.cc,*.cpp,*.c++,*.cp, or *.cxx format.

An HLS file defines one or more components in an i++ format that Platform Designer
compiles into HDL. In order to add components from an HLS file there are two basic
steps:

1. Identify and add the HLS file.

2. Import an already compiled file from a previous Platform Designer session or
project, or Compile the HLS file in Platform Designer.

Once the component has been imported or compiled, Platform Designer peforms the
following actions:

• Imports an .ip resulting from the HLS compilation to the component name
defined in the HLS file.

• Sets the HDL entity name and HDL compilation library to the component
defined in the HLS file.

• Adds the .ip file to the empty generic component.

• Adds paths to the .ip and _hw.tcl output files to the Platform Designer search
path to enable instantiation.

• Populates the signals and interfaces of the component from the .ip file.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
650

After compilation, the HLS compiler creates a <component_name>.prj folder with
the following directories:

Table 125. Contents of <component_name>.prj Folder

Folder Description

/component Contains IP and _hw.tcl files.

/quartus Contains Intel Quartus Prime Pro Edition project files that instantiate the HLS component.
You can use this to verify timing and logic usage.

/reports Contains a compilation report in HTML.

/verification Contains verification files, if you decided to create a verification executable.

Related Links

Intel High Level Synthesis Compiler Getting Started Guide

10.16.3.1 Add High Level Synthesis Files to a Generic Component

You can quickly add High Level Synthesis (HLS) components to a Platform Designer
project by dragging and dropping files into the Platform Designer System Contents
tab. The drag-and-drop process selects the HLS implementation type, and adds the
HLS file to the HLS files box.

To add a component with an HLS implementation, perform the following steps in
Platform Designer:

1. Drag an HLS file to the System Contents tab of Platform Designer.
or

2. Type generic component in the IP Catalog.

3. To launch the Component Instantiation editor, double-click Generic
Component.

4. To add a component from an HLS file to the empty generic component, select the
HLS Implementation Type.

5. Click + and select an HLS file to add.

You can click + to add more than one HLS file. Click - to remove HLS files. The
primary case for adding multiple HLS files is when you are using a library of
components defined by one or more high level synthesis files.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
651

https://www.altera.com/documentation/ewa1462479481465.html#ewa1462810049539

Figure 202. Add an HLS Implementation Type File

Add File

Related Links

• Compile High Level Synthesis Files on page 652

• Import High Level Synthesis Files on page 654

10.16.3.2 Compile High Level Synthesis Files

The Compile option for High Level Synthesis (HLS) component instantiation in
Platform Designerinvokes the Intel HLS Compiler to compile HLS files and modify a
generic component.

Performing a compile on an HLS file has the following results:

• Imports an .ip resulting from the HLS compilation to the component name
defined in the HLS file.

• Sets the HDL entity name and HDL compilation library to the component
defined in the HLS file.

• Adds the .ip file to the empty generic component.

• Adds paths to the .ip and _hw.tcl output files to the Platform Designer search
path to enable instantiation.

• Populates the signals and interfaces of the component from the .ip file.

After you have added an HLS file:

1. Click Compile.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
652

Figure 203. HLS Component Instantiation

2. In the HLS Options dialog box, you can select from the following options:

Figure 204. HLS Options Dialog Box

a. The project name defaults to the entity name defined in the HLS file. To set a
new project name, select new project name and enter a new HLS project
name in the dialog box.

Figure 205. Change the Project Name

b. Provide additional arguments to the HLS compiler. Refer to Command Compiler
Options in the Intel High Level Synthesis Reference Manual for information on
compiler arguments.

c. Disable or enable simulation file creation.
A simulation file is required to use the Run Verification option after
compilation is complete.

d. Enable verbose logging to create a compilation log file.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
653

e. Enable or disable display of the HLS report in a browser window directly after
compilation is complete.

f. Perform verification with or without additional verification arguments if you
chose to create a verification executable. Refer to the Intel High Level
Synthesis Compiler User Guide for information on verification arguments.

3. Click OK to compile the HLS file and create the component.

4. If your HLS file defines more than one component, the Choose File to Import
dialog box prompts you to select a specific component from a list.

5. After compiling, click Show Report to display a compilation report in a browser
window.

6. If you created simulation files for your component, you can click Run Verification
to perform verification.

Related Links

• Compiler Command Options

• Intel High Level Synthesis Compiler User Guide

10.16.3.3 Import High Level Synthesis Files

If you have a compiled High Level Synthesis (HLS) file, you can import it instead to
save compilation time.

1. Click Import.

Figure 206. HLS Component Instantiation

You should only use Import when your HLS file defines previously compiled
components.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
654

https://www.altera.com/documentation/ewa1462824960255.html#ewa1462897780080
https://www.altera.com/documentation/ewa1457708982563.html#ewa1457710831536

Figure 207. HLS Options Dialog Box

2. In the HLS Options dialog box, you can select from the following options:

a. The project name defaults to the entity name defined in the HLS file. To set a
new project name, select new project name and enter a new HLS project
name in the dialog box.

Figure 208. Change the Project Name

b. Enable or disable display of the HLS report in a browser window directly after
compilation is complete.

c. Perform verification with or without additional verification arguments if you
chose to create a verification executable. Refer to the Intel High Level
Synthesis Compiler User Guide for information on verification arguments.

3. Click OK.

4. If your HLS file defines more than one component, the Choose File to Import
dialog box prompts you to select a specific component .ip from a list.

5. After importing, click Show Report to display a compilation report in a browser
window if the compilation report is enabled.

6. Click Run Verification to perform verification if it is enabled.

Related Links

Intel High Level Synthesis Compiler User Guide

10.16.4 Creating System Template for a Generic Component

To create a Platform Designer system template:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, add the interfaces and signals for the
new component in the Signals & Interfaces tab.

3. Select the Implementation Templates tab.

4. Click Create Platform Designer System Template button. This option creates
an empty Platform Designer system and saves the template as a .qsys file to
implement this generic component.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
655

https://www.altera.com/documentation/ewa1457708982563.html#ewa1457710831536

Figure 209. Creating System templates

To implement this component:

1. To open the template Platform Designer system, click File ➤ Open and choose the
specific .qsys file.

2. Add either or both IP components and generic components then export their
interfaces to satisfy the specified interface requirements.

3. To view the exported interfaces in the Interface Requirements tab, select View
➤ Interface Requirements.

Figure 210. Viewing the Interface Requirements from the System Template

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
656

10.16.5 Exporting a Generic Component

You can export a generic component as a .ipxact file as well as _hw.tcl file:

1. Double-click Generic Component in the IP Catalog.

2. Select the Export tab.

3. To export generic component as an IP-XACT file, click Export IP-XACT File and
select the location to save your IP-XACT file.

4. To export generic component as a _hw.tcl file, click Export _hw.tcl File and
select the location to save your _hw.tcl file.

10.17 Document Revision History

The table below indicates edits made to the Creating Platform Designer Components
content since its creation.

Table 126. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Replaced mentions of altera_axi_default_slave to altera_error_response_slave
• Added support for SystemVerilog interfaces with _hw.tcl.
• Added support for user alterable HDL parameters with _hw.tcl.
• Added support for High Level Synthesis file compilation.

2017.05.08 17.0.0 • Updated Figure: Address Span Extender

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Platform Designer rebranding.
• Added topics for Generic Component.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Updated screen shots Files tab, Platform Designer Component Editor.
• Added topic: Specify Interfaces and Signals in the Platform Designer Component Editor.
• Added topic: Create an HDL File in the Platform Designer Component Editor.
• Added topic: Create an HDL File Using a Template in the Platform Designer Component

Editor.

November 2013 13.1.0 • add_hdl_instance

• Added Creating a Component With Differing Structural Platform Designer View and
Generated Output Files.

May 2013 13.0.0 • Consolidated content from other Platform Designer chapters.
• Added Upgrading IP Components to the Latest Version.
• Updated for AMBA APB support.

November 2012 12.1.0 • Added AMBA AXI4 support.
• Added the demo_axi_memory example with screen shots and example _hw.tcl code.

June 2012 12.0.0 • Added new tab structure for the Component Editor.
• Added AMBA 3 AXI support.

November 2011 11.1.0 Template update.

May 2011 11.0.0 • Removed beta status.
• Added Avalon Tri-state Conduit (Avalon-TC) interface type.
• Added many interface templates for Nios custom instructions and Avalon-TC interfaces.

December 2010 10.1.0 Initial release.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
657

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

10 Creating Platform Designer Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
658

https://www.altera.com/search-archives

11 Platform Designer Interconnect
Platform Designer interconnect is a high-bandwidth structure that allows you to
connect IP components to other IP components with various interfaces.

Note: Intel now refers to Qsys Pro as Platform Designer.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Note: The video AMBA AXI and Intel Avalon Interoperation Using Platform Designer,
describes seamless integration of IP components using the AMBA AXI interface, and
the Intel Avalon interface.

Related Links

• Creating a System with Platform Designer on page 327

• Creating Platform Designer Components on page 608

• Platform Designer System Design Components on page 914

• AMBA AXI and Intel Avalon Interoperation Using Platform Designer

• Avalon Interface Specifications

11.1 Memory-Mapped Interfaces

Platform Designer supports the implementation of memory-mapped interfaces for
Avalon, AXI, and APB protocols.

Platform Designer interconnect transmits memory-mapped transactions between
masters and slaves in packets. The command network transports read and write
packets from master interfaces to slave interfaces. The response network transports
response packets from slave interfaces to master interfaces.

For each component interface, Platform Designer interconnect manages memory-
mapped transfers and interacts with signals on the connected interface. Master and
slave interfaces can implement different signals based on interface parameterizations,
and Platform Designer interconnect provides any necessary adaptation between them.
In the path between master and slaves, Platform Designer interconnect may introduce
registers for timing synchronization, finite state machines for event sequencing, or
nothing at all, depending on the services required by the interfaces.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.youtube.com/watch?v=LdD2B1x-5vo
https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Platform Designer interconnect supports the following implementation scenarios:

• Any number of components with master and slave interfaces. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or many-to-many.

• Masters and slaves of different data widths.

• Masters and slaves operating in different clock domains.

• IP Components with different interface properties and signals. Platform Designer
adapts the component interfaces so that interfaces with the following differences
can be connected:

— Avalon and AXI interfaces that use active-high and active-low signaling. AXI
signals are active high, except for the reset signal.

— Interfaces with different burst characteristics.

— Interfaces with different latencies.

— Interfaces with different data widths.

— Interfaces with different optional interface signals.

Note: Since interface connections between AMBA 3 AXI and AMBA 4 AXI
declare a fixed set of signals with variable latency, there is no need for
adapting between active-low and active-high signaling, burst
characteristics, different latencies, or port signatures. Adaptation might
be necessary between Avalon interfaces.

In this example, there are two components mastering the system, a processor and a
DMA controller, each with two master interfaces. The masters connect through the
Platform Designer interconnect to slaves in the Platform Designer system.

The dark blue blocks represent interconnect components. The dark grey boxes indicate
items outside of the Platform Designer system and the Intel Quartus Prime software
design, and show how to export component interfaces and how to connect these
interfaces to external devices.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
660

Figure 211. Platform Designer interconnect for an Avalon-MM System with Multiple
Masters

Processor

M

DMA Controller

DDR3
Controller

DDR3 Chip

Data
Memory

S

Instruction

M

Data

MM

Control

Read Write

Instruction
Memory

SSS

Interconnect

PCB

Command Switch
(Avalon-ST)

Response Switch
(Avalon-ST)

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

Tri-State Conduit
 Pin Sharer & Bridge

TCS TCS

Tri-State
Controller

S

TCM

Tri-State
Conduit

S

TCM

Slave
Network
Interface

Master Command Connectivity

Slave Response Connectivity

Interface to Off-Chip Device

M Avalon-MM Master Interface

S Avalon-MM Slave Interface

TCM Avalon Tri-State Conduit Master

TCS Avalon Tri-State Conduit Slave

Design using
Platform Designer

in Intel FPGA

11.1.1 Platform Designer Packet Format

The Platform Designer packet format supports Avalon, AXI, and APB transactions.
Memory-mapped transactions between masters and slaves are encapsulated in
Platform Designer packets. For Avalon systems without AXI or APB interfaces, some
fields are ignored or removed.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
661

11.1.1.1 Fields in the Platform Designer Packet Format

The fields of the Platform Designer packet format are of variable length to minimize
resource usage. However, if most components in a design have a single data width, for
example 32-bits, and a single component has a data width of 64-bits, Platform
Designer inserts a width adapter to accommodate 64-bit transfers.

Table 127. Platform Designer Packet Format for Memory-Mapped Master and Slave
Interfaces

Command Description

Address Specifies the byte address for the lowest byte in the current cycle. There are no restrictions
on address alignment.

Size Encodes the run-time size of the transaction.
In conjunction with address, this field describes the segment of the payload that contains
valid data for a beat within the packet.

Address Sideband Carries “address” sideband signals. The interconnect passes this field from master to slave.
This field is valid for each beat in a packet, even though it is only produced and consumed
by an address cycle.
Up to 8-bit sideband signals are supported for both read and write address channels.

Cache Carries the AXI cache signals.

Transaction
(Exclusive)

Indicates whether the transaction has exclusive access.

Transaction (Posted) Used to indicate non-posted writes (writes that require responses).

Data For command packets, carries the data to be written. For read response packets, carries
the data that has been read.

Byteenable Specifies which symbols are valid. AXI can issue or accept any byteenable pattern. For
compatibility with Avalon, Intel recommends that you use the following legal values for 32-
bit data transactions between Avalon masters and slaves:
• 1111—Writes full 32 bits
• 0011—Writes lower 2 bytes
• 1100—Writes upper 2 bytes
• 0001—Writes byte 0 only
• 0010—Writes byte 1 only
• 0100—Writes byte 2 only
• 1000—Writes byte 3 only

Source_ID The ID of the master or slave that initiated the command or response.

Destination_ID The ID of the master or slave to which the command or response is directed.

Response Carries the AXI response signals.

Thread ID Carries the AXI transaction ID values.

Byte count The number of bytes remaining in the transaction, including this beat. Number of bytes
requested by the packet.

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
662

Command Description

Burstwrap The burstwrap value specifies the wrapping behavior of the current burst. The burstwrap
value is of the form 2<n> -1. The following types are defined:
• Variable wrap–Variable wrap bursts can wrap at any integer power of 2 value. When the

burst reaches the wrap boundary, it wraps back to the previous burst boundary so that
only the low order bits are used for addressing. For example, a burst starting at address
0x1C, with a burst wrap boundary of 32 bytes and a burst size of 20 bytes, would write
to addresses 0x1C, 0x0, 0x4, 0x8, and 0xC.

• For a burst wrap boundary of size <m>, Burstwrap = <m> - 1, or for this case
Burstwrap = (32 - 1) = 31 which is 25 -1.

• For AXI masters, the burstwrap boundary value (m) is based on the different AXBURST:
— Burstwrap set to all 1’s. For example, for a 6-bit burstwrap, burstwrap is

6'b111111.
— For WRAP bursts, burstwrap = AXLEN * size – 1.
— For FIXED bursts, burstwrap = size – 1.
— Sequential bursts increment the address for each transfer in the burst. For

sequential bursts, the Burstwrap field is set to all 1s. For example, with a 6-bit
Burstwrap field, the value for a sequential burst is 6'b111111 or 63, which is 26 -
1.

For Avalon masters, Platform Designer adaptation logic sets a hardwired value for the
burstwrap field, according the declared master burst properties. For example, for a master
that declares sequential bursting, the burstwrap field is set to ones. Similarly, masters that
declare burst have their burstwrap field set to the appropriate constant value.
AXI masters choose their burst type at run-time, depending on the value of the AW or
ARBURST signal. The interconnect calculates the burstwrap value at run-time for AXI
masters.

Protection Access level protection. When the lowest bit is 0, the packet has normal access. When the
lowest bit is 1, the packet has privileged access. For Avalon-MM interfaces, this field maps
directly to the privileged access signal, which allows a memory-mapped master to write to
an on-chip memory ROM instance. The other bits in this field support AXI secure accesses
and uses the same encoding, as described in the AXI specification.

QoS QoS (Quality of Service Signaling) is a 4-bit field that is part of the AMBA 4 AXI interface
that carries QoS information for the packet from the AXI master to the AXI slave.
Transactions from AMBA 3 AXI and Avalon masters have the default value 4'b0000, that
indicates that they are not participating in the QoS scheme. QoS values are dropped for
slaves that do not support QoS.

Data sideband Carries data sideband signals for the packet. On a write command, the data sideband
directly maps to WUSER. On a read response, the data sideband directly maps to RUSER. On
a write response, the data sideband directly maps to BUSER.

11.1.1.2 Transaction Types for Memory-Mapped Interfaces

Table 128. Transaction Types for Memory-Mapped Interfaces
The table below describes the information that each bit transports in the packet format's transaction field.

Bit Name Definition

0 PKT_TRANS_READ When asserted, indicates a read transaction.

1 PKT_TRANS_COMPRESSED_READ For read transactions, specifies whether the read command can be
expressed in a single cycle (all byteenables asserted on every
cycle).

2 PKT_TRANS_WRITE When asserted, indicates a write transaction.

3 PKT_TRANS_POSTED When asserted, no response is required.

4 PKT_TRANS_LOCK When asserted, indicates arbitration is locked. Applies to write
packets.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
663

11.1.1.3 Platform Designer Transformations

The memory-mapped master and slave components connect to network interface
modules that encapsulate the transaction in Avalon-ST packets. The memory-mapped
interfaces have no information about the encapsulation or the function of the layer
transporting the packets. The interfaces operate in accordance with memory-mapped
protocol and use the read and write signals and transfers.

Figure 212. Transformation when Generating a System with Memory-Mapped and Slave
Components
Platform Designer components that implement the blocks appear shaded.

Slave Response Connectivity

Master Command Connectivity

Avalon-STAvalon-MM or AXI Avalon-MM or AXI

Avalon-ST
Network

(Command)

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Avalon-ST
Network

(Response)

Related Links

• Master Network Interfaces on page 666

• Slave Network Interfaces on page 669

11.1.2 Interconnect Domains

An interconnect domain is a group of connected memory-mapped masters and slaves
that share the same interconnect. The components in a single interconnect domain
share the same packet format.

11.1.2.1 Using One Domain with Width Adaptation

When one of the masters in a system connects to all the slaves, Platform Designer
creates a single domain with two packet formats: one with 64-bit data, and one with
16-bit data. A width adapter manages accesses between the 16-bit master and 64-bit
slaves.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
664

Figure 213. One Domain with 1:4 and 4:1 Width Adapters
In this system example, there are two 64-bit masters that access two 64-bit slaves. It also includes one 16-bit
master, that accesses two 16-bit slaves and two 64-bit slaves. The 16-bit Avalon master connects through a
1:4 adapter, then a 4:1 adapter to reach its 16-bit slaves.

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Master
M

Single Domain with 1:4 & 4:1 Width Adapters

64-Bit
Avalon-MM

Slave

S

64-Bit
Avalon-MM

Master
M

64-Bit
Avalon-MM

Master
M

4:1 1:4

64-Bit
Avalon-MM

Slave

S

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
665

11.1.2.2 Using Two Separate Domains

Figure 214. Two Separate Domains
In this system example, Platform Designer uses two separate domains. The first domain includes two 64-bit
masters connected to two 64-bit slaves. A second domain includes one 16-bit master connected to two 16-bit
slaves. Because the interfaces in Domain 1 and Domain 2 do not share any connections, Platform Designer can
optimize the packet format for the two separate domains. In this example, the first domain uses a 64-bit data
width and the second domain uses 16-bit data.

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Slave

S

Domain 1

Command Network Response Network

Domain 2

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Master

M

Component 1 Component 2

11.1.3 Master Network Interfaces

Figure 215. Avalon-MM Master Network Interface
Avalon network interfaces drive default values for the QoS and BUSER, WUSER, and RUSER packet fields in the
master agent, and drop the packet fields in the slave agent.

Note: The response signal from the Limiter to the Agent is optional.

Master
Interface

Master Network Interface

Translator Agent Limiter

Router

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

response [1:0]

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
666

Figure 216. AXI Master Network Interface
An AMBA 4 AXI master supports INCR bursts up to 256 beats, QoS signals, and data sideband signals.

Master Network Interface

AXI
Translator

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

AXI
Master
Agent

Router

Read Command

Write Command

Limiter

Write Response

Read Response

Master
Interface

Note: For a complete definition of the optional read response signal, refer to Avalon
Memory-Mapped Interface Signal Types in the Avalon Interface Specifications.

Related Links

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 327

11.1.3.1 Avalon-MM Master Agent

The Avalon-MM Master Agent translates Avalon-MM master transactions into Platform
Designer command packets and translates the Platform Designer Avalon-MM slave
response packets into Avalon-MM responses.

11.1.3.2 Avalon-MM Master Translator

The Avalon-MM Master Translator interfaces with an Avalon-MM master component
and converts the Avalon-MM master interface to a simpler representation for use in
Platform Designer.

The Avalon-MM Master translator performs the following functions:

• Translates active-low signaling to active-high signaling

• Inserts wait states to prevent an Avalon-MM master from reading invalid data

• Translates word and symbol addresses

• Translates word and symbol burst counts

• Manages re-timing and re-sequencing bursts

• Removes unnecessary address bits

11.1.3.3 AXI Master Agent

An AXI Master Agent accepts AXI commands and produces Platform Designer
command packets. It also accepts Platform Designer response packets and converts
those into AXI responses. This component has separate packet channels for read
commands, write commands, read responses, and write responses. Avalon master
agent drives the QoS and BUSER, WUSER, and RUSER packet fields with default values
AXQO and b0000, respectively.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
667

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

Note: For signal descriptions, refer to Platform Designer Packet Format.

Related Links

Fields in the Platform Designer Packet Format on page 662

11.1.3.4 AXI Translator

AMBA 4 AXI allows signals to be omitted from interfaces. The translator bridges
between these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI
interface on the network interfaces.

The AXI translator is inserted for both AMBA 4 AXI masters and slaves and performs
the following functions:

• Matches ID widths between the master and slave in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI master connects to
an AMBA 4 AXI slave in 1x1 systems.

Related Links

Arm AMBA Protocol Specifications

11.1.3.5 APB Master Agent

An APB master agent accepts APB commands and produces or generates Platform
Designer command packets. It also converts Platform Designer response packets to
APB responses.

11.1.3.6 APB Slave Agent

An APB slave agent issues resulting transaction to the APB interface. It also accepts
creates Platform Designer response packets.

11.1.3.7 APB Translator

An APB peripheral does not require pslverr signals to support additional signals for
the APB debug interface.

The APB translator is inserted for both the master and slave and performs the
following functions:

• Sets the response value default to OKAY if the APB slave does not have a pslverr
signal.

• Turns on or off additional signals between the APB debug interface, which is used
with HPS (Intel SoC’s Hard Processor System).

11.1.3.8 AHB Slave Agent

The Platform Designer interconnect supports non-bursting Advanced High-
performance Bus (AHB) slave interfaces.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
668

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html

11.1.3.9 Memory-Mapped Router

The Memory-Mapped Router routes command packets from the master to the slave,
and response packets from the slave to the master. For master command packets, the
router uses the address to set the Destination_ID and Avalon-ST channel. For the
slave response packet, the router uses the Destination_ID to set the Avalon-ST
channel. The demultiplexers use the Avalon-ST channel to route the packet to the
correct destination.

11.1.3.10 Memory-Mapped Traffic Limiter

The Memory-Mapped Traffic Limiter ensures the responses arrive in order. It prevents
any command from being sent if the response could conflict with the response for a
command that has already been issued. By guaranteeing in-order responses, the
Traffic Limiter simplifies the response network.

11.1.4 Slave Network Interfaces

11.1.4.1 Avalon-MM Slave Translator

The Avalon-MM Slave Translator converts the Avalon-MM slave interface to a simplified
representation that the Platform Designer network can use.

Figure 217. Avalon-MM Slave Network Interface

Slave
Interface

Slave Network Interface

Agent Translator

Waitrequest

Overflow Error

Command

Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

An Avalon-MM Slave Translator performs the following functions:

• Drives the beginbursttransfer and byteenable signals.

• Supports Avalon-MM slaves that operate using fixed timing and or slaves that use
the readdatavalid signal to identify valid data.

• Translates the read, write, and chipselect signals into the representation that
the Avalon-ST slave response network uses.

• Converts active low signals to active high signals.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
669

• Translates word and symbol addresses and burstcounts.

• Handles burstcount timing and sequencing.

• Removes unnecessary address bits.

Related Links

Slave Network Interfaces on page 669

11.1.4.2 AXI Translator

AMBA 4 AXI allows omitting signals from interfaces. The translator bridges between
these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI interface on
the network interfaces.

Figure 218. AXI Slave Network Interface
An AMBA 4 AXI slave supports up to 256 beat INCR bursts, QoS signals, and data sideband signals.

AXI
Translator

AXI
Agent

Write Response

Read Command

Read Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Write Command

Network Interface

Slave
Interface

The AXI translator is inserted for both AMBA 4 AXI master and slave, and performs
the following functions:

• Matches ID widths between master and slave in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI master connects to
an AMBA 4 AXI slave in 1x1 systems.

11.1.4.3 Wait State Insertion

Wait states extend the duration of a transfer by one or more cycles. Wait state
insertion logic accommodates the timing needs of each slave, and causes the master
to wait until the slave can proceed. Platform Designer interconnect inserts wait states
into a transfer when the target slave cannot respond in a single clock cycle, as well as
in cases when slave read and write signals have setup or hold time requirements.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
670

Figure 219. Wait State Insertion Logic for One Master and One Slave
Wait state insertion logic is a small finite-state machine that translates control signal sequencing between the
slave side and the master side. Platform Designer interconnect can force a master to wait for the wait state
needs of a slave; for example, arbitration logic in a multi-master system. Platform Designer generates wait
state insertion logic based on the properties of all slaves in the system.

Master
Port

Slave
Port

Wait-State
Insertion

Logic read/writeread/write

wait request

address

data

11.1.4.4 Avalon-MM Slave Agent

The Avalon-MM Slave Agent accepts command packets and issues the resulting
transactions to the Avalon interface. For pipelined slaves, an Avalon-ST FIFO stores
information about pending transactions. The size of this FIFO is the maximum number
of pending responses that you specify when creating the slave component. The
Avalon-MM Slave Agent also backpressures the Avalon-MM master command
interface when the FIFO is full if the slave component includes the waitrequest
signal.

11.1.4.5 AXI Slave Agent

An AXI Slave Agent works like a reverse master agent. The AXI Slave Agent accepts
Platform Designer command packets to create AXI commands, and accepts AXI
responses to create Platform Designer response packets. This component has separate
packet channels for read commands, write commands, read responses, and write
responses.

11.1.5 Arbitration

When multiple masters contend for access to a slave, Platform Designer automatically
inserts arbitration logic, which grants access in fairness-based, round-robin order. You
can alternatively choose to designate a slave as a fixed priority arbitration slave, and
then manually assign priorities in the Platform Designer GUI.

11.1.5.1 Round-Robin Arbitration

When multiple masters contend for access to a slave, Platform Designer automatically
inserts arbitration logic which grants access in fairness-based, round-robin order.

In a fairness-based arbitration protocol, each master has an integer value of transfer
shares with respect to a slave. One share represents permission to perform one
transfer. The default arbitration scheme is equal share round-robin that grants equal,
sequential access to all requesting masters. You can change the arbitration scheme to
weighted round-robin by specifying a relative number of arbitration shares to the
masters that access a given slave. AXI slaves have separate arbitration for their
independent read and write channels, and the Arbitration Shares setting affects
both the read and write arbitration. To display arbitration settings, right-click an
instance on the System Contents tab, and then click Show Arbitration Shares.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
671

Figure 220. Arbitration Shares in the Connections Column

11.1.5.1.1 Fairness-Based Shares

In a fairness-based arbitration scheme, each master-to-slave connection provides a
transfer share count. This count is a request for the arbiter to grant a specific number
of transfers to this master before giving control to a different master. One share
represents permission to perform one transfer.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
672

Figure 221. Arbitration of Continuous Transfer Requests from Two Masters
Consider a system with two masters connected to a single slave. Master 1 has its arbitration shares set to
three, and Master 2 has its arbitration shares set to four. Master 1 and Master 2 continuously attempt to
perform back-to-back transfers to the slave. The arbiter grants Master 1 access to the slave for three transfers,
and then grants Master 2 access to the slave for four transfers. This cycle repeats indefinitely. The figure below
describes the waveform for this scenario.

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

Figure 222. Arbitration of Two Masters with a Gap in Transfer Requests
If a master stops requesting transfers before it exhausts its shares, it forfeits all its remaining shares, and the
arbiter grants access to another requesting master. After completing one transfer, Master 2 stops requesting for
one clock cycle. As a result, the arbiter grants access back to Master 1, which gets a replenished supply of
shares.

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

11.1.5.1.2 Round-Robin Scheduling

When multiple masters contend for access to a slave, the arbiter grants shares in
round-robin order. Platform Designer includes only requesting masters in the
arbitration for each slave transaction.

11.1.5.2 Fixed Priority Arbitration

Fixed priority arbitration is an alternative arbitration scheme to the default round-robin
scheme.

You can selectively apply fixed priority arbitration to any slave in a Platform Designer
system. You can design Platform Designer systems where a subset of slaves use the
default round-robin arbitration, and other slaves use fixed priority arbitration. Fixed
priority arbitration uses a fixed priority algorithm to grant access to a slave amongst
its connected masters.

To set up fixed priority arbitration, you must first designate a fixed priority slave in
your Platform Designer system in the Interconnect Requirements tab. You can then
assign an arbitration priority number for each master connected to a fixed priority
slave in the System Contents tab, where the highest numeric value receives the
highest priority. When multiple masters request access to a fixed priority arbitrated
slave, the arbiter gives the master with the highest priority first access to the slave.

For example, when a fixed priority slave receives requests from three masters on the
same cycle, the arbiter grants the master with highest assigned priority first access to
the slave, and backpressures the other two masters.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
673

Note: When you connect an AXI master to an Avalon-MM slave designated to use a fixed
priority arbitrator, the interconnect instantiates a command-path intermediary round-
robin multiplexer in front of the designated slave.

11.1.5.2.1 Designate a Platform Designer Slave to Use Fixed Priority Arbitration

You can designate any slave in your Platform Designer system to use fixed priority
arbitration. You must assign each master connected to a fixed priority slave a numeric
priority. The master with the highest higher priority receives first access to the slave.
No two masters can have the same priority.

1. In Platform Designer, navigate to the Interconnect Requirements tab.

2. Click Add to add a new requirement.

3. In the Identifier column, select the slave for fixed priority arbitration.

4. In the Setting column, select qsys mm.arbitrationScheme.

5. In the Value column, select fixed-priority.

6. Navigate to the System Contents tab.

7. In the System Contents tab, right-click the designated fixed priority slave, and
then select Show Arbitration Shares.

8. For each master connected to the fixed priory arbitration slave, type a numerical
arbitration priority in the box that appears in place of the connection circle.

9. Right click the designated fixed priority slave and uncheck Show Arbitration
Shares to return to the connection circles.

11.1.5.2.2 Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves

When an AXI master is connected to a designated fixed priority arbitration Avalon-MM
slave, Platform Designer interconnect automatically instantiates an intermediary
multiplexer in front of the Avalon-MM slave.

Since AXI masters have separate read and write channels, each channel appears as
two separate masters to the Avalon-MM slave. To support fairness between the AXI
master’s read and write channels, the instantiated round-robin intermediary
multiplexer arbitrates between simultaneous read and write commands from the AXI
master to the fixed-priority Avalon-MM slave.

When an AXI master is connected to a fixed priority AXI slave, the master’s read and
write channels are directly connected to the AXI slave’s fixed-priority multiplexers. In
this case, there is one multiplexer for the read command, and one multiplexer for the
write command and therefore an intermediary multiplexer is not required.

The red circles indicate placement of the intermediary multiplexer between the AXI
master and Avalon-MM slave due to the separate read and write channels of the AXI
master.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
674

Figure 223. Intermediary Multiplexer Between AXI Master and Avalon-MM Slave

11.1.6 Memory-Mapped Arbiter

The input to the Memory-Mapped Arbiter is the command packet for all masters
requesting access to a specific slave. The arbiter outputs the channel number for the
selected master. This channel number controls the output of a multiplexer that selects
the slave device. The figure below illustrates this logic.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
675

Figure 224. Arbitration Logic
In this example, four Avalon-MM masters connect to four Avalon-MM slaves. In each cycle, an arbiter
positioned in front of each Avalon-MM slave selects among the requesting Avalon-MM masters.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

Note: If you specify a Limit interconnect pipeline stages to parameter greater than zero,
the output of the Arbiter is registered. Registering this output reduces the amount of
combinational logic between the master and the interconnect, increasing the fMAX of
the system.

Note: You can use the Memory-Mapped Arbiter for both round-robin and fixed priority
arbitration.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
676

11.1.7 Datapath Multiplexing Logic

Datapath multiplexing logic drives the writedata signal from the granted master to
the selected slave, and the readdata signal from the selected slave back to the
requesting master. Platform Designer generates separate datapath multiplexing logic
for every master in the system (readdata), and for every slave in the system
(writedata). Platform Designer does not generate multiplexing logic if it is not
needed.

Figure 225. Datapath Multiplexing Logic for One Master and Two Slaves

Master
Port

readdata

address

writedata

control

readdata2

readdata1

Datapath
Multiplexer

Slave
Port 2

Slave
Port 1

11.1.8 Width Adaptation

Platform Designer width adaptation converts between Avalon memory-mapped master
and slaves with different data and byte enable widths, and manages the run-time size
requirements of AXI. Width adaptation for AXI to Avalon interfaces is also supported.

11.1.8.1 Memory-Mapped Width Adapter

The Memory-Mapped Width Adapter is used in the Avalon-ST domain and operates
with information contained in the packet format.

The memory-mapped width adapter accepts packets on its sink interface with one
data width and produces output packets on its source interface with a different data
width. The ratio of the narrow data width must be a power of two, such as 1:4, 1:8,
and 1:16. The ratio of the wider data width to the narrower width must also be a
power of two, such as 4:1, 8:1, and 16:1 These output packets may have a different
size if the input size exceeds the output data bus width, or if data packing is enabled.

When the width adapter converts from narrow data to wide data, each input beat's
data and byte enables are copied to the appropriate segment of the wider output data
and byte enables signals.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
677

Figure 226. Width Adapter Timing for a 4:1 Adapter
This adapter assumes that the field ordering of the input and output packets is the same, with the only
difference being the width of the data and accompanying byte enable fields. When the width adapter converts
from wide data to narrow data, the narrower data is transmitted over several beats. The first output beat
contains the lowest addressed segment of the input data and byte enables.

Adapter
Input

Adapter
Output

addr_out[7:0]

clock

addr_in[7:0]

wide_data[31:0]

byteenable_in[3:0]

byteenable_out[3:0]

write

narrow_data[7:0]

08

AABBCCDD

C

08 09 0A 0B

0 0 1 1

DD CC BB AA

11.1.8.1.1 AXI Wide-to-Narrow Adaptation

For all cases of AXI wide-to-narrow adaptation, read data is re-packed to match the
original size. Responses are merged, with the following error precedence: DECERR,
SLVERR, OKAY, and EXOKAY.

Table 129. AXI Wide-to-Narrow Adaptation (Downsizing)

Burst Type Behavior

Incrementing If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to an incrementing burst with a larger length and size equal to the
output width.
If the resulting burst is unsuitable for the slave, the burst is converted to multiple sequential
bursts of the largest allowable lengths. For example, for a 2:1 downsizing ratio, an INCR9 burst is
converted into INCR16 + INCR2 bursts. This is true if the maximum burstcount a slave can
accept is 16, which is the case for AMBA 3 AXI slaves. Avalon slaves have a maximum burstcount
of 64.

Wrapping If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to a wrapping burst with a larger length, with a size equal to the output
width.
If the resulting burst is unsuitable for the slave, the burst is converted to multiple sequential
bursts of the largest allowable lengths; respecting wrap boundaries. For example, for a 2:1
downsizing ratio, a WRAP16 burst is converted into two or three INCR bursts, depending on the
address.

Fixed If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted into repeated sequential bursts over the same addresses. For example,
for a 2:1 downsizing ratio, a FIXED single burst is converted into an INCR2 burst.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
678

11.1.8.1.2 AXI Narrow-to-Wide Adaptation

Table 130. AXI Narrow-to-Wide Adaptation (Upsizing)

Burst Type Behavior

Incrementing The burst (and its response) passes through unmodified. Data and write strobes are placed in the
correct output segment.

Wrapping The burst (and its response) passes through unmodified.

Fixed The burst (and its response) passes through unmodified.

11.1.9 Burst Adapter

Platform Designer interconnect uses the memory-mapped burst adapter to
accommodate the burst capabilities of each interface in the system, including
interfaces that do not support burst transfers.

The maximum burst length for each interface is a property of the interface and is
independent of other interfaces in the system. Therefore, a specific master may be
capable of initiating a burst longer than a slave’s maximum supported burst length. In
this case, the burst adapter translates the large master burst into smaller bursts, or
into individual slave transfers if the slave does not support bursting. Until the master
completes the burst, arbiter logic prevents other masters from accessing the target
slave. For example, if a master initiates a burst of 16 transfers to a slave with
maximum burst length of 8, the burst adapter initiates 2 bursts of length 8 to the
slave.

Avalon-MM and AXI burst transactions allow a master uninterrupted access to a slave
for a specified number of transfers. The master specifies the number of transfers when
it initiates the burst. Once a burst begins between a master and slave, arbiter logic is
locked until the burst completes. For burst masters, the length of the burst is the
number of cycles that the master has access to the slave, and the selected arbitration
shares have no effect.

Note: AXI masters can issue burst types that Avalon cannot accept, for example, fixed
bursts. In this case, the burst adapter converts the fixed burst into a sequence of
transactions to the same address.

Note: For AMBA 4 AXI slaves, Platform Designer allows 256-beat INCR bursts. You must
ensure that 256-beat narrow-sized INCR bursts are shortened to 16-beat narrow-sized
INCR bursts for AMBA 3 AXI slaves.

Avalon-MM masters always issue addresses that are aligned to the size of the transfer.
However, when Platform Designer uses a narrow-to-wide width adaptation, the
resulting address may be unaligned. For unaligned addresses, the burst adapter issues
the maximum sized bursts with appropriate byte enables. This brings the burst-in-
progress up to an aligned slave address. Then, it completes the burst on aligned
addresses.

The burst adapter supports variable wrap or sequential burst types to accommodate
different properties of memory-mapped masters. Some bursting masters can issue
more than one burst type.

Burst adaptation is available for Avalon to Avalon, Avalon to AXI, and AXI to Avalon,
and AXI to AXI connections. For information about AXI-to-AXI adaptation, refer to AXI
Wide-to-Narrow Adaptation

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
679

Note: For AMBA 4 AXI to AMBA 3 AXI connections, Platform Designer follows an AMBA 4 AXI
256 burst length to AMBA 3 AXI 16 burst length.

11.1.9.1 Burst Adapter Implementation Options

Platform Designer automatically inserts burst adapters into your system depending on
your master and slave connections, and properties. You can select burst adapter
implementation options on the Interconnect Requirements tab.

To access the implementation options, you must select the Burst adapter
implementation setting for the $system identifier.

• Generic converter (slower, lower area)—Default. Controls all burst
conversions with a single converter that can adapt incoming burst types. This
results in an adapter that has lower fMAX, but smaller area.

• Per-burst-type converter (faster, higher area)—Controls incoming bursts
with a specific converter, depending on the burst type. This results in an adapter
that has higher fMAX, but higher area. This setting is useful when you have AXI
masters or slaves and you want a higher fMAX.

Note: For more information about the Interconnect Requirements tab, refer to Creating a
System with Platform Designer.

Related Links

Creating a System with Platform Designer on page 327

11.1.9.2 Burst Adaptation: AXI to Avalon

Table 131. Burst Adaptation: AXI to Avalon
Entries specify the behavior when converting between AXI and Avalon burst types.

Burst Type Behavior

Incrementing Sequential Slave
Bursts that exceed slave_max_burst_length are converted to multiple sequential bursts
of a length less than or equal to the slave_max_burst_length. Otherwise, the burst is
unconverted. For example, for an Avalon slave with a maximum burst length of 4, an
INCR7 burst is converted to INCR4 + INCR3.
Wrapping Slave
Bursts that exceed the slave_max_burst_length are converted to multiple sequential
bursts of length less than or equal to the slave_max_burst_length. Bursts that exceed
the wrapping boundary are converted to multiple sequential bursts that respect the slave's
wrapping boundary.

Wrapping Sequential Slave
A WRAP burst is converted to multiple sequential bursts. The sequential bursts are less
than or equal to the max_burst_length and respect the transaction's wrapping boundary
Wrapping Slave
If the WRAP transaction's boundary matches the slave's boundary, then the burst passes
through. Otherwise, the burst is converted to sequential bursts that respect both the
transaction and slave wrap boundaries.

Fixed Fixed bursts are converted to sequential bursts of length 1 that repeatedly access the same
address.

Narrow All narrow-sized bursts are broken into multiple bursts of length 1.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
680

11.1.9.3 Burst Adaptation: Avalon to AXI

Table 132. Burst Adaptation: Avalon to AXI
Entries specify the behavior when converting between Avalon and AXI burst types.

Burst Type Definition

Sequential Bursts of length greater than16 are converted to multiple INCR bursts of a length less than
or equal to16. Bursts of length less than or equal to16 are not converted.

Wrapping Only Avalon masters with alwaysBurstMaxBurst = true are supported. The WRAP
burst is passed through if the length is less than or equal to16. Otherwise, it is converted to
two or more INCR bursts that respect the transaction's wrap boundary.

GENERIC_CONVERTER Controls all burst conversions with a single converter that adapts all incoming burst types,
resulting in an adapter that has smaller area, but lower fMAX.

11.1.10 Read and Write Responses

Platform Designer merges write responses if a write is converted (burst adapted) into
multiple bursts. Platform Designer requires read response merging for a downsized
(wide-to-narrow width adapted) read.

Platform Designer merges responses based on the following precedence rule:

DECERR > SLVERR > OKAY > EXOKAY

Adaptation between a master with write responses and a slave without write
responses can be costly, especially if there are multiple slaves, or if the slave supports
bursts. To minimize the cost of logic between slaves, consider placing the slaves that
do not have write responses behind a bridge so that the write response adaptation
logic cost is only incurred once, at the bridge’s slave interface.

The following table describes what happens when there is a mismatch in response
support between the master and slave.

Table 133. Response Support for Mismatched Master and Slave

Slave with Response Slave Without Response

Master with Response Interconnect delivers response from
the slave to the master.
Response merging or duplication may
be necessary for bus sizing.

Interconnect delivers an OKAY
response to the master

Master without Response Master ignores responses from the
slave

No need for responses. Master, slave
and interconnect operate without
response support.

Note: If there is a bridge between the master and the endpoint slave, and the responses
must come from the endpoint slave, ensure that the bridge passes the appropriate
response signals through from the endpoint slave to the master.

If the bridge does not support responses, then the responses are generated by the
interconnect at the slave interface of the bridge, and responses from the endpoint
slave are ignored.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
681

For the response case where the transaction violates security settings or uses an
illegal address, the interconnect routes the transactions to the default slave. For
information about Platform Designer system security, refer to Manage System
Security. For information about specifying a default slave, refer to Error Response
Slave in Platform Designer System Design Components.

Note: Avalon-MM slaves without a response signal are not able to notify a connected
master that a transaction has not completed successfully. As a result, Platform
Designer interconnect generates an OKAY response on behalf of the Avalon-MM slave.

Related Links

• Master Network Interfaces on page 666

• Error Response Slave on page 937

11.1.11 Platform Designer Address Decoding

Address decoding logic forwards appropriate addresses to each slave.

Address decoding logic simplifies component design in the following ways:

• The interconnect selects a slave whenever it is being addressed by a master. Slave
components do not need to decode the address to determine when they are
selected.

• Slave addresses are properly aligned to the slave interface.

• Changing the system memory map does not involve manually editing HDL.

Figure 227. Address Decoding for One Master and Two Slaves
In this example, Platform Designer generates separate address decoding logic for each master in a system. The
address decoding logic processes the difference between the master address width (<M>) and the individual
slave address widths (<S>) and (<T>). The address decoding logic also maps only the necessary master
address bits to access words in each slave’s address space.

Slave
Port 1
(8-bit)

Slave
Port 2

(32-bit)

address [S..0]

read/write

read/write

address [T..2]

address [M..0] Address
Decoding

Logic
Master

Port

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
682

Figure 228. Address Decoding Base Settings
Platform Designer controls the base addresses with the Base setting of active components on the System
Contents tab. The base address of a slave component must be a multiple of the address span of the
component. This restriction is part of the Platform Designer interconnect to allow the address decoding logic to
be efficient, and to achieve the best possible fMAX.

11.2 Avalon Streaming Interfaces

High bandwidth components with streaming data typically use Avalon-ST interfaces for
the high throughput datapath. Streaming interfaces can also use memory-mapped
connection interfaces to provide an access point for control. In contrast to the
memory-mapped interconnect, the Avalon-ST interconnect always creates a point-to-
point connection between a single data source and data sink.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
683

Figure 229. Memory-Mapped and Avalon-ST Interfaces

In this example, there are the following connection pairs:

• Data source in the Rx Interface transfers data to the data sink in the FIFO.

• Data source in the FIFO transfers data to the Tx Interface data sink.

The memory-mapped interface allows a processor to access the data source, FIFO, or data sink to provide
system control. If your source and sink interfaces have different formats, for example, a 32-bit source and an
8-bit sink, Platform Designer automatically inserts the necessary adapters. You can view the adapters on the
System Contents tab by clicking System ➤ Show System with Platform Designer Interconnect.

 FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor UART Timer

Control Plane Memory -Mapped Intefaces

Data Plane Avalon-Streaming Interface

RAM

Figure 230. Avalon-ST Connection Between the Source and Sink
This source-sink pair includes only the data signal. The sink must be able to receive data as soon as the
source interface comes out of reset.

Data Source Data Sinkdata

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
684

Figure 231. Signals Indicating the Start and End of Packets, Channel Numbers, Error
Conditions, and Backpressure
All data transfers using Avalon-ST interconnect occur synchronously on the rising edge of the associated clock
interface. Throughput and frequency of a system depends on the components and how they are connected.

ready

Data Source Data Sink

valid
channel

startof packet
endofpacket

empty
error
data

The IP Catalog includes Avalon-ST components that you can use to create datapaths,
including datapaths whose input and output streams have different properties.
Generated systems that include memory-mapped master and slave components may
also use these Avalon-ST components because Platform Designer generation creates
interconnect with a structure similar to a network topology, as described in Platform
Designer Transformations. The following sections introduce the Avalon-ST
components.

Related Links

Platform Designer Transformations on page 664

11.2.1 Avalon-ST Adapters

Platform Designer automatically adds Avalon-ST adapters between two components
during system generation when it detects mismatched interfaces. If you connect
mismatched Avalon-ST sources and sinks, for example, a 32-bit source and an 8-bit
sink, Platform Designer inserts the appropriate adapter type to connect the
mismatched interfaces.

After generation, you can view the inserted adapters selecting System ➤ Show
System With Platform Designer Interconnect. For each mismatched source-sink
pair, Platform Designer inserts an Avalon-ST Adapter. The adapter instantiates the
necessary adaptation logic as sub-components. You can review the logic for each
adapter instantiation in the Hierarchy view by expanding each adapter's source and
sink interface and comparing the relevant ports. For example, to determine why a
channel adapter is inserted, expand the channel adapter's sink and source interfaces
and review the channel port properties for each interface.

You can turn off the auto-inserted adapters feature by adding the
qsys_enable_avalon_streaming_transform=off command to the
quartus.ini file. When you turn off the auto-inserted adapters feature, if
mismatched interfaces are detected during system generation, Platform Designer does
not insert adapters and reports the mismatched interface with validation error
message.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
685

Note: The auto-inserted adapters feature does not work for video IP core connections.

11.2.1.1 Avalon-ST Adapter

The Avalon-ST adapter combines the logic of the channel, error, data format, and
timing adapters. The Avalon-ST adapter provides adaptations between interfaces that
have mismatched Avalon-ST endpoints. Based on the source and sink interface
parameterizations for the Avalon-ST adapter, Platform Designer instantiates the
necessary adapter logic (channel, error, data format, or timing) as hierarchal sub-
components.

11.2.1.1.1 Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Table 134. Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Parameter Name Description

Symbol Width Width of a single symbol in bits.

Use Packet Indicates whether the source and sink interfaces connected to the adapter's
source and sink interfaces include the startofpacket and endofpacket
signals, and the optional empty signal.

11.2.1.1.2 Avalon-ST Adapter Upstream Source Interface Parameters

Table 135. Avalon-ST Adapter Upstream Source Interface Parameters

Parameter Name Description

Source Data Width Controls the data width of the source interface data port.

Source Top Channel Maximum number of output channels allowed.

Source Channel Port Width Sets the bit width of the source interface channel port. If set to 0, there is no
channel port on the sink interface.

Source Error Port Width Sets the bit width of the source interface error port. If set to 0, there is no
error port on the sink interface.

Source Error Descriptors A list of strings that describe the error conditions for each bit of the source
interface error signal.

Source Uses Empty Port Indicates whether the source interface includes the empty port, and whether the
sink interface should also include the empty port.

Source Empty Port Width Indicates the bit width of the source interface empty port, and sets the bit width
of the sink interface empty port.

Source Uses Valid Port Indicates whether the source interface connected to the sink interface uses the
valid port, and if set, configures the sink interface to use the valid port.

Source Uses Ready Port Indicates whether the sink interface uses the ready port, and if set, configures
the source interface to use the ready port.

Source Ready Latency Specifies what ready latency to expect from the source interface connected to
the adapter's sink interface.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
686

11.2.1.1.3 Avalon-ST Adapter Downstream Sink Interface Parameters

Table 136. Avalon-ST Adapter Downstream Sink Interface Parameters

Parameter Name Description

Sink Data Width Indicates the bit width of the data port on the sink interface connected to the
source interface.

Sink Top Channel Maximum number of output channels allowed.

Sink Channel Port Width Indicates the bit width of the channel port on the sink interface connected the
source interface.

Sink Error Port Width Indicates the bit width of the error port on the sink interface connected to the
adapter's source interface. If set to zero, there is no error port on the source
interface.

Sink Error Descriptors A list of strings that describe the error conditions for each bit of the error port
on the sink interface connected to the source interface.

Sink Uses Empty Port Indicates whether the sink interface connected to the source interface uses the
empty port, and whether the source interface should also use the empty port.

Sink Empty Port Width Indicates the bit width of the empty port on the sink interface connected to the
source interface, and configures a corresponding empty port on the source
interface.

Sink Uses Valid Port Indicates whether the sink interface connected to the source interface uses the
valid port, and if set, configures the source interface to use the valid port.

Sink Uses Ready Port Indicates whether the ready port on the sink interface is connected to the
source interface , and if set, configures the sink interface to use the ready port.

Sink Ready Latency Specifies what ready latency to expect from the source interface connected to
the sink interface.

11.2.1.2 Channel Adapter

The channel adapter provides adaptations between interfaces that have different
channel signal widths.

Table 137. Channel Adapter Adaptations

Condition Description of Adapter Logic

The source uses channels, but the
sink does not.

Platform Designer gives a warning at generation time. The adapter provides a
simulation error and signals an error for data for any channel from the source other
than 0.

The sink has channel, but the
source does not.

Platform Designer gives a warning at generation time, and the channel inputs to the
sink are all tied to a logical 0.

The source and sink both support
channels, and the source's
maximum channel number is less
than the sink's maximum channel
number.

The source's channel is connected to the sink's channel unchanged. If the sink's
channel signal has more bits, the higher bits are tied to a logical 0.

The source and sink both support
channels, but the source's
maximum channel number is
greater than the sink's maximum
channel number.

The source’s channel is connected to the sink’s channel unchanged. If the source’s
channel signal has more bits, the higher bits are left unconnected. Platform Designer
gives a warning that channel information may be lost.
An adapter provides a simulation error message and an error indication if the value
of channel from the source is greater than the sink's maximum number of channels.
In addition, the valid signal to the sink is deasserted so that the sink never sees
data for channels that are out of range.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
687

11.2.1.2.1 Avalon-ST Channel Adapter Input Interface Parameters

Table 138. Avalon-ST Channel Adapter Input Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the input channel signal in bits

Max Channel Maximum number of input channels allowed.

11.2.1.2.2 Avalon-ST Channel Adapter Output Interface Parameters

Table 139. Avalon-ST Channel Adapter Output Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

11.2.1.2.3 Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

Table 140. Avalon-ST Channel Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Channel adapter supports packets, the
startofpacket, endofpacket, and optional empty signals
are included on its sink and source interfaces.

Include Empty Signal Indicates whether an empty signal is required.

Data Symbols Per Beat Number of symbols per transfer.

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Ready Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Error Signal Width (bits) Bit width of the error signal.

Error Signal Description A list of strings that describes what each bit of the error
signal represents.

11.2.1.3 Data Format Adapter

The data format adapter allows you to connect interfaces that have different values for
the parameters defining the data signal, or interfaces where the source does not use
the empty signal, but the sink does use the empty signal. One of the most common
uses of this adapter is to convert data streams of different widths.

Table 141. Data Format Adapter Adaptations

Condition Description of Adapter Logic

The source and sink’s bits per symbol
parameters are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts the source's width to the sink’s width.

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
688

Condition Description of Adapter Logic

If the adaptation is from a wider to a narrower interface, a beat of data at the
input corresponds to multiple beats of data at the output. If the input error
signal is asserted for a single beat, it is asserted on output for multiple beats.
If the adaptation is from a narrow to a wider interface, multiple input beats are
required to fill a single output beat, and the output error is the logical OR of the
input error signal.

The source uses the empty signal, but
the sink does not use the empty
signal.

Platform Designer cannot make the connection.

Figure 232. Avalon Streaming Interconnect with Data Format Adapter
In this example, the data format adapter allows a connection between a 128-bit output data stream and three
32-bit input data streams.

128-Bit RX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

128 Bits

128 Bits

128 Bits

Data
Format
Adapter

Data
Format
Adapter

Data
Format
Adapter

32 Bits

32 Bits

32 Bits

128 Bits

11.2.1.3.1 Avalon-ST Data Format Adapter Input Interface Parameters

Table 142. Avalon-ST Data Format Adapter Input Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signal Indicates whether an empty signal is required.

11.2.1.3.2 Avalon-ST Data Format Adapter Output Interface Parameters

Table 143. Avalon-ST Data Format Adapter Output Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signals Indicates whether an empty signal is required.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
689

11.2.1.3.3 Avalon-ST Data Format Adapter Common to Input and Output Interface
Parameters

Table 144. Avalon-ST Data Format Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Data Format adapter supports packets, Platform Designer
uses startofpacket, endofpacket, and empty signals.

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of channels allowed.

Read Latency Specifies the ready latency to expect from the sink connected to the module's
source interface.

Error Signal Width (bits) Width of the error signal output in bits.

Error Signal Description A list of strings that describes what each bit of the error signal represents.

11.2.1.4 Error Adapter

The error adapter ensures that per-bit-error information provided by the source
interface is correctly connected to the sink interface’s input error signal. Error
conditions that both source and sink can process are connected. If the source has an
error signal representing an error condition that is not supported by the sink, the
signal is left unconnected; the adapter provides a simulation error message and an
error indication if the error is asserted. If the sink has an error condition that is not
supported by the source, the sink's input error bit corresponding to that condition is
set to 0.

Note: The output interface error signal descriptor accepts an error set with an other
descriptor. Platform Designer assigns the bit-wise ORing of all input error bits that are
unmatched, to the output interface error bits set with the other descriptor.

11.2.1.4.1 Avalon-ST Error Adapter Input Interface Parameters

Table 145. Avalon-ST Error Adapter Input Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if the error
signal is not used.

Error Signal Description The description for each of the error bits. If scripting, separate the description
fields by commas. For a successful connection, the description strings of the
error bits in the source and sink must match and are case sensitive.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
690

11.2.1.4.2 Avalon-ST Error Adapter Output Interface Parameters

Table 146. Avalon-ST Error Adapter Output Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if you do not
need to send error values.

Error Signal Description The description for each of the error bits. Separate the description fields by
commas. For successful connection, the description of the error bits in the source
and sink must match, and are case sensitive.

11.2.1.4.3 Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Table 147. Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to
the interface.

Ready Latency When the ready signal is used, the value for
ready_latency indicates the number of cycles between
when the ready signal is asserted and when valid data is
driven.

Channel Signal Width (bits) The width of the channel signal. A channel width of 4 allows
up to 16 channels. The maximum width of the channel
signal is eight bits. Set to 0 if channels are not used.

Max Channel The maximum number of channels that the interface
supports. Valid values are 0–255.

Data Bits Per Symbol Number of bits per symbol.

Data Symbols Per Beat Number of symbols per active transfer.

Include Packet Support Turn on this option if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

11.2.1.5 Timing Adapter

The timing adapter allows you to connect component interfaces that require a different
number of cycles before driving or receiving data. This adapter inserts a FIFO buffer
between the source and sink to buffer data or pipeline stages to delay the back-
pressure signals. You can also use the timing adapter to connect interfaces that
support the ready signal, and those that do not. The timing adapter treats all signals
other than the ready and valid signals as payload, and simply drives them from the
source to the sink.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
691

Table 148. Timing Adapter Adaptations

Condition Adaptation

The source has ready, but the
sink does not.

In this case, the source can respond to backpressure, but the sink never needs to
apply it. The ready input to the source interface is connected directly to logical 1.

The source does not have ready,
but the sink does.

The sink may apply backpressure, but the source is unable to respond to it. There
is no logic that the adapter can insert that prevents data loss when the source asserts
valid but the sink is not ready. The adapter provides simulation time error messages
if data is lost. The user is presented with a warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the
source's.

The source responds to ready assertion or deassertion faster than the sink requires
it. The number of pipeline stages equal to the difference in ready latency are inserted
in the ready path from the sink back to the source, causing the source and the sink
to see the same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in time to satisfy the
sink. A FIFO whose depth is equal to the difference in ready latency is inserted to
compensate for the source’s inability to respond in time.

11.2.1.5.1 Avalon-ST Timing Adapter Input Interface Parameters

Table 149. Avalon-ST Timing Adapter Input Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

11.2.1.5.2 Avalon-ST Timing Adapter Output Interface Parameters

Table 150. Avalon-ST Timing Adapter Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

11.2.1.5.3 Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

Table 151. Avalon-ST Timing Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support Turn this option on if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

Data Symbols Per Beat Number of symbols per active transfer.

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
692

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

Error Signal Width (bits) Width of the output error signal in bits.

Error Signal Description A list of strings that describes errors.

11.3 Interrupt Interfaces

Using individual requests, the interrupt logic can process up to 32 IRQ inputs
connected to each interrupt receiver. With this logic, the interrupt sender connected to
interrupt receiver_0 is the highest priority with sequential receivers being
successively lower priority. You can redefine the priority of interrupt senders by
instantiating the IRQ mapper component. For more information refer to IRQ Mapper.

You can define the interrupt sender interface as asynchronous with no associated clock
or reset interfaces. You can also define the interrupt receiver interface as
asynchronous with no associated clock or reset interfaces. As a result, the receiver
does its own synchronization internally. Platform Designer does not insert interrupt
synchronizers for such receivers.

For clock crossing adaption on interrupts, Platform Designer inserts a synchronizer,
which is clocked with the interrupt end point interface clock when the corresponding
starting point interrupt interface has no clock or a different clock (than the end point).
Platform Designer inserts the adapter if there is any kind of mismatch between the
start and end points. Platform Designer does not insert the adapter if the interrupt
receiver does not have an associated clock.

Related Links

IRQ Mapper on page 695

11.3.1 Individual Requests IRQ Scheme

In the individual requests IRQ scheme, Platform Designer interconnect passes IRQs
directly from the sender to the receiver, without making assumptions about IRQ
priority. If multiple senders assert their IRQs simultaneously, the receiver logic
determines which IRQ has highest priority, and then responds appropriately.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
693

Figure 233. Interrupt Controller Mapping IRQs
Using individual requests, the interrupt controller can process up to 32 IRQ inputs. The interrupt controller
generates a 32-bit signal irq[31:0] to the receiver, and maps slave IRQ signals to the bits of irq[31:0].
Any unassigned bits of irq[31:0] are disabled.

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

11.3.2 Assigning IRQs in Platform Designer

You assign IRQ connections on the System Contents tab of Platform Designer. After
adding all components to the system, you connect interrupt senders and receivers.
You can use the IRQ column to specify an IRQ number with respect to each receiver,
or to specify a receiver's IRQ as unconnected. Platform Designer uses the following
three components to implement interrupt handling: IRQ Bridge, IRQ Mapper, and IRQ
Clock Crosser.

11.3.2.1 IRQ Bridge

The IRQ Bridge allows you to route interrupt wires between Platform Designer
subsystems.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
694

Figure 234. Platform Designer IRQ Bridge Application
The peripheral subsystem example below has three interrupt senders that are exported to the to- level of the
subsystem. The interrupts are then routed to the CPU subsystem using the IRQ bridge.

3-bit bus

4-bit bus

 IRQ Bridge

IR

IS

 Interrupt
 Sender 1

IS

 Interrupt
 Sender 2

IS

 Interrupt
 Sender 3

IS

 Interrupt
 Sender 4

IS

export export export

export

IR

 Nios II
ProcessorCPU Subsystem

Peripheral Subsystem

Top-Level Platform Designer System

IS Interrupt Sender IR Interrupt Receiver

Note: Nios II BSP tools support the IRQ Bridge. Interrupts connected via an IRQ Bridge
appear in the generated system.h file. You can use the following properties with the
IRQ Bridge, which do not effect Platform Designer interconnect generation. Platform
Designer uses these properties to generate the correct IRQ information for
downstream tools:

• set_interface_property <sender port> bridgesToReceiver
<receiver port>— The <sender port> of the IP generates a signal that is
received on the IP's <receiver port>. Sender ports are single bits. Receivers ports
can be multiple bits. Platform Designer requires the bridgedReceiverOffset
property to identify the <receiver port> bit that the <sender port> sends.

• set_interface_property <sender port> bridgedReceiverOffset
<port number>— Indicates the <port number> of the receiver port that the
<sender port> sends.

11.3.2.2 IRQ Mapper

Platform Designer inserts the IRQ Mapper automatically during generation. The IRQ
Mapper converts individual interrupt wires to a bus, and then maps the appropriate
IRQ priority number onto the bus.

By default, the interrupt sender connected to the receiver0 interface of the IRQ
mapper is the highest priority, and sequential receivers are successively lower priority.
You can modify the interrupt priority of each IRQ wire by modifying the IRQ priority
number in Platform Designer under the IRQ column. The modified priority is reflected
in the IRQ_MAP parameter for the auto-inserted IRQ Mapper.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
695

Figure 235. IRQ Column in Platform Designer
Circled in the IRQ column are the default interrupt priorities allocated for the CPU subsystem.

Related Links

IRQ Bridge on page 694

11.3.2.3 IRQ Clock Crosser

The IRQ Clock Crosser synchronizes interrupt senders and receivers that are in
different clock domains. To use this component, connect the clocks for both the
interrupt sender and receiver, and for both the interrupt sender and receiver
interfaces. Platform Designer automatically inserts this component when it is required.

11.4 Clock Interfaces

Clock interfaces define the clocks used by a component. Components can have clock
inputs, clock outputs, or both. To update the clock frequency of the component, use
the Parameters tab for the clock source.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
696

The Clock Source parameters allows you to set the following options:

• Clock frequency—The frequency of the output clock from this clock source.

• Clock frequency is known— When turned on, the clock frequency is known.
When turned off, the frequency is set from outside the system.

Note: If turned off, system generation may fail because the components do not
receive the necessary clock information. For best results, turn this option on
before system generation.

• Reset synchronous edges

— None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have internal synchronization circuitry that matches the reset
required for the IP in the system.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously and asserted
asynchronously.

For more information about synchronous design practices, refer to Recommended
Design Practices

Related Links

Recommended Design Practices on page 152

11.4.1 (High Speed Serial Interface) HSSI Clock Interfaces

You can use HSSI Serial Clock and HSSI Bonded Clock interfaces in Platform Designer
to enable high speed serial connectivity between clocks that are used by certain IP
protocols.

11.4.1.1 HSSI Serial Clock Interface

You can connect the HSSI Serial Clock interface with only similar type of interfaces, for
example, you can connect a HSSI Serial Clock Source interface to a HSSI Serial Clock
Sink interface.

11.4.1.1.1 HSSI Serial Clock Source

The HSSI Serial Clock interface includes a source in the Start direction.

You can instantiate the HSSI Serial Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock start

You can connect the HSSI Serial Clock Source to multiple HSSI Serial Clock Sinks
because the HSSI Serial Clock Source supports multiple fan-outs. This Interface has a
single clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Source is valid and does not generate
error messages.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
697

Table 152. HSSI Serial Clock Source Port Roles

Name Direction Width Description

clk Output 1 bit A single bit wide port role, which provides synchronization for internal logic.

Table 153. HSSI Serial Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

11.4.1.1.2 HSSI Serial Clock Sink

The HSSI Serial Clock interface includes a sink in the End direction.

You can instantiate the HSSI Serial Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock end

You can connect the HSSI Serial Clock Sink interface to a single HSSI Serial Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Sink is invalid and generates error
messages.

Table 154. HSSI Serial Clock Sink Port Roles

Name Direction Width Description

clk Output 1 A single bit wide port role, which provides synchronization for internal logic

Table 155. HSSI Serial Clock Sink Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven by the HSSI Serial Clock Source
interface. When you specify a clockRate greater than 0, then this
interface can be driven only at that rate.

11.4.1.1.3 HSSI Serial Clock Connection

The HSSI Serial Clock Connection defines a connection between a HSSI Serial Clock
Source connection point, and a HSSI Serial Clock Sink connection point.

A valid HSSI Serial Clock Connection exists when all the following criteria are satisfied.
If the following criteria are not satisfied, Platform Designer generates error messages
and the connection is prohibited.

• The starting connection point is an HSSI Serial Clock Source with a single port role
clk and maximum 1 bit in width. The direction of the starting port is Output.

• The ending connection point is an HSSI Serial Clock Sink with a single port role
clk, and maximum 1 bit in width. The direction of the ending port is Input.

• If the parameter, clockRate of the HSSI Serial Clock Sink is greater than 0, the
connection is only valid if the clockRate of the HSSI Serial Clock Source is the
same as the clockRate of the HSSI Serial Clock Sink.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
698

11.4.1.1.4 HSSI Serial Clock Example

Example 99. HSSI Serial Clock Interface Example

You can make connections to declare the HSSI Serial Clock interfaces in the _hw.tcl.

package require -exact qsys 14.0

set_module_property name hssi_serial_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

set_fileset_property QUARTUS_SYNTH TOP_LEVEL \
"hssi_serial_component"

set_fileset_property SIM_VERILOG TOP_LEVEL "hssi_serial_component"
set_fileset_property SIM_VHDL TOP_LEVEL "hssi_serial_component"

proc elaborate {} {
 # declaring HSSI Serial Clock Source
 add_interface my_clock_start hssi_serial_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_serial_clock_port_out \
 clk Output 1

 # declaring HSSI Serial Clock Sink
 add_interface my_clock_end hssi_serial_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_serial_clock_port_in clk \
 Input 1
}

proc generate { output_name } {

 add_fileset_file hssi_serial_component.v VERILOG PATH \
 "hssi_serial_component.v"
}

Example
100.

HSSI Serial Clock Instantiated in a Composed Component

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

add_instance myinst1 hssi_serial_component
add_instance myinst2 hssi_serial_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

11.4.1.2 HSSI Bonded Clock Interface

You can connect the HSSI Bonded Clock interface only with similar type of interfaces,
for example, you can connect a HSSI Bonded Clock Source interface to a HSSI Bonded
Clock Sink interface.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
699

11.4.1.2.1 HSSI Bonded Clock Source

The HSSI Bonded Clock interface includes a source in the Start direction.

You can instantiate the HSSI Bonded Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock start

You can connect the HSSI Bonded Clock Source to multiple HSSI Bonded Clock Sinks
because the HSSI Serial Clock Source supports multiple fanouts. This Interface has a
single clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock
Source interface has two parameters: clockRate and serializationFactor.
clockRate is the frequency of the clock driven by the HSSI Bonded Clock Source
interface, and the serializationFactor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the required frequency and
phases of the individual clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Source is valid, and does not generate
error messages.

Table 156. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

Table 157. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

11.4.1.2.2 HSSI Bonded Clock Sink

The HSSI Bonded Clock interface includes a sink in the End direction.

You can instantiate the HSSI Bonded Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock end

You can connect the HSSI Bonded Clock Sink interface to a single HSSI Bonded Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock Source
interface has two parameters: clockRate and serialzationFactor. clockRate is the
frequency of the clock driven by the HSSI Bonded Clock Source interface, and the
serialization factor is the parallel data width that operates the HSSI TX serializer. The
serialization factor determines the required frequency and phases of the individual
clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Sink is invalid and generates error
messages.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
700

Table 158. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

Table 159. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

11.4.1.2.3 HSSI Bonded Clock Connection

The HSSI Bonded Clock Connection defines a connection between a HSSI Bonded
Clock Source connection point, and a HSSI Bonded Clock Sink connection point.

A valid HSSI Bonded Clock Connection exists when all the following criteria are
satisfied. If the following criteria are not satisfied, Platform Designer generates error
messages and the connection is prohibited.

• The starting connection point is an HSSI Bonded Clock Source with a single port
role clk with a width range of 1 to 24 bits. The direction of the starting port is
Output.

• The ending connection point is an HSSI Bonded Clock Sink with a single port role
clk with a width range of 1 to 24 bits. The direction of the ending port is Input.

• The width of the starting connection point clk must be the same as the width of
the ending connection point.

• If the parameter, clockRate of the HSSI Bonded Clock Sink greater than 0, then
the connection is only valid if the clockRate of the HSSI Bonded Clock Source is
same as the clockRate of the HSSI Bonded Clock Sink.

• If the parameter, serializationFactor of the HSSI Bonded Clock Sink is greater
than 0, Platform Designer generates a warning if the serializationFactor of HSSI
Bonded Clock Source is not same as the serializationFactor of the HSSI Bonded
Clock Sink.

11.4.1.2.4 HSSI Bonded Clock Example

Example
101.

HSSI Bonded Clock Interface Example

You can make connections to declare the HSSI Bonded Clock interfaces in the _hw.tcl
file.

package require -exact qsys 14.0

set_module_property name hssi_bonded_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset synthesis QUARTUS_SYNTH generate
add_fileset verilog_simulation SIM_VERILOG generate

set_fileset_property synthesis TOP_LEVEL "hssi_bonded_component"

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
701

set_fileset_property verilog_simulation TOP_LEVEL \
"hssi_bonded_component"

proc elaborate {} {
 add_interface my_clock_start hssi_bonded_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_bonded_clock_port_out \
 clk Output 1024

 add_interface my_clock_end hssi_bonded_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_bonded_clock_port_in \
 clk Input 1024
}

proc generate { output_name } {
 add_fileset_file hssi_bonded_component.v VERILOG PATH \
 "hssi_bonded_component.v"}

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

Example
102.

HSII Bonded Clock Instantiated in a Composed Component

add_instance myinst1 hssi_bonded_component
add_instance myinst2 hssi_bonded_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

11.5 Reset Interfaces

Reset interfaces provide both soft and hard reset functionality. Soft reset logic
typically re-initializes registers and memories without powering down the device. Hard
reset logic initializes the device after power-on. You can define separate reset sources
for each clock domain, a single reset source for all clocks, or any combination in
between.

You can choose to create a single global reset domain by selecting Create Global
Reset Network on the System menu. If your design requires more than one reset
domain, you can implement your own reset logic and connectivity. The IP Catalog
includes a reset controller, reset sequencer, and a reset bridge to implement the reset
functionality. You can also design your own reset logic.

Note: If you design your own reset circuitry, you must carefully consider situations which
may result in system lockup. For example, if an Avalon-MM slave is reset in the middle
of a transaction, the Avalon-MM master may lockup.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
702

11.5.1 Single Global Reset Signal Implemented by Platform Designer

When you select System ➤ Create Global Reset Network, the Platform Designer
interconnect creates a global reset bus. All the reset requests are ORed together,
synchronized to each clock domain, and fed to the reset inputs. The duration of the
reset signal is at least one clock period.

The Platform Designer interconnect inserts the system-wide reset under the following
conditions:

• The global reset input to the Platform Designer system is asserted.

• Any component asserts its resetrequest signal.

11.5.2 Reset Controller

Platform Designer automatically inserts a reset controller block if the input reset
source does not have a reset request, but the connected reset sink requires a reset
request.

The Reset Controller has the following parameters that you can specify to customize
its behavior:

• Number of inputs— Indicates the number of individual reset interfaces the
controller ORs to create a signal reset output.

• Output reset synchronous edges—Specifies the level of synchronization. You
can select one the following options:

— None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have designed internal synchronization circuitry that matches
the reset style required for the IP in the system.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously and asserted
asynchronously.

• Synchronization depth—Specifies the number of register stages the
synchronizer uses to eliminate the propagation of metastable events.

• Reset request—Enables reset request generation, which is an early signal that is
asserted before reset assertion. The reset request is used by blocks that require
protection from asynchronous inputs, for example, M20K blocks.

Platform Designer automatically inserts reset synchronizers under the following
conditions:

• More than one reset source is connected to a reset sink

• There is a mismatch between the reset source’s synchronous edges and the reset
sinks’ synchronous edges

11.5.3 Reset Bridge

The Reset Bridge allows you to use a reset signal in two or more subsystems of your
Platform Designer system. You can connect one reset source to local components, and
export one or more to other subsystems, as required.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
703

The Reset Bridge parameters are used to describe the incoming reset and include the
following options:

• Active low reset—When turned on, reset is asserted low.

• Synchronous edges—Specifies the level of synchronization and includes the
following options:

— None—The reset is asserted and deasserted asynchronously. Use this setting
if you have internal synchronization circuitry.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously, and asserted
asynchronously.

• Number of reset outputs—The number of reset interfaces that are exported.

Note: Platform Designer supports multiple reset sink connections to a single reset source
interface. However, there are situations in composed systems where an internally
generated reset must be exported from the composed system in addition to being
used to connect internal components. In this situation, you must declare one reset
output interface as an export, and use another reset output to connect internal
components.

11.5.4 Reset Sequencer

The Reset Sequencer allows you to control the assertion and deassertion sequence for
Platform Designer system resets.

The Parameter Editor displays the expected assertion and deassertion sequences
based on the current settings. You can connect multiple reset sources to the reset
sequencer, and then connect the outputs of the Reset Sequencer to components in the
system.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
704

Figure 236. Elements and Flow of a Reset Sequencer

CSR

Sync
Sync
Sync
Sync

Reset
Controller

Main
FSM

ASRT SEQ

DSRT SEQ
RESET_OUT

Deglitch
Deglitch
Deglitch
Deglitch

Avalon
Interface

reset_in0
reset_in1
reset_in2
reset_in M

reset_dsrt_qual0
reset_dsrt_qual1
reset_dsrt_qual2
reset_dsrt_qual N

reset_in_sync

assrt_en

reset_logging
CSR_CONTROL(csr_*)
CSR_MASK/PVR

enable
done
enable
done

set_reset[N :0]

dr_reset[N :0]

reset_out0
reset_out1
reset_out2
reset_out N

Reset Sequencer

Parameter:
DSRT_QUALCNT_(0:N)

Parameter:
MIN_ASRT_TIME

Parameter:
ASRT_DELAY(0:N)

Parameter:
DSRT_DELAY(0:N)
ENABLE_DEASSERTION_INPUT_QUAL(0:N)

Reset Controller—Reused reset controller block. It synchronizes the reset inputs into one and feeds into the main FSM of the sequencer block.
Sync—Synchronization block (double flipflop).
Deglitch—Deglitch block. This block waits for a signal to be at a level for X clocks before propagating the input to the output.
CSR—This block contains the CSR Avalon interface and related CSR register and control block in the sequencer.
Main FSM—Main sequencer. This block determines when assertion/deassertion and assertion hold timing occurs.
[A/D]SRT SEQ—Generic sequencer block that sequences out assertion/deassertion of reset from 0:N. The block has multiple counters that saturate
upon reaching count.
RESET_OUT—Controls the end output via:
– Set/clear from the ASRT_SEQ/DSRT_SEQ.
– Masking/forcing from CSR controls.
– Remap of numbering (parameterization).

11.5.4.1 Reset Sequencer Parameters

Table 160. Reset Sequencer Parameters

Parameter Description

Number of reset outputs Sets the number of output resets to be sequenced, which is the number of output reset
signals defined in the component with a range of 2 to 10.

Number of reset inputs Sets the number of input reset signals to be sequenced, which is the number of input
reset signals defined in the component with a range of 1 to 10.

Minimum reset assertion time Specifies the minimum assertion cycles between the assertion of the last sequenced
reset, and the deassertion of the first sequenced reset. The range is 0 to 1023.

Enable Reset Sequencer CSR Enables CSR functionality of the Reset Sequencer through an Avalon interface.

reset_out# Lists the reset output signals. Set the parameters in the other columns for each reset
signal in the table.

ASRT Seq# Determines the order of reset assertion. Enter the values 1, 2, 3, etc. to specify the
required non-overlapping assertion order. This value determines the ASRT_REMAP
value in the component HDL.

ASRT Cycle# Number of cycles to wait before assertion of the reset. The value set here corresponds
to the ASRT_DELAY value in the component HDL. The range is 0 to 1023.

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
705

Parameter Description

DSRT Seq# Determines the reset order of reset deassertion. Enter the values 1, 2, 3, etc. to
specify the required non-overlapping deassertion order. This value determines the
DSRT_REMAP value in the component HDL.

DSRT Cycle#/Deglitch# Number of cycles to wait before deasserting or deglitching the reset. If the
USE_DRST_QUAL parameter is set to 0, specifies the number of cycles to wait before
deasserting the reset. If USE_DSRT_QUAL is set to1, specifies the number of cycles
to deglitch the input reset_dsrt_qual signal. This value determines either the
DSRT_DELAY, or the DSRT_QUALCNT value in the component HDL, depending on the
USE_DSRT_QUAL parameter setting. The range is 0 to 1023.

USE_DSRT_QUAL If you set USE_DSRT_QUAL to 1, the deassertion sequence waits for an external
input signal for sequence qualification instead of waiting for a fixed delay count. To use
a fixed delay count for deassertion, set this parameter to 0.

11.5.4.2 Reset Sequencer Timing Diagrams

Figure 237. Basic Sequencing

Figure 238. Sequencing with USE_DSRT_QUAL Set

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
706

11.5.4.3 Reset Sequencer CSR Registers

The Reset Sequencer's CSR registers provide the following functionality:

• Support reset logging

— Ability to identify which reset is asserted.

— Ability to determine whether any reset is currently active.

• Support software triggered resets

— Ability to generate reset by writing to the register.

— Ability to disable assertion or deassertion sequence.

• Support software sequenced reset

— Ability for the software to fully control the assertion/deassertion sequence by
writing to registers and stepping through the sequence.

• Support reset override

— Ability to assert a specific component reset through software.

Table 161. Reset Sequencer CSR Register Map

Register Offset Width Reset Value Description

Status Register 0x00 32 0x0 The Status register indicates which
sources are allowed to cause a reset.

Interrupt Enable Register 0x04 32 0x0 The Interrupt Enable register bits
enable events triggering the IRQ of the
reset sequencer.

Control Register 0x08 32 0x0 The Control register allows you to
control the Reset Sequencer.

Software Sequenced Reset
Assert Control Register

0x0C 32 0x3FF You can program the Software
Sequenced Reset Assert control
register to control the reset assertion
sequence.

Software Sequenced Reset
Deassert Control Register

0x10 32 0x3FF You can program the Software
Sequenced Reset Deassert register to
control the reset deassertion sequence.

Software Direct
Controlled Resets

0x14 32 0X0 You can write a bit to 1 to assert the
reset_outN signal, and to 0 to deassert
the reset_outN signal.

Software Reset Masking 0x18 32 0x0 Masking off (writing 1) to a reset_outN
"Reset Mask Enable" signal prevents
the corresponding reset from being
asserted. Writing a bit to 0 to a reset mask
enable signal allows assertion of
reset_outN.

11.5.4.3.1 Reset Sequencer Status Register

The Status register indicates which sources are allowed to cause a reset.

You can clear bits by writing 1 to the bit location. The Reset Sequencer ignores
attempts to write bits with a value of 0. If the sequencer is reset (power-on-reset), all
bits are cleared, except the power-on-reset bit.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
707

Table 162. Values for the Status Register at Offset 0x00

Bit Attribute Default Description

31 RO 0 Reset Active—Indicates that the sequencer is currently active in reset
sequence (assertion or deassertion).

30 RW1C 0 Reset Asserted and waiting for SW to proceed—Set when
there is an active reset assertion, and the next sequence is waiting for the
software to proceed.
Only valid when the Enable SW sequenced reset assert option is
turned on.

29 RW1C 0 Reset Deasserted and waiting for SW to proceed—Set when
there is an active reset deassertion, and the next sequence is waiting for
the software to proceed.
Only valid when the Enable SW sequenced reset deassert option is
turned on.

28:26 Reserved.

25:16 RW1C 0 Reset deassertion input qualification signal
reset_dsrt_qual [9:0] status—Indicates that the reset
deassertion's input signal qualification signal is set. This bit is set on the
detection of assertion of the signal.

15:12 Reserved.

11 RW1C 0 reset_in9 was triggered—Indicates that reset_in9 triggered the
reset. Software clears this bits by writing 1 to this location.

10 RW1C 0 reset_in8 was triggered—Indicates that reset_in8 triggered the
reset. Software clears this bit by writing 1 to this location.

9 RW1C 0 reset_in7 was triggered—Indicates that reset_in7 triggered the
reset. Software clears this bit by writing 1 to this location.

8 RW1C 0 reset_in6 was triggered—Indicates that reset_in6 triggered the
reset. Software clears this bit by writing 1 to this location.

7 RW1C 0 reset_in5 was triggered—Indicates that reset_in5 triggered the
reset. Software clears this bit by writing 1 to this location.

6 RW1C 0 reset_in4 was triggered—Indicates that reset_in4 triggered the
reset. Software clears this bit by writing 1 to this location.

5 RW1C 0 reset_in3 was triggered—Indicates that reset_in3 triggered the
reset. Software clears this bit by writing 1 to this location.

4 RW1C 0 reset_in2 was triggered—Indicates that reset_in2 triggered the
reset. Software clears this bit by writing 1 to this location.

3 RW1C 0 reset_in1 was triggered—Indicates that reset_in1 triggered the
reset. Software clears this bit by writing 1 to this location.

2 RW1C 0 reset_in0 was triggered—Indicates that reset_in0 triggered.
Software clears this bit by writing 1 to this location.

1 RW1C 0 Software-triggered reset—Indicates that the software-triggered
reset is set by the software, and triggering a reset.

0 RW1C 0 Power-on-reset was triggered—Asserted whenever the reset to the
sequencer is triggered. This bit is NOT reset when sequencer is reset.
Software clears this bit by writing 1 to this location.

Related Links

Reset Sequencer CSR Registers on page 707

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
708

11.5.4.3.2 Reset Sequencer Interrupt Enable Register

The Interrupt Enable register bits enable events triggering the IRQ of the reset
sequencer.

Table 163. Values for the Interrupt Enable Register at Offset 0x04

Bit Attribute Default Description

31 Reserved.

30 RW 0 Interrupt on Reset Asserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in an assertion sequence.

29 RW 0 Interrupt on Reset Deasserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in a deassertion sequence.

28:26 Reserved.

25:16 RW 0 Interrupt on Reset deassertion input qualification
signal reset_dsrt_qual_[9:0] status— When set, the IRQ is set
when the reset_dsrt_qual[9:0] status bit (per bit enable) is set.

15:12 Reserved.

11 RW 0 Interrupt on reset_in9 Enable—When set, the IRQ is set when the
reset_in9 trigger status bit is set.

10 RW 0 Interrupt on reset_in8 Enable—When set, the IRQ is set when the
reset_in8 trigger status bit is set.

9 RW 0 Interrupt on reset_in7 Enable—When set, the IRQ is set when the
reset_in7 trigger status bit is set.

8 RW 0 Interrupt on reset_in6 Enable—When set, the IRQ is set when the
reset_in6 trigger status bit is set.

7 RW 0 Interrupt on reset_in5 Enable—When set, the IRQ is set when the
reset_in5 trigger status bit is set.

6 RW 0 Interrupt on reset_in4 Enable—When set, the IRQ is set when the
reset_in4 trigger status bit is set.

5 RW 0 Interrupt on reset_in3 Enable—When set, the IRQ is set when the
reset_in3 trigger status bit is set.

4 RW 0 Interrupt on reset_in2 Enable—When set, the IRQ is set when the
reset_in2 trigger status bit is set.

3 RW 0 Interrupt on reset_in1 Enable—When set, the IRQ is set when the
reset_in1 trigger status bit is set.

2 RW 0 Interrupt on reset_in0 Enable—When set, the IRQ is set when the
reset_in0 trigger status bit is set.

1 RW 0 Interrupt on Software triggered reset Enable—When set, the
IRQ is set when the software triggered reset status bit is set.

0 RW 0 Interrupt on Power-On-Reset Enable—When set, the IRQ is set
when the power-on-reset status bit is set.

Related Links

Reset Sequencer CSR Registers on page 707

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
709

11.5.4.3.3 Reset Sequencer Control Register

The Control register allows you to control the Reset Sequencer.

Table 164. Values for the Control Register at Offset 0x08

Bit Attribute Default Description

31:3 Reserved.

2 RW 0 Enable SW sequenced reset assert—Enable a software sequenced
reset assert sequence. Timer delays and input qualification are ignored,
and only the software can sequence the assert.

1 RW 0 Enable SW sequenced reset deassert—Enable a software
sequenced reset deassert sequence. Timer delays and input qualification
are ignored, and only the software can sequence the deassert.

0 WO 0 Initiate Reset Sequence—To trigger the hardware sequenced warm
reset, the Reset Sequencer writes this bit to 1 a single time. The Reset
Sequencer verifies that Reset Active is 0 before setting this bit, and
always reads the value 0. To monitor this sequence, verify that Reset
Active is asserted, and then subsequently deasserted.

Related Links

Reset Sequencer CSR Registers on page 707

11.5.4.3.4 Reset Sequencer Software Sequenced Reset Assert Control Register

You can program the Software Sequenced Reset Assert control register to
control the reset assertion sequence.

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Asserted and waiting for SW to proceed
bit. The Reset Sequencer proceeds only after the Reset Asserted and waiting
for SW to proceed bit is cleared.

Table 165. Values for the Reset Sequencer Software Sequenced Reset Assert Control
Register at Offset 0x0C

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset assert enable—This is a per-bit
enable for SW sequenced reset assert.
If the register's bitN is set, the sequencer sets the bit30 of the status
register when a resetN is asserted. It then waits for the bit30 of the
status register to clear before proceeding with the sequence. By default,
all bits are enabled (fully SW sequenced).

Related Links

Reset Sequencer CSR Registers on page 707

11.5.4.3.5 Reset Sequencer Software Sequenced Reset Deassert Control Register

You can program the Software Sequenced Reset Deassert register to control
the reset deassertion sequence.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
710

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Deasserted and waiting for SW to
proceed bit. The Reset Sequencer proceeds only after the Reset Deasserted and
waiting for SW to proceed bit is cleared.

Table 166. Values for the Reset Sequencer Software Sequenced Reset Deassert Control
Register at Offset 0x10

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset deassert enable—This is a per-
bit enable for SW-sequenced reset deassert. If bitN of this register is set,
the sequencer sets bit29 of the Status Register when a resetN is
asserted. It then waits for the bit29 of the status register to clear before
proceeding with the sequence. By default, all bits are enabled (fully SW
sequenced).

Related Links

Reset Sequencer CSR Registers on page 707

11.5.4.3.6 Reset Sequencer Software Direct Controlled Resets

You can write a bit to 1 to assert the reset_outN signal, and to 0 to deassert the
reset_outN signal.

Table 167. Values for the Software Direct Controlled Resets at Offset 0x14

Bit Attribute Default Description

31:26 Reserved.

25:16 WO 0 Reset Overwrite Trigger Enable—This is a per-bit control trigger
bit for the overwrite value to take effect.

15:10 Reserved.

9:0 WO 0 reset_outN Reset Overwrite Value—This is a per-bit control of the
reset_out bit. The Reset Sequencer can use this to forcefully drive the
reset to a specific value. A value of 1 sets the reset_out. A value of 0
clears the reset_out. A write to this register only takes effect if the
corresponding trigger bit in this register is set.

Related Links

Reset Sequencer CSR Registers on page 707

11.5.4.3.7 Reset Sequencer Software Reset Masking

Masking off (writing 1) to a reset_outN "Reset Mask Enable" signal prevents
the corresponding reset from being asserted. Writing a bit to 0 to a reset mask enable
signal allows assertion of reset_outN.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
711

Table 168. Values for the Reset Sequencer Software Reset Masking at Offset 0x18

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0 reset_outN "Reset Mask Enable"—This is a per-bit control to mask
off the reset_outN bit. Software Reset Masking prevents the reset bit
from being asserted during a reset assertion sequence. If reset_out is
already asserted, it does not deassert the reset.

Related Links

Reset Sequencer CSR Registers on page 707

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
712

11.5.4.4 Reset Sequencer Software Flows

11.5.4.4.1 Reset Sequencer (Software-Triggered) Flow

Figure 239. Reset Sequencer (Software-Triggered) Flow Diagram

No

1

Software clears all pending statuses by
writing all 1s to the Status Register.

Software initiates reset by writing a 1
 to the Control Register’s initiate reset sequence bit.

IRQ Asserted?

Reset Sequencer completed
initiating a reset through the sequencer.

SW reads
Status Register’s

reset active

Start

SW reads
Status Register’s

SW-triggered reset

End

SW reads
Status Register’s

reset active
keep polling

keep polling

keep polling

keep polling

Software writes 1 to Status Register’s
SW-Triggered reset to clear it

Yes

1

0

1

0

0

Related Links

• Reset Sequencer Status Register on page 707

• Reset Sequencer Control Register on page 710

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
713

11.5.4.4.2 Reset Assert Flow

The following flow sequence occurs for a Reset Assert Flow:

• A reset is triggered either by the software, or when input resets to the Reset
Sequencer are asserted.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status register to determine which reset was triggered.

11.5.4.4.3 Reset Deassert Flow

The following flow sequence occurs for a Reset Deassert Flow:

• When a reset source is deasserted, or when the reset assert sequence has
completed without pending resets asserted, the deassertion flow is initiated.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status Register to determine which reset was triggered.

11.5.4.4.4 Reset Assert (Software Sequenced) Flow

Figure 240. Reset Assert (Software Sequenced) Flow
SETUP RUNTIME

Reset Sequencer asserts an IRQ

Hardware sequences a reset until the point where
 Reset Sequencer must wait for software

Software waits until reset is asserted by checking if Status Register’s
 Reset asserted and waiting for SW to proceed bit is set

Software clears Status Register’s
Reset asserted and waiting for SW to proceed bit

Reset Sequencer sets IRQ
on the next Reset Sequencer trigger point (if any)

SW writes to SW sequenced Reset Assert control register’s
Per-reset SW sequenced reset assert enable

Software sets Control Register’s
Enable SW sequenced reset assert bit

Software defines which reset sequence it wants to control
by setting bits in Software sequenced Reset assert Control register’s

Per-reset SW sequenced reset assert enable

Software sets Interrupt Enable register’s
Interrupt on Reset Asserted and waiting for SW to proceed

bit

Related Links

• Reset Sequencer Control Register on page 710

• Reset Sequencer Software Sequenced Reset Assert Control Register on page 710

• Reset Sequencer Interrupt Enable Register on page 709

• Reset Sequencer Status Register on page 707

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
714

11.5.4.4.5 Reset Deassert (Software Sequenced) Flow

The sequence and flow is similar to the Reset Assert (SW Sequenced) flow,
though, this flow uses the reset deassert registers/bits instead of the reset
assert registers/bits.

Related Links

Reset Assert (Software Sequenced) Flow on page 714

11.6 Conduits

You can use the conduit interface type for interfaces that do not fit any of the other
interface types, and to group any arbitrary collection of signals. Like other interface
types, you can export or connect conduit interfaces.

The PCI Express-to-Ethernet example in Creating a System with Platform Designer is
an example of using a conduit interface for export. You can declare an associated
clock interface for conduit interfaces in the same way as memory-mapped interfaces
with the associatedClock.

To connect two conduit interfaces inside Platform Designer, the following conditions
must be met:

• The interfaces must match exactly with the same signal roles and widths.

• The interfaces must be the opposite directions.

• Clocked conduit connections must have matching associatedClocks on each of
their endpoint interfaces.

Note: To connect a conduit output to more than one input conduit interface, you can create a
custom component. The custom component could have one input that connects to two
outputs, and you can use this component between other conduits that you want to
connect. For information about the Avalon Conduit interface, refer to the Avalon
Interface Specifications

Related Links

• Creating a System with Platform Designer on page 327

• Avalon Interface Specifications

11.7 Interconnect Pipelining

Platform Designer can automatically insert Avalon-ST pipeline stages when you
generate your design. To do so, set the Limit interconnect pipeline stages to
parameter to a value greater than 0 in the Project Settings tab. The pipeline stages
increase the fMAX of your design by reducing the combinational logic depth. The cost is
additional latency and logic.

The insertion of pipeline stages depends upon the existence of certain interconnect
components. For example, in a single-slave system, no multiplexer exists; therefore,
multiplexer pipelining does not occur. In an extreme case, of a single-master to single-
slave system, no pipelining occurs, regardless of the value of the Limit interconnect
pipeline stages to option.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
715

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

Figure 241. Pipeline Placement in Arbitration Logic
The example below shows the possible placement of up to four potential pipeline stages, which could be, before
the input to the demultiplexer, at the output of the multiplexer, between the arbiter and the multiplexer, and at
the outputs of the demultiplexer.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

Related Links

• Explore and Manage Platform Designer Interconnect on page 391

• Inserting Pipeline Stages to Increase System Frequency on page 753

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
716

11.7.1 Manually Controlling Pipelining in the Platform Designer
Interconnect

The Memory-Mapped Interconnect tab allows you to manipulate pipeline
connections in the Platform Designer interconnect. Access the Memory-Mapped
Interconnect tab by clicking System ➤ Show System With Platform Designer
Interconnect

Note: To increase interconnect frequency, you should first try increasing the value of the
Limit interconnect pipeline stages to option on the Interconnect Requirements
tab. You should only consider manually pipelining the interconnect if changes to this
option do not improve frequency, and you have tried all other options to achieve
timing closure, including the use of a bridge. Manually pipelining the interconnect
should only be applied to complete systems.

1. In the Interconnect Requirements tab, first try increasing the value of the
Limit interconnect pipeline stages to option until it no longer gives significant
improvements in frequency, or until it causes unacceptable effects on other parts
of the system.

2. In the Intel Quartus Prime software, compile your design and run timing analysis.

3. Using the timing report, identify the critical path through the interconnect and
determine the approximate mid-point. The following is an example of a timing
report:

2.800 0.000 cpu_instruction_master|out_shifter[63]|q
3.004 0.204 mm_domain_0|addr_router_001|Equal5~0|datac
3.246 0.242 mm_domain_0|addr_router_001|Equal5~0|combout
3.346 0.100 mm_domain_0|addr_router_001|Equal5~1|dataa
3.685 0.339 mm_domain_0|addr_router_001|Equal5~1|combout
4.153 0.468 mm_domain_0|addr_router_001|src_channel[5]~0|datad
4.373 0.220 mm_domain_0|addr_router_001|src_channel[5]~0|combout

4. In Platform Designer, click System ➤ Show System With Platform Designer
Interconnect.

5. In the Memory-Mapped Interconnect tab, select the interconnect module that
contains the critical path. You can determine the name of the module from the
hierarchical node names in the timing report.

6. Click Show Pipelinable Locations. Platform Designer display all possible pipeline
locations in the interconnect. Right-click the possible pipeline location to insert or
remove a pipeline stage.

7. Locate the possible pipeline location that is closest to the mid-point of the critical
path. The names of the blocks in the memory-mapped interconnect tab
correspond to the module instance names in the timing report.

8. Right-click the location where you want to insert a pipeline, and then click Insert
Pipeline.

9. Regenerate the Platform Designer system, recompile the design, and then rerun
timing analysis. If necessary, repeat the manual pipelining process again until
timing requirements are met.

Manual pipelining has the following limitations:

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
717

• If you make changes to your original system's connectivity after manually
pipelining an interconnect, your inserted pipelines may become invalid. Platform
Designer displays warning messages when you generate your system if invalid
pipeline stages are detected. You can remove invalid pipeline stages with the
Remove Stale Pipelines option in the Memory-Mapped Interconnect tab.
Intel recommends that you do not make changes to the system's connectivity
after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Platform
Designer. Manually-inserted pipelines in one version of Platform Designer may not
be valid in a future version.

Related Links

Specify Platform Designer Interconnect Requirements on page 371

11.8 Error Correction Coding (ECC) in Platform Designer
Interconnect

Error Correction Coding (ECC) allows the Platform Designer interconnect to detect and
correct errors in order to improve data integrity in memory blocks.

As transistors become smaller, computer hardware is more susceptible to data
corruption. Data corruption causes Single Event Upsets (SEUs) and increases the
probability of Failures in Time (FIT) rates in computer systems. SEU events without
error notification can cause the system to be stuck in an unknown response state, and
increase the probability of FIT rates.

ECC encodes the data bus with a Hamming code before it writes it to the memory
device, and then decodes and performs error checking on the data on output.

Note: Platform Designer sends uncorrectable errors in memory elements as a DECERR on the
response bus. This feature is currently only supported for rdata_FIFO instances
when back pressure occurs on the wait_request signal.

Figure 242. High-Level Implementation of RDATA FIFO with ECC Enabled

ECC Encode
Memory
Element

ECC Decode
Data and ECC
Encoded Bits

Data and ECC
Encoded Bits

Data
Input

Data
Output

Related Links

Read and Write Responses on page 681

11.9 AMBA 3 AXI Protocol Specification Support (version 1.0)

Platform Designer allows memory-mapped connections between AMBA 3 AXI
components, AMBA 3 AXI and AMBA 4 AXI components, and AMBA 3 AXI and Avalon
interfaces with unique or exceptional support. Refer to the AMBA 3 Protocol
Specifications on the ARM website for more information.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
718

Related Links

• AMBA 3 Protocol Specifications

• Slave Network Interfaces on page 669

11.9.1 Channels

Platform Designer has the following support and restrictions for AMBA 3 AXI channels.

11.9.1.1 Read and Write Address Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Supports 64-bit addressing.

• ID width limited to 18-bits.

• HPS-FPGA master interface has a 12-bit ID.

11.9.1.2 Write Data, Write Response, and Read Data Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Data widths limited to a maximum of 1024-bits

• Limited to a fixed byte width of 8-bits

11.9.1.3 Low Power Channel

Low power extensions are not supported in Platform Designer, version 14.0.

11.9.2 Cache Support

AWCACHE and ARCACHE are passed to an AXI slave unmodified.

11.9.2.1 Bufferable

Platform Designer interconnect treats AXI transactions as non-bufferable. All
responses must come from the terminal slave.

When connecting to Avalon-MM slaves, since they do not have write responses, the
following exceptions apply:

• For Avalon-MM slaves, the write response are generated by the slave agent once
the write transaction is accepted by the slave. The following limitation exists for an
Avalon bridge:

• For an Avalon bridge, the response is generated before the write reaches the
endpoint; users must be aware of this limitation and avoid multiple paths past the
bridge to any endpoint slave, or only perform bufferable transactions to an Avalon
bridge.

11.9.2.2 Cacheable (Modifiable)

Platform Designer interconnect acknowledges the cacheable (modifiable) attribute of
AXI transactions.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
719

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html

It does not change the address, burst length, or burst size of non-modifiable
transactions, with the following exceptions:

• Platform Designer considers a wide transaction to a narrow slave as modifiable
because the size requires reduction.

• Platform Designer may consider AXI read and write transactions as modifiable
when the destination is an Avalon slave. The AXI transaction may be split into
multiple Avalon transactions if the slave is unable to accept the transaction. This
may occur because of burst lengths, narrow sizes, or burst types.

Platform Designer ignores all other bits, for example, read allocate or write allocate
because the interconnect does not perform caching. By default, Platform Designer
considers Avalon master transactions as non-bufferable and non-cacheable, with the
allocate bits tied low.

11.9.3 Security Support

TrustZone refers to the security extension of the ARM architecture, which includes the
concept of "secure" and "non-secure" transactions, and a protocol for processing
between the designations.

The interconnect passes the AWPROT and ARPROT signals to the endpoint slave
without modification. It does not use or modify the PROT bits.

Refer to Manage System Security in Creating a System with Platform Designer for
more information about secure systems and the TrustZone feature.

Related Links

Manage Platform Designer System Security on page 373

11.9.4 Atomic Accesses

Exclusive accesses are supported for AXI slaves by passing the lock, transaction ID,
and response signals from master to slave, with the limitation that slaves that do not
reorder responses. Avalon slaves do not support exclusive accesses, and always return
OKAY as a response. Locked accesses are also not supported.

11.9.5 Response Signaling

Full response signaling is supported. Avalon slaves always return OKAY as a response.

11.9.6 Ordering Model

Platform Designer interconnect provides responses in the same order as the
commands are issued.

To prevent reordering, for slaves that accept reordering depths greater than 0,
Platform Designer does not transfer the transaction ID from the master, but provides a
constant transaction ID of 0. For slaves that do not reorder, Platform Designer allows
the transaction ID to be transferred to the slave. To avoid cyclic dependencies,
Platform Designer supports a single outstanding slave scheme for both reads and
writes. Changing the targeted slave before all responses have returned stalls the
master, regardless of transaction ID.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
720

11.9.6.1 AXI and Avalon Ordering

There is a potential read-after-write risk when Avalon masters transact to AXI slaves.

According to the AMBA Protocol Specifications, there is no ordering requirement
between reads and writes. However, Avalon has an implicit ordering model that
requires transactions from a master to the same slave to be in order.

In response to this potential risk, Avalon interfaces provide a compile-time option to
enforce strict order. When turned on, the Avalon interface waits for outstanding write
responses before issuing reads.

11.9.7 Data Buses

Narrow bus transfers are supported. AXI write strobes can have any pattern that is
compatible with the address and size information. Intel recommends that transactions
to Avalon slaves follow Avalon byteenable limitations for maximum compatibility.

Note: Byte 0 is always bits [7:0] in the interconnect, following AXI's and Avalon's byte
(address) invariance scheme.

11.9.8 Unaligned Address Commands

Unaligned address commands are commands with addresses that do not conform to
the data width of a slave. Since Avalon-MM slaves accept only aligned addresses,
Platform Designer modifies unaligned commands from AXI masters to the correct data
width. Platform Designer must preserve commands issued by AXI masters when
passing the commands to AXI slaves.

Note: Unaligned transfers are aligned if downsizing occurs. For example, when downsizing to
a bus width narrower than that required by the transaction size, AWSIZE or ARSIZE,
the transaction must be modified.

11.9.9 Avalon and AXI Transaction Support

Platform Designer 14.0 supports transactions between Avalon and interfaces, with
some limitations.

11.9.9.1 Transaction Cannot Cross 4KB Boundaries

When an Avalon master issues a transaction to an AXI slave, the transaction cannot
cross 4KB boundaries. Non-bursting Avalon masters already follow this boundary
restriction.

11.9.9.2 Handling Read Side Effects

Read side effects can occur when more bytes than necessary are read from the slave,
and the unwanted data that are read are later inaccessible on subsequent reads. For
write commands, the correct byteenable paths are asserted based on the size of the
transactions. For read commands, narrow-sized bursts are broken up into multiple
non-bursting commands, and each command with the correct byteenable paths
asserted.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
721

Platform Designer always assumes that the byteenable is asserted based on the size
of the command, not the address of the command. The following scenarios are
examples:

• For a 32-bit AXI master that issues a read command with an unaligned address
starting at address 0x01, and a burstcount of 2 to a 32-bit Avalon slave, the
starting address is: 0x00.

• For a 32-bit AXI master that issues a read command with an unaligned address
starting at address 0x01, with 4-bytes to an 8-bit AXI slave, the starting address
is: 0x00.

11.10 AMBA 3 APB Protocol Specification Support (version 1.0)

APB (Advanced Peripheral Bus) interface is optimized for minimal power consumption
and reduced interface complexity. You can use APB to interface to peripherals which
are low-bandwidth and do not require the high performance of a pipelined bus
interface. Signal transitions are sampled at the rising edge of the clock to enable the
integration of APB peripherals easily into any design flow.

Platform Designer allows connections between APB components, and AMBA 3 AXI,
AMBA 4 AXI, and Avalon memory-mapped interfaces. The following sections describe
unique or exceptional APB support in the Platform Designer software.

Related Links

Arm AMBA Protocol Specifications

11.10.1 Bridges

With APB, you cannot use bridge components that use multiple PSELx in Platform
Designer. As a workaround, you can group PSELx, and then send the packet to the
slave directly.

Intel recommends as an alternative that you instantiate the APB bridge and all the
APB slaves in Platform Designer. You should then connect the slave side of the bridge
to any high speed interface and connect the master side of the bridge to the APB
slaves. Platform Designer creates the interconnect on either side of the APB bridge
and creates only one PSEL signal.

Alternatively, you can connect a bridge to the APB bus outside of Platform Designer.
Use an Avalon/AXI bridge to export the Avalon/AXI master to the top-level, and then
connect this Avalon/AXI interface to the slave side of the APB bridge. Alternatively,
instantiate the APB bridge in Platform Designer and export APB master to the top-
level, and from there connect to APB bus outside of Platform Designer.

11.10.2 Burst Adaptation

APB is a non-bursting interface. Therefore, for any AXI or Avalon master with bursting
support, a burst adapter is inserted before the slave interface and the burst
transaction is translated into a series of non-bursting transactions before reaching the
APB slave.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
722

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html

11.10.3 Width Adaptation

Platform Designer allows different data width connections with APB. When connecting
a wider master to a narrower APB slave, the width adapter converts the wider
transactions to a narrower transaction to fit the APB slave data width. APB does not
support Write Strobe. Therefore, when you connect a narrower transaction to a wider
APB slave, the slave cannot determine which byte lane to write. In this case, the slave
data may be overwritten or corrupted.

11.10.4 Error Response

Error responses are returned to the master. Platform Designer performs error mapping
if the master is an AMBA 3 AXI or AMBA 4 AXI master, for example, RRESP/BRESP=
SLVERR. For the case when the slave does not use SLVERR signal, an OKAY response
is sent back to master by default.

11.11 AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)

Platform Designer allows memory-mapped connections between AMBA 4 AXI
components, AMBA 4 AXI and AMBA 3 AXI components, and AMBA 4 AXI and Avalon
interfaces with unique or exceptional support.

11.11.1 Burst Support

Platform Designer supports INCR bursts up to 256 beats. Platform Designer converts
long bursts to multiple bursts in a packet with each burst having a length less than or
equal to MAX_BURST when going to AMBA 3 AXI or Avalon slaves.

For narrow-sized transfers, bursts with Avalon slaves as destinations are shortened to
multiple non-bursting transactions in order to transmit the correct address to the
slaves, since Avalon slaves always perform full-sized datawidth transactions.

Bursts with AMBA 3 AXI slaves as destinations are shortened to multiple bursts, with
each burst length less than or equal to 16. Bursts with AMBA 4 AXI slaves as
destinations are not shortened.

11.11.2 QoS

Platform Designer routes 4-bit QoS signals (Quality of Service Signaling) on the read
and write address channels directly from the master to the slave.

Transactions from AMBA 3 AXI and Avalon masters have a default value of 4'b0000,
which indicates that the transactions are not part of the QoS flow. QoS values are not
used for slaves that do not support QoS.

For Platform Designer 14.0, there are no programmable QoS registers or compile-time
QoS options for a master that overrides its real or default value.

11.11.3 Regions

For Platform Designer 14.0, there is no support for the optional regions feature. AMBA
4 AXI slaves with AXREGION signals are allowed. AXREGION signals are driven with
the default value of 0x0, and are limited to one entry in a master's address map.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
723

11.11.4 Write Response Dependency

Write response dependency as specified in the Arm AMBA Protocol Specifications for
AMBA 4 AXI is not supported.

Related Links

Arm AMBA Protocol Specifications

11.11.5 AWCACHE and ARCACHE

For AMBA 4 AXI, Platform Designer meets the requirement for modifiable and non-
modifiable transactions. The modifiable bit refers to ARCACHE[1]and AWCACHE[1].

11.11.6 Width Adaptation and Data Packing in Platform Designer

Data packing applies only to systems where the data width of masters is less than the
data width of slaves.

The following rules apply:

• Data packing is supported when masters and slaves are Avalon-MM.

• Data packing is not supported when any master or slave is an AMBA 3 AXI, AMBA
4 AXI, or APB component.

For example, for a read/write command with a 32-bit master connected to a 64-bit
slave, and a transaction of 2 burstcounts, Platform Designer sends 2 separate read/
write commands to access the 64-bit data width of the slave. Data packing is only
supported if the system does not contain AMBA 3 AXI, AMBA 4 AXI, or APB masters or
slaves.

11.11.7 Ordering Model

Out of order support is not implemented in Platform Designer, version 14.0. Platform
Designer processes AXI slaves as device non-bufferable memory types.

The following describes the required behavior for the device non-bufferable memory
type:

• Write response must be obtained from the final destination.

• Read data must be obtained from the final destination.

• Transaction characteristics must not be modified.

• Reads must not be pre-fetched. Writes must not be merged.

• Non-modifiable read and write transactions.

(AWCACHE[1] = 0 or ARCACHE[1] = 0) from the same ID to the same slave must
remain ordered. The interconnect always provides responses in the same order as the
commands issued. Slaves that support reordering provide a constant transaction ID to
prevent reordering. AXI slaves that do not reorder are provided with transaction IDs,
which allows exclusive accesses to be used for such slaves.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
724

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html

11.11.8 Read and Write Allocate

Read and write allocate does not apply to Platform Designer interconnect, which does
not have caching features, and always receives responses from an endpoint.

11.11.9 Locked Transactions

Locked transactions are not supported for Platform Designer, version 14.0.

11.11.10 Memory Types

For AMBA 4 AXI, Platform Designer processes transactions as though the endpoint is a
device memory type. For device memory types, using non-bufferable transactions to
force previous bufferable transactions to finish is irrelevant, because Platform Designer
interconnect always identifies transactions as being non-bufferable.

11.11.11 Mismatched Attributes

There are rules for how multiple masters issue cache values to a shared memory
region. The interconnect meets requirements if signals are not modified.

11.11.12 Signals

Platform Designer supports up to 64-bits for the BUSER, WUSER and RUSER sideband
signals. AMBA 4 AXI allows some signals to be omitted from interfaces by aligning
them with the default values as defined in the AMBA Protocol Specifications on the
ARM website.

Related Links

Arm AMBA Protocol Specifications

11.12 AMBA 4 AXI Streaming Interface Support (version 1.0)

11.12.1 Connection Points

Platform Designer allows you to connect an AMBA 4 AXI-Stream interface to another
AMBA 4 AXI-Stream interface.

The connection is point-to-point without adaptation and must be between an
axi4stream_master and axi4stream_slave. Connected interfaces must have the
same port roles and widths.

Non matching master to slave connections, and multiple masters to multiple slaves
connections are not supported.

11.12.1.1 AMBA 4 AXI Streaming Connection Point Parameters

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
725

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html

Table 169. AMBA 4 AXI Streaming Connection Point Parameters

Name Type Description

associatedClock string Name of associated clock interface.

associatedReset string Name of associated reset interface

11.12.1.2 AMBA 4 AXI Streaming Connection Point Signals

Table 170. AMBA 4 AXI-Stream Connection Point Signals

Port Role Width Master Direction Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata(9) 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid(10) 1:8 Output Input No

tdest(11) 1:4 Output Input No

tuser(12) 1:4096 Output Input No

tlast 1 Output Input No

11.12.2 Adaptation

AMBA 4 AXI-Stream adaptation support is not available. AMBA 4 AXI-Stream master
and slave interface signals and widths must match.

11.13 AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)

AMBA 4 AXI-Lite is a sub-set of AMBA 4 AXI. It is suitable for simpler control register-
style interfaces that do not require the full functionality of AMBA 4 AXI.

Platform Designer 14.0 supports the following AMBA 4 AXI-Lite features:

• Transactions with a burst length of 1.

• Data accesses use the full width of a data bus (32- bit or 64-bit) for data
accesses, and no narrow-size transactions.

• Non-modifiable and non-bufferable accesses.

• No exclusive accesses.

(9) integer in mutiple of bytes

(10) maximum 8-bits

(11) maximum 4-bits

(12) number of bits in multiple of the number of bytes of tdata

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
726

11.13.1 AMBA 4 AXI-Lite Signals

Platform Designer supports all AMBA 4 AXI-Lite interface signals. All signals are
required.

Table 171. AMBA 4 AXI-Lite Signals

Global Write Address
Channel

Write Data
Channel

Write Response
Channel

Read Address
Channel

Read Data
Channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

11.13.2 AMBA 4 AXI-Lite Bus Width

AMBA 4 AXI-Lite masters or slaves must have either 32-bit or 64-bit bus widths.
Platform Designer interconnect inserts a width adapter if a master and slave pair have
different widths.

11.13.3 AMBA 4 AXI-Lite Outstanding Transactions

AXI-Lite supports outstanding transactions. The options to control outstanding
transactions is set in the parameter editor for the selected component.

11.13.4 AMBA 4 AXI-Lite IDs

AMBA 4 AXI-Lite does not support IDs. Platform Designer performs ID reflection inside
the slave agent.

11.13.5 Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-
Lite

11.13.5.1 AMBA 4 AXI-Lite Slave Requirements

For an AMBA 4 AXI-Lite slave side, the master can be any master interface type, such
as an Avalon (with bursting), AMBA 3 AXI, or AMBA 4 AXI. Platform Designer allows
the following connections and inserts adapters, if needed.

• Burst adapter—Avalon and AMBA 3 AXI and AMBA 4 AXI bursting masters
require a burst adapter to shorten the burst length to 1 before sending a
transaction to an AMBA 4 AXI-Lite slave.

• Platform Designer interconnect uses a width adapter for mismatched data widths.

• Platform Designer interconnect performs ID reflection inside the slave agent.

• An AMBA 4 AXI-Lite slave must have an address width of at least 12-bits.

• AMBA 4 AXI-Lite does not have the AXSIZE parameter. Narrow master to a wide
AMBA 4 AXI-Lite slave is not supported. For masters that support narrow-sized
bursts, for example, AMBA 3 AXI and AMBA 4 AXI, a burst to an AMBA 4 AXI-Lite
slave must have a burst size equal to or greater than the slave's burst size.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
727

11.13.5.2 AMBA 4 AXI-Lite Data Packing

Platform Designer interconnect does not support AMBA 4 AXI-Lite data packing.

11.13.6 AMBA 4 AXI-Lite Response Merging

When Platform Designer interconnect merges SLVERR and DECERR, the error
responses are not sticky. The response is based on priority and the master always
sees a DECERR. When SLVERR and DECERR are merged, it is based on their priorities,
not stickiness. DECERR receives priority in this case, even if SLVERR returns first.

11.14 Port Roles (Interface Signal Types)

Each interface defines signal roles and their behavior. Many signal roles are optional,
allowing IP component designers the flexibility to select only the signal roles necessary
to implement the required functionality.

11.14.1 AXI Master Interface Signal Types

Table 172. AXI Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 4

arlock output 2

arprot output 3

arready input 1

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 4

awlock output 2

awprot output 3

awready input 1

awsize output 3

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
728

Name Direction Width

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

bready output 1

bresp input 2

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wvalid output 1

11.14.2 AXI Slave Interface Signal Types

Table 173. AXI Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 4

arlock input 2

arprot input 3

arready output 1

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
729

Name Direction Width

awburst input 2

awcache input 4

awid input 1 - 18

awlen input 4

awlock input 2

awprot input 3

awready output 1

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wid input 1 - 18

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wvalid input 1

11.14.3 AMBA 4 AXI Master Interface Signal Types

Table 174. AMBA 4 AXI Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
730

Name Direction Width

arlen output 8

arlock output 1

arprot output 3

arready input 1

arregion output 1 - 4

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 8

awlock output 1

awprot output 3

awqos output 1 - 4

awready input 1

awregion output 1 - 4

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

bready output 1

bresp input 2

buser input 1 - 64

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

ruser input 1 - 64

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
731

Name Direction Width

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wuser output 1 - 64

wvalid output 1

11.14.4 AMBA 4 AXI Slave Interface Signal Types

Table 175. AMBA 4 AXI Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 8

arlock input 1

arprot input 3

arqos input 1 - 4

arready output 1

arregion input 1 - 4

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

awid input 1 - 18

awlen input 8

awlock input 1

awprot input 3

awqos input 1 - 4

awready output 1

awregion inout 1 - 4

awsize input 3

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
732

Name Direction Width

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

ruser output 1 - 64

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wuser input 1 - 64

wvalid input 1

11.14.5 AMBA 4 AXI-Stream Master and Slave Interface Signal Types

Table 176. AMBA 4 AXI-Stream Master and Slave Interface Signal Types

Name Width Master Direction Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid 1:8 Output Input No

tdest 1:4 Output Input No

tuser 1 Output Input No

tlast 1:4096 Output Input No

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
733

11.14.6 APB Interface Signal Types

Table 177. APB Interface Signal Types

Name Width Direction
APB Master

Direction
APB Slave

Required

paddr [1:32] output input yes

psel [1:16] output input yes

penable 1 output input yes

pwrite 1 output input yes

pwdata [1:32] output input yes

prdata [1:32] input output yes

pslverr 1 input output no

pready 1 input output yes

paddr31 1 output input no

11.14.7 Avalon Memory-Mapped Interface Signal Roles

Signal roles define the signal types that are allowed on Avalon-MM master and slave
ports.

This specification does not require all signals to exist in an Avalon-MM interface. There
is no one signal that is always required. The minimum requirements for an Avalon-MM
interface are readdata for a read-only interface, or writedata and write for a
write-only interface.

The following table lists signal roles for the Avalon-MM interface:

Table 178. Avalon-MM Signal Roles
Some Avalon-MM signals can be active high or active low. When active low, the signal name ends with _n.

Signal Role Width Direction Description

Fundamental Signals

address 1 - 64 Master → Slave Masters: By default, the address signal represents a byte
address. The value of the address must be aligned to the
data width. To write to specific bytes within a data word, the
master must use the byteenable signal. Refer to the
addressUnits interface property for word addressing.
Slaves: By default, the interconnect translates the byte
address into a word address in the slave’s address space.
Each slave access is for a word of data from the perspective
of the slave. For example, address = 0 selects the first
word of the slave. address = 1 selects the second word of
the slave. Refer to the addressUnits interface property
for byte addressing.

byteenable

byteenable_n

2, 4, 8, 16, 32,
64, 128

Master → Slave Enables one or more specific byte lanes during transfers on
interfaces of width greater than 8 bits. Each bit in
byteenable corresponds to a byte in writedata and
readdata. The master bit <n> of byteenable indicates
whether byte <n> is being written to. During writes,
byteenables specify which bytes are being written to.

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
734

Signal Role Width Direction Description

Other bytes should be ignored by the slave. During reads,
byteenables indicate which bytes the master is reading.
Slaves that simply return readdata with no side effects are
free to ignore byteenables during reads. If an interface
does not have a byteenable signal, the transfer proceeds
as if all byteenables are asserted.
When more than one bit of the byteenable signal is
asserted, all asserted lanes are adjacent. The number of
adjacent lines must be a power of 2. The specified bytes
must be aligned on an address boundary for the size of the
data. For example, the following values are legal for a 32-
bit slave:
• 1111 writes full 32 bits
• 0011 writes lower 2 bytes
• 1100 writes upper 2 bytes
• 0001 writes byte 0 only
• 0010 writes byte 1 only
• 0100 writes byte 2 only
• 1000 writes byte 3 only
To avoid unintended side effects, use the byteenable
signal in systems with different word sizes.
Note: The AXI interface supports unaligned accesses while

Avalon-MM does not. Unaligned accesses going from
an AXI master to an Avalon-MM slave may result in
an illegal transaction. To avoid this issue, only use
aligned accesses to Avalon-MM slaves.

debugaccess 1 Master → Slave When asserted, allows the Nios II processor to write on-chip
memories configured as ROMs.

read

read_n

1 Master → Slave Asserted to indicate a read transfer. If present, readdata
is required.

readdata 8, 16, 32, 64,
128, 256, 512,

1024

Slave → Master The readdata driven from the slave to the master in
response to a read transfer.

response [1:0] 2 Slave → Master The response signal is an optional signal that carries the
response status.
Note: Because the signal is shared, an interface cannot

issue or accept a write response and a read
response in the same clock cycle.

• 00: OKAY—Successful response for a transaction.
• 01: RESERVED—Encoding is reserved.
• 10: SLAVEERROR—Error from an endpoint slave.

Indicates an unsuccessful transaction.
• 11: DECODEERROR—Indicates attempted access to an

undefined location.
For read responses:
• One response is sent with each readdata. A read burst

length of N results in N responses. It is not valid to
produce fewer responses, even in the event of an error.
It is valid for the response signal value to be different for
each readdata in the burst.

• The interface must have read control signals. Pipeline
support is possible with the readdatavalid signal.

• On read errors, the corresponding readdata is "don't
care".

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
735

Signal Role Width Direction Description

For write responses:
• One write response must be sent for each write

command. A write burst results in only one response,
which must be sent after the final write transfer in the
burst is accepted.

• If writeresponsevalid is present, all write
commands must be completed with write responses."

write

write_n

1 Master → Slave Asserted to indicate a write transfer. If present,
writedata is required.

writedata 8, 16, 32, 64,
128, 256, 512,

1024

Master → Slave Data for write transfers. The width must be the same as the
width of readdata if both are present.

Wait-State Signals

lock 1 Master → Slave lock ensures that once a master wins arbitration, it
maintains access to the slave for multiple transactions. It is
asserted coincident with the first read or write of a locked
sequence of transactions. It is deasserted on the final
transaction of a locked sequence of transactions. lock
assertion does not guarantee that arbitration is won. After
the lock-asserting master has been granted, it retains grant
until it is deasserted.
A master equipped with lock cannot be a burst master.
Arbitration priority values for lock-equipped masters are
ignored.
lock is particularly useful for read-modify-write (RMW)
operations. The typical read-modify-write operation includes
the following steps:
1. Master A asserts lock and reads 32-bit data that has

multiple bit fields.
2. Master A deasserts lock, changes one bit field, and

writes the 32-bit data back.
lock prevents master B from performing a write between
Master A’s read and write.

waitrequest

waitrequest_n
1 Slave → Master Asserted by the slave when it is unable to respond to a

read or write request. Forces the master to wait until the
interconnect is ready to proceed with the transfer. At the
start of all transfers, a master initiates the transfer and
waits until waitrequest is deasserted. A master must
make no assumption about the assertion state of
waitrequest when the master is idle: waitrequest may
be high or low, depending on system properties.
When waitrequest is asserted, master control signals to
the slave must remain constant with the exception of
beginbursttransfer. For a timing diagram illustrating
the beginbursttransfer signal, refer to the figure in
Read Bursts.
An Avalon-MM slave may assert waitrequest during idle
cycles. An Avalon-MM master may initiate a transaction
when waitrequest is asserted and wait for that signal to
be deasserted. To avoid system lockup, a slave device
should assert waitrequest when in reset.

Pipeline Signals

readdatavalid

readdatavalid_
n

1 Slave → Master Used for variable-latency, pipelined read transfers. When
asserted, indicates that the readdata signal contains valid
data. For a read burst with burstcount value <n>, the
readdatavalid signal must be asserted <n> times, once
for each readdata item. There must be at least one cycle of

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
736

Signal Role Width Direction Description

latency between acceptance of the read and assertion of
readdatavalid. For a timing diagram illustrating the
readdatavalid signal, refer to Pipelined Read Transfer
with Variable Latency.
A slave may assert readdatavalid to transfer data to the
master independently of whether or not the slave is stalling
a new command with waitrequest.
Required if the master supports pipelined reads. Bursting
masters with read functionality must include the
readdatavalid signal.

writeresponsev
alid

An optional signal. If present, the interface issues write
responses for write commands.
When asserted, the value on the response signal is a valid
write response.
Writeresponsevalid is only asserted one clock cycle or
more after the write command is accepted. There is at least
a one clock cycle latency from command acceptance to
assertion of writeresponsevalid.

Burst Signals

burstcount 1 – 11 Master → Slave Used by bursting masters to indicate the number of
transfers in each burst. The value of the maximum
burstcount parameter must be a power of 2. A burstcount
interface of width <n> can encode a max burst of size
2(<n>-1). For example, a 4-bit burstcount signal can
support a maximum burst count of 8. The minimum
burstcount is 1. The constantBurstBehavior property
controls the timing of the burstcount signal. Bursting
masters with read functionality must include the
readdatavalid signal.
For bursting masters and slaves using byte addresses, the
following restriction applies to the width of the address:

<address_w> >=
 <burstcount_w> +
log2(<symbols_per_word_of_interface>)

For bursting masters and slaves using word addresses, the
log2 term above is omitted.

beginbursttran
sfer

1 Interconnect →
Slave

Asserted for the first cycle of a burst to indicate when a
burst transfer is starting. This signal is deasserted after one
cycle regardless of the value of waitrequest. For a timing
diagram illustrating beginbursttransfer, refer to the
figure in Read Bursts.
beginbursttransfer is optional. A slave can always
internally calculate the start of the next write burst
transaction by counting data transfers.
Warning: do not use this signal. This signal exists to

support legacy memory controllers.

11.14.8 Avalon Streaming Interface Signal Roles

Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST
signal role. An Avalon-ST interface may contain only one instance of each signal role.
All Avalon-ST signal roles apply to both sources and sinks and have the same meaning
for both.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
737

Table 179. Avalon-ST Interface Signals
In the following table, all signal roles are active high.

Signal Role Width Direction Description

Fundamental Signals

channel 1 – 128 Source → Sink The channel number for data being transferred on the
current cycle.
If an interface supports the channel signal, it must also
define the maxChannel parameter.

data 1 – 4,096 Source → Sink The data signal from the source to the sink, typically
carries the bulk of the information being transferred.
The contents and format of the data signal is further
defined by parameters.

error 1 – 256 Source → Sink A bit mask used to mark errors affecting the data being
transferred in the current cycle. A single bit in error is
used for each of the errors recognized by the component,
as defined by the errorDescriptor property.

ready 1 Sink → Source Asserted high to indicate that the sink can accept data.
ready is asserted by the sink on cycle <n> to mark cycle
<n + readyLatency> as a ready cycle. The source may
only assert valid and transfer data during ready
cycles.
Sources without a ready input cannot be backpressured.
Sinks without a ready output never need to
backpressure.

valid 1 Source → Sink Asserted by the source to qualify all other source to sink
signals. The sink samples data and other source-to-sink
signals on ready cycles where valid is asserted. All
other cycles are ignored.
Sources without a valid output implicitly provide valid
data on every cycle that they are not being
backpressured. Sinks without a valid input expect valid
data on every cycle that they are not backpressuring.

Packet Transfer Signals

empty 1 – 5 Source → Sink Indicates the number of symbols that are empty, that is,
do not represent valid data. The empty signal is not used
on interfaces where there is one symbol per beat.

endofpacket 1 Source → Sink Asserted by the source to mark the end of a packet.

startofpacket 1 Source → Sink Asserted by the source to mark the beginning of a
packet.

11.14.9 Avalon Clock Source Signal Roles

An Avalon Clock source interface drives a clock signal out of a component.

Table 180. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

11.14.10 Avalon Clock Sink Signal Roles

A clock sink provides a timing reference for other interfaces and internal logic.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
738

Table 181. Clock Sink Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal
logic and for other interfaces.

11.14.11 Avalon Conduit Signal Roles

Table 182. Conduit Signal Roles

Signal Role Width Direction Description

<any> <n> In, out, or
bidirectional

A conduit interface consists of one or more input, output,
or bidirectional signals of arbitrary width. Conduits can
have any user-specified role. You can connect compatible
Conduit interfaces inside a Platform Designer system
provided the roles and widths match and the directions
are opposite.

11.14.12 Avalon Tristate Conduit Signal Roles

The following table lists the signal defined for the Avalon Tristate Conduit interface. All
Avalon-TC signals apply to both masters and slaves and have the same meaning for
both

Table 183. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master → Slave Yes The meaning of request depends on the state of the
grant signal, as the following rules dictate.
When request is asserted and grant is deasserted,
request is requesting access for the current cycle.
When request is asserted and grant is asserted,
request is requesting access for the next cycle.
Consequently, request should be deasserted on the
final cycle of an access.
The request is deasserted in the last cycle of a bus
access. It can be reasserted immediately following
the final cycle of a transfer. This protocol makes both
rearbitration and continuous bus access possible if no
other masters are requesting access.
Once asserted, request must remain asserted until
granted. Consequently, the shortest bus access is 2
cycles. Refer to Tristate Conduit Arbitration Timing
for an example of arbitration timing.

grant 1 Slave → Master Yes When asserted, indicates that a tristate conduit
master has been granted access to perform
transactions. grant is asserted in response to the
request signal. It remains asserted until 1 cycle
following the deassertion of request.

<name>_in 1 – 1024 Slave → Master No The input signal of a logical tristate signal.

<name>_out 1 – 1024 Master → Slave No The output signal of a logical tristate signal.

<name>_outen 1 Master → Slave No The output enable for a logical tristate signal.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
739

11.14.13 Avalon Tri-State Slave Interface Signal Types

Table 184. Tri-state Slave Interface Signal Types

Name Width Direction Required Description

address 1 - 32 input No Address lines to the slave port.
Specifies a byte offset into the slave’s
address space.

read

read_n

1 input No Read-request signal. Not required if
the slave port never outputs data.
If present, data must also be used.

write

write_n

1 input No Write-request signal. Not required if
the slave port never receives data from
a master.
If present, data must also be present,
and writebyteenable cannot be
present.

chipselect

chipselect_n

1 input No When present, the slave port ignores
all Avalon-MM signals unless
chipselect is asserted. chipselect
is always present in combination with
read or write

outputenable

outputenable_n

1 input Yes Output-enable signal. When
deasserted, a tri-state slave port must
not drive its data lines otherwise data
contention may occur.

data 8,16, 32, 64, 128,
256, 512, 1024

bidir No Bidirectional data. During write
transfers, the FPGA drives the data
lines. During read transfers the slave
device drives the data lines, and the
FPGA captures the data signals and
provides them to the master.

byteenable

byteenable_n

2, 4, 8,16, 32, 64,
128

input No Enables specific byte lanes during
transfers.
Each bit in byteenable corresponds to a
byte lane in data. During writes,
byteenables specify which bytes the
master is writing to the slave. During
reads, byteenables indicates which
bytes the master is reading. Slaves
that simply return data with no side
effects are free to ignore
byteenables during reads.
When more than one byte lane is
asserted, all asserted lanes are
guaranteed to be adjacent. The
number of adjacent lines must be a
power of 2, and the specified bytes
must be aligned on an address
boundary for the size of the data. The
are legal values for a 32-bit slave:

1111 writes full 32 bits
0011 writes lower 2 bytes
1100 writes upper 2 bytes
0001 writes byte 0 only
0010 writes byte 1 only
0100 writes byte 2 only
1000 writes byte 3 only

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
740

Name Width Direction Required Description

writebyteenabl
e

writebyteenabl
e_n

2,4,8,16, 32,
64,128

input No Equivalent to the logical AND of the
byteenable and write signals. When
used, the write signal is not used.

begintransfer1 1 input No Asserted for the first cycle of each
transfer.

Note: All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Role
column.

11.14.14 Avalon Interrupt Sender Signal Roles

Table 185. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n

1 Output Yes Interrupt Request. A slave asserts irq when it needs
service. The interrupt receiver determines the relative
priority of the interrupts.

11.14.15 Avalon Interrupt Receiver Signal Roles

Table 186. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes irq is an <n>-bit vector, where each bit corresponds
directly to one IRQ sender with no inherent assumption
of priority.

11.15 Document Revision History

The table below indicates edits made to the Platform Designer Interconnect content
since its creation.

Table 187. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Updated information about the Reset Sequencer.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Platform Designer rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Fixed Priority Arbitration.
• Added topic: Read and Write Responses.
• Added topic: Error Correction Coding (ECC) in Platform Designer

Interconnect.
• Added: response [1:0], Avalon Memory-Mapped Interface Signal

Roles.
• Added writeresponsevalid, Avalon Memory-Mapped Interface

Signal Roles.

continued...

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
741

Date Version Changes

December 2014 14.1.0 • Read error responses, Avalon Memory-Mapped Interface Signal,
response.

• Burst Adapter Implementation Options: Generic converter (slower,
lower area), Per-burst-type converter (faster, higher area).

August 2014 14.0a10.0 • Updated Platform Designer Packet Format for Memory-Mapped
Master and Slave Interfaces table, Protection.

• Streaming Interface renamed to Avalon Streaming Interfaces.
• Added Response Merging under Memory-Mapped Interfaces.

June 2014 14.0.0 • AXI4-Lite support.
• AXI4-Stream support.
• Avalon-ST adapter parameters.
• IRQ Bridge.
• Handling Read Side Effects note added.

November 2013 13.1.0 • HSSI clock support.
• Reset Sequencer.
• Interconnect pipelining.

May 2013 13.0.0 • AMBA APB support.
• Auto-inserted Avalon-ST adapters feature.
• Moved Address Span Extender to the Platform Designer System

Design Components chapter.

November 2012 12.1.0 • AMBA AXI4 support.

June 2012 12.0.0 • AMBA AXI3 support.
• Avalon-ST adapters.
• Address Span Extender.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Removed beta status.

December 2010 10.1.0 Initial release.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

11 Platform Designer Interconnect

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
742

https://www.altera.com/search-archives

12 Optimizing Platform Designer System Performance
You can optimize system interconnect performance for Intel designs that you create
with the Platform Designer system integration tool.

Note: Intel now refers to Qsys Pro as Platform Designer.

The foundation of any system is the interconnect logic that connects hardware blocks
or components. Creating interconnect logic is prone to errors, is time consuming to
write, and is difficult to modify when design requirements change. The Platform
Designer system integration tool addresses these issues and provides an automatically
generated and optimized interconnect designed to satisfy your system requirements.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Note: Recommended Intel practices may improve clock frequency, throughput, logic
utilization, or power consumption of your Platform Designer design. When you design
a Platform Designer system, use your knowledge of your design intent and goals to
further optimize system performance beyond the automated optimization available in
Platform Designer.

Related Links

• Creating a System with Platform Designer on page 327

• Creating Platform Designer Components on page 608

• Platform Designer Interconnect on page 659

• Avalon Interface Specifications

• AMBA Protocol Specifications

12.1 Designing with Avalon and AXI Interfaces

Platform Designer Avalon and AXI interconnect for memory-mapped interfaces is
flexible, partial crossbar logic that connects master and slave interfaces.

Avalon Streaming (Avalon-ST) links connect point-to-point, unidirectional interfaces
and are typically used in data stream applications. Each pair of components is
connected without any requirement to arbitrate between the data source and sink.

Because Platform Designer supports multiplexed memory-mapped and streaming
connections, you can implement systems that use multiplexed logic for control and
streaming for data in a single design.

Related Links

Creating Platform Designer Components on page 608

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

12.1.1 Designing Streaming Components

When you design streaming component interfaces, you must consider integration and
communication for each component in the system. One common consideration is
buffering data internally to accommodate latency between components.

For example, if the component’s Avalon-ST output or source of streaming data is back-
pressured because the ready signal is deasserted, then the component must back-
pressure its input or sink interface to avoid overflow.

You can use a FIFO to back-pressure internally on the output side of the component so
that the input can accept more data even if the output is back-pressured. Then, you
can use the FIFO almost full flag to back-pressure the sink interface or input data
when the FIFO has only enough space to satisfy the internal latency. You can drive the
data valid signal of the output or source interface with the FIFO not empty flag when
that data is available.

12.1.2 Designing Memory-Mapped Components

When designing with memory-mapped components, you can implement any
component that contains multiple registers mapped to memory locations, for example,
a set of four output registers to support software read back from logic. Components
that implement read and write memory-mapped transactions require three main
building blocks: an address decoder, a register file, and a read multiplexer.

The decoder enables the appropriate 32-bit or 64-bit register for writes. For reads, the
address bits drive the multiplexer selection bits. The read signal registers the data
from the multiplexer, adding a pipeline stage so that the component can achieve a
higher clock frequency.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
744

Figure 243. Control and Status Registers (CSR) in a Slave Component

write

writedata[31:0]

address[1:0]

read

readdata[31:0]

Avalon-MM
Slave Port

EN

D Q

EN

D Q

EN

D Q

EN

D Q

EN

Q D

0

2

3

1

Read Multiplexer

s

Decoder
2-4

Register File

User
Logic

EN

address[1:0]

This slave component has four write wait states and one read wait state. Alternatively,
if you want high throughput, you may set both the read and write wait states to zero,
and then specify a read latency of one, because the component also supports
pipelined reads.

12.2 Using Hierarchy in Systems

You can use hierarchy to sub-divide a system into smaller subsystems that you can
then connect in a top-level Platform Designer system. Additionally, if a design contains
one or more identical functional units, the functional unit can be defined as a
subsystem and instantiated multiple times within a top-level system.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
745

Hierarchy can simplify verification control of slaves connected to each master in a
memory-mapped system. Before you implement subsystems in your design, you
should plan the system hierarchical blocks at the top-level, using the following
guidelines:

• Plan shared resources—Determine the best location for shared resources in the
system hierarchy. For example, if two subsystems share resources, add the
components that use those resources to a higher-level system for easy access.

• Plan shared address space between subsystems—Planning the address space
ensures you can set appropriate sizes for bridges between subsystems.

• Plan how much latency you may need to add to your system—When you
add an Avalon-MM Pipeline Bridge between subsystems, you may add latency to
the overall system. You can reduce the added latency by parameterizing the
bridge with zero cycles of latency, and by turning off the pipeline command and
response signals.

Figure 244. Avalon-MM Pipeline Bridge

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
746

Figure 245. Passing Messages Between Subsystems

Nios II
Processor

M M

Nios II
Processor

M M

PIO

S

On-Chip
Memory

S

Mutex

S

UART

S

On-Chip
Memory

S

Shared
Memory

S

UART

S

PIO

S

Arbiter Arbiter ArbiterArbiter

Top-Level System

Subsystem Subsystem

Pipeline Bridges

Shared Resources for Message Passing

In this example, two Nios II processor subsystems share resources for message
passing. Bridges in each subsystem export the Nios II data master to the top-level
system that includes the mutex (mutual exclusion component) and shared memory
component (which could be another on-chip RAM, or a controller for an off-chip RAM
device).

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
747

Figure 246. Multi Channel System

Channel 1 SystemInput Data Stream Output Data Stream

Channel 2 SystemInput Data Stream Output Data Stream

Channel N SystemInput Data Stream Output Data Stream

Nios II
Processor

M M

Input Data
Stream

S

On-Chip
Memory

S

Input Data
Stream

S

Arbiter

You can also design systems that process multiple data channels by instantiating the
same subsystem for each channel. This approach is easier to maintain than a larger,
non-hierarchical system. Additionally, such systems are easier to scale because you
can calculate the required resources as a multiple of the subsystem requirements.

Related Links

Avalon-MM Pipeline Bridge

12.3 Using Concurrency in Memory-Mapped Systems

Platform Designer interconnect uses parallel hardware in FPGAs, which allows you to
design concurrency into your system and process transactions simultaneously.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
748

https://www.altera.com/documentation/mwh1409959480842.html#mwh1409959275749

12.3.1 Implementing Concurrency With Multiple Masters

Implementing concurrency requires multiple masters in a Platform Designer system.
Systems that include a processor contain at least two master interfaces because the
processors include separate instruction and data masters. You can catagorize master
components as follows:

• General purpose processors, such as Nios II processors

• DMA (direct memory access) engines

• Communication interfaces, such as PCI Express

Because Platform Designer generates an interconnect with slave-side arbitration,
every master interface in a system can issue transfers concurrently, if they are not
posting transfers to the same slave. Concurrency is limited by the number of master
interfaces sharing any particular slave interface. If a design requires higher data
throughput, you can increase the number of master and slave interfaces to increase
the number of transfers that occur simultaneously. The example below shows a
system with three master interfaces.

Figure 247. Avalon Multiple Master Parallel Access
In this Avalon example, the DMA engine operates with Avalon-MM read and write masters. The yellow lines
represent active simultaneous connections.

Master Port

Slave Port

 M

Dual-Port On-Chip
Memory

S

External Memory
Controller

External Memory
Controller

Concurrent Access Possible

Nios II
Processor

 DMA
Engine

M MMM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
749

Figure 248. AXI Multiple Master Parallel Access
In this example, the DMA engine operates with a single master, because in AXI, the write and read channels on
the master are independent and can process transactions simultaneously. There is concurrency between the
read and write channels, with the yellow lines representing concurrent datapaths.

Master PortM

Dual-Port On-Chip
Memory

Slave PortS

External Memory
Controller

External Memory
Controller

Nios II
Processor

AXI DMA
Engine

M MM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

Concurrent Access Possible

Read Write

12.3.2 Implementing Concurrency With Multiple Slaves

You can create multiple slave interfaces for a particular function to increase
concurrency in your design.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
750

Figure 249. Single Interface Versus Multiple Interfaces

Host 2

Host 1

M

Host 3

Host 4

M

S

M

M

Arbiter

Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Single Channel Access

Multiple Channel Access

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S

S

S

Host 2

Host 1

M

Host 3

Host 4

M

M

M

In this example, there are two channel processing systems. In the first, four hosts
must arbitrate for the single slave interface of the channel processor. In the second,
each host drives a dedicated slave interface, allowing all master interfaces to
simultaneously access the slave interfaces of the component. Arbitration is not
necessary when there is a single host and slave interface.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
751

12.3.3 Implementing Concurrency with DMA Engines

In some systems, you can use DMA engines to increase throughput. You can use a
DMA engine to transfer blocks of data between interfaces, which then frees the CPU
from doing this task. A DMA engine transfers data between a programmed start and
end address without intervention, and the data throughput is dictated by the
components connected to the DMA. Factors that affect data throughput include data
width and clock frequency.

Figure 250. Single or Dual DMA Channels

Single DMA Channel

DMA
Engine

MM

Read
 Buffer 2

S

Read
 Buffer 1

S

Write
 Buffer 1

S

Write
 Buffer 2

S

Maximum of One Read & One Write Per Clock Cycle

DMA
Engine 1

MM

Write
 Buffer 1

S

Read
 Buffer 1

S

DMA
Engine 2

MM

Write
 Buffer 2

S

Read
 Buffer 2

S

Dual DMA Channels
Maximum of Two Reads & Two Writes Per Clock Cycle

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
752

In this example, the system can sustain more concurrent read and write operations by
including more DMA engines. Accesses to the read and write buffers in the top system
are split between two DMA engines, as shown in the Dual DMA Channels at the bottom
of the figure.

The DMA engine operates with Avalon-MM write and read masters. An AXI DMA
typically has only one master, because in AXI, the write and read channels on the
master are independent and can process transactions simultaneously.

12.4 Inserting Pipeline Stages to Increase System Frequency

Platform Designer provides the Limit interconnect pipeline stages to option on the
Interconnect Requirements tab to automatically add pipeline stages to the Platform
Designer interconnect when you generate a system.

You can specify between 0 to 4 pipeline stages, where 0 means that the interconnect
has a combinational datapath. You can specify a unique interconnect pipeline stage
value for each subsystem.

Adding pipeline stages may increase the fMAX of the design by reducing the
combinational logic depth, at the cost of additional latency and logic utilization.

The insertion of pipeline stages requires certain interconnect components. For
example, in a system with a single slave interface, there is no multiplexer; therefore
multiplexer pipelining does not occur. When there is an Avalon or AXI single-master to
single-slave system, no pipelining occurs, regardless of the Limit interconnect
pipeline stages to option.

Related Links

• Interconnect Pipelining on page 715

• Pipelined Avalon-MM Interfaces on page 769

• Creating a System with Platform Designer on page 327

12.5 Using Bridges

You can use bridges to increase system frequency, minimize generated Platform
Designer logic, minimize adapter logic, and to structure system topology when you
want to control where Platform Designer adds pipelining. You can also use bridges with
arbiters when there is concurrency in the system.

An Avalon bridge has an Avalon-MM slave interface and an Avalon-MM master
interface. You can have many components connected to the bridge slave interface, or
many components connected to the bridge master interface. You can also have a
single component connected to a single bridge slave or master interface.

You can configure the data width of the bridge, which can affect how Platform
Designer generates bus sizing logic in the interconnect. Both interfaces support
Avalon-MM pipelined transfers with variable latency, and can also support configurable
burst lengths.

Transfers to the bridge slave interface are propagated to the master interface, which
connects to components downstream from the bridge. When you need greater control
over interconnect pipelining, you can use bridges instead of the Limit Interconnect
Pipeline Stages to option.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
753

Note: You can use Avalon bridges between AXI interfaces, and between Avalon domains.
Platform Designer automatically creates interconnect logic between the AXI and
Avalon interfaces, so you do not have to explicitly instantiate bridges between these
domains. For more discussion about the benefits and disadvantages of shared and
separate domains, refer to the Platform Designer Interconnect.

Related Links

• Bridges on page 914

• AMBA 3 APB Protocol Specification Support (version 1.0) on page 722

12.5.1 Using Bridges to Increase System Frequency

In Platform Designer, you can introduce interconnect pipeline stages or pipeline
bridges to increase clock frequency in your system. Bridges control the system
interconnect topology and allow you to subdivide the interconnect, giving you more
control over pipelining and clock crossing functionality.

12.5.1.1 Inserting Pipeline Bridges

You can insert an Avalon-MM pipeline bridge to insert registers in the path between
the bridges and its master and slaves. If a critical register-to-register delay occurs in
the interconnect, a pipeline bridge can help reduce this delay and improve system
fMAX.

The Avalon-MM pipeline bridge component integrates into any Platform Designer
system. The pipeline bridge options can increase logic utilization and read latency. The
change in topology may also reduce concurrency if multiple masters arbitrate for the
bridge. You can use the Avalon-MM pipeline bridge to control topology without adding
a pipeline stage. A pipeline bridge that does not add a pipeline stage is optimal in
some latency-sensitive applications. For example, a CPU may benefit from minimal
latency when accessing memory.

Figure 251. Avalon-MM Pipeline Bridge

D Q

Master
I/F

Wait Request
 Logic

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM
Master Interface

Connects to an
Avalon-MM

Slave Interface Slave
I/F

D Q

D Q

clock

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
754

12.5.1.1.1 Implementing Command Pipelining (Master-to-Slave)

When multiple masters share a slave device, you can use command pipelining to
improve performance.

The arbitration logic for the slave interface must multiplex the address, writedata,
and burstcount signals. The multiplexer width increases proportionally with the
number of masters connecting to a single slave interface. The increased multiplexer
width may become a timing critical path in the system. If a single pipeline bridge does
not provide enough pipelining, you can instantiate multiple instances of the bridge in a
tree structure to increase the pipelining and further reduce the width of the
multiplexer at the slave interface.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
755

Figure 252. Tree of Bridges

Master 1

M

Master 2

M

M

S

Pipeline Bridge

Master 3

M

Master 4

M

M

S

Pipeline Bridge

arb

arb arb

Write Data &
Control Signals

Read Data

Shared
Slave

S

12.5.1.1.2 Implementing Response Pipelining (Slave-to-Master)

When masters connect to multiple slaves that support read transfers, you can use
slave-to-master pipelining to improve performance.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
756

The interconnect inserts a multiplexer for every read datapath back to the master. As
the number of slaves supporting read transfers connecting to the master increases,
the width of the read data multiplexer also increases. If the performance increase is
insufficient with one bridge, you can use multiple bridges in a tree structure to
improve fMAX.

12.5.1.2 Using Clock Crossing Bridges

The clock crossing bridge contains a pair of clock crossing FIFOs, which isolate the
master and slave interfaces in separate, asynchronous clock domains. Transfers to the
slave interface are propagated to the master interface.

When you use a FIFO clock crossing bridge for the clock domain crossing, you add
data buffering. Buffering allows pipelined read masters to post multiple reads to the
bridge, even if the slaves downstream from the bridge do not support pipelined
transfers.

You can also use a clock crossing bridge to place high and low frequency components
in separate clock domains. If you limit the fast clock domain to the portion of your
design that requires high performance, you may achieve a higher fMAX for this portion
of the design. For example, the majority of processor peripherals in embedded designs
do not need to operate at high frequencies, therefore, you do not need to use a high-
frequency clock for these components. When you compile a design with the Intel
Quartus Prime software, compilation may take more time when the clock frequency
requirements are difficult to meet because the Fitter needs more time to place
registers to achieve the required fMAX. To reduce the amount of effort that the Fitter
uses on low priority and low performance components, you can place these behind a
clock crossing bridge operating at a lower frequency, allowing the Fitter to increase the
effort placed on the higher priority and higher frequency datapaths.

12.5.2 Using Bridges to Minimize Design Logic

Bridges can reduce interconnect logic by reducing the amount of arbitration and
multiplexer logic that Platform Designer generates. This reduction occurs because
bridges limit the number of concurrent transfers that can occur.

12.5.2.1 Avoiding Speed Optimizations That Increase Logic

You can add an additional pipeline stage with a pipeline bridge between masters and
slaves to reduce the amount of combinational logic between registers, which can
increase system performance. If you can increase the fMAX of your design logic, you
may be able to turn off the Intel Quartus Prime software optimization settings, such as
the Perform register duplication setting. Register duplication creates duplicate
registers in two or more physical locations in the FPGA to reduce register-to-register
delays. You may also want to choose Speed for the optimization method, which
typically results in higher logic utilization due to logic duplication. By making use of
the registers or FIFOs available in the bridges, you can increase the design speed and
avoid needless logic duplication or speed optimizations, thereby reducing the logic
utilization of the design.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
757

12.5.2.2 Limiting Concurrency

The amount of logic generated for the interconnect often increases as the system
becomes larger because Platform Designer creates arbitration logic for every slave
interface that is shared by multiple master interfaces. Platform Designer inserts
multiplexer logic between master interfaces that connect to multiple slave interfaces if
both support read datapaths.

Most embedded processor designs contain components that are either incapable of
supporting high data throughput, or do not need to be accessed frequently. These
components can contain master or slave interfaces. Because the interconnect supports
concurrent accesses, you may want to limit concurrency by inserting bridges into the
datapath to limit the amount of arbitration and multiplexer logic generated.

For example, if a system contains three master and three slave interfaces that are
interconnected, Platform Designer generates three arbiters and three multiplexers for
the read datapath. If these masters do not require a significant amount of
simultaneous throughput, you can reduce the resources that your design consumes by
connecting the three masters to a pipeline bridge. The bridge controls the three slave
interfaces and reduces the interconnect into a bus structure. Platform Designer
creates one arbitration block between the bridge and the three masters, and a single
read datapath multiplexer between the bridge and three slaves, and prevents
concurrency. This implementation is similar to a standard bus architecture.

You should not use this method for high throughput datapaths to ensure that you do
not limit overall system performance.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
758

Figure 253. Differences Between Systems With and Without a Pipeline Bridge

S S S

Arbiter Arbiter Arbiter

SSS

M

Bridge

S

Arbiter

M M M M MM M

Write Data & Control Signals
Read Data

Concurrency No Concurrency

12.5.3 Using Bridges to Minimize Adapter Logic

Platform Designer generates adapter logic for clock crossing, width adaptation, and
burst support when there is a mismatch between the clock domains, widths, or
bursting capabilities of the master and slave interface pairs.

Platform Designer creates burst adapters when the maximum burst length of the
master is greater than the master burst length of the slave. The adapter logic creates
extra logic resources, which can be substantial when your system contains master
interfaces connected to many components that do not share the same characteristics.
By placing bridges in your design, you can reduce the amount of adapter logic that
Platform Designer generates.

12.5.3.1 Determining Effective Placement of Bridges

To determine the effective placement of a bridge, you should initially analyze each
master in your system to determine if the connected slave devices support different
bursting capabilities or operate in a different clock domain. The maximum burstcount
of a component is visible as the burstcount signal in the HDL file of the component.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
759

The maximum burst length is 2 (width(burstcount -1)), therefore, if the burstcount width
is four bits, the maximum burst length is eight. If no burstcount signal is present,
the component does not support bursting or has a burst length of 1.

To determine if the system requires a clock crossing adapter between the master and
slave interfaces, check the Clock column for the master and slave interfaces. If the
clock is different for the master and slave interfaces, Platform Designer inserts a clock
crossing adapter between them. To avoid creating multiple adapters, you can place
the components containing slave interfaces behind a bridge so that Platform Designer
creates a single adapter. By placing multiple components with the same burst or clock
characteristics behind a bridge, you limit concurrency and the number of adapters.

You can also use a bridge to separate AXI and Avalon domains to minimize burst
adaptation logic. For example, if there are multiple Avalon slaves that are connected
to an AXI master, you can consider inserting a bridge to access the adaptation logic
once before the bridge, instead of once per slave. This implementation results in
latency, and you would also lose concurrency between reads and writes.

12.5.3.2 Changing the Response Buffer Depth

When you use automatic clock-crossing adapters, Platform Designer determines the
required depth of FIFO buffering based on the slave properties. If a slave has a high
Maximum Pending Reads parameter, the resulting deep response buffer FIFO that
Platform Designer inserts between the master and slave can consume a lot of device
resources. To control the response FIFO depth, you can use a clock crossing bridge
and manually adjust its FIFO depth to trade off throughput with smaller memory
utilization.

For example, if you have masters that cannot saturate the slave, you do not need
response buffering. Using a bridge reduces the FIFO memory depth and reduces the
Maximum Pending Reads available from the slave.

12.5.4 Considering the Effects of Using Bridges

Before you use pipeline or clock crossing bridges in a design, you should carefully
consider their effects. Bridges can have any combination of consequences on your
design, which could be positive or negative. Benchmarking your system before and
after inserting bridges can help you determine the impact to the design.

12.5.4.1 Increased Latency

Adding a bridge to a design has an effect on the read latency between the master and
the slave. Depending on the system requirements and the type of master and slave,
this latency increase may not be acceptable in your design.

12.5.4.1.1 Acceptable Latency Increase

For a pipeline bridge, Platform Designer adds a cycle of latency for each pipeline
option that is enabled. The buffering in the clock crossing bridge also adds latency. If
you use a pipelined or burst master that posts many read transfers, the increase in
latency does not impact performance significantly because the latency increase is very
small compared to the length of the data transfer.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
760

For example, if you use a pipelined read master such as a DMA controller to read data
from a component with a fixed read latency of four clock cycles, but only perform a
single word transfer, the overhead is three clock cycles out of the total of four. This is
true when there is no additional pipeline latency in the interconnect. The read
throughput is only 25%.

Figure 254. Low-Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency

However, if 100 words of data are transferred without interruptions, the overhead is
three cycles out of the total of 103 clock cycles. This corresponds to a read efficiency
of approximately 97% when there is no additional pipeline latency in the interconnect.
Adding a pipeline bridge to this read path adds two extra clock cycles of latency. The
transfer requires 105 cycles to complete, corresponding to an efficiency of
approximately 94%. Although the efficiency decreased by 3%, adding the bridge may
increase the fMAX by 5%. For example, if the clock frequency can be increased, the
overall throughput would improve. As the number of words transferred increases, the
efficiency increases to nearly 100%, whether or not a pipeline bridge is present.

Figure 255. High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

12.5.4.1.2 Unacceptable Latency Increase

Processors are sensitive to high latency read times and typically retrieve data for use
in calculations that cannot proceed until the data arrives. Before adding a bridge to
the datapath of a processor instruction or data master, determine whether the clock
frequency increase justifies the added latency.

A Nios II processor instruction master has a cache memory with a read latency of four
cycles, which is eight sequential words of data return for each read. At 100 MHz, the
first read takes 40 ns to complete. Each successive word takes 10 ns so that eight
reads complete in 110 ns.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
761

Figure 256. Performance of a Nios II Processor and Memory Operating at 100 MHz

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

40 ns

110 ns

Adding a clock crossing bridge allows the memory to operate at 125 MHz. However,
this increase in frequency is negated by the increase in latency because if the clock
crossing bridge adds six clock cycles of latency at 100 MHz, then the memory
continues to operate with a read latency of four clock cycles. Consequently, the first
read from memory takes 100 ns, and each successive word takes 10 ns because reads
arrive at the frequency of the processor, which is 100 MHz. In total, eight reads
complete after 170 ns. Although the memory operates at a higher clock frequency, the
frequency at which the master operates limits the throughput.

Figure 257. Performance of a Nios II Processor and Eight Reads with Ten Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

170 ns

12.5.4.2 Limited Concurrency

Placing a bridge between multiple master and slave interfaces limits the number of
concurrent transfers your system can initiate. This limitation is the same when
connecting multiple master interfaces to a single slave interface. The slave interface of
the bridge is shared by all the masters and, as a result, Platform Designer creates
arbitration logic. If the components placed behind a bridge are infrequently accessed,
this concurrency limitation may be acceptable.

Bridges can have a negative impact on system performance if you use them
inappropriately. For example, if multiple memories are used by several masters, you
should not place the memory components behind a bridge. The bridge limits memory
performance by preventing concurrent memory accesses. Placing multiple memory
components behind a bridge can cause the separate slave interfaces to appear as one
large memory to the masters accessing the bridge; all masters must access the same
slave interface.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
762

Figure 258. Inappropriate Use of a Bridge in a Hierarchical System

Nios II
Processor

M M

M

DMA

M M

DDR
SDRAM

S

DDR
SDRAM

S

DDR
SDRAM

S

Bridge

S

Bottleneck
Arbiter

DDR
SDRAM

S

Platform Designer
Subsystem

A memory subsystem with one bridge that acts as a single slave interface for the
Avalon-MM Nios II and DMA masters, which results in a bottleneck architecture. The
bridge acts as a bottleneck between the two masters and the memories.

If the fMAX of your memory interfaces is low and you want to use a pipeline bridge
between subsystems, you can place each memory behind its own bridge, which
increases the fMAX of the system without sacrificing concurrency.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
763

Figure 259. Efficient Memory Pipelining Without a Bottleneck in a Hierarchical System

Nios II
Processor

M M

DMA

M M

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

Subsystem

Subsystem

12.5.4.3 Address Space Translation

The slave interface of a pipeline or clock crossing bridge has a base address and
address span. You can set the base address, or allow Platform Designer to set it
automatically. The address of the slave interface is the base offset address of all the
components connected to the bridge. The address of components connected to the
bridge is the sum of the base offset and the address of that component.

The master interface of the bridge drives only the address bits that represent the
offset from the base address of the bridge slave interface. Any time a master accesses
a slave through a bridge, both addresses must be added together, otherwise the
transfer fails. The Address Map tab displays the addresses of the slaves connected to
each master and includes address translations caused by system bridges.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
764

Figure 260. Bridge Address Translation

M

Nios II Processor

M

Bridge

S

Base = 0x1000

0x2C 0x2C0x102C

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0xC

Address Translation

In this example, the Nios II processor connects to a bridge located at base address
0x1000, a slave connects to the bridge master interface at an offset of 0x20, and the
processor performs a write transfer to the fourth 32-bit or 64-bit word within the
slave. Nios II drives the address 0x102C to interconnect, which is within the address
range of the bridge. The bridge master interface drives 0x2C, which is within the
address range of the slave, and the transfer completes.

12.5.4.4 Address Coherency

To simplify the system design, all masters should access slaves at the same location.
In many systems, a processor passes buffer locations to other mastering components,
such as a DMA controller. If the processor and DMA controller do not access the slave
at the same location, Platform Designer must compensate for the differences.

Figure 261. Slaves at Different Addresses and Complicating the System

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20 0x20

0x20

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

Masters Drive
Different Addresses

A Nios II processor and DMA controller access a slave interface located at address
0x20. The processor connects directly to the slave interface. The DMA controller
connects to a pipeline bridge located at address 0x1000, which then connects to the
slave interface. Because the DMA controller accesses the pipeline bridge first, it must
drive 0x1020 to access the first location of the slave interface. Because the processor
accesses the slave from a different location, you must maintain two base addresses
for the slave device.

To avoid the requirement for two addresses, you can add an additional bridge to the
system, set its base address to 0x1000, and then disable all the pipelining options in
the second bridge so that the bridge has minimal impact on system timing and

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
765

resource utilization. Because this second bridge has the same base address as the
original bridge, the processor and DMA controller access the slave interface with the
same address range.

Figure 262. Address Translation Corrected With Bridge

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20

M

Bridge

S

Base = 0x1000

0x20

0x20

0x200x1020

Address Translation

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

12.6 Increasing Transfer Throughput

Increasing the transfer efficiency of the master and slave interfaces in your system
increases the throughput of your design. Designs with strict cost or power
requirements benefit from increasing the transfer efficiency because you can then use
less expensive, lower frequency devices. Designs requiring high performance also
benefit from increased transfer efficiency because increased efficiency improves the
performance of frequency–limited hardware.

Throughput is the number of symbols (such as bytes) of data that Platform Designer
can transfer in a given clock cycle. Read latency is the number of clock cycles between
the address and data phase of a transaction. For example, a read latency of two
means that the data is valid two cycles after the address is posted. If the master must
wait for one request to finish before the next begins, such as with a processor, then
the read latency is very important to the overall throughput.

You can measure throughput and latency in simulation by observing the waveforms, or
using the verification IP monitors.

Related Links

• Avalon Verification IP Suite User Guide

• Mentor Graphics Verification IP Altera Edition AMBA 3 AXI and AMBA 4 AXI User
Guide

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
766

https://www.altera.com/documentation/nik1412471932581.html#nik1412471592433
http://www.altera.com/literature/ug/mentor_vip_axi34_ae_usr.pdf
http://www.altera.com/literature/ug/mentor_vip_axi34_ae_usr.pdf

12.6.1 Using Pipelined Transfers

Pipelined transfers increase the read efficiency by allowing a master to post multiple
reads before data from an earlier read returns. Masters that support pipelined
transfers post transfers continuously, relying on the readdatavalid signal to
indicate valid data. Slaves support pipelined transfers by including the
readdatavalid signal or operating with a fixed read latency.

AXI masters declare how many outstanding writes and reads it can issue with the
writeIssuingCapability and readIssuingCapability parameters. In the
same way, a slave can declare how many reads it can accept with the
readAcceptanceCapability parameter. AXI masters with a read issuing capability
greater than one are pipelined in the same way as Avalon masters and the
readdatavalid signal.

12.6.1.1 Using the Maximum Pending Reads Parameter

If you create a custom component with a slave interface supporting variable-latency
reads, you must specify the Maximum Pending Reads parameter in the Component
Editor. Platform Designer uses this parameter to generate the appropriate interconnect
and represent the maximum number of read transfers that your pipelined slave
component can process. If the number of reads presented to the slave interface
exceeds the Maximum Pending Reads parameter, then the slave interface must
assert waitrequest.

Optimizing the value of the Maximum Pending Reads parameter requires an
understanding of the latencies of your custom components. This parameter should be
based on the component’s highest read latency for the various logic paths inside the
component. For example, if your pipelined component has two modes, one requiring
two clock cycles and the other five, set the Maximum Pending Reads parameter to
5 to allow your component to pipeline five transfers, and eliminating dead cycles after
the initial five-cycle latency.

You can also determine the correct value for the Maximum Pending Reads
parameter by monitoring the number of reads that are pending during system
simulation or while running the hardware. To use this method, set the parameter to a
high value and use a master that issues read requests on every clock. You can use a
DMA for this task if the data is written to a location that does not frequently assert
waitrequest. If you implement this method, you can observe your component with
a logic analyzer or built-in monitoring hardware.

Choosing the correct value for the Maximum Pending Reads parameter of your
custom pipelined read component is important. If you underestimate the parameter
value, you may cause a master interface to stall with a waitrequest until the slave
responds to an earlier read request and frees a FIFO position.

The Maximum Pending Reads parameter controls the depth of the response FIFO
inserted into the interconnect for each master connected to the slave. This FIFO does
not use significant hardware resources. Overestimating the Maximum Pending
Reads parameter results in a slight increase in hardware utilization. For these
reasons, if you are not sure of the optimal value, you should overestimate this value.

If your system includes a bridge, you must set the Maximum Pending Reads
parameter on the bridge as well. To allow maximum throughput, this value should be
equal to or greater than the Maximum Pending Reads value for the connected slave
that has the highest value. You can limit the maximum pending reads of a slave and

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
767

reduce the buffer depth by reducing the parameter value on the bridge if the high
throughput is not required. If you do not know the Maximum Pending Reads value
for all the slave components, you can monitor the number of reads that are pending
during system simulation while running the hardware. To use this method, set the
Maximum Pending Reads parameter to a high value and use a master that issues
read requests on every clock, such as a DMA. Then, reduce the number of maximum
pending reads of the bridge until the bridge reduces the performance of any masters
accessing the bridge.

12.6.2 Arbitration Shares and Bursts

Arbitration shares provide control over the arbitration process. By default, the
arbitration algorithm allocates evenly, with all masters receiving one share.

You can adjust the arbitration process by assigning a larger number of shares to the
masters that need greater throughput. The larger the arbitration share, the more
transfers are allocated to the master to access a slave. The masters gets
uninterrupted access to the slave for its number of shares, as long as the master is
reading or writing.

If a master cannot post a transfer and other masters are waiting to gain access to a
particular slave, the arbiter grants another master access. This mechanism prevents a
master from wasting arbitration cycles if it cannot post back-to-back transfers. A
bursting transaction contains multiple beats (or words) of data, starting from a single
address. Bursts allow a master to maintain access to a slave for more than a single
word transfer. If a bursting master posts a write transfer with a burst length of eight,
it is guaranteed arbitration for eight write cycles.

You can assign arbitration shares to an Avalon-MM bursting master and AXI masters
(which are always considered a bursting master). Each share consists of one burst
transaction (such as multi-cycle write), and allows a master to complete a number of
bursts before arbitration switches to the next master.

Related Links

Arbitration on page 671

12.6.2.1 Differences Between Arbitration Shares and Bursts

The following three key characteristics distinguish arbitration shares and bursts:

• Arbitration Lock

• Sequential Addressing

• Burst Adapters

Arbitration Lock

When a master posts a burst transfer, the arbitration is locked for that master;
consequently, the bursting master should be capable of sustaining transfers for the
duration of the locked period. If, after the fourth write, the master deasserts the write
signal (Avalon-MM write or AXI wvalid) for fifty cycles, all other masters continue to
wait for access during this stalled period.

To avoid wasted bandwidth, your master designs should wait until a full burst transfer
is ready before requesting access to a slave device. Alternatively, you can avoid
wasted bandwidth by posting burstcounts equal to the amount of data that is ready.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
768

For example, if you create a custom bursting write master with a maximum
burstcount of eight, but only three words of data are ready, you can present a
burstcount of three. This strategy does not result in optimal use of the system band
width if the slave is capable of handling a larger burst; however, this strategy prevents
stalling and allows access for other masters in the system.

Sequential Addressing

An Avalon-MM burst transfer includes a base address and a burstcount, which
represents the number of words of data that are transferred, starting from the base
address and incrementing sequentially. Burst transfers are common for processors,
DMAs, and buffer processing accelerators; however, sometimes a master must access
non-sequential addresses. Consequently, a bursting master must set the burstcount
to the number of sequential addresses, and then reset the burstcount for the next
location.

The arbitration share algorithm has no restrictions on addresses; therefore, your
custom master can update the address it presents to the interconnect for every read
or write transaction.

Burst Adapters

Platform Designer allows you to create systems that mix bursting and non-bursting
master and slave interfaces. This design strategy allows you to connect bursting
master and slave interfaces that support different maximum burst lengths, with
Platform Designer generating burst adapters when appropriate.

Platform Designer inserts a burst adapter whenever a master interface burst length
exceeds the burst length of the slave interface, or if the master issues a burst type
that the slave cannot support. For example, if you connect an AXI master to an Avalon
slave, a burst adapter is inserted. Platform Designer assigns non-bursting masters and
slave interfaces a burst length of one. The burst adapter divides long bursts into
shorter bursts. As a result, the burst adapter adds logic to the address and
burstcount paths between the master and slave interfaces.

12.6.2.2 Choosing Avalon-MM Interface Types

To avoid inefficient Avalon-MM transfers, custom master or slave interfaces must use
the appropriate simple, pipelined, or burst interfaces.

12.6.2.2.1 Simple Avalon-MM Interfaces

Simple interface transfers do not support pipelining or bursting for reads or writes;
consequently, their performance is limited. Simple interfaces are appropriate for
transfers between masters and infrequently used slave interfaces. In Platform
Designer, the PIO, UART, and Timer include slave interfaces that use simple transfers.

12.6.2.2.2 Pipelined Avalon-MM Interfaces

Pipelined read transfers allow a pipelined master interface to start multiple read
transfers in succession without waiting for prior transfers to complete. Pipelined
transfers allow master-slave pairs to achieve higher throughput, even though the
slave port may require one or more cycles of latency to return data for each transfer.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
769

In many systems, read throughput becomes inadequate if simple reads are used and
pipelined transfers can increase throughput. If you define a component with a fixed
read latency, Platform Designer automatically provides the pipelining logic necessary
to support pipelined reads. You can use fixed latency pipelining as the default design
starting point for slave interfaces. If your slave interface has a variable latency
response time, use the readdatavalid signal to indicate when valid data is
available. The interconnect implements read response FIFO buffering to handle the
maximum number of pending read requests.

To use components that support pipelined read transfers, and to use a pipelined
system interconnect efficiently, your system must contain pipelined masters. You can
use pipelined masters as the default starting point for new master components. Use
the readdatavalid signal for these master interfaces.

Because master and slaves sometimes have mismatched pipeline latency, the
interconnect contains logic to reconcile the differences.

Table 188. Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure

No pipeline No pipeline Platform Designer interconnect does not instantiate logic to handle pipeline
latency.

No pipeline Pipelined with
fixed or variable
latency

Platform Designer interconnect forces the master to wait through any slave-side
latency cycles. This master-slave pair gains no benefits from pipelining, because
the master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.

Pipelined No pipeline Platform Designer interconnect carries out the transfer as if neither master nor
slave were pipelined, causing the master to wait until the slave returns data. An
example of a non-pipeline slave is an asynchronous off-chip interface.

Pipelined Pipelined with
fixed latency

Platform Designer interconnect allows the master to capture data at the exact
clock cycle when data from the slave is valid, to enable maximum throughput. An
example of a fixed latency slave is an on-chip memory.

Pipelined Pipelined with
variable latency

The slave asserts a signal when its readdata is valid, and the master captures
the data. The master-slave pair can achieve maximum throughput if the slave
has variable latency. Examples of variable latency slaves include SDRAM and
FIFO memories.

12.6.2.2.3 Burst Avalon-MM Interfaces

Burst transfers are commonly used for latent memories such as SDRAM and off-chip
communication interfaces, such as PCI Express. To use a burst-capable slave interface
efficiently, you must connect to a bursting master. Components that require bursting
to operate efficiently typically have an overhead penalty associated with short bursts
or non-bursting transfers.

You can use a burst-capable slave interface if you know that your component requires
sequential transfers to operate efficiently. Because SDRAM memories incur a penalty
when switching banks or rows, performance improves when SDRAM memories are
accessed sequentially with bursts.

Architectures that use the same signals to transfer address and data also benefit from
bursting. Whenever an address is transferred over shared address and data signals,
the throughput of the data transfer is reduced. Because the address phase adds
overhead, using large bursts increases the throughput of the connection.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
770

12.6.2.3 Avalon-MM Burst Master Example

Figure 263. Avalon Bursting Write Master
This example shows the architecture of a bursting write master that receives data from a FIFO and writes the
contents to memory. You can use a bursting master as a starting point for your own bursting components, such
as custom DMAs, hardware accelerators, or off-chip communication interfaces.

d

count enable

load

d

count enable

load

q

read acknowledge

d

write

full

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_full

user_data_write

length[31:0]

fifo_used[]

used[]

writedata[31:0]

increment_address

Look-Ahead FIFO

master_burstcount[2:0]

burst_begin

burst_count[2:0]

write

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

burst_begin
EN

D Q

s

1

0

Tracking Logic/
State Machine

The master performs word accesses and writes to sequential memory locations. When
go is asserted, the start_address and transfer_length are registered. On the
next clock cycle, the control logic asserts burst_begin, which synchronizes the
internal control signals in addition to the master_address and
master_burstcount presented to the interconnect. The timing of these two signals
is important because during bursting write transfers byteenable and burstcount
must be held constant for the entire burst.

To avoid inefficient writes, the master posts a burst when enough data is buffered in
the FIFO. To maximize the burst efficiency, the master should stall only when a slave
asserts waitrequest. In this example, the FIFO’s used signal tracks the number of
words of data that are stored in the FIFO and determines when enough data has been
buffered.

The address register increments after every word transfer, and the length register
decrements after every word transfer. The address remains constant throughout the
burst. Because a transfer is not guaranteed to complete on burst boundaries,
additional logic is necessary to recognize the completion of short bursts and complete
the transfer.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
771

Related Links

Avalon Memory-Mapped Master Templates

12.7 Reducing Logic Utilization

You can minimize logic size of Platform Designer systems. Typically, there is a trade-
off between logic utilization and performance. Reducing logic utilization applies to both
Avalon and AXI interfaces.

12.7.1 Minimizing Interconnect Logic to Reduce Logic Unitization

In Platform Designer, changes to the connections between master and slave reduce
the amount of interconnect logic required in the system.

Related Links

Limited Concurrency on page 762

12.7.1.1 Creating Dedicated Master and Slave Connections to Minimize
Interconnect Logic

You can create a system where a master interface connects to a single slave interface.
This configuration eliminates address decoding, arbitration, and return data
multiplexing, which simplifies the interconnect. Dedicated master-to-slave connections
attain the same clock frequencies as Avalon-ST connections.

Typically, these one-to-one connections include an Avalon memory-mapped bridge or
hardware accelerator. For example, if you insert a pipeline bridge between a slave and
all other master interfaces, the logic between the bridge master and slave interface is
reduced to wires. If a hardware accelerator connects only to a dedicated memory, no
system interconnect logic is generated between the master and slave pair.

12.7.1.2 Removing Unnecessary Connections to Minimize Interconnect Logic

The number of connections between master and slave interfaces affects the fMAX of
your system. Every master interface that you connect to a slave interface increases
the width of the multiplexer width. As a multiplexer width increases, so does the logic
depth and width that implements the multiplexer in the FPGA. To improve system
performance, connect masters and slaves only when necessary.

When you connect a master interface to many slave interfaces, the multiplexer for the
read data signal grows. Avalon typically uses a readdata signal. AXI read data
signals add a response status and last indicator to the read response channel using
rdata, rresp, and rlast. Additionally, bridges help control the depth of
multiplexers.

Related Links

Implementing Command Pipelining (Master-to-Slave) on page 755

12.7.1.3 Simplifying Address Decode Logic

If address code logic is in the critical path, you may be able to change the address
map to simplify the decode logic. Experiment with different address maps, including a
one-hot encoding, to see if results improve.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
772

http://www.altera.com/support/examples/nios2/exm-avalon-mm.html

12.7.2 Minimizing Arbitration Logic by Consolidating Multiple Interfaces

As the number of components in a design increases, the amount of logic required to
implement the interconnect also increases. The number of arbitration blocks increases
for every slave interface that is shared by multiple master interfaces. The width of the
read data multiplexer increases as the number of slave interfaces supporting read
transfers increases on a per master interface basis. For these reasons, consider
implementing multiple blocks of logic as a single interface to reduce interconnect logic
utilization.

12.7.2.1 Logic Consolidation Trade-Offs

You should consider the following trade-offs before making modifications to your
system or interfaces:

• Consider the impact on concurrency that results when you consolidate
components. When a system has four master components and four slave
interfaces, it can initiate four concurrent accesses. If you consolidate the four
slave interfaces into a single interface, then the four masters must compete for
access. Consequently, you should only combine low priority interfaces such as low
speed parallel I/O devices if the combination does not impact the performance.

• Determine whether consolidation introduces new decode and multiplexing logic for
the slave interface that the interconnect previously included. If an interface
contains multiple read and write address locations, the interface already contains
the necessary decode and multiplexing logic. When you consolidate interfaces, you
typically reuse the decoder and multiplexer blocks already present in one of the
original interfaces; however, combining interfaces may simply move the decode
and multiplexer logic, rather than eliminate duplication.

• Consider whether consolidating interfaces makes the design complicated. If so,
you should not consolidate interfaces.

Related Links

Using Concurrency in Memory-Mapped Systems on page 748

12.7.2.2 Consolidating Interfaces

In this example, we have a system with a mix of components, each having different
burst capabilities: a Nios II/e core, a Nios II/f core, and an external processor, which
off-loads some processing tasks to the Nios II/f core.

The Nios II/f core supports a maximum burst size of eight. The external processor
interface supports a maximum burst length of 64. The Nios II/e core does not support
bursting. The memory in the system is SDRAM with an Avalon maximum burst length
of two.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
773

Figure 264. Mixed Bursting System

Nios II/e Core

M M

Nios II/f Core

M

Host Processor
Interface

MM

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

1

8

B

B

1

8

8

B

1

8

B

1

8

B

1

64

B

2

8

B

2

8

B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

Platform Designer automatically inserts burst adapters to compensate for burst length
mismatches. The adapters reduce bursts to a single transfer, or the length of two
transfers. For the external processor interface connecting to DDR SDRAM, a burst of
64 words is divided into 32 burst transfers, each with a burst length of two. When you
generate a system, Platform Designer inserts burst adapters based on maximum
burstcount values; consequently, the interconnect logic includes burst adapters
between masters and slave pairs that do not require bursting, if the master is capable
of bursts.

In this example, Platform Designer inserts a burst adapter between the Nios II
processors and the timer, system ID, and PIO peripherals. These components do not
support bursting and the Nios II processor performs a single word read and write
accesses to these components.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
774

Figure 265. Mixed Bursting System with Bridges

To reduce the number of adapters, you can add pipeline bridges. The pipeline bridge, between the Nios II/f
core and the peripherals that do not support bursts, eliminates three burst adapters from the previous
example. A second pipeline bridge between the Nios II/f core and the DDR SDRAM, with its maximum burst
size set to eight, eliminates another burst adapter, as shown below.

Nios II/e Core

M M M

Nios II/f Core

M

Host Processor
Interface

M

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

8

B

1

64

8 8
B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

B

1

8

B

2

8

M

Bridge

S

M

Bridge

S

12.7.3 Reducing Logic Utilization With Multiple Clock Domains

You specify clock domains in Platform Designer on the System Contents tab. Clock
sources can be driven by external input signals to Platform Designer, or by PLLs inside
Platform Designer. Clock domains are differentiated based on the name of the clock.
You can create multiple asynchronous clocks with the same frequency.

Platform Designer generates Clock Domain Crossing (CDC) logic that hides the details
of interfacing components operating in different clock domains. The interconnect
supports the memory-mapped protocol with each port independently, and therefore

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
775

masters do not need to incorporate clock adapters in order to interface to slaves on a
different domain. Platform Designer interconnect logic propagates transfers across
clock domain boundaries automatically.

Clock-domain adapters provide the following benefits:

• Allows component interfaces to operate at different clock frequencies.

• Eliminates the need to design CDC hardware.

• Allows each memory-mapped port to operate in only one clock domain, which
reduces design complexity of components.

• Enables masters to access any slave without communication with the slave clock
domain.

• Allows you to focus performance optimization efforts on components that require
fast clock speed.

A clock domain adapter consists of two finite state machines (FSM), one in each clock
domain, that use a hand-shaking protocol to propagate transfer control signals
(read_request, write_request, and the master waitrequest signals) across the
clock boundary.

Figure 266. Clock Crossing Adapter

waitrequest

control

Receiver
Handshake

FSM

transfer
request

acknowledge

readdata

control

Sender
Handshake

FSM

waitrequest

Synchro-
nizer

Receiver
Port

Sender
Port

Receiver Clock Domain Sender Clock Domain

Synchro-
nizer

readdata

CDC Logic

writedata & byte enable

address

This example illustrates a clock domain adapter between one master and one slave.
The synchronizer blocks use multiple stages of flipflops to eliminate the propagation of
meta-stable events on the control signals that enter the handshake FSMs. The CDC
logic works with any clock ratio.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
776

The typical sequence of events for a transfer across the CDC logic is as follows:

• The master asserts address, data, and control signals.

• The master handshake FSM captures the control signals and immediately forces
the master to wait. The FSM uses only the control signals, not address and data.
For example, the master simply holds the address signal constant until the slave
side has safely captured it.

• The master handshake FSM initiates a transfer request to the slave handshake
FSM.

• The transfer request is synchronized to the slave clock domain.

• The slave handshake FSM processes the request, performing the requested
transfer with the slave.

• When the slave transfer completes, the slave handshake FSM sends an
acknowledge back to the master handshake FSM. The acknowledge is
synchronized back to the master clock domain.

• The master handshake FSM completes the transaction by releasing the master
from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special
protocol to handle crossing clock domains. From the perspective of a slave, there is
nothing different about a transfer initiated by a master in a different clock domain.
From the perspective of a master, a transfer across clock domains simply requires
extra clock cycles. Similar to other transfer delay cases (for example, arbitration delay
or wait states on the slave side), the Platform Designer forces the master to wait until
the transfer terminates. As a result, pipeline master ports do not benefit from
pipelining when performing transfers to a different clock domain.

Platform Designer automatically determines where to insert CDC logic based on the
system and the connections between components, and places CDC logic to maintain
the highest transfer rate for all components. Platform Designer evaluates the need for
CDC logic for each master and slave pair independently, and generates CDC logic
wherever necessary.

Related Links

Avalon Memory-Mapped Design Optimizations

12.7.4 Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain boundaries. In
the worst case, which is for reads, each transfer is extended by five master clock
cycles and five slave clock cycles. Assuming the default value of 2 for the master
domain synchronizer length and the slave domain synchronizer length, the
components of this delay are the following:

• Four additional master clock cycles, due to the master-side clock synchronizer.

• Four additional slave clock cycles, due to the slave-side clock synchronizer.

• One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
777

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

Note: Systems that require a higher performance clock should use the Avalon-MM clock
crossing bridge instead of the automatically inserted CDC logic. The clock crossing
bridge includes a buffering mechanism so that multiple reads and writes can be
pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

12.8 Reducing Power Consumption

Platform Designer provides various low power design changes that enable you to
reduce the power consumption of the interconnect and custom components.

12.8.1 Reducing Power Consumption With Multiple Clock Domains

When you use multiple clock domains, you should put non-critical logic in the slower
clock domain. Platform Designer automatically reconciles data crossing over
asynchronous clock domains by inserting clock crossing logic (handshake or FIFO).

You can use clock crossing in Platform Designer to reduce the clock frequency of the
logic that does not require a high frequency clock, which allows you to reduce power
consumption. You can use either handshaking clock crossing bridges or handshaking
clock crossing adapters to separate clock domains.

You can use the clock crossing bridge to connect master interfaces operating at a
higher frequency to slave interfaces running at a lower frequency. Only connect low
throughput or low priority components to a clock crossing bridge that operates at a
reduced clock frequency. The following are examples of low throughput or low priority
components:

• PIOs

• UARTs (JTAG or RS-232)

• System identification (SysID)

• Timers

• PLL (instantiated within Platform Designer)

• Serial peripheral interface (SPI)

• EPCS controller

• Tristate bridge and the components connected to the bridge

By reducing the clock frequency of the components connected to the bridge, you
reduce the dynamic power consumption of the design. Dynamic power is a function of
toggle rates and decreasing the clock frequency decreases the toggle rate.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
778

Figure 267. Reducing Power Utilization Using a Bridge to Separate Clock Domains

Nios II
Processor

M M

Arbiter

DDR
SDRAM

S

On-Chip
Memory

S

Arbiter

PIO

S

UART

S

Timer

S

System ID

S

PLL

S

SPI

S

EPCS
Controller

S

M

Tristate
Conduit

S

M

Clock
Crossing
Bridge

S

Arbiter

200 MHz

5 MHz

Flash

S
Low-Frequency Components

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
779

Platform Designer automatically inserts clock crossing adapters between master and
slave interfaces that operate at different clock frequencies. You can choose the type of
clock crossing adapter in the Platform Designer Project Settings tab. Adapters do not
appear in the Connections column because you do not insert them. The following
clock crossing adapter types are available in Platform Designer:

• Handshake—Uses a simple handshaking protocol to propagate transfer control
signals and responses across the clock boundary. This adapter uses fewer
hardware resources because each transfer is safely propagated to the target
domain before the next transfer begins. The Handshake adapter is appropriate for
systems with low throughput requirements.

• FIFO—Uses dual-clock FIFOs for synchronization. The latency of the FIFO adapter
is approximately two clock cycles more than the handshake clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it
supports multiple transactions simultaneously. The FIFO adapter requires more
resources, and is appropriate for memory-mapped transfers requiring high
throughput across clock domains.

• Auto—Platform Designer specifies the appropriate FIFO adapter for bursting links
and the Handshake adapter for all other links.

Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it
buffers transfers and data. Clock crossing adapters are not pipelined, so that each
transaction is blocking until the transaction completes. Blocking transactions may
lower the throughput substantially; consequently, if you want to reduce power
consumption without limiting the throughput significantly, you should use the clock
crossing bridge or the FIFO clock crossing adapter. However, if the design requires
single read transfers, a clock crossing adapter is preferable because the latency is
lower.

The clock crossing bridge requires few logic resources other than on-chip memory. The
number of on-chip memory blocks used is proportional to the address span, data
width, buffering depth, and bursting capabilities of the bridge. The clock crossing
adapter does not use on-chip memory and requires a moderate number of logic
resources. The address span, data width, and the bursting capabilities of the clock
crossing adapter determine the resource utilization of the device.

When you decide to use a clock crossing bridge or clock crossing adapter, you must
consider the effects of throughput and memory utilization in the design. If on-chip
memory resources are limited, you may be forced to choose the clock crossing
adapter. Using the clock crossing bridge to reduce the power of a single component
may not justify using more resources. However, if you can place all of the low priority
components behind a single clock crossing bridge, you may reduce power
consumption in the design.

Related Links

Power Optimization

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
780

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471266057

12.8.2 Reducing Power Consumption by Minimizing Toggle Rates

A Platform Designer system consumes power whenever logic transitions between on
and off states. When the state is held constant between clock edges, no charging or
discharging occurs. You can use the following design methodologies to reduce the
toggle rates of your design:

• Registering component boundaries

• Using clock enable signals

• Inserting bridges

Platform Designer interconnect is uniquely combinational when no adapters or bridges
are present and there is no interconnect pipelining. When a slave interface is not
selected by a master, various signals may toggle and propagate into the component.
By registering the boundary of your component at the master or slave interface, you
can minimize the toggling of the interconnect and your component. In addition,
registering boundaries can improve operating frequency. When you register the signals
at the interface level, you must ensure that the component continues to operate
within the interface standard specification.

Avalon-MM waitrequest is a difficult signal to synchronize when you add registers to
your component. The waitrequest signal must be asserted during the same clock
cycle that a master asserts read or write to in order to prolong the transfer. A master
interface can read the waitrequest signal too early and post more reads and writes
prematurely.

Note: There is no direct AXI equivalent for waitrequest and burstcount, though the
AMBA Protocol Specification implies that the AXI ready signal cannot depend
combinatorially on the AXI valid signal. Therefore, Platform Designer typically
buffers AXI component boundaries for the ready signal.

For slave interfaces, the interconnect manages the begintransfer signal, which is
asserted during the first clock cycle of any read or write transfer. If the waitrequest
is one clock cycle late, you can logically OR the waitrequest and the
begintransfer signals to form a new waitrequest signal that is properly
synchronized. Alternatively, the component can assert waitrequest before it is
selected, guaranteeing that the waitrequest is already asserted during the first
clock cycle of a transfer.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
781

Figure 268. Variable Latency

waitrequest

begintransfer

readdata

read

write

writedata

Avalon-MM
Slave Port

Remaining
Component

Logic

ready
(synchronous)

Using Clock Enables

You can use clock enables to hold the logic in a steady state, and the write and read
signals as clock enables for slave components. Even if you add registers to your
component boundaries, the interface can potentially toggle without the use of clock
enables. You can also use the clock enable to disable combinational portions of the
component.

For example, you can use an active high clock enable to mask the inputs into the
combinational logic to prevent it from toggling when the component is inactive. Before
preventing inactive logic from toggling, you must determine if the masking causes the
circuit to function differently. If masking causes a functional failure, it may be possible
to use a register stage to hold the combinational logic constant between clock cycles.

Inserting Bridges

You can use bridges to reduce toggle rates, if you do not want to modify the
component by using boundary registers or clock enables. A bridge acts as a repeater
where transfers to the slave interface are repeated on the master interface. If the
bridge is not accessed, the components connected to its master interface are also not
accessed. The master interface of the bridge remains idle until a master accesses the
bridge slave interface.

Bridges can also reduce the toggle rates of signals that are inputs to other master
interfaces. These signals are typically readdata, readdatavalid, and
waitrequest. Slave interfaces that support read accesses drive the readdata,
readdatavalid, and waitrequest signals. A bridge inserts either a register or
clock crossing FIFO between the slave interface and the master to reduce the toggle
rate of the master input signals.

12.8.3 Reducing Power Consumption by Disabling Logic

There are typically two types of low power modes: volatile and non-volatile. A volatile
low power mode holds the component in a reset state. When the logic is reactivated,
the previous operational state is lost. A non-volatile low power mode restores the
previous operational state. You can use either software-controlled or hardware-
controlled sleep modes to disable a component in order to reduce power consumption.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
782

Software-Controlled Sleep Mode

To design a component that supports software-controlled sleep mode, create a single
memory-mapped location that enables and disables logic by writing a zero or one. You
can use the register’s output as a clock enable or reset, depending on whether the
component has non-volatile requirements. The slave interface must remain active
during sleep mode so that the enable bit is set when the component needs to be
activated.

If multiple masters can access a component that supports sleep mode, you can use
the mutex core to provide mutually exclusive accesses to your component. You can
also build in the logic to re-enable the component on the very first access by any
master in your system. If the component requires multiple clock cycles to re-activate,
then it must assert a wait request to prolong the transfer as it exits sleep mode.

Hardware-Controlled Sleep Mode

Alternatively, you can implement a timer in your component that automatically causes
the component to enter a sleep mode based on a timeout value specified in clock
cycles between read or write accesses. Each access resets the timer to the timeout
value. Each cycle with no accesses decrements the timeout value by one. If the
counter reaches zero, the hardware enters sleep mode until the next access.

Figure 269. Hardware-Controlled Sleep Components

q

wakeread
write

d count

count enableload

Down
Counter

waitrequest sleep_n

= 0?Timeout Value reset

busy

This example provides a schematic for the hardware-controlled sleep mode. If
restoring the component to an active state takes a long time, use a long timeout value
so that the component is not continuously entering and exiting sleep mode. The slave
interface must remain functional while the rest of the component is in sleep mode.
When the component exits sleep mode, the component must assert the waitrequest
signal until it is ready for read or write accesses.

Related Links

Mutex Core

12.9 Reset Polarity and Synchronization in Platform Designer

When you add a component interface with a reset signal, Platform Designer defines its
polarity as reset(active-high) or reset_n (active-low).

You can view the polarity status of a reset signal by selecting the signal in the
Hierarchy tab, and then view its expanded definition in the open Parameters and
Block Symbol tabs. When you generate your component, Platform Designer
interconnect automatically inverts ploarities as needed.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
783

http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Figure 270. Reset Signal (Active-High)

Figure 271. Reset Signal Active-Low

Each Platform Designer component has its own requirements for reset
synchronization. Some blocks have internal synchronization and have no
requirements, whereas other blocks require an externally synchronized reset. You can
define how resets are synchronized in your Platform Designer system with the
Synchronous edges parameter. In the clock source or reset bridge component, set
the value of the Synchronous edges parameter to one of the following, depending
on how the reset is externally synchronized:

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
784

• None—There is no synchronization on this reset.

• Both—The reset is synchronously asserted and deasserted with respect to the
input clock.

• Deassert—The reset is synchronously asserted with respect to the input clock,
and asynchronously deasserted.

Figure 272. Synchronous Edges Parameter

You can combine multiple reset sources to reset a particular component.

Figure 273. Combine Multiple Reset Sources

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
785

When you generate your component, Platform Designer inserts adapters to
synchronize or invert resets if there are mismatches in polarity or synchronization
between the source and destination. You can view inserted adapters on the Memory-
Mapped Interconnect tab with the System ➤ Show System with Platform
Designer Interconnect command.

Figure 274. Platform Designer Interconnect

12.10 Optimizing Platform Designer System Performance Design
Examples

Avalon Pipelined Read Master Example on page 786

Multiplexer Examples on page 788

12.10.1 Avalon Pipelined Read Master Example

For a high throughput system using the Avalon-MM standard, you can design a
pipelined read master that allows a system to issue multiple read requests before data
returns. Pipelined read masters hide the latency of read operations by posting reads
as frequently as every clock cycle. You can use this type of master when the address
logic is not dependent on the data returning.

12.10.1.1 Avalon Pipelined Read Master Example Design Requirements

You must carefully design the logic for the control and datapaths of pipelined read
masters. The control logic must extend a read cycle whenever the waitrequest
signal is asserted. This logic must also control the master address, byteenable,

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
786

and read signals. To achieve maximum throughput, pipelined read masters should
post reads continuously while waitrequest is deasserted. While read is asserted,
the address presented to the interconnect is stored.

The datapath logic includes the readdata and readdatavalid signals. If your
master can accept data on every clock cycle, you can register the data with the
readdatavalid as an enable bit. If your master cannot process a continuous stream
of read data, it must buffer the data in a FIFO. The control logic must stop issuing
reads when the FIFO reaches a predetermined fill level to prevent FIFO overflow.

12.10.1.2 Expected Throughput Improvement

The throughput improvement that you can achieve with a pipelined read master is
typically directly proportional to the pipeline depth of the interconnect and the slave
interface. For example, if the total latency is two cycles, you can double the
throughput by inserting a pipelined read master, assuming the slave interface also
supports pipeline transfers. If either the master or slave does not support pipelined
read transfers, then the interconnect asserts waitrequest until the transfer
completes. You can also gain throughput when there are some cycles of overhead
before a read response.

Where reads are not pipelined, the throughput is reduced. When both the master and
slave interfaces support pipelined read transfers, data flows in a continuous stream
after the initial latency. You can use a pipelined read master that stores data in a FIFO
to implement a custom DMA, hardware accelerator, or off-chip communication
interface.

Figure 275. Pipelined Read Master

d

count enable

load

d

count enable

load

d

write

q

read acknowledge

empty

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_empty

user_data_read

length[31:0]

fifo_used[]

used[]

writedata[31:0]

readdatavalid

Look-Ahead FIFO

read

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

Tracking Logic/
State Machine

readdatavalid

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
787

This example shows a pipelined read master that stores data in a FIFO. The master
performs word accesses that are word-aligned and reads from sequential memory
addresses. The transfer length is a multiple of the word size.

When the go bit is asserted, the master registers the start_address and
transfer_length signals. The master begins issuing reads continuously on the next
clock cycle until the length register reaches zero. In this example, the word size is four
bytes so that the address always increments by four, and the length decrements by
four. The read signal remains asserted unless the FIFO fills to a predetermined level.
The address register increments and the length register decrements if the length has
not reached 0 and a read is posted.

The master posts a read transfer every time the read signal is asserted and the
waitrequest is deasserted. The master issues reads until the entire buffer has been
read or waitrequest is asserted. An optional tracking block monitors the done bit.
When the length register reaches zero, some reads are outstanding. The tracking logic
prevents assertion of done until the last read completes, and monitors the number of
reads posted to the interconnect so that it does not exceed the space remaining in the
readdata FIFO. This example includes a counter that verifies that the following
conditions are met:

• If a read is posted and readdatavalid is deasserted, the counter increments.

• If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach zero, all the reads
have completed and the done bit is asserted. The done bit is important if a second
master overwrites the memory locations that the pipelined read master accesses. This
bit guarantees that the reads have completed before the original data is overwritten.

12.10.2 Multiplexer Examples

You can combine adapters with streaming components to create datapaths whose
input and output streams have different properties. The following examples
demonstrate datapaths in which the output stream exhibits higher performance than
the input stream.

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory to boost the frequency of input data from 100 MHz to 110 MHz by
sampling two input streams at differential rates. The on-chip FIFO memory has an
input clock frequency of 100 MHz, and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time, and the second 72.7 percent of the time. You must know what the typical
and maximum input channel utilizations are before for this type of design. For
example, if the first channel hits 50% utilization, the output stream exceeds 100%
utilization.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
788

Figure 276. Datapath that Doubles the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

30% Channel Utilization
8 Bits at 100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

80% Channel Utilization
8 Bits at 100 MHz

Input

Input

sink

sink

src

27.3% Sample Rate
110 MHz

72.7% Sample Rate
110 MHz

100% Channel Utilization
Output 110 MHz

The diagram below illustrates a datapath that uses a data format adapter and Avalon-
ST channel multiplexer to merge the 8-bit 100 MHz input from two streaming data
sources into a single 16-bit 100 MHz streaming output. This example shows an output
with double the throughput of each interface with a corresponding doubling of the
data width.

Figure 277. Datapath to Double Data Width and Maintain Original Frequency

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

Input

Input

sink

sink

src

16 Bits at 100 MHz

16 Bits at 100 MHz

16 Bits
at 100 MHz

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory and Avalon-ST channel multiplexer to merge the 100 MHz input
from two streaming data sources into a single 200 MHz streaming output. This
example shows an output with double the throughput of each interface with a
corresponding doubling of the clock frequency.

Figure 278. Datapath to Boost the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

Input

Input

sink

sink

src

200 MHz

200 MHz

Output
200 MHz

12.11 Document Revision History

The table below indicates edits made to the Optimizing Platform Designer System
Performance content since its creation.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
789

Table 189. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Platform Designer rebranding.

2015.11.02 15.1.0 • Added:Reset Polarity and Synchronization in Platform Designer.
• Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Multiplexer Examples, rearranged description text for the figures.

May 2013 13.0.0 AMBA APB support.

November 2012 12.1.0 AMBA AXI4 support.

June 2012 12.0.0 AMBA AXI3 support.

November 2011 11.1.0 New document release.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

12 Optimizing Platform Designer System Performance

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
790

https://www.altera.com/search-archives

13 Component Interface Tcl Reference
Tcl commands allow you to perform a wide range of functions in Platform Designer.
Command descriptions contain the Platform Designer phases where you can use the
command, for example, main program, elaboration, composition, or fileset callback.
This reference denotes optional command arguements in brackets [].

Note: Intel now refers to Qsys Pro as Platform Designer.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

For more information about procedures for creating IP component _hw.tcl files in the
Platform Designer Component Editor, and supported interface standards, refer to
Creating Platform Designer Components and Platform Designer Interconnect.

If you are developing an IP component to work with the Nios II processor, refer to
Publishing Component Information to Embedded Software in section 3 of the Nios II
Software Developer's Handbook, which describes how to publish hardware IP
component information for embedded software tools, such as a C compiler and a
Board Support Package (BSP) generator.

Related Links

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Creating Platform Designer Components on page 608

• Platform Designer Interconnect on page 659

• Publishing Component Information to Embedded Software
In Nios II Gen2 Software Developer's Handbook

13.1 Platform Designer _hw.tcl Command Reference

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946964569
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

13.1.1 Interfaces and Ports

add_interface on page 793

add_interface_port on page 795

get_interfaces on page 797

get_interface_assignment on page 798

get_interface_assignments on page 799

get_interface_ports on page 800

get_interface_properties on page 801

get_interface_property on page 802

get_port_properties on page 803

get_port_property on page 804

set_interface_assignment on page 805

set_interface_property on page 807

set_port_property on page 808

set_interface_upgrade_map on page 809

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
792

13.1.1.1 add_interface

Description
Adds an interface to your module. An interface represents a collection of related
signals that are managed together in the parent system. These signals are
implemented in the IP component's HDL, or exported from an interface from a child
instance. As the IP component author, you choose the name of the interface.

Availability
Discovery, Main Program, Elaboration, Composition

Usage
add_interface <name> <type> <direction> [<associated_clock>]

Returns
No returns value.

Arguments

name A name you choose to identify an interface.

type The type of interface.

direction The interface direction.

associated_clock
(optional)

(deprecated) For interfaces requiring associated clocks, use:
set_interface_property <interface>
associatedClock <clockInterface> For interfaces
requiring associated resets, use: set_interface_property
<interface> associatedReset <resetInterface>

Example

add_interface mm_slave avalon slave

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Notes
By default, interfaces are enabled. You can set the interface property ENABLED to
false to disable an interface. If an interface is disabled, it is hidden and its ports are
automatically terminated to their default values. Active high signals are terminated to
0. Active low signals are terminated to 1.

If the IP component is composed of child instances, the top-level interface is
associated with a child instance's interface with set_interface_property
interface EXPORT_OF child_instance.interface.

The following direction rules apply to Platform Designer-supported interfaces.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
793

Interface Type Direction

avalon master, slave

axi master, slave

tristate_conduit master, slave

avalon_streaming source, sink

interrupt sender, receiver

conduit end

clock source, sink

reset source, sink

nios_custom_instruction slave

Related Links

• add_interface_port on page 795

• get_interface_assignments on page 799

• get_interface_properties on page 801

• get_interfaces on page 797

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
794

13.1.1.2 add_interface_port

Description
Adds a port to an interface on your module. The name must match the name of a
signal on the top-level module in the HDL of your IP component. The port width and
direction must be set before the end of the elaboration phase. You can set the port
width as follows:

• In the Main program, you can set the port width to a fixed value or a width
expression.

• If the port width is set to a fixed value in the Main program, you can update the
width in the elaboration callback.

Availability
Main Program, Elaboration

Usage
add_interface_port <interface> <port> [<signal_type> <direction>
<width_expression>]

Returns

Arguments

interface The name of the interface to which this port belongs.

port The name of the port. This name must match a signal in your top-level HDL for
this IP component.

signal_type
(optional)

The type of signal for this port, which must be unique. Refer to
the Avalon Interface Specifications for the signal types available
for each interface type.

direction (optional) The direction of the signal. Refer to Direction Properties.

width_expression
(optional)

The width of the port, in bits. The width may be a fixed
value, or a simple arithmetic expression of parameter
values.

Example

fixed width:
add_interface_port mm_slave s0_rdata readdata output 32

width expression:
add_parameter DATA_WIDTH INTEGER 32
add_interface_port s0 rdata readdata output "DATA_WIDTH/2"

Related Links

• add_interface on page 793

• get_port_properties on page 803

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
795

• get_port_property on page 804

• get_port_property on page 804

• Direction Properties on page 893

• Avalon Interface Specifications

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
796

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

13.1.1.3 get_interfaces

Description
Returns a list of top-level interfaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interfaces

Returns
A list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Links

add_interface on page 793

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
797

13.1.1.4 get_interface_assignment

Description
Returns the value of the specified assignment for the specified interface

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignment <interface> <assignment>

Returns
The value of the assignment.

Arguments

interface The name of a top-level interface.

assignment The name of an assignment.

Example

get_interface_assignment s1 embeddedsw.configuration.isFlash

Related Links

• add_interface on page 793

• get_interface_assignments on page 799

• get_interfaces on page 797

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
798

13.1.1.5 get_interface_assignments

Description
Returns the value of all interface assignments for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignments <interface>

Returns
A list of assignment keys.

Arguments

interface The name of the top-level interface whose assignment is being retrieved.

Example

get_interface_assignments s1

Related Links

• add_interface on page 793

• get_interface_assignment on page 798

• get_interfaces on page 797

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
799

13.1.1.6 get_interface_ports

Description
Returns the names of all of the ports that have been added to a given interface. If the
interface name is omitted, all ports for all interfaces are returned.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_ports [<interface>]

Returns
A list of port names.

Arguments

interface (optional) The name of a top-level interface.

Example

get_interface_ports mm_slave

Related Links

• add_interface_port on page 795

• get_port_property on page 804

• set_port_property on page 808

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
800

13.1.1.7 get_interface_properties

Description
Returns the names of all the interface properties for the specified interface as a space
separated list

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_properties <interface>

Returns
A list of properties for the interface.

Arguments

interface The name of an interface.

Example

get_interface_properties interface

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Links

• get_interface_property on page 802

• set_interface_property on page 807

• Avalon Interface Specifications

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
801

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

13.1.1.8 get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Availability
Discovery, Main Program, Elaboration, Composition, Fileset Generation

Usage
get_interface_property <interface> <property>

Returns

Arguments

interface The name of an interface.

property The name of the property whose value you want to retrieve. Refer to
Interface Properties.

Example

get_interface_property mm_slave linewrapBursts

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Links

• get_interface_properties on page 801

• set_interface_property on page 807

• Avalon Interface Specifications

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
802

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

13.1.1.9 get_port_properties

Description
Returns a list of port properties.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_properties

Returns
A list of port properties. Refer to Port Properties.

Arguments
No arguments.

Example

get_port_properties

Related Links

• add_interface_port on page 795

• get_port_property on page 804

• set_port_property on page 808

• Port Properties on page 891

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
803

13.1.1.10 get_port_property

Description
Returns the value of a property for the specified port.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_property <port> <property>

Returns
The value of the property.

Arguments

port The name of the port.

property The name of a port property. Refer to Port Properties.

Example

get_port_property rdata WIDTH_VALUE

Related Links

• add_interface_port on page 795

• get_port_properties on page 803

• set_port_property on page 808

• Port Properties on page 891

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
804

13.1.1.11 set_interface_assignment

Description
Sets the value of the specified assignment for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_interface_assignment <interface> <assignment> [<value>]

Returns
No return value.

Arguments

interface The name of the top-level interface whose assignment is being set.

assignment The assignment whose value is being set.

value (optional) The new assignment value.

Example

set_interface_assignment s1 embeddedsw.configuration.isFlash 1

Notes

Assignments for Nios II Software Build Tools

Interface assignments provide extra data for the Nios II Software Build Tools working
with the generated system.

Assignments for Platform Designer Tools

There are several assignments that guide behavior in the Platform Designer tools.

qsys.ui.export_name: If present, this interface should always be
exported when an instance is added to a Platform
Designer system. The value is the requested
name of the exported interface in the parent
system.

qsys.ui.connect: If present, this interface should be auto-
connected when an instance is added to a
Platform Designer system. The value is a comma-
separated list of other interfaces on the same
instance that should be connected with this
interface.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
805

ui.blockdiagram.direction: If present, the direction of this interface in the
block diagram is set by the user. The value is
either "output" or "input".

Related Links

• add_interface on page 793

• get_interface_assignment on page 798

• get_interface_assignments on page 799

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
806

13.1.1.12 set_interface_property

Description
Sets the value of a property on an exported top-level interface. You can use this
command to set the EXPORT_OF property to specify which interface of a child instance
is exported via this top-level interface.

Availability
Main Program, Elaboration, Composition

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property Refer to Interface Properties.

value The new property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out
set_interface_property mm_slave linewrapBursts false

Notes
The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Links

• get_interface_properties on page 801

• get_interface_property on page 802

• Interface Properties on page 885

• Avalon Interface Specifications

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
807

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

13.1.1.13 set_port_property

Description
Sets a port property.

Availability
Main Program, Elaboration

Usage
set_port_property <port> <property> [<value>]

Returns
The new value.

Arguments

port The name of the port.

property One of the supported properties. Refer to Port Properties.

value (optional) The value to set.

Example

set_port_property rdata WIDTH 32

Related Links

• add_interface_port on page 795

• get_port_properties on page 803

• set_port_property on page 808

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
808

13.1.1.14 set_interface_upgrade_map

Description
Maps the interface name of an older version of an IP core to the interface name of the
current IP core. The interface type must be the same between the older and newer
versions of the IP cores. This allows system connections and properties to maintain
proper functionality. By default, if the older and newer versions of IP core have the
same name and type, then Platform Designer maintains all properties and connections
automatically.

Availability
Parameter Upgrade

Usage

set_interface_upgrade_map { <old_interface_name> <new_interface_name>
<old_interface_name_2> <new_interface_name_2> … }

Returns
No return value.

Arguments

{ <old_interface_name>
<new_interface_name>}

List of mappings between between names of
older and newer interfaces.

Example

set_interface_upgrade_map { avalon_master_interface
new_avalon_master_interface }

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
809

13.1.2 Parameters

add_parameter on page 811

get_parameters on page 812

get_parameter_properties on page 813

get_parameter_property on page 814

get_parameter_value on page 815

get_string on page 816

load_strings on page 817

set_parameter_property on page 818

set_parameter_value on page 819

decode_address_map on page 820

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
810

13.1.2.1 add_parameter

Description
Adds a parameter to your IP component.

Availability
Main Program

Usage
add_parameter <name> <type> [<default_value> <description>]

Returns

Arguments

name The name of the parameter.

type The data type of the parameter Refer to Parameter Type Properties.

default_value (optional) The initial value of the parameter in a new instance of the IP
component.

description (optional) Explains the use of the parameter.

Example

add_parameter seed INTEGER 17 "The seed to use for data generation."

Notes

Most parameter types have a single GUI element for editing the parameter value.
string_list and integer_list parameters are different, because they are edited
as tables. A multi-column table can be created by grouping multiple into a single
table. To edit multiple list parameters in a single table, the display items for the
parameters must be added to a group with a TABLE hint:
add_parameter coefficients INTEGER_LIST add_parameter positions
INTEGER_LIST add_display_item "" "Table Group" GROUP TABLE
add_display_item "Table Group" coefficients PARAMETER
add_display_item "Table Group" positions PARAMETER

Related Links

• get_parameter_properties on page 813

• get_parameter_property on page 814

• get_parameter_value on page 815

• set_parameter_property on page 818

• set_parameter_value on page 819

• Parameter Type Properties on page 889

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
811

13.1.2.2 get_parameters

Description
Returns the names of all the parameters in the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameters

Returns
A list of parameter names

Arguments
No arguments.

Example

get_parameters

Related Links

• add_parameter on page 811

• get_parameter_property on page 814

• get_parameter_value on page 815

• get_parameters on page 812

• set_parameter_property on page 818

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
812

13.1.2.3 get_parameter_properties

Description
Returns a list of all the parameter properties as a list of strings. The
get_parameter_property and set_parameter_property commands are used to
get and set the values of these properties, respectively.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_properties

Returns
A list of parameter property names. Refer to Parameter Properties.

Arguments
No arguments.

Example

set property_summary [get_parameter_properties]

Related Links

• add_parameter on page 811

• get_parameter_property on page 814

• get_parameter_value on page 815

• get_parameters on page 812

• set_parameter_property on page 818

• Parameter Properties on page 887

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
813

13.1.2.4 get_parameter_property

Description
Returns the value of a property of a parameter.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_property <parameter> <property>

Returns
The value of the property.

Arguments

parameter The name of the parameter whose property value is being retrieved.

property The name of the property. Refer to Parameter Properties.

Example

set enabled [get_parameter_property parameter1 ENABLED]

Related Links

• add_parameter on page 811

• get_parameter_properties on page 813

• get_parameter_value on page 815

• get_parameters on page 812

• set_parameter_property on page 818

• set_parameter_value on page 819

• Parameter Properties on page 887

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
814

13.1.2.5 get_parameter_value

Description
Returns the current value of a parameter defined previously with the add_parameter
command.

Availability
Discovery, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage
get_parameter_value <parameter>

Returns
The value of the parameter.

Arguments

parameter The name of the parameter whose value is being retrieved.

Example

set width [get_parameter_value fifo_width]

Notes

If AFFECTS_ELABORATION is false for a given parameter, get_parameter_value
is not available for that parameter from the elaboration callback. If
AFFECTS_GENERATION is false then it is not available from the generation callback.

Related Links

• add_parameter on page 811

• get_parameter_property on page 814

• get_parameters on page 812

• set_parameter_property on page 818

• set_parameter_value on page 819

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
815

13.1.2.6 get_string

Description
Returns the value of an externalized string previously loaded by the load_strings
command.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_string <identifier>

Returns
The externalized string.

Arguments

identifier The string identifer.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Use uppercase words separated with underscores to name string identifiers. If you are
externalizing module properties, use the module property name for the string
identifier:

set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]

If you are externalizing a parameter property, qualify the parameter property with the
parameter name, with uppercase format, if needed:

set_parameter_property my_param DISPLAY_NAME [get_string
MY_PARAM_DISPLAY_NAME]

If you use a string to describe a string format, end the identifier with _FORMAT.

set formatted_string [format [get_string TWO_ARGUMENT_MESSAGE_FORMAT]
"arg1" "arg2"]

Related Links

load_strings on page 817

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
816

13.1.2.7 load_strings

Description
Loads strings from an external .properties file.

Availability
Discovery, Main Program

Usage
load_strings <path>

Returns
No return value.

Arguments

path The path to the properties file.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Refer to the Java Properties File for properties file format. A .properties file is a
text file with KEY=value pairs. For externalized strings, the KEY is a string identifier
and the value is the externalized string.
For example:

TROGDOR = A dragon with a big beefy arm

Related Links

• get_string on page 816

• Java Properties File

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
817

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

13.1.2.8 set_parameter_property

Description
Sets a single parameter property.

Availability
Main Program, Edit, Elaboration, Validation, Composition

Usage
set_parameter_property <parameter> <property> <value>

Returns

Arguments

parameter The name of the parameter that is being set.

property The name of the property. Refer to Parameter Properties.

value The new value for the property.

Example

set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Related Links

• add_parameter on page 811

• get_parameter_properties on page 813

• set_parameter_property on page 818

• Parameter Properties on page 887

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
818

13.1.2.9 set_parameter_value

Description
Sets a parameter value. The value of a derived parameter can be updated by the IP
component in the elaboration callback or the edit callback. Any changes to the value of
a derived parameter in the edit callback is not preserved.

Availability
Edit, Elaboration, Validation, Composition, Parameter Upgrade

Usage
set_parameter_value <parameter> <value>

Returns
No return value.

Arguments

parameter The name of the parameter that is being set.

value Specifies the new parameter value.

Example

set_parameter_value half_clock_rate [expr { [get_parameter_value
clock_rate] / 2 }]

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
819

13.1.2.10 decode_address_map

Description
Converts an XML–formatted address map into a list of Tcl lists. Each inner list is in the
correct format for conversion to an array. The XML code that describes each slave
includes: its name, start address, and end address.

Availability
Elaboration, Generation, Composition

Usage
decode_address_map <address_map_XML_string>

Returns
No return value.

Arguments

address_mapXML_string An XML string that describes the address map of a master.

Example

In this example, the code describes the address map for the master that accesses the
ext_ssram, sys_clk_timer and sysid slaves. The format of the string may differ
from the example below; it may have different white space between the elements and
include additional attributes or elements. Use the decode_address_map command to
decode the code that represents a master’s address map to ensure that your code
works with future versions of the address map.

<address-map>
 <slave name='ext_ssram' start='0x01000000' end='0x01200000' />
 <slave name='sys_clk_timer' start='0x02120800' end='0x02120820' />
 <slave name='sysid' start='0x021208B8' end='0x021208C0' />
</address-map>

Note: Intel recommends that you use the code provided below to enumerate over the IP
components within an address map, rather than writing your own parser.

set address_map_xml [get_parameter_value my_map_param]
set address_map_dec [decode_address_map $address_map_xml]
foreach i $address_map_dec {
 array set info $i
 send_message info "Connected to slave $info(name)"
}

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
820

13.1.3 Display Items

add_display_item on page 822

get_display_items on page 824

get_display_item_properties on page 825

get_display_item_property on page 826

set_display_item_property on page 827

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
821

13.1.3.1 add_display_item

Description
Specifies the following aspects of the IP component display:

• Creates logical groups for an IP component's parameters. For example, to create
separate groups for the IP component's timing, size, and simulation parameters.
An IP component displays the groups and parameters in the order that you specify
the display items in the _hw.tcl file.

• Groups a list of parameters to create multi-column tables.

• Specifies an image to provide representation of a parameter or parameter group.

• Creates a button by adding a display item of type action. The display item
includes the name of the callback to run.

Availability
Main Program

Usage
add_display_item <parent_group> <id> <type> [<args>]

Returns

Arguments

parent_group Specifies the group to which a display item belongs

id The identifier for the display item. If the item being added is a parameter, this is
the parameter name. If the item is a group, this is the group name.

type The type of the display item. Refer to Display Item Kind Properties.

args (optional) Provides extra information required for display items.

Example

add_display_item "Timing" read_latency PARAMETER
add_display_item "Sounds" speaker_image_id ICON speaker.jpg

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
822

Notes

The following examples illustrate further illustrate the use of arguments:

• add_display_item groupName id icon path-to-image-file

• add_display_item groupName parameterName parameter

• add_display_item groupName id text "your-text"

The your-text argument is a block of text that is displayed in the GUI. Some
simple HTML formatting is allowed, such as and <i>, if the text starts with
<html>.

• add_display_item parentGroupName childGroupName group [tab]

The tab is an optional parameter. If present, the group appears in separate tab in
the GUI for the instance.

• add_display_item parentGroupName actionName action
buttonClickCallbackProc

Related Links

• get_display_item_properties on page 825

• get_display_item_property on page 826

• get_display_items on page 824

• set_display_item_property on page 827

• Display Item Kind Properties on page 895

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
823

13.1.3.2 get_display_items

Description
Returns a list of all items to be displayed as part of the parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_display_items

Returns
List of display item IDs.

Arguments
No arguments.

Example

get_display_items

Related Links

• add_display_item on page 822

• get_display_item_properties on page 825

• get_display_item_property on page 826

• set_display_item_property on page 827

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
824

13.1.3.3 get_display_item_properties

Description
Returns a list of names of the properties of display items that are part of the
parameterization GUI.

Availability
Main Program

Usage
get_display_item_properties

Returns
A list of display item property names. Refer to Display Item Properties.

Arguments
No arguments.

Example

get_display_item_properties

Related Links

• add_display_item on page 822

• get_display_item_property on page 826

• set_display_item_property on page 827

• Display Item Properties on page 894

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
825

13.1.3.4 get_display_item_property

Description
Returns the value of a specific property of a display item that is part of the
parameterization GUI.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_display_item_property <display_item> <property>

Returns
The value of a display item property.

Arguments

display_item The id of the display item.

property The name of the property. Refer to Display Item Properties.

Example

set my_label [get_display_item_property my_action DISPLAY_NAME]

Related Links

• add_display_item on page 822

• get_display_item_properties on page 825

• get_display_items on page 824

• set_display_item_property on page 827

• Display Item Properties on page 894

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
826

13.1.3.5 set_display_item_property

Description
Sets the value of specific property of a display item that is part of the
parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition

Usage
set_display_item_property <display_item> <property> <value>

Returns
No return value.

Arguments

display_item The name of the display item whose property value is being set.

property The property that is being set. Refer to Display Item Properties.

value The value to set.

Example

set_display_item_property my_action DISPLAY_NAME "Click Me"
set_display_item_property my_action DESCRIPTION "clicking this button runs
the click_me_callback proc in the hw.tcl file"

Related Links

• add_display_item on page 822

• get_display_item_properties on page 825

• get_display_item_property on page 826

• Display Item Properties on page 894

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
827

13.1.4 Module Definition

add_documentation_link on page 829

get_module_assignment on page 830

get_module_assignments on page 831

get_module_ports on page 832

get_module_properties on page 833

get_module_property on page 834

send_message on page 835

set_module_assignment on page 836

set_module_property on page 837

add_hdl_instance on page 838

package on page 839

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
828

13.1.4.1 add_documentation_link

Description
Allows you to link to documentation for your IP component.

Availability
Discovery, Main Program

Usage
add_documentation_link <title> <path>

Returns
No return value.

Arguments

title The title of the document for use on menus and buttons.

path A path to the IP component documentation, using a syntax that provides the
entire URL, not a relative path. For example: http://www.mydomain.com/
my_memory_controller.html or file:///datasheet.txt

Example

add_documentation_link "Avalon Verification IP Suite User Guide" http://
www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
829

13.1.4.2 get_module_assignment

Description
This command returns the value of an assignment. You can use the
get_module_assignment and set_module_assignment and the
get_interface_assignment and set_interface_assignment commands to
provide information about the IP component to embedded software tools and
applications.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignment <assignment>

Returns
The value of the assignment

Arguments

assignment The name of the assignment whose value is being retrieved

Example

get_module_assignment embeddedsw.CMacro.colorSpace

Related Links

• get_module_assignments on page 831

• set_module_assignment on page 836

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
830

13.1.4.3 get_module_assignments

Description
Returns the names of the module assignments.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignments

Returns
A list of assignment names.

Arguments
No arguments.

Example

get_module_assignments

Related Links

• get_module_assignment on page 830

• set_module_assignment on page 836

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
831

13.1.4.4 get_module_ports

Description
Returns a list of the names of all the ports which are currently defined.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_ports

Returns
A list of port names.

Arguments
No arguments.

Example

get_module_ports

Related Links

• add_interface on page 793

• add_interface_port on page 795

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
832

13.1.4.5 get_module_properties

Description
Returns the names of all the module properties as a list of strings. You can use the
get_module_property and set_module_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_properties

Returns
List of strings. Refer to Module Properties.

Arguments
No arguments.

Example

get_module_properties

Related Links

• get_module_property on page 834

• set_module_property on page 837

• Module Properties on page 897

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
833

13.1.4.6 get_module_property

Description
Returns the value of a single module property.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_property <property>

Returns
Various.

Arguments

property The name of the property, Refer to Module Properties.

Example

set my_name [get_module_property NAME]

Related Links

• get_module_properties on page 833

• set_module_property on page 837

• Module Properties on page 897

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
834

13.1.4.7 send_message

Description
Sends a message to the user of the IP component. The message text is normally
interpreted as HTML. You can use the element to provide emphasis. If you do not
want the message text to be interpreted as HTML, then pass a list as the message
level, for example, { Info Text }.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
send_message <level> <message>

Returns
No return value .

Arguments

level The following message levels are supported:

• ERROR--Provides an error message. The Platform Designer system cannot
be generated with existing error messages.

• WARNING--Provides a warning message.

• INFO--Provides an informational message.

• PROGRESS--Reports progress during generation.

• DEBUG--Provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
835

13.1.4.8 set_module_assignment

Description
Sets the value of the specified assignment.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_module_assignment <assignment> [<value>]

Returns
No return value.

Arguments

assignment The assignment whose value is being set

value (optional) The value of the assignment

Example

set_module_assignment embeddedsw.CMacro.colorSpace CMYK

Related Links

• get_module_assignment on page 830

• get_module_assignments on page 831

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
836

13.1.4.9 set_module_property

Description
Allows you to set the values for module properties.

Availability
Discovery, Main Program

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Module Properties.

value The new value of the property.

Example

set_module_property VERSION 10.0

Related Links

• get_module_properties on page 833

• get_module_property on page 834

• Module Properties on page 897

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
837

13.1.4.10 add_hdl_instance

Description
Adds an instance of a predefined module, referred to as a child or child instance. The
HDL entity generated from this instance can be instantiated and connected within this
IP component's HDL.

Availability
Main Program, Elaboration, Composition

Usage
add_hdl_instance <entity_name> <ip_core_type> [<version>]

Returns
The entity name of the added instance.

Arguments

entity_name Specifies a unique local name that you can use to manipulate the
instance. This name is used in the generated HDL to identify the
instance.

ip_core_type The type refers to a kind of instance available in the IP Catalog, for
example altera_avalon_uart.

version (optional) The required version of the specified instance type. If no version is
specified, the latest version is used.

Example

add_hdl_instance my_uart altera_avalon_uart

Related Links

• get_instance_parameter_value on page 856

• get_instance_parameters on page 854

• get_instances on page 846

• set_instance_parameter_value on page 859

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
838

13.1.4.11 package

Description
Allows you to specify a particular version of the Platform Designer software to avoid
software compatibility issues, and to determine which version of the _hw.tcl API to
use for the IP component. You must use the package command at the beginning of
your _hw.tcl file.

Availability
Main Program

Usage
package require -exact qsys <version>

Returns
No return value

Arguments

version The version of Platform Designer that you require, such as 14.1.

Example

package require -exact qsys 14.1

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
839

13.1.5 Composition

add_instance on page 841

add_connection on page 842

get_connections on page 843

get_connection_parameters on page 844

get_connection_parameter_value on page 845

get_instances on page 846

get_instance_interfaces on page 847

get_instance_interface_ports on page 848

get_instance_interface_properties on page 849

get_instance_property on page 850

set_instance_property on page 851

get_instance_properties on page 852

get_instance_interface_property on page 853

get_instance_parameters on page 854

get_instance_parameter_property on page 855

get_instance_parameter_value on page 856

get_instance_port_property on page 857

set_connection_parameter_value on page 858

set_instance_parameter_value on page 859

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
840

13.1.5.1 add_instance

Description
Adds an instance of an IP component, referred to as a child or child instance to the
subsystem. You can use this command to create IP components that are composed of
other IP component instances. The HDL for this subsystem generates; There is no
need to write custom HDL for the IP component.

Availability
Main Program, Composition

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the instance.
This name is used in the generated HDL to identify the instance.

type The type refers to a type available in the IP Catalog, for example
altera_avalon_uart.

version (optional) The required version of the specified type. If no version is
specified, the highest available version is used.

Example

add_instance my_uart altera_avalon_uart
add_instance my_uart altera_avalon_uart 14.1

Related Links

• add_connection on page 842

• get_instance_interface_property on page 853

• get_instance_parameter_value on page 856

• get_instance_parameters on page 854

• get_instance_property on page 850

• get_instances on page 846

• set_instance_parameter_value on page 859

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
841

13.1.5.2 add_connection

Description
Connects the named interfaces on child instances together using an appropriate
connection type. Both interface names consist of a child instance name, followed by
the name of an interface provided by that module. For example, mux0.out is the
interface named out on the instance named mux0. Be careful to connect the start to
the end, and not the other way around.

Availability
Main Program, Composition

Usage
add_connection <start> [<end> <kind> <name>]

Returns
The name of the newly added connection in start.point/end.point format.

Arguments

start The start interface to be connected, in
<instance_name>.<interface_name> format.

end (optional) The end interface to be connected,
<instance_name>.<interface_name>.

kind (optional) The type of connection, such as avalon or clock.

name
(optional)

A custom name for the connection. If unspecified, the name will be
<start_instance>.<interface>.<end_instance><interface>

Example

add_connection dma.read_master sdram.s1 avalon

Related Links

• add_instance on page 841

• get_instance_interfaces on page 847

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
842

13.1.5.3 get_connections

Description
Returns a list of all connections in the composed subsystem.

Availability
Main Program, Composition

Usage
get_connections

Returns
A list of connections.

Arguments
No arguments.

Example

set all_connections [get_connections]

Related Links

add_connection on page 842

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
843

13.1.5.4 get_connection_parameters

Description
Returns a list of parameters found on a connection.

Availability
Main Program, Composition

Usage
get_connection_parameters <connection>

Returns
A list of parameter names

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Links

• add_connection on page 842

• get_connection_parameter_value on page 845

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
844

13.1.5.5 get_connection_parameter_value

Description
Returns the value of a parameter on the connection. Parameters represent aspects of
the connection that can be modified once the connection is created, such as the base
address for an Avalon Memory Mapped connection.

Availability
Composition

Usage
get_connection_parameter_value <connection> <parameter>

Returns
The value of the parameter.

Arguments

connection The connection to query.

parameter The name of the parameter.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Links

• add_connection on page 842

• get_connection_parameters on page 844

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
845

13.1.5.6 get_instances

Description
Returns a list of the instance names for all child instances in the system.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instances

Returns
A list of child instance names.

Arguments
No arguments.

Example

get_instances

Notes

This command can be used with instances created by either add_instance or
add_hdl_instance.

Related Links

• add_hdl_instance on page 838

• add_instance on page 841

• get_instance_parameter_value on page 856

• get_instance_parameters on page 854

• set_instance_parameter_value on page 859

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
846

13.1.5.7 get_instance_interfaces

Description
Returns a list of interfaces found in a child instance. The list of interfaces can change if
the parameterization of the instance changes.

Availability
Validation, Composition

Usage
get_instance_interfaces <instance>

Returns
A list of interface names.

Arguments

instance The name of the child instance.

Example

get_instance_interfaces pixel_converter

Related Links

• add_instance on page 841

• get_instance_interface_ports on page 848

• get_instance_interfaces on page 847

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
847

13.1.5.8 get_instance_interface_ports

Description
Returns a list of ports found in an interface of a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_interface_ports <instance> <interface>

Returns
A list of port names found in the interface.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

Example

set port_names [get_instance_interface_ports cpu data_master]

Related Links

• add_instance on page 841

• get_instance_interfaces on page 847

• get_instance_port_property on page 857

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
848

13.1.5.9 get_instance_interface_properties

Description
Returns the names of all of the properties of the specified interface

Availability
Validation, Composition

Usage
get_instance_interface_properties <instance> <interface>

Returns
List of property names.

Arguments

instance The name of the child instance.

interface The name of an interface on the instance.

Example

set properties [get_instance_interface_properties cpu data_master]

Related Links

• add_instance on page 841

• get_instance_interface_property on page 853

• get_instance_interfaces on page 847

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
849

13.1.5.10 get_instance_property

Description
Returns the value of a single instance property.

Availability
Main Program, Elaboration, Validation, Composition, Fileset Generation

Usage
get_instance_property <instance> <property>

Returns
Various.

Arguments

instance The name of the instance.

property The name of the property. Refer to Instance Properties.

Example

set my_name [get_instance_property myinstance NAME]

Related Links

• add_instance on page 841

• get_instance_properties on page 852

• set_instance_property on page 851

• Instance Properties on page 886

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
850

13.1.5.11 set_instance_property

Description
Allows a user to set the properties of a child instance.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_instance_property <instance> <property> <value>

Returns

Arguments

instance The name of the instance.

property The name of the property to set. Refer to Instance Properties.

value The new property value.

Example

set_instance_property myinstance SUPRESS_ALL_WARNINGS true

Related Links

• add_instance on page 841

• get_instance_properties on page 852

• get_instance_property on page 850

• Instance Properties on page 886

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
851

13.1.5.12 get_instance_properties

Description
Returns the names of all the instance properties as a list of strings. You can use the
get_instance_property and set_instance_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_instance_properties

Returns
List of strings. Refer to Instance Properties.

Arguments
No arguments.

Example

get_instance_properties

Related Links

• add_instance on page 841

• get_instance_property on page 850

• set_instance_property on page 851

• Instance Properties on page 886

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
852

13.1.5.13 get_instance_interface_property

Description
Returns the value of a property for an interface in a child instance.

Availability
Validation, Composition

Usage
get_instance_interface_property <instance> <interface> <property>

Returns
The value of the property.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

property The name of the property of the interface.

Example

set value [get_instance_interface_property cpu data_master setupTime]

Related Links

• add_instance on page 841

• get_instance_interfaces on page 847

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
853

13.1.5.14 get_instance_parameters

Description
Returns a list of names of the parameters on a child instance that can be set using
set_instance_parameter_value. It omits parameters that are derived and those
that have the SYSTEM_INFO parameter property set.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instance_parameters <instance>

Returns
A list of parameters in the instance.

Arguments

instance The name of the child instance.

Example

set parameters [get_instance_parameters instance]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Links

• add_hdl_instance on page 838

• add_instance on page 841

• get_instance_parameter_value on page 856

• get_instances on page 846

• set_instance_parameter_value on page 859

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
854

13.1.5.15 get_instance_parameter_property

Description
Returns the value of a property on a parameter in a child instance. Parameter
properties are metadata that describe how the Platform Designer tools use the
parameter.

Availability
Validation, Composition

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns
The value of the parameter property.

Arguments

instance The name of the child instance.

parameter The name of the parameter in the instance.

property The name of the property of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property instance parameter property

Related Links

• add_instance on page 841

• Parameter Properties on page 887

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
855

13.1.5.16 get_instance_parameter_value

Description
Returns the value of a parameter in a child instance. You cannot use this command to
get the value of parameters whose values are derived or those that are defined using
the SYSTEM_INFO parameter property.

Availability
Elaboration, Validation, Composition

Usage
get_instance_parameter_value <instance> <parameter>

Returns
The value of the parameter.

Arguments

instance The name of the child instance.

parameter Specifies the parameter whose value is being retrieved.

Example

set dpi [get_instance_parameter_value pixel_converter input_DPI]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Links

• add_hdl_instance on page 838

• add_instance on page 841

• get_instance_parameters on page 854

• get_instances on page 846

• set_instance_parameter_value on page 859

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
856

13.1.5.17 get_instance_port_property

Description
Returns the value of a property of a port contained by an interface in a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_port_property <instance> <port> <property>

Returns
The value of the property for the port.

Arguments

instance The name of the child instance.

port The name of a port in one of the interfaces on the child instance.

property The property whose value is being retrieved. Only the following port
properties can be queried on ports of child instances: ROLE, DIRECTION,
WIDTH, WIDTH_EXPR and VHDL_TYPE. Refer to Port Properties.

Example

get_instance_port_property instance port property

Related Links

• add_instance on page 841

• get_instance_interface_ports on page 848

• Port Properties on page 891

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
857

13.1.5.18 set_connection_parameter_value

Description
Sets the value of a parameter of the connection. The start and end are each interface
names of the format <instance>.<interface>. Connection parameters depend on
the type of connection, for Avalon-MM they include base addresses and arbitration
priorities.

Availability
Main Program, Composition

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection Specifies the name of the connection as returned by the
add_conectioncommand. It is of the form start.point/end.point.

parameter The name of the parameter.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress
"0x000a0000"

Related Links

• add_connection on page 842

• get_connection_parameter_value on page 845

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
858

13.1.5.19 set_instance_parameter_value

Description
Sets the value of a parameter for a child instance. Derived parameters and
SYSTEM_INFO parameters for the child instance can not be set with this command.

Availability
Main Program, Elaboration, Composition

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
Vo return value.

Arguments

instance Specifies the name of the child instance.

parameter Specifies the parameter that is being set.

value Specifies the new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Links

• add_hdl_instance on page 838

• add_instance on page 841

• get_instance_parameter_value on page 856

• get_instances on page 846

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
859

13.1.6 Fileset Generation

add_fileset on page 861

add_fileset_file on page 862

set_fileset_property on page 863

get_fileset_file_attribute on page 864

set_fileset_file_attribute on page 865

get_fileset_properties on page 866

get_fileset_property on page 867

get_fileset_sim_properties on page 868

set_fileset_sim_properties on page 869

create_temp_file on page 870

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
860

13.1.6.1 add_fileset

Description
Adds a generation fileset for a particular target as specified by the kind. Platform
Designer calls the target (SIM_VHDL, SIM_VERILOG, QUARTUS_SYNTH, or
EXAMPLE_DESIGN) when the specified generation target is requested. You can define
multiple filesets for each kind of fileset. Platform Designer passes a single argument to
the specified callback procedure. The value of the argument is a generated name,
which you must use in the top-level module or entity declaration of your IP
component. To override this generated name, you can set the fileset property
TOP_LEVEL.

Availability
Main Program

Usage
add_fileset <name> <kind> [<callback_proc> <display_name>]

Returns
No return value.

Arguments

name The name of the fileset.

kind The kind of fileset. Refer to Fileset Properties.

callback_proc
(optional)

A string identifying the name of the callback procedure. If you
add files in the global section, you can then specify a blank
callback procedure.

display_name (optional) A display string to identify the fileset.

Example

add_fileset my_synthesis_fileset QUARTUS_SYNTH mySynthCallbackProc "My
Synthesis"
proc mySynthCallbackProc { topLevelName } { ... }

Notes

If using the TOP_LEVEL fileset property, all parameterizations of the component must
use identical HDL.

Related Links

• add_fileset_file on page 862

• get_fileset_property on page 867

• Fileset Properties on page 899

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
861

13.1.6.2 add_fileset_file

Description
Adds a file to the generation directory. You can specify source file locations with either
an absolute path, or a path relative to the IP component's _hw.tcl file. When you
use the add_fileset_file command in a fileset callback, the Intel Quartus Prime
software compiles the files in the order that they are added.

Availability
Main Program, Fileset Generation

Usage
add_fileset_file <output_file> <file_type> <file_source> <path_or_contents>
[<attributes>]

Returns
No return value.

Arguments

output_file Specifies the location to store the file after Platform Designer generation

file_type The kind of file. Refer to File Kind Properties.

file_source Specifies whether the file is being added by path, or by file contents.
Refer to File Source Properties.

path_or_contents When the file_source is PATH, specifies the file to be copied to
output_file. When the file_source is TEXT, specifies the text
contents to be stored in the file.

attributes
(optional)

An optional list of file attributes. Typically used to specify that a
file is intended for use only in a particular simulator. Refer to File
Attribute Properties.

Example

add_fileset_file "./implementation/rx_pma.sv" SYSTEM_VERILOG PATH
synth_rx_pma.sv
add_fileset_file gui.sv SYSTEM_VERILOG TEXT "Customize your IP core"

Related Links

• add_fileset on page 861

• get_fileset_file_attribute on page 864

• File Kind Properties on page 903

• File Source Properties on page 904

• File Attribute Properties on page 902

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
862

13.1.6.3 set_fileset_property

Description
Allows you to set the properties of a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
set_fileset_property <fileset> <property> <value>

Returns
No return value.

Arguments

fileset The name of the fileset.

property The name of the property to set. Refer to Fileset Properties.

value The new property value.

Example

set_fileset_property mySynthFileset TOP_LEVEL simple_uart

Notes

When a fileset callback is called, the callback procedure will be passed a single
argument. The value of this argument is a generated name which must be used in the
top-level module or entity declaration of your IP component. If set, the TOP_LEVEL
specifies a fixed name for the top-level name of your IP component.

The TOP_LEVEL property must be set in the global section. It cannot be set in a
fileset callback.

If using the TOP_LEVEL fileset property, all parameterizations of the IP component
must use identical HDL.

Related Links

• add_fileset on page 861

• Fileset Properties on page 899

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
863

13.1.6.4 get_fileset_file_attribute

Description
Returns the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
get_fileset_file_attribute <output_file> <attribute>

Returns
Value of the fileset File attribute.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

Example

get_fileset_file_attribute my_file.sv ALDEC_SPECIFIC

Related Links

• add_fileset on page 861

• add_fileset_file on page 862

• get_fileset_file_attribute on page 864

• File Attribute Properties on page 902

• add_fileset on page 861

• add_fileset_file on page 862

• get_fileset_file_attribute on page 864

• File Attribute Properties on page 902

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
864

13.1.6.5 set_fileset_file_attribute

Description
Sets the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
set_fileset_file_attribute <output_file> <attribute> <value>

Returns
The attribute value if it was set.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

value Value to set the attribute to.

Example

set_fileset_file_attribute my_file_pkg.sv COMMON_SYSTEMVERILOG_PACKAGE
my_file_package

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
865

13.1.6.6 get_fileset_properties

Description
Returns a list of properties that can be set on a fileset.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_fileset_properties

Returns
A list of property names. Refer to Fileset Properties.

Arguments
No arguments.

Example

get_fileset_properties

Related Links

• add_fileset on page 861

• get_fileset_properties on page 866

• set_fileset_property on page 863

• Fileset Properties on page 899

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
866

13.1.6.7 get_fileset_property

Description
Returns the value of a fileset property for a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
get_fileset_property <fileset> <property>

Returns
The value of the property.

Arguments

fileset The name of the fileset.

property The name of the property to query. Refer to Fileset Properties.

Example

get_fileset_property fileset property

Related Links

Fileset Properties on page 899

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
867

13.1.6.8 get_fileset_sim_properties

Description
Returns simulator properties for a fileset.

Availability
Main Program, Fileset Generation

Usage
get_fileset_sim_properties <fileset> <platform> <property>

Returns
The fileset simulator properties.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator Properties.

Example

get_fileset_sim_properties my_fileset LINUX64 OPT_CADENCE_64BIT

Related Links

• add_fileset on page 861

• set_fileset_sim_properties on page 869

• Operating System Properties on page 911

• Simulator Properties on page 905

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
868

13.1.6.9 set_fileset_sim_properties

Description
Sets simulator properties for a given fileset

Availability
Main Program, Fileset Generation

Usage
set_fileset_sim_properties <fileset> <platform> <property> <value>

Returns
The fileset simulator properties if they were set.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator Properties.

value Specifies the value of the property.

Example

set_fileset_sim_properties my_fileset LINUX64 OPT_MENTOR_PLI "{libA} {libB}"

Related Links

• get_fileset_sim_properties on page 868

• Operating System Properties on page 911

• Simulator Properties on page 905

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
869

13.1.6.10 create_temp_file

Description
Creates a temporary file, which you can use inside the fileset callbacks of a _hw.tcl
file. This temporary file is included in the generation output if it is added using the
add_fileset_file command.

Availability
Fileset Generation

Usage
create_temp_file <path>

Returns
The path to the temporary file.

Arguments

path The name of the temporary file.

Example

set filelocation [create_temp_file "./hdl/compute_frequency.v"]
add_fileset_file compute_frequency.v VERILOG PATH ${filelocation}

Related Links

• add_fileset on page 861

• add_fileset_file on page 862

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
870

13.1.7 Miscellaneous

check_device_family_equivalence on page 872

get_device_family_displayname on page 873

get_qip_strings on page 874

set_qip_strings on page 875

set_interconnect_requirement on page 876

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
871

13.1.7.1 check_device_family_equivalence

Description
Returns 1 if the device family is equivalent to one of the families in the device families
lis., Returns 0 if the device family is not equivalent to any families. This command
ignores differences in capitalization and spaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
check_device_family_equivalence <device_family> <device_family_list>

Returns
1 if equivalent, 0 if not equivalent.

Arguments

device_family The device family name that is being checked.

device_family_list The list of device family names to check against.

Example

check_device_family_equivalence "CYLCONE III LS" { "stratixv" "Cyclone IV"
"cycloneiiils" }

Related Links

get_device_family_displayname on page 873

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
872

13.1.7.2 get_device_family_displayname

Description
Returns the display name of a given device family.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
get_device_family_displayname <device_family>

Returns
The preferred display name for the device family.

Arguments

device_family A device family name.

Example

get_device_family_displayname cycloneiiils (returns: "Cyclone IV LS")

Related Links

check_device_family_equivalence on page 872

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
873

13.1.7.3 get_qip_strings

Description
Returns a Tcl list of QIP strings for the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
get_qip_strings

Returns
A Tcl list of qip strings set by this IP component.

Arguments
No arguments.

Example

set strings [get_qip_strings]

Related Links

set_qip_strings on page 875

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
874

13.1.7.4 set_qip_strings

Description
Places strings in the Intel Quartus Prime IP File (.qip) file, which Platform Designer
passes to the command as a Tcl list. You add the .qip file to your Intel Quartus Prime
project on the Files page, in the Settings dialog box. Successive calls to
set_qip_strings are not additive and replace the previously declared value.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
set_qip_strings <qip_strings>

Returns
The Tcl list which was set.

Arguments

qip_strings A space-delimited Tcl list.

Example

set_qip_strings {"QIP Entry 1" "QIP Entry 2"}

Notes
You can use the following macros in your QIP strings entry:

%entityName% The generated name of the entity replaces this macro when the
string is written to the .qip file.

%libraryName% The compilation library this IP component was compiled into is
inserted in place of this macro inside the .qip file.

%instanceName% The name of the instance is inserted in place of this macro inside
the .qip file.

Related Links

get_qip_strings on page 874

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
875

13.1.7.5 set_interconnect_requirement

Description
Sets the value of an interconnect requirement for a system or an interface on a child
instance.

Availability
Composition

Usage
set_interconnect_requirement <element_id> <name> <value>

Returns
No return value

Arguments

element_id {$system} for system requirements, or qualified name of the interface
of an instance, in <instance>.<interface> format. Note that the
system identifier has to be escaped in TCL.

name The name of the requirement.

value The new requirement value.

Example

set_interconnect_requirement {$system} qsys_mm.maxAdditionalLatency 2

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
876

13.1.8 SystemVerilog Interface Commands

add_sv_interface on page 878

get_sv_interfaces on page 879

get_sv_interface_property on page 880

get_sv_interface_properties on page 881

set_sv_interface_property on page 882

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
877

13.1.8.1 add_sv_interface

Description
Adds a SystemVerilog interface to the IP component.

Availability
Elaboration, Global

Usage
add_sv_interface <sv_interface_name> <sv_interface_type>

Returns
No return value.

Arguments

sv_interface_name The name of the SystemVerilog interface in the IP component.

sv_interface_type The type of the SystemVerilog interface used by the IP component.

Example

add_sv_interface my_sv_interface my_sv_interface_type

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
878

13.1.8.2 get_sv_interfaces

Description
Returns the list of SystemVerilog interfaces in the IP component.

Availability
Elaboration, Global

Usage
get_sv_interfaces

Returns

String[] Returns the list of SystemVerilog interfaces defined in the IP component.

Arguments
No arguments.

Example

get_sv_interfaces

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
879

13.1.8.3 get_sv_interface_property

Description
Returns the value of a single SystemVerilog interface property from the specified
interface.

Availability
Elaboration, Global

Usage
get_sv_interface_property <sv_interface_name> <sv_interface_property>

Returns

various The property value.

Arguments

sv_interface_name The name of a SystemVerilog interface of the system.

sv_interface_property The name of the property. Refer to System Verilog Interface
Properties.

Example

get_sv_interface_property my_sv_interface USE_ALL_PORTS

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
880

13.1.8.4 get_sv_interface_properties

Description
Returns the names of all the available SystemVerilog interface properties common to
all interface types.

Availability
Elaboration, Global

Usage
get_sv_interface_properties

Returns

String[] The list of SystemVerilog interface properties.

Arguments
No arguments.

Example

get_sv_interface_properties

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
881

13.1.8.5 set_sv_interface_property

Description
Sets the value of a property on a SystemVerilog interface.

Availability
Elaboration, Global

Usage
set_sv_interface_property <sv_interface_name> <sv_interface_property>
<value>

Returns
No return value.

Arguments

interface The name of a SystemVerilog interface.

sv_interface_property The name of the property. Refer to SystemVerilog Interface
Properties.

value The property value.

Example

set_sv_interface_property my_sv_interface USE_ALL_PORTS True

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
882

13.2 Platform Designer _hw.tcl Property Reference

Script Language Properties on page 884

Interface Properties on page 885

SystemVerilog Interface Properties on page 885

Instance Properties on page 886

Parameter Properties on page 887

Parameter Type Properties on page 889

Parameter Status Properties on page 890

Port Properties on page 891

Direction Properties on page 893

Display Item Properties on page 894

Display Item Kind Properties on page 895

Display Hint Properties on page 896

Module Properties on page 897

Fileset Properties on page 899

Fileset Kind Properties on page 900

Callback Properties on page 901

File Attribute Properties on page 902

File Kind Properties on page 903

File Source Properties on page 904

Simulator Properties on page 905

Port VHDL Type Properties on page 906

System Info Type Properties on page 907

Design Environment Type Properties on page 909

Units Properties on page 910

Operating System Properties on page 911

Quartus.ini Type Properties on page 912

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
883

13.2.1 Script Language Properties

Name Description

TCL Implements the script in Tcl.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
884

13.2.2 Interface Properties

Name Description

CMSIS_SVD_FILE Specifies the connection point's associated CMSIS file.

CMSIS_SVD_VARIABLES Defines the variables inside a .svd file.

ENABLED Specifies whether or not interface is enabled.

EXPORT_OF For composed _hwl.tcl files, the EXPORT_OF property indicates which interface
of a child instance is to be exported through this interface. Before using this
command, you must have created the border interface using add_interface.
The interface to be exported is of the form <instanceName.interfaceName>.
Example: set_interface_property CSC_input EXPORT_OF
my_colorSpaceConverter.input_port

PORT_NAME_MAP A map of external port names to internal port names, formatted as a Tcl list.
Example: set_interface_property <interface name> PORT_NAME_MAP
"<new port name> <old port name> <new port name 2> <old port
name 2>"

SVD_ADDRESS_GROUP Generates a CMSIS SVD file. Masters in the same SVD address group write
register data of their connected slaves into the same SVD file

SVD_ADDRESS_OFFSET Generates a CMSIS SVD file. Slaves connected to this master have their base
address offset by this amount in the SVD file.

SV_INTERFACE When SV_INTERFACE is set, all the ports in the given interface are part of the
SystemVerilog interface.
Example:

set_interface_property my_qsys_interface SV_INTERFACE
my_sv_interface

13.2.3 SystemVerilog Interface Properties

Name Description

SV_INTERFACE_TYPE Set the interface type of the SystemVerilog interface.

USE_ALL_PORTS When USE_ALL_PORTS is set to true, all the ports defined in the Module, are
declared in this SystemVerilog interface.
USE_ALL_PORTS must be set to true only if the module has one SystemVerilog
interface and the SystemVerilog interface signal names match with the port names
declared for Platform Designer interface.
When USE_ALL_PORTS is true, SV_INTERFACE_PORT or SV_INTERFACE_SIGNAL
port properties should not be set.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
885

13.2.4 Instance Properties

Name Description

HDLINSTANCE_GET_GENERATED_NAME Platform Designer uses this property to get the auto-generated
fixed name when the instance property
HDLINSTANCE_USE_GENERATED_NAME is set to true, and only
applies to fileSet callbacks.

HDLINSTANCE_USE_GENERATED_NAME If true, instances added with the add_hdl_instance command
are instructed to use unique auto-generated fixed names based on
the parameterization.

SUPPRESS_ALL_INFO_MESSAGES If true, allows you to suppress all Info messages that originate
from a child instance.

SUPPRESS_ALL_WARNINGS If true, allows you to suppress alL warnings that originate from a
child instance

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
886

13.2.5 Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a
parameter changes, if that parameter has set
AFFECTS_ELABORATION=false, the elaboration phase (calling
the callback or hardware analysis) is not repeated, improving
performance. Because the default value of
AFFECTS_ELABORATION is true, the provided HDL file is
normally re-analyzed to determine the new port widths and
configuration every time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you
provide a top-level HDL module; it is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property marks whether a
parameter's value is used to set derived parameters, and whether
the value affects validation messages. When set to false, this
may improve response time in the parameter editor UI when the
value is changed.

String[] ALLOWED_RANGES Indicates the range or ranges that the parameter value can have.
For integers, The ALLOWED_RANGES property is a list of ranges
that the parameter can take on, where each range is a single
value, or a range of values defined by a start and end value
separated by a colon, such as 11:15. This property can also
specify legal values and display strings for integers, such as
{0:None 1:Monophonic 2:Stereo 4:Quadrophonic}
meaning 0, 1, 2, and 4 are the legal values. You can also assign
display strings to be displayed in the parameter editor for string
variables. For example, ALLOWED_RANGES {"dev1:Cyclone IV
GX""dev2:Stratix V GT"}.

String DEFAULT_VALUE The default value.

Boolean DERIVED When true, indicates that the parameter value can only be set by
the IP component, and cannot be set by the user. Derived
parameters are not saved as part of an instance's parameter
values. The default value is false.

String DESCRIPTION A short user-visible description of the parameter, suitable for a
tooltip description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property. The following
values are possible:
• boolean--for integer parameters whose value can be 0 or

1. The parameter displays as an option that you can turn on or
off.

• radio--displays a parameter with a list of values as radio
buttons instead of a drop-down list.

• hexadecimal--for integer parameters, display and
interpret the value as a hexadecimal number, for example:
0x00000010 instead of 16.

• fixed_size--for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
add and remove buttons from tables.

String DISPLAY_NAME This is the GUI label that appears to the left of this parameter.

String DISPLAY_UNITS This is the GUI label that appears to the right of the parameter.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
887

Type Name Description

Boolean ENABLED When false, the parameter is disabled, meaning that it is
displayed, but greyed out, indicating that it is not editable on the
parameter editor.

String GROUP Controls the layout of parameters in GUI

Boolean HDL_PARAMETER When true, the parameter must be passed to the HDL IP
component description. The default value is false.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to
DESCRIPTION, but allows for a more detailed explanation.

String NEW_INSTANCE_VALUE This property allows you to change the default value of a
parameter without affecting older IP components that have did
not explicitly set a parameter value, and use the DEFAULT_VALUE
property. The practical result is that older instances continue to
use DEFAULT_VALUE for the parameter and new instances use
the value that NEW_INSTANCE_VALUE assigns.

String SV_INTERFACE_PARAMETER This parameter is used in the SystemVerilog interface
instantiation.
Example:

set_parameter_property my_parameter
SV_INTERFACE_PARAMETER my_sv_interface

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to
a parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information requested, <info-type>.

String SYSTEM_INFO_ARG Defines an argument to be passed to a particular SYSTEM_INFO
function, such as the name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies one of the types of system information that can be
queried. Refer to System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the
parameterization GUI.

String WIDTH For a STD_LOGIC_VECTOR parameter, this indicates the width of
the logic vector.

Related Links

• System Info Type Properties on page 907

• Parameter Type Properties on page 889

• Units Properties on page 910

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
888

13.2.6 Parameter Type Properties

Name Description

BOOLEAN A boolean parameter whose value is true or false.

FLOAT A signed 32-bit floating point parameter. Not supported for HDL parameters.

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. Not supported for HDL
parameters.

LONG A signed 64-bit integer parameter. Not supported for HDL parameters.

NATURAL A 32-bit number that contain values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter whose value can be 1 or 0;

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. Not supported for HDL parameters.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
889

13.2.7 Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates the parameter is a regular parameter.

Boolean DEPRECATED Indicates the parameter exists only for backwards compatibility, and may not
have any effect.

Boolean EXPERIMENTAL Indicates the parameter is experimental, and not exposed in the design flow.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
890

13.2.8 Port Properties

Type Name Description

(various) DIRECTION The direction of the port from the IP component's perspective.
Refer to Direction Properties.

String DRIVEN_BY Indicates that this output port is always driven to a constant
value or by an input port. If all outputs on an IP component
specify a driven_by property, the HDL for the IP component
will be generated automatically.

String[] FRAGMENT_LIST This property can be used in 2 ways: First you can take a
single RTL signal and split it into multiple Platform Designer
signals add_interface_port <interface> foo <role>
<direction> <width> add_interface_port
<interface> bar <role> <direction> <width>
set_port_property foo fragment_list
"my_rtl_signal(3:0)" set_port_property bar
fragment_list "my_rtl_signal(6:4)" Second you can
take multiple RTL signals and combine them into a single
Platform Designer signal add_interface_port
<interface> baz <role> <direction> <width>
set_port_property baz fragment_list
"rtl_signal_1(3:0) rtl_signal_2(3:0)" Note: The
listed bits in a port fragment must match the declared width
of the Platform Designer signal.

String ROLE Specifies an Avalon signal type such as waitrequest,
readdata, or read. For a complete list of signal types, refer
to the Avalon Interface Specifications.

String SV_INTERFACE_PORT This port from the module is used as I/O in the SystemVerilog
interface instantiation. The top-level wrapper of the module
which contains this port is from the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT
my_sv_interface

String SV_INTERFACE_PORT_NAME This property is used only when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT_NAME port_a

When writing the RTL, the Platform Designer port name
port_x is mapped to RTL name port_a in the SystemVerilog
interface

String SV_INTERFACE_SIGNAL This port from the module is assumed to be inside the
SystemVerilog interface or the modport used by the module.
The top-level wrapper of the module containing this port is
unwrapped from SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL
my_sv_interface

String SV_INTERFACE_SIGNAL_NAME This property is only used when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL_NAME
port_b

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
891

Type Name Description

Boolean TERMINATION When true, instead of connecting the port to the Platform
Designer system, it is left unconnected for output and
bidir or set to a fixed value for input. Has no effect for IP
components that implement a generation callback instead of
using the default wrapper generation.

BigInteger TERMINATION_VALUE The constant value to drive an input port.

(various) VHDL_TYPE Indicates the type of a VHDL port. The default value, auto,
selects std_logic if the width is fixed at 1, and
std_logic_vector otherwise. Refer to Port VHDL Type
Properties.

String WIDTH The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

String WIDTH_EXPR The width expression of a port. The width_value_expr
property can be set directly to a numeric value if desired.
When get_port_property is used width always returns the
current integer width of the port while width_expr always
returns the unevaluated width expression.

Integer WIDTH_VALUE The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

Related Links

• Direction Properties on page 893

• Port VHDL Type Properties on page 906

• Avalon Interface Specifications

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
892

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

13.2.9 Direction Properties

Name Description

Bidir Direction for a bidirectional signal.

Input Direction for an input signal.

Output Direction for an output signal.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
893

13.2.10 Display Item Properties

Type Name Description

String DESCRIPTION A description of the display item, which you can use as a tooltip.

String[] DISPLAY_HINT A hint that affects how the display item displays in the parameter editor.

String DISPLAY_NAME The label for the display item in a the parameter editor.

Boolean ENABLED Indicates whether the display item is enabled or disabled.

String PATH The path to a file. Only applies to display items of type ICON.

String TEXT Text associated with a display item. Only applies to display items of type TEXT.

Boolean VISIBLE Indicates whether this display item is visible or not.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
894

13.2.11 Display Item Kind Properties

Name Description

ACTION An action displays as a button in the GUI. When the button is clicked, it calls the callback
procedure. The button label is the display item id.

GROUP A group that is a child of the parent_group group. If the parent_group is an empty string,
this is a top-level group.

ICON A .gif, .jpg, or .png file.

PARAMETER A parameter in the instance.

TEXT A block of text.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
895

13.2.12 Display Hint Properties

Name Description

BIT_WIDTH Bit width of a number

BOOLEAN Integer value either 0 or 1.

COLLAPSED Indicates whether a group is collapsed when initially displayed.

COLUMNS Number of columns in text field, for example, "columns:N".

EDITABLE Indicates whether a list of strings allows free-form text entry (editable combo box).

FILE Indicates that the string is an optional file path, for example, "file:jpg,png,gif".

FIXED_SIZE Indicates a fixed size for a table or list.

GROW if set, the widget can grow when the IP component is resized.

HEXADECIMAL Indicates that the long integer is hexadecimal.

RADIO Indicates that the range displays as radio buttons.

ROWS Number of rows in text field, or visible rows in a table, for example, "rows:N".

SLIDER Range displays as slider.

TAB if present for a group, the group displays in a tab

TABLE if present for a group, the group must contain all list-type parameters, which display
collectively in a single table.

TEXT String is a text field with a limited character set, for example, "text:A-Za-z0-9_".

WIDTH width of a table column

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
896

13.2.13 Module Properties

Name Description

ANALYZE_HDL When set to false, prevents a call to the Intel Quartus Prime
mapper to verify port widths and directions, speeding up
generation time at the expense of fewer validation checks. If this
property is set to false, invalid port widths and directions are
discovered during the Intel Quartus Prime software compilation.
This does not affect IP components using filesets to manage
synthesis files.

AUTHOR The IP component author.

COMPOSITION_CALLBACK The name of the composition callback. If you define a
composition callback, you cannot not define the generation or
elaboration callbacks.

DATASHEET_URL Deprecated. Use add_documentation_link to provide
documentation links.

DESCRIPTION The description of the IP component, such as "This IP component
puts the shizzle in the frobnitz."

DISPLAY_NAME The name to display when referencing the IP component, such as
"My Platform Designer IP Component".

EDITABLE Indicates whether you can edit the IP component in the
Component Editor.

ELABORATION_CALLBACK The name of the elaboration callback. When set, the IP
component's elaboration callback is called to validate and
elaborate interfaces for instances of the IP component.

GENERATION_CALLBACK The name for a custom generation callback.

GROUP The group in the IP Catalog that includes this IP component.

ICON_PATH A path to an icon to display in the IP component's parameter
editor.

INSTANTIATE_IN_SYSTEM_MODULE If true, this IP component is implemented by HDL provided by the
IP component. If false, the IP component creates exported
interfaces allowing the implementation to be connected in the
parent.

INTERNAL An IP component which is marked as internal does not appear in
the IP Catalog. This feature allows you to hide the sub-IP-
components of a larger composed IP component.

MODULE_DIRECTORY The directory in which the hw.tcl file exists.

MODULE_TCL_FILE The path to the hw.tcl file.

NAME The name of the IP component, such as my_qsys_component.

OPAQUE_ADDRESS_MAP For composed IP components created using a _hw.tcl file that
include children that are memory-mapped slaves, specifies
whether the children's addresses are visible to downstream
software tools. When true, the children's address are not visible.
When false, the children's addresses are visible.

PREFERRED_SIMULATION_LANGUAGE The preferred language to use for selecting the fileset for
simulation model generation.

REPORT_HIERARCHY null

STATIC_TOP_LEVEL_MODULE_NAME Deprecated.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
897

Name Description

STRUCTURAL_COMPOSITION_CALLBACK The name of the structural composition callback. This callback is
used to represent the structural hierarchical model of the IP
component and the RTL can be generated either with module
property COMPOSITION_CALLBACK or by ADD_FILESET with
target QUARTUS_SYNTH

SUPPORTED_DEVICE_FAMILIES A list of device family supported by this IP component.

TOP_LEVEL_HDL_FILE Deprecated.

TOP_LEVEL_HDL_MODULE Deprecated.

UPGRADEABLE_FROM null

VALIDATION_CALLBACK The name of the validation callback procedure.

VERSION The IP component's version, such as 10.0.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
898

13.2.14 Fileset Properties

Name Description

ENABLE_FILE_OVERWRITE_MODE null

ENABLE_RELATIVE_INCLUDE_PATHS If true, HDL files can include other files using relative paths in the
fileset.

TOP_LEVEL The name of the top-level HDL module that the fileset generates. If
set, the HDL top level must match the TOP_LEVEL name, and the
HDL must not be parameterized. Platform Designer runs the
generate callback one time, regardless of the number of instances in
the system.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
899

13.2.15 Fileset Kind Properties

Name Description

EXAMPLE_DESIGN Contains example design files.

QUARTUS_SYNTH Contains files that Platform Designer uses for the Intel Quartus Prime
software synthesis.

SIM_VERILOG Contains files that Platform Designer uses for Verilog HDL simulation.

SIM_VHDL Contains files that Platform Designer uses for VHDL simulation.

SYSTEMVERILOG_INTERFACE This file is treated as SystemVerilog interface file by the Platform Designer.
Example:

add_fileset_file mem_ifc.sv SYTEM_VERILOG PATH “.ifc/mem_ifc.sv”
SYSTEMVERILOG_INTERFACE

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
900

13.2.16 Callback Properties

Description
This list describes each type of callback. Each command may only be available in some
callback contexts.

Name Description

ACTION Called when an ACTION display item's action is performed.

COMPOSITION Called during instance elaboration when the IP component contains a
subsystem.

EDITOR Called when the IP component is controlling the parameterization
editor.

ELABORATION Called to elaborate interfaces and signals after a parameter change. In
API 9.1 and later, validation is called before elaboration. In API 9.0 and
earlier, elaboration is called before validation.

GENERATE_VERILOG_SIMULATION Called when the IP component uses a custom generator to generates
the Verilog simulation model for an instance.

GENERATE_VHDL_SIMULATION Called when the IP component uses a custom generator to generates
the VHDL simulation model for an instance.

GENERATION Called when the IP component uses a custom generator to generates
the synthesis HDL for an instance.

PARAMETER_UPGRADE Called when attempting to instantiate an IP component with a newer
version than the saved version. This allows the IP component to
upgrade parameters between released versions of the component.

STRUCTURAL_COMPOSITION Called during instance elaboration when an IP component is
represented by a structural hierarchical model which may be different
from the generated RTL.

VALIDATION Called to validate parameter ranges and report problems with the
parameter values. In API 9.1 and later, validation is called before
elaboration. In API 9.0 and earlier, elaboration is called before
validation.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
901

13.2.17 File Attribute Properties

Name Description

ALDEC_SPECIFIC Applies to Aldec simulation tools and for simulation filesets only.

CADENCE_SPECIFIC Applies to Cadence simulation tools and for simulation filesets only.

COMMON_SYSTEMVERILOG_PACKAGE The name of the common SystemVerilog package. Applies to
simulation filesets only.

MENTOR_SPECIFIC Applies to Mentor simulation tools and for simulation filesets only.

SYNOPSYS_SPECIFIC Applies to Synopsys simulation tools and for simulation filesets only.

TOP_LEVEL_FILE Contains the top-level module for the fileset and applies to synthesis
filesets only.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
902

13.2.18 File Kind Properties

Name Description

DAT DAT Data

FLI_LIBRARY FLI Library

HEX HEX Data

MIF MIF Data

OTHER Other

PLI_LIBRARY PLI Library

SDC Timing Constraints

SYSTEM_VERILOG SystemVerilog HDL

SYSTEM_VERILOG_ENCRYPT Encrypted SystemVerilog HDL

SYSTEM_VERILOG_INCLUDE SystemVerilog Include

VERILOG Verilog HDL

VERILOG_ENCRYPT Encrypted Verilog HDL

VERILOG_INCLUDE Verilog Include

VHDL VHDL

VHDL_ENCRYPT Encrypted VHDL

VPI_LIBRARY VPI Library

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
903

13.2.19 File Source Properties

Name Description

PATH Specifies the original source file and copies to output_file.

TEXT Specifies an arbitrary text string for the contents of output_file.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
904

13.2.20 Simulator Properties

Name Description

ENV_ALDEC_LD_LIBRARY_PATH LD_LIBRARY_PATH when running riviera-pro

ENV_CADENCE_LD_LIBRARY_PATH LD_LIBRARY_PATH when running ncsim

ENV_MENTOR_LD_LIBRARY_PATH LD_LIBRARY_PATH when running modelsim

ENV_SYNOPSYS_LD_LIBRARY_PATH LD_LIBRARY_PATH when running vcs

OPT_ALDEC_PLI -pli option for riviera-pro

OPT_CADENCE_64BIT -64bit option for ncsim

OPT_CADENCE_PLI -loadpli1 option for ncsim

OPT_CADENCE_SVLIB -sv_lib option for ncsim

OPT_CADENCE_SVROOT -sv_root option for ncsim

OPT_MENTOR_64 -64 option for modelsim

OPT_MENTOR_CPPPATH -cpppath option for modelsim

OPT_MENTOR_LDFLAGS -ldflags option for modelsim

OPT_MENTOR_PLI -pli option for modelsim

OPT_SYNOPSYS_ACC +acc option for vcs

OPT_SYNOPSYS_CPP -cpp option for vcs

OPT_SYNOPSYS_FULL64 -full64 option for vcs

OPT_SYNOPSYS_LDFLAGS -LDFLAGS option for vcs

OPT_SYNOPSYS_LLIB -l option for vcs

OPT_SYNOPSYS_VPI +vpi option for vcs

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
905

13.2.21 Port VHDL Type Properties

Name Description

AUTO The VHDL type of this signal is automatically determined. Single-bit signals are
STD_LOGIC; signals wider than one bit will be STD_LOGIC_VECTOR.

STD_LOGIC Indicates that the signal in not rendered in VHDL as a STD_LOGIC signal.

STD_LOGIC_VECTOR Indicates that the signal is rendered in VHDL as a STD_LOGIC_VECTOR signal.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
906

13.2.22 System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string describing the address map for
the interface specified in the system info argument.

Integer ADDRESS_WIDTH The number of address bits required to address all
memory-mapped slaves connected to the specified
memory-mapped master in this instance, using byte
addresses.

String AVALON_SPEC The version of the interconnect. SOPC Builder
interconnect uses Avalon Specification 1.0. Platform
Designer interconnect uses Avalon Specification 2.0.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple clock domains, this
can be used to determine which interfaces are on each
clock domain. The absolute value of the integer is
arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the system info argument. If 0, the clock
rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. This is used to determine the reset sink to use
for global reset when using SOPC interconnect.

String CUSTOM_INSTRUCTION_SLAVES Provides custom instruction slave information, including
the name, base address, address span, and clock cycle
type.

(various) DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the currently selected device.

String DEVICE_FAMILY The family name of the currently selected device.

String DEVICE_FEATURES A list of key/value pairs delineated by spaces indicating
whether a particular device feature is available in the
currently selected device family. The format of the list is
suitable for passing to the Tcl array set command. The
keys are device features; the values are 1 if the feature
is present, and 0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the currently selected device.

Integer GENERATION_ID A integer that stores a hash of the generation time to be
used as a unique ID for a generation run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer that represents the reset domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple reset domains, this
can be used to determine which interfaces are on each
reset domain. The absolute value of the integer is
arbitrary.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
907

Type Name Description

String TRISTATECONDUIT_INFO An XML description of the Avalon Tri-state Conduit
masters connected to an Avalon Tri-state Conduit slave.
The slave is specified as the system info argument. The
value contains information about the slave, the
connected master instance and interface names, and
signal names, directions and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Links

Design Environment Type Properties on page 909

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
908

13.2.23 Design Environment Type Properties

Description
A design environment is used by IP to tell what sort of interfaces are most appropriate
to connect in the parent system.

Name Description

NATIVE Design environment prefers native IP interfaces.

QSYS Design environment prefers standard Platform Designer interfaces.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
909

13.2.24 Units Properties

Name Description

Address A memory-mapped address.

Bits Memory size, in bits.

BitsPerSecond Rate, in bits per second.

Bytes Memory size, in bytes.

Cycles A latency or count, in clock cycles.

GigabitsPerSecond Rate, in gigabits per second.

Gigabytes Memory size, in gigabytes.

Gigahertz Frequency, in GHz.

Hertz Frequency, in Hz.

KilobitsPerSecond Rate, in kilobits per second.

Kilobytes Memory size, in kilobytes.

Kilohertz Frequency, in kHz.

MegabitsPerSecond Rate, in megabits per second.

Megabytes Memory size, in megabytes.

Megahertz Frequency, in MHz.

Microseconds Time, in micros.

Milliseconds Time, in ms.

Nanoseconds Time, in ns.

None Unspecified units.

Percent A percentage.

Picoseconds Time, in ps.

Seconds Time, in s.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
910

13.2.25 Operating System Properties

Name Description

ALL All operating systems

LINUX32 Linux 32-bit

LINUX64 Linux 64-bit

WINDOWS32 Windows 32-bit

WINDOWS64 Windows 64-bit

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
911

13.2.26 Quartus.ini Type Properties

Name Description

ENABLED Returns 1 if the setting is turned on, otherwise returns 0.

STRING Returns the string value of the .ini setting.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
912

13.3 Document Revision History

The table below indicates edits made to the Component Interface Tcl Reference
content since its creation.

Date Version Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Added statement clarifying use of brackets.
• Added properties and interface commands to support SystemVerilog.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Platform Designer rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Edit to add_fileset_file command.

December 2014 14.1.0 • set_interface_upgrade_map
• Moved Port Roles (Interface Signal Types) section to Platform

Designer Interconnect.

November 2013 13.1.0 • add_hdl_instance

May 2013 13.0.0 • Consolidated content from other Platform Designer chapters.
• Added AMBA APB support.

November 2012 12.1.0 • Added the demo_axi_memory example with screen shots and
example _hw.tcl code.

June 2012 12.0.0 • Added AMBA 3 AXI support.
• Added: set_display_item_property,

set_parameter_property,LONG_DESCRIPTION, and static filesets.

November 2011 11.1.0 • Template update.
• Added: set_qip_strings, get_qip_strings,

get_device_family_displayname,
check_device_family_equivalence.

May 2011 11.0.0 • Revised section describing HDL and composed component
implementations.

• Separated reset and clock interfaces in example.
• Added: TRISTATECONDUIT_INFO, GENERATION_ID, UNIQUE_ID

SYSTEM_INFO.
• Added: WIDTH and SYSTEM_INFO_ARG parameter properties.
• Removed the doc_type argument from the

add_documentation_link command.
• Removed: get_instance_parameter_properties
• Added: add_fileset, add_fileset_file, create_temp_file.
• Updated Tcl examples to show separate clock and reset interfaces.

December 2010 10.1.0 • Initial release.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

13 Component Interface Tcl Reference

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
913

https://www.altera.com/search-archives

14 Platform Designer System Design Components
You can use Platform Designer IP components to create Platform Designer systems.
Platform Designer interfaces include components appropriate for streaming high-speed
data, reading and writing registers and memory, controlling off-chip devices, and
transporting data between components.

Note: Intel now refers to Qsys Pro as Platform Designer.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Related Links

• Creating a System with Platform Designer on page 327

• Platform Designer Interconnect on page 659

• AMBA Protocol Specifications

• Embedded Peripherals IP User Guide

• Avalon Interface Specifications

14.1 Bridges

Bridges affect the way Platform Designer transports data between components. You
can insert bridges between master and slave interfaces to control the topology of a
Platform Designer system, which affects the interconnect that Platform Designer
generates. You can also use bridges to separate components into different clock
domains to isolate clock domain crossing logic.

A bridge has one slave interface and one master interface. In Platform Designer, one
or more master interfaces from other components connect to the bridge slave. The
bridge master connects to one or more slave interfaces on other components.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
https://www.altera.com/documentation/sfo1400787952932.html#iga1434499254579
https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 279. Using a Bridge in a Platform Designer System
In this example, three masters have logical connections to three slaves, although physically each master
connects only to the bridge. Transfers initiated to the slave propagate to the master in the same order in which
the transfers are initiated on the slave.

 Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Master

 Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

14.1.1 Clock Bridge

The Clock Bridge connects a clock source to multiple clock input interfaces. You can
use the clock bridge to connect a clock source that is outside the Platform Designer
system. Create the connection through an exported interface, and then connect to
multiple clock input interfaces.

Clock outputs match fan-out performance without the use of a bridge. You require a
bridge only when you want a clock from an exported source to connect internally to
more than one source.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
915

Figure 280. Clock Bridge

 PIO

S

 DMA

M MS

Platform Designer System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

14.1.2 Avalon-MM Clock Crossing Bridge

The Avalon-MM Clock Crossing Bridge transfers Avalon-MM commands and responses
between different clock domains. You can also use the Avalon-MM Clock Crossing
Bridge between AXI masters and slaves of different clock domains.

The Avalon-MM Clock Crossing Bridge uses asynchronous FIFOs to implement clock
crossing logic. The bridge parameters control the depth of the command and response
FIFOs in both the master and slave clock domains. If the number of active reads
exceeds the depth of the response FIFO, the Clock Crossing Bridge stops sending
reads.

To maintain throughput for high-performance applications, increase the response FIFO
depth from the default minimum depth, which is twice the maximum burst size.

Note: When you use the FIFO-based clock crossing a Platform Designer system, the DC FIFO
is automatically inserted in the Platform Designer system. The reset inputs for the DC
FIFO connect to the reset sources for the connected master and slave components on
either side of the DC FIFO. For this configuration, you must assert both the resets on
the master and the slave sides at the same time to ensure the DC FIFO resets
properly. Alternatively, you can drive both resets from the same reset source to
guarantee that the DC FIFO resets properly.

Note: The clock crossing bridge includes appropriate SDC constraints for its internal
asynchronous FIFOs. For these SDC constraints to work correctly, do not set false
paths on the pointer crossings in the FIFOs. Do not split the bridge’s clocks into
separate clock groups when you declare SDC constraints; the split has the same effect
as setting false paths.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
916

14.1.2.1 Avalon-MM Clock Crossing Bridge Example

In the example shown below, the Avalon-MM Clock Crossing bridges separate slave
components into two groups. The Avalon-MM Clock Crossing Bridge places the low
performance slave components behind a single bridge and clocks the components at a
lower speed. The bridge places the high-performance components behind a second
bridge and clocks it at a higher speed.

By inserting clock-crossing bridges, you simplify the Platform Designer interconnect
and allow the Intel Quartus Prime Fitter to optimize paths that require minimal
propagation delay.

Figure 281. Avalon-MM Clock Crossing Bridge

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
917

14.1.2.2 Avalon-MM Clock Crossing Bridge Parameters

Table 190. Avalon-MM Clock Crossing Bridge Parameters

Parameters Values Description

Data width 8, 16, 32, 64, 128,
256, 512, 1024 bits

Determines the data width of the interfaces on the
bridge, and affects the size of both FIFOs. For the
highest bandwidth, set Data width to be as wide as
the widest master that connects to the bridge.

Symbol width 1, 2, 4, 8, 16, 32,
64 (bits)

Number of bits per symbol. For example, byte-
oriented interfaces have 8-bit symbols.

Address width 1-32 bits The address bits needed to address the downstream
slaves.

Use automatically-determined address
width

- The minimum bridge address width that is required
to address the downstream slaves.

Maximum burst size 1, 2, 4, 8, 16, 32,
64, 128, 256, 512,
1024 bits

Determines the maximum length of bursts that the
bridge supports.

Command FIFO depth 2, 4, 8, 16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

Command (master-to-slave) FIFO depth.

Respond FIFO depth 2, 4, 8,16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

Slave-to-master FIFO depth.

Master clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the issuing master to target slave direction.
Increasing this value leads to a larger mean time
between failures (MTBF). You can determine the
MTBF for a design by running a timing analysis.

Slave clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the target slave to master direction.
Increasing this value leads to a larger meantime
between failures (MTBF). You can determine the
MTBF for a design by running a timing analysis.

14.1.3 Avalon-MM Pipeline Bridge

The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon-MM command
and response paths. The bridge accepts commands on its slave port and propagates
the commands to its master port. The pipeline bridge provides separate parameters to
turn on pipelining for command and response signals.

The Maximum pending read transactions parameter is the maximum number of
pending reads that the Avalon-MM bridge can queue up. To determine the best value
for this parameter, review this same option for the bridge's connected slaves and
identify the highest value of the parameter, and then add the internal buffering
requirements of the Avalon-MM bridge. In general, the value is between 4 and 32. The
limit for maximum queued transactions is 64.

You can use the Avalon-MM bridge to export a single Avalon-MM slave interface to
control multiple Avalon-MM slave devices. The pipelining feature is optional.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
918

Figure 282. Avalon-MM Pipeline Bridge in a XAUI PHY Transceiver IP Core
In this example, the bridge transfers commands received on its slave interface to its master port.

Interconnect

Exported to Embedded
Processor on PCB

 Interleave

 PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

M

Avalon-MM
Pipeline Bridge

(Platform Designer)

S

PMA
Ch

Cntl

Because the slave interface is exported to the pins of the device, having a single slave
port, rather than separate ports for each slave device, reduces the pin count of the
FPGA.

14.1.4 Avalon-MM Unaligned Burst Expansion Bridge

The Avalon-MM Unaligned Burst Expansion Bridge aligns read burst transactions from
masters connected to its slave interface, to the address space of slaves connected to
its master interface. This alignment ensures that all read burst transactions are
delivered to the slave as a single transaction.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
919

Figure 283. Avalon-MM Unaligned Burst Expansion Bridge

Slave Master

32-bit Avalon-MM
Master

Slave

Master

SlaveUnaligned Burst
 Expansion Bridge

64-bit Avalon-MM
Slave

64-bit Avalon-MM
Slave

You can use the Avalon Unaligned Burst Expansion Bridge to align read burst
transactions from masters that have narrower data widths than the target slaves.
Using the bridge for this purpose improves bandwidth utilization for the master-slave
pair, and ensures that unaligned bursts are processed as single transactions rather
than multiple transactions.

Note: Do not use the Avalon-MM Unaligned Burst Expansion Bridge if any connected slave
has read side effects from reading addresses that are exposed to any connected
master's address map. This bridge can cause read side effects due to alignment
modification to read burst transaction addresses.

Note: The Avalon-MM Unaligned Burst Expansion Bridge does not support VHDL simulation.

14.1.4.1 Using the Avalon-MM Unaligned Burst Expansion Bridge

When a master sends a read burst transaction to a slave, the Avalon-MM Unaligned
Burst Expansion Bridge initially determines whether the start address of the read burst
transaction is aligned to the slave's memory address space. If the base address is
aligned, the bridge does not change the base address. If the base address is not
aligned, the bridge aligns the base address to the nearest aligned address that is less
than the requested base address.

The Avalon-MM Unaligned Burst Expansion Bridge then determines whether the final
word requested by the master is the last word at the slave read burst address. If a
single slave address contains multiple words, all those words must be requested for a
single read burst transaction to occur.

• If the final word requested by the master is the last word at the slave read burst
address, the bridge does not modify the burst length of the read burst command
to the slave.

• If the final word requested by the master is not the last word at the slave read
burst address, the bridge increases the burst length of the read burst command to
the slave. The final word requested by the modified read burst command is then
the last word at the slave read burst address.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
920

The bridge stores information about each aligned read burst command that it sends to
slaves connected to a master interface. When a read response is received on the
master interface, the bridge determines if the base address or burst length of the
issued read burst command was altered.

If the bridge alters either the base address or the burst length of the issued read burst
command, it receives response words that the master did not request. The bridge
suppresses words that it receives from the aligned burst response that are not part of
the original read burst command from the master.

14.1.4.2 Avalon-MM Unaligned Burst Expansion Bridge Parameters

Figure 284. Avalon-MM Unaligned Burst Expansion Bridge Parameter Editor

Table 191. Avalon-MM Unaligned Burst Expansion Bridge Parameters

Parameter Description

Data width Data width of the master connected to the bridge.

Address width (in WORDS) The address width of the master connected to the bridge.

Burstcount width The burstcount signal width of the master connected to the bridge.

Maximum pending read
transactions

The Maximum pending read transactions parameter is the maximum number
of pending reads that the Avalon-MM bridge can queue up. To determine the best
value for this parameter, review this same option for the bridge's connected
slaves and identify the highest value of the parameter, and then add the internal
buffering requirements of the Avalon-MM bridge. In general, the value is between
4 and 32. The limit for maximum queued transactions is 64.

Width of slave to optimize for The data width of the connected slave. Supported values are: 16, 32, 64, 128,
256, 512, 1024, 2048, and 4096 bits.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
921

Parameter Description

Note: If you connect multiple slaves, all slaves must have the same data width.

Pipeline command signals When turned on, the command path is pipelined, minimizing the bridge's critical
path at the expense of increased logic usage and latency.

14.1.4.3 Avalon-MM Unaligned Burst Expansion Bridge Example

Figure 285. Unaligned Burst Expansion Bridge
The example below shows an unaligned read burst command from a master that the Avalon-MM Unaligned
Burst Expansion Bridge converts to an aligned request for a connected slave, and the suppression of words due
to the aligned read burst command. In this example, a 32-bit master requests an 8-beat burst of 32-bit words
from a 64-bit slave with a start address that is not 64-bit aligned.

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 5
Transaction 1

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

With Avalon-MM Unaligned Burst Expansion Bridge

Bridge
Alignment

X*

X*

Note: the bridge suppresses
X* response words

Transaction 1

Without Avalon-MM Unaligned Burst Expansion Bridge

Because the target slave has a 64-bit data width, address 1 is unaligned in the slave's
address space. As a result, several smaller burst transactions are needed to request
the data associated with the master's read burst command.

With an Avalon-MM Unaligned Burst Expansion Bridge in place, the bridge issues a
new read burst command to the target slave beginning at address 0 with burst length
10, which requests data up to the word stored at address 9.

When the bridge receives the word corresponding to address 0, it suppresses it from
the master, and then delivers the words corresponding to addresses 1 through 8 to the
master. When the bridge receives the word corresponding to address 9, it suppresses
that word from the master.

14.1.5 Bridges Between Avalon and AXI Interfaces

When designing a Platform Designer system, you can make connections between AXI
and Avalon interfaces without the use of explicitly-instantiated bridges; the
interconnect provides all necessary bridging logic. However, this does not prevent the
use of explicit bridges to separate the AXI and Avalon domains.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
922

Figure 286. Avalon-MM Pipeline Bridge Between Avalon-MM and AXI Domains
Using an explicit Avalon-MM bridge to separate the AXI and Avalon domains reduces the amount of bridging
logic in the interconnect at the expense of concurrency.

Network

Avalon-MM

Avalon-MM

AXI

AXI

AXI

Avalon-MM

Shared Avalon & AXI Domain

Network

Avalon-MM
Pipeline Bridge

Avalon-MM

AXI

AXI

AXI

Network

Avalon-MM

Avalon-MM

Avalon-MMAXI

Separated Avalon & AXI Domains

14.1.6 AXI Bridge

With an AXI bridge, you can influence the placement of resource-intensive
components, such as the width and burst adapters. Depending on its use, an AXI
bridge may reduce throughput and concurrency, in return for higher fMAX and less
logic.

You can use an AXI bridge to group different parts of your Platform Designer system.
Other parts of the system can then connect to the bridge interface instead of to
multiple separate master or slave interfaces. You can also use an AXI bridge to export
AXI interfaces from Platform Designer systems.

Example
103.

Reducing the Number of Adapters by Adding a Bridge

The figure shows a system with a single AXI master and three AXI slaves. It also has
various interconnect components, such as routers, demultiplexers, and multiplexers.
Two of the slaves have a narrower data width than the master; 16-bit slaves versus a
32-bit master.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
923

Figure 287. AXI System Without a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_2

Command
Mux_0

Command
Mux_4

Command
Mux_5

Command
Mux_1

Command
Mux_3

Width
Adapter_1

Width
Adapter_0

Width
Adapter_2

Burst
Adapter_1

Burst
Adapter_0

Burst
Adapter_2

AXI Slave
Agent_0

AXI
Slave_0

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_2

AXI
Slave_2

AXI Slave
Agent_1

AXI
Slave_1

Four width adapters (0 - 3) and four burst adapters (0 - 3) are
inserted between the master and slaves for transaction
adaptation for the example system.

In this system, Platform Designer interconnect creates four width adapters and four
burst adapters to access the two slaves.

You can improve resource usage by adding an AXI bridge. Then, Platform Designer
needs to add only two width adapters and two burst adapters; one pair for the read
channels, and another pair for the write channel.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
924

Figure 288. Width and Burst Adapters Added to System With a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

Width
Adapter_0

AXI Slave
Agent_1

Burst
Adapter_0

AXI
Slave_2

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_0

AXI
Bridge

By inserting an AXI bridge, the
interconnect Is divided into two
domains (interconnect_0 and
interconnect_1). Notice the
reduction in the number of width
adapters from 4 to 2 after the
bridge insertion. The same
process applies for burst adapters.

Interconnect_0

AXI
Bridge

AXI Master
Agent

Router_0 Limiter_0

Router_1 Limiter_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

AXI Slave
Agent_0

AXI
Slave_0

Width and burst adapters are not
required in Interconnect_1
because the adaptations are
performed in Interconnect_0.

Interconnect_1

Command
Demux_0

Command
Demux_1

AXI Slave
Agent_1

AXI
Slave_1

The figure shows the same system with an AXI bridge component, and the decrease in
the number of width and burst adapters. Platform Designer creates only two width
adapters and two burst adapters, as compared to the four width adapters and four
burst adapters in the previous figure.

Even though this system includes more components, the overall system performance
improves because there are fewer resource-intensive width and burst adapters.

14.1.6.1 AXI Bridge Signal Types

Based on parameter selections that you make for the AXI Bridge component, Platform
Designer instantiates either the AMBA 3 AXI or AMBA 3 AXI master and slave
interfaces into the component.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
925

Note: In AMBA 3 AXI, aw/aruser accommodates sideband signal usage by hard processor
systems (HPS).

Table 192. Sets of Signals for the AXI Bridge Based on the Protocol

Signal Name AMBA 3 AXI AMBA 3 AXI

awid / arid yes yes

awaddr / araddr yes yes

awlen / arlen yes (4-bit) yes (8-bit)

awsize / arsize yes yes

awburst / arburst yes yes

awlock / arlock yes yes (1-bit optional)

awcache / arcache yes (2-bit) yes (optional)

awprot / arprot yes yes

awuser / aruser yes yes

awvalid / arvalid yes yes

awready / arready yes yes

awqos / arqos no yes

awregion / arregion no yes

wid yes no (optional)

wdata / rdata yes yes

wstrb yes yes

wlast / rvalid yes yes

wvalid / rlast yes yes

wready / rready yes yes

wuser / ruser no yes

bid / rid yes yes

bresp / rresp yes yes (optional)

bvalid yes yes

bready yes yes

14.1.6.2 AXI Bridge Parameters

In the parameter editor, you can customize the parameters for the AXI bridge
according to the requirements of your design.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
926

Figure 289. AXI Bridge Parameter Editor

Table 193. AXI Bridge Parameters

Parameter Type Range Description

AXI Version string AMBA 3
AXI or

AMBA 3
AXI

Specifies the AXI version and signals that
Platform Designer generates for the slave and
master interfaces of the bridge.

Data Width integer 8:1024 Controls the width of the data for the master
and slave interfaces.

Address Width integer 1-64 bits Controls the width of the address for the
master and slave interfaces.

AWUSER Width integer 1-64 bits Controls the width of the write address channel
sideband signals of the master and slave
interfaces.

ARUSER Width integer 1-64 bits Controls the width of the read address channel
sideband signals of the master and slave
interfaces.

WUSER Width integer 1-64 bits Controls the width of the write data channel
sideband signals of the master and slave
interfaces.

RUSER Width integer 1-16 bits Controls the width of the read data channel
sideband signals of the master and slave
interfaces.

BUSER Width integer 1-16 bits Controls the width of the write response
channel sideband signals of the master and
slave interfaces.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
927

14.1.6.3 AXI Bridge Slave and Master Interface Parameters

Table 194. AXI Bridge Slave and Master Interface Parameters

Parameter Description

ID Width Controls the width of the thread ID of the master and slave
interfaces.

Write/Read/Combined Acceptance Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the slave interface accepts.

Write/Read/Combined Issuing Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the master interface issues. Issuing
capability must follow acceptance capability to avoid
unnecessary creation of FIFOs in the bridge.

Note: Maximum acceptance/issuing capability is a model-only parameter and does not
influence the bridge HDL. The bridge does not backpressure when this limit is reached.
Downstream components or the interconnect must apply backpressure.

14.1.7 AXI Timeout Bridge

The AXI Timeout Bridge allows your system to recover when it freezes, and facilitates
debugging. You can place an AXI Timeout Bridge between a single master and a single
slave if you know that the slave may time out and cause your system to freeze. If a
slave does not accept a command or respond to a command it accepted, its master
can wait indefinitely.

Figure 290. AXI Timeout Bridge

For a domain with multiple masters and slaves, placement of an AXI Timeout Bridge in
your design may be beneficial in the following scenarios:

• To recover from a freeze, place the bridge near the slave. If the master attempts
to communicate with a slave that freezes, the AXI Timeout Bridge frees the
master by generating error responses. The master is then able to communicate
with another slave.

• When debugging your system, place the AXI Timeout Bridge near the master. This
placement enables you to identify the origin of the burst, and to obtain the full
address from the master. Additionally, placing an AXI Timeout Bridge near the
master enables you to identify the target slave for the burst.

Note: If you place the bridge at the slave's side and you have multiple slaves
connected to the same master, you do not get the full address.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
928

Figure 291. AXI Timeout Bridge Placement

Interconnect

M 0

M 1

S 0

S 1

Possible bridge placement when used with Interconnect

Near Master
or at Master’s Side

Near Slave
or at Slave’s Side

Master Slave

Simplest Form

Bridge

14.1.7.1 AXI Timeout Bridge Stages

A timeout occurs when the internal timer in the bridge exceeds the specified number
of cycles within which a burst must complete from start to end.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
929

Figure 292. AXI Timeout Bridge Stages

A

BC

A read/write
times out

No more
outstanding
commands

The AXI Timeout Bridge is notified
that the slave is reset.

 A Slave is functional - The bridge passes through all bursts.

 B Slave is unresponsive - The bridge accepts commands and
 responds (with errors) to commands for the unresponsive slave.
 Commands are not passed through to the slave at this stage.

 C Slave is reset - The bridge does not accept new commands,
 and responds only to commands that are outstanding.

• When a timeout occurs, the AXI Timeout Bridge asserts an interrupt and reports
the burst that caused the timeout to the Configuration and Status Register (CSR).

• The bridge then generates error responses back to the master on behalf of the
unresponsive slave. This stage frees the master and certifies the unresponsive
slave as dysfunctional.

• The AXI Timeout Bridge accepts subsequent write addresses, write data, and read
addresses to the dysfunctional slave. The bridge does not accept outstanding write
responses, and read data from the dysfunctional slave is not passed through to
the master.

• The awvalid, wvalid, bready, arvalid, and rready ports are held low at the
master interface of the bridge.

Note: After a timeout, awvalid, wvalid, and arvalid may be dropped before they are
accepted by awready at the master interface. While the behavior violates the AXI
specification, it occurs only on an interface connected to the slave which has been
certified dysfunctional by the AXI Timeout Bridge.

Write channel refers to the AXI write address, data and response channels. Similarly,
read channel refers to the AXI read address and data channels. AXI write and read
channels are independent of each other. However, when a timeout occurs on either
channel, the bridge generates error responses on both channels.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
930

Table 195. Burst Start and End Definitions for the AXI Timeout Bridge

Channel Start End

Write When an address is issued. First cycle of awvalid,
even if data of the same burst is issued before the
address (first cycle of wvalid).

When the response is issued. First cycle of
bvalid.

Read When an address is issued. First cycle of arvalid. When the last data is issued. First cycle of rvalid
and rlast.

The AXI Timeout Bridge has four required interfaces: Master, Slave, Configuration and
Status Register (CSR) (AMBA 3 AXI-Lite), and Interrupt. Platform Designer allows the
AXI Timeout Bridge to connect to any AMBA 3 AXI, AMBA 3 AXI, or Avalon master or
slave interface. Avalon masters must utilize the bridge’s interrupt output to detect a
timeout.

The bridge slave interface accepts write addresses, write data, and read addresses,
and then generates the SLVERR response at the write response and read data
channels. Do not use buser, rdata and ruser at this stage of processing.

To resume normal operation, the dysfunctional slave must be reset and the bridge
notified of the change in status via the CSR. Once the CSR notifies the bridge that the
slave is ready, the bridge does not accept new commands until all outstanding bursts
are responded to with an error response.

The CSR has a 4-bit address width and a 32-bit data width. The CSR reports status
and address information when the bridge asserts an interrupt.

Table 196. CSR Interrupt Status Information for the AXI Timeout Bridge

Address Attribute Name

0x0 write-only Slave is reset

0x4 read-only Timed out operation

0x8 through 0xF read-only Timed out address

14.1.7.2 AXI Timeout Bridge Parameters

Table 197. AXI Timeout Bridge Parameters

Parameter Description

ID width The width of awid, bid, arid, or rid.

Address width The width of awaddr or araddr.

Data width The width of wdata or rdata.

User width The width of awuser, wuser, buser, aruser, or ruser.

Maximum number of
outstanding writes

The expected maximum number of outstanding writes.

Maximum number of
outstanding reads

The expected maximum number of outstanding reads.

Maximum number of
cycles

The number of cycles within which a burst must complete.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
931

14.1.8 Address Span Extender

The Address Span Extender allows memory-mapped master interfaces to access a
larger or smaller address map than the width of their address signals allows. The
address span extender splits the addressable space into multiple separate windows, so
that the master can access the appropriate part of the memory through the window.

The address span extender does not limit master and slave widths to a 32-bit and 64-
bit configuration. You can use the address span extender with 1-64 bit address
windows.

Figure 293. Address Span Extender

S

S

Control Port

Address Span Extender

Mapping Table

Control Register Z-1

Control Register 0

Slave Word Address

Expanded Master Address

. .
.

M

If a processor can address only 2 GB of an address span, and your system contains 4
GB of memory, the address span extender can provide two, 2 GB windows in the 4 GB
memory address space. This issue sometimes occurs with Intel SoC devices.

For example, an HPS subsystem in an SoC device can address only 1 GB of an address
span within the FPGA, using the HPS-to-FPGA bridge. The address span extender
enables the SoC device to address all the address space in the FPGA using multiple 1
GB windows.

Related Links

Platform Designer 64-Bit Addressing Support on page 394

14.1.8.1 CTRL Register Layout

The control registers consist of one 64-bit register for each window, where you specify
the window's base address. For example, if CTRL_BASE is the base address of the
control register, and address span extender contains two windows (0 and 1), then
window 0’s control register starts at CTRL_BASE, and window 1’s control register
starts at CTRL_BASE + 8 (using byte addresses).

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
932

14.1.8.2 Address Span Extender Parameters

Table 198. Address Span Extender Parameters

Parameter Description

Datapath Width Width of write data and read data signals.

Expanded Master Byte Address
Width

Width of the master byte address port. That is, the address span size of all the
downstream slaves that attach to the address span extender.

Slave Word Address Width Width of the slave word address port. That is, the address span size of the
downstream slaves that the upstream master accesses.

Burstcount Width Burst count port width of the downstream slave and the upstream master that
attach to the address span extender.

Number of sub-windows The slave port can represent one or more windows in the master address span.
You can subdivide the slave address span into N equal spans in N sub-windows.
A remapping register in the CSR slave represents each sub-window, and
configures the base address that each sub-window remaps to. The address span
extender replaces the upper bits of the address with the stored index value in
the remapping register before the master initiates a transaction.

Enable Slave Control Port Dictates run-time control over the sub-window indexes. If you can define static
re-mappings that do not need any change, you do not need to enable this CSR
slave.

Maximum Pending Reads Sets the bridge slave's maximumPendingReadTransactions property. In
certain system configurations, you must increase this value to improve
performance. This value usually aligns with the properties of the downstream
slaves that you attach to this bridge.

14.1.8.3 Calculating the Address Span Extender Slave Address

The diagram describes how Platform Designer calculates the slave address. In this
example, the address span extender is configured with a 28-bit address space for
slaves. The upper 2 bits [27:26] are used to select the control registers.

The lower 26 bits ([25:0]) originate from the address span extender's data port, and
are the offset into a particular window.

Figure 294. Address Span Extender

Control Registers[63:0]

Mapping Table (Sub-Windows)

[27:26] [25:0]

28-bit Slave Word Address

38-bit Master Word Address

Control
Port

0x00000000_04000000
0x00000000_08000000
0x00000000_0C000000
0x00000000_00000000

0

1

2

3

{ ”Control Register”[37:26] , “Slave addr”[25:0] }

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
933

14.1.8.4 Using the Address Span Extender

This example shows when and how to use address span extender component in your
Platform Designer design.

Figure 295. Block Diagram with Address Span Extender

 External Streaming
Source (Example: SDI)

Modular
SGDMA

4GB SDRAM

Address Span
 Extender

 Peripherals
(LED and UART)

32-bit Address
 Master

Avalon MM/AXI

Avalon ST

In the above design, a 32-bit master shares 4 GB SDRAM with an external streaming
interface. The master has the path to access streaming data from the SDRAM DDR
memory. However, if you connect the whole 32-bit address bus of the master to the
SDRAM DDR memory, you cannot connect the master to peripherals such as LED or
UART. To avoid this situation, you can implement the address span extender between
the master and DDR memory. The address span extender allows the master to access
the SDRAM DDR memory and the peripherals at the same time.

To implement address span extender for the above example, you can divide the
address window of the address span extender into two sub-windows of 512 MB each.
The sub-window 0 is for the master program area. You can dynamically map the sub-
window 1 to any area other than the program area.

You can change the offset of the address window by setting the base address of sub-
window 1 to the control register of the address span extender. However, you must
make sure that the sub-window address span masks the base address. You can
choose any arbitrary base address. If you set the value 0xa000_0000 to the control
register, Platform Designer maps the sub-window 1 to 0xa000_0000.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
934

Table 199. CSR Mapping Table

Address Data

0x8000_0000 0x0000_0000

0x8000_0008 0xa000_0000

Figure 296. Memory mapping for Address Span Extender

 Peripherals

 CSR Area

 Address Span Extender

 Extended Master Area

0xFFFF_FFFF

0x8000_0000

0x3FFF_FFFF

0x0000_0000

Master

 Sub-window 1

 Sub-window 0
0x2000_0000

0xa000_0000

4GB SDRAM

 Streaming Data

Address: 0x8000_0008

0xa0000_0000

The table below indicates the Platform Designer parameter settings for this address
span extender example.

Table 200. Parameter Settings for the Address Span Extender Example

Parameter Value Description

Datapath Width 32 bits The CPU has 32-bits data width and the SDRAM DDR
memory has 512-bits data width. Since the transaction
between the master and SDRAM DDR memory is minimal,
set the datapath width to align with the upstream master.

Expanded Master Byte Address 32 bits The address span extender has a 4 GB address span.

Slave Word Address Width 18 bits There are two 512 MB sub-windows in reserve for the
master. The number of bytes over the data word width in
the Datapath Properties (4 bytes for this example)
accounts for the slave address.

Burstcount Width 4 bits The address span extender must handle up to 8 words burst
in this example.

Number of sub-windows 2 Address window of the address span extender has two sub-
windows of 512 MB each.

Enable Slave Control Port true The address span extender component must have control to
change the base address of the sub-window.

Maximum Pending Reads 4 This number is the same as SDRAM DDR memory burst
count.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
935

Figure 297. Address Span Extender Parameter Editor

Note: You can view the address span extender connections in the System Contents tab.
The windowed slave port and control port connect to the master. The expanded
master port connects to the SDRAM DDR memory.

14.1.8.5 Alternate Options for the Address Span Extender

You can set parameters for the address span extender with an initial fixed address
value. Enter an address for the Reset Default for Master Window option, and
select True for the Disable Slave Control Port option. This allows the address span
extender to function as a fixed, non-programmable component.

Each sub-window is equal in size and stacks sequentially in the windowed slave
interface's address space. To control the fixed address bits of a particular sub-window,
you can write to the sub-window’s register in the register control slave interface.
Platform Designer structures the logic so that Platform Designer can optimize and
remove bits that are not needed.

If Burstcount Width is greater than 1, Platform Designer processes the read burst in
a single cycle, and assumes all byteenable signals are asserted on every cycle.

14.1.8.6 Nios II Support

If the address span extender window is fixed, for example, the Disable Slave
Control Port option is turned on, then the address span extender performs as a
bridge. Components on the slave side of the address span extender that are within the
window are visible to the Nios II processor. Components partially within a window
appear to the Nios II processor as if they have a reduced span. For example, a
memory partially within a window appears as having a smaller size.

You can also use the address span extender to provide a window for the Nios II
processor, so that the HPS memory map is visible to the Nios II processor. This
technique allows the Nios II processor to communicate with HPS peripherals.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
936

In the example, a Nios II processor has an address span extender from address
0x40000 to 0x80000. There is a window within the address span extender starting at
0x100000. Within the address span extender's address space there is a slave at base
address 0x1100000. The slave appears to the Nios II processor as being at address:

0x110000 - 0x100000 + 0x40000 = 0x050000

Figure 298. Nios II Support and the Address Span Extender

0x80000

0x40000

Nios II

Address Span
Extender

Avalon-MM
Slave

0x140000

0x120000

0x110000

0x100000

Effective Slave Base Address =
0x110000 - 0x100000 + 0x040000

= 0x050000

The address span extender window is dynamic. For example, when the Disable Slave
Control Port option is turned off, the Nios II processor is unable to see components
on the slave side of the address span extender.

14.2 Error Response Slave

The Error Response Slave provides a predictable error response service for master
interfaces that attempt to access an undefined memory region.

The Error Response Slave is an AMBA 3 AXI component, and appears in the Platform
Designer IP Catalog under Platform Designer Interconnect.

To comply with the AXI protocol, the interconnect logic must return the DECERR error
response in cases where the interconnect cannot decode slave access. Therefore, an
AXI system with address space not fully decoded to slave interfaces requires the Error
Response Slave.

The Error Response Slave behaves like any other component in the system, and
connects to other components via translation and adaptation interconnect logic.
Connecting an Error Response Slave to masters of different data widths, including
Avalon or AXI-Lite masters, can increase resource usage.

An Error Response Slave can connect to clock, reset, and IRQ signals as well as AMBA
3 AXI and AMBA 4 AXI master interfaces without instantiating a bridge. When you
connect an Error Response Slave to a master, the Error Response Slave accepts cycles
sent from the master, and returns the DECERR error response. On the AXI interface,
the Error Response Slave supports only a read and write acceptance of capability 1,

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
937

and does not support write data interleaving. The Error Response Slave can return
responses when simultaneously targeted by a read and write cycle, because its read
and write channels are independent.

An optional Avalon interface on the Error Response Slave provides information in a set
of CSR registers. CSR registers log the required information when returning an error
response.

• To set the Error Response Slave as the default slave for a master interface in your
system, connect the slave to the master in your Platform Designer system.

• A system can contain more than one Error Response Slave.

• As a best practice, instantiate separate Error Response Slave components for each
AXI master in your system.

Related Links

• AMBA 3 AXI Protocol Specification Support (version 1.0) on page 718

• Designating a Default Slave in the System Contents Tab on page 942

14.2.1 Error Response Slave Parameters

Figure 299. Error Response Slave Parameter Editor

If you turn on Enable CSR Support (for error logging) more parameters become
available.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
938

Figure 300. Error Response Slave Parameter Editor with Enabled CSR Support

Table 201. Error Response Slave Parameters

Parameter Value Description

AXI master ID width 1-8 bits Specifies the master ID width for error logging.

AXI address width 8-64 bits Specifies the address width for error logging.
This value also affects the overall address width of the
system, and should not exceed the maximum address
width required in the system.

AXI data width 32, 64, or
128 bits

Specifies the data width for error logging.

Enable CSR Support (for error logging) On / Off When turned on, instantiates an Avalon CSR interface
for error logging.

CSR Error Log Depth 1-16 bits Depth of the transaction log, for example, the number of
transactions the CSR logs for cycles with errors.

Register Avalon CSR inputs On / Off When turned on, controls debug access to the CSR
interface.

14.2.2 Error Response Slave CSR Registers

The Error Response Slave with enabled CSR support provides a service to handle
access violations. This service uses CSR registers for status and logging purposes.

The sequence of actions in the access violation service is equivalent for read and write
access violations, but the CSR status bits and log registers are different.

14.2.2.1 Error Response Slave Access Violation Service

When an access violation occurs, and the CSR port is enabled:

1. The Error Response Slave generates an interrupt:

— For a read access violation, the Error Response Slave sets the Read Access
Violation Interrupt register bit in the Interrupt Status register.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
939

— For a write access violation, the Error Response Slave sets the Write Access
Violation Interrupt register bit in the Interrupt Status register.

2. The Error Response Slave transfers transaction information to the access violation
log FIFO. The amount of information that the FIFO can handle is given by the
Error Log Depth parameter.

You define the Error Log Depth in the Parameter Editor, when you enable CSR
Support.

3. Software reads entries of the access violation log FIFO until the corresponding
cycle log valid bit is cleared, and then exits the service routine.

— The Read cycle log valid bit is in the Read Access Violation Log
CSR Registers.

— The Write cycle log valid bit is in the Write Access Violation
Log CSR Registers.

4. The Error Response Slave clears the interrupt bit when there are no access
violations to report.

Some special cases are:

• If any error occurs when the FIFO is full, the Error Response Slave sets the
corresponding Access Violation Interrupt Overflow register bit (bits
2 and 3 of the Status Register for write and read access violations, respectively).
Setting this bit means that not all error entries were written to the access violation
log.

• After Software reads an entry in the Access Violation log, the Error Response Slave
can write a new entry to the log.

• Software can specify the number of entries to read before determining that the
access violation service is taking too long to complete, and exit the routine.

14.2.2.2 CSR Interrupt Status Registers

Table 202. CSR Interrupt Status Registers
For CSR register maps: Address = Memory Address Base + Offset.

Offset Bits Attribute Default Description

0x00 31:4 Reserved.

3 RW1C 0 Read Access Violation Interrupt Overflow register

Asserted when a read access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

2 RW1C 0 Write Access Violation Interrupt Overflow register

Asserted when a write access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

1 RW1C 0 Read Access Violation Interrupt register

Asserted when a read access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
940

Offset Bits Attribute Default Description

Note: Access violation are logged until the bit is cleared.

0 RW1C 0 Write Access Violation Interrupt register

Asserted when a write access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.
Note: Access violation are logged until the bit is cleared.

14.2.2.3 CSR Read Access Violation Log Registers

The CSR read access violation log settings are valid only when an associated read
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 203. CSR Read Access Violation Log Registers

Offset Bits Attribute Default Description

0x100 31:13 Reserved.

12:11 R0 0 Offending Read cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

10:7 R0 0 Offending Read cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

6:4 R0 0 Offending Read cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

3:1 R0 0 Offending Read cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Read cycle log valid: Specifies the validity of the read access
violation log. This bit is cleared when the interrupt register is
cleared.

0x104 31:0 R0 0 Offending read cycle ID: Master ID for the cycle that causes
the access violation.

0x108 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (lower 32-bit).

0x10C 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (upper 32-bit). Valid only
if widest address in system is larger than 32 bits.
Note: When this register is read, the current read access violation

log is recovered from FIFO.

14.2.2.4 CSR Write Access Violation Log Registers

The CSR write access violation log settings are valid only when an associated write
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 204. CSR Write Access Violation Log

Offset Bits Attribute Default Description

0x190 31:13 Reserved.

12:11 R0 0 Offending write cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

10:7 R0 0 Offending write cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
941

Offset Bits Attribute Default Description

6:4 R0 0 Offending write cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

3:1 R0 0 Offending write cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Write cycle log valid: Specifies whether the log for the
transaction is valid. This bit is cleared when the interrupt register is
cleared.

0x194 31:0 R0 0 Offending write cycle ID: Master ID for the cycle that
causes the access violation.

0x198 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (lower 32-
bit).

0x19C 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (upper 32-
bit). Valid only if widest address in system is larger than 32 bits.

0x1A0 31:0 R0 0 Offending write cycle first write data: First 32 bits of
the write data for the write cycle that causes the access violation.
Note: When this register is read, the current write access

violation log is recovered from FIFO, when the data width is
32 bits.

0x1A4 31:0 R0 0 Offending write cycle first write data: Bits [63:32] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 32 bits.

0x1A8 31:0 R0 0 Offending write cycle first write data: Bits [95:64] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 64 bits.

0x1AC 31:0 R0 0 Offending write cycle first write data: The first bits
[127:96] of the write data for the write cycle that causes the
access violation. Valid only if the data width is greater than 64 bits.
Note: When this register is read, the current write access

violation log is recovered from FIFO.

14.2.3 Designating a Default Slave in the System Contents Tab

You can designate any slave in your Platform Designer system as the error response
default slave. The default slave you designate provides an error response service for
masters that attempt access to an undefined memory region.

1. In your Platform Designer system, in the System Contents tab, right-click the
header and turn on Show Default Slave Column.

2. Select the slave that you want to designate as the default slave, and then click the
checkbox for the slave in the Default Slave column.

3. In the System Contents tab, in the Connections column, connect the
designated default slave to one or more masters.

Related Links

Specify a Default Slave in a Platform Designer System on page 374

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
942

14.3 Tri-State Components

The tri-state interface type allows you to design Platform Designer subsystems that
connect to tri-state devices on your PCB. You can use tri-state components to
implement pin sharing, convert between unidirectional and bidirectional signals, and
create tri-state controllers for devices whose interfaces can be described using the tri-
state signal types.

Example
104.

Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

In this example, there are two generic Tri-State Conduit Controllers. The first is
customized to control a flash memory. The second is customized to control an off-chip
SSRAM. The Tri-State Conduit Pin Sharer multiplexes between these two controllers,
and the Tri-State Conduit Bridge converts between an on-chip encoding of tri-state
signals and true bidirectional signals. By default, the Tri-State Conduit Pin Sharer and
Tri-State Conduit Bridge present byte addresses. Typically, each address location
contains more than one byte of data.

Figure 301. Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

Intel FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tri-state
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS
Tri-state
Conduit

Pin
Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte

x16 FlashS

S

TCS

TCM Avalon-TC Master

Avalon-TC Slave

Conduit Cn

TCS

Address Connections from Platform Designer System to PCB

The flash device operates on 16-bit words and must ignore the least-significant bit of
the Avalon-MM address. The figure shows addr[0]as not connected. The SSRAM
memory operates on 32-bit words and must ignore the two low-order memory bits.
Because neither device requires a byte address, addr[0] is not routed on the PCB.

The flash device responds to address range 0 MB to 8 MB-1. The SSRAM responds to
address range 8 MB to 10 MB-1. The PCB schematic for the PCB connects
addr[21:0] to addr[18:0] of the SSRAM device because the SSRAM responds to

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
943

32-bit word address. The 8 MB flash device accesses 16-bit words; consequently, the
schematic does not connect addr[0]. The chipselect signals select between the
two devices.

Figure 302. Address Connections from Platform Designer System to PCB

PCB_Addr [21:0]

2 MByte SSRAM
(32-bit word)

0

8 MB

16 MB

10 MB

PCB_Addr [19:1]

Addr [21:0]

8 MByte Flash
 (16-bit word) 8 MByte Flash

 (16-bit word)

Unused

2 MByte SSRAM
(32-bit word)

Addr [18:0]

PCB

Platform Designer

Address Map

Addr [22:1]
PCB_Addr [21:0]

 Addr [0]

Addr [23] x

x

Tristate Conduit
Bridge

Note: If you create a custom tri-state conduit master with word aligned addresses, the
Tri-state Conduit Pin Sharer does not change or align the address signals.

Figure 303. Tri-State Conduit System in Platform Designer

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
944

Related Links

• Avalon Tri-State Conduit Components User Guide

• Avalon Interface Specifications

14.3.1 Generic Tri-State Controller

The Generic Tri-State Controller provides a template for a controller. You can
customize the tri-state controller with various parameters to reflect the behavior of an
off-chip device. The following types of parameters are available for the tri-state
controller:

• Width of the address and data signals

• Read and write wait times

• Bus-turnaround time

• Data hold time

Note: In calculating delays, the Generic Tri-State Controller chooses the larger of the
bus-turnaround time and read latency. Turnaround time is measured from the time
that a command is accepted, not from the time that the previous read returned data.

The Generic Tri-State Controller includes the following interfaces:

• Memory-mapped slave interface—This interface connects to a memory-mapped
master, such as a processor.

• Tristate Conduit Master interface—The tri-state master interface usually
connects to the tri-state conduit slave interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. You must connect this interface to
a clock source.

• Reset sink—This interface connects to a reset source interface.

14.3.2 Tri-State Conduit Pin Sharer

The Tri-state Conduit Pin Sharer multiplexes between the signals of the connected
tri-state controllers. You connect all signals from the tri-state controllers to the
Tri-state Conduit Pin Sharer and use the parameter editor to specify the signals that
are shared.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
945

http://www.altera.com/literature/ug/ug_avalon_tc.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Tristate
https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

Figure 304. Tri-State Conduit Pin Sharer Parameter Editor
The parameter editor includes a Shared Signal Name column. If the widths of shared signals differ, the
signals are aligned on their 0th bit and the higher-order pins are driven to 0 whenever the smaller signal has
control of the bus. Unshared signals always propagate through the pin sharer. The tri-state conduit pin sharer
uses the round-robin arbiter to select between tri-state conduit controllers.

Note: All tri-state conduit components connected to a pin sharer must be in the same clock
domain.

Related Links

Avalon-ST Round Robin Scheduler on page 970

14.3.3 Tri-State Conduit Bridge

The Tri-State Conduit Bridge instantiates bidirectional signals for each tri-state signal
while passing all other signals straight through the component. The Tri-State Conduit
Bridge registers all outgoing and incoming signals, which adds two cycles of latency
for a read request. You must account for this additional pipelining when designing a
custom controller. During reset, all outputs are placed in a high-impedance state.
Outputs are enabled in the first clock cycle after reset is deasserted, and the output
signals are then bidirectional.

14.4 Test Pattern Generator and Checker Cores

The test pattern generator inserts different error conditions, and the test pattern
checker reports these error conditions to the control interface, each via an Avalon
Memory-Mapped (Avalon-MM) slave.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
946

The data generation and monitoring solution for Avalon-ST consists of two
components: a test pattern generator core that generates data, and sends it out on an
Avalon-ST data interface, and a test pattern checker core that receives the same data
and verifies it. Optionally, the data can be formatted as packets, with accompanying
start_of_packet and end_of_packet signals.

The Throttle Seed is the starting value for the throttle control random number
generator. Intel recommends a unique value for each instance of the test pattern
generator and checker cores in a system.

14.4.1 Test Pattern Generator

Figure 305. Test Pattern Generator Core
The test pattern generator core accepts commands to generate data via an Avalon-MM command interface, and
drives the generated data to an Avalon-ST data interface. You can parameterize most aspects of the Avalon-ST
data interface, such as the number of error bits and data signal width, thus allowing you to test components
with different interfaces.

Avalon-MM
Slave Port

Av
alo

n-
M

M
Sla

ve
 Po

rt

Avalon-ST
 SourceTEST PATTERN

 GENERATOR

command data_out

control & status

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data
Error Mask. Data that is not organized in packets is a single stream with no beginning
or end. The test pattern generator has a throttle register that is set via the Avalon-MM
control interface. The test pattern generator uses the value of the throttle register in
conjunction with a pseudo-random number generator to throttle the data generation
rate.

14.4.1.1 Test Pattern Generator Command Interface

The command interface for the Test Pattern Generator is a 32-bit Avalon-MM write
slave that accepts data generation commands. It is connected to a 16-element deep
FIFO, thus allowing a master peripheral to drive commands into the test pattern
generator.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
947

The command interface maps to the following registers: cmd_lo and cmd_hi. The
command is pushed into the FIFO when the register cmd_lo (address 0) is addressed.
When the FIFO is full, the command interface asserts the waitrequest signal. You
can create errors by writing to the register cmd_hi (address 1). The errors are cleared
when 0 is written to this register, or its respective fields.

14.4.1.2 Test Pattern Generator Control and Status Interface

The control and status interface of the Test Pattern Generator is a 32-bit Avalon-MM
slave that allows you to enable or disable the data generation, as well as set the
throttle. This interface also provides generation-time information, such as the number
of channels and whether data packets are supported.

14.4.1.3 Test Pattern Generator Output Interface

The output interface of the Test Pattern Generator is an Avalon-ST interface that
optionally supports data packets. You can configure the output interface to align with
your system requirements. Depending on the incoming stream of commands, the
output data may contain interleaved packet fragments for different channels. To keep
track of the current symbol’s position within each packet, the test pattern generator
maintains an internal state for each channel.

You can configure the output interface of the test pattern generator with the following
parameters:

• Number of Channels—Number of channels that the test pattern generator
supports. Valid values are 1 to 256.

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 256.

• Include Packet Support—Indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—Width of the error signal on the output interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

14.4.1.4 Test Pattern Generator Functional Parameter

The Test Pattern Generator functional parameter allows you to configure the test
pattern generator as a whole system.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
948

14.4.2 Test Pattern Checker

Figure 306. Test Pattern Checker
The test pattern checker core accepts data via an Avalon-ST interface and verifies it against the same
predetermined pattern that the test pattern generator uses to produce the data. The test pattern checker core
reports any exceptions to the control interface. You can parameterize most aspects of the test pattern
checker's Avalon-ST interface such as the number of error bits and the data signal width. This enables the
ability to test components with different interfaces. The test pattern checker has a throttle register that is set
via the Avalon-MM control interface. The value of the throttle register controls the rate at which data is
accepted.

Avalon-MM
Slave Port

Av
alo

n-
ST

Sin
k

TEST PATTERN
 CHECKER

data_in

control & status

The test pattern checker detects exceptions and reports them to the control interface
via a 32-element deep internal FIFO. Possible exceptions are data error, missing start-
of-packet (SOP), missing end-of-packet (EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same
exception occurs more than once consecutively, only one exception descriptor is
pushed into the FIFO. All exceptions are ignored when the FIFO is full. Exception
descriptors are deleted from the FIFO after they are read by the control and status
interface.

14.4.2.1 Test Pattern Checker Input Interface

The Test Pattern Checker input interface is an Avalon-ST interface that optionally
supports data packets. You can configure the input interface to align with your system
requirements. Incoming data may contain interleaved packet fragments. To keep track
of the current symbol’s position, the test pattern checker maintains an internal state
for each channel.

14.4.2.2 Test Pattern Checker Control and Status Interface

The Test Pattern Checker control and status interface is a 32-bit Avalon-MM slave that
allows you to enable or disable data acceptance, as well as set the throttle. This
interface provides generation-time information, such as the number of channels and
whether the test pattern checker supports data packets. The control and status
interface also provides information on the exceptions detected by the test pattern
checker. The interface obtains this information by reading from the exception FIFO.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
949

14.4.2.3 Test Pattern Checker Functional Parameter

The Test Pattern Checker functional parameter allows you to configure the test pattern
checker as a whole system.

14.4.2.4 Test Pattern Checker Input Parameters

You can configure the input interface of the test pattern checker using the following
parameters:

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Number of Channels—Number of channels that the test pattern checker
supports. Valid values are 1 to 256.

• Error Signal Width (bits)—Width of the error signal on the input interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal in not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

14.4.3 Software Programming Model for the Test Pattern Generator and
Checker Cores

The HAL system library support, software files, and register maps describe the
software programming model for the test pattern generator and checker cores.

14.4.3.1 HAL System Library Support

For Nios II processor users, Intel provides HAL system library drivers that allow you to
initialize and access the test pattern generator and checker cores. Intel recommends
you use the provided drivers to access the cores instead of accessing the registers
directly.

For Nios II IDE users, copy the provided drivers from the following installation folders
to your software application directory:

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_source/HAL

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_sink/HAL

Note: This instruction does not apply if you use the Nios II command-line tools.

14.4.3.2 Test Pattern Generator and Test Pattern Checker Core Files

The following files define the low-level access to the hardware, and provide the
routines for the HAL device drivers.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
950

Note: Do not modify the test pattern generator or test pattern checker core files.

• Test pattern generator core files:

— data_source_regs.h—Header file that defines the test pattern generator's
register maps.

— data_source_util.h, data_source_util.c—Header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

• Test pattern checker core files:

— data_sink_regs.h—Header file that defines the core’s register maps.

— data_sink_util.h, data_sink_util.c—Header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

14.4.3.3 Register Maps for the Test Pattern Generator and Test Pattern Checker
Cores

14.4.3.3.1 Test Pattern Generator Control and Status Registers

Table 205. Test Pattern Generator Control and Status Register Map
Shows the offset for the test pattern generator control and status registers. Each register is 32-bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 206. Test Pattern Generator Status Register Bits

Bits Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates data packet support.

Table 207. Test Pattern Generator Control Register Bits

Bits Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern generator core.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively. The
test pattern generator uses this value in conjunction with a pseudo-random
number generator to throttle the data generation rate.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
951

Table 208. Test Pattern Generator Fill Register Bits

Bits Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that there is
at least one command in the command queue.

[6:1] Reserved

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

14.4.3.3.2 Test Pattern Generator Command Registers

Table 209. Test Pattern Generator Command Register Map
Shows the offset for the command registers. Each register is 32-bits wide.

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

Table 210. cmd_lo Register Bits

Bits Name Access Description

[15:0] SIZE RW The segment size in symbols. Except for the last segment in a packet, the
size of all segments must be a multiple of the configured number of
symbols per beat. If this condition is not met, the test pattern generator
core inserts additional symbols to the segment to ensure the condition is
fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less than
14 bits wide, the test pattern generator uses the low order bits of this
register to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This bit is
ignored when data packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit is
ignored when data packets are not supported.

Table 211. cmd_hi Register Bits

Bits Name Access Description

[15:0] SIGNALED
ERROR

RW Specifies the value to drive the error signal. A non-zero value creates a
signaled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to create data
errors. To stop creating data errors, set this register to 0.

[24] SUPPRESS
SOP

RW Set this bit to 1 to suppress the assertion of the startofpacket signal
when the first segment in a packet is sent.

[25] SUPRESS
EOP

RW Set this bit to 1 to suppress the assertion of the endofpacket signal when
the last segment in a packet is sent.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
952

14.4.3.3.3 Test Pattern Checker Control and Status Registers

Table 212. Test Pattern Checker Control and Status Register Map
Shows the offset for the control and status registers. Each register is 32 bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 Reserved

base + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 213. Test Pattern Checker Status Register Bits

Bit(s) Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 214. Test Pattern Checker Control Register Bits

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern checker.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively.
Platform Designer uses this value in conjunction with a pseudo-random
number generator to throttle the data generation rate.
Setting THROTTLE to 0 stops the test pattern generator core. Setting it to
256 causes the test pattern generator core to run at full throttle. Values
between 0–256 result in a data rate proportional to the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

If there is no exception, reading the exception_descriptor register bit register
returns 0.

Table 215. exception_descriptor Register Bits

Bit(s) Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
953

Bit(s) Name Access Description

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED
ERROR

RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.

Table 216. indirect_select Register Bits

Bit Bits Name Access Description

[7:0] INDIRECT
CHANNEL

RW Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR COUNT
registers.

[15:8] Reserved

[31:16] INDIRECT
ERROR

RO The number of data errors that occurred on the channel specified by
INDIRECT CHANNEL.

Table 217. indirect_count Register Bits

Bit Bits Name Access Description

[15:0] INDIRECT
PACKET
COUNT

RO The number of data packets received on the channel specified by INDIRECT
CHANNEL.

[31:16] INDIRECT
SYMBOL
COUNT

RO The number of symbols received on the channel specified by INDIRECT
CHANNEL.

.

14.4.4 Test Pattern Generator API

The following subsections describe application programming interface (API) for the
test pattern generator.

Note: API functions are currently not available from the interrupt service routine (ISR).

data_source_reset() on page 955

data_source_init() on page 955

data_source_get_id() on page 955

data_source_get_supports_packets() on page 956

data_source_get_num_channels() on page 956

data_source_get_symbols_per_cycle() on page 956

data_source_get_enable() on page 956

data_source_set_enable() on page 957

data_source_get_throttle() on page 957

data_source_set_throttle() on page 957

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
954

data_source_is_busy() on page 958

data_source_fill_level() on page 958

data_source_send_data() on page 958

14.4.4.1 data_source_reset()

Table 218. data_source_reset()

Information Type Description

Prototype void data_source_reset(alt_u32 base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the test pattern generator core including all internal counters and FIFOs.
The control and status registers are not reset by this function.

14.4.4.2 data_source_init()

Table 219. data_source_init()

Information Type Description

Prototype int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.
command_base—Base address of the command slave.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the test pattern generator core:
• Resets and disables the test pattern generator core.
• Sets the maximum throttle.
• Clears all inserted errors.

14.4.4.3 data_source_get_id()

Table 220. data_source_get_id()

Information Type Description

Prototype int data_source_get_id(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Test pattern generator core identifier.

Description Retrieves the test pattern generator core’s identifier.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
955

14.4.4.4 data_source_get_supports_packets()

Table 221. data_source_get_supports_packets()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the test pattern generator core supports data packets.

14.4.4.5 data_source_get_num_channels()

Table 222. data_source_get_num_channels()

Description Description

Prototype int data_source_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the test pattern generator core.

14.4.4.6 data_source_get_symbols_per_cycle()

Table 223. data_source_get_symbols_per_cycle()

Description Description

Prototype int data_source_get_symbols(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols transferred in a beat.

Description Retrieves the number of symbols transferred by the test pattern generator core
in each beat.

14.4.4.7 data_source_get_enable()

Table 224. data_source_get_enable()

Information Type Description

Prototype int data_source_get_enable(alt_u32 base);

Thread-safe Yes

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
956

Information Type Description

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

14.4.4.8 data_source_set_enable()

Table 225. data_source_set_enable()

Information Type Description

Prototype void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.
value— ENABLE bit set to the value of this parameter.

Returns void

Description Enables or disables the test pattern generator core. When disabled, the test
pattern generator core stops data transmission but continues to accept
commands and stores them in the FIFO

14.4.4.9 data_source_get_throttle()

Table 226. data_source_get_throttle()

Information Type Description

Prototype int data_source_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the current throttle value.

14.4.4.10 data_source_set_throttle()

Table 227. data_source_set_throttle()

Information Type Description

Prototype void data_source_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
957

Information Type Description

value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the test pattern generator
sends data.

14.4.4.11 data_source_is_busy()

Table 228. data_source_is_busy()

Information Type Description

Prototype int data_source_is_busy(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Test pattern generator core is busy.
0—Test pattern generator core is not busy.

Description Checks if the test pattern generator is busy. The test pattern generator core is
busy when it is sending data or has data in the command FIFO to be sent.

14.4.4.12 data_source_fill_level()

Table 229. data_source_fill_level()

Information Type Description

Prototype int data_source_fill_level(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of commands in the command FIFO.

Description Retrieves the number of commands currently in the command FIFO.

14.4.4.13 data_source_send_data()

Table 230. data_source_send_data()

Information Type Description

Prototype int data_source_send_data(alt_u32 cmd_base, alt_u16 channel,
alt_u16 size, alt_u32 flags, alt_u16 error, alt_u8
data_error_mask);

Thread-safe No

Include <data_source_util.h >

Parameters cmd_base—Base address of the command slave.
channel—Channel to send the data.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
958

Information Type Description

size—Data size.
flags —Specifies whether to send or suppress SOP and EOP signals. Valid
values are DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP,
DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_SEND_SUPRESS_EOP.
error—Value asserted on the error signal on the output interface.
data_error_mask—Parameter and the data are XORed together to produce
erroneous data.

Returns Returns 1.

Description Sends a data fragment to the specified channel. If data packets are supported,
applications must ensure consistent usage of SOP and EOP in each channel.
Except for the last segment in a packet, the length of each segment is a multiple
of the data width.
If data packets are not supported, applications must ensure that there are no
SOP and EOP indicators in the data. The length of each segment in a packet is a
multiple of the data width.

14.4.5 Test Pattern Checker API

The following subsections describe API for the test pattern checker core. The API
functions are currently not available from the ISR.

data_sink_reset() on page 960

data_sink_init() on page 960

data_sink_get_id() on page 960

data_sink_get_supports_packets() on page 961

data_sink_get_num_channels() on page 961

data_sink_get_symbols_per_cycle() on page 961

data_sink_get_enable() on page 961

data_sink_set enable() on page 962

data_sink_get_throttle() on page 962

data_sink_set_throttle() on page 962

data_sink_get_packet_count() on page 963

data_sink_get_error_count() on page 963

data_sink_get_symbol_count() on page 963

data_sink_get_exception() on page 964

data_sink_exception_is_exception() on page 964

data_sink_exception_has_data_error() on page 964

data_sink_exception_has_missing_sop() on page 965

data_sink_exception_has_missing_eop() on page 965

data_sink_exception_signalled_error() on page 965

data_sink_exception_channel() on page 966

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
959

14.4.5.1 data_sink_reset()

Table 231. data_sink_reset()

Information Type Description

Prototype void data_sink_reset(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the test pattern checker core including all internal counters.

14.4.5.2 data_sink_init()

Table 232. data_sink_init()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the test pattern checker core:
• Resets and disables the test pattern checker core.
• Sets the throttle to the maximum value.

14.4.5.3 data_sink_get_id()

Table 233. data_sink_get_id()

Information Type Description

Prototype int data_sink_get_id(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Test pattern checker core identifier.

Description Retrieves the test pattern checker core’s identifier.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
960

14.4.5.4 data_sink_get_supports_packets()

Table 234. data_sink_get_supports_packets()

Information Type Description

Prototype int data_sink_init(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the test pattern checker core supports data packets.

14.4.5.5 data_sink_get_num_channels()

Table 235. data_sink_get_num_channels()

Information Type Description

Prototype int data_sink_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the test pattern checker core.

14.4.5.6 data_sink_get_symbols_per_cycle()

Table 236. data_sink_get_symbols_per_cycle()

Information Type Description

Prototype int data_sink_get_symbols(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols received in a beat.

Description Retrieves the number of symbols received by the test pattern checker core in
each beat.

14.4.5.7 data_sink_get_enable()

Table 237. data_sink_get_enable()

Information Type Description

Prototype int data_sink_get_enable(alt_u32 base);

Thread-safe Yes

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
961

Information Type Description

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

14.4.5.8 data_sink_set enable()

Table 238. data_sink_set enable()

Information Type Description

Prototype void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
value—ENABLE bit is set to the value of the parameter.

Returns void

Description Enables the test pattern checker core.

14.4.5.9 data_sink_get_throttle()

Table 239. data_sink_get_throttle()

Information Type Description

Prototype int data_sink_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the throttle value.

14.4.5.10 data_sink_set_throttle()

Table 240. data_sink_set_throttle()

Information Type Description

Prototype void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include: <data_sink_util.h >

Parameters base—Base address of the control and status slave.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
962

Information Type Description

value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the test pattern checker
receives data.

14.4.5.11 data_sink_get_packet_count()

Table 241. data_sink_get_packet_count()

Information Type Description

Prototype int data_sink_get_packet_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
channel—Channel number.

Returns Number of data packets received on the channel.

Description Retrieves the number of data packets received on a channel.

14.4.5.12 data_sink_get_error_count()

Table 242. data_sink_get_error_count()

Information Type Description

Prototype int data_sink_get_error_count(alt_u32 base, alt_u32 channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
channel—Channel number.

Returns Number of errors received on the channel.

Description Retrieves the number of errors received on a channel.

14.4.5.13 data_sink_get_symbol_count()

Table 243. data_sink_get_symbol_count()

Information Type Description

Prototype int data_sink_get_symbol_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
963

Information Type Description

channel—Channel number.

Returns Number of symbols received on the channel.

Description Retrieves the number of symbols received on a channel.

14.4.5.14 data_sink_get_exception()

Table 244. data_sink_get_exception()

Information Type Description

Prototype int data_sink_get_exception(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns First exception descriptor in the exception FIFO.
0—No exception descriptor found in the exception FIFO.

Description Retrieves the first exception descriptor in the exception FIFO and pops it off the
FIFO.

14.4.5.15 data_sink_exception_is_exception()

Table 245. data_sink_exception_is_exception()

Information Type Description

Prototype int data_sink_exception_is_exception(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor

Returns 1—Indicates an exception.
0—No exception.

Description Checks if an exception descriptor describes a valid exception.

14.4.5.16 data_sink_exception_has_data_error()

Table 246. data_sink_exception_has_data_error()

Information Type Description

Prototype int data_sink_exception_has_data_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Data has errors.
0—No errors.

Description Checks if an exception indicates erroneous data.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
964

14.4.5.17 data_sink_exception_has_missing_sop()

Table 247. data_sink_exception_has_missing_sop()

Information Type Description

Prototype int data_sink_exception_has_missing_sop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing SOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing SOP.

14.4.5.18 data_sink_exception_has_missing_eop()

Table 248. data_sink_exception_has_missing_eop()

Information Type Description

Prototype int data_sink_exception_has_missing_eop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing EOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing EOP.

14.4.5.19 data_sink_exception_signalled_error()

Table 249. data_sink_exception_signalled_error()

Information Type Description

Prototype int data_sink_exception_signalled_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Signal error value.

Description Retrieves the value of the signaled error from the exception.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
965

14.4.5.20 data_sink_exception_channel()

Table 250. data_sink_exception_channel()

Information Type Description

Prototype int data_sink_exception_channel(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Channel number on which an exception occurred.

Description Retrieves the channel number on which an exception occurred.

14.5 Avalon-ST Splitter Core

Figure 307. Avalon-ST Splitter Core
The Avalon-ST Splitter Core allows you to replicate transactions from an Avalon-ST sink interface to multiple
Avalon-ST source interfaces. This core supports from 1 to 16 outputs.

Output 0

In_Data

Out_Data

Av
alo

n-
ST

Sin
k

Avalon-ST

Splitter Core

Output N

Avalon-ST
Source 0

Clock

Avalon-ST
Source N

The Avalon-ST Splitter core copies input signals from the input interface to the
corresponding output signals of each output interface without altering the size or
functionality. This includes all signals except for the ready signal. The core includes a
clock signal to determine the Avalon-ST interface and clock domain where the core
resides. Because the splitter core does not use the clock signal internally, latency is
not introduced when using this core.

14.5.1 Splitter Core Backpressure

The Avalon-ST Splitter core integrates with backpressure by AND-ing the ready
signals from the output interfaces and sending the result to the input interface. As a
result, if an output interface deasserts the ready signal, the input interface receives
the deasserted ready signal, as well. This functionality ensures that backpressure on
the output interfaces is propagated to the input interface.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
966

When the Qualify Valid Out option is enabled, the out_valid signals on all other
output interfaces are gated when backpressure is applied from one output interface.
In this case, when any output interface deasserts its ready signal, the out_valid
signals on the other output interfaces are also deasserted.

When the Qualify Valid Out option is disabled, the output interfaces have a non-
gated out_valid signal when backpressure is applied. In this case, when an output
interface deasserts its ready signal, the out_valid signals on the other output
interfaces are not affected.

Because the logic is combinational, the core introduces no latency.

14.5.2 Splitter Core Interfaces

The Avalon-ST Splitter core supports streaming data, with optional packet, channel,
and error signals. The core propagates backpressure from any output interface to the
input interface.

Table 251. Avalon-ST Splitter Core Support

Feature Support

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

14.5.3 Splitter Core Parameters

Table 252. Avalon-ST Splitter Core Parameters

Parameter Legal Values Default Value Description

Number Of Outputs 1 to 16 2 The number of output interfaces. Platform Designer
supports 1 for some systems where no duplicated
output is required.

Qualify Valid Out Enabled,
Disabled

Enabled If enabled, the out_valid signal of all output
interfaces is gated when back pressure is applied.

Data Width 1–512 8 The width of the data on the Avalon-ST data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets Enabled,
Disabled

Disabled Enable support of data packet transfers. Packet
support includes the startofpacket,
endofpacket, and empty signals.

Use Channel Enabled,
Disabled

Disabled Enable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
967

Parameter Legal Values Default Value Description

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error Enabled,
Disabled

Disabled Enable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the splitter
core is not using the error signal. This parameter
is disabled when Use Error is set to 0.

14.6 Avalon-ST Delay Core

Figure 308. Avalon-ST Delay Core
The Avalon-ST Delay Core provides a solution to delay Avalon-ST transactions by a constant number of clock
cycles. This core supports up to 16 clock cycle delays.

Out_Data
In_Data

Clock

Av
alo

n-
ST

Sin
k

Avalon-ST
 Source

Avalon-ST
Delay Core

The Avalon-ST Delay core adds a delay between the input and output interfaces. The
core accepts transactions presented on the input interface and reproduces them on
the output interface N cycles later without changing the transaction.

The input interface delays the input signals by a constant N number of clock cycles to
the corresponding output signals of the output interface. The Number Of Delay
Clocks parameter defines the constant N, which must be from 0 to 16. The change of
the in_valid signal is reflected on the out_valid signal exactly N cycles later.

14.6.1 Delay Core Reset Signal

The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal.
When the core asserts the reset signal, the output signals are held at 0. After the
reset signal is deasserted, the output signals are held at 0 for N clock cycles. The
delayed values of the input signals are then reflected at the output signals after N
clock cycles.

14.6.2 Delay Core Interfaces

The Delay core supports streaming data, with optional packet, channel, and error
signals. The delay core does not support backpressure.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
968

Table 253. Avalon-ST Delay Core Support

Feature Support

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

14.6.3 Delay Core Parameters

Table 254. Avalon-ST Delay Core Parameters

Parameter Legal Values Default Value Description

Number Of Delay Clocks 0 to 16 1 Specifies the delay the core introduces, in clock
cycles. Platform Designer supports 0 for some
systems where no delay is required.

Data Width 1–512 8 The width of the data on the Avalon-ST data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets 0 or 1 0 Indicates whether data packet transfers are
supported. Packet support includes the
startofpacket, endofpacket, and empty
signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the error
signal is not in use. This parameter is disabled
when Use Error is set to 0.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
969

14.7 Avalon-ST Round Robin Scheduler

Figure 309. Avalon-ST Round Robin Scheduler
The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-channel Avalon-ST
component that buffers data by channels. It reads the almost-full threshold values from the multiple channels
in the multi-channel component and issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Request
(Channel_select) Almost Full Status

Avalon-ST
Round-Robin

SchedulerA v
alo

n-
M

M

W
ri t

e M
as

te
r Avalon-ST Sink

In a multi-channel component, the component can store data either in the sequence
that it comes in (FIFO), or in segments according to the channel. When data is stored
in segments according to channels, a scheduler is needed to schedule the read
operations.

14.7.1 Almost-Full Status Interface (Round Robin Scheduler)

The Almost-Full Status interface is an Avalon-ST sink interface that collects the
almost-full status from the sink components for the channels in the sequence
provided.

Table 255. Avalon-ST Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported

14.7.2 Request Interface (Round Robin Scheduler)

The Request Interface is an Avalon-MM write master interface that requests data from
a specific channel. The Avalon-ST Round Robin Scheduler cycles through the channels
it supports and schedules data to be read.

14.7.3 Round Robin Scheduler Operation

If a particular channel is almost full, the Avalon-ST Round Robin Scheduler does not
schedule data to be read from that channel in the source component.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
970

The scheduler only requests 1 bit of data from a channel at each transaction. To
request 1 bit of data from channel n, the scheduler writes the value 1 to address (4
×n). For example, if the scheduler is requesting data from channel 3, the scheduler
writes 1 to address 0xC. At every clock cycle, the scheduler requests data from the
next channel. Therefore, if the scheduler starts requesting from channel 1, at the next
clock cycle, it requests from channel 2. The scheduler does not request data from a
particular channel if the almost-full status for the channel is asserted. In this case, the
scheduler uses one clock cycle without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component
is able to service the request transaction. The component asserts waitrequest when
it cannot accept new requests.

Table 256. Avalon-ST Round Robin Scheduler Ports

Signal Direction Description

Clock and Reset

clk In Clock reference.

reset_n In Asynchronous active low reset.

Avalon-MM Request Interface

request_address (log2
Max_Channels–1:0)

Out The write address that indicates which channel has the
request.

request_write Out Write enable signal.

request_writedata Out The amount of data requested from the particular channel.
This value is always fixed at 1.

request_waitrequest In Wait request signal that pauses the scheduler when the
slave cannot accept a new request.

Avalon-ST Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and
almost_full_data are valid.

almost_full_channel
(Channel_Width–1:0)

In Indicates the channel for the current status indication.

almost_full_data (log2
Max_Channels–1:0)

In A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is almost full.

14.7.4 Round Robin Scheduler Parameters

Table 257. Avalon-ST Round Robin Scheduler Parameters

Parameters Legal Values Default Value Description

Number of channels 2–32 2 Specifies the number of channels the Avalon-ST
Round Robin Scheduler supports.

Use almost-full status Enabled,
Disabled

Disabled If enabled, the scheduler uses the almost-full
interface. If not, the core requests data from the
next channel at the next clock cycle.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
971

14.8 Avalon Packets to Transactions Converter

Figure 310. Avalon Packets to Transactions Converter Core
The Avalon Packets to Transactions Converter core receives streaming data from upstream components and
initiates Avalon-MM transactions. The core then returns Avalon-MM transaction responses to the requesting
components.

Av
alo

n-
ST

Sin

k
Avalon

Packets to
Transactions

Converter

data_out

Av
alo

n-
M

M
 M

as
te

r

data_in
Av

alo
n-

ST

So
ur

ce
Avalon-MM

Slave
Component

Note: The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples
of the Packets to Transactions Converter core. For more information, refer to the
Avalon Interface Specifications.

Related Links

Avalon Interface Specifications

14.8.1 Packets to Transactions Converter Interfaces

Table 258. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Supported.

The Avalon-MM master interface supports read and write transactions. The data width
is set to 32 bits, and burst transactions are not supported.

14.8.2 Packets to Transactions Converter Operation

The Packets to Transactions Converter core receives streams of packets on its Avalon-
ST sink interface and initiates Avalon-MM transactions. Upon receiving transaction
responses from Avalon-MM slaves, the core transforms the responses to packets and
returns them to the requesting components via its Avalon-ST source interface. The
core does not report Avalon-ST errors.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
972

https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

14.8.2.1 Packets to Transactions Converter Data Packet Formats

A response packet is returned for every write transaction. The core also returns a
response packet if a no transaction (0x7f) is received. An invalid transaction code is
regarded as a no transaction. For read transactions, the core returns the data read.

The Packets to Transactions Converter core expects incoming data streams to be in
the formats shown in the table below.

Table 259. Data Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction.

1 Reserved Reserved for future use.

[3:2] Size Transaction size in bytes. For write transactions, the size indicates
the size of the data field. For read transactions, the size indicates
the total number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit inversed.

1 Reserved Reserved for future use.

[4:2] Size Total number of bytes read/written successfully.

Related Links

Packets to Transactions Converter Interfaces on page 972

14.8.2.2 Packets to Transactions Converter Supported Transactions

The Packets to Transactions Converter core supports the following Avalon-MM
transactions:

Table 260. Packets to Transactions Converter Supported Transactions

Transactio
n Code

Avalon-MM Transaction Description

0x00 Write, non-incrementing address. Writes data to the address until the total number of bytes written
to the same word address equals to the value specified in the size
field.

0x04 Write, incrementing address. Writes transaction data starting at the current address.

0x10 Read, non-incrementing address. Reads 32 bits of data from the address until the total number of
bytes read from the same address equals to the value specified in
the size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size parameter
starting from the current address.

0x7f No transaction. No transaction is initiated. You can use this transaction type for
testing purposes. Although no transaction is initiated on the
Avalon-MM interface, the core still returns a response packet for
this transaction code.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
973

The Packets to Transactions Converter core can process only a single transaction at a
time. The ready signal on the core's Avalon-ST sink interface is asserted only when
the current transaction is completely processed.

No internal buffer is implemented on the datapaths. Data received on the Avalon-ST
interface is forwarded directly to the Avalon-MM interface and vice-versa. Asserting
the waitrequest signal on the Avalon-MM interface backpressures the Avalon-ST
sink interface. In the opposite direction, if the Avalon-ST source interface is
backpressured, the read signal on the Avalon-MM interface is not asserted until the
backpressure is alleviated. Backpressuring the Avalon-ST source in the middle of a
read can result in data loss. In this cases, the core returns the data that is
successfully received.

A transaction is considered complete when the core receives an EOP. For write
transactions, the actual data size is expected to be the same as the value of the size
property. Whether or not both values agree, the core always uses the end of packet
(EOP) to determine the end of data.

14.8.2.3 Packets to Transactions Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a
transaction. If an SOP is received in the middle of a transaction, the core drops
the current transaction without returning a response packet for the transaction,
and initiates a new transaction. This effectively precesses packets without an end
of packet (EOP).

• Unsupported transaction codes—The core processes unsupported transactions
as a no transaction.

14.9 Avalon-ST Streaming Pipeline Stage

The Avalon-ST pipeline stage receives data from an Avalon-ST source interface, and
outputs the data to an Avalon-ST sink interface. In the absence of back pressure, the
Avalon-ST pipeline stage source interface outputs data one cycle after receiving the
data on its sink interface.

If the pipeline stage receives back pressure on its source interface, it continues to
assert its source interface's current data output. While the pipeline stage is receiving
back pressure on its source interface and it receives new data on its sink interface, the
pipeline stage internally buffers the new data. It then asserts back pressure on its sink
interface.

After the backpressure is deasserted, the pipeline stage's source interface is
deasserted and the pipeline stage asserts internally buffered data (if present).
Additionally, the pipeline stage deasserts back pressure on its sink interface.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
974

Figure 311. Pipeline Stage Simple Register
If the ready signal is not pipelined, the pipeline stage becomes a simple register.

Sink Sourcedata_in data_outRegister 0

Figure 312. Pipeline Stage Holding Register
If the ready signal is pipelined, the pipeline stage must also include a second "holding" register.

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

14.10 Streaming Channel Multiplexer and Demultiplexer Cores

The Avalon-ST channel multiplexer core receives data from various input interfaces
and multiplexes the data into a single output interface, using the optional channel
signal to indicate the origin of the data. The Avalon-ST channel demultiplexer core
receives data from a channelized input interface and drives that data to multiple
output interfaces, where the output interface is selected by the input channel signal.

The multiplexer and demultiplexer cores can transfer data between interfaces on cores
that support unidirectional flow of data. The multiplexer and demultiplexer allow you
to create multiplexed or demultiplexed datapaths without having to write custom HDL
code. The multiplexer includes an Avalon-ST Round Robin Scheduler.

Related Links

Avalon-ST Round Robin Scheduler on page 970

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
975

14.10.1 Software Programming Model For the Multiplexer and
Demultiplexer Components

The multiplexer and demultiplexer components do not have any user-visible control or
status registers. Therefore, Platform Designer cannot control or configure any aspect
of the multiplexer or demultiplexer at run-time. The components cannot generate
interrupts.

14.10.2 Avalon-ST Multiplexer

Figure 313. Avalon-ST Multiplexer
The Avalon-ST multiplexer takes data from a variety of input data interfaces, and multiplexes the data onto a
single output interface. The multiplexer includes a round-robin scheduler that selects from the next input
interface that has data. Each input interface has the same width as the output interface, so that the other input
interfaces are backpressured when the multiplexer is carrying data from a different input interface.

src
sink

data_in_ n

sink

data_in _0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink
. .

 .

channel

The multiplexer includes an optional channel signal that enables each input interface
to carry channelized data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input
interface. All input interfaces must have the same channel width. These bits are
appended to either the most or least significant bits of the output channel signal.

The scheduler processes one input interface at a time, selecting it for transfer. Once
an input interface has been selected, data from that input interface is sent until one of
the following scenarios occurs:

• The specified number of cycles have elapsed.

• The input interface has no more data to send and the valid signal is deasserted
on a ready cycle.

• When packets are supported, endofpacket is asserted.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
976

14.10.2.1 Multiplexer Input Interfaces

Each input interface is an Avalon-ST data interface that optionally supports packets.
The input interfaces are identical; they have the same symbol and data widths, error
widths, and channel widths.

14.10.2.2 Multiplexer Output Interface

The output interface carries the multiplexed data stream with data from the inputs.
The symbol, data, and error widths are the same as the input interfaces.

The width of the channel signal is the same as the input interfaces, with the addition
of the bits needed to indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—Indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)— The number of bits Platform Designer uses for
the channel signal for output interfaces. For example, set this parameter to 1 if
you have two input interfaces with no channel, or set this parameter to 2 if you
have two input interfaces with a channel width of 1 bit. The input channel can
have a width between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

14.10.2.3 Multiplexer Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—The number of input interfaces that the multiplexer
supports. Valid values are 2 to 16.

• Scheduling Size (Cycles)—The number of cycles that are sent from a single
channel before changing to the next channel.

• Use Packet Scheduling—When this parameter is turned on, the multiplexer only
switches the selected input interface on packet boundaries. Therefore, packets on
the output interface are not interleaved.

• Use high bits to indicate source port—When this parameter is turned on, the
multiplexer uses the high bits of the output channel signal to indicate the origin
of the input interface of the data. For example, if the input interfaces have 4-bit
channel signals, and the multiplexer has 4 input interfaces, the output interface
has a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output
channel signal indicate origin of the input interface of the data, and bits [3:0] are
the channel bits that were presented at the input interface.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
977

14.10.3 Avalon-ST Demultiplexer

Figure 314. Avalon-ST Demultiplexer
That Avalon-ST demultiplexer takes data from a channelized input data interface and provides that data to
multiple output interfaces, where the output interface selected for a particular transfer is specified by the input
channel signal.

sink
data_out_n

data_out_0

sink
sinkdata_in

src

src

. .
 . . .
 .

channel

The data is delivered to the output interfaces in the same order it is received at the
input interface, regardless of the value of channel, packet, frame, or any other
signal. Each of the output interfaces has the same width as the input interface; each
output interface is idle when the demultiplexer is driving data to a different output
interface. The demultiplexer uses log2 (num_output_interfaces) bits of the
channel signal to select the output for the data; the remainder of the channel bits
are forwarded to the appropriate output interface unchanged.

14.10.3.1 Demultiplexer Input Interface

Each input interface is an Avalon-ST data interface that optionally supports packets.
You can configure the following parameters for the input interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Channel Signal Width (bits)—The number of bits for the channel signal for
output interfaces. A value of 0 means that output interfaces do not use the
optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
978

14.10.3.2 Demultiplexer Output Interface

Each output interface carries data from a subset of channels from the input interface.
Each output interface is identical; all have the same symbol and data widths, error
widths, and channel widths. The symbol, data, and error widths are the same as the
input interface. The width of the channel signal is the same as the input interface,
without the bits that the demultiplexer uses to select the output interface.

14.10.3.3 Demultiplexer Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer
supports Valid values are 2 to 16.

• High channel bits select output—When this option is turned on, the
demultiplexing function uses the high bits of the input channel signal, and the
low order bits are passed to the output. When this option is turned off, the
demultiplexing function uses the low order bits, and the high order bits are passed
to the output.

Where you place the signals in your design affects the functionality; for example,
there is one input interface and two output interfaces. If the low-order bits of the
channel signal select the output interfaces, the even channels go to channel 0, and the
odd channels go to channel 1. If the high-order bits of the channel signal select the
output interface, channels 0 to 7 go to channel 0 and channels 8 to 15 go to channel
1.

Figure 315. Select Bits for the Demultiplexer

sink

data_out_n

data_ out_0

sink
sink

data_ in
src

src

channel <4 .. 0 >

channel <3 .. 0 >

channel <3 .. 0 >

14.11 Single-Clock and Dual-Clock FIFO Cores

The Avalon-ST Single-Clock and Avalon-ST Dual-Clock FIFO cores are FIFO buffers
which operate with a common clock and independent clocks for input and output ports
respectively.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
979

Figure 316. Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data

Source

Figure 317. Avalon-ST Dual Clock FIFO Core

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Data
Sink

Avalon-ST
Data

Source

14.11.1 Interfaces Implemented in FIFO Cores

The following interfaces are implemented in FIFO cores:

Avalon-ST Data Interface on page 981

Avalon-MM Control and Status Register Interface on page 981

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
980

Avalon-ST Status Interface on page 981

14.11.1.1 Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and
source interfaces in the dual-clock FIFO core are driven by different clocks.

Table 261. Avalon-ST Interfaces Properties

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.

14.11.1.2 Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM
interface, and the dual-clock FIFO core to include an Avalon-MM interface in each clock
domain. The Avalon-MM interface provides access to 32-bit registers, which allows you
to retrieve the FIFO buffer fill level and configure the almost-empty and almost-full
thresholds. In the single-clock FIFO core, you can also configure the packet and error
handling modes.

14.11.1.3 Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from
which you can obtain the FIFO buffer almost-full and almost empty statuses.

14.11.2 FIFO Operating Modes

• Default mode—The core accepts incoming data on the in interface (Avalon-ST
data sink) and forwards it to the out interface (Avalon-ST data source). The core
asserts the valid signal on the Avalon-ST source interface to indicate that data is
available at the interface.

• Store and forward mode—This mode applies only to the single-clock FIFO core.
The core asserts the valid signal on the out interface only when a full packet of
data is available at the interface. In this mode, you can also enable the drop-on-
error feature by setting the drop_on_error register to 1. When this feature is
enabled, the core drops all packets received with the in_error signal asserted.

• Cut-through mode—This mode applies only to the single-clock FIFO core. The
core asserts the valid signal on the out interface to indicate that data is
available for consumption when the number of entries specified in the
cut_through_threshold register are available in the FIFO buffer.

Note: To turn on Cut-through mode, the Use store and forward parameter must be set
to 0. Turning on Use store and forward mode prompts the user to turn on Use fill
level, and then the CSR appears.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
981

14.11.3 Fill Level of the FIFO Buffer

You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and
status interface. Turn on the Use fill level parameter (Use sink fill level and Use
source fill level in the dual-clock FIFO core) and read the fill_level register.

The dual-clock FIFO core has two fill levels, one in each clock domain. Due to the
latency of the clock crossing logic, the fill levels reported in the input and output clock
domains may be different for any instance. In both cases, the fill level may report
badly for the clock domain; that is, the fill level is reported high in the input clock
domain, and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage is
accounted for when calculating the output fill level, but not when calculating the input
fill level. Therefore, the best measure of the amount of data in the FIFO is by the fill
level in the output clock domain. The fill level in the input clock domain represents the
amount of space available in the FIFO (available space = FIFO depth – input fill level).

14.11.4 Almost-Full and Almost-Empty Thresholds to Prevent Overflow
and Underflow

You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO
overflow and underflow. This feature is available only in the single-clock FIFO core. To
use the thresholds, turn on the Use fill level, Use almost-full status, and Use
almost-empty status parameters. You can access the almost_full_threshold
and almost_empty_threshold registers via the csr interface and set the registers
to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and
almost_empty interfaces (Avalon-ST status source). The core asserts the
almost_full signal when the fill level is equal to or higher than the almost-full
threshold. Likewise, the core asserts the almost_empty signal when the fill level is
equal to or lower than the almost-empty threshold.

14.11.5 Single-Clock and Dual-Clock FIFO Core Parameters

Table 262. Single-Clock and Dual-Clock FIFO Core Parameters

Parameter Legal
Values

Description

Bits per symbol 1–32 These parameters determine the width of the FIFO.
FIFO width = Bits per symbol * Symbols per beat, where: Bits
per symbol is the number of bits in a symbol, and Symbols per
beat is the number of symbols transferred in a beat.

Symbols per beat 1–32

Error width 0–32 The width of the error signal.

FIFO depth 2 n The FIFO depth. An output pipeline stage is added to the FIFO to
increase performance, which increases the FIFO depth by one.
<n> = n=1,2,3,4...

Use packets — Turn on this parameter to enable data packet support on the
Avalon-ST data interfaces.

Channel width 1–32 The width of the channel signal.

Avalon-ST Single Clock FIFO Only
continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
982

Parameter Legal
Values

Description

Use fill level — Turn on this parameter to include the Avalon-MM control and status
register interface (CSR). The CSR is enabled when Use fill level is
set to 1.

Use Store and Forward To turn on Cut-through mode, Use store and forward must be
set to 0. Turning on Use store and forward prompts the user to
turn on Use fill level, and then the CSR appears.

Avalon-ST Dual Clock FIFO Only

Use sink fill level — Turn on this parameter to include the Avalon-MM control and status
register interface in the input clock domain.

Use source fill level — Turn on this parameter to include the Avalon-MM control and status
register interface in the output clock domain.

Write pointer synchronizer length 2–8 The length of the write pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability while
increasing the latency of the core.

Read pointer synchronizer length 2–8 The length of the read pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability.

Use Max Channel — Turn on this parameter to specify the maximum channel number.

Max Channel 1–255 Maximum channel number.

Note: For more information about metastability in Intel devices, refer to Understanding
Metastability in FPGAs. For more information about metastability analysis and
synchronization register chains, refer to the Managing Metastability.

Related Links

• Managing Metastability with the Intel Quartus Prime Software on page 986

• Understanding Metastability in FPGAs

14.11.6 Avalon-ST Single-Clock FIFO Registers

Table 263. Avalon-ST Single-Clock FIFO Registers
The CSR interface in the Avalon-ST Single Clock FIFO core provides access to registers.

32-Bit
Word
Offset

Name Access Reset Description

0 fill_lev
el

R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

1 Reserved — — Reserved for future use.

2 almost_f
ull_thre
shold

RW FIFO
depth–1

Set this register to a value that indicates the FIFO buffer is getting
full.

3 almost_e
mpty_thr
eshold

RW 0 Set this register to a value that indicates the FIFO buffer is getting
empty.

4 cut_thro
ugh_thre
shold

RW 0 0—Enables store and forward mode.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
983

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

32-Bit
Word
Offset

Name Access Reset Description

Greater than 0—Enables cut-through mode and specifies the
minimum of entries in the FIFO buffer before the valid signal on
the Avalon-ST source interface is asserted. Once the FIFO core
starts sending the data to the downstream component, it continues
to do so until the end of the packet.
Note: To turn on Cut-through mode, Use store and forward

must be set to 0. Turning on Use store and forward
mode prompts the user to turn on Use fill level, and then
the CSR appears.

5 drop_on_
error

RW 0 0—Disables drop-on error.
1—Enables drop-on error.
This register applies only when the Use packet and Use store
and forward parameters are turned on.

Table 264. Register Description for Avalon-ST Dual-Clock FIFO
The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the FIFO fill level.

32-Bit Word Offset Name Access Reset Value Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

Related Links

• Avalon Memory-Mapped Design Optimizations

• Avalon Interface Specifications

14.12 Document Revision History

Table 265. Document Revision History
The table below indicates edits made to the Platform Designer System Design Components content since its
creation.

Date Version Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer.
• Changed instances of AXI Default Slave to Error Response Slave.
• Updated topics: Error Response Slave.
• Updated Figure: Error Response Slave Parameter Editor.
• Added Figure: Error Response Slave Parameter Editor with Enabled CSR Support.
• Updated topics: CSR Registers and renamed to Error Response Slave CSR Registers.
• Added topic: Error Response Slave Access Violation Service.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2016.05.03 16.0.0 Updated Address Span Extender
• Address Span Extender register mapping better explained
• Address Span Extender Parameters table added
• Address Span Extender example added

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Avalon-MM Unaligned Burst Expansion Bridge and Avalon-MM Pipeline Bridge, Maximum
pending read transactions parameter. Extended description.

continued...

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
984

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
https://www.altera.com/documentation/nik1412467993397.html#nik1412467919954

Date Version Changes

December 2014 14.1.0 • AXI Timout Bridge.
• Added notes to Avalon-MM Clock Crossing Bridge pertaining to:

— SDC constraints for its internal asynchronous FIFOs.
— FIFO-based clock crossing.

June 2014 14.0.0 • AXI Bridge support.
• Address Span Extender updates.
• Avalon-MM Unaligned Burst Expansion Bridge support.

November 2013 13.1.0 • Address Span Extender

May 2013 13.0.0 • Added Streaming Pipeline Stage support.
• Added AMBA APB support.

November 2012 12.1.0 • Moved relevant content from the Embedded Peripherals IP User Guide.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

14 Platform Designer System Design Components

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
985

https://www.altera.com/search-archives

15 Managing Metastability with the Intel Quartus Prime
Software

You can use the Intel Quartus Prime software to analyze the average mean time
between failures (MTBF) due to metastability caused by synchronization of
asynchronous signals, and optimize the design to improve the metastability MTBF.

All registers in digital devices, such as FPGAs, have defined signal-timing requirements
that allow each register to correctly capture data at its input ports and produce an
output signal. To ensure reliable operation, the input to a register must be stable for a
minimum amount of time before the clock edge (register setup time or tSU) and a
minimum amount of time after the clock edge (register hold time or tH). The register
output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the voltage at the register
output hovers at a value between the high and low states, which means the output
transition to a defined high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the metastable signal, which
can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing
requirements, so that metastability does not occur. Metastability problems commonly
occur when a signal is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time relative to the destination
clock.

The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design. You
should determine an acceptable target MTBF in the context of your entire system and
taking in account that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design,
can be calculated using information about the design and the device characteristics.
Improving the metastability MTBF for your design reduces the chance that signal
transfers could cause metastability problems in your device.

The Intel Quartus Prime software provides analysis, optimization, and reporting
features to help manage metastability in Intel designs. These metastability features
are supported only for designs constrained with the Intel Quartus Prime Timing
Analyzer. Both typical and worst-case MBTF values are generated for select device
families.

Related Links

• Understanding Metastability in FPGAs
For more information about metastability due to signal synchronization, its
effects in FPGAs, and how MTBF is calculated

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Reliability Report
For information about Intel device reliability

15.1 Metastability Analysis in the Intel Quartus Prime Software

When a signal transfers between circuitry in unrelated or asynchronous clock domains,
the first register in the new clock domain acts as a synchronization register.

To minimize the failures due to metastability in asynchronous signal transfers, circuit
designers typically use a sequence of registers (a synchronization register chain or
synchronizer) in the destination clock domain to resynchronize the signal to the new
clock domain and allow additional time for a potentially metastable signal to resolve to
a known value. Designers commonly use two registers to synchronize a new signal,
but a standard of three registers provides better metastability protection.

The timing analyzer can analyze and report the MTBF for each identified synchronizer
that meets its timing requirements, and can generate an estimate of the overall
design MTBF. The software uses this information to optimize the design MTBF, and you
can use this information to determine whether your design requires longer
synchronizer chains.

Related Links

• Metastability and MTBF Reporting on page 989

• MTBF Optimization on page 992

15.1.1 Synchronization Register Chains

A synchronization register chain, or synchronizer, is defined as a sequence of registers
that meets the following requirements:

• The registers in the chain are all clocked by the same clock or phase-related
clocks.

• The first register in the chain is driven asynchronously or from an unrelated clock
domain.

• Each register fans out to only one register, except the last register in the chain.

The length of the synchronization register chain is the number of registers in the
synchronizing clock domain that meet the above requirements. The figure shows a
sample two-register synchronization chain.

Figure 318. Sample Synchronization Register Chain

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Output
Registers

D Q D Q D Q

Synchronization Chain

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
987

http://www.altera.com/literature/rr/rr.pdf

The path between synchronization registers can contain combinational logic if all
registers of the synchronization register chain are in the same clock domain. The
figure shows an example of a synchronization register chain that includes logic
between the registers.

Figure 319. Sample Synchronization Register Chain Containing Logic

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Clock 2

Clock 2

Output
Registers

D Q D Q

D Q

D Q

Synchronization Chain

Data

The timing slack available in the register-to-register paths of the synchronizer allows a
metastable signal to settle, and is referred to as the available settling time. The
available settling time in the MTBF calculation for a synchronizer is the sum of the
output timing slacks for each register in the chain. Adding available settling time with
additional synchronization registers improves the metastability MTBF.

Related Links

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
on page 988

15.1.2 Identify Synchronizers for Metastability Analysis

The first step in enabling metastability MTBF analysis and optimization in the Intel
Quartus Prime software is to identify which registers are part of a synchronization
register chain. You can apply synchronizer identification settings globally to
automatically list possible synchronizers with the Synchronizer identification option
on the Timing Analyzer page in the Settings dialog box.

Synchronization chains are already identified within most Intel FPGA intellectual
property (IP) cores.

Related Links

Identify Synchronizers for Metastability Analysis on page 988

15.1.3 How Timing Constraints Affect Synchronizer Identification and
Metastability Analysis

The timing analyzer can analyze metastability MTBF only if a synchronization chain
meets its timing requirements. The metastability failure rate depends on the timing
slack available in the synchronizer’s register-to-register connections, because that

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
988

slack is the available settling time for a potential metastable signal. Therefore, you
must ensure that your design is correctly constrained with the real application
frequency requirements to get an accurate MTBF report.

In addition, the Auto and Forced If Asynchronous synchronizer identification
options use timing constraints to automatically detect the synchronizer chains in the
design. These options check for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly with timing
constraints.

The timing analyzer views input ports as asynchronous signals unless they are
associated correctly with a clock domain. If an input port fans out to registers that are
not acting as synchronization registers, apply a set_input_delay constraint to the
input port; otherwise, the input register might be reported as a synchronization
register. Constraining a synchronous input port with a set_max_delay constraint for
a setup (tSU) requirement does not prevent synchronizer identification because the
constraint does not associate the input port with a clock domain.

Instead, use the following command to specify an input setup requirement associated
with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu
requirement> <input port name>

Registers that are at the end of false paths are also considered synchronization
registers because false paths are not timing-analyzed. Because there are no timing
requirements for these paths, the signal may change at any point, which may violate
the tSU and tH of the register. Therefore, these registers are identified as
synchronization registers. If these registers are not used for synchronization, you can
turn off synchronizer identification and analysis. To do so, set Synchronizer
Identification to Off for the first synchronization register in these register chains.

15.2 Metastability and MTBF Reporting

The Intel Quartus Prime software reports the metastability analysis results in the
Compilation Report and Timing Analyzer reports.

The MTBF calculation uses timing and structural information about the design, silicon
characteristics, and operating conditions, along with the data toggle rate.

If you change the Synchronizer Identification settings, you can generate new
metastability reports by rerunning the timing analyzer. However, you should rerun the
Fitter first so that the registers identified with the new setting can be optimized for
metastability MTBF.

Related Links

• Metastability Reports on page 990

• MTBF Optimization on page 992

• Synchronizer Data Toggle Rate in MTBF Calculation on page 992

• Understanding Metastability in FPGAs
For more information about how metastability MTBF is calculated

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
989

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

15.2.1 Metastability Reports

Metastability reports provide summaries of the metastability analysis results. In
addition to the MTBF Summary and Synchronizer Summary reports, the Timing
Analyzer tool reports additional statistics in a report for each synchronizer chain.

Note: If the design uses only the Auto Synchronizer Identification setting, the reports
list likely synchronizers but do not report MTBF. To obtain an MTBF for each register
chain, force identification of synchronization registers.

Note: If the synchronizer chain does not meet its timing requirements, the reports list
identified synchronizers but do not report MTBF. To obtain MTBF calculations, ensure
that the design is properly constrained and that the synchronizer meets its timing
requirements.

Related Links

• Identify Synchronizers for Metastability Analysis on page 988

• How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis on page 988

15.2.1.1 MTBF Summary Report

The MTBF Summary reports an estimate of the overall robustness of cross-clock
domain and asynchronous transfers in the design. This estimate uses the MTBF results
of all synchronization chains in the design to calculate an MTBF for the entire design.

15.2.1.1.1 Typical and Worst-Case MTBF of Design

The MTBF Summary Report shows the Typical MTBF of Design and the Worst-Case
MTBF of Design for supported fully-characterized devices. The typical MTBF result
assumes typical conditions, defined as nominal silicon characteristics for the selected
device speed grade, as well as nominal operating conditions. The worst case MTBF
result uses the worst case silicon characteristics for the selected device speed grade.

When you analyze multiple timing corners in the timing analyzer, the MTBF calculation
may vary because of changes in the operating conditions, and the timing slack or
available metastability settling time. Intel recommends running multi-corner timing
analysis to ensure that you analyze the worst MTBF results, because the worst timing
corner for MTBF does not necessarily match the worst corner for timing performance.

Related Links

Timing Analyzer page

15.2.1.1.2 Synchronizer Chains

The MTBF Summary report also lists the Number of Synchronizer Chains Found
and the length of the Shortest Synchronizer Chain, which can help you identify
whether the report is based on accurate information.

If the number of synchronizer chains found is different from what you expect, or if the
length of the shortest synchronizer chain is less than you expect, you might have to
add or change Synchronizer Identification settings for the design. The report also
provides the Worst Case Available Settling Time, defined as the available settling
time for the synchronizer with the worst MTBF.

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
990

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm

You can use the reported Fraction of Chains for which MTBFs Could Not be
Calculated to determine whether a high proportion of chains are missing in the
metastability analysis. A fraction of 1, for example, means that MTBF could not be
calculated for any chains in the design. MTBF is not calculated if you have not
identified the chain with the appropriate Synchronizer identification option, or if
paths are not timing-analyzed and therefore have no valid slack for metastability
analysis. You might have to correct your timing constraints to enable complete
analysis of the applicable register chains.

15.2.1.1.3 Increasing Available Settling Time

The MTBF Summary report specifies how an increase of 100ps in available settling
time increases the MTBF values. If your MTBF is not satisfactory, this metric can help
you determine how much extra slack would be required in your synchronizer chain to
allow you to reach the desired design MTBF.

15.2.1.2 Synchronizer Summary Report

The Synchronizer Summary lists the synchronization register chains detected in the
design depending on the Synchronizer Identification setting.

The Source Node is the register or input port that is the source of the asynchronous
transfer. The Synchronization Node is the first register of the synchronization chain.
The Source Clock is the clock domain of the source node, and the Synchronization
Clock is the clock domain of the synchronizer chain.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical
MTBF, for each appropriately identified synchronization register chain that meets its
timing requirement.

Related Links

Synchronizer Chain Statistics Report in the Timing Analyzer on page 991

15.2.1.3 Synchronizer Chain Statistics Report in the Timing Analyzer

The timing analyzer provides an additional report for each synchronizer chain.

The Chain Summary tab matches the Synchronizer Summary information described
in the Synchronizer Summary Report, while the Statistics tab adds more details.
These details include whether the Method of Synchronizer Identification was User
Specified (with the Forced if Asynchronous or Forced settings for the
Synchronizer Identification setting), or Automatic (with the Auto setting). The
Number of Synchronization Registers in Chain report provides information about
the parameters that affect the MTBF calculation, including the Available Settling
Time for the chain and the Data Toggle Rate Used in MTBF Calculation.

The following information is also included to help you locate the chain in your design:

• Source Clock and Asynchronous Source node of the signal.

• Synchronization Clock in the destination clock domain.

• Node names of the Synchronization Registers in the chain.

Related Links

Synchronizer Data Toggle Rate in MTBF Calculation on page 992

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
991

15.2.2 Synchronizer Data Toggle Rate in MTBF Calculation

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. That is, the arriving data is assumed to
switch once every eight source clock cycles.

If multiple clocks apply, the highest frequency is used. If no source clocks can be
determined, the data rate is taken as 12.5% of the synchronization clock frequency.

If you know an approximate rate at which the data changes, specify it with the
Synchronizer Toggle Rate assignment in the Assignment Editor. You can also apply
this assignment to an entity or the entire design. Set the data toggle rate, in number
of transitions per second, on the first register of a synchronization chain. The timing
analyzer takes the specified rate into account when computing the MTBF of that
particular register chain. If a data signal never toggles and does not affect the
reliability of the design, you can set the Synchronizer Toggle Rate to 0 for the
synchronization chain so the MTBF is not reported. To apply the assignment with Tcl,
use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

In addition to Synchronizer Toggle Rate, there are two other assignments
associated with toggle rates, which are not used for metastability MTBF calculations.
The I/O Maximum Toggle Rate is only used for pins, and specifies the worst-case
toggle rates used for signal integrity purposes. The Power Toggle Rate assignment is
used to specify the expected time-averaged toggle rate, and is used by the Power
Analyzer to estimate time-averaged power consumption.

15.3 MTBF Optimization

In addition to reporting synchronization register chains and MTBF values found in the
design, the Intel Quartus Prime software can also protect these registers from
optimizations that might negatively impact MTBF and can optimize the register
placement and routing if the MTBF is too low.

Synchronization register chains must first be explicitly identified as synchronizers.
Intel recommends that you set Synchronizer Identification to Forced If
Asynchronous for all registers that are part of a synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical
synthesis, are not performed on identified synchronization registers. The Fitter
protects the number of synchronization registers specified by the Synchronizer
Register Chain Length option.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by placing
and routing the registers to increase their output setup slack values. Adding slack in
the synchronizer chain increases the available settling time for a potentially
metastable signal, which improves the chance that the signal resolves to a known
value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length
option.

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
992

Metastability optimization is on by default. To view or change the Optimize Design
for Metastability option, click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Fitter). To turn the optimization on or off with Tcl, use the
following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Links

Identify Synchronizers for Metastability Analysis on page 988

15.3.1 Synchronization Register Chain Length

The Synchronization Register Chain Length option specifies how many registers
should be protected from optimizations that might reduce MTBF for each register
chain, and controls how many registers should be optimized to increase MTBF with the
Optimize Design for Metastability option.

For example, if the Synchronization Register Chain Length option is set to 2,
optimizations such as register duplication or logic retiming are prevented from being
performed on the first two registers in all identified synchronization chains. The first
two registers are also optimized to improve MTBF when the Optimize Design for
Metastability option is turned on.

The default setting for the Synchronization Register Chain Length option is 3. The
first register of a synchronization chain is always protected from operations that might
reduce MTBF, but you should set the protection length to protect more of the
synchronizer chain. Intel recommends that you set this option to the maximum length
of synchronization chains you have in your design so that all synchronization registers
are preserved and optimized for MTBF.

Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis) to change the global Synchronization Register Chain Length option.

You can also set the Synchronization Register Chain Length on a node or an entity
in the Assignment Editor. You can set this value on the first register in a
synchronization chain to specify how many registers to protect and optimize in this
chain. This individual setting is useful if you want to protect and optimize extra
registers that you have created in a specific synchronization chain that has low MTBF,
or optimize less registers for MTBF in a specific chain where the maximum frequency
or timing performance is not being met. To make the global setting with Tcl, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain
with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number
of registers> -to <register or instance name>

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
993

15.4 Reducing Metastability Effects

You can check your design's metastability MTBF in the Metastability Summary report,
and determine an acceptable target MTBF given the context of your entire system and
the fact that MTBF calculations are statistical estimates. A high metastability MTBF
(such as hundreds or thousands of years between metastability failures) indicates a
more robust design.

This section provides guidelines to ensure complete and accurate metastability
analysis, and some suggestions to follow if the Intel Quartus Prime metastability
reports calculate an unacceptable MTBF value. The Timing Optimization Advisor
(available from the Tools menu) gives similar suggestions in the Metastability
Optimization section.

Related Links

Metastability Reports on page 990

15.4.1 Apply Complete System-Centric Timing Constraints for the Timing
Analyzer

To enable the Intel Quartus Prime metastability features, make sure that the timing
analyzer is used for timing analysis.

Ensure that the design is fully timing constrained and that it meets its timing
requirements. If the synchronization chain does not meet its timing requirements,
MTBF cannot be calculated. If the clock domain constraints are set up incorrectly, the
signal transfers between circuitry in unrelated or asynchronous clock domains might
be identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using FPGA-
centric timing constraints.

You should use set_input_delay constraints in place of set_max_delay
constraints to associate each input port with a clock domain to help eliminate false
positives during synchronization register identification.

Related Links

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
on page 988

15.4.2 Force the Identification of Synchronization Registers

Use the guidelines in “Identifying Synchronizers for Metastability Analysis” to ensure
the software reports and optimizes the appropriate register chains.

Identify synchronization registers with the Synchronizer Identification set to
Forced If Asynchronous in the Assignment Editor. If there are any registers that the
software detects as synchronous but you want to be analyzed for metastability, apply
the Forced setting to the first synchronizing register. Set Synchronizer
Identification to Off for registers that are not synchronizers for asynchronous
signals or unrelated clock domains.

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
994

To help you find the synchronizers in your design, you can set the global
Synchronizer Identification setting on the Timing Analyzer page of the Settings
dialog box to Auto to generate a list of all the possible synchronization chains in your
design.

Related Links

Identify Synchronizers for Metastability Analysis on page 988

15.4.3 Set the Synchronizer Data Toggle Rate

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency.

To obtain a more accurate MTBF for a specific chain or all chains in your design, set
the Synchronizer Toggle Rate.

Related Links

Synchronizer Data Toggle Rate in MTBF Calculation on page 992

15.4.4 Optimize Metastability During Fitting

Ensure that the Optimize Design for Metastability setting is turned on.

Related Links

MTBF Optimization on page 992

15.4.5 Increase the Length of Synchronizers to Protect and Optimize

Increase the Synchronizer Chain Length parameter to the maximum length of
synchronization chains in your design. If you have synchronization chains longer than
2 identified in your design, you can protect the entire synchronization chain from
operations that might reduce MTBF and allow metastability optimizations to improve
the MTBF.

Related Links

Synchronization Register Chain Length on page 993

15.4.6 Increase the Number of Stages Used in Synchronizers

Designers commonly use two registers in a synchronization chain to minimize the
occurrence of metastable events, and a standard of three registers provides better
metastability protection. However, synchronization chains with two or even three
registers may not be enough to produce a high enough MTBF when the design runs at
high clock and data frequencies.

If a synchronization chain is reported to have a low MTBF, consider adding an
additional register stage to your synchronization chain. This additional stage increases
the settling time of the synchronization chain, allowing more opportunity for the signal
to resolve to a known state during a metastable event. Additional settling time
increases the MTBF of the chain and improves the robustness of your design. However,
adding a synchronization stage introduces an additional stage of latency on the signal.

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
995

If you use the Altera FIFO IP core with separate read and write clocks to cross clock
domains, increase the metastability protection (and latency) for better MTBF. In the
DCFIFO parameter editor, choose the Best metastability protection, best fmax,
unsynchronized clocks option to add three or more synchronization stages. You can
increase the number of stages to more than three using the How many sync
stages? setting.

15.4.7 Select a Faster Speed Grade Device

The design MTBF depends on process parameters of the device used. Faster devices
are less susceptible to metastability issues. If the design MTBF falls significantly below
the target MTBF, switching to a faster speed grade can improve the MTBF
substantially.

15.5 Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run some procedures at a command prompt. For detailed information about
scripting command options, refer to the Intel Quartus Prime Command-Line and Tcl
API Help browser.

To run the Help browser, type the following command at the command prompt and
then press Enter:

quartus_sh --qhelp

Related Links

• Tcl Scripting
For more information about Tcl scripting

• Intel Quartus Prime Settings File Reference Manual
For more information about settings and constraints in the Intel Quartus Prime
software

• Command-Line Scripting
For more information about command-line scripting

• About Intel Quartus Prime Scripting
For more information about command-line scripting

15.5.1 Identifying Synchronizers for Metastability Analysis

To apply the global Synchronizer Identification assignment, use the following
command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION <OFF|AUTO|"FORCED IF
ASYNCHRONOUS">

To apply the Synchronizer Identification assignment to a specific register or
instance, use the following command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION <AUTO|"FORCED IF
ASYNCHRONOUS"|FORCED|OFF> -to <register or instance name>

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
996

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554
http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_view_using_tcl_scripts.htm

15.5.2 Synchronizer Data Toggle Rate in MTBF Calculation

To specify a toggle rate for MTBF calculations as described on page “R**Synchronizer
Data Toggle Rate in MTBF Calculation”, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

Related Links

Synchronizer Data Toggle Rate in MTBF Calculation on page 992

15.5.3 report_metastability and Tcl Command

If you use a command-line or scripting flow, you can generate the metastability
analysis reports described in “C**Metastability Reports” outside of the Intel Quartus
Prime and user interfaces.

The table describes the options for the report_metastability and Tcl command.

Table 266. report_metastabilty Command Options

Option Description

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension
specified in the file name determines the file type — either
*.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel.

-stdout Indicates the report be sent to the standard output, via
messages. This option is required only if you have selected
another output format, such as a file, and would also like to
receive messages.

Related Links

Metastability Reports on page 990

15.5.4 MTBF Optimization

To ensure that metastability optimization described on page “C**MTBF Optimization”
is turned on (or to turn it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Links

MTBF Optimization on page 992

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
997

15.5.5 Synchronization Register Chain Length

To globally set the number of registers in a synchronization chain to be protected and
optimized as described on page “C**Synchronization Register Chain Length”, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain,
use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number
of registers> -to <register or instance name>

Related Links

Synchronization Register Chain Length on page 993

15.6 Managing Metastability

Intel’s Intel Quartus Prime software provides industry-leading analysis and
optimization features to help you manage metastability in your FPGA designs. Set up
your Intel Quartus Prime project with the appropriate constraints and settings to
enable the software to analyze, report, and optimize the design MTBF. Take advantage
of these features in the Intel Quartus Prime software to make your design more robust
with respect to metastability.

15.7 Document Revision History

Table 267. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Corrected broken links to other documents.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical Optimization
Settings to Compiler Settings.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 Technical edit.

November 2009 9.1.0 Clarified description of synchronizer identification settings.
Minor changes to text and figures throughout document.

March 2009 9.0.0 Initial release.

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
998

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

15 Managing Metastability with the Intel Quartus Prime Software

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
999

https://www.altera.com/search-archives

16 Mitigating Single Event Upset
Single event upsets (SEUs) are rare, unintended changes in the state of an FPGA's
internal memory elements caused by cosmic radiation effects. The change in state is a
soft error and the FPGA incurs no permanent damage. Because of the unintended
memory state, the FPGA may operate erroneously until background scrubbing fixes
the upset.

The Intel Quartus Prime software offers several features to detect and correct the
effects of SEU, or soft errors, as well as to characterize the effects of SEU on your
designs. Additionally, some Intel FPGAs contain dedicated circuitry to help detect and
correct errors.

Figure 320. Tools, IP, and Circuitry for Detecting and Correcting SEU

EMR Unloader
IP Core

SEU FIT
Report

Fault Injection
Debugger

Hierarchy Tagging
(Design Partitions)

Intel FPGA

Sensitivity Map
Header File (.smh)

Embedded Memory ECC Circuitry
(Dedicated or Soft)

Use hard or soft ECC circuitry
to correct errors in the FPGA’s
embedded memory.

The Projected SEU FIT by Component Usage
report provides the projected design-specific
SEU FIT for your chosen device.

 Classifies each block in your design based on its
sensitivity to SEU. During FPGA operation, the
Advanced SEU Detection IP core reads the physical
location of the upset in the FPGA and looks up
the sensitivity classification in the .smh file.

Detects and corrects soft
errors in CRAM.

Advanced SEU
Detection IP Core

Fault Injection
IP Core

CRAM
Error Detection

Simulate SEU in your design using
the Fault Injection Debugger and
the Fault Injection IP core.

Intel FPGAs have memory in user logic (block memory and registers) and in
Configuration Random Access Memory (CRAM). The Intel Quartus Prime Programmer
loads the CRAM with a .sof file. Then, the CRAM configures all FPGA logic and
routing. If an SEU strikes a CRAM bit, the effect can be harmless if the device does not
use the CRAM bit. However, the effect can be severe if the SEU affects critical logic or
internal signal routing.

Often, a design does not require SEU mitigation because of the low chance of
occurrence. However, for highly complex systems, such as systems with multiple high-
density components, the error rate may be a significant system design factor. If your

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

system includes multiple FPGAs and requires very high reliability and availability, you
should consider the implications of soft errors. Use the techniques in this chapter to
detect and recover from these types of errors.

Related Links

• Introduction to Single Event Upsets

• Understanding Single Event Functional Interrupts in FPGA Designs White Paper

16.1 Failure Rates

The Soft Error Rate (SER) or SEU reliability is expressed in Failure in Time (FIT) units.
One FIT unit is one soft error occurrence per billion hours of operation.

• For example, a design with 5,000 FIT experiences a mean of 5,000 SEU events in
1 billion hours (or 8,333.33 years). Because SEU events are statistically
independent, FIT is additive: if a single FPGA has 5,000 FIT, then 10 FPGAs have
50,000 FIT (or 50K failures in 8,333 years).

Another reliability measurement is the mean time to failure (MTTF), which is the
reciprocal of the FIT or 1/FIT.

• For a FIT of 5,000 in standard units of failures/billion hours, MTTF is:

1 /(5,000/1Bh) =1 billion/5,000 = 200,000 hours = 22.83 years

SEU events follow a Poisson distribution, and the cumulative distribution function
(CDF) for mean time between failures (MTBF) is an exponential distribution. For more
information about failure rate calculation, refer to the Intel FPGA Reliability Report.

Neutron SEU incidence varies by altitude, latitude, and other environmental factors.
The Intel Quartus Prime software provides SEU FIT reports based on compiles for sea
level in Manhattan, New York. The JESD 89A specification defines the test parameters.

Tip: You can convert the data to other locations and altitudes using calculators, such as
those at www.seutest.com. Additionally, you can adjust the SEU rates in your project
by including the relative neutron flux (calculated at www.seutest.com) in your
project's .qsf file.

Related Links

• SEU FIT Parameters Report on page 1010

• JEDEC Standard 89A

• http://seutest.com/
Soft-error Testing Resources and Calculator

• Intel FPGA Reliability Report

16.2 Mitigating SEU Effects in Embedded User RAM

In the Intel Quartus Prime Pro Edition software, the implementation of the error
correcting code (ECC) depends on the memory block where the RAM IP is instantiated.
A RAM IP that is instantiated in a M20K block uses dedicated ECC circuitry. Conversely,
a RAM IP that is instantiated in a LUTRAM uses a soft IP to implement the ECC. This is
valid for all devices that the Intel Quartus Prime Pro Edition software supports.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1001

https://www.altera.com/literature/wp/wp-01206-introduction-single-event-upsets.pdf
https://www.altera.com/literature/wp/wp-01207-single-event-functional-interrupt.pdf
http://www.jedec.org/sites/default/files/docs/jesd89a.pdf
http://seutest.com/
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/rr/rr.pdf

You can reduce the FIT rate for these memories to near zero by enabling the ECC
encode/decode blocks. On ingress, the ECC encoder adds 8 bits of redundancy to a 32
bit word. On egress, the decoder converts the 40 bit word back to 32 bits. You use the
redundant bits to detect and correct errors in the data resulting from SEU.

The existence of hard ECC and the strength of the ECC code (number of corrected and
detected bits) varies by device family. Refer to the device handbook for details. If a
device does not have a hard ECC block you can add ECC parity or use an ECC IP core.

The SRAM memories associated with processor subsystems, such as for SoC devices,
contain dedicated hard ECC. You do not need to take action to protect these
memories.

For more information about embedded memories and ECC, refer to the Embedded
Memory (RAM: 1-PORT, RAM:2-PORT, ROM: 1-PORT, and ROM: 2-PORT) User Guide.
For Intel Stratix 10 devices, refer to the Intel Stratix 10 Embedded Memory User
Guide.

Related Links

• Error Correction Code
In Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM:
2-PORT) User Guide

• Memory Blocks Error Correction Code Support
In Intel Stratix 10 Embedded Memory User Guide

16.2.1 Configuring RAM to Enable ECC

To enable ECC, configure the RAM as a 2-port RAM with independent read and write
addresses. Using this feature does not reduce the available logic.

Although the ECC checking function results in some additional output delay, the hard
ECC has a much higher fMAX compared with an equivalent soft ECC block implemented
in general logic. Additionally, you can pipeline the hard IP in the M20K block by
configuring the ECC-enabled RAM to use an output register at the corrected data
output port. This implementation increases performance and adds latency.
For devices without dedicated circuitry, you can implement ECC by instantiating the
ALTECC IP core, which performs ECC generation and checking functions.

Figure 321. Memory Storage and ECC

Data
Words

ECC
Values EC

C
Da

ta
 O

ut
pu

t W
or

d

ECC
Encode

Co
rre

cte
d D

at
a o

ut
pu

t

Error Detection
and Correction

Da
ta

 In
pu

t W
or

d

Memory Storage

Related Links

ALTECC (Error Correction Code: Encoder/Decoder)

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1002

https://www.altera.com/documentation/eis1413425716965.html#eis1413271026005
https://www.altera.com/documentation/vgo1439451000304.html#vgo1440130938080
https://www.altera.com/documentation/sam1395330298052.html#sam1395329715902

16.3 Mitigating SEU Effects in Configuration RAM (Intel Arria 10
and Intel Cyclone 10 GX devices)

Intel Arria 10 and Intel Cyclone 10 GX devices contain error detect CRC (EDCRC) hard
blocks. These blocks detect and correct soft errors in CRAM, and are similar to those
that protect internal user memory.

Intel FPGAs contain frames of CRAM. The size and number of frames is device specific.
The device continually checks the CRAM frames for errors by loading each frame into a
data register. The EDCRC block checks the frame for errors.

When the FPGA finds a soft error, the FPGA asserts its CRC_ERROR pin. You can
monitor this pin in your system. When your system detects that the FPGA asserted
this pin during operation, indicating the FPGA detected a soft error in the configuration
RAM, the system can take action to recover from the error. For example, the system
can perform a soft reset (after waiting for background scrubbing), reprogram the
FPGA, or classify the error as benign and ignore it.

Figure 322. CRAM Frame

CRC_ERROR

CRAM
Frame

32-Bit
CRC

CRC Error
Detection/Correction

Engine

CRC Engine Steps
Through Frame by Frame

To enable error detection, point to Assignments ➤ Device ➤ Device and Pin
Options ➤ Error Detection CRC, and turn on error detection settings.

Related Links

• Single Level Upsets

• CRAM Error Detection Settings Reference on page 1015

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1003

http://www.altera.com/support/reliability/seu/seu-index.html

16.4 Mitigating SEU Effects in Configuration RAM (Intel Stratix 10
devices)

The Intel Stratix 10 device overlays the rows and columns with sectors to address the
core logic for configuration and security. Each sector has its own EDC circuitry that
calculates and uses parity syndrome for sector error detection and correction. The
Local Sector Manager (LSM) controls and manages the EDC circuitry, and
communicates with the Secure Device Manager (SDM) through the configuration
network.

To enable error detection, point to Assignments ➤ Device ➤ Device and Pin
Options ➤ Error Detection CRC, and turn on error detection settings.

16.4.1 Error Message Register

Intel Stratix 10 devices store a maximum of four different error messages in queue
when detecting an SEU error. You can retrieve these error messages through the Error
Message Register (EMR). The EMR contains information on the error count in the
queue, the sector address, error type, and the location of the error. You can shift out
the contents of the EMR using:

• Fault Injection Debugger tool

• Intel Stratix 10 Advanced SEU Detection IP core

Table 268. Error Message Register Description

Name Width Bit Description

Error count 32 — Number of SEU error queue before processing
READ_SEU_ERROR command (0 if no SEU errors are on the
queue)

Sector address 32 31:24 Reserved

23:16 The sector number of the sector with the error

15:4 Reserved

3:0 The number of errors detected in the sector

Error location(13) 32 31:29 Error type:

Value Description

1 Single bit

2 Multi-bit

28 Correction Status:

Value Description

0 Not corrected

1 Corrected

continued...

(13) The error location provides the bit position for single bit errors only. For multiple bit errors, bit
[23:0] returns 0.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1004

Name Width Bit Description

27:24 Reserved

23:12 Bit position within frame

11:0 Combined of Row and Frame index (0-2336)

The SDM stores the SEU error information in an error queue that behaves like a stack,
so the last error injected is the first to be dequeued.

16.4.2 SEU_ERROR Pin Behavior

The SEU_ERROR signal goes high whenever the error message queue contains one or
more error messages. The signal stays high if there is an error message in the queue.
The SEU_ERROR signal goes low only when the SEU error message queue is empty
which happens after you shift out all the error messages.

You must set to the SEU_ERROR pin function to observe the SEU_ERROR pin behavior.

16.5 Internal Scrubbing

In the Intel Quartus Prime Pro Edition software, all FPGA families support automatic
CRAM error correction without reloading the original CRAM contents from an external
copy of the original .sof.

For Intel Arria 10 and Intel Cyclone 10 GX devices, the internal scrubbing feature
corrects single-bit and double-adjacent errors automatically. For Intel Stratix 10
devices, the internal scrubbing feature corrects only single-bit errors.

For Intel Arria 10 and Intel Cyclone 10 GX devices, if the FPGA finds a CRC error in a
CRAM frame, the FPGA reconstructs the frame from the error correcting code
calculated for that frame. Then the FPGA writes the correct frame into the CRAM.

Intel Stratix 10 devices calculate parity during configuration, and use this information
to reconstruct the correct bit value.

Note: When the system detects a correctable upset, the correction is automatic. However,
internal scrubbing cannot fix the device to a known good state.

If you enable internal scrubbing, you must still plan a recovery sequence. Although
scrubbing can restore the CRAM array to intended configuration, latency occurs
between the soft error detection and correction. During this latency period, the FPGA
may operate with errors. If the FPGA must scan a large number of configuration bits,
this latency can be up to 100 milliseconds. For more information about latency refer to
the device datasheet.

To enable internal scrubbing, click Assignments ➤ Device ➤ Device and Pin
Options ➤ Error Detection CRC and turn on the Enable internal scrubbing
option.

Related Links

• Error Detection CRC Page
In Intel Quartus Prime Help

• SEU Recovery on page 1006

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1005

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_dp_error_detec.htm

• CRAM Error Detection Settings Reference on page 1015

16.6 SEU Recovery

After correcting a CRAM bit flip, the FPGA is in its original configuration with respect to
logic and routing. However, the FPGA may have an illegal internal state, for example,
if the SEU error affects the function or operation of the circuit, resulting in erroneous
output.

Errors due to faulty operation can propagate elsewhere within the FPGA or to the
system outside the FPGA. During your design process, determine the possible SEU
outcomes and design a recovery response that considers resetting the FPGA to a
known state.

For more information, refer to Recovering from a Single Event Upset section of the
Intel Stratix 10 SEU Mitigation User Guide.

Related Links

Recovering from a Single Event Upset
In Intel Stratix 10 SEU Mitigation User Guide

16.6.1 Planning for SEU Recovery

Reconfiguring a running FPGA typically has a significant system impact. When
planning for SEU recovery, you must account for the time required to bring the FPGA
to a state consistent with the current state of the system. For example, an internal
state machine that is in an illegal state may require reset. Also, the surrounding logic
may need to account for this unexpected operation.

Often, an SEU impacts CRAM bits that the implemented design does not use (for
example, CRAM bits that control unused logic and routing wires). Depending on the
implementation, FPGAs with high utilization only use about 40% of available CRAM
bits. Therefore, only 40% of potential SEU events in the entire FPGA require
intervention, and you can ignore the remaining 60%. Designs that do not completely
fill the FPGA use even fewer available CRAM bits.

You can determine which portions of the implemented design are not critical to the
FPGA's function. Examples include test circuitry that is not important to the FPGA
operation, or other non-critical functions that the system can log but does not need to
reprogram or reset.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1006

https://www.altera.com/documentation/sss1439970783924.html#sss1444648233198

Figure 323. Sensitivity Processing Flow

Critical Bit?

CRAM EDC Error?

Normal Operation

Look Up Sensitivity
of CRAM Bit

Notify System

Take Corrective
Action

yes

no

yes

no
Critical Bit?

CRAM CRC Error?

Normal Operation

Look Up Sensitivity
of CRAM Bit

Notify System

Take Corrective
Action

yes

no

yes

no

Intel Arria 10 - Intel Cyclone 10 GX
Devices

Intel Stratix 10
Devices

Related Links

• AN 737: SEU Detection and Recovery in Intel Arria 10 Devices

• SEU Sensitivity Processing
In Intel Stratix 10 SEU Mitigation User Guide

• Understanding Single Event Functional Interrupts in FPGA Designs White Paper

16.6.2 Designating the Sensitivity of the Design Hierarchy

In the Intel Quartus Prime software, you indicate the criticality of each logic block by
generating partitions, and assigning a sensitivity ID tag to each partition. The Intel
Quartus Prime software stores this information in a Sensitivity Map Header File
(.smh).

When an error occurs during system operation, the system determines the impact of
the error by looking up the classification in the .smh file. The system can then take
corrective action based on the classification.

Note: You must have a licensed version of Intel Quartus Prime software to generate .smh
files.

To access the .smh file, you must add an instance of the Advanced SEU Detection IP
core to your design.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1007

https://www.altera.com/documentation/sss1429097548237.html#sss1429097674429
https://www.altera.com/documentation/sss1439970783924.html#bly1505283308593
https://www.altera.com/literature/wp/wp-01207-single-event-functional-interrupt.pdf

Related Links

• Advanced SEU Detection IP Core User Guide

• Intel Stratix 10 SEU Mitigation User Guide

16.6.2.1 Hierarchy Tagging

The Intel Quartus Prime hierarchy tagging feature allows you to improve design-
effective FIT rate by tagging only the critical logic for device operation.

You can also define the system recovery procedure based on knowledge of logic
impaired by SEU. This technique reduces downtime for the FPGA and the system in
which the FPGA resides. Other advantages of hierarchy tagging are:

• Increases system stability by avoiding disruptive recovery procedures for
inconsequential errors.

• Allows diverse corrective action for different design logic.

The .smh file contains a mask for design sensitive bits in a compressed format. The
Intel Quartus Prime software generates the sensitivity mask for the entire design.

Related Links

SEU Mitigation in Intel FPGA Devices: Hierarchy Tagging
Online Course

16.6.2.2 Using Partitions to Specify Logic Sensitivity ID

1. In the Intel Quartus Prime software, designate a design block as a design
partition.

2. Specify the sensitivity ID assigned to the partition in the ASD Region column in
the Design Partitions window.

Figure 324. ASD Region Column in the Design Partitions Window

Assign the partition a numeric sensitivity value from 0 to 16. The value represents
the sensitivity tag associated with the partition.

• A sensitivity tag of 1 is the same as no assignment, and indicates a basic
sensitivity level, which is "region used in design". If a soft error occurs in this
partition, the Intel FPGA Advanced SEU Detection IP core reports the error as
a critical error in the sensitivity region 1.

• A sensitivity tag of 0 is reserved, and indicates unused CRAM bits. You can
explicitly set a partition to 0 to indicate that the partition is not critical. This
setting excludes the partition from sensitivity mapping.

Note: You can use the same sensitivity tag for multiple design partitions.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1008

https://www.altera.com/documentation/sss1424671189302.html#sss1424671317650
https://www.altera.com/documentation/sss1439970783924.html#sss1439971405552
https://www.altera.com/support/training/course/oseuhier.html

Alternatively, use the following assignment:

set_global_assignment -name PARTITION_ASD_REGION_ID <asd_id> -section_id
<partition_name>

16.6.3 Advanced SEU Detection IP Core

To correct and detect SEU in the FPGA CRAM, you must instantiate the Advanced SEU
Detection IP core. When the FPGA's EDC detects an SEU, the Advanced SEU Detection
IP core looks up the sensitivity of the affected bit in the .smh file.

• During system operation, the Advanced SEU Detection IP core reads the FPGA's
error message register (EMR) to determine the location of the error.

• The IP core finds the upset location in the .smh file.

• The IP core returns whether or not the bit is critical for the design.

You can implement either an on-chip or external sensitivity processor:

• On-chip sensitivity processor: the IP core looks up the bit sensitivity in the .smh
with a user-supplied memory interface.

• External sensitivity processor: the IP core notifies external logic (typically via a
system CPU interrupt request), and provides cached event message register
values to the off-chip sensitivity processor. The external sensitivity processor's
memory system stores the .smh information.

The Advanced SEU Detection IP Core User Guide provides instructions for
incorporating the IP core into your design, and describes how to access the .smh file.

Related Links

• Advanced SEU Detection IP Core User Guide

• Intel Stratix 10 SEU Mitigation User Guide

16.6.3.1 On-Chip Sensitivity Processor

When you implement an on-chip sensitivity processor, the Advanced SEU Detection IP
core interacts with user-supplied external memory access logic to read the .smh
stored in external memory. Once it determines the sensitivity of the affected CRAM
bit, the IP core can assert a critical error signal so that the system provides an
appropriate response. If the SEU is not critical, the critical error signal may be left un-
asserted.

On-chip sensitivity processing is autonomous: the FPGA determines whether an SEU
affected it without using external logic. On-chip sensitivity processing requires some
FPGA logic resources for the external memory interface.

16.6.3.2 External Sensitivity Processor

When you implement an external sensitivity processor, a CPU (such as the ARM
processor in Intel SoC devices) receives an interrupt request when the FPGA detects
an SEU. The CPU then reads the FPGA's error message register and looks up the bit
sensitivity in the .smh stored in the CPU's memory space.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1009

https://www.altera.com/documentation/sss1424671189302.html#sss1424671317650
https://www.altera.com/documentation/sss1439970783924.html#sss1439971405552

With external sensitivity processing, the FPGA does not need to implement an external
memory interface or store the .smh. If the system already has a CPU, external
sensitivity processing may be more hardware efficient than on-chip processing.

16.7 Intel Quartus Prime Software SEU FIT Reports

The Intel Quartus Prime software generates reports that contain the parameters
involved in SEU FIT calculations and the result of these calculations for each
component. These reports are available only for licensed users.

Note: These reports are not available for Intel Stratix 10 devices.

16.7.1 SEU FIT Parameters Report

The SEU FIT Parameters report shows the environmental assumptions that influence
the FIT/Mb values.

Figure 325. SEU FIT Parameters

Change the Neutron Flux Multiplier using the assignment:
set_global_assignment RELATIVE_NEUTRON_FLUX <relative_flux>

• Altitude represents the default altitude (above sea-level).

• Neutron Flux Multiplier is the relative flux for the default location, which is New
York City per JESD specification. The default is 1. Change the setting by adding
the following assignment to your .qsf file:

set_global_assignment RELATIVE_NEUTRON_FLUX <relative_flux>

Note: You can compute scaled values using the JESD published equations for
altitude, latitude, and longitude. Websites, such as www.seutest.com, can
make this computation for you.

• Alpha Flux is the default for standard Intel packages; you cannot override the
default.

Note: When you change the relative Neutron Flux Multiplier, the Intel Quartus
Prime software only scales the neutron component of FIT. Location does not
affect the Alpha flux.

Related Links

http://seutest.com/
Soft-error Testing Resources and Calculator

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1010

http://seutest.com/

16.7.2 Projected SEU FIT by Component Usage Report

The Projected SEU FIT by Component Usage report shows the different components
(or cell types) that comprise the total FIT rate, and SEU FIT calculation results.

An Intel FPGA's sensitivity to soft errors varies by process technology, component
type, and your design choices when implementing the component (such as tradeoffs
between area/delay and SEU rates). The report shows all bits (the raw FIT), utilized
bits (only resources the design actually uses), and the ECC-mitigated bits.

Figure 326. Projected SEU FIT by Component Usage Report

16.7.2.1 Component FIT Rates

The Projected SEU FIT by Component report shows FIT for the following components:

• SRAM embedded memory in embedded processors hard IP and M20K or M10K
blocks

• CRAM used for LUT masks and routing configuration bits

• LABs in MLAB mode

• I/O configuration registers, which the FPGA implements differently than CRAM and
design flipflops

• Standard flipflops the design uses in the address and data registers of M20K
blocks, in DSP blocks, and in hard IP

• User flipflops the design implements in logic cells (ALMs or LEs)

16.7.2.2 Raw FIT

The Intel Quartus Prime Projected SEU FIT by Component Usage report provides raw
FIT data. Raw FIT is the FIT rate of the FPGA if the design uses every component. Raw
FIT data is not design specific.

Note: The Intel Reliability Report, available on the Altera web site, also provides reliability
data and testing procedures for Intel FPGA devices.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1011

The Intel Quartus Prime software computes the FIT for each component using
(component Mb × intrinsic FIT/Mb × Neutron Flux Multiplier) for the device family and
process node. (For flip flops, “Mb” represents a million flip flops.)

To give the worst-case raw FIT, the report assumes the maximum amount of CRAM
that implements MLABs in the device. Thus, the CRAM raw FIT is the sum of CRAM
and MLAB entries.

Note: The Intel Quartus Prime software counts device bits for target devices using different
parameter information than the Reliability Report. Therefore, expect a ±5% variation
in the Projected SEU FIT by Component Usage report Raw column compared to the
Reliability Report data.

Related Links

Intel FPGA Reliability Report

16.7.2.3 Utilized FIT

The Utilized column shows FIT calculations considering only resources that the design
actually uses. Since SEU events in unused resources do not affect the FPGA, you can
safely ignore these bits for resiliency statistics.

Additionally, the Utilized column discounts unused memory bits. For example,
implementing a 16 × 16 memory in an M20K block uses only 256 bits of the 20 Kb.

Note: The Error Detection flag and the Projected SEU FIT by Component report do not
distinguish between critical bit upsets, such as fundamental control logic, or non
critical bit upsets, such as initialization logic that executes only once in the design.
Apply hierarchy tags at the system level to filter out less important logic errors.

The Projected SEU FIT by Component report's Utilized CRAM FIT represents provable
deflation of the FIT rate to account for CRAM upsets that do not matter to the design.
Thus, the SEU incidence is always higher than the utilized FIT rate.

Related Links

Designating the Sensitivity of the Design Hierarchy on page 1007

16.7.2.3.1 Comparing .smh Critical Bits Report to Utilized Bit Count

The number of design critical bits that the Compiler reports during .smh generation
correlates to the utilized bits in the report, but it is not the same value. The difference
occurs because the .smh file includes all bits in a resource, even when the resource
usage is partial.

16.7.2.3.2 Considerations for Small Designs

The raw FIT for the entire device is always correct. In contrast, the utilized FIT is very
conservative, and only becomes accurate for designs that reasonably fill up the chosen
device. FPGAs contain overhead, such as the configuration state machine, the clock
network control logic, and the I/O calibration block. These infrastructure blocks
contain flip flops, memories, and sometimes I/O configuration blocks.

The Projected SEU FIT by Component report includes the constant overhead for GPIO
and HSSI calibration circuitry for first I/O block or transceiver the design uses.
Because of this overhead, the FIT of a 1-transceiver design is much higher than 1/10

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1012

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/rr/rr.pdf

the FIT of a 10-transceiver design. However, a trivial design such as “a single AND
gate plus flipflop” could use so few bits that its CRAM FIT rate is 0.01, which the
report rounds to zero.

16.7.2.4 Mitigated FIT

You can lower FIT by reducing the observed FIT rate, such as by enabling ECC. You
can also use the optional M20K ECC to mitigate FIT, as well as the (not optional) hard
processor ECC and other hard IP such as memory controllers, PCIe, and I/O
calibration blocks.

The Projected SEU FIT by Component Usage report's w/ECC column represents the
FPGA's lowest guaranteed, provable FIT rate that the Intel Quartus Prime software can
calculate. ECC does not affect CRAM and flipflop rates; therefore, the data in the
w/ECC column for these components is the same as the in Utilized column.

The ECC code strength varies with the device family. In Intel Arria 10 devices, the
M20K block can correct up to two errors, and the FIT rate beyond two (not corrected)
is small enough to be negligible in the total.

An MLAB is simply a LAB configured with writable CRAM. However, when the Intel
Quartus Prime software configures the RAM as write enabled (MLAB), the MLAB has a
slightly different FIT/Mb. The Projected SEU FIT by Component Usage report displays
a FIT rate in the MLAB row when the design uses MLABs, otherwise the report
accounts for the block's FIT in the CRAM row. During compilation, if the Intel Quartus
Prime software changes a LAB to an MLAB, the FIT accounting moves from the LAB
row to the MLAB row.

The w/ECC column does not account for other forms of FIT protection in the design,
such as designer-inserted parity, soft ECC blocks, bounds checking, system monitors,
triple-module redundancy, or the impact of higher-level protocols on general fault
tolerance. Additionally, it does not account for single event effects that occur in the
logic but the design never reads or notices. For example, if you implement a non-ECC
FIFO function 512 bits deep and an SEU event occurs outside of the front and back
pointers, the application does not observe the SEU event. However, the report
accounts for the full 512 bit deep memory and includes it in the w/ECC FIT rate.
Designers often combine these factors into general deflation factors (called
architectural vulnerability factors or AVF) based on knowledge of their design.
Designers use AVF factors as low (aggressive) as 5% and as high (conservative) as
50% based on experience, fault-injection or neutron beam testing, or high-level
system monitors.

16.7.2.5 Architectural Vulnerability Factor

The Single Event Functional Interrupt (SEFI) ratio measures bit errors due to SEU
strikes versus functional interrupts. Minimizing this ratio improves SEU mitigation.
10% SEFI factors are A typical specification to deflate the raw FIT to that observed in
practice. For reference, the last two columns in the Projected SEU FIT by Component
Usage report show AVF deflations for a conservative SEFI of 50% and a moderate
SEFI of 25%.

SEFI represents a combination of factors. A utilization + ECC factor of 40% and AVF of
25% thus represents a global SEFI factor of 10%, because 0.4 × 0.25 = 0.1. An end-
to-end SEFI factor of 10% is typical for a full design.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1013

Related Links

Understanding Single Event Functional Interrupts in FPGA Designs White Paper

16.7.3 Enabling the Projected SEU FIT by Component Usage Report

The Intel Quartus Prime Fitter generates the Projected SEU FIT by Component Usage
report. The Intel Quartus Prime software only generates reports for designs that
successfully pass place and route.

To enable the report:

1. Obtain and install the SEU license.

2. Add the following assignments to your project's .qsf file:

set_global_assignment –name ENABLE_ADV_SEU_DETECTION ON
set_global_assignment –name SEU_FIT_REPORT ON

16.8 Triple-Module Redundancy

Use Triple-Module Redundancy (TMR) if your system cannot suffer downtime due to
SEU. TMR is an established SEU mitigation technique for improving hardware fault
tolerance. A TMR design has three identical instances of hardware with voting
hardware at the output. If an SEU affects one of the hardware instances, the voting
logic notes the majority output. This operation masks malfunctioning hardware.

With TMR, your design does not suffer downtime in the case of a single SEU; if the
system detects a faulty module, the system can scrub the error by reprogramming the
module. The error detection and correction time is many orders of magnitude less
than the MTBF of SEU events. Therefore, the system can repair a soft interrupt before
another SEU affects another instance in the TMR application.

The disadvantage of TMR is its hardware resource cost: it requires three times as
much hardware in addition to voting logic. You can minimize this hardware cost by
implementing TMR for only the most critical parts of your design.

There are several automated ways to generate TMR designs by automatically
replicating designated functions and synthesizing the required voting logic. Synopsys
offers automated TMR synthesis.

16.9 Evaluating a System's Response to Functional Upsets

SEUs can strike any memory element, so you must test the system to ensure a
comprehensive recovery response. The Intel Quartus Prime software includes the Fault
Injection Debugger to aid in SEU recovery. You can use the Fault Injection Debugger
graphically with the GUI, or you can use command line assignments.

In Intel Arria 10 and Intel Cyclone 10 GX designs, the Fault Injection Debugger works
together with the Fault Injection IP core. To use the debugging feature you must
instantiate the Fault Injection IP core in the FPGA design. During debugging, the IP
core flips a CRAM bit by dynamically reconfiguring the frame containing the CRAM bit.

Note: Intel Stratix 10 devices do not require instantiation of the Fault Injection IP Core.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1014

https://www.altera.com/literature/wp/wp-01207-single-event-functional-interrupt.pdf

With the Fault Injection Debugger, you can operate the FPGA in the system and inject
random CRAM bit flips. These simulated SEU strikes allow you to observe how the
FPGA and the system detect and recover from SEUs. Depending on the results, you
can refine the system's recovery sequence.

Related Links

• Intel FPGA Fault Injection IP Core User Guide

• Debugging Single Event Upsets Using the Fault Injection Debugger
In Intel Quartus Prime Pro Edition Handbook Volume 3

16.10 CRAM Error Detection Settings Reference

To define these settings in the Intel Quartus Prime software, point to Assignments ➤
Device ➤ Device and Pin Options ➤ Error Detection CRC.

Figure 327. Device and Pin Options Error Detection CRC Tab (Intel Arria 10 and Intel
Cyclone 10 GX devices)

Table 269. CRC Errors Settings (Intel Arria 10 and Intel Cyclone 10 GX devices)

Setting Description

Enable Error Detection CRC_ERROR pin Enables CRAM frame scanning

Enable open drain on CRC_ERROR pin Enables the CRC_ERROR pin as an open-drain output

Divide error check frequency by To guarantee the availability of a clock, the EDCRC function
operates on an independent clock generated internally on
the FPGA itself. To enable EDCRC operation on a divided
version of the clock, select a value from the list.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1015

https://www.altera.com/documentation/esc1428515496663.html#esc1428515747926
https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384859903

Figure 328. Device and Pin Options Error Detection CRC Pane (Intel Stratix 10 devices)

Table 270. CRC Errors Settings (Intel Stratix 10 devices)

Setting Description

Enable error detection check If turned on, the device checks the validity of the programming data in the
device. Any changes in the data while the device is in operation generates an
error. The status is SEU_ERROR output SDM_IO.

Minimum SEU interval Specifies the minimum time between two checks of the same bit. Setting to 0
means check as frequently as possible. Setting to a large value saves power. The
unit of interval is millisecond. The maximum allowed number of intervals is
10000.

Enable internal scrubbing If enabled, corrects single error or double adjacent error within the core
configuration memory while the device is still running.

16.11 Document Revision History

Table 271. Document Revision History

Date Version Changes

2017.12.15 17.1.0 • Added information about how the CRAM error detection works on Intel Stratix 10
devices.

• Clarified the type of errors that the Internal Scrubbing feature supports for Intel Stratix
10 devices.

• Separated description of the SEU FIT Parameters Report and the Projected SEU FIT by
Component Usage Report.

2017.11.06 17.1.0 • Added support for Internal Scrubbing on Intel Stratix 10 devices.
• Added support for Hierarchy Tagging.
• Added topic: CRAM Error Detection Settings Reference.
• Removed topic: Scanning CRAM Frames.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Removed incorrect link to Reliability Report.
• Added MAX 10 and Cylone IV to list of devices supporting Projected SEU FIT by

Component Usage Report.

2016.05.24 16.0.1 • Corrected the steps to enable the SEU FIT reports.

2016.05.03 16.0.0 • Documented the new SEU FIT reports.
• Inconsequential wording changes for conformance to style.

continued...

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1016

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

June 2014 2014.06.30 • Updated formatting.
• Added "Mitigating SEU Effects in Embedded User RAM" section.
• Added "Altera Advanced SEU Detection IP Core" section.

November 2012 2012.11.01 • Preliminary release.

16 Mitigating Single Event Upset

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1017

17 Optimizing the Design Netlist
This chapter describes how you can use the Intel Quartus Prime Netlist Viewers to
analyze and debug your designs.

As FPGA designs grow in size and complexity, the ability to analyze, debug, optimize,
and constrain your design is critical. With today’s advanced designs, several design
engineers are involved in coding and synthesizing different design blocks, making it
difficult to analyze and debug the design. The Intel Quartus Prime RTL Viewer and
Technology Map Viewer provide powerful ways to view your initial and fully mapped
synthesis results during the debugging, optimization, and constraint entry processes.

Related Links

• When to Use the Netlist Viewers: Analyzing Design Problems on page 1018

• Introduction to the User Interface on page 1022

• Intel Quartus Prime Design Flow with the Netlist Viewers on page 1019

• RTL Viewer Overview on page 1020

• Technology Map Viewer Overview on page 1021

• Filtering in the Schematic View on page 1031

• Cross-Probing to a Source Design File and Other Intel Quartus Prime Windows on
page 1036

• Cross-Probing to the Netlist Viewers from Other Intel Quartus Prime Windows on
page 1037

• Viewing a Timing Path on page 1037

17.1 When to Use the Netlist Viewers: Analyzing Design Problems

You can use the Netlist Viewers to analyze and debug your design. The following
simple examples show how to use the RTL Viewer and Technology Map Viewer to
analyze problems encountered in the design process.

Using the RTL Viewer is a good way to view your initial synthesis results to determine
whether you have created the necessary logic, and that the logic and connections
have been interpreted correctly by the software. You can use the RTL Viewer to check
your design visually before simulation or other verification processes. Catching design
errors at this early stage of the design process can save you valuable time.

If you see unexpected behavior during verification, use the RTL Viewer to trace
through the netlist and ensure that the connections and logic in your design are as
expected. Viewing your design helps you find and analyze the source of design
problems. If your design looks correct in the RTL Viewer, you know to focus your
analysis on later stages of the design process and investigate potential timing
violations or issues in the verification flow itself.

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

You can use the Technology Map Viewer to look at the results at the end of Analysis
and Synthesis. If you have compiled your design through the Fitter stage, you can
view your post-mapping netlist in the Technology Map Viewer (Post-Mapping) and your
post-fitting netlist in the Technology Map Viewer. If you perform only Analysis and
Synthesis, both the Netlist Viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to locate the
source of a particular signal, which can help you debug your design. Use the
navigation techniques described in this chapter to search easily through your design.
You can trace back from a point of interest to find the source of the signal and ensure
the connections are as expected.

The Technology Map Viewer can help you locate post-synthesis nodes in your netlist
and make assignments when optimizing your design. This functionality is useful when
making a multicycle clock timing assignment between two registers in your design.
Start at an I/O port and trace forward or backward through the design and through
levels of hierarchy to find nodes of interest, or locate a specific register by visually
inspecting the schematic.

Throughout your FPGA design, debug, and optimization stages, you can use all of the
netlist viewers in many ways to increase your productivity while analyzing a design.

Related Links

• Intel Quartus Prime Design Flow with the Netlist Viewers on page 1019

• RTL Viewer Overview on page 1020

• Technology Map Viewer Overview on page 1021

17.2 Intel Quartus Prime Design Flow with the Netlist Viewers

When you first open one of the Netlist Viewers after compiling the design, a
preprocessor stage runs automatically before the Netlist Viewer opens.

Click the link in the preprocessor process box to go to the Settings ➤ Compilation
Process Settings page where you can turn on the Run Netlist Viewers
preprocessing during compilation option. If you turn this option on, the
preprocessing becomes part of the full project compilation flow and the Netlist Viewer
opens immediately without displaying the preprocessing dialog box.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1019

Figure 329. Intel Quartus Prime Design Flow Including the RTL Viewer and Technology
Map Viewer

This figure shows how Netlist Viewers fit into the basic Intel Quartus Prime design flow.

HDL or Schematic
Design Files

VQM or EDIF
Netlist Files

Analysis and
Elaboration

RTL Viewer Preprocessor
(Once per Analysis and Elaboration)

RTL Viewer

Technology Map Viewer Preprocessor
(Once per Fitting)

Technology Map Viewer Preprocessor
(Once per Synthesis)

Technology Map Viewer

Technology Map Viewer and
Technology Map Viewer (Post-Mapping)

Technology Map Viewer Preprocessor
(Once per Timing Analysis)

Technology Map Viewer

Synthesis
(Logic Synthesis and

Technology Mapping)

Fitter
(Place and Route)

Timing Analyzer

Before the Netlist Viewer can run the preprocessor stage, you must compile your
design:

• To open the RTL Viewer first perform Analysis and Elaboration.

• To open the Technology Map Viewer (Post-Fitting) or the Technology Map Viewer
(Post-Mapping), first perform Analysis and Synthesis.

The Netlist Viewers display the results of the last successful compilation.

• Therefore, if you make a design change that causes an error during Analysis and
Elaboration, you cannot view the netlist for the new design files, but you can still
see the results from the last successfully compiled version of the design files.

• If you receive an error during compilation and you have not yet successfully run
the appropriate compilation stage for your project, the Netlist Viewer cannot be
displayed; in this case, the Intel Quartus Prime software issues an error message
when you try to open the Netlist Viewer.

Note: If the Netlist Viewer is open when you start a new compilation, the Netlist Viewer
closes automatically. You must open the Netlist Viewer again to view the new design
netlist after compilation completes successfully.

17.3 RTL Viewer Overview

The RTL Viewer allows you to view a register transfer level (RTL) graphical
representation of your Intel Quartus Prime Pro Edition synthesis results or your third-
party netlist file in the Intel Quartus Prime software.

You can view results after Analysis and Elaboration when your design uses any
supported Intel Quartus Prime design entry method, including Verilog HDL Design Files
(.v), SystemVerilog Design Files (.sv), VHDL Design Files (.vhd), AHDL Text Design
Files (.tdf), or schematic Block Design Files (.bdf). You can also view the hierarchy

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1020

of atom primitives (such as device logic cells and I/O ports) when your design uses a
synthesis tool to generate a Verilog Quartus Mapping File (.vqm) or Electronic Design
Interchange Format (.edf) file.

The RTL Viewer displays a schematic view of the design netlist after Analysis and
Elaboration or netlist extraction is performed by the Intel Quartus Prime software, but
before technology mapping and any synthesis or fitter optimizations. This view a
preliminary pre-optimization design structure and closely represents your original
source design.

• If you synthesized your design with the Intel Quartus Prime Pro Edition synthesis,
this view shows how the Intel Quartus Prime software interpreted your design
files.

• If you use a third-party synthesis tool, this view shows the netlist written by your
synthesis tool.

While displaying your design, the RTL Viewer optimizes the netlist to maximize
readability:

• Removes logic with no fan-out (unconnected output) or fan-in (unconnected
inputs) from the display.

• Hides default connections such as VCC and GND.

• Groups pins, nets, wires, module ports, and certain logic into buses where
appropriate.

• Groups constant bus connections are grouped.

• Displays values in hexadecimal format.

• Converts NOT gates into bubble inversion symbols in the schematic.

• Merges chains of equivalent combinational gatesinto a single gate; for example, a
2-input AND gate feeding a 2-input AND gate is converted to a single 3-input AND
gate.

To run the RTL Viewer for a Intel Quartus Prime project, first analyze the design to
generate an RTL netlist. To analyze the design and generate an RTL netlist, click
Processing ➤ StartStart Analysis & Elaboration. You can also perform a full
compilation on any process that includes the initial Analysis and Elaboration stage of
the Intel Quartus Prime compilation flow.

To open the RTL Viewer, click Tools ➤ Netlist ViewersRTL Viewer.

Related Links

Introduction to the User Interface on page 1022

17.4 Technology Map Viewer Overview

The Intel Quartus Prime Technology Map Viewer provides a technology-specific,
graphical representation of your design after Analysis and Synthesis or after the Fitter
has mapped your design into the target device.

The Technology Map Viewer shows the hierarchy of atom primitives (such as device
logic cells and I/O ports) in your design. For supported device families, you can also
view internal registers and look-up tables (LUTs) inside logic cells (LCELLs), and
registers in I/O atom primitives.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1021

Where possible, the Intel Quartus Prime software maintains the port names of each
hierarchy throughout synthesis. However, the software may change or remove port
names from the design. For example, if a port is unconnected or driven by GND or
VCC, the software removes it during synthesis. If a port name changes, the software
assigns a related user logic name in the design or a generic port name such as IN1 or
OUT1.

You can view your Intel Quartus Prime technology-mapped results after synthesis,
fitting, or timing analysis. To run the Technology Map Viewer for a Intel Quartus Prime
project, on the Processing menu, point to Start and click Start Analysis &
Synthesis to synthesize and map the design to the target technology. At this stage,
the Technology Map Viewer shows the same post-mapping netlist as the Technology
Map Viewer (Post-Mapping). You can also perform a full compilation, or any process
that includes the synthesis stage in the compilation flow.

If you have completed the Fitter stage, the Technology Map Viewer shows the changes
made to your netlist by the Fitter, such as physical synthesis optimizations, while the
Technology Map Viewer (Post-Mapping) shows the post-mapping netlist. If you have
completed the Timing Analysis stage, you can locate timing paths from the Timing
Analyzer report in the Technology Map Viewer.

To open the Technology Map Viewer, on the Tools menu, point to Netlist Viewers and
click Technology Map Viewer (Post-Fitting) or Technology Map Viewer (Post
Mapping).

Related Links

• View Contents of Nodes in the Schematic View on page 1032

• Viewing a Timing Path on page 1037

• Introduction to the User Interface on page 1022

17.5 Introduction to the User Interface

The Netlist Viewer is a graphical user-interface for viewing and manipulating nodes
and nets in the netlist.

The RTL Viewer and Technology Map Viewer each consist of these main parts:

• The Netlist Navigator pane—displays a representation of the project hierarchy.

• The Find pane—allows you to find and locate specific design elements in the
schematic view.

• The Properties pane displays the properties of the selected block when you select
Properties from the shortcut menu.

• The schematic view—displays a graphical representation of the internal structure
of your design.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1022

Figure 330. RTL Viewer

Netlist Viewers also contain a toolbar that provides tools to use in the schematic view.

• Use the Back and Forward buttons to switch between schematic views. You can
go forward only if you have not made any changes to the view since going back.
These commands do not undo an action, such as selecting a node. The Netlist
Viewer caches up to ten actions including filtering, hierarchy navigation, netlist
navigation, and zoom actions.

• The Refresh button to restore the schematic view and optimizes the layout.
Refresh does not reload the database if you change your design and recompile.

• Click the Find button opens and closes the Find pane.

• Click the Selection Tool and Zoom Tool buttons to toggle between the selection
mode and zoom mode.

• Click the Fit in Page button resets the schematic view to encompass the entire
design.

• Use the Hand Tool to change the focus of the veiwer without changing the
perspective.

• Click the Area Selection Tool to drag a selection box around ports, pins, and
nodes in an area.

• Click the Netlist Navigator button to open or close the Netlist Navigator pane.

• Click the Color Settings button to open the Colors pane where you can
customize the Netlist Viewer color scheme.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1023

• Click the Display Settings button to open the Display pane where you can
specify the following settings:

— Show full name or Show only <n> characters. You can specify this
separately for Node name, Port name, Pin name, or Bus name.

— Turn Show timing info on or off.

— Turn Show node type on or off.

— Turn Show constant value on or off.

— Turn Show flat nets on or off.

Figure 331. Display Settings

• The Bird's Eye View button opens the Bird's Eye View window which displays a
miniature version of your design and allows you to navigate within the design and
adjust the magnification in the schematic view quickly.

• The Show/Hide Instance Pins button can toggle the display of instance pins not
displayed by functions such as cross-probing between a Netlist Viewer and Timing
Analyzer. You can also use it to hide unconnected instance pins when filtering a
node results in large numbers of unconnected or unused pins. Instance pins are
hidden by default.

• The Show Netlist on One Page button displays the netlist on a single page if the
Netlist Veiwer has split the design across several pages. This can make netlist
tracing easier.

You can have only one RTL Viewer, one Technology Map Viewer (Post-Fitting), ande
one Technology Map Viewer (Post-Mapping) window open at the same time, although
each window can show multiple pages, each with multiple tabs. For example, you
cannot have two RTL Viewer windows open at the same time.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1024

Related Links

• RTL Viewer Overview on page 1020

• Technology Map Viewer Overview on page 1021

• Netlist Navigator Pane on page 1025

• Netlist Viewers Find Pane on page 1027

• Properties Pane on page 1025

17.5.1 Netlist Navigator Pane

The Netlist Navigator pane displays the entire netlist in a tree format based on the
hierarchical levels of the design. In each level, similar elements are grouped into
subcategories.

You can use the Netlist Navigator pane to traverse through the design hierarchy to
view the logic schematic for each level. You can also select an element in the Netlist
Navigator to highlight in the schematic view.

Note: Nodes inside atom primitives are not listed in the Netlist Navigator pane.

For each module in the design hierarchy, the Netlist Navigator pane displays the
applicable elements listed in the following table. Click the “+” icon to expand an
element.

Table 272. Netlist Navigator Pane Elements

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy levels.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These primitives
include:
• Registers and gates that you can view in the RTL Viewer when using Intel Quartus Prime

Pro Edition synthesis.
• Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM

or EDIF from third-party synthesis software
In the Technology Map Viewer, you can view the internal implementation of certain atom
primitives, but you cannot traverse into a lower-level of hierarchy.

Ports The I/O ports in the current level of hierarchy.
• Pins are device I/O pins when viewing the top hierarchy level and are I/O ports of the

design when viewing the lower-levels.
• When a pin represents a bus or an array of pins, expand the pin entry in the list view to

see individual pin names.

17.5.2 Properties Pane

You can view the properties of an instance or primitive using the Properties pane.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1025

Figure 332. Properties Pane
To view the properties of an instance or primitive in the RTL Viewer or Technology Map Viewer, right-click the
node and click Properties.

The Properties pane contains tabs with the following information about the selected
node:

• The Fan-in tab displays the Input port and Fan-in Node.

• The Fan-out tab displays the Output port and Fan-out Node.

• The Parameters tab displays the Parameter Name and Values of an instance.

• The Ports tab displays the Port Name and Constant value (for example, VCC or
GND). The possible value of a port are listed below.

Table 273. Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)

If the selected node is an atom primitive, the Properties pane displays a schematic of
the internal logic.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1026

17.5.3 Netlist Viewers Find Pane

You can narrow the range of the search process by setting the following options in the
Find pane:

• Click Browse in the Find pane to specify the hierarchy level of the search. In the
Select Hierarchy Level dialog box, select the particular instance you want to
search.

• Turn on the Include subentities option to include child hierarchies of the parent
instance during the search.

• Click Options to open the Find Options dialog box. Turn on Instances, Nodes,
Ports, or any combination of the three to further refine the parameters of the
search.

When you click the List button, a progress bar appears below the Find box.

All results that match the criteria you set are listed in a table. When you double-click
an item in the table, the related node is highlighted in red in the schematic view.

17.6 Schematic View

The schematic view is shown on the right side of the RTL Viewer and Technology Map
Viewer. The schematic view contains a schematic representing the design logic in the
netlist. This view is the main screen for viewing your gate-level netlist in the RTL
Viewer and your technology-mapped netlist in the Technology Map Viewer.

The RTL Viewer and Technology Map Viewer attempt to display schematic in a single
page view by default. If the schematic crosses over to several pages, you can highlight
a net and use connectors to trace the signal in a single page.

17.6.1 Display Schematics in Multiple Tabbed View

The RTL Viewer and Technology Map Viewer support multiple tabbed views.

With multiple tabbed view, schematics can be displayed in different tabs. Selection is
independent between tabbed views, but selection in the tab in focus is synchronous
with the Netlist Navigator pane.

To create a new blank tab, click the New Tab button at the end of the tab row . You
can now drag a node from the Netlist Navigator pane into the schematic view.

Right-click in a tab to see a shortcut menu to perform the following actions:

• Create a blank view with New Tab

• Create a Duplicate Tab of the tab in focus

• Choose to Cascade Tabs

• Choose to Tile Tabs

• Choose Close Tab to close the tab in focus

• Choose Close Other Tabs to close all tabs except the tab in focus

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1027

17.6.2 Schematic Symbols

The symbols for nodes in the schematic represent elements of your design netlist.
These elements include input and output ports, registers, logic gates, Intel primitives,
high-level operators, and hierarchical instances.

Note: The logic gates and operator primitives appear only in the RTL Viewer. Logic in the
Technology Map Viewer is represented by atom primitives, such as registers and
LCELLs.

Table 274. Symbols in the Schematic View
This table lists and describes the primitives and basic symbols that you can display in the schematic view of the
RTL Viewer and Technology Map Viewer.

Symbol Description

I/O Ports
CLK_SEL[1:0]

RESET_N

An input, output, or bidirectional port in the current level of
hierarchy. A device input, output, or bidirectional pin when
viewing the top-level hierarchy. The symbol can also represent
a bus. Only one wire is shown connected to the bidirectional
symbol, representing the input and output paths.
Input symbols appear on the left-most side of the schematic.
Output and bidirectional symbols appear on the right-most side
of the schematic.

I/O Connectors

MEM_OE_N
[1,15]

[1,3]

An input or output connector, representing a net that comes
from another page of the same hierarchy. To go to the page
that contains the source or the destination, double-click the
connector to jump to the appropriate page.

OR, AND, XOR Gates

always1

always0 C
An OR, AND, or XOR gate primitive (the number of ports can
vary). A small circle (bubble symbol) on an input or output port
indicates the port is inverted.

MULTIPLEXER
Mux5

SEL[2:0]
DATA[7:0] OUT

A multiplexer primitive with a selector port that selects between
port 0 and port 1. A multiplexer with more than two inputs is
displayed as an operator.

BUFFER
OE

DATAIN OUT0

A buffer primitive. The figure shows the tri-state buffer, with an
inverted output enable port. Other buffers without an enable
port include LCELL, SOFT, CARRY, and GLOBAL. The NOT gate
and EXP expander buffers use this symbol without an enable
port and with an inverted output port.

LATCH

PRE
D
ENA

Q

latch

CLR

A latch/DFF (data flipflop) primitive. A DFF has the same ports
as a latch and a clock trigger. The other flipflop primitives are
similar:
• DFFEA (data flipflop with enable and asynchronous load)

primitive with additional ALOAD asynchronous load and
ADATA data signals

• DFFEAS (data flipflop with enable and synchronous and
asynchronous load), which has ASDATA as the secondary
data port

Atom Primitive An atom primitive. The symbol displays the atom name, the
port names, and the atom type. The blue shading indicates an
atom primitive for which you can view the internal details.

continued...

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1028

Symbol Description

DATAA
DATABCOMBOUT
DATAC

F

LOGIC_CELL_COMB (7F7F7F7F7F7F7F7F)

Other Primitive

PADIO

PADOUT

CPU_D[10]

BIDIR

PADIN

Any primitive that does not fall into the previous categories.
Primitives are low-level nodes that cannot be expanded to any
lower hierarchy. The symbol displays the port names, the
primitive or operator type, and its name.

Instance
speed_ch:speed

get_ticket
accel_in

clk
reset

An instance in the design that does not correspond to a
primitive or operator (a user-defined hierarchy block). The
symbol displays the port name and the instance name.

Ecrypted Instance
streaming_cont

OUT0
OUT1
OUT2
OUT3
OUT4
OUT5

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8

A user-defined encrypted instance in the design. The symbol
displays the instance name. You cannot open the schematic for
the lower-level hierarchy, because the source design is
encrypted.

RAM
my_20k_sdp

PORTBDATAOUT[35:0]

RAM

CLK0
CLK1
CLR0
PORTAADDRSTALL
PORTAADDR[8:0]
PORTABYTEENMASK[3:0]
PORTADATAIN[35:0]
PORTAWE
PORTBADDRSTALL
PORTBADDR[8:0]
PORTBRE

A synchronous memory instance with registered inputs and
optionally registered outputs. The symbol shows the device
family and the type of memory block. This figure shows a true
dual-port memory block in a Stratix M-RAM block.

Constant

8’h80

A constant signal value that is highlighted in gray and displayed
in hexadecimal format by default throughout the schematic.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1029

Table 275. Operator Symbols in the RTL Viewer Schematic View
The following lists and describes the additional higher level operator symbols in the RTL Viewer schematic view.

Symbol Description

Add0
A[3:0]

B[3:0]
OUT[3:0]

An adder operator:
OUT = A + B

Mult0
A[0]

B[0]
OUT[0]

A multiplier operator:
OUT = A ¥ B

Div0
A[0]

B[0]
OUT[0]

A divider operator:
OUT = A / B

Equal3
A[1:0]

B[1:0]
OUT

Equals

ShiftLeft0
A[0]

COUNT[0]
OUT[0]

A left shift operator:
OUT = (A << COUNT)

ShiftRight0
A[0]

COUNT[0]
OUT[0]

A right shift operator:
OUT = (A >> COUNT)

Mod0
A[0]

B[0]
OUT[0]

A modulo operator:
OUT = (A%B)

LessThan0
A[0]

B[0]
OUT

A less than comparator:
OUT = (A<:B:A>B)

Mux5
SEL[2:0]

DATA[7:0] OUT

A multiplexer:
OUT = DATA [SEL]

The data range size is 2sel range size

Selector1
SEL[2:0]

DATA[2:0] OUT

A selector:
A multiplexer with one-hot select input and more than two input signals

Decoder0

IN[5:0] OUT[63:0]

A binary number decoder:
OUT = (binary_number (IN) == x)
for x = 0 to x = 2(n+1) - 1

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1030

Related Links

• Partition the Schematic into Pages on page 1035

• Follow Nets Across Schematic Pages on page 1036

17.6.3 Select Items in the Schematic View

To select an item in the schematic view, ensure that the Selection Tool is enabled in
the Netlist Viewer toolbar (this tool is enabled by default). Click an item in the
schematic view to highlight it in red.

Select multiple items by pressing the Shift key while selecting with your mouse.

Items selected in the schematic view are automatically selected in the Netlist
Navigator pane. The folder then expands automatically if it is required to show the
selected entry; however, the folder does not collapse automatically when you are not
using or you have deselected the entries.

When you select a hierarchy box, node, or port in the schematic view, the item is
highlighted in red but none of the connecting nets are highlighted. When you select a
net (wire or bus) in the schematic view, all connected nets are highlighted in red.

Once you have selected an item, you can perform different actions on it based on the
contents of the shortcut menu which appears when you right-click your selection.

Related Links

Netlist Navigator Pane on page 1025

17.6.4 Shortcut Menu Commands in the Schematic View

When you right-click on an instance or primitive selected in the schematic view, the
Netlist Viewer displays a shortcut menu.

If the selected item is a node, you see the following options:

• Click Expand to Upper Hierarchy to displays the parent hierarchy of the node in
focus.

• Click Copy ToolTip to copy the selected item name to the clipboard. This
command does not work on nets.

• Click Hide Selection to remove the selected item from the schematic view. This
command does not delete the item from the design, merely masks it in the current
view.

• Click Filtering to display a sub-menu with options for filtering your selection.

17.6.5 Filtering in the Schematic View

Filtering allows you to filter out nodes and nets in your netlist to view only the logic
elements of interest to you.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1031

You can filter your netlist by selecting hierarchy boxes, nodes, or ports of a node, that
are part of the path you want to see. The following filter commands are available:

• Sources—Displays the sources of the selection.

• Destinations—Displays the destinations of the selection.

• Sources & Destinations—displays the sources and destinations of the selection.

• Selected Nodes—Displays only the selected nodes.

• Between Selected Nodes—Displays nodes and connections in the path between
the selected nodes .

• Bus Index—Displays the sources or destinations for one or more indices of an
output or input bus port .

• Filtering Options—Displays the Filtering Options dialog box:

— Stop filtering at register—Turning this option on directs the Netlist Viewer to
filter out to the nearest register boundary.

— Filter across hierarchies—Turning this option on directs the Netlist Viewer to
filter across hierarchies.

— Maximum number of hierarchy levels—Sets the maximium number of
hierarchy levels displayed in the schematic view.

To filter your netlist, select a hierarchy box, node, port, net, or state node, right-click
in the window, point to Filter and click the appropriate filter command. The Netlist
Viewer generates a new page showing the netlist that remains after filtering.

17.6.6 View Contents of Nodes in the Schematic View

In the RTL Viewer and the Technology Map Viewer, you can view the contents of nodes
to see their underlying implementation details.

You can view LUTs, registers, and logic gates. You can also view the implementation of
RAM and DSP blocks in certain devices in the RTL Viewer or Technology Map Viewer. In
the Technology Map Viewer, you can view the contents of primitives to see their
underlying implementation details.

Figure 333. Wrapping and Unwrapping Objects
If you can unwrap the contents of an instance, a plus symbol appears in the upper right corner of the object in
the schematic view. To wrap the contents (and revert to the compact format), click the minus symbol in the
upper right corner of the unwrapped instance.

Note: In the schematic view, the internal details in an atom instance cannot be selected as
individual nodes. Any mouse action on any of the internal details is treated as a
mouse action on the atom instance.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1032

Figure 334. Nodes with Connections Outside the Hierarchy
In some cases, the selected instance connects to something outside the visible level of the hierarchy in the
schematic view. In this case, the net appears as a dotted line. Double-click the dotted line to expand the view
to display the destination of the connection .

Figure 335. Display Nets Across Hierarchies
In cases where the net connects to an instance outside the hierarchy, you can select the net, and unwrap the
node to see the destination ports.

Figure 336. Show Connectivity Details
You can select a bus port or bus pin and click Connectivity Details in the context menu for that object.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1033

You can double-click objects in the Connectivity Details window to navigate to them
quickly. If the plus symbol appears, you can further unwrap objects in the view. This
can be very useful when tracing a signal in a complex netlist.

17.6.7 Moving Nodes in the Schematic View

You can drag and drop items in the schematic view to rearrange them.

Figure 337. Drag and Drop Movement of Nodes
To move a node from one area of the netlist to another, select the node and hold down the Shift key. Legal
placements appear as shaded areas within the hierarchy. Click to drop the selected node.

Right-click and click Refresh to restore the schematic view to its default arrangement.

17.6.8 View LUT Representations in the Technology Map Viewer

You can view different representations of a LUT by right-clicking the selected LUT and
clicking Properties.

You can view the LUT representations in the following three tabs in the Properties
dialog box:

• The Schematic tab—the equivalent gate representations of the LUT.

• The Truth Table tab—the truth table representations.

Related Links

Properties Pane on page 1025

17.6.9 Zoom Controls

Use the Zoom Tool in the toolbar, or mouse gestures, to control the magnification of
your schematic on the View menu.

By default, the Netlist Viewer displays most pages sized to fit in the window. If the
schematic page is very large, the schematic is displayed at the minimum zoom level,
and the view is centered on the first node. Click Zoom In to view the image at a
larger size, and click Zoom Out to view the image (when the entire image is not

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1034

displayed) at a smaller size. The Zoom command allows you to specify a
magnification percentage (100% is considered the normal size for the schematic
symbols).

You can use the Zoom Tool on the Netlist Viewer toolbar to control magnification in the
schematic view. When you select the Zoom Tool in the toolbar, clicking in the
schematic zooms in and centers the view on the location you clicked. Right-click in the
schematic to zoom out and center the view on the location you clicked. When you
select the Zoom Tool, you can also zoom into a certain portion of the schematic by
selecting a rectangular box area with your mouse cursor. The schematic is enlarged to
show the selected area.

Within the schematic view, you can also use the following mouse gestures to zoom in
on a specific section:

• zoom in—Dragging a box around an area starting in the upper-left and dragging
to the lower right zooms in on that area.

• zoom -0.5—Dragging a line from lower-left to upper-right zooms out 0.5 levels of
magnification.

• zoom 0.5—Dragging a line from lower-right to upper-left zooms in 0.5 levels of
magnification.

• zoom fit—Dragging a line from upper-right to lower-left fits the schematic view in
the page.

Related Links

Filtering in the Schematic View on page 1031

17.6.10 Navigating with the Bird's Eye View

To open the Bird’s Eye View, on the View menu, click Bird’s Eye View, or click the
Bird’s Eye View icon in the toolbar.

Viewing the entire schematic can be useful when debugging and tracing through a
large netlist. The Intel Quartus Prime software allows you to quickly navigate to a
specific section of the schematic using the Bird’s Eye View feature, which is available
in the RTL Viewer and Technology Map Viewer.

The Bird’s Eye View shows the current area of interest:

• Select an area by clicking and dragging the indicator or right-clicking to form a
rectangular box around an area.

• Click and drag the rectangular box to move around the schematic.

• Resize the rectangular box to zoom-in or zoom-out in the schematic view.

17.6.11 Partition the Schematic into Pages

For large design hierarchies, the RTL Viewer and Technology Map Viewer partition your
netlist into multiple pages in the schematic view.

When a hierarchy level is partitioned into multiple pages, the title bar for the
schematic window indicates which page is displayed and how many total pages exist
for this level of hierarchy. The schematic view displays this as Page <current page
number> of <total number of pages>.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1035

Related Links

Introduction to the User Interface on page 1022

17.6.12 Follow Nets Across Schematic Pages

Input and output connector symbols indicate nodes that connect across pages of the
same hierarchy. Double-click a connector to trace the net to the next page of the
hierarchy.

Note: After you double-click to follow a connector port, the Netlist Viewer opens a new page,
which centers the view on the particular source or destination net using the same
zoom factor as the previous page. To trace a specific net to the new page of the
hierarchy, Intel recommends that you first select the necessary net, which highlights it
in red, before you double-click to navigate across pages.

Related Links

Schematic Symbols on page 1028

17.7 Cross-Probing to a Source Design File and Other Intel Quartus
Prime Windows

The RTL Viewer and Technology Map Viewer allow you to cross-probe to the source
design file and to various other windows in the Intel Quartus Prime software.

You can select one or more hierarchy boxes, nodes, state nodes, or state transition
arcs that interest you in the Netlist Viewer and locate the corresponding items in
another applicable Intel Quartus Prime software window. You can then view and make
changes or assignments in the appropriate editor or floorplan.

To locate an item from the Netlist Viewer in another window, right-click the items of
interest in the schematic or state diagram, point to Locate, and click the appropriate
command. The following commands are available:

• Locate in Assignment Editor

• Locate in Pin Planner

• Locate in Chip Planner

• Locate in Resource Property Editor

• Locate in Technology Map Viewer

• Locate in RTL Viewer

• Locate in Design File

The options available for locating an item depend on the type of node and whether it
exists after placement and routing. If a command is enabled in the menu, it is
available for the selected node. You can use the Locate in Assignment Editor
command for all nodes, but assignments might be ignored during placement and
routing if they are applied to nodes that do not exist after synthesis.

The Netlist Viewer automatically opens another window for the appropriate editor or
floorplan and highlights the selected node or net in the newly opened window. You can
switch back to the Netlist Viewer by selecting it in the Window menu or by closing,
minimizing, or moving the new window.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1036

17.8 Cross-Probing to the Netlist Viewers from Other Intel Quartus
Prime Windows

You can cross-probe to the RTL Viewer and Technology Map Viewer from other
windows in the Intel Quartus Prime software. You can select one or more nodes or
nets in another window and locate them in one of the Netlist Viewers.

You can locate nodes between the RTL Viewer and Technology Map Viewer, and you
can locate nodes in the RTL Viewer and Technology Map Viewer from the following
Intel Quartus Prime software windows:

• Project Navigator

• Timing Closure Floorplan

• Chip Planner

• Resource Property Editor

• Node Finder

• Assignment Editor

• Messages Window

• Compilation Report

• Timing Analyzer (supports the Technology Map Viewer only)

To locate elements in the Netlist Viewer from another Intel Quartus Prime window,
select the node or nodes in the appropriate window; for example, select an entity in
the Entity list on the Hierarchy tab in the Project Navigator, or select nodes in the
Timing Closure Floorplan, or select node names in the From or To column in the
Assignment Editor. Next, right-click the selected object, point to Locate, and click
Locate in RTL Viewer or Locate in Technology Map Viewer. After you click this
command, the Netlist Viewer opens, or is brought to the foreground if the Netlist
Viewer is open.

Note: The first time the window opens after a compilation, the preprocessor stage runs
before the Netlist Viewer opens.

The Netlist Viewer shows the selected nodes and, if applicable, the connections
between the nodes. The display is similar to what you see if you right-click the object,
then click Filter ➤ Selected Nodes using Filter across hierarchy. If the nodes
cannot be found in the Netlist Viewer, a message box displays the message: Can’t
find requested location.

17.9 Viewing a Timing Path

You can cross-probe from a report panel in the Timing Analyzer to see a visual
representation of a timing path.

To take advantage of this feature, you must complete a full compilation of your design,
including the timing analyzer stage. To see the timing results for your design, on the
Processing menu, click Compilation Report. On the left side of the Compilation
Report, select Timing Analyzer. When you select a detailed report, the timing
information is listed in a table format on the right side of the Compilation Report; each
row of the table represents a timing path in the design. You can also view timing paths

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1037

in Timing Analyzer report panels. To view a particular timing path in the Technology
Map Viewer or RTL Viewer, right-click the appropriate row in the table, point to
Locate, and click Locate in Technology Map Viewer or Locate in RTL Viewer.

• To locate a path, on the Tasks pane clickCustom Reports ➤ Report Timing.

• In the Report Timing dialog box, make necessary settings, and then click the
Report Timing button.

• After the Timing Analyzer generates the report, right-click the node in the table
and select Locate Path. In the Technology Map Viewer, the schematic page
displays the nodes along the timing path with a summary of the total delay.

When you locate the timing path from the Timing Analyzer to the Technology Map
Viewer, the interconnect and cell delay associated with each node is displayed on top
of the schematic symbols. The total slack of the selected timing path is displayed in
the Page Title section of the schematic.

In the RTL Viewer, the schematic page displays the nodes in the paths between the
source and destination registers with a summary of the total delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the post-fitting
nodes might not exist in the RTL Viewer netlist. Therefore, the internal delay numbers
are not displayed in the RTL Viewer as they are in the Technology Map Viewer, and the
timing path might not be displayed exactly as it appears in the timing analysis report.
If multiple paths exist between the source and destination registers, the RTL Viewer
might display more than just the timing path. There are also some cases in which the
path cannot be displayed, such as paths through state machines, encrypted
intellectual property (IP), or registers that are created during the fitting process. In
cases where the timing path displayed in the RTL Viewer might not be the correct
path, the compiler issues messages.

17.10 Document Revision History

Date Version Changes

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.03 16.0.0 Removed Schematic Viewer topic.

2015.11.02 15.1.0 Added Schematic Viewer topic for viewing stage snapshots.
Added information for the following new features and feature
updatess:
• Nets visible across hierarchies
• Connection Details
• Display Settings
• Hand Tool
• Area Selection Tool
• New default behavior for Show/Hide Instance Pins (default is now

off)

2014.06.30 14.0.0 Added Show Netlist on One Page and show/Hide Instance Pins
commands.

November 2013 13.1.0 Removed HardCopy device information.
Reorganized and migrated to new template.
Added support for new Netlist viewer.

November 2012 12.1.0 Added sections to support Global Net Routing feature.

continued...

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1038

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Updated screenshots
• Updated chapter for the Intel Quartus Prime software version 10.0,

including major user interface changes

November 2009 9.1.0 • Updated devices
• Minor text edits

March 2009 9.0.0 • Chapter 13 was formerly Chapter 12 in version 8.1.0
• Updated Figure 13–2, Figure 13–3, Figure 13–4, Figure 13–14, and

Figure 13–30
• Added “Enable or Disable the Auto Hierarchy List” on page 13–15
• Updated “Find Command” on page 13–44

November 2008 8.1.0 Changed page size to 8.5” × 11”

May 2008 8.0.0 • Added Arria GX support
• Updated operator symbols
• Updated information about the radial menu feature
• Updated zooming feature
• Updated information about probing from schematic to Signal Tap

Analyzer
• Updated constant signal information
• Added .png and .gif to the list of supported image file formats
• Updated several figures and tables
• Added new sections “Enabling and Disabling the Radial Menu”,

“Changing the Time Interval”, “Changing the Constant Signal Value
Formatting”, “Logic Clouds in the RTL Viewer”, “Logic Clouds in the
Technology Map Viewer”, “Manually Group and Ungroup Logic
Clouds”, “Customizing the Shortcut Commands”

• Renamed several sections
• Removed section “Customizing the Radial Menu”
• Moved section “Grouping Combinational Logic into Logic Clouds”
• Updated document content based on the Intel Quartus Prime

software version 8.0

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

17 Optimizing the Design Netlist

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1039

https://www.altera.com/search-archives

18 Mentor Graphics Precision Synthesis Support

18.1 About Precision RTL Synthesis Support

This manual delineates the support for the Mentor Graphics® Precision RTL Synthesis
and Precision RTL Plus Synthesis software in the Intel Quartus Prime software, as well
as key design flows, methodologies and techniques for improving your results for Intel
devices. This manual assumes that you have set up, licensed, and installed the
Precision Synthesis software and the Intel Quartus Prime software.

To obtain and license the Precision Synthesis software, refer to the Mentor Graphics
website. To install and run the Precision Synthesis software and to set up your work
environment, refer to the Precision Synthesis Installation Guide in the Precision
Manuals Bookcase. To access the Manuals Bookcase in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Related Links

Mentor Graphics website

18.2 Design Flow

The following steps describe a basic Intel Quartus Prime design flow using the
Precision Synthesis software:

1. Create Verilog HDL or VHDL design files.

2. Create a project in the Precision Synthesis software that contains the HDL files for
your design, select your target device, and set global constraints.

3. Compile the project in the Precision Synthesis software.

4. Add specific timing constraints, optimization attributes, and compiler directives to
optimize the design during synthesis. With the design analysis and cross-probing
capabilities of the Precision Synthesis software, you can identify and improve
circuit area and performance issues using prelayout timing estimates.

Note: For best results, Mentor Graphics recommends specifying constraints that
are as close as possible to actual operating requirements. Properly setting
clock and I/O constraints, assigning clock domains, and indicating false and
multicycle paths guide the synthesis algorithms more accurately toward a
suitable solution in the shortest synthesis time.

5. Synthesize the project in the Precision Synthesis software.

6. Create a Intel Quartus Prime project and import the following files generated by
the Precision Synthesis software into the Intel Quartus Prime project:

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.mentor.com
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• The Verilog Quartus Mapping File (.vqm) netlist

• Synopsys Design Constraints File (.sdc) for Timing Analyzer constraints

• Tcl Script Files (.tcl) to set up your Intel Quartus Prime project and pass
constraints

Note: If your design uses the Classic Timing Analyzer for timing analysis in the
Intel Quartus Prime software versions 10.0 and earlier, the Precision
Synthesis software generates timing constraints in the Tcl Constraints File
(.tcl). If you are using the Intel Quartus Prime software versions 10.1 and
later, you must use the Timing Analyzer for timing analysis.

7. After obtaining place-and-route results that meet your requirements, configure or
program the Intel device.

You can run the Intel Quartus Prime software from within the Precision Synthesis
software, or run the Precision Synthesis software using the Intel Quartus Prime
software.

Figure 338. Design Flow Using the Precision Synthesis Software and Intel Quartus Prime
Software

Functional/RTL
Si m ulation

VHDL V erilog HDL

Constraints and
Settings

Constraints and
Settings

Precision Synthesis

Gate-Level
Functional
Si m ulation

Gate-Level Timing
Si m ulation

Timing and Area
Requirements

Satisfied?

Fo r ward-Annotated Project
Configuration
(.tcl /.acf)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho /.vo)

Post Place-and-Route
Simulation File

(.vho /.vo)

Configuration/Programming Files
(.sof /.pof)

Program/Configure Device

Quartus Prime Software

Quartus Prime Timing Constraints
in SDC format (.sdc)

System
V erilog

Design Specifications

No

Yes

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1041

18.2.1 Timing Optimization

If your area or timing requirements are not met, you can change the constraints and
resynthesize the design in the Precision Synthesis software, or you can change the
constraints to optimize the design during place-and-route in the Intel Quartus Prime
software. Repeat the process until the area and timing requirements are met.

You can use other options and techniques in the Intel Quartus Prime software to meet
area and timing requirements. For example, the WYSIWYG Primitive Resynthesis
option can perform optimizations on your EDIF netlist in the Intel Quartus Prime
software.

While simulation and analysis can be performed at various points in the design
process, final timing analysis should be performed after placement and routing is
complete.

Related Links

• Netlist Optimizations and Physical Synthesis documentation

• Timing Closure and Optimization documentation

18.3 Intel Device Family Support

The Precision Synthesis software supports active devices available in the current
version of the Intel Quartus Prime software. Support for newly released device families
may require an overlay. Contact Mentor Graphics for more information.

18.4 Precision Synthesis Generated Files

During synthesis, the Precision Synthesis software produces several intermediate and
output files.

Table 276. Precision Synthesis Software Intermediate and Output Files

File Extension File Description

.psp Precision Synthesis Project File.

.xdb Mentor Graphics Design Database File.

.rep(14) Synthesis Area and Timing Report File.

.vqm(15) Technology-specific netlist in .vqm file format.

continued...

(14) The timing report file includes performance estimates that are based on pre-place-and-route
information. Use the fMAX reported by the Intel Quartus Prime software after place-and-route
for accurate post-place-and-route timing information. The area report file includes post-
synthesis device resource utilization statistics that can differ from the resource usage after
place-and-route due to black boxes or further optimizations performed during placement and
routing. Use the device utilization reported by the Intel Quartus Prime software after place-
and-route for final resource utilization results.

(15) The Precision Synthesis software-generated VQM file is supported by the Intel Quartus Prime
software version 10.1 and later.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1042

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471329493
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471203263

File Extension File Description

By default, the Precision Synthesis software creates .vqm files for Arria series, Cyclone
series, and Stratix series devices. The Precision Synthesis software defaults to creating .vqm
files when the device is supported.

.tcl Forward-annotated Tcl assignments and constraints file. The <project name>.tcl file is
generated for all devices. The .tcl file acts as the Intel Quartus Prime Project Configuration
file and is used to make basic project and placement assignments, and to create and compile
a Intel Quartus Prime project.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II
software. For devices supported by the MAX+PLUS II software, the MAX+PLUS II
assignments are imported from the MAX+PLUS II .acf file.

.sdc Intel Quartus Prime timing constraints file in Synopsys Design Constraints format.
This file is generated automatically if the device uses the Timing Analyzer by default in the
Intel Quartus Prime software, and has the naming convention <project
name>_pnr_constraints .sdc.

Related Links

Synthesizing the Design and Evaluating the Results on page 1046

18.5 Creating and Compiling a Project in the Precision Synthesis
Software

After creating your design files, create a project in the Precision Synthesis software
that contains the basic settings for compiling the design.

18.6 Mapping the Precision Synthesis Design

In the next steps, you set constraints and map the design to technology-specific cells.
The Precision Synthesis software maps the design by default to the fastest possible
implementation that meets your timing constraints. To accomplish this, you must
specify timing requirements for the automatically determined clock sources. With this
information, the Precision Synthesis software performs static timing analysis to
determine the location of the critical timing paths. The Precision Synthesis software
achieves the best results for your design when you set as many realistic constraints as
possible. Be sure to set constraints for timing, mapping, false paths, multicycle paths,
and other factors that control the structure of the implemented design.

Mentor Graphics recommends creating an .sdc file and adding this file to the
Constraint Files section of the Project Files list. You can create this file with a text
editor, by issuing command-line constraint parameters, or by directing the Precision
Synthesis software to generate the file automatically the first time you synthesize your
design. By default, the Precision Synthesis software saves all timing constraints and
attributes in two files: precision_rtl.sdc and precision_tech.sdc. The
precision_rtl.sdc file contains constraints set on the RTL-level database (post-
compilation) and the precision_tech.sdc file contains constraints set on the gate-
level database (post- synthesis) located in the current implementation directory.

You can also enter constraints at the command line. After adding constraints at the
command line, update the .sdc file with the update constraint file command.
You can add constraints that change infrequently directly to the HDL source files with
HDL attributes or pragmas.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1043

Note: The Precision .sdc file contains all the constraints for the Precision Synthesis project.
For the Intel Quartus Prime software, placement constraints are written in a .tcl file
and timing constraints for the Timing Analyzer are written in the Intel Quartus
Prime .sdc file.

For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual.
For more details and examples of attributes, refer to the Attributes chapter in the
Precision Synthesis Reference Manual.

18.6.1 Setting Timing Constraints

The Precision Synthesis software uses timing constraints, based on the industry-
standard .sdc file format, to deliver optimal results. Missing timing constraints can
result in incomplete timing analysis and might prevent timing errors from being
detected. The Precision Synthesis software provides constraint analysis prior to
synthesis to ensure that designs are fully and accurately constrained. The
<project name>_pnr_constraints.sdc file, which contains timing constraints in SDC
format, is generated in the Intel Quartus Prime software.

Note: Because the .sdc file format requires that timing constraints be set relative to defined
clocks, you must specify your clock constraints before applying any other timing
constraints.

You also can use multicycle path and false path assignments to relax requirements or
exclude nodes from timing requirements, which can improve area utilization and allow
the software optimizations to focus on the most critical parts of the design.

For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual.

18.6.2 Setting Mapping Constraints

Mapping constraints affect how your design is mapped into the target Intel device. You
can set mapping constraints in the user interface, in HDL code, or with the
set_attribute command in the constraint file.

18.6.3 Assigning Pin Numbers and I/O Settings

The Precision Synthesis software supports assigning device pin numbers, I/O
standards, drive strengths, and slew rate settings to top-level ports of the design. You
can set these timing constraints with the set_attribute command, the GUI, or by
specifying synthesis attributes in your HDL code. These constraints are
forward-annotated in the <project name>.tcl file that is read by the Intel Quartus
Prime software during place-and-route and do not affect synthesis.

You can use the set_attribute command in the Precision Synthesis software .sdc
file to specify pin number constraints, I/O standards, drive strengths, and slow
slew-rate settings. The table below describes the format to use for entries in the
Precision Synthesis software constraint file.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1044

Table 277. Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive strength set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

You also can use synthesis attributes or pragmas in your HDL code to make these
assignments.

Example
105.

Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example
106.

VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is "P10";

You can use the same syntax to assign the I/O standard using the IOSTANDARD
attribute, drive strength using the attribute DRIVE, and slew rate using the SLEW
attribute.

For more details about attributes and how to set these attributes in your HDL code,
refer to the Precision Synthesis Reference Manual.

18.6.4 Assigning I/O Registers

The Precision Synthesis software performs timing-driven I/O register mapping by
default. You can force a register to the device IO element (IOE) using the Complex I/O
constraint. This option does not apply if you turn off I/O pad insertion.

Note: You also can make the assignment by right-clicking on the pin in the Schematic
Viewer.

For the Stratix series, Cyclone series, and the MAX II device families, the Precision
Synthesis software can move an internal register to an I/O register without any
restrictions on design hierarchy.

For more mature devices, the Precision Synthesis software can move an internal
register to an I/O register only when the register exists in the top-level of the
hierarchy. If the register is buried in the hierarchy, you must flatten the hierarchy so
that the buried registers are moved to the top-level of the design.

18.6.5 Disabling I/O Pad Insertion

The Precision Synthesis software assigns I/O pad atoms (device primitives used to
represent the I/O pins and I/O registers) to all ports in the top-level of a design by
default. In certain situations, you might not want the software to add I/O pads to all

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1045

I/O pins in the design. The Intel Quartus Prime software can compile a design without
I/O pads; however, including I/O pads provides the Precision Synthesis software with
more information about the top-level pins in the design.

18.6.5.1 Preventing the Precision Synthesis Software from Adding I/O Pads

If you are compiling a subdesign as a separate project, I/O pins cannot be primary
inputs or outputs of the device; therefore, the I/O pins should not have an I/O pad
associated with them.

To prevent the Precision Synthesis software from adding I/O pads:

• You can use the Precision Synthesis GUI or add the following command to the
project file:

setup_design -addio=false

18.6.5.2 Preventing the Precision Synthesis Software from Adding an I/O Pad on
an Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a black box, such
as DDR or a phase-locked loop (PLL), at the external ports of the design, perform the
following steps:

1. Compile your design.

2. Use the Precision Synthesis GUI to select the individual pin and turn off I/O pad
insertion.

Note: You also can make this assignment by attaching the nopad attribute to the port in the
HDL source code.

18.6.6 Controlling Fan-Out on Data Nets

Fan-out is defined as the number of nodes driven by an instance or top-level port.
High fan-out nets can cause significant delays that result in an unroutable net. On a
critical path, high fan-out nets can cause longer delays in a single net segment that
result in the timing constraints not being met. To prevent this behavior, each device
family has a global fan-out value set in the Precision Synthesis software library. In
addition, the Intel Quartus Prime software automatically routes high fan-out signals on
global routing lines in the Intel device whenever possible.

To eliminate routability and timing issues associated with high fan-out nets, the
Precision Synthesis software also allows you to override the library default value on a
global or individual net basis. You can override the library value by setting a
max_fanout attribute on the net.

18.7 Synthesizing the Design and Evaluating the Results

During synthesis, the Precision Synthesis software optimizes the compiled design, and
then writes out netlists and reports to the implementation subdirectory of your
working directory after the implementation is saved, using the following naming
convention:

<project name>_impl_<number>

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1046

After synthesis is complete, you can evaluate the results for area and timing. The
Precision RTL Synthesis User’s Manual describes different results that can be evaluated
in the software.

There are several schematic viewers available in the Precision Synthesis software: RTL
schematic, Technology-mapped schematic, and Critical Path schematic. These analysis
tools allow you to quickly and easily isolate the source of timing or area issues, and to
make additional constraint or code changes to optimize the design.

18.7.1 Obtaining Accurate Logic Utilization and Timing Analysis Reports

Historically, designers have relied on post-synthesis logic utilization and timing reports
to determine the amount of logic their design requires, the size of the device required,
and how fast the design runs. However, today’s FPGA devices provide a wide variety of
advanced features in addition to basic registers and look-up tables (LUTs). The Intel
Quartus Prime software has advanced algorithms to take advantage of these features,
as well as optimization techniques to increase performance and reduce the amount of
logic required for a given design. In addition, designs can contain black boxes and
functions that take advantage of specific device features. Because of these advances,
synthesis tool reports provide post-synthesis area and timing estimates, but you
should use the place-and-route software to obtain final logic utilization and timing
reports.

18.8 Guidelines for Intel FPGA IP Cores and Architecture-Specific
Features

Intel provides parameterizable IP cores, including the LPMs, and device-specific Intel
FPGA IP, and IP available through third-party partners. You can use IP cores by
instantiating them in your HDL code or by inferring certain functions from generic HDL
code.

If you want to instantiate an IP core such as a PLL in your HDL code, you can
instantiate and parameterize the function using the port and parameter definitions, or
you can customize a function with the parameter editor. Intel recommends using the
IP Catalog and parameter editor, which provides a graphical interface within the Intel
Quartus Prime software for customizing and parameterizing any available IP core for
the design.

The Precision Synthesis software automatically recognizes certain types of HDL code
and infers the appropriate IP core.

Related Links

• Inferring Intel FPGA IP Cores from HDL Code on page 1050

• Recommended HDL Coding Styles documentation on page 100

• Introduction to Intel FPGA IP Cores documentation

18.8.1 Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files

The IP Catalog generates a Verilog HDL instantiation template file <output
file>_inst.v and a hollow-body black box module declaration <output file>_bb.v for
use in your Precision Synthesis design. Incorporate the instantiation template file,
<output file>_inst.v, into your top-level design to instantiate the IP core wrapper file,
<output file>.v.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1047

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf

Include the hollow-body black box module declaration <output file>_bb.v in your
Precision Synthesis project to describe the port connections of the black box. Adding
the IP core wrapper file <output file>.v in your Precision Synthesis project is optional,
but you must add it to your Intel Quartus Prime project along with the Precision
Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision
Synthesis project and turn on the Exclude file from Compile Phase option in the
Precision Synthesis software to exclude the file from compilation and to copy the file
to the appropriate directory for use by the Intel Quartus Prime software during place-
and-route.

18.8.2 Instantiating IP Cores With IP Catalog-Generated VHDL Files

The IP Catalog generates a VHDL component declaration file <output file>.cmp and a
VHDL instantiation template file <output file>_inst.vhd for use in your Precision
Synthesis design. Incorporate the component declaration and instantiation template
into your top-level design to instantiate the IP core wrapper file, <output file>.vhd.

Adding the IP core wrapper file <output file>.vhd in your Precision Synthesis project
is optional, but you must add the file to your Intel Quartus Prime project along with
the Precision Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision
Synthesis project and turn on the Exclude file from Compile Phase option in the
Precision Synthesis software to exclude the file from compilation and to copy the file
to the appropriate directory for use by the Intel Quartus Prime software during place-
and-route.

18.8.3 Instantiating Intellectual Property With the IP Catalog and
Parameter Editor

Many Intel FPGA IP functions include a resource and timing estimation netlist that the
Precision Synthesis software can use to synthesize and optimize logic around the IP
efficiently. As a result, the Precision Synthesis software provides better timing
correlation, area estimates, and Quality of Results (QoR) than a black box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the IP Catalog.

2. Click Next to open the Parameter Editor.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Intel Quartus Prime software generates a file <output file>_syn.v. This netlist
contains the “grey box” information for resource and timing estimation, but does not
contain the actual implementation. Include this netlist file into your Precision
Synthesis project as an input file. Then include the IP core wrapper file <output
file>.v|vhd in the Intel Quartus Prime project along with your EDIF or VQM output
netlist.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1048

The generated “grey box” netlist file, <output file>_syn.v , is always in Verilog HDL
format, even if you select VHDL as the output file format.

Note: For information about creating a grey box netlist file from the command line, search
Altera's Knowledge Database.

Related Links

Altera Knowledge Center website

18.8.4 Instantiating Black Box IP Functions With Generated Verilog HDL
Files

You can use the syn_black_box or black_box compiler directives to declare a
module as a black box. The top-level design files must contain the IP port mapping
and a hollow-body module declaration. You can apply the directive to the module
declaration in the top-level file or a separate file included in the project so that the
Precision Synthesis software recognizes the module is a black box.

Note: The syn_black_box and black_box directives are supported only on module or
entity definitions.

The example below shows a sample top-level file that instantiates my_verilogIP.v,
which is a simplified customized variation generated by the IP Catalog and Parameter
Editor.

Example
107.

Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output[7:0] count;

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output[7:0] q;
endmodule

18.8.5 Instantiating Black Box IP Functions With Generated VHDL Files

You can use the syn_black_box or black_box compiler directives to declare a
component as a black box. The top-level design files must contain the IP core
variation component declaration and port mapping. Apply the directive to the
component declaration in the top-level file.

Note: The syn_black_box and black_box directives are supported only on module or
entity definitions.

The example below shows a sample top-level file that instantiates my_vhdlIP.vhd,
which is a simplified customized variation generated by the IP Catalog and Parameter
Editor.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1049

http://www.altera.com/support/kdb/kdb-index.jsp

Example
108.

Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
 COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
 end COMPONENT;
 attribute syn_black_box : boolean;
 attribute syn_black_box of my_vhdlIP: component is true;
 BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

18.8.6 Inferring Intel FPGA IP Cores from HDL Code

The Precision Synthesis software automatically recognizes certain types of HDL code
and maps arithmetical operators, relational operators, and memory (RAM and ROM),
to technology-specific implementations. This functionality allows technology-specific
resources to implement these structures by inferring the appropriate Intel function to
provide optimal results. In some cases, the Precision Synthesis software has options
that you can use to disable or control inference.

For coding style recommendations and examples for inferring technology-specific
architecture in Intel devices, refer to the Precision Synthesis Style Guide.

Related Links

Recommended HDL Coding Styles documentation on page 100

18.8.6.1 Multipliers

The Precision Synthesis software detects multipliers in HDL code and maps them
directly to device atoms to implement the multiplier in the appropriate type of logic.
The Precision Synthesis software also allows you to control the device resources that
are used to implement individual multipliers.

18.8.6.1.1 Controlling DSP Block Inference for Multipliers

By default, the Precision Synthesis software uses DSP blocks available in Stratix series
devices to implement multipliers. The default setting is AUTO, which allows the
Precision Synthesis software to map to logic look-up tables (LUTs) or DSP blocks,
depending on the size of the multiplier. You can use the Precision Synthesis GUI or
HDL attributes for direct mapping to only logic elements or to only DSP blocks.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1050

Table 278. Options for dedicated_mult Parameter to Control Multiplier Implementation
in Precision Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers, regardless of the size of the multiplier.

AUTO Use logic (LUTs) or DSP blocks to implement multipliers, depending on the size of the multipliers.

18.8.6.2 Setting the Use Dedicated Multiplier Option

To set the Use Dedicated Multiplier option in the Precision Synthesis GUI,
compile the design, and then in the Design Hierarchy browser, right-click the operator
for the desired multiplier and click Use Dedicated Multiplier.

18.8.6.3 Setting the dedicated_mult Attribute

To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value as shown in the examples
below.

Example
109.

Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example
110.

Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

The dedicated_mult attribute can be applied to signals and wires; it does not work
when applied to a register. This attribute can be applied only to simple multiplier code,
such as a = b * c.

Some signals for which the dedicated_mult attribute is set can be removed during
synthesis by the Precision Synthesis software for design optimization. In such cases, if
you want to force the implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE.

Example
111.

Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE

Example
112.

Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1051

Example
113.

Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
 output [15:0] result;
 input [7:0] a;
 input [7:0} b;
 assign result = a * b;
 //synthesis attribute result dedicated_mult OFF
endmodule

Example
114.

VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
 PORT(
 a: IN std_logic_vector (7 DOWNTO 0);
 b: IN std_logic_vector (7 DOWNTO 0);
 result: OUT std_logic_vector (15 DOWNTO 0));
ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
 SIGNAL pdt_int: UNSIGNED (15 downto 0);
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF;
BEGIN
 a_int <= UNSIGNED (a);
 b_int <= UNSIGNED (b);
 pdt_int <= a_int * b_int;
 result <= std_logic_vector(pdt_int);
END rtl;

18.8.6.4 Multiplier-Accumulators and Multiplier-Adders

The Precision Synthesis software also allows you to control the device resources used
to implement multiply-accumulators or multiply-adders in your project or in a
particular module.

The Precision Synthesis software detects multiply-accumulators or multiply-adders in
HDL code and infers an ALTMULT_ACCUM or ALTMULT_ADD IP cores so that the logic
can be placed in DSP blocks, or the software maps these functions directly to device
atoms to implement the multiplier in the appropriate type of logic.

Note: The Precision Synthesis software supports inference for these functions only if the
target device family has dedicated DSP blocks.

For more information about DSP blocks in Intel devices, refer to the appropriate Intel
device family handbook and device-specific documentation. For details about which
functions a given DSP block can implement, refer to the DSP Solutions Center on the
Altera website.

For more information about inferring multiply-accumulator and multiply-adder IP cores
in HDL code, refer to the Intel Recommended HDL Coding Styles and the Mentor
GraphicsPrecision Synthesis Style Guide.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1052

Related Links

• Altera DSP Solutions website

• Recommended HDL Coding Styles documentation on page 100

18.8.6.5 Controlling DSP Block Inference

By default, the Precision Synthesis software infers the ALTMULT_ADD or
ALTMULT_ACCUM IP cores appropriately in your design. These IP cores allow the Intel
Quartus Prime software to select either logic or DSP blocks, depending on the device
utilization and the size of the function.

You can use the extract_mac attribute to prevent inference of an ALTMULT_ADD or
ALTMULT_ACCUM IP cores in a certain module or entity.

Table 279. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM IP core is inferred.

FALSE The ALTMULT_ADD or ALTMULT_ACCUM IP core is not inferred.

To control inference, use the extract_mac attribute with the appropriate value from
the examples below in your HDL code.

Example
115.

Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

Example
116.

Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

To control the implementation of the multiplier portion of a multiply-accumulator or
multiply-adder, you must use the dedicated_mult attribute.

You can use the extract_mac, dedicated_mult, and preserve_signal attributes
(in Verilog HDL and VHDL) to implement the given DSP function in logic in the Intel
Quartus Prime software.

Example
117.

Using extract_mac, dedicated_mult, and preserve_signal in Verilog HDL

module unsig_altmult_accuml (dataout, dataa, datab, clk, aclr, clken);
 input [7:0} dataa, datab;
 input clk, aclr, clken;
 output [31:0] dataout;

 reg [31:0] dataout;
 wire [15:0] multa;
 wire [31:0] adder_out;

 assign multa = dataa * datab;

 //synthesis attribute multa preserve_signal TRUE
 //synthesis attribute multa dedicated_mult OFF
 assign adder_out = multa + dataout;

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1053

http://www.altera.com/technology/dsp/dsp-index.jsp

 always @ (posedge clk or posedge aclr)
 begin
 if (aclr)
 dataout <= 0;
 else if (clken)
 dataout <= adder_out;
 end

 //synthesis attribute unsig_altmult_accuml extract_mac FALSE
endmodule

Example
118.

Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS
 PORT(
 a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));
 ATTRIBUTE preserve_signal: BOOLEANS;
 ATTRIBUTE dedicated_mult: STRING;
 ATTRIBUTE extract_mac: BOOLEAN;
 ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;
END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS
 SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
 SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
 SIGNAL result_int: signed (15 DOWNTO 0);
 ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
 ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";
BEGIN
 a_int <= signed (a);
 b_int <= signed (b);
 c_int <= signed (c);
 d_int <= signed (d);
 pdt_int <= a_int * b_int;
 pdt2_int <= c_int * d_int;
 result_int <= pdt_int + pdt2_int;
 result <= STD_LOGIC_VECTOR(result_int);
END rtl;

18.8.6.6 RAM and ROM

The Precision Synthesis software detects memory structures in HDL code and converts
them to an operator that infers an ALTSYNCRAM or LPM_RAM_DP IP cores, depending
on the device family. The software then places these functions in memory blocks.

The software supports inference for these functions only if the target device family has
dedicated memory blocks.

For more information about inferring RAM and ROM IP cores in HDL code, refer to the
Precision Synthesis Style Guide.

Related Links

Recommended HDL Coding Styles documentation on page 100

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1054

18.9 Document Revision History

Table 280. Document Revision History

Date Version Changes

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed obsolete devices.
• Replaced Intel FPGA IP, MegaWizard, and IP Toolbench content with IP Catalog and

Parameter Editor content.

June 2012 12.0.0 • Removed survey link.

November 2011 10.1.1 • Template update.
• Minor editorial changes.

December 2010 10.1.0 • Changed to new document template.
• Removed Classic Timing Analyzer support.
• Added support for . vqm netlist files.
• Edited the “Creating Intel Quartus Prime Projects for Multiple EDIF Files” on page 15–30

section for changes with the incremental compilation flow.
• Editorial changes.

July 2010 10.0.0 • Minor updates for the Intel Quartus Prime software version 10.0 release

November 2009 9.1.0 • Minor updates for the Intel Quartus Prime software version 9.1 release

March 2009 9.0.0 • Updated list of supported devices for the Intel Quartus Prime software version 9.0 release
• Chapter 11 was previously Chapter 10 in software version 8.1

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Title changed to Mentor Graphics Precision Synthesis Support
• Updated list of supported devices
• Added information about the Precision RTL Plus incremental synthesis flow
• Updated Figure 10-1 to include SystemVerilog
• Updated “Guidelines for Intel FPGA IP and Architecture-Specific Features” on page 10–19
• Updated “Incremental Compilation and Block-Based Design” on page 10–28
• Added section “Creating Partitions with the incr_partition Attribute” on page 10–29

May 2008 8.0.0 • Removed Mercury from the list of supported devices
• Changed Precision version to 2007a update 3
• Added note for Stratix IV support
• Renamed “Creating a Project and Compiling the Design” section to “Creating and Compiling

a Project in the Precision RTL Synthesis Software”
• Added information about constraints in the Tcl file
• Updated document based on the Intel Quartus Prime software version 8.0

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

18 Mentor Graphics Precision Synthesis Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1055

https://www.altera.com/search-archives

19 Synopsys Synplify Support

19.1 About Synplify Support

the Intel Quartus Prime software supports use of the Synopsys Synplify software
design flows, methodologies, and techniques for achieving optimal results in Intel
devices.Synplify support applies to Synplify, Synplify Pro, and Synplify Premier
software. This document assumes proper set up, licensing, and basic familiarity with
the Synplify software.

This document covers the following information:

• General design flow with the Synplify and Intel Quartus Prime software.

• Synplify software optimization strategies, including timing-driven compilation
settings, optimization options, and other attributes.

• Guidelines for use of Quartus Prime IP cores, including guidelines for HDL
inference of IP cores.

Related Links

• Synplify Synthesis Techniques with the Intel Quartus Prime Software online
training

• Synplify Pro Tips and Tricks online training

19.2 Design Flow

The following steps describe a basic Intel Quartus Prime software design flow using
the Synplify software:

1. Create Verilog HDL (.v) or VHDL (.vhd) design files.

2. Set up a project in the Synplify software and add the HDL design files for
synthesis.

3. Select a target device and add timing constraints and compiler directives in the
Synplify software to help optimize the design during synthesis.

4. Synthesize the project in the Synplify software.

5. Create a Intel Quartus Prime project and import the following files generated by
the Synplify software into the Intel Quartus Prime software. Use the following files
for placement and routing, and for performance evaluation:

QPP5V1 | 2017.12.15

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1100
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Verilog Quartus Mapping File (.vqm) netlist.

• The Synopsys Constraints Format (.scf) file for Timing Analyzer constraints.

• The .tcl file to set up your Intel Quartus Prime project and pass constraints.

Note: Alternatively, you can run the Intel Quartus Prime software from within
the Synplify software.

6. After obtaining place-and-route results that meet your requirements, configure or
program the Intel device.

Figure 339. Recommended Design Flow

VHDL
(.vhd)

Verilog
HDL
(.v)

System
Verilog

(.v)

Synplify Software

Synopsys Constraints
format (.scf) File

Timing & Area
Requirements

Satisfied?

Functional/RTL
Simulation

Gate-Level
Functional
Simulation

Constraints & Settings

Constraints & Settings

Program/Configure Device

Forward-Annotated
Project Constraints
(.tcl/.acf)

Configuation/Programming
Files (.sof/.pof)

Technology-
Specific Netlist

(.vqm/edf)

Post-Place-and-Route
Simulation Files

(.vho/.vo)
Quartus Prime Software

Yes

No

Related Links

• Synplify Software Generated Files on page 1058

• Design Constraints Support on page 1059

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1057

19.3 Hardware Description Language Support

The Synplify software supports VHDL, Verilog HDL, and SystemVerilog source files.
However, only the Synplify Pro and Premier software support mixed synthesis,
allowing a combination of VHDL and Verilog HDL or SystemVerilog format source files.

The HDL Analyst that is included in the Synplify software is a graphical tool for
generating schematic views of the technology-independent RTL view netlist (.srs) and
technology-view netlist (.srm) files. You can use the Synplify HDL Analyst to analyze
and debug your design visually. The HDL Analyst supports cross-probing between the
RTL and Technology views, the HDL source code, the Finite State Machine (FSM)
viewer, and between the technology view and the timing report file in the Intel
Quartus Prime software. A separate license file is required to enable the HDL Analyst
in the Synplify software. The Synplify Pro and Premier software include the HDL
Analyst.

Related Links

Guidelines for Intel FPGA IP Cores and Architecture-Specific Features on page 1068

19.4 Intel Device Family Support

Support for newly released device families may require an overlay. Contact Synopsys
for more information.

Related Links

Synopsys Website

19.5 Tool Setup

19.5.1 Specifying the Intel Quartus Prime Software Version

You can specify your version of the Intel Quartus Prime software in Implementation
Options in the Synplify software. This option ensures that the netlist is compatible
with the software version and supports the newest features. Intel recommends using
the latest version of the Intel Quartus Prime software whenever possible. If your Intel
Quartus Prime software version is newer than the versions available in the Quartus
Version list, check if there is a newer version of the Synplify software available that
supports the current Intel Quartus Prime software version. Otherwise, select the latest
version in the list for the best compatibility.

Note: The Quartus Version list is available only after selecting an Intel device.

Example
119.

Specifying Intel Quartus Prime Software Version at the Command Line

set_option -quartus_version <version number>

19.6 Synplify Software Generated Files

During synthesis, the Synplify software produces several intermediate and output files.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1058

http://www.synopsys.com

Table 281. Synplify Intermediate and Output Files

File Extensions File Description

.vqm Technology-specific netlist in .vqm file format.
A .vqm file is created for all Intel device families supported by the Intel Quartus Prime
software.

.scf(16) Synopsys Constraint Format file containing timing constraints for the Timing Analyzer.

.tcl Forward-annotated constraints file containing constraints and assignments.
A .tcl file for the Intel Quartus Prime software is created for all devices. The .tcl file
contains the appropriate Tcl commands to create and set up a Intel Quartus Prime project
and pass placement constraints.

.srs Technology-independent RTL netlist file that can be read only by the Synplify software.

.srm Technology view netlist file.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II
software. For devices supported by the MAX+PLUS II software, the MAX+PLUS II
assignments are imported from the MAX+PLUS II .acf file.

.srr(17) Synthesis Report file.

Related Links

Design Flow on page 1056

19.7 Design Constraints Support

You can specify timing constraints and attributes by using the SCOPE window of the
Synplify software, by editing the .sdc file, or by defining the compiler directives in the
HDL source file. The Synplify software forward-annotates many of these constraints to
the Intel Quartus Prime software.

After synthesis is complete, do the following steps:

1. Import the .vqm netlist to the Intel Quartus Prime software for place-and-route.

2. Use the .tcl file generated by the Synplify software to forward-annotate your
project constraints including device selection. The .tcl file calls the generated .scf
to foward-annotate Timing Analyzer timing constraints.

Related Links

• Design Flow on page 1056

(16) If your design uses the Classic Timing Analyzer for timing analysis in the Intel Quartus Prime
software versions 10.0 and earlier, the Synplify software generates timing constraints in the Tcl
Constraints File (.tcl). If you are using the Intel Quartus Prime software versions 10.1 and
later, you must use the Timing Analyzer for timing analysis.

(17) This report file includes performance estimates that are often based on pre-place-and-route
information. Use the fMAX reported by the Intel Quartus Prime software after place-and-route—
it is the only reliable source of timing information. This report file includes post-synthesis
device resource utilization statistics that might inaccurately predict resource usage after place-
and-route. The Synplify software does not account for black box functions nor for logic usage
reduction achieved through register packing performed by the Intel Quartus Prime software.
Register packing combines a single register and look-up table (LUT) into a single logic cell,
reducing logic cell utilization below the Synplify software estimate. Use the device utilization
reported by the Intel Quartus Prime software after place-and-route.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1059

• Synplify Optimization Strategies on page 1061

• Netlist Optimizations and Physical Synthesis Documentation

19.7.1 Running the Intel Quartus Prime Software Manually With the
Synplify-Generated Tcl Script

You can run the Intel Quartus Prime software with a Synplify-generated Tcl script.

To run the Tcl script to set up your project assignments, perform the following steps:

1. Ensure the .vqm, .scf, and .tcl files are located in the same directory.

2. In the Intel Quartus Prime software, on the View menu, point to and click Tcl
Console. The Intel Quartus Prime Tcl Console opens.

3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl

19.7.2 Passing Timing Analyzer SDC Timing Constraints to the Intel
Quartus Prime Software

The Timing Analyzer is a powerful ASIC-style timing analysis tool that validates the
timing performance of all logic in your design using an industry standard constraints
format, Synopsys Design Constraints (SDC).

The Synplify-generated .tcl file contains constraints for the Intel Quartus Prime
software, such as the device specification and any location constraints. Timing
constraints are forward-annotated in the Synopsys Constraints Format (.scf) file.

Note: Synopsys recommends that you modify constraints using the SCOPE constraint editor
window, rather than using the generated .sdc, .scf, or .tcl file.

The following list of Synplify constraints are converted to the equivalent Intel Quartus
Prime SDC commands and are forward-annotated to the Intel Quartus Prime software
in the .scf file:

• define_clock

• define_input_delay

• define_output_delay

• define_multicycle_path

• define_false_path

All Synplify constraints described above are mapped to SDC commands for the Timing
Analyzer.

For syntax and arguments for these commands, refer to the applicable topic in this
manual or refer to Synplify Help. For a list of corresponding commands in the Intel
Quartus Prime software, refer to the Intel Quartus Prime Help.

Related Links

• Timing-Driven Synthesis Settings on page 1062

• Intel Quartus Prime Timing Analyzer Documentation

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1060

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471329493
https://www.altera.com/documentation/mwh1410385117325.html#mwh1410383638859

19.7.2.1 Individual Clocks and Frequencies

Specify clock frequencies for individual clocks in the Synplify software with the
define_clock command. This command is passed to the Intel Quartus Prime
software with the create_clock command.

19.7.2.2 Input and Output Delay

Specify input delay and output delay constraints in the Synplify software with the
define_input_delay and define_output_delay commands, respectively. These
commands are passed to the Intel Quartus Prime software with the
set_input_delay and set_output_delay commands.

19.7.2.3 Multicycle Path

Specify a multicycle path constraint in the Synplify software with the
define_multicycle_path command. This command is passed to the Intel Quartus
Prime software with the set_multicycle_path command.

19.7.2.4 False Path

Specify a false path constraint in the Synplify software with the define_false_path
command. This command is passed to the Intel Quartus Prime software with the
set_false_path command.

19.8 Simulation and Formal Verification

You can perform simulation and formal verification at various stages in the design
process. You can perform final timing analysis after placement and routing is
complete.

If area and timing requirements are satisfied, use the files generated by the Intel
Quartus Prime software to program or configure the Intel device. If your area or
timing requirements are not met, you can change the constraints in the Synplify
software or the Intel Quartus Prime software and rerun synthesis. Intel recommends
that you provide timing constraints in the Synplify software and any placement
constraints in the Intel Quartus Prime software. Repeat the process until area and
timing requirements are met.

You can also use other options and techniques in the Intel Quartus Prime software to
meet area and timing requirements, such as WYSIWYG Primitive Resynthesis, which
can perform optimizations on your .vqm netlist within the Intel Quartus Prime
software.

Note: In some cases, you might be required to modify the source code if the area and timing
requirements cannot be met using options in the Synplify and Intel Quartus Prime
software.

19.9 Synplify Optimization Strategies

Combining Synplify software constraints with VHDL and Verilog HDL coding techniques
and Intel Quartus Prime software options can help you obtain the results that you
require.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1061

For more information about applying attributes, refer to the Synopsys FPGA Synthesis
Reference Manual.

Related Links

• Design Constraints Support on page 1059

• Recommended Design Practices Documentation on page 152

• Timing Closure and Optimization Documentation

19.9.1 Using Synplify Premier to Optimize Your Design

Compared to other Synplify products, the Synplify Premier software offers additional
physical synthesis optimizations. After typical logic synthesis, the Synplify Premier
software places and routes the design and attempts to restructure the netlist based on
the physical location of the logic in the Intel device. The Synplify Premier software
forward-annotates the design netlist to the Intel Quartus Prime software to perform
the final placement and routing. In the default flow, the Synplify Premier software also
forward-annotates placement information for the critical path(s) in the design, which
can improve the compilation time in the Intel Quartus Prime software.

The physical location annotation file is called <design name>_plc.tcl. If you open the
Intel Quartus Prime software from the Synplify Premier software user interface, the
Intel Quartus Prime software automatically uses this file for the placement
information.

The Physical Analyst allows you to examine the placed netlist from the Synplify
Premier software, which is similar to the HDL Analyst for a logical netlist. You can use
this display to analyze and diagnose potential problems.

19.9.2 Using Implementations in Synplify Pro or Premier

You can create different synthesis results without overwriting the existing results, in
the Synplify Pro or Premier software, by creating a new implementation from the
Project menu. For each implementation, specify the target device, synthesis options,
and constraint files. Each implementation generates its own subdirectory that contains
all the resulting files, including .vqm, .scf, and .tcl files, from a compilation of the
particular implementation. You can then compare the results of the different
implementations to find the optimal set of synthesis options and constraints for a
design.

19.9.3 Timing-Driven Synthesis Settings

The Synplify software supports timing-driven synthesis with user-assigned timing
constraints to optimize the performance of the design.

The Intel Quartus Prime NativeLink feature allows timing constraints that are applied
in the Synplify software to be forward-annotated for the Intel Quartus Prime software
with an .scf file for timing-driven place and route.

The Synplify Synthesis Report File (.srr) contains timing reports of estimated
place-and-route delays. The Intel Quartus Prime software can perform further
optimizations on a post-synthesis netlist from third-party synthesis tools. In addition,
designs might contain black boxes or intellectual property (IP) functions that have not
been optimized by the third-party synthesis software. Actual timing results are
obtained only after the design has been fully placed and routed in the Intel Quartus

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1062

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471203263

Prime software. For these reasons, the Intel Quartus Prime post place-and-route
timing reports provide a more accurate representation of the design. Use the statistics
in these reports to evaluate design performance.

Related Links

Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus Prime Software
on page 1060

19.9.3.1 Clock Frequencies

For single-clock designs, you can specify a global frequency when using the
push-button flow. While this flow is simple and provides good results, it often does not
meet the performance requirements for more advanced designs. You can use timing
constraints, compiler directives, and other attributes to help optimize the performance
of a design. You can enter these attributes and directives directly in the HDL code.
Alternatively, you can enter attributes (not directives) into an .sdc file with the SCOPE
window in the Synplify software.

Use the SCOPE window to set global frequency requirements for the entire design and
individual clock settings. Use the Clocks tab in the SCOPE window to specify
frequency (or period), rise times, fall times, duty cycle, and other settings. Assigning
individual clock settings, rather than over-constraining the global frequency, helps the
Intel Quartus Prime software and the Synplify software achieve the fastest clock
frequency for the overall design. The define_clock attribute assigns clock
constraints.

19.9.3.2 Multiple Clock Domains

The Synplify software can perform timing analysis on unrelated clock domains. Each
clock group is a different clock domain and is treated as unrelated to the clocks in all
other clock groups. All clocks in a single clock group are assumed to be related, and
the Synplify software automatically calculates the relationship between the clocks. You
can assign clocks to a new clock group or put related clocks in the same clock group
with the Clocks tab in the SCOPE window, or with the define_clock attribute.

19.9.3.3 Input and Output Delays

Specify the input and output delays for the ports of a design in the Input/Output tab
of the SCOPE window, or with the define_input_delay and
define_output_delay attributes. The Synplify software does not allow you to
assign the tCO and tSU values directly to inputs and outputs. However, a tCO value can
be inferred by setting an external output delay; a tSU value can be inferred by setting
an external input delay.

Relationship Between tCO and the Output Delay

tCO = clock period – external output delay

Relationship Between tSU and the Input Delay

tSU = clock period – external input delay

When the syn_forward_io_constraints attribute is set to 1, the Synplify
software passes the external input and output delays to the Intel Quartus Prime
software using NativeLink integration. The Intel Quartus Prime software then uses the
external delays to calculate the maximum system frequency.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1063

19.9.3.4 Multicycle Paths

A multicycle path is a path that requires more than one clock cycle to propagate.
Specify any multicycle paths in the design in the Multi-Cycle Paths tab of the SCOPE
window, or with the define_multicycle_path attribute. You should specify which
paths are multicycle to prevent the Intel Quartus Prime and the Synplify compilers
from working excessively on a non-critical path. Not specifying these paths can also
result in an inaccurate critical path reported during timing analysis.

19.9.3.5 False Paths

False paths are paths that should be ignored during timing analysis, or should be
assigned low (or no) priority during optimization. Some examples of false paths
include slow asynchronous resets, and test logic that has been added to the design.
Set these paths in the False Paths tab of the SCOPE window, or use the
define_false_path attribute.

19.9.4 FSM Compiler

If the FSM Compiler is turned on, the compiler automatically detects state machines in
a design, which are then extracted and optimized. The FSM Compiler analyzes state
machines and implements sequential, gray, or one-hot encoding, based on the number
of states. The compiler also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic. Implementation is based on
the number of states, regardless of the coding style in the HDL code.

If the FSM Compiler is turned off, the compiler does not optimize logic as state
machines. The state machines are implemented as HDL code. Thus, if the coding style
for a state machine is sequential, the implementation is also sequential.

Use the syn_state_machine compiler directive to specify or prevent a state
machine from being extracted and optimized. To override the default encoding of the
FSM Compiler, use the syn_encoding directive.

Table 282. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flipflops. Sequential, also called binary, state
machines are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded state
machines tend to be glitches.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines typically
provide the best performance and shortest clock-to-output delays. However, one-hot implementations
are usually larger than sequential implementations.

Safe Generates extra control logic to force the state machine to the reset state if an invalid state is reached.
You can use the safe value in conjunction with any of the other three values, which results in the state
machine being implemented with the requested encoding scheme and the generation of the reset logic.

Example
120.

Sample VHDL Code for Applying syn_encoding Directive

SIGNAL current_state : STD_LOGIC_VECTOR (7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1064

By default, the state machine logic is optimized for speed and area, which may be
potentially undesirable for critical systems. The safe value generates extra control
logic to force the state machine to the reset state if an invalid state is reached.

19.9.4.1 FSM Explorer in Synplify Pro and Premier

The Synplify Pro and Premier software use the FSM Explorer to explore different
encoding styles for a state machine automatically, and then implement the best
encoding based on the overall design constraints. The FSM Explorer uses the FSM
Compiler to identify and extract state machines from a design. However, unlike the
FSM Compiler, which chooses the encoding style based on the number of states, the
FSM Explorer attempts several different encoding styles before choosing a specific
one. The trade-off is that the compilation requires more time to analyze the state
machine, but finds an optimal encoding scheme for the state machine.

19.9.5 Optimization Attributes and Options

19.9.5.1 Retiming in Synplify Pro and Premier

The Synplify Pro and Premier software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register balancing)
across combinational elements. Be aware that retimed registers incur name changes.
You can retime your design from Implementation Options or you can use the
syn_allow_retiming attribute.

19.9.5.2 Maximum Fan-Out

When your design has critical path nets with high fan-out, use the syn_maxfan
attribute to control the fan-out of the net. Setting this attribute for a specific net
results in the replication of the driver of the net to reduce overall fan-out. The
syn_maxfan attribute takes an integer value and applies it to inputs or registers. The
syn_maxfan attribute cannot be used to duplicate control signals. The minimum
allowed value of the attribute is 4. Using this attribute might result in increased logic
resource utilization, thus straining routing resources, which can lead to long
compilation times and difficult fitting.

If you must duplicate an output register or an output enable register, you can create a
register for each output pin by using the syn_useioff attribute.

19.9.5.3 Preserving Nets

During synthesis, the compiler maintains ports, registers, and instantiated
components. However, some nets cannot be maintained to create an optimized circuit.
Applying the syn_keep directive overrides the optimization of the compiler and
preserves the net during synthesis. The syn_keep directive is a Boolean data type
value and can be applied to wires (Verilog HDL) and signals (VHDL). Setting the value
to true preserves the net through synthesis.

19.9.5.4 Register Packing

Intel devices allow register packing into I/O cells. Intel recommends allowing the Intel
Quartus Prime software to make the I/O register assignments. However, you can
control register packing with the syn_useioff attribute. The syn_useioff attribute
is a Boolean data type value that can be applied to ports or entire modules. Setting

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1065

the value to 1 instructs the compiler to pack the register into an I/O cell. Setting the
value to 0 prevents register packing in both the Synplify and Intel Quartus Prime
software.

19.9.5.5 Resource Sharing

The Synplify software uses resource sharing techniques during synthesis, by default,
to reduce area. Turning off the Resource Sharing option on the Options tab of the
Implementation Options dialog box improves performance results for some
designs. You can also turn off the option for a specific module with the syn_sharing
attribute. If you turn off this option, be sure to check the results to verify
improvement in timing performance. If there is no improvement, turn on Resource
Sharing.

19.9.5.6 Preserving Hierarchy

The Synplify software performs cross-boundary optimization by default, which causes
the design to flatten to allow optimization. You can use the syn_hier attribute to
override the default compiler settings. The syn_hier attribute applies a string value
to modules, architectures, or both. Setting the value to hard maintains the
boundaries of a module, architecture, or both, but allows constant propagation.
Setting the value to locked prevents all cross-boundary optimizations. Use the
locked setting with the partition setting to create separate design blocks and multiple
output netlists.

By default, the Synplify software generates a hierarchical .vqm file. To flatten the file,
set the syn_netlist_hierarchy attribute to 0.

19.9.5.7 Register Input and Output Delays

Two advanced options, define_reg_input_delay and
define_reg_output_delay, can speed up paths feeding a register, or coming from
a register, by a specific number of nanoseconds. The Synplify software attempts to
meet the global clock frequency goals for a design as well as the individual clock
frequency goals (set with the define_clock attribute). You can use these attributes
to add a delay to paths feeding into or out of registers to further constrain critical
paths. You can slow down a path that is too highly optimized by setting this attributes
to a negative number.

The define_reg_input_delay and define_reg_output_delay options are
useful to close timing if your design does not meet timing goals, because the routing
delay after placement and routing exceeds the delay predicted by the Synplify
software. Rerun synthesis using these options, specifying the actual routing delay
(from place-and-route results) so that the tool can meet the required clock frequency.
Synopsys recommends that for best results, do not make these assignments too
aggressively. For example, you can increase the routing delay value, but do not also
use the full routing delay from the last compilation.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1066

In the SCOPE constraint window, the registers panel contains the following options:

• Register—Specifies the name of the register. If you have initialized a compiled
design, select the name from the list.

• Type—Specifies whether the delay is an input or output delay.

• Route—Shrinks the effective period for the constrained registers by the specified
value without affecting the clock period that is forward-annotated to the Intel
Quartus Prime software.

Use the following Tcl command syntax to specify an input or output register delay in
nanoseconds.

Example
121.

Input and Output Register Delay

define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

19.9.5.8 syn_direct_enable

This attribute controls the assignment of a clock-enable net to the dedicated enable
pin of a register. With this attribute, you can direct the Synplify mapper to use a
particular net as the only clock enable when the design has multiple clock enable
candidates.

To use this attribute as a compiler directive to infer registers with clock enables, enter
the syn_direct_enable directive in your source code, instead of the SCOPE
spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true enables net
assignment to the clock-enable pin. The following is the syntax for Verilog HDL:

object /* synthesis syn_direct_enable = 1 */ ;

19.9.5.9 I/O Standard

For certain Intel devices, specify the I/O standard type for an I/O pad in the design
with the I/O Standard panel in the Synplify SCOPE window.

The Synplify SDC syntax for the define_io_standard constraint, in which the
delay_type must be either input_delay or output_delay.

Example
122.

define_io_standard Constraint

define_io_standard [–disable|–enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} [<columnTclName>{<value>}...]

For details about supported I/O standards, refer to the Synopsys FPGA Synthesis
Reference Manual.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1067

19.9.6 Intel-Specific Attributes

You can use the altera_chip_pin_lc, altera_io_powerup, and
altera_io_opendrain attributes with specific Intel device features, which are
forward-annotated to the Intel Quartus Prime project, and are used during place-and-
route.

19.9.6.1 altera_chip_pin_lc

Use the altera_chip_pin_lc attribute to make pin assignments. This attribute
applies a string value to inputs and outputs. Use the attribute only on the ports of the
top-level entity in the design. Do not use this attribute to assign pin locations from
entities at lower levels of the design hierarchy.

Note: The altera_chip_pin_lc attribute is not supported for any MAX series device.

In the SCOPE window, set the value of the altera_chip_pin_lc attribute to a pin
number or a list of pin numbers.

You can use VHDL code for making location assignments for supported Intel devices.
Pin location assignments for these devices are written to the output .tcl file.

Note: The data_out signal is a 4-bit signal; data_out[3] is assigned to pin 14 and
data_out[0] is assigned to pin 15.

Example
123.

Making Location Assignments in VHDL

ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16, 15";

19.9.6.2 altera_io_powerup

Use the altera_io_powerup attribute to define the power-up value of an I/O
register that has no set or reset. This attribute applies a string value (high|low) to
ports with I/O registers. By default, the power-up value of the I/O register is set to
low.

19.9.6.3 altera_io_opendrain

Use the altera_io_opendrain attribute to specify open-drain mode I/O ports. This
attribute applies a boolean data type value to outputs or bidirectional ports for devices
that support open-drain mode.

19.10 Guidelines for Intel FPGA IP Cores and Architecture-Specific
Features

Intel provides parameterizable IP cores, including LPMs, device-specific Intel FPGA IP
cores, and IP available through the Intel FPGA IP Partners Program (AMPPSM). You can
use IP cores by instantiating them in your HDL code, or by inferring certain IP cores
from generic HDL code.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1068

You can instantiate an IP core in your HDL code with the IP Catalog and configure the
IP core with the Parameter Editor, or instantiate the IP core using the port and
parameter definition. The IP Catalog and Parameter Editor provide a graphical
interface within the Intel Quartus Prime software to customize any available Intel
FPGA IP core for the design.

The Synplify software also automatically recognizes certain types of HDL code, and
infers the appropriate Intel FPGA IP core when an IP core provides optimal results.
The Synplify software provides options to control inference of certain types of IP cores.

Related Links

• Hardware Description Language Support on page 1058

• Recommended HDL Coding Styles Documentation on page 100

• About the IP Catalog Online Help

19.10.1 Instantiating Intel FPGA IP Cores with the IP Catalog

When you use the IP Catalog and Parameter Editor to set up and configure an IP core,
the IP Catalog creates a VHDL or Verilog HDL wrapper file <output file>.v|vhd that
instantiates the IP core.

The Synplify software uses the Intel Quartus Prime timing and resource estimation
netlist feature to report more accurate resource utilization and timing performance
estimates, and uses timing-driven optimization, instead of treating the IP core as a
“black box.” Including the generated IP core variation wrapper file in your Synplify
project, gives the Synplify software complete information about the IP core.

Note: There is an option in the Parameter Editor to generate a netlist for resource and timing
estimation. This option is not recommended for the Synplify software because the
software automatically generates this information in the background without a
separate netlist. If you do create a separate netlist <output file>_syn.v and use that
file in your synthesis project, you must also include the <output file>.v|vhd file in
your Intel Quartus Prime project.

Verify that the correct Intel Quartus Prime version is specified in the Synplify software
before compiling the generated file to ensure that the software uses the correct library
definitions for the IP core. The Quartus Version setting must match the version of
the Intel Quartus Prime software used to generate the customized IP core.

In addition, ensure that the QUARTUS_ROOTDIR environment variable specifies the
installation directory location of the correct Intel Quartus Prime version. The Synplify
software uses this information to launch the Intel Quartus Prime software in the
background. The environment variable setting must match the version of the Intel
Quartus Prime software used to generate the customized IP core.

Related Links

Specifying the Intel Quartus Prime Software Version on page 1058

19.10.1.1 Instantiating Intel FPGA IP Cores with IP Catalog Generated Verilog
HDL Files

If you turn on the <output file>_inst.v option on the Parameter Editor, the IP Catalog
generates a Verilog HDL instantiation template file for use in your Synplify design. The
instantiation template file, <output file>_inst.v, helps to instantiate the IP core

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1069

http://quartushelp.altera.com/current/hdl/mega/mega_view_megawiz.htm

variation wrapper file, <output file>.v, in your top-level design. Include the IP core
variation wrapper file <output file>.v in your Synplify project. The Synplify software
includes the IP core information in the output .vqm netlist file. You do not need to
include the generated IP core variation wrapper file in your Intel Quartus Prime
project.

19.10.1.2 Instantiating Intel FPGA IP Cores with IP Catalog Generated VHDL
Files

If you turn on the <output file>.cmp and <output file>_inst.vhd options on the
Parameter Editor, the IP catalog generates a VHDL component declaration file and a
VHDL instantiation template file for use in your Synplify design. These files can help
you instantiate the IP core variation wrapper file, <output file>.vhd, in your top-level
design. Include the <output file>.vhd in your Synplify project. The Synplify software
includes the IP core information in the output .vqm netlist file. You do not need to
include the generated IP core variation wrapper file in your Intel Quartus Prime
project.

19.10.1.3 Changing Synplify’s Default Behavior for Instantiated Intel FPGA IP
Cores

By default, the Synplify software automatically opens the Intel Quartus Prime software
in the background to generate a resource and timing estimation netlist for IP cores.

You might want to change this behavior to reduce run times in the Synplify software,
because generating the netlist files can take several minutes for large designs, or if
the Synplify software cannot access your Intel Quartus Prime software installation to
generate the files. Changing this behavior might speed up the compilation time in the
Synplify software, but the Quality of Results (QoR) might be reduced.

The Synplify software directs the Intel Quartus Prime software to generate information
in two ways:

• Some IP cores provide a “clear box” model—the Synplify software fully synthesizes
this model and includes the device architecture-specific primitives in the
output .vqm netlist file.

• Other IP cores provide a “grey box” model—the Synplify software reads the
resource information, but the netlist does not contain all the logic functionality.

Note: You need to turn on Generate netlist when using the grey box model. For
more information, see the Intel Quartus Prime online help.

For these IP cores, the Synplify software uses the logic information for resource and
timing estimation and optimization, and then instantiates the IP core in the
output .vqm netlist file so the Intel Quartus Prime software can implement the
appropriate device primitives. By default, the Synplify software uses the clear box
model when available, and otherwise uses the grey box model.

Related Links

• Including Files for Intel Quartus Prime Placement and Routing Only on page 1073

• Synplify Synthesis Techniques with the Intel Quartus Prime Software online
training

Includes more information about design flows using clear box model and grey
box model.

• Generating a Netlist for 3rd Party Synthesis Tools online help

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1070

http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1150
http://quartushelp.altera.com/current/index.htm#hdl/mega/mega_netlist.htm

19.10.1.4 Instantiating Intellectual Property with the IP Catalog and Parameter
Editor

Many Intel FPGA IP cores include a resource and timing estimation netlist that the
Synplify software uses to report more accurate resource utilization and timing
performance estimates, and uses timing-driven optimization rather than a black box
function.

To create this netlist file, perform the following steps:

1. Select the IP core in the IP Catalog.

2. Click Next to open the Parameter Editor.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Intel Quartus Prime software generates a file <output file>_syn.v. This netlist
contains the grey box information for resource and timing estimation, but does not
contain the actual implementation. Include this netlist file in your Synplify project.
Next, include the IP core variation wrapper file <output file>.v|vhd in the Intel
Quartus Prime project along with your Synplify .vqm output netlist.

If your IP core does not include a resource and timing estimation netlist, the Synplify
software must treat the IP core as a black box.

Related Links

Including Files for Intel Quartus Prime Placement and Routing Only on page 1073

19.10.1.5 Instantiating Black Box IP Cores with Generated Verilog HDL Files

Use the syn_black_box compiler directive to declare a module as a black box. The
top-level design files must contain the IP port-mapping and a hollow-body module
declaration. Apply the syn_black_box directive to the module declaration in the top-
level file or a separate file included in the project so that the Synplify software
recognizes the module is a black box. The software compiles successfully without this
directive, but reports an additional warning message. Using this directive allows you to
add other directives.

The example shows a top-level file that instantiates my_verilogIP.v, which is a
simple customized variation generated by the IP Catalog.

Example
124.

Sample Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output [7:0] count;
 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule
// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output [7:0] q;
endmodule

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1071

19.10.1.6 Instantiating Black Box IP Cores with Generated VHDL Files

Use the syn_black_box compiler directive to declare a component as a black box.
The top-level design files must contain the IP core variation component declaration
and port-mapping. Apply the syn_black_box directive to the component declaration
in the top-level file. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you to add other
directives.

The example shows a top-level file that instantiates my_vhdlIP.vhd, which is a
simplified customized variation generated by the IP Catalog.

Example
125.

Sample Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

19.10.1.7 Other Synplify Software Attributes for Creating Black Boxes

Instantiating IP as a black box does not provide visibility into the IP for the synthesis
tool. Thus, it does not take full advantage of the synthesis tool's timing-driven
optimization. For better timing optimization, especially if the black box does not have
registered inputs and outputs, add timing models to black boxes by adding the
syn_tpd, syn_tsu, and syn_tco attributes.

Example
126.

Adding Timing Models to Black Boxes in Verilog HDL

module ram32x4(z,d,addr,we,clk);
 /* synthesis syn_black_box syn_tcol="clk->z[3:0]=4.0"
 syn_tpd1="addr[3:0]->[3:0]=8.0"
 syn_tsu1="addr[3:0]->clk=2.0"
 syn_tsu2="we->clk=3.0" */
 output [3:0]z;
 input[3:0]d;
 input[3:0]addr;
 input we
 input clk
endmodule

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1072

The following additional attributes are supported by the Synplify software to
communicate details about the characteristics of the black box module within the HDL
code:

• syn_resources—Specifies the resources used in a particular black box.

• black_box_pad_pin—Prevents mapping to I/O cells.

• black_box_tri_pin—Indicates a tri-stated signal.

For more information about applying these attributes, refer to the Synopsys FPGA
Synthesis Reference Manual.

19.10.2 Including Files for Intel Quartus Prime Placement and Routing
Only

In the Synplify software, you can add files to your project that are used only during
placement and routing in the Intel Quartus Prime software. This can be useful if you
have grey or black boxes for Synplify synthesis that require the full design files to be
compiled in the Intel Quartus Prime software.

You can also set the option in a script using the -job_owner par option.

The example shows how to define files for a Synplify project that includes a top-level
design file, a grey box netlist file, an IP wrapper file, and an encrypted IP file. With
these files, the Synplify software writes an empty instantiation of “core” in the .vqm
file and uses the grey box netlist for resource and timing estimation. The files core.v
and core_enc8b10b.v are not compiled by the Synplify software, but are copied into
the place-and-route directory. The Intel Quartus Prime software compiles these files to
implement the “core” IP block.

Example
127.

Commands to Define Files for a Synplify Project

add_file -verilog -job_owner par "core_enc8b10b.v"
add_file -verilog -job_owner par "core.v"
add_file -verilog "core_gb.v"
add_file -verilog "top.v"

19.10.3 Inferring Intel FPGA IP Cores from HDL Code

The Synplify software uses Behavior Extraction Synthesis Technology (BEST)
algorithms to infer high-level structures such as RAMs, ROMs, operators, FSMs, and
DSP multiplication operations. Then, the Synplify software keeps the structures
abstract for as long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring the
appropriate Intel FPGA IP core when an IP core provides optimal results.

Related Links

Recommended HDL Coding Styles Documentation on page 100

19.10.3.1 Inferring Multipliers

The figure shows the HDL Analyst view of an unsigned 8 × 8 multiplier with two
pipeline stages after synthesis in the Synplify software. This multiplier is converted
into an ALTMULT_ADD or ALTMULT_ACCUM IP core. For devices with DSP blocks, the

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1073

software might implement the function in a DSP block instead of regular logic,
depending on device utilization. For some devices, the software maps directly to DSP
block device primitives instead of instantiating an IP core in the .vqm file.

Figure 340. HDL Analyst View of LPM_MULT IP Core (Unsigned 8x8 Multiplier with
Pipeline=2)

19.10.3.1.1 Resource Balancing

While mapping multipliers to DSP blocks, the Synplify software performs resource
balancing for optimum performance.

Intel devices have a fixed number of DSP blocks, which includes a fixed number of
embedded multipliers. If the design uses more multipliers than are available, the
Synplify software automatically maps the extra multipliers to logic elements (LEs), or
adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the Synplify
software maps the multipliers in the critical paths to DSP blocks. Next, any wide
multipliers, which might or might not be in the critical paths, are mapped to DSP
blocks. Smaller multipliers and multipliers that are not in the critical paths might then
be implemented in the logic (LEs or ALMs). This ensures that the design fits
successfully in the device.

19.10.3.1.2 Controlling the DSP Block Inference

You can implement multipliers in DSP blocks or in logic in Intel devices that contain
DSP blocks. You can control this implementation through attribute settings in the
Synplify software.

19.10.3.1.3 Signal Level Attribute

You can control the implementation of individual multipliers by using the
syn_multstyle attribute as shown in the following Verilog HDL code (where
<signal_name> is the name of the signal):

<signal_name> /* synthesis syn_multstyle = "logic" */;

The syn_multstyle attribute applies to wires only; it cannot be applied to registers.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1074

Table 283. DSP Block Attribute Setting in the Synplify Software

Attribute Name Value Description

syn_multstyle lpm_mult LPM function inferred and multipliers
implemented in DSP blocks.

logic LPM function not inferred and
multipliers implemented as LEs by the
Synplify software.

block_mult DSP IP core is inferred and multipliers
are mapped directly to DSP block
device primitives (for supported
devices).

Example
128.

Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult(a,b,c,r,en);
 input [7:0] a,b;
 output [15:0] r;
 input [15:0] c;
 input en;
 wire [15:0] temp /* synthesis syn_multstyle="logic" */;

 assign temp = a*b;
 assign r = en ? temp : c;
endmodule

Example
129.

Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
 r : out std_logic_vector (15 downto 0);
 en : in std_logic;
 a : in std_logic_vector (7 downto 0);
 b : in std_logic_vector (7 downto 0);
 c : in std_logic_vector (15 downto 0);
);
end onereg;

architecture beh of onereg is
signal temp : std_logic_vector (15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
 temp <= a * b;
 r <= temp when en='1' else c;
end beh;

19.10.3.2 Inferring RAM

When a RAM block is inferred from an HDL design, the Synplify software uses an Intel
FPGA IP core to target the device memory architecture. For some devices, the Synplify
software maps directly to memory block device primitives instead of instantiating an
IP core in the .vqm file.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1075

Follow these guidelines for the Synplify software to successfully infer RAM in a design:

• The address line must be at least two bits wide.

• Resets on the memory are not supported. Refer to the device family
documentation for information about whether read and write ports must be
synchronous.

• Some Verilog HDL statements with blocking assignments might not be mapped to
RAM blocks, so avoid blocking statements when modeling RAMs in Verilog HDL.

For some device families, the syn_ramstyle attribute specifies the implementation
to use for an inferred RAM. You can apply the syn_ramstyle attribute globally to a
module or a RAM instance, to specify registers or block_ram values. To turn off
RAM inference, set the attribute value to registers.

When inferring RAM for some Intel device families, the Synplify software generates
additional bypass logic. This logic is generated to resolve a half-cycle read/write
behavior difference between the RTL and post-synthesis simulations. The RTL
simulation shows the memory being updated on the positive edge of the clock; the
post-synthesis simulation shows the memory being updated on the negative edge of
the clock. To eliminate bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle, by which
time the update has occurred, thus eliminating the need for bypass logic.

For devices with TriMatrix memory blocks, disable the creation of glue logic by setting
the syn_ramstyle value to no_rw_check. Set syn_ramstyle to no_rw_check to
disable the creation of glue logic in dual-port mode.

Example
130.

VHDL Code for Inferred Dual-Port RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0)
 wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we: IN STD_LOGIC);
 clk: IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECOR (7 DOWNTO 0);
SIGNAL mem; Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
 data_out <= mem (CONV_INTEGER(rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 END IF;
 END PROCESS;
END ram_infer;

Example
131.

VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1076

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we : IN STD_LOGIC;
 clk : IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR (7 DOWNTO 0); --output register

BEGIN
 tmp_out <= mem (CONV_INTEGER (rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 data_out <= tmp_out; --registers output preventing
 -- bypass logic generation
 END IF;
 END PROCESS;
END ram_infer;

19.10.3.3 RAM Initialization

Use the Verilog HDL $readmemb or $readmemh system tasks in your HDL code to
initialize RAM memories. The Synplify compiler forward-annotates the initialization
values in the .srs (technology-independent RTL netlist) file and the mapper generates
the corresponding hexadecimal memory initialization (.hex) file. One .hex file is
created for each of the altsyncram IP cores that are inferred in the design. The .hex
file is associated with the altsyncram instance in the .vqm file using the init_file
attribute.

The examples show how RAM can be initialized through HDL code, and how the
corresponding .hex file is generated using Verilog HDL.

Example
132.

Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL
Code

initial
begin
 $readmemb("mem.ini", mem);
end
always @(posedge clk)
begin
 raddr_reg <= raddr;
 if(we)
 mem[waddr] <= data;
end

Example
133.

Sample of .vqm Instance Containing Memory Initialization File

altsyncram mem_hex(.wren_a(we),.wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1077

19.10.3.4 Inferring ROM

When a ROM block is inferred from an HDL design, the Synplify software uses an Intel
FPGA IP core to target the device memory architecture. For some devices, the Synplify
software maps directly to memory block device atoms instead of instantiating an IP
core in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer ROM in a design:

• The address line must be at least two bits wide.

• The ROM must be at least half full.

• A CASE or IF statement must make 16 or more assignments using constant values
of the same width.

19.10.3.5 Inferring Shift Registers

The Synplify software infers shift registers for sequential shift components so that
they can be placed in dedicated memory blocks in supported device architectures
using the ALTSHIFT_TAPS IP core.

If necessary, set the implementation style with the syn_srlstyle attribute. If you do
not want the components automatically mapped to shift registers, set the value to
registers. You can set the value globally, or on individual modules or registers.

For some designs, turning off shift register inference improves the design
performance.

19.11 Document Revision History

Table 284. Document Revision History

Date Version Changes

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.03 16.0.0 • Removed support for NativeLink synthesis in Pro Edition

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical Optimization
Settings to Compiler Settings.

November 2013 13.1.0 Dita conversion. Restructured content.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 • Changed to new document template.
• Removed Classic Timing Analyzer support.
• Removed the “altera_implement_in_esb or altera_implement_in_eab” section.
• Edited the “Creating a Intel Quartus Prime Project for Compile Points and Multiple .vqm

Files” on page 14–33 section for changes with the incremental compilation flow.
• Edited the “Creating a Intel Quartus Prime Project for Multiple .vqm Files” on page 14–39

section for changes with the incremental compilation flow.
• Editorial changes.

July 2010 10.0.0 • Minor updates for the Intel Quartus Prime software version 10.0 release.

November 2009 9.1.0 • Minor updates for the Intel Quartus Prime software version 9.1 release.

continued...

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1078

Date Version Changes

March 2009 9.0.0 • Added new section “Exporting Designs to the Intel Quartus Prime Software Using NativeLink
Integration” on page 14–14.

• Minor updates for the Intel Quartus Prime software version 9.0 release.
• Chapter 10 was previously Chapter 9 in software version 8.1.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Changed the chapter title from “Synplicity Synplify & Synplify Pro Support” to “Synopsys

Synplify Support”
• Replaced references to Synplicity with references to Synopsys
• Added information about Synplify Premier
• Updated supported device list
• Added SystemVerilog information to Figure 14–1

May 2008 8.0.0 • Updated supported device list
• Updated constraint annotation information for the Timing Analyzer
• Updated RAM and MAC constraint limitations
• Revised Table 9–1
• Added new section “Changing Synplify’s Default Behavior for Instantiated Altera

Megafunctions”
• Added new section “Instantiating Intellectual Property Using the MegaWizard Plug-In

Manager and IP Toolbench”
• Added new section “Including Files for Intel Quartus Prime Placement and Routing Only”
• Added new section “Additional Considerations for Compile Points”
• Removed section “Apply the LogicLock Attributes”
• Modified Figure 9–4, 9–43, 9–47. and 9–48
• Added new section “Performing Incremental Compilation in the Intel Quartus Prime

Software”
• Numerous text changes and additions throughout the chapter
• Renamed several sections
• Updated “Referenced Documents” section

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

19 Synopsys Synplify Support

QPP5V1 | 2017.12.15

Intel® Quartus® Prime Pro Edition Handbook Volume 1 Design and Compilation
1079

https://www.altera.com/search-archives

	 Intel Quartus Prime Pro Edition Handbook Volume 1 Design and Compilation
	Contents
	1 Introduction to Intel® Quartus® Prime Pro Edition
	1.1 Should I Choose the Intel Quartus Prime Pro Edition Software?
	1.2 Migrating to Intel Quartus Prime Pro Edition
	1.2.1 Keep Pro Edition Project Files Separate
	1.2.2 Upgrade Project Assignments and Constraints
	1.2.2.1 Modify Entity Name Assignments
	1.2.2.2 Resolve Timing Constraint Entity Names
	1.2.2.3 Verify Generated Node Name Assignments
	1.2.2.4 Replace Logic Lock (Standard) Regions
	1.2.2.4.1 Logic Lock Region Assignment Examples

	1.2.2.5 Modify Signal Tap Logic Analyzer Files
	1.2.2.6 Remove Unsupported Feature Assignments

	1.2.3 Upgrade IP Cores and Platform Designer Systems
	1.2.4 Upgrade Non-Compliant Design RTL
	1.2.4.1 Verify Verilog Compilation Unit
	1.2.4.1.1 Verilog HDL Configuration Instantiation

	1.2.4.2 Update Entity Auto-Discovery
	1.2.4.3 Ensure Distinct VHDL Namespace for Each Library
	1.2.4.4 Remove Unsupported Parameter Passing
	1.2.4.5 Remove Unsized Constant from WYSIWYG Instantiation
	1.2.4.6 Remove Non-Standard Pragmas
	1.2.4.7 Declare Objects Before Initial Values
	1.2.4.8 Confine SystemVerilog Features to SystemVerilog Files
	1.2.4.9 Avoid Assignment Mixing in Always Blocks
	1.2.4.10 Avoid Unconnected, Non-Existent Ports
	1.2.4.11 Avoid Illegal Parameter Ranges
	1.2.4.12 Update Verilog HDL and VHDL Type Mapping

	1.3 Document Revision History

	2 Managing Intel Quartus Prime Projects
	2.1 Understanding Intel Quartus Prime Projects
	2.2 Viewing Basic Project Information
	2.2.1 Viewing Project Reports
	2.2.2 Viewing Project Messages
	2.2.2.1 Suppressing Messages
	2.2.2.2 Message Suppression Guidelines

	2.3 Using the Compilation Dashboard
	2.4 Project Management Best Practices
	2.5 Managing Project Settings
	2.5.1 Optimizing Project Settings
	2.5.1.1 Optimizing with Design Space Explorer II
	2.5.1.2 Optimizing with Project Revisions
	2.5.1.3 Copying Your Project
	2.5.1.4 Copy (Back-Annotate) Compiler Assignments

	2.6 Managing Logic Design Files
	2.6.1 Including Design Libraries
	2.6.1.1 Specifying Design Libraries

	2.7 Managing Timing Constraints
	2.8 Introduction to Intel FPGA IP Cores
	2.8.1 IP Catalog and Parameter Editor
	2.8.1.1 The Parameter Editor
	2.8.1.2 Adding IP Cores to IP Catalog
	2.8.1.3 General Settings for IP
	2.8.1.4 Installing and Licensing Intel FPGA IP Cores

	2.8.2 Generating IP Cores (Intel Quartus Prime Pro Edition)
	2.8.2.1 IP Core Generation Output (Intel Quartus Prime Pro Edition)
	2.8.2.2 Scripting IP Core Generation

	2.8.3 Modifying an IP Variation
	2.8.4 Upgrading IP Cores
	2.8.4.1 Upgrading IP Cores at Command-Line
	2.8.4.2 Migrating IP Cores to a Different Device
	2.8.4.3 Troubleshooting IP or Platform Designer System Upgrade

	2.8.5 Simulating Intel FPGA IP Cores
	2.8.5.1 Generating IP Simulation Files
	2.8.5.2 Scripting IP Simulation
	2.8.5.2.1 Generating a Combined Simulator Setup Script
	Sourcing Aldec* Simulator Setup Scripts
	Sourcing Cadence* Simulator Setup Scripts
	Sourcing ModelSim* Simulator Setup Scripts
	Sourcing VCS* Simulator Setup Scripts
	Sourcing VCS* MX Simulator Setup Scripts

	2.8.6 Synthesizing IP Cores in Other EDA Tools
	2.8.7 Instantiating IP Cores in HDL
	2.8.7.1 Example Top-Level Verilog HDL Module
	2.8.7.2 Example Top-Level VHDL Module

	2.8.8 Support for the IEEE 1735 Encryption Standard

	2.9 Integrating Other EDA Tools
	2.10 Managing Team-based Projects
	2.10.1 Preserving Compilation Results
	2.10.1.1 Exporting a Design Partition

	2.10.2 Factors Affecting Compilation Results
	2.10.3 Migrating Compilation Results Across Intel Quartus Prime Software Versions
	2.10.3.1 Exporting the Results Database
	2.10.3.2 Importing the Results Database

	2.10.4 Archiving Projects
	2.10.4.1 Manually Adding Files To Archives
	2.10.4.2 Archiving Projects for Service Requests

	2.10.5 Using External Revision Control
	2.10.5.1 Files to Include In External Revision Control

	2.10.6 Migrating Projects Across Operating Systems
	2.10.6.1 Migrating Design Files and Libraries
	2.10.6.1.1 Use Relative Paths

	2.10.6.2 Design Library Migration Guidelines

	2.11 Scripting API
	2.11.1 Scripting Project Settings
	2.11.2 Project Revision Commands
	2.11.2.1 Create Revision Command
	2.11.2.2 Set Current Revision Command
	2.11.2.3 Get Project Revisions Command
	2.11.2.4 Delete Revision Command

	2.11.3 Project Archive Commands
	2.11.3.1 Creating a Project Archive
	2.11.3.2 Restoring an Archived Project

	2.11.4 Project Database Commands
	2.11.4.1 Import and Export Version-Compatible Designs from the Design Flow
	2.11.4.2 quartus_cdb Executables to Manage Version-Compatible Databases

	2.11.5 Project Library Commands
	2.11.5.1 Specify Project Libraries With SEARCH_PATH Assignment
	2.11.5.2 Report Specified Project Libraries Commands

	2.12 Document Revision History

	3 Design Planning with the Intel Quartus Prime Software
	3.1 Design Planning with the Intel Quartus Prime Software
	3.2 Creating Design Specifications
	3.3 Selecting Intellectual Property Cores
	3.4 Using Platform Designer and Standard Interfaces in System Design
	3.5 Device Selection
	3.5.1 Device Migration Planning

	3.6 Development Kit Selection
	3.6.1 Specifying a Development Kit for a New Project
	3.6.2 Specifying a Development Kit for an Existing Project
	3.6.3 Setting Pin Assignments

	3.7 Planning for Device Programming or Configuration
	3.8 Estimating Power
	3.9 Selecting Third-Party EDA Tools
	3.9.1 Synthesis Tool
	3.9.2 Simulation Tool
	3.9.3 Formal Verification Tools

	3.10 Planning for On-Chip Debugging Tools
	3.11 Design Practices and HDL Coding Styles
	3.11.1 Design Recommendations
	3.11.2 Recommended HDL Coding Styles
	3.11.3 Managing Metastability

	3.12 Running Fast Synthesis
	3.13 Document Revision History

	4 Recommended HDL Coding Styles
	4.1 Using Provided HDL Templates
	4.1.1 Inserting HDL Code from a Provided Template

	4.2 Instantiating IP Cores in HDL
	4.3 Inferring Multipliers and DSP Functions
	4.3.1 Inferring Multipliers
	4.3.2 Inferring Multiply-Accumulator and Multiply-Adder Functions

	4.4 Inferring Memory Functions from HDL Code
	4.4.1 Inferring RAM functions from HDL Code
	4.4.1.1 Use Synchronous Memory Blocks
	4.4.1.2 Avoid Unsupported Reset and Control Conditions
	4.4.1.3 Check Read-During-Write Behavior
	4.4.1.4 Controlling RAM Inference and Implementation
	4.4.1.5 Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	4.4.1.6 Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	4.4.1.7 Simple Dual-Port, Dual-Clock Synchronous RAM
	4.4.1.8 True Dual-Port Synchronous RAM
	4.4.1.9 Mixed-Width Dual-Port RAM
	4.4.1.10 RAM with Byte-Enable Signals
	4.4.1.11 Specifying Initial Memory Contents at Power-Up

	4.4.2 Inferring ROM Functions from HDL Code
	4.4.3 Inferring Shift Registers in HDL Code
	4.4.3.1 Simple Shift Register
	4.4.3.2 Shift Register with Evenly Spaced Taps

	4.5 Register and Latch Coding Guidelines
	4.5.1 Register Power-Up Values
	4.5.1.1 Specifying a Power-Up Value

	4.5.2 Secondary Register Control Signals Such as Clear and Clock Enable
	4.5.3 Latches
	4.5.3.1 Avoid Unintentional Latch Generation
	4.5.3.2 Inferring Latches Correctly

	4.6 General Coding Guidelines
	4.6.1 Tri-State Signals
	4.6.2 Clock Multiplexing
	4.6.3 Adder Trees
	4.6.3.1 Architectures with 6-Input LUTs in Adaptive Logic Modules

	4.6.4 State Machine HDL Guidelines
	4.6.4.1 Verilog HDL State Machines
	4.6.4.1.1 Verilog-2001 State Machine Coding Example
	4.6.4.1.2 SystemVerilog State Machine Coding Example

	4.6.4.2 VHDL State Machines
	4.6.4.2.1 VHDL State Machine Coding Example

	4.6.5 Multiplexer HDL Guidelines
	4.6.5.1 Intel Quartus Prime Software Option for Multiplexer Restructuring
	4.6.5.2 Multiplexer Types
	4.6.5.2.1 Binary Multiplexers
	4.6.5.2.2 Selector Multiplexers
	4.6.5.2.3 Priority Multiplexers

	4.6.5.3 Implicit Defaults in IF Statements
	4.6.5.4 default or OTHERS CASE Assignment

	4.6.6 Cyclic Redundancy Check Functions
	4.6.6.1 If Performance is Important, Optimize for Speed
	4.6.6.2 Use Separate CRC Blocks Instead of Cascaded Stages
	4.6.6.3 Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	4.6.6.4 Take Advantage of Latency if Available
	4.6.6.5 Save Power by Disabling CRC Blocks When Not in Use
	4.6.6.6 Use the Device Synchronous Load (sload) Signal to Initialize

	4.6.7 Comparator HDL Guidelines
	4.6.8 Counter HDL Guidelines

	4.7 Designing with Low-Level Primitives
	4.8 Document Revision History

	5 Recommended Design Practices
	5.1 Following Synchronous FPGA Design Practices
	5.1.1 Implementing Synchronous Designs
	5.1.2 Asynchronous Design Hazards

	5.2 HDL Design Guidelines
	5.2.1 Considerations for the Intel Hyperflex FPGA Architecture
	5.2.2 Optimizing Combinational Logic
	5.2.2.1 Avoid Combinational Loops
	5.2.2.2 Avoid Unintended Latch Inference
	5.2.2.3 Avoid Delay Chains in Clock Paths
	5.2.2.4 Use Synchronous Pulse Generators

	5.2.3 Optimizing Clocking Schemes
	5.2.3.1 Register Combinational Logic Outputs
	5.2.3.2 Avoid Asynchronous Clock Division
	5.2.3.3 Avoid Ripple Counters
	5.2.3.4 Use Multiplexed Clocks
	5.2.3.5 Use Gated Clocks
	5.2.3.5.1 Recommended Clock-Gating Methods

	5.2.3.6 Use Synchronous Clock Enables

	5.2.4 Optimizing Physical Implementation and Timing Closure
	5.2.4.1 Planning Physical Implementation
	5.2.4.2 Planning FPGA Resources
	5.2.4.3 Optimizing for Timing Closure
	5.2.4.4 Optimizing Critical Timing Paths

	5.2.5 Optimizing Power Consumption
	5.2.6 Managing Design Metastability

	5.3 Use Clock and Register-Control Architectural Features
	5.3.1 Use Global Reset Resources
	5.3.1.1 Use Synchronous Resets
	5.3.1.2 Using Asynchronous Resets
	5.3.1.3 Use Synchronized Asynchronous Reset

	5.3.2 Use Global Clock Network Resources
	5.3.3 Use Clock Region Assignments to Optimize Clock Constraints
	5.3.4 Avoid Asynchronous Register Control Signals

	5.4 Implementing Embedded RAM
	5.5 Document Revision History

	6 Design Compilation
	6.1 Compilation Overview
	6.1.1 Compilation Flows
	6.1.2 Design Synthesis
	6.1.3 Design Place and Route
	6.1.4 Compilation Hierarchy
	6.1.5 Reducing Compilation Time
	6.1.6 Programming File Generation

	6.2 Running Full Compilation
	6.3 Running Synthesis
	6.3.1 Preserve Registers During Synthesis
	6.3.2 Enabling Timing-Driven Synthesis
	6.3.3 Enabling Multi-Processor Compilation
	6.3.4 Synthesis Reports

	6.4 Running the Fitter
	6.4.1 Fitter Stage Commands
	6.4.2 Incremental Optimization Flow
	6.4.2.1 Early Place Flow
	6.4.2.2 Running late_place After Early Place

	6.4.3 Analyzing Fitter Snapshots
	6.4.3.1 Validating SDC Constraints after the Plan Stage
	6.4.3.2 Validating Periphery (I/O) after the Plan Stage
	6.4.3.3 Clock Planning after Early Place (Intel Stratix 10 only)
	6.4.3.4 Identifying High Fan-Out Signals after Early Place

	6.4.4 Enabling Physical Synthesis Optimization
	6.4.5 Viewing Fitter Reports
	6.4.5.1 Plan Stage Reports
	6.4.5.2 Early Place Stage Reports
	6.4.5.3 Place Stage Reports
	6.4.5.4 Route Stage Reports
	6.4.5.5 Retime Stage Reports
	6.4.5.6 Finalize Stage Reports

	6.5 Running the Hyper-Aware Design Flow
	6.5.1 Step 1: Run Register Retiming
	6.5.2 Step 2: Review Retiming Results
	6.5.2.1 Locate Critical Chains

	6.5.3 Step 3: Run Fast Forward Compile and Hyper-Retiming
	6.5.3.1 Advanced HyperFlex Settings

	6.5.4 Step 4: Review Hyper-Retiming Results
	6.5.4.1 Clock Fmax Summary Report
	6.5.4.2 Fast Forward Details Report

	6.5.5 Step 5: Implement Fast Forward Recommendations
	6.5.5.1 Retiming Restrictions and Workarounds

	6.6 Running Rapid Recompile
	6.7 Generating Programming Files
	6.8 Synthesis Language Support
	6.8.1 Verilog and SystemVerilog Synthesis Support
	6.8.1.1 Verilog HDL Input Settings (Settings Dialog Box)
	6.8.1.2 Design Libraries
	6.8.1.3 Verilog HDL Configuration
	6.8.1.3.1 Hierarchical Design Configurations

	6.8.1.4 Initial Constructs and Memory System Tasks
	6.8.1.5 Verilog HDL Macros

	6.8.2 VHDL Synthesis Support
	6.8.2.1 VHDL Input Settings (Settings Dialog Box)
	6.8.2.2 VHDL Standard Libraries and Packages
	6.8.2.3 VHDL wait Constructs

	6.9 Synthesis Settings Reference
	6.9.1 Optimization Modes
	6.9.2 Prevent Register Retiming
	6.9.3 Advanced Synthesis Settings

	6.10 Fitter Settings Reference
	6.11 Document Revision History

	7 Block-Based Design Flows
	7.1 Block-Based Design Examples
	7.2 Design Partitioning
	7.2.1 Planning Design Partitions
	7.2.1.1 Planning Core and Root Partitions
	7.2.1.2 Design Partition Guidelines

	7.2.2 Creating and Modifying Design Partitions
	7.2.3 Defining an Empty Partition
	7.2.4 Top-Down, Bottom-Up, and Team-Based Design Methods
	7.2.4.1 Team-Based Design

	7.3 Incremental Block-Based Compilation
	7.3.1 Define Empty Partitions to Reduce Compilation Time

	7.4 Design Block Reuse
	7.4.1 Reusing Core Partitions
	7.4.1.1 Step 1: Developer: Define a Core Partition
	7.4.1.2 Step 2: Developer: Compile and Export a Core Partition
	7.4.1.3 Step 3: Developer: Create a Black Box File
	7.4.1.4 Step 4: Consumer: Add the Core Partition and Compile

	7.4.2 Reusing Root Partitions
	7.4.2.1 Step 1: Developer: Create a Periphery Reuse Core Partition
	7.4.2.2 Step 2: Developer: Define a Logic Lock Region
	7.4.2.3 Step 3: Developer: Compile and Export the Root Partition
	7.4.2.4 Step 4: Consumer: Add the Root Partition and Compile

	7.5 Debugging Block-Based Designs
	7.5.1 Signal Tap with Core Partition Reuse
	7.5.1.1 Using HDL Signal Tap Instances
	7.5.1.2 Partition Boundary Ports
	7.5.1.2.1 Debugging with the Synthesis Snapshot
	7.5.1.2.2 Debugging with the Final Snapshot
	7.5.1.2.3 Defining Partition Boundary Ports
	7.5.1.2.4 Connecting to Debug Ports in a Reused Partition

	7.5.2 Signal Tap with Root Partition Reuse
	7.5.2.1 SLD JTAG Bridge Intel FPGA IP
	7.5.2.1.1 SLD JTAG Bridge Index

	7.5.2.2 Instantiating the SLD JTAG Bridge in the Periphery Reuse Root Partition
	7.5.2.3 Instantiating Signal Tap in the Periphery Reuse Core Partition

	7.6 Creating a Top-Level Project for a Team-Based Design
	7.6.1 Preparing a Lower-Level Partition for Integration

	7.7 Document Revision History

	8 Creating a Partial Reconfiguration Design
	8.1 Partial Reconfiguration Basic Concepts
	8.2 Internal Host Partial Reconfiguration
	8.3 External Host Partial Reconfiguration (Intel Arria 10 Designs Only)
	8.4 Partial Reconfiguration Design Flow
	8.4.1 Identifying Partial Reconfiguration Resources
	8.4.2 Defining PR Partitions
	8.4.3 Defining Personas
	8.4.3.1 Creating Wrapper Logic for PR Regions
	8.4.3.1.1 Freeze Logic for PR Regions

	8.4.3.2 Implementing Clock Enable for On-Chip Memories with Initialized Contents
	8.4.3.2.1 Clock Gating

	8.4.4 Instantiating the Intel Arria 10 PR Controller IP
	8.4.4.1 PR Control Block and CRC Block VHDL Component Declaration (Intel Arria 10 Designs Only)
	8.4.4.1.1 PR Control Block and CRC Block VHDL Instantiation (Intel Arria 10 Designs Only)
	8.4.4.1.2 PR Control Block and CRC Block Verilog HDL Instantiation (Intel Arria 10 Designs Only)

	8.4.4.2 Partial Reconfiguration Control Block Signals (Intel Arria 10 Designs Only)
	8.4.4.2.1 PR Control Block Signals Timing Diagrams (Intel Arria 10 Designs Only)
	Successful PR Session (Intel Arria 10 Example)
	Unsuccessful PR Session with Configuration Frame Readback Error (Intel Arria 10 Example)
	Unsuccessful PR Session with PR_ERROR (Intel Arria 10 Example)
	Late Withdrawal PR Session (Intel Arria 10 Example)

	8.4.5 Instantiating the Intel Stratix 10 PR Controller IP
	8.4.6 Promoting Global Signals in a PR Region
	8.4.7 Partial Reconfiguration Process Sequence
	8.4.8 Resetting the PR Region Registers
	8.4.9 Floorplanning a Partial Reconfiguration Design
	8.4.9.1 Applying Floorplan Constraints Incrementally

	8.4.10 Creating Revisions for Personas
	8.4.11 Compiling the Partial Reconfiguration Design
	8.4.11.1 Generating the Partial Reconfiguration Flow Script
	8.4.11.1.1 Configuring the Partial Reconfiguration Flow Script
	8.4.11.1.2 Running the Partial Reconfiguration Flow Script

	8.4.11.2 Hierarchical Partial Reconfiguration Compilation Flow
	8.4.11.2.1 Configuring the Hierarchical Partial Reconfiguration Flow Script
	8.4.11.2.2 Running the Hierarchical Partial Reconfiguration Flow Script

	8.4.12 Timing Analysis with Partial Reconfiguration
	8.4.12.1 Running Timing Analysis on a Design with PR Partitions

	8.4.13 External Host Configuration (Intel Arria 10 Designs Only)
	8.4.14 Programming File Generation
	8.4.14.1 Generating PR Bitstreams
	8.4.14.2 Generating a Merged .pmsf File from Multiple .pmsf Files
	8.4.14.3 CD Ratio for Bitstream Encryption and Compression (Intel Arria 10 Only)
	8.4.14.3.1 Generating an Encrypted PR Bitstream
	8.4.14.3.2 Data Compression Comparison (Intel Arria 10 Designs Only)

	8.4.14.4 Generating Raw Binary Programming Files

	8.4.15 Partial Reconfiguration Design Debugging
	8.4.15.1 Debugging a Partial Reconfiguration Design with Signal Tap Logic Analyzer

	8.4.16 Partial Reconfiguration Simulation and Verification
	8.4.16.1 Partial Reconfiguration Simulation Flow
	8.4.16.1.1 Simulating PR Persona Replacement
	8.4.16.1.2 PR Simulation Wrapper Modules
	altera_pr_persona_if Module
	altera_pr_wrapper_mux_out Module
	altera_pr_wrapper_mux_in Module

	8.4.16.1.3 Generating the PR Persona Simulation Model

	8.5 Partial Reconfiguration Design Recommendations
	8.6 Partial Reconfiguration Design Considerations
	8.7 Document Revision History

	9 Creating a System with Platform Designer
	9.1 Interface Support in Platform Designer
	9.2 Introduction to the Platform Designer IP Catalog
	9.2.1 Installing and Licensing IP Cores
	9.2.2 Adding IP Cores to IP Catalog
	9.2.3 General Settings for IP
	9.2.4 Set up the IP Index File (.ipx) to Search for IP Components
	9.2.5 Integrate Third-Party IP Components into the Platform Designer IP Catalog

	9.3 Create a Platform Designer System
	9.3.1 Create/Open Project in Platform Designer
	9.3.1.1 Convert your Existing System to Platform Designer Format

	9.3.2 Modify the Target Device
	9.3.3 Modify the IP Search Path
	9.3.4 Platform Designer System Design flow
	9.3.5 Add IP Components (IP Cores) to a Platform Designer System
	9.3.6 Specify Implementation Type for IP Components
	9.3.7 Connect IP Components in Your Platform Designer System
	9.3.7.1 Create Connections Between Masters and Slaves

	9.3.8 Validate System Integrity
	9.3.8.1 Component Instantiation Warning Messages
	9.3.8.2 Component Instantiation Error Messages
	9.3.8.3 Validate System Integrity for Individual Components in the System

	9.3.9 Propagate System Information to IP Components
	9.3.9.1 Update System Information

	9.3.10 View Your Platform Designer System
	9.3.10.1 Manage Platform Designer Window Views with Layouts
	9.3.10.2 Filter the Display of the System Contents Tab
	9.3.10.3 Display Details About a Component or Parameter
	9.3.10.4 Display a Graphical Representation of a Component
	9.3.10.5 View a Schematic of Your Platform Designer System
	9.3.10.6 View Connections in Your Platform Designer System

	9.3.11 Navigate Your Platform Designer System
	9.3.12 Specify IP Component Parameters
	9.3.12.1 Configure Your IP Component with a Pre-Defined Set of Parameters

	9.3.13 Modify an Instantiated IP Component
	9.3.13.1 Change a Conduit to a Reset

	9.3.14 Save your System
	9.3.15 Archive your System

	9.4 Synchronize IP File References
	9.5 Upgrade Outdated IP Components in Platform Designer
	9.6 Create and Manage Hierarchical Platform Designer Systems
	9.6.1 Add a Subsystem to Your Platform Designer Design
	9.6.2 Drill into a Platform Designer Subsystem to Explore its Contents
	9.6.3 Edit a Platform Designer Subsystem
	9.6.4 Change the Hierarchy Level of a Platform Designer Component
	9.6.5 Save New Platform Designer Subsystem

	9.7 Specify Signal and Interface Boundary Requirements
	9.7.1 Match the Exported Interface with Interface Requirements
	9.7.2 Edit the Name of Exported Interfaces and Signals

	9.8 Run System Scripts
	9.9 View and Filter Clock and Reset Domains in Your Platform Designer System
	9.9.1 View Clock Domains in Your Platform Designer System
	9.9.2 View Reset Domains in Your Platform Designer System
	9.9.3 Filter Platform Designer Clock and Reset Domains in the System Contents Tab
	9.9.4 View Avalon Memory Mapped Domains in Your Platform Designer System

	9.10 Specify Platform Designer Interconnect Requirements
	9.11 Manage Platform Designer System Security
	9.11.1 Configure Platform Designer Security Settings Between Interfaces
	9.11.2 Specify a Default Slave in a Platform Designer System
	9.11.3 Access Undefined Memory Regions

	9.12 Integrating a Platform Designer System with a Intel Quartus Prime Project
	9.13 Manage IP Settings in the Intel Quartus Prime Software
	9.13.1 Opening Platform Designer with Additional Memory

	9.14 Generate a Platform Designer System
	9.14.1 Set the Generation ID
	9.14.2 Generate Files for Synthesis and Simulation
	9.14.2.1 Files Generated for Intel FPGA IP Cores and Platform Designer Systems

	9.14.3 Generate Files for a Testbench Platform Designer System
	9.14.3.1 Files Generated for Platform Designer Testbench
	9.14.3.2 Platform Designer Testbench Simulation Output Directories
	9.14.3.3 Generate and Modify a Platform Designer Testbench System

	9.14.4 Platform Designer Simulation Scripts
	9.14.4.1 Generating a Combined Simulator Setup Script

	9.14.5 Simulating Software Running on a Nios II Processor
	9.14.6 Add Assertion Monitors for Simulation
	9.14.7 CMSIS Support for the HPS IP Component
	9.14.8 Generate Header Files
	9.14.9 Incrementally Generate the System

	9.15 Explore and Manage Platform Designer Interconnect
	9.15.1 Manually Controlling Pipelining in the Platform Designer Interconnect

	9.16 Implement Performance Monitoring
	9.17 Platform Designer 64-Bit Addressing Support
	9.17.1 Support for Avalon-MM Non-Power of Two Data Widths

	9.18 Platform Designer System Example Designs
	9.19 Platform Designer Command-Line Utilities
	9.19.1 Run the Platform Designer Editor with qsys-edit
	9.19.2 Scripting IP Core Generation
	9.19.3 Display Available IP Components with ip-catalog
	9.19.4 Create an .ipx File with ip-make-ipx
	9.19.5 Generate Simulation Scripts
	9.19.6 Generate a Platform Designer System with qsys-script
	9.19.7 Platform Designer Scripting Command Reference
	9.19.7.1 System
	9.19.7.1.1 create_system
	9.19.7.1.2 export_hw_tcl
	9.19.7.1.3 get_device_families
	9.19.7.1.4 get_devices
	9.19.7.1.5 get_module_properties
	9.19.7.1.6 get_module_property
	9.19.7.1.7 get_project_properties
	9.19.7.1.8 get_project_property
	9.19.7.1.9 load_system
	9.19.7.1.10 save_system
	9.19.7.1.11 set_module_property
	9.19.7.1.12 set_project_property

	9.19.7.2 Subsystems
	9.19.7.2.1 get_composed_connections
	9.19.7.2.2 get_composed_connection_parameter_value
	9.19.7.2.3 get_composed_connection_parameters
	9.19.7.2.4 get_composed_instance_assignment
	9.19.7.2.5 get_composed_instance_assignments
	9.19.7.2.6 get_composed_instance_parameter_value
	9.19.7.2.7 get_composed_instance_parameters
	9.19.7.2.8 get_composed_instances

	9.19.7.3 Instances
	9.19.7.3.1 add_instance
	9.19.7.3.2 apply_instance_preset
	9.19.7.3.3 create_ip
	9.19.7.3.4 add_component
	9.19.7.3.5 duplicate_instance
	9.19.7.3.6 enable_instance_parameter_update_callback
	9.19.7.3.7 get_instance_assignment
	9.19.7.3.8 get_instance_assignments
	9.19.7.3.9 get_instance_documentation_links
	9.19.7.3.10 get_instance_interface_assignment
	9.19.7.3.11 get_instance_interface_assignments
	9.19.7.3.12 get_instance_interface_parameter_property
	9.19.7.3.13 get_instance_interface_parameter_value
	9.19.7.3.14 get_instance_interface_parameters
	9.19.7.3.15 get_instance_interface_port_property
	9.19.7.3.16 get_instance_interface_ports
	9.19.7.3.17 get_instance_interface_properties
	9.19.7.3.18 get_instance_interface_property
	9.19.7.3.19 get_instance_interfaces
	9.19.7.3.20 get_instance_parameter_property
	9.19.7.3.21 get_instance_parameter_value
	9.19.7.3.22 get_instance_parameter_values
	9.19.7.3.23 get_instance_parameters
	9.19.7.3.24 get_instance_port_property
	9.19.7.3.25 get_instance_properties
	9.19.7.3.26 get_instance_property
	9.19.7.3.27 get_instances
	9.19.7.3.28 is_instance_parameter_update_callback_enabled
	9.19.7.3.29 remove_instance
	9.19.7.3.30 set_instance_parameter_value
	9.19.7.3.31 set_instance_parameter_values
	9.19.7.3.32 set_instance_property

	9.19.7.4 Instantiations
	9.19.7.4.1 add_instantiation_hdl_file
	9.19.7.4.2 add_instantiation_interface
	9.19.7.4.3 add_instantiation_interface_port
	9.19.7.4.4 copy_instance_interface_to_instantiation
	9.19.7.4.5 get_instantiation_assignment_value
	9.19.7.4.6 get_instantiation_assignments
	9.19.7.4.7 get_instantiation_hdl_file_properties
	9.19.7.4.8 get_instantiation_hdl_file_property
	9.19.7.4.9 get_instantiation_hdl_files
	9.19.7.4.10 get_instantiation_interface_assignment_value
	9.19.7.4.11 get_instantiation_interface_assignments
	9.19.7.4.12 get_instantiation_interface_parameter_value
	9.19.7.4.13 get_instantiation_interface_parameters
	9.19.7.4.14 get_instantiation_interface_port_properties
	9.19.7.4.15 get_instantiation_interface_port_property
	9.19.7.4.16 get_instantiation_interface_ports
	9.19.7.4.17 get_instantiation_interface_property
	9.19.7.4.18 get_instantiation_interface_properties
	9.19.7.4.19 get_instantiation_interface_sysinfo_parameter_value
	9.19.7.4.20 get_instantiation_interface_sysinfo_parameters
	9.19.7.4.21 get_instantiation_interfaces
	9.19.7.4.22 get_instantiation_properties
	9.19.7.4.23 get_instantiation_property
	9.19.7.4.24 get_loaded_instantiation
	9.19.7.4.25 import_instantiation_interfaces
	9.19.7.4.26 load_instantiation
	9.19.7.4.27 remove_instantiation_hdl_file
	9.19.7.4.28 remove_instantiation_interface
	9.19.7.4.29 remove_instantiation_interface_port
	9.19.7.4.30 save_instantiation
	9.19.7.4.31 set_instantiation_assignment_value
	9.19.7.4.32 set_instantiation_hdl_file_property
	9.19.7.4.33 set_instantiation_interface_assignment_value
	9.19.7.4.34 set_instantiation_interface_parameter_value
	9.19.7.4.35 set_instantiation_interface_port_property
	9.19.7.4.36 set_instantiation_interface_sysinfo_parameter_value
	9.19.7.4.37 set_instantiation_property

	9.19.7.5 Components
	9.19.7.5.1 apply_component_preset
	9.19.7.5.2 get_component_assignment
	9.19.7.5.3 get_component_assignments
	9.19.7.5.4 get_component_documentation_links
	9.19.7.5.5 get_component_interface_assignment
	9.19.7.5.6 get_component_interface_assignments
	9.19.7.5.7 get_component_interface_parameter_property
	9.19.7.5.8 get_component_interface_parameter_value
	9.19.7.5.9 get_component_interface_parameters
	9.19.7.5.10 get_component_interface_port_property
	9.19.7.5.11 get_component_interface_ports
	9.19.7.5.12 get_component_interface_property
	9.19.7.5.13 get_component_interfaces
	9.19.7.5.14 get_component_parameter_property
	9.19.7.5.15 get_component_parameter_value
	9.19.7.5.16 get_component_parameters
	9.19.7.5.17 get_component_project_properties
	9.19.7.5.18 get_component_project_property
	9.19.7.5.19 get_component_property
	9.19.7.5.20 get_loaded_component
	9.19.7.5.21 load_component
	9.19.7.5.22 reload_component_footprint
	9.19.7.5.23 save_component
	9.19.7.5.24 set_component_parameter_value
	9.19.7.5.25 set_component_project_property

	9.19.7.6 Connections
	9.19.7.6.1 add_connection
	9.19.7.6.2 auto_connect
	9.19.7.6.3 get_connection_parameter_property
	9.19.7.6.4 get_connection_parameter_value
	9.19.7.6.5 get_connection_parameters
	9.19.7.6.6 get_connection_properties
	9.19.7.6.7 get_connection_property
	9.19.7.6.8 get_connections
	9.19.7.6.9 remove_connection
	9.19.7.6.10 remove_dangling_connections
	9.19.7.6.11 set_connection_parameter_value

	9.19.7.7 Top-level Exports
	9.19.7.7.1 add_interface
	9.19.7.7.2 get_exported_interface_sysinfo_parameter_value
	9.19.7.7.3 get_exported_interface_sysinfo_parameters
	9.19.7.7.4 get_interface_port_property
	9.19.7.7.5 get_interface_ports
	9.19.7.7.6 get_interface_properties
	9.19.7.7.7 get_interface_property
	9.19.7.7.8 get_interfaces
	9.19.7.7.9 get_port_properties
	9.19.7.7.10 remove_interface
	9.19.7.7.11 set_exported_interface_sysinfo_parameter_value
	9.19.7.7.12 set_interface_port_property
	9.19.7.7.13 set_interface_property

	9.19.7.8 Validation
	9.19.7.8.1 set_validation_property
	9.19.7.8.2 sync_sysinfo_parameters
	9.19.7.8.3 validate_component
	9.19.7.8.4 validate_component_interface
	9.19.7.8.5 validate_connection
	9.19.7.8.6 validate_instance
	9.19.7.8.7 validate_instance_interface
	9.19.7.8.8 validate_system
	9.19.7.8.9 validate_component_footprint
	9.19.7.8.10 reload_component_footprint

	9.19.7.9 Miscellaneous
	9.19.7.9.1 auto_assign_base_addresses
	9.19.7.9.2 auto_assign_irqs
	9.19.7.9.3 auto_assign_system_base_addresses
	9.19.7.9.4 get_interconnect_requirement
	9.19.7.9.5 get_interconnect_requirements
	9.19.7.9.6 get_parameter_properties
	9.19.7.9.7 lock_avalon_base_address
	9.19.7.9.8 send_message
	9.19.7.9.9 set_interconnect_requirement
	9.19.7.9.10 set_use_testbench_naming_pattern
	9.19.7.9.11 unlock_avalon_base_address
	9.19.7.9.12 get_testbench_dutname
	9.19.7.9.13 get_use_testbench_naming_pattern

	9.19.8 Platform Designer Scripting Property Reference
	9.19.8.1 Connection Properties
	9.19.8.2 Design Environment Type Properties
	9.19.8.3 Direction Properties
	9.19.8.4 Element Properties
	9.19.8.5 Instance Properties
	9.19.8.6 Interface Properties
	9.19.8.7 Message Levels Properties
	9.19.8.8 Module Properties
	9.19.8.9 Parameter Properties
	9.19.8.10 Parameter Status Properties
	9.19.8.11 Parameter Type Properties
	9.19.8.12 Port Properties
	9.19.8.13 Project Properties
	9.19.8.14 System Info Type Properties
	9.19.8.15 Units Properties
	9.19.8.16 Validation Properties
	9.19.8.17 Interface Direction
	9.19.8.18 File Set Kind
	9.19.8.19 Access Type
	9.19.8.20 Instantiation Hdl File Properties
	9.19.8.21 Instantiation Interface Duplicate Type
	9.19.8.22 Instantiation Interface Properties
	9.19.8.23 Instantiation Properties
	9.19.8.25 VHDL Type

	9.19.9 Parameterizing an Instantiated IP Core after save_system Command
	9.19.10 Validate the Generic Components in a System with qsys-validate
	9.19.11 Archive a Platform Designer System with qsys-archive
	9.19.12 Generate an IP Component or Platform Designer System with quartus_ipgenerate
	9.19.13 Generate an IP Variation File with ip-deploy

	9.20 Document Revision History

	10 Creating Platform Designer Components
	10.1 Platform Designer Components
	10.1.1 Interface Support in Platform Designer
	10.1.2 Component Structure
	10.1.3 Component File Organization
	10.1.4 Component Versions
	10.1.4.1 Upgrade IP Components to the Latest Version

	10.2 Design Phases of an IP Component
	10.3 Create IP Components in the Platform Designer Component Editor
	10.3.1 Save an IP Component and Create the _hw.tcl File
	10.3.2 Edit an IP Component with the Platform Designer Component Editor

	10.4 Specify IP Component Type Information
	10.5 Create an HDL File in the Platform Designer Component Editor
	10.6 Create an HDL File Using a Template in the Platform Designer Component Editor
	10.7 Specify Synthesis and Simulation Files in the Platform Designer Component Editor
	10.7.1 Specify HDL Files for Synthesis in the Platform Designer Component Editor
	10.7.2 Analyze Synthesis Files in the Platform Designer Component Editor
	10.7.3 Name HDL Signals for Automatic Interface and Type Recognition in the Platform Designer Component Editor
	10.7.4 Specify Files for Simulation in the Component Editor
	10.7.5 Include an Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component

	10.8 Add Signals and Interfaces in the Platform Designer Component Editor
	10.9 Specify Parameters in the Platform Designer Component Editor
	10.9.1 Valid Ranges for Parameters in the _hw.tcl File
	10.9.2 Types of Platform Designer Parameters
	10.9.2.1 Platform Designer User Parameters
	10.9.2.2 Platform Designer System Information Parameters
	10.9.2.2.1 Obtaining Device Trait Information Using PART_TRAIT System Information Parameter

	10.9.2.3 Platform Designer Derived Parameters
	10.9.2.3.1 Parameterized Parameter Widths

	10.9.3 Declare Parameters with Custom _hw.tcl Commands
	10.9.4 Validate Parameter Values with a Validation Callback

	10.10 Declaring SystemVerilog Interfaces in _hw.tcl
	10.11 User Alterable HDL Parameters in _hw.tcl
	10.12 Control Interfaces Dynamically with an Elaboration Callback
	10.13 Control File Generation Dynamically with Parameters and a Fileset Callback
	10.14 Create a Composed Component or Subsystem
	10.15 Add Component Instances to a Static or Generated Component
	10.15.1 Static Components
	10.15.2 Generated Components
	10.15.3 Design Guidelines for Adding Component Instances

	10.16 Adding a Generic Component to the Platform Designer System
	10.16.1 Creating Custom Interfaces in a Generic Component
	10.16.1.1 Mirroring Interfaces in a Generic Component
	10.16.1.2 Cloning Interfaces in a Generic Component
	10.16.1.3 Importing Interfaces to a Generic Component

	10.16.2 Instantiating RTL in a System as a Generic Component
	10.16.3 Implementing Generic Components Using High Level Synthesis Files
	10.16.3.1 Add High Level Synthesis Files to a Generic Component
	10.16.3.2 Compile High Level Synthesis Files
	10.16.3.3 Import High Level Synthesis Files

	10.16.4 Creating System Template for a Generic Component
	10.16.5 Exporting a Generic Component

	10.17 Document Revision History

	11 Platform Designer Interconnect
	11.1 Memory-Mapped Interfaces
	11.1.1 Platform Designer Packet Format
	11.1.1.1 Fields in the Platform Designer Packet Format
	11.1.1.2 Transaction Types for Memory-Mapped Interfaces
	11.1.1.3 Platform Designer Transformations

	11.1.2 Interconnect Domains
	11.1.2.1 Using One Domain with Width Adaptation
	11.1.2.2 Using Two Separate Domains

	11.1.3 Master Network Interfaces
	11.1.3.1 Avalon-MM Master Agent
	11.1.3.2 Avalon-MM Master Translator
	11.1.3.3 AXI Master Agent
	11.1.3.4 AXI Translator
	11.1.3.5 APB Master Agent
	11.1.3.6 APB Slave Agent
	11.1.3.7 APB Translator
	11.1.3.8 AHB Slave Agent
	11.1.3.9 Memory-Mapped Router
	11.1.3.10 Memory-Mapped Traffic Limiter

	11.1.4 Slave Network Interfaces
	11.1.4.1 Avalon-MM Slave Translator
	11.1.4.2 AXI Translator
	11.1.4.3 Wait State Insertion
	11.1.4.4 Avalon-MM Slave Agent
	11.1.4.5 AXI Slave Agent

	11.1.5 Arbitration
	11.1.5.1 Round-Robin Arbitration
	11.1.5.1.1 Fairness-Based Shares
	11.1.5.1.2 Round-Robin Scheduling

	11.1.5.2 Fixed Priority Arbitration
	11.1.5.2.1 Designate a Platform Designer Slave to Use Fixed Priority Arbitration
	11.1.5.2.2 Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves

	11.1.6 Memory-Mapped Arbiter
	11.1.7 Datapath Multiplexing Logic
	11.1.8 Width Adaptation
	11.1.8.1 Memory-Mapped Width Adapter
	11.1.8.1.1 AXI Wide-to-Narrow Adaptation
	11.1.8.1.2 AXI Narrow-to-Wide Adaptation

	11.1.9 Burst Adapter
	11.1.9.1 Burst Adapter Implementation Options
	11.1.9.2 Burst Adaptation: AXI to Avalon
	11.1.9.3 Burst Adaptation: Avalon to AXI

	11.1.10 Read and Write Responses
	11.1.11 Platform Designer Address Decoding

	11.2 Avalon Streaming Interfaces
	11.2.1 Avalon-ST Adapters
	11.2.1.1 Avalon-ST Adapter
	11.2.1.1.1 Avalon-ST Adapter Parameters Common to Source and Sink Interfaces
	11.2.1.1.2 Avalon-ST Adapter Upstream Source Interface Parameters
	11.2.1.1.3 Avalon-ST Adapter Downstream Sink Interface Parameters

	11.2.1.2 Channel Adapter
	11.2.1.2.1 Avalon-ST Channel Adapter Input Interface Parameters
	11.2.1.2.2 Avalon-ST Channel Adapter Output Interface Parameters
	11.2.1.2.3 Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

	11.2.1.3 Data Format Adapter
	11.2.1.3.1 Avalon-ST Data Format Adapter Input Interface Parameters
	11.2.1.3.2 Avalon-ST Data Format Adapter Output Interface Parameters
	11.2.1.3.3 Avalon-ST Data Format Adapter Common to Input and Output Interface Parameters

	11.2.1.4 Error Adapter
	11.2.1.4.1 Avalon-ST Error Adapter Input Interface Parameters
	11.2.1.4.2 Avalon-ST Error Adapter Output Interface Parameters
	11.2.1.4.3 Avalon-ST Error Adapter Common to Input and Output Interface Parameters

	11.2.1.5 Timing Adapter
	11.2.1.5.1 Avalon-ST Timing Adapter Input Interface Parameters
	11.2.1.5.2 Avalon-ST Timing Adapter Output Interface Parameters
	11.2.1.5.3 Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

	11.3 Interrupt Interfaces
	11.3.1 Individual Requests IRQ Scheme
	11.3.2 Assigning IRQs in Platform Designer
	11.3.2.1 IRQ Bridge
	11.3.2.2 IRQ Mapper
	11.3.2.3 IRQ Clock Crosser

	11.4 Clock Interfaces
	11.4.1 (High Speed Serial Interface) HSSI Clock Interfaces
	11.4.1.1 HSSI Serial Clock Interface
	11.4.1.1.1 HSSI Serial Clock Source
	11.4.1.1.2 HSSI Serial Clock Sink
	11.4.1.1.3 HSSI Serial Clock Connection
	11.4.1.1.4 HSSI Serial Clock Example

	11.4.1.2 HSSI Bonded Clock Interface
	11.4.1.2.1 HSSI Bonded Clock Source
	11.4.1.2.2 HSSI Bonded Clock Sink
	11.4.1.2.3 HSSI Bonded Clock Connection
	11.4.1.2.4 HSSI Bonded Clock Example

	11.5 Reset Interfaces
	11.5.1 Single Global Reset Signal Implemented by Platform Designer
	11.5.2 Reset Controller
	11.5.3 Reset Bridge
	11.5.4 Reset Sequencer
	11.5.4.1 Reset Sequencer Parameters
	11.5.4.2 Reset Sequencer Timing Diagrams
	11.5.4.3 Reset Sequencer CSR Registers
	11.5.4.3.1 Reset Sequencer Status Register
	11.5.4.3.2 Reset Sequencer Interrupt Enable Register
	11.5.4.3.3 Reset Sequencer Control Register
	11.5.4.3.4 Reset Sequencer Software Sequenced Reset Assert Control Register
	11.5.4.3.5 Reset Sequencer Software Sequenced Reset Deassert Control Register
	11.5.4.3.6 Reset Sequencer Software Direct Controlled Resets
	11.5.4.3.7 Reset Sequencer Software Reset Masking

	11.5.4.4 Reset Sequencer Software Flows
	11.5.4.4.1 Reset Sequencer (Software-Triggered) Flow
	11.5.4.4.2 Reset Assert Flow
	11.5.4.4.3 Reset Deassert Flow
	11.5.4.4.4 Reset Assert (Software Sequenced) Flow
	11.5.4.4.5 Reset Deassert (Software Sequenced) Flow

	11.6 Conduits
	11.7 Interconnect Pipelining
	11.7.1 Manually Controlling Pipelining in the Platform Designer Interconnect

	11.8 Error Correction Coding (ECC) in Platform Designer Interconnect
	11.9 AMBA 3 AXI Protocol Specification Support (version 1.0)
	11.9.1 Channels
	11.9.1.1 Read and Write Address Channels
	11.9.1.2 Write Data, Write Response, and Read Data Channels
	11.9.1.3 Low Power Channel

	11.9.2 Cache Support
	11.9.2.1 Bufferable
	11.9.2.2 Cacheable (Modifiable)

	11.9.3 Security Support
	11.9.4 Atomic Accesses
	11.9.5 Response Signaling
	11.9.6 Ordering Model
	11.9.6.1 AXI and Avalon Ordering

	11.9.7 Data Buses
	11.9.8 Unaligned Address Commands
	11.9.9 Avalon and AXI Transaction Support
	11.9.9.1 Transaction Cannot Cross 4KB Boundaries
	11.9.9.2 Handling Read Side Effects

	11.10 AMBA 3 APB Protocol Specification Support (version 1.0)
	11.10.1 Bridges
	11.10.2 Burst Adaptation
	11.10.3 Width Adaptation
	11.10.4 Error Response

	11.11 AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)
	11.11.1 Burst Support
	11.11.2 QoS
	11.11.3 Regions
	11.11.4 Write Response Dependency
	11.11.5 AWCACHE and ARCACHE
	11.11.6 Width Adaptation and Data Packing in Platform Designer
	11.11.7 Ordering Model
	11.11.8 Read and Write Allocate
	11.11.9 Locked Transactions
	11.11.10 Memory Types
	11.11.11 Mismatched Attributes
	11.11.12 Signals

	11.12 AMBA 4 AXI Streaming Interface Support (version 1.0)
	11.12.1 Connection Points
	11.12.1.1 AMBA 4 AXI Streaming Connection Point Parameters
	11.12.1.2 AMBA 4 AXI Streaming Connection Point Signals

	11.12.2 Adaptation

	11.13 AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)
	11.13.1 AMBA 4 AXI-Lite Signals
	11.13.2 AMBA 4 AXI-Lite Bus Width
	11.13.3 AMBA 4 AXI-Lite Outstanding Transactions
	11.13.4 AMBA 4 AXI-Lite IDs
	11.13.5 Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite
	11.13.5.1 AMBA 4 AXI-Lite Slave Requirements
	11.13.5.2 AMBA 4 AXI-Lite Data Packing

	11.13.6 AMBA 4 AXI-Lite Response Merging

	11.14 Port Roles (Interface Signal Types)
	11.14.1 AXI Master Interface Signal Types
	11.14.2 AXI Slave Interface Signal Types
	11.14.3 AMBA 4 AXI Master Interface Signal Types
	11.14.4 AMBA 4 AXI Slave Interface Signal Types
	11.14.5 AMBA 4 AXI-Stream Master and Slave Interface Signal Types
	11.14.6 APB Interface Signal Types
	11.14.7 Avalon Memory-Mapped Interface Signal Roles
	11.14.8 Avalon Streaming Interface Signal Roles
	11.14.9 Avalon Clock Source Signal Roles
	11.14.10 Avalon Clock Sink Signal Roles
	11.14.11 Avalon Conduit Signal Roles
	11.14.12 Avalon Tristate Conduit Signal Roles
	11.14.13 Avalon Tri-State Slave Interface Signal Types
	11.14.14 Avalon Interrupt Sender Signal Roles
	11.14.15 Avalon Interrupt Receiver Signal Roles

	11.15 Document Revision History

	12 Optimizing Platform Designer System Performance
	12.1 Designing with Avalon and AXI Interfaces
	12.1.1 Designing Streaming Components
	12.1.2 Designing Memory-Mapped Components

	12.2 Using Hierarchy in Systems
	12.3 Using Concurrency in Memory-Mapped Systems
	12.3.1 Implementing Concurrency With Multiple Masters
	12.3.2 Implementing Concurrency With Multiple Slaves
	12.3.3 Implementing Concurrency with DMA Engines

	12.4 Inserting Pipeline Stages to Increase System Frequency
	12.5 Using Bridges
	12.5.1 Using Bridges to Increase System Frequency
	12.5.1.1 Inserting Pipeline Bridges
	12.5.1.1.1 Implementing Command Pipelining (Master-to-Slave)
	12.5.1.1.2 Implementing Response Pipelining (Slave-to-Master)

	12.5.1.2 Using Clock Crossing Bridges

	12.5.2 Using Bridges to Minimize Design Logic
	12.5.2.1 Avoiding Speed Optimizations That Increase Logic
	12.5.2.2 Limiting Concurrency

	12.5.3 Using Bridges to Minimize Adapter Logic
	12.5.3.1 Determining Effective Placement of Bridges
	12.5.3.2 Changing the Response Buffer Depth

	12.5.4 Considering the Effects of Using Bridges
	12.5.4.1 Increased Latency
	12.5.4.1.1 Acceptable Latency Increase
	12.5.4.1.2 Unacceptable Latency Increase

	12.5.4.2 Limited Concurrency
	12.5.4.3 Address Space Translation
	12.5.4.4 Address Coherency

	12.6 Increasing Transfer Throughput
	12.6.1 Using Pipelined Transfers
	12.6.1.1 Using the Maximum Pending Reads Parameter

	12.6.2 Arbitration Shares and Bursts
	12.6.2.1 Differences Between Arbitration Shares and Bursts
	12.6.2.2 Choosing Avalon-MM Interface Types
	12.6.2.2.1 Simple Avalon-MM Interfaces
	12.6.2.2.2 Pipelined Avalon-MM Interfaces
	12.6.2.2.3 Burst Avalon-MM Interfaces

	12.6.2.3 Avalon-MM Burst Master Example

	12.7 Reducing Logic Utilization
	12.7.1 Minimizing Interconnect Logic to Reduce Logic Unitization
	12.7.1.1 Creating Dedicated Master and Slave Connections to Minimize Interconnect Logic
	12.7.1.2 Removing Unnecessary Connections to Minimize Interconnect Logic
	12.7.1.3 Simplifying Address Decode Logic

	12.7.2 Minimizing Arbitration Logic by Consolidating Multiple Interfaces
	12.7.2.1 Logic Consolidation Trade-Offs
	12.7.2.2 Consolidating Interfaces

	12.7.3 Reducing Logic Utilization With Multiple Clock Domains
	12.7.4 Duration of Transfers Crossing Clock Domains

	12.8 Reducing Power Consumption
	12.8.1 Reducing Power Consumption With Multiple Clock Domains
	12.8.2 Reducing Power Consumption by Minimizing Toggle Rates
	12.8.3 Reducing Power Consumption by Disabling Logic

	12.9 Reset Polarity and Synchronization in Platform Designer
	12.10 Optimizing Platform Designer System Performance Design Examples
	12.10.1 Avalon Pipelined Read Master Example
	12.10.1.1 Avalon Pipelined Read Master Example Design Requirements
	12.10.1.2 Expected Throughput Improvement

	12.10.2 Multiplexer Examples

	12.11 Document Revision History

	13 Component Interface Tcl Reference
	13.1 Platform Designer _hw.tcl Command Reference
	13.1.1 Interfaces and Ports
	13.1.1.1 add_interface
	13.1.1.2 add_interface_port
	13.1.1.3 get_interfaces
	13.1.1.4 get_interface_assignment
	13.1.1.5 get_interface_assignments
	13.1.1.6 get_interface_ports
	13.1.1.7 get_interface_properties
	13.1.1.8 get_interface_property
	13.1.1.9 get_port_properties
	13.1.1.10 get_port_property
	13.1.1.11 set_interface_assignment
	13.1.1.12 set_interface_property
	13.1.1.13 set_port_property
	13.1.1.14 set_interface_upgrade_map

	13.1.2 Parameters
	13.1.2.1 add_parameter
	13.1.2.2 get_parameters
	13.1.2.3 get_parameter_properties
	13.1.2.4 get_parameter_property
	13.1.2.5 get_parameter_value
	13.1.2.6 get_string
	13.1.2.7 load_strings
	13.1.2.8 set_parameter_property
	13.1.2.9 set_parameter_value
	13.1.2.10 decode_address_map

	13.1.3 Display Items
	13.1.3.1 add_display_item
	13.1.3.2 get_display_items
	13.1.3.3 get_display_item_properties
	13.1.3.4 get_display_item_property
	13.1.3.5 set_display_item_property

	13.1.4 Module Definition
	13.1.4.1 add_documentation_link
	13.1.4.2 get_module_assignment
	13.1.4.3 get_module_assignments
	13.1.4.4 get_module_ports
	13.1.4.5 get_module_properties
	13.1.4.6 get_module_property
	13.1.4.7 send_message
	13.1.4.8 set_module_assignment
	13.1.4.9 set_module_property
	13.1.4.10 add_hdl_instance
	13.1.4.11 package

	13.1.5 Composition
	13.1.5.1 add_instance
	13.1.5.2 add_connection
	13.1.5.3 get_connections
	13.1.5.4 get_connection_parameters
	13.1.5.5 get_connection_parameter_value
	13.1.5.6 get_instances
	13.1.5.7 get_instance_interfaces
	13.1.5.8 get_instance_interface_ports
	13.1.5.9 get_instance_interface_properties
	13.1.5.10 get_instance_property
	13.1.5.11 set_instance_property
	13.1.5.12 get_instance_properties
	13.1.5.13 get_instance_interface_property
	13.1.5.14 get_instance_parameters
	13.1.5.15 get_instance_parameter_property
	13.1.5.16 get_instance_parameter_value
	13.1.5.17 get_instance_port_property
	13.1.5.18 set_connection_parameter_value
	13.1.5.19 set_instance_parameter_value

	13.1.6 Fileset Generation
	13.1.6.1 add_fileset
	13.1.6.2 add_fileset_file
	13.1.6.3 set_fileset_property
	13.1.6.4 get_fileset_file_attribute
	13.1.6.5 set_fileset_file_attribute
	13.1.6.6 get_fileset_properties
	13.1.6.7 get_fileset_property
	13.1.6.8 get_fileset_sim_properties
	13.1.6.9 set_fileset_sim_properties
	13.1.6.10 create_temp_file

	13.1.7 Miscellaneous
	13.1.7.1 check_device_family_equivalence
	13.1.7.2 get_device_family_displayname
	13.1.7.3 get_qip_strings
	13.1.7.4 set_qip_strings
	13.1.7.5 set_interconnect_requirement

	13.1.8 SystemVerilog Interface Commands
	13.1.8.1 add_sv_interface
	13.1.8.2 get_sv_interfaces
	13.1.8.3 get_sv_interface_property
	13.1.8.4 get_sv_interface_properties
	13.1.8.5 set_sv_interface_property

	13.2 Platform Designer _hw.tcl Property Reference
	13.2.1 Script Language Properties
	13.2.2 Interface Properties
	13.2.3 SystemVerilog Interface Properties
	13.2.4 Instance Properties
	13.2.5 Parameter Properties
	13.2.6 Parameter Type Properties
	13.2.7 Parameter Status Properties
	13.2.8 Port Properties
	13.2.9 Direction Properties
	13.2.10 Display Item Properties
	13.2.11 Display Item Kind Properties
	13.2.12 Display Hint Properties
	13.2.13 Module Properties
	13.2.14 Fileset Properties
	13.2.15 Fileset Kind Properties
	13.2.16 Callback Properties
	13.2.17 File Attribute Properties
	13.2.18 File Kind Properties
	13.2.19 File Source Properties
	13.2.20 Simulator Properties
	13.2.21 Port VHDL Type Properties
	13.2.22 System Info Type Properties
	13.2.23 Design Environment Type Properties
	13.2.24 Units Properties
	13.2.25 Operating System Properties
	13.2.26 Quartus.ini Type Properties

	13.3 Document Revision History

	14 Platform Designer System Design Components
	14.1 Bridges
	14.1.1 Clock Bridge
	14.1.2 Avalon-MM Clock Crossing Bridge
	14.1.2.1 Avalon-MM Clock Crossing Bridge Example
	14.1.2.2 Avalon-MM Clock Crossing Bridge Parameters

	14.1.3 Avalon-MM Pipeline Bridge
	14.1.4 Avalon-MM Unaligned Burst Expansion Bridge
	14.1.4.1 Using the Avalon-MM Unaligned Burst Expansion Bridge
	14.1.4.2 Avalon-MM Unaligned Burst Expansion Bridge Parameters
	14.1.4.3 Avalon-MM Unaligned Burst Expansion Bridge Example

	14.1.5 Bridges Between Avalon and AXI Interfaces
	14.1.6 AXI Bridge
	14.1.6.1 AXI Bridge Signal Types
	14.1.6.2 AXI Bridge Parameters
	14.1.6.3 AXI Bridge Slave and Master Interface Parameters

	14.1.7 AXI Timeout Bridge
	14.1.7.1 AXI Timeout Bridge Stages
	14.1.7.2 AXI Timeout Bridge Parameters

	14.1.8 Address Span Extender
	14.1.8.1 CTRL Register Layout
	14.1.8.2 Address Span Extender Parameters
	14.1.8.3 Calculating the Address Span Extender Slave Address
	14.1.8.4 Using the Address Span Extender
	14.1.8.5 Alternate Options for the Address Span Extender
	14.1.8.6 Nios II Support

	14.2 Error Response Slave
	14.2.1 Error Response Slave Parameters
	14.2.2 Error Response Slave CSR Registers
	14.2.2.1 Error Response Slave Access Violation Service
	14.2.2.2 CSR Interrupt Status Registers
	14.2.2.3 CSR Read Access Violation Log Registers
	14.2.2.4 CSR Write Access Violation Log Registers

	14.2.3 Designating a Default Slave in the System Contents Tab

	14.3 Tri-State Components
	14.3.1 Generic Tri-State Controller
	14.3.2 Tri‑State Conduit Pin Sharer
	14.3.3 Tri‑State Conduit Bridge

	14.4 Test Pattern Generator and Checker Cores
	14.4.1 Test Pattern Generator
	14.4.1.1 Test Pattern Generator Command Interface
	14.4.1.2 Test Pattern Generator Control and Status Interface
	14.4.1.3 Test Pattern Generator Output Interface
	14.4.1.4 Test Pattern Generator Functional Parameter

	14.4.2 Test Pattern Checker
	14.4.2.1 Test Pattern Checker Input Interface
	14.4.2.2 Test Pattern Checker Control and Status Interface
	14.4.2.3 Test Pattern Checker Functional Parameter
	14.4.2.4 Test Pattern Checker Input Parameters

	14.4.3 Software Programming Model for the Test Pattern Generator and Checker Cores
	14.4.3.1 HAL System Library Support
	14.4.3.2 Test Pattern Generator and Test Pattern Checker Core Files
	14.4.3.3 Register Maps for the Test Pattern Generator and Test Pattern Checker Cores
	14.4.3.3.1 Test Pattern Generator Control and Status Registers
	14.4.3.3.2 Test Pattern Generator Command Registers
	14.4.3.3.3 Test Pattern Checker Control and Status Registers

	14.4.4 Test Pattern Generator API
	14.4.4.1 data_source_reset()
	14.4.4.2 data_source_init()
	14.4.4.3 data_source_get_id()
	14.4.4.4 data_source_get_supports_packets()
	14.4.4.5 data_source_get_num_channels()
	14.4.4.6 data_source_get_symbols_per_cycle()
	14.4.4.7 data_source_get_enable()
	14.4.4.8 data_source_set_enable()
	14.4.4.9 data_source_get_throttle()
	14.4.4.10 data_source_set_throttle()
	14.4.4.11 data_source_is_busy()
	14.4.4.12 data_source_fill_level()
	14.4.4.13 data_source_send_data()

	14.4.5 Test Pattern Checker API
	14.4.5.1 data_sink_reset()
	14.4.5.2 data_sink_init()
	14.4.5.3 data_sink_get_id()
	14.4.5.4 data_sink_get_supports_packets()
	14.4.5.5 data_sink_get_num_channels()
	14.4.5.6 data_sink_get_symbols_per_cycle()
	14.4.5.7 data_sink_get_enable()
	14.4.5.8 data_sink_set enable()
	14.4.5.9 data_sink_get_throttle()
	14.4.5.10 data_sink_set_throttle()
	14.4.5.11 data_sink_get_packet_count()
	14.4.5.12 data_sink_get_error_count()
	14.4.5.13 data_sink_get_symbol_count()
	14.4.5.14 data_sink_get_exception()
	14.4.5.15 data_sink_exception_is_exception()
	14.4.5.16 data_sink_exception_has_data_error()
	14.4.5.17 data_sink_exception_has_missing_sop()
	14.4.5.18 data_sink_exception_has_missing_eop()
	14.4.5.19 data_sink_exception_signalled_error()
	14.4.5.20 data_sink_exception_channel()

	14.5 Avalon-ST Splitter Core
	14.5.1 Splitter Core Backpressure
	14.5.2 Splitter Core Interfaces
	14.5.3 Splitter Core Parameters

	14.6 Avalon-ST Delay Core
	14.6.1 Delay Core Reset Signal
	14.6.2 Delay Core Interfaces
	14.6.3 Delay Core Parameters

	14.7 Avalon-ST Round Robin Scheduler
	14.7.1 Almost-Full Status Interface (Round Robin Scheduler)
	14.7.2 Request Interface (Round Robin Scheduler)
	14.7.3 Round Robin Scheduler Operation
	14.7.4 Round Robin Scheduler Parameters

	14.8 Avalon Packets to Transactions Converter
	14.8.1 Packets to Transactions Converter Interfaces
	14.8.2 Packets to Transactions Converter Operation
	14.8.2.1 Packets to Transactions Converter Data Packet Formats
	14.8.2.2 Packets to Transactions Converter Supported Transactions
	14.8.2.3 Packets to Transactions Converter Malformed Packets

	14.9 Avalon-ST Streaming Pipeline Stage
	14.10 Streaming Channel Multiplexer and Demultiplexer Cores
	14.10.1 Software Programming Model For the Multiplexer and Demultiplexer Components
	14.10.2 Avalon-ST Multiplexer
	14.10.2.1 Multiplexer Input Interfaces
	14.10.2.2 Multiplexer Output Interface
	14.10.2.3 Multiplexer Parameters

	14.10.3 Avalon-ST Demultiplexer
	14.10.3.1 Demultiplexer Input Interface
	14.10.3.2 Demultiplexer Output Interface
	14.10.3.3 Demultiplexer Parameters

	14.11 Single-Clock and Dual-Clock FIFO Cores
	14.11.1 Interfaces Implemented in FIFO Cores
	14.11.1.1 Avalon-ST Data Interface
	14.11.1.2 Avalon-MM Control and Status Register Interface
	14.11.1.3 Avalon-ST Status Interface

	14.11.2 FIFO Operating Modes
	14.11.3 Fill Level of the FIFO Buffer
	14.11.4 Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	14.11.5 Single-Clock and Dual-Clock FIFO Core Parameters
	14.11.6 Avalon-ST Single-Clock FIFO Registers

	14.12 Document Revision History

	15 Managing Metastability with the Intel Quartus Prime Software
	15.1 Metastability Analysis in the Intel Quartus Prime Software
	15.1.1 Synchronization Register Chains
	15.1.2 Identify Synchronizers for Metastability Analysis
	15.1.3 How Timing Constraints Affect Synchronizer Identification and Metastability Analysis

	15.2 Metastability and MTBF Reporting
	15.2.1 Metastability Reports
	15.2.1.1 MTBF Summary Report
	15.2.1.1.1 Typical and Worst-Case MTBF of Design
	15.2.1.1.2 Synchronizer Chains
	15.2.1.1.3 Increasing Available Settling Time

	15.2.1.2 Synchronizer Summary Report
	15.2.1.3 Synchronizer Chain Statistics Report in the Timing Analyzer

	15.2.2 Synchronizer Data Toggle Rate in MTBF Calculation

	15.3 MTBF Optimization
	15.3.1 Synchronization Register Chain Length

	15.4 Reducing Metastability Effects
	15.4.1 Apply Complete System-Centric Timing Constraints for the Timing Analyzer
	15.4.2 Force the Identification of Synchronization Registers
	15.4.3 Set the Synchronizer Data Toggle Rate
	15.4.4 Optimize Metastability During Fitting
	15.4.5 Increase the Length of Synchronizers to Protect and Optimize
	15.4.6 Increase the Number of Stages Used in Synchronizers
	15.4.7 Select a Faster Speed Grade Device

	15.5 Scripting Support
	15.5.1 Identifying Synchronizers for Metastability Analysis
	15.5.2 Synchronizer Data Toggle Rate in MTBF Calculation
	15.5.3 report_metastability and Tcl Command
	15.5.4 MTBF Optimization
	15.5.5 Synchronization Register Chain Length

	15.6 Managing Metastability
	15.7 Document Revision History

	16 Mitigating Single Event Upset
	16.1 Failure Rates
	16.2 Mitigating SEU Effects in Embedded User RAM
	16.2.1 Configuring RAM to Enable ECC

	16.3 Mitigating SEU Effects in Configuration RAM (Intel Arria 10 and Intel Cyclone 10 GX devices)
	16.4 Mitigating SEU Effects in Configuration RAM (Intel Stratix 10 devices)
	16.4.1 Error Message Register
	16.4.2 SEU_ERROR Pin Behavior

	16.5 Internal Scrubbing
	16.6 SEU Recovery
	16.6.1 Planning for SEU Recovery
	16.6.2 Designating the Sensitivity of the Design Hierarchy
	16.6.2.1 Hierarchy Tagging
	16.6.2.2 Using Partitions to Specify Logic Sensitivity ID

	16.6.3 Advanced SEU Detection IP Core
	16.6.3.1 On-Chip Sensitivity Processor
	16.6.3.2 External Sensitivity Processor

	16.7 Intel Quartus Prime Software SEU FIT Reports
	16.7.1 SEU FIT Parameters Report
	16.7.2 Projected SEU FIT by Component Usage Report
	16.7.2.1 Component FIT Rates
	16.7.2.2 Raw FIT
	16.7.2.3 Utilized FIT
	16.7.2.3.1 Comparing .smh Critical Bits Report to Utilized Bit Count
	16.7.2.3.2 Considerations for Small Designs

	16.7.2.4 Mitigated FIT
	16.7.2.5 Architectural Vulnerability Factor

	16.7.3 Enabling the Projected SEU FIT by Component Usage Report

	16.8 Triple-Module Redundancy
	16.9 Evaluating a System's Response to Functional Upsets
	16.10 CRAM Error Detection Settings Reference
	16.11 Document Revision History

	17 Optimizing the Design Netlist
	17.1 When to Use the Netlist Viewers: Analyzing Design Problems
	17.2 Intel Quartus Prime Design Flow with the Netlist Viewers
	17.3 RTL Viewer Overview
	17.4 Technology Map Viewer Overview
	17.5 Introduction to the User Interface
	17.5.1 Netlist Navigator Pane
	17.5.2 Properties Pane
	17.5.3 Netlist Viewers Find Pane

	17.6 Schematic View
	17.6.1 Display Schematics in Multiple Tabbed View
	17.6.2 Schematic Symbols
	17.6.3 Select Items in the Schematic View
	17.6.4 Shortcut Menu Commands in the Schematic View
	17.6.5 Filtering in the Schematic View
	17.6.6 View Contents of Nodes in the Schematic View
	17.6.7 Moving Nodes in the Schematic View
	17.6.8 View LUT Representations in the Technology Map Viewer
	17.6.9 Zoom Controls
	17.6.10 Navigating with the Bird's Eye View
	17.6.11 Partition the Schematic into Pages
	17.6.12 Follow Nets Across Schematic Pages

	17.7 Cross-Probing to a Source Design File and Other Intel Quartus Prime Windows
	17.8 Cross-Probing to the Netlist Viewers from Other Intel Quartus Prime Windows
	17.9 Viewing a Timing Path
	17.10 Document Revision History

	18 Mentor Graphics Precision Synthesis Support
	18.1 About Precision RTL Synthesis Support
	18.2 Design Flow
	18.2.1 Timing Optimization

	18.3 Intel Device Family Support
	18.4 Precision Synthesis Generated Files
	18.5 Creating and Compiling a Project in the Precision Synthesis Software
	18.6 Mapping the Precision Synthesis Design
	18.6.1 Setting Timing Constraints
	18.6.2 Setting Mapping Constraints
	18.6.3 Assigning Pin Numbers and I/O Settings
	18.6.4 Assigning I/O Registers
	18.6.5 Disabling I/O Pad Insertion
	18.6.5.1 Preventing the Precision Synthesis Software from Adding I/O Pads
	18.6.5.2 Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

	18.6.6 Controlling Fan-Out on Data Nets

	18.7 Synthesizing the Design and Evaluating the Results
	18.7.1 Obtaining Accurate Logic Utilization and Timing Analysis Reports

	18.8 Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
	18.8.1 Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files
	18.8.2 Instantiating IP Cores With IP Catalog-Generated VHDL Files
	18.8.3 Instantiating Intellectual Property With the IP Catalog and Parameter Editor
	18.8.4 Instantiating Black Box IP Functions With Generated Verilog HDL Files
	18.8.5 Instantiating Black Box IP Functions With Generated VHDL Files
	18.8.6 Inferring Intel FPGA IP Cores from HDL Code
	18.8.6.1 Multipliers
	18.8.6.1.1 Controlling DSP Block Inference for Multipliers

	18.8.6.2 Setting the Use Dedicated Multiplier Option
	18.8.6.3 Setting the dedicated_mult Attribute
	18.8.6.4 Multiplier-Accumulators and Multiplier-Adders
	18.8.6.5 Controlling DSP Block Inference
	18.8.6.6 RAM and ROM

	18.9 Document Revision History

	19 Synopsys Synplify Support
	19.1 About Synplify Support
	19.2 Design Flow
	19.3 Hardware Description Language Support
	19.4 Intel Device Family Support
	19.5 Tool Setup
	19.5.1 Specifying the Intel Quartus Prime Software Version

	19.6 Synplify Software Generated Files
	19.7 Design Constraints Support
	19.7.1 Running the Intel Quartus Prime Software Manually With the Synplify‑Generated Tcl Script
	19.7.2 Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus Prime Software
	19.7.2.1 Individual Clocks and Frequencies
	19.7.2.2 Input and Output Delay
	19.7.2.3 Multicycle Path
	19.7.2.4 False Path

	19.8 Simulation and Formal Verification
	19.9 Synplify Optimization Strategies
	19.9.1 Using Synplify Premier to Optimize Your Design
	19.9.2 Using Implementations in Synplify Pro or Premier
	19.9.3 Timing-Driven Synthesis Settings
	19.9.3.1 Clock Frequencies
	19.9.3.2 Multiple Clock Domains
	19.9.3.3 Input and Output Delays
	19.9.3.4 Multicycle Paths
	19.9.3.5 False Paths

	19.9.4 FSM Compiler
	19.9.4.1 FSM Explorer in Synplify Pro and Premier

	19.9.5 Optimization Attributes and Options
	19.9.5.1 Retiming in Synplify Pro and Premier
	19.9.5.2 Maximum Fan-Out
	19.9.5.3 Preserving Nets
	19.9.5.4 Register Packing
	19.9.5.5 Resource Sharing
	19.9.5.6 Preserving Hierarchy
	19.9.5.7 Register Input and Output Delays
	19.9.5.8 syn_direct_enable
	19.9.5.9 I/O Standard

	19.9.6 Intel-Specific Attributes
	19.9.6.1 altera_chip_pin_lc
	19.9.6.2 altera_io_powerup
	19.9.6.3 altera_io_opendrain

	19.10 Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
	19.10.1 Instantiating Intel FPGA IP Cores with the IP Catalog
	19.10.1.1 Instantiating Intel FPGA IP Cores with IP Catalog Generated Verilog HDL Files
	19.10.1.2 Instantiating Intel FPGA IP Cores with IP Catalog Generated VHDL Files
	19.10.1.3 Changing Synplify’s Default Behavior for Instantiated Intel FPGA IP Cores
	19.10.1.4 Instantiating Intellectual Property with the IP Catalog and Parameter Editor
	19.10.1.5 Instantiating Black Box IP Cores with Generated Verilog HDL Files
	19.10.1.6 Instantiating Black Box IP Cores with Generated VHDL Files
	19.10.1.7 Other Synplify Software Attributes for Creating Black Boxes

	19.10.2 Including Files for Intel Quartus Prime Placement and Routing Only
	19.10.3 Inferring Intel FPGA IP Cores from HDL Code
	19.10.3.1 Inferring Multipliers
	19.10.3.1.1 Resource Balancing
	19.10.3.1.2 Controlling the DSP Block Inference
	19.10.3.1.3 Signal Level Attribute

	19.10.3.2 Inferring RAM
	19.10.3.3 RAM Initialization
	19.10.3.4 Inferring ROM
	19.10.3.5 Inferring Shift Registers

	19.11 Document Revision History

