

SOFTWARE TESTING
An ISTQB-ISEB Foundation Guide
Second Edition

BCS THE CHARTERED INSTITUTE FORIT

Our mission as BCS, The Chartered Institute for IT, is to enable the information
society. We promote wider social and economic progress through the advancement
of information technology, science and practice. We bring together industry,
academics, practitioners and government to share knowledge, promote new
thinking, inform the design of new curricula, shape public policy and inform

the public.

Our vision is to be a world-class organisation for IT. Our 70,000 strong membership
includes practitioners, businesses, academics and students in the UK and
internationally. We deliver a range of professional development tools for practitioners
and employees. As leading IT qualification body, we offer a range of widely recognised
qualifications.

Further Information

BCS The Chartered Institute for IT,
First Floor, Block D,

North Star House, North Star Avenue,
Swindon, SN2 1FA, United Kingdom.
T +44 (0) 1793 417 424

F +44 (0) 1793 417 444
www.bcs.org/contactus

Chartered
Institute
for IT

SOFTWARE TESTING
An ISTQB-ISEB Foundation Guide
Second Edition

Brian Hambling (Editor), Peter Morgan, Angelina
Samaroo, Geoff Thompson and Peter Williams

Chartered
Institute

for IT

© 2010 British Informatics Society Limited

The right of Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson and Peter Williams to be
identified as authors of this work has been asserted by them in accordance with sections 77 and 78 of the
Copyright, Designs and Patents Act 1988.

All rights reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted by the Copyright Designs and Patents Act 1988, no part of this publication may be
reproduced, stored or transmitted in any form or by any means, except with the prior permission in writing
of the publisher; or in the case of reprographic reproduction, in accordance with the terms of the licences
issued by the Copyright Licensing Agency. Enquiries for permission to reproduce material outside those
terms should be directed to the publisher.

All trade marks, registered names etc. acknowledged in this publication are the property of their respective
owners. BCS and the BCS logo are the registered trade marks of the British Computer Society charity
number 292786 (BCS).

Published by British Informatics Society Limited (BISL], a wholly owned subsidiary of BCS, The Chartered
Institute for IT, First Floor, Block D, North Star House, North Star Avenue, Swindon, SN2 1FA, UK.
www.bcs.org

ISBN 978-1-906124-76-2

British Cataloguing in Publication Data.
A CIP catalogue record for this book is available at the British Library.

Disclaimer:

The views expressed in this book are of the authors and do not necessarily reflect the views of BCS or BISL
except where explicitly stated as such. Although every care has been taken by the authors and BISL in the
preparation of the publication, no warranty is given by the authors or BISL as publisher as to the accuracy or
completeness of the information contained within it and neither the authors nor BISL shall be responsible or
liable for any loss or damage whatsoever arising by virtue of such information or any instructions or advice
contained within this publication or by any of the aforementioned.

Typeset by Lapiz Digital Services, Chennai, India.
Printed at CPI Antony Rowe Ltd, Chippenham, UK.

CONTENTS

Figures and tables vii
Abbreviations X
Authors Xi
INTRODUCTION 1
Nature and purpose of the book 1
Purpose of Foundation 1
The Certified Tester Foundation Level syllabus 2
Relationship of the book to the syllabus 3
How to get the best out of this book 5
1 THE FUNDAMENTALS OF TESTING 7
Background 7
Introduction 7
Why software fails 10
Keeping software under control 12
What testing is and what testing does 14
General testing principles 16
Fundamental test process 20
The psychology of testing 25
Code of ethics 27
Summary 28
References 28
2 LIFE CYCLES 34
Introduction 34
Software development models 36
Test levels 41
Test types 49
Maintenance testing 57
Summary 52
3 STATIC TESTING 57
Introduction 57
Background to static techniques 59
Reviews and the test process 59
Static analysis by tools 68

Summary 70

CONTENTS

Vi

TEST DESIGN TECHNIQUES

Introduction

The test development process

The idea of test coverage

Categories of test case design techniques
Specification-based (black-box) techniques
Structure-based (white-box] techniques
Experience-based techniques

Choosing test techniques

Summary

TEST MANAGEMENT

Introduction

Risk and testing

Test organisation

Test approaches (test strategies)
Test planning and estimation

Test progress monitoring and control
Incident management

Configuration management
Summary

TOOL SUPPORT FOR TESTING
Introduction

What Is a test tool?

Test tools

Introducing a tool into an organisation
Summary

THE EXAMINATION
The examination
Revision techniques
Review

Index

129
129
132
135
140
142
150
156
159
160

167
167
169
173
204
208

215
215
219
220

221

FIGURES AND TABLES

Figure 0.1
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

Syllabus map

Effect of an error

Resources triangle

Effect of identification time on cost of errors
Fundamental test process

Iteration of activities

Waterfall model

V-model for software development

Iterative development

Top-down control structure

Bottom-up integration

Stages of a formal review

Formality of reviews

State transition diagram of the hill-walker’s watch
State transition diagram

Use case example

Flow chart for a sequential program

Flow chart for a selection (decision] structure
Flow chart for an iteration (loop) structure
Flow chart representation for Example 4.5
Control flow graph showing subgraphs as nodes
Control flow graph with subgraphs expanded
Flow chart for Program Coverage Example
The hybrid flow graph

Paths through the hybrid flow graph

Paths through the hybrid flow graph

Paths through the hybrid flow graph

Flow chart for Exercise 4.6

Control flow graph for Exercise 4.6

Levels of independent testing

Test plans in the V-model

iTesting Executive Dashboard

Incidents planned/raised

Test tool payback model

Hotel system architecture

An integrated set of tools

Test execution tools payback model

Test harness for middleware

Test tool implementation process

vii

FIGURES AND TABLES

Table 1.1
Table 4.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5

vili

Comparative cost to correct errors
ST for the hill-walker’s watch
Features of independent testing
Test plan sections

Test summary report outline

Test incident report outline
Configuration traceability

Hotel system extract (20/10/2006)
Hotel system extract (5/11/2006)
Exit criteria

Types of test tool

18

94

137
144
154
158
178
184
185
191
199

ABBREVIATIONS

AUT
BACS
CASE
CMMi
DLL
FTP
GUI
ISEB
ISTQB
MISRA
RAD
RUP
SpLC
SIGIST
saL
ST
TPI
UML
XML

Application Under Test

Bankers Automated Clearing Services
Computer-Aided Software Engineering
Capability Maturity Model Integration

Dynamic Link Library

Fundamental Test Process

Graphical User Interface

Information Systems Examination Board
International Software Testing Qualications Board
Motor Industry Software Reliability Association
Rapid Application Development

Rational Unified Process

Software Development Life Cycle

Special Interest Group in Software Testing
Structured Query Language

State Table

Test Process Improvement

Unified Modeling Language

Extensible Markup Language

AUTHORS

Brian Hambling has experienced software development from a developer’s,
project manager’s and quality manager’s perspective in a career spanning over
35 years. He has worked in areas as diverse as real-time avionics, legacy systems
maintenance and e-business strategies. He contributed to the development of
software quality standards while at the Ministry of Defence and later became the
head of systems and software engineering at The University of Greenwich. He
was technical director of ImagoQA and general manager of Microgen IQA, a spe-
cialist company providing consultancy in software testing and quality assurance
primarily to the financial services sector. He is now concentrating on writing.

Peter Morgan is a freelance testing practitioner. He has been working as a
hands-on tester for a number of years, often on projects with over 30 testers.

He has worked for organisations including Fujitsu Services, Nationwide Building
Society, Hutchison 3G and BT Syntegra. He is a member of the Information
Systems Examination Board (ISEB) software testing accreditation and examina-
tion panels, and has presented papers at several testing conferences, including
EuroSTAR. He has a degree from the London School of Economics and is an
active member of BCS and especially its Special Interest Group in Software
Testing (SIGiST).

Angelina Samaroo began her career in the defence sector, where she worked
on the Tornado ADV. In 1995 she was awarded Chartered Engineer status by
the Royal Aeronautical Society. Early in her career she took an interest in
developing staff, managing the training of new engineers across the company,

to the standards laid down by the IEE (now the IET). She is an instructor for the
ISEB Foundation and Practitioner Courses in Software Testing. She has also
instructed delegates in other aspects of testing, such as unit testing, user
acceptance testing and managing testing projects, in the UK, Europe, North
America and Australia.

Geoff Thompson has been involved in testing for nearly 25 years, specialising
1n test strategy, test management and process improvement. He is currently
consultancy director of the consulting organisation Experimentus Ltd. He has
been involved in developing software testing qualifications since 1997, working
first with ISEB and then with ISTQB (International Software Testing Qualifica-
tion Board), an organisation he founded in 2002. He is the chair of the UK Testing
Board, chair of the TMMi Foundation Management Executive, and is also the
vice-chairman of the BCS SIGiST Committee. He was awarded the UK Test
Excellence Award in 2008.

Xi

AUTHORS

Peter Williams previously worked in methods and systems improvement before
moving into systems development and subsequently software testing. He has
been a self-employed contract test manager or consultant in both financial
services and the public sector. He has evaluated test processes and subsequently
implemented improvements, at various organisations, including test
management and execution tools as appropriate. He has an MSc in computing
from the Open University and is chairman of the Examinations Panel for the
ISEB Foundation Certificate in Software Testing.

Xili

INTRODUCTION

NATURE AND PURPOSE OF THE BOOK

The Information Systems Examination Board (ISEB) of BCS (www.bcs.org.uk/iseb)
instigated the Foundation Certificate in Software Testing in 1998; since then over
40,000 Foundation Certificates have been awarded. An intermediate level qualifi-
cation was introduced in 2007 as a step towards the more advanced Practitioner
qualification.

The International Software Testing Qualifications Board ISTQB) (www.istgb.org)
was set up in 2001 to offer a similar certification scheme to as many countries

as wished to join this international testing community. The UK was a founding
member of ISTQB and, in 2005, adopted the ISTQB Foundation Certificate
Syllabus as the basis of examinations for the Foundation Certificate in the UK.
The Foundation Certificate is now an entry qualification for the ISTQB Advanced
Certificate. The Certified Tester Foundation Level Syllabus has been updated
and released in a 2010 version, and this book relates to the 2010 version of the
syllabus.

This book has been written specifically to help potential candidates for the
ISTQB-ISEB Certified Tester Foundation Level examination. The book is
therefore structured to support learning of the key ideas in the syllabus quickly
and efficiently for those who do not plan to attend a course, and to support
structured revision for anyone preparing for the exam.

In this introductory chapter we will explain the nature and purpose of the
Foundation Level and provide an insight into the way the syllabus is structured
and the way the book is structured to support learning in the various syllabus
areas. Finally we offer guidance on the best way to use this book, either as a
learning resource or as a revision resource.

PURPOSE OF FOUNDATION

The Certified Tester Foundation Level Certificate is the first level of a hierarchy
of ISTQB-ISEB certificates in software testing, and leads naturally into the next
level, known as the Intermediate Certificate in Software Testing, which in turn
leads on to the ISTQB Advanced Level, followed by the various ISTQB Expert

Level examinations.

SOFTWARE TESTING

The Foundation Level provides a very broad introduction to the whole discipline of
software testing. As a result coverage of topics is variable, with some only briefly
mentioned and others studied in some detail. The arrangement of the syllabus and
the required levels of understanding are explained in the next section.

The authors of the syllabus have aimed it at people with varying levels of experi-
ence in testing, including those with no experience at all. This makes the certificate
accessible to those who are or who aim to be specialist testers, but also to those who
require a more general understanding of testing, such as project managers and
software development managers. One specific aim of this qualification is to prepare
certificate holders for the next level of certification, but the Foundation Level has
sufficient breadth and depth of coverage to stand alone.

THE CERTIFIED TESTER FOUNDATION LEVEL SYLLABUS

Syllabus content and structure

The syllabus is broken down into six main sections, each of which has associated
with it a minimum contact time that must be included within any accredited
training course:

1) Fundamentals of testing (155 minutes)

2) Testing throughout the software life cycle (115 minutes)
3) Static techniques (60 minutes)

4) Test design techniques (285 minutes)

5) Test management (170 minutes)

6) Tool support for testing (80 minutes)

The relative timings are a reliable guide to the amount of time that should be
spent studying each section of the syllabus. These timings are further broken
down for each topic within a section.

Each section of the syllabus also includes a list of learning objectives that
provides candidates with a guide to what they should know when they have
completed their study of a section and a guide to what can be expected to be
asked in an examination. The learning objectives can be used to check that
learning or revision is adequate for each topic. In the book, which is structured
around the syllabus sections, we have presented the learning objectives for each
section at the beginning of the relevant chapter, and the summary at the end of
each chapter confirms how those learning objectives have been addressed.

Finally, each topic in the syllabus has associated with it a level of understanding,
represented by the legend K1, K2, K3 or K4:

e Level of understanding K1 is associated with recall, so that a topic labelled
K1 contains information that a candidate should be able to remember but not
necessarily use or explain.

INTRODUCTION

e Level of understanding K2 is associated with the ability to explain a topic or
to classify information or make comparisons.

e Level of understanding K3 is associated with the ability to apply a topic in a
practical setting.

e Level of understanding K4 is associated with the ability to analyse a situation
or a set of information to determine what action to take.

The level of understanding influences the level and type of questions that can
be expected to be asked about that topic in the examination. More detail about
the question style and about the examination is given in Chapter 7. Example
questions, written to the level and in the formats used in the examination, are
included within each chapter to provide generous examination practice.

Syllabus map

The syllabus can usefully be viewed as a mind map, as shown in Figure 0.1.

In this representation the main sections of the syllabus, corresponding to
chapters in the book, provide the first level of ordering. The next level provides
the breakdown into topics within each section. In most cases the syllabus breaks
topics down even further, but this level of breakdown is omitted from the diagram
for clarity. Figure 0.1 enables the entire syllabus to be viewed and is potentially
useful as a tracking mechanism to identify visually which parts of the syllabus
need most attention and which parts you feel are well understood. By recognising
the relative strengths and weaknesses by topic within sections it is easier to
understand the nature and extent of the weakness. For example, problems

with certain black-box techniques that are not also associated with white-box
techniques and experience-based techniques should give confidence in the overall
section on test case design techniques. It is also possible to identify how many
marks are ‘at risk’ from this weakness so that you can plan where to spend most
revision time and, perhaps, decide which weaknesses you feel able to leave until
after the examination.

RELATIONSHIP OF THE BOOK TO THE SYLLABUS

The book is structured into chapters that mirror the sections of the syllabus so
that you can work your way through the whole syllabus or select topics that are
of particular interest or concern. The structure enables you to go straight to

the place you need, with confidence either that what you need to know will

be covered there and nowhere else, or that relevant cross references will be
provided.

Each chapter of the book incorporates the learning objectives from the syllabus
and identifies the required level of understanding for each topic. Each chapter
also includes examples of typical examination questions to enable you to assess
your current knowledge of a topic before you read the chapter, and further
questions at the end of each chapter to provide practice in answering typical
examination questions. Topics requiring K3 level of understanding are presented
with worked examples as a model for the level of application expected from real

SOFTWARE TESTING

o0 & purnPoil

juswabeuew uoieinbiyuo)

SYSI pue sjyeuaq [enus}od:s|00} JO 8sN 8oy

100} 1S9} JO sadA]

snqe|iAs
[2A87 uoljepuno
J8)s8] paye)
010z 9OLSI 8yL

dew snge)Ag L0 a1nbi4

INTRODUCTION

examination questions. Answers are provided for all questions, and the rationale
for the correct answer is discussed for all practice questions.

A final chapter explains the Foundation Level examination strategy and provides
guidance on how to prepare for the examination and how to manage the
examination experience to maximise your own performance.

HOW TO GET THE BEST OUT OF THIS BOOK

This book is designed for use by different groups of people. If you are using the
book as an alternative to attending an accredited course you will probably find
the first method of using the book described below to be of greatest value. If you
are using the book as a revision aid you may find the second approach more
appropriate. In either case you would be well advised to acquire a copy of the
syllabus (available from www.istgb.org) and a copy of the sample examination
paper (available from ISEB) as reference documents, though neither is essential
and the book stands alone as a learning and revision aid.

Using the book as a learning aid

For those of you using the book as an alternative to attending an accredited course
the first step is to familiarise yourself with the syllabus structure and content by
skim reading the opening sections of each chapter where the learning objectives
are identified for each topic. You may then find it helpful to turn to Chapter 7 and
become familiar with the structure of the examination and the types and levels of
questions that you can expect in the examination. From here you can then work
through each of the six main chapters in any sequence before returning to
Chapter 7 to remind yourself of the main elements of the examination.

For each chapter begin by attempting the self-assessment questions at the
beginning to get initial confirmation of your level of confidence in the topics
covered by that chapter. This may help you to prioritise how you spend your
time. Work first through the chapters where your knowledge is weakest,
attempting all the exercises and following through all the worked examples.
Read carefully through the chapters where your knowledge is less weak but
still not good enough to pass the exam. You can be more selective with exer-
cises and examples here, but make sure you attempt the practice questions at
the end of the chapters. For the areas where you feel strong you can use the
chapter for revision, but remember to attempt the practice questions to
confirm positively your initial assessment of your level of knowledge. Every
chapter contains a summary section that reiterates the learning objectives,
so reading the first and last sections of a chapter will help you to understand
how your current level of knowledge relates to the level required to pass the
examination. The best confirmation of this is to attempt questions at the
appropriate K level for each topic; these are provided in the book.

SOFTWARE TESTING

Using the book as a revision aid

If you are using this book for final revision, perhaps after completing an
accredited course, you might like to begin by using a selection of the example
questions at the end of each chapter as a ‘mock examination’. The information
in Chapter 7 will enable you to construct a properly balanced mock exam of
your own. Your mock exam will provide some experience of answering typical
questions under the same time pressures that you will experience in the real
examination, and this will provide you with a fairly reliable guide to your
current state of readiness to take the real examination. You can also discover
which areas most need revision from your performance in the mock exam, and
this will guide you as you plan your revision.

Revise first where you feel weakest. You can use the opening sections of each
chapter, containing the learning objectives and the self-assessment questions,
together with the summary at the end of each chapter to refine further your
awareness of your own weaknesses. From here you can target your studies very
accurately. Remember that every K3 topic will have at least one worked example
and some exercises to help you build your confidence before tackling questions at
the level set in the real examination.

You can get final confirmation of your readiness to take the real examination by
taking the sample examination paper provided by ISEB.

1 THE FUNDAMENTALS OF TESTING

Peter Morgan

BACKGROUND

If you were buying a new car, you would not expect to take delivery from the
showroom with a scratch down the side of the vehicle. The car should have five
wheels, a steering wheel, an engine and all the other essential components,

and it should come with appropriate documentation, with all pre-sales checks
completed and passed satisfactorily. The car you receive should be the car
described in the sales literature; it should have the correct engine size, the
correct colour scheme, and whatever extras you have ordered, and performance
in areas such as fuel consumption and maximum speed should match published
figures. In short, a level of expectation is set by brochures, by your experience of
sitting in the driving seat, and probably by a test drive. If your expectations are
not met you will feel justifiably aggrieved.

This kind of expectation seems not to apply to new software installations;
examples of software being delivered not working as expected, or not working
at all, are common. Why is this? There is no single cause that can be rectified
to solve the problem, but one important contributing factor is the inadequacy
of the testing to which software applications are exposed.

Software testing is neither complex nor difficult to implement, yet it is a
discipline that is seldom applied with anything approaching the necessary
rigour to provide confidence in delivered software. Software testing is costly
in human effort or in the technology that can multiply the effect of human
effort, yet is seldom implemented at a level that will provide any assurance
that software will operate effectively, efficiently or even correctly.

This book explores the fundamentals of this important but neglected discipline

to provide a basis on which a practical and cost-effective software testing regime
can be constructed.

INTRODUCTION

In this opening chapter we have three very important objectives to achieve. First,
we will introduce you to the fundamental ideas that underpin the discipline of

SOFTWARE TESTING

software testing, and this will involve the use and explanation of some new
terminology. Secondly, we will establish the structure that we have used
throughout the book to help you to use the book as a learning and revision
aid. Thirdly, we will use this chapter to point forward to the content of later
chapters.

We begin by defining what we expect you to get from reading this chapter. The
learning objectives below are based on those defined in the Software Foundation
Certificate syllabus (ISTQB, 2010), so you need to ensure that you have achieved
all of these objectives before attempting the examination.

Learning objectives

The learning objectives for this chapter are listed below. You can confirm that
you have achieved these by using the self-assessment questions at the start of
the chapter, the ‘Check of understanding’ boxes distributed throughout the text,
and the example examination questions provided at the end of the chapter. The
chapter summary will remind you of the key ideas.

The sections are allocated a K number to represent the level of understanding
required for that section; where an individual topic has a lower K number than
the section as a whole, this is indicated for that topic; for an explanation of the
K numbers see the Introduction.

Why is testing necessary? (K2)
e Describe, with examples, the way in which a defect in software can cause
harm to a person, to the environment or to a company.
e Distinguish between the root cause of a defect and its effects.
e Give reasons why testing is necessary by giving examples.

e Describe why testing is part of quality assurance and give examples of
how testing contributes to higher quality.

e Recall the terms error, defect, fault, failure and the corresponding terms
mistake and bug. (K1)

What is testing? (K2)

e Recall the common objectives of testing. (K1)

e Provide examples for the objectives of testing in different phases of the
software life cycle.

e Differentiate testing from debugging.

General testing principles (K2)

e Explain the fundamental principles in testing.

THE FUNDAMENTALS OF TESTING

Fundamental test process (K1)

e Recall the five fundamental test activities and respective tasks from planning
to test closure.

The psychology of testing (K2)

e Recall the psychological factors that influence the success of testing. (K1)
e Contrast the mindset of a tester and of a developer.
Self-assessment questions
The following questions have been designed to enable you to check your current

level of understanding for the topics in this chapter. The answers are given at the
end of the chapter.

Question SA1 (K1)

A bug or defect is:

a. a mistake made by a person;

b. arun-time problem experienced by a user;
c. the result of an error or mistake;

d. the result of a failure, which may lead to an error?

Question SA2 (K1)
The effect of testing is to:

increase software quality;

give an indication of the software quality;

enable those responsible for software failures to be identified,;
d. show there are no problems remaining?

oo

Question SA3 (K1)

What is retesting?

a. Running the same test again in the same circumstances to reproduce the
problem.

b. A cursory run through a test pack to see if any new errors have been
introduced.

c. Checking that the predetermined exit criteria for the test phase have been met.

d. Running a previously failed test against new software/data/documents to see
if the problem is solved.

SOFTWARE TESTING

WHY SOFTWARE FAILS

Examples of software failure are depressingly common. Here are some you may
recognise:

e The first launch of the European Space Agency Ariane 5 rocket in June 1996
failed after 37% seconds. A software error caused the rocket to deviate from
its vertical ascent, and the self-destruct capabilities were enacted before the
then unpredictable flight path resulted in a bigger problem.

e When the UK Government introduced online filing of tax returns, a user
could sometimes see the amount that a previous user earned. This was
regardless of the physical location of the two applicants.

e In November 2005, information on the UK’s top 10 wanted criminals was
displayed on a website. The publication of this information was described
in newspapers and on morning radio and television and, as a result,
many people attempted to access the site. The performance of the
website proved inadequate under this load and the website had to be
taken offline. The publicity created performance peaks beyond the
capacity of the website.

e When a well-known online book retailer first went live, ordering a negative
number of books meant that the transaction sum involved was refunded to
the ‘purchaser’. Development staff had not anticipated that anyone would
attempt to purchase a negative number of books. Code was developed to allow
refunds to customers to be made by administrative staff — but self-requested
refunds are not valid.

e A small, one-line, change in the billing system of an electrical provider blacked
out the whole of a major US city.

What is it about these examples that make them so startling? Is it a sense that
something fairly obvious was missed? Is it the feeling that, expensive and
important as they were, the systems were allowed to enter service before they
were ready? Do you think these systems were adequately tested? Obviously they
were not, but in this book we want to explore why this was the case and why
these kinds of failure continue to plague us.

To understand what is going on we need to start at the beginning, with the people
who design systems. Do they make mistakes? Of course they do. People make
mistakes because they are fallible, but there are also many pressures that make
mistakes more likely. Pressures such as deadlines, complexity of systems and
organisations, and changing technology all bear down on designers of systems
and increase the likelihood of errors in specifications, in designs and in software
code. These errors are where major system failures usually begin. If a document
with an error in it is used to specify a component the component will be faulty
and will probably exhibit incorrect behaviour. If this faulty component is built
into a system the system may fail. While failure is not always guaranteed, it is
likely that errors in specifications will lead to faulty components and faulty
components will cause system failure.

10

THE FUNDAMENTALS OF TESTING

An error (or mistake) leads to a defect, which can cause an observed failure
(Figure 1.1).

Figure 1.1 Effect of an error

Error

Defect

Failure

There are other reasons why systems fail. Environmental conditions such as
the presence of radiation, magnetism, electronic fields or pollution can affect
the operation of hardware and firmware and lead to system failure.

If we want to avoid failure we must either avoid errors and faults or find them
and rectify them. Testing can contribute to both avoidance and rectification,
as we will see when we have looked at the testing process in a little more
detail. One thing is clear: if we wish to influence errors with testing we need
to begin testing as soon as we begin making errors — right at the beginning

of the development process — and we need to continue testing until we are
confident that there will be no serious system failures — right at the end of the
development process.

Before we move on, let us just remind ourselves of the importance of what we
are considering. Incorrect software can harm:

e people (e.g. by causing an aircraft crash in which people die, or by causing a
hospital life support system to fail);

e companies (e.g. by causing incorrect billing, which results in the company
losing money);

e the environment (e.g. by releasing chemicals or radiation into the
atmosphere).

Software failures can sometimes cause all three of these at once. The scenario of
a train carrying nuclear waste being involved in a crash has been explored to help
build public confidence in the safety of transporting nuclear waste by train. A
failure of the train’s on-board systems or of the signalling system that controls
the train’s movements could lead to catastrophic results. This may not be likely
(we hope it is not) but it is a possibility that could be linked with software failure.
Software failures, then, can lead to:

e Loss of money

e Loss of time

SOFTWARE TESTING

e Loss of business reputation
e Injury
e Death

KEEPING SOFTWARE UNDER CONTROL

With all of the examples we have seen so far, what common themes can
we identify? There may be several themes that we could draw out of the
examples, but one theme is clear: either insufficient testing or the wrong
type of testing was done. More and better software testing seems a
reasonable aim, but that aim is not quite as simple to achieve as we might
expect.

Exhaustive testing of complex systems is not possible

With the Ariane 5 rocket launch, a particular software module was reused from
the Ariane 4 programme. Only part of the functionality of the module was
required, but the module was incorporated without changes. The unused
functionality of the reused module indirectly caused a directional nozzle to move
in an uncontrolled way because certain variables were incorrectly updated.

In an Ariane 4 rocket the module would have performed as required, but in the
Ariane 5 environment this malfunction in an area of software not even in use
caused a catastrophic failure. The failure is well documented, but what is clear is
that conditions were encountered in the first few seconds after the launch that
were not expected, and therefore had not been tested.

If every possible test had been run, the problem would have been detected.
However, if every test had been run, the testing would still be running now,
and the ill-fated launch would never have taken place; this illustrates one
of the general principles of software testing, which are explained below.
With large and complex systems it will never be possible to test everything
exhaustively; in fact it is impossible to test even moderately complex
systems exhaustively.

In the Ariane 5 case it would be unhelpful to say that not enough testing was
done; for this particular project, and for many others of similar complexity,
that would certainly always be the case. In the Ariane 5 case the problem
was that the right sort of testing was not done because the problem had not
been detected.

Testing and risk

Risk is inherent in all software development. The system may not work or the
project to build it may not be completed on time, for example. These uncer-
tainties become more significant as the system complexity and the implica-
tions of failure increase. Intuitively, we would expect to test an automatic
flight control system more than we would test a video game system. Why?
Because the risk is greater. There is a greater probability of failure in the

THE FUNDAMENTALS OF TESTING

more complex system and the impact of failure is also greater. What we test,
and how much we test it, must be related in some way to the risk. Greater
risk implies more and better testing.

There is much more on risk and risk management in Chapter 5.

Testing and quality

Quality is notoriously hard to define. If a system meets its users’ requirements
that constitutes a good starting point. In the examples we looked at earlier the
online tax returns system had an obvious functional weakness in allowing one
user to view another user’s details. While the user community for such a system
1s potentially large and disparate, it is hard to imagine any user that would find
that situation anything other than unacceptable. In the top 10 criminals example
the problem was slightly different. There was no failure of functionality in this
case; the system was simply swamped by requests for access. This is an example
of a non-functional failure, in that the system was not able to deliver its services
to its users because it was not designed to handle the peak load that materialised
after radio and TV coverage.

Of course the software development process, like any other, must balance compet-
ing demands for resources. If we need to deliver a system faster (i.e. in less time),
for example, it will usually cost more. The items at the corners (or vertices) of the
triangle of resources in Figure 1.2 are time, money and quality. These three affect
one another, and also influence the features that are or are not included in the
delivered software.

Figure 1.2 Resources triangle

Time

Features

Money Quality

One role for testing is to ensure that key functional and non-functional
requirements are examined before the system enters service and any defects
are reported to the development team for rectification. Testing cannot directly
remove defects, nor can it directly enhance quality. By reporting defects it
makes their removal possible and so contributes to the enhanced quality of
the system. In addition, the systematic coverage of a software product in
testing allows at least some aspects of the quality of the software to be
measured. Testing is one component in the overall quality assurance activity
that seeks to ensure that systems enter service without defects that can lead
to serious failures.

SOFTWARE TESTING

Deciding when ‘enough is enough’
How much testing is enough, and how do we decide when to stop testing?

We have so far decided that we cannot test everything, even if we would wish
to. We also know that every system is subject to risk of one kind or another
and that there is a level of quality that is acceptable for a given system.
These are the factors we will use to decide how much testing to do.

The most important aspect of achieving an acceptable result from a finite and
limited amount of testing is prioritisation. Do the most important tests first so
that at any time you can be certain that the tests that have been done are
more important than the ones still to be done. Even if the testing activity is
cut in half it will still be true that the most important testing has been done.
The most important tests will be those that test the most important aspects of
the system: they will test the most important functions as defined by the
users or sponsors of the system, and the most important non-functional
behaviour, and they will address the most significant risks.

The next most important aspect is setting criteria that will give you an
objective test of whether it is safe to stop testing, so that time and all the
other pressures do not confuse the outcome. These criteria, usually known as
completion criteria, set the standards for the testing activity by defining areas
such as how much of the software is to be tested (this is covered in more detail
in Chapter 4) and what levels of defects can be tolerated in a delivered
product (which is covered in more detail in Chapter 5).

Priorities and completion criteria provide a basis for planning (which will

be covered in Chapter 2 and Chapter 5) but the triangle of resources in

Figure 1.2 still applies. In the end, the desired level of quality and risk may
have to be compromised, but our approach ensures that we can still determine
how much testing is required to achieve the agreed levels and we can still be
certain that any reduction in the time or effort available for testing will not
affect the balance — the most important tests will still be those that have
already been done whenever we stop.

CHECK OF UNDERSTANDING

(1) Describe the interaction between errors, defects and failures.

(2) Software failures can cause losses. Give three consequences of software
failures.

(3] What are the vertices of the ‘triangle of resources™?

WHAT TESTING IS AND WHAT TESTING DOES
So far we have worked with an intuitive idea of what testing is. We have

recognised that it is an activity used to reduce risk and improve quality by
finding defects, which is all true. However, we need to understand a little

14

THE FUNDAMENTALS OF TESTING

more about how software testing works in practice before we can think about
how to implement effective testing.

Testing and debugging

Testing and debugging are different kinds of activity, both of which are very
important. Debugging is the process that developers go through to identify the
cause of bugs or defects in code and undertake corrections. Ideally some check

of the correction is made, but this may not extend to checking that other areas of
the system have not been inadvertently affected by the correction. Testing, on
the other hand, is a systematic exploration of a component or system with the
main aim of finding and reporting defects. Testing does not include correction of
defects — these are passed on to the developer to correct. Testing does, however,
ensure that changes and corrections are checked for their effect on other parts of
the component or system.

Effective debugging is essential before testing begins to raise the level of
quality of the component or system to a level that is worth testing, i.e. a

level that is sufficiently robust to enable rigorous testing to be performed.
Debugging does not give confidence that the component or system meets its
requirements completely. Testing makes a rigorous examination of the behav-
iour of a component or system and reports all defects found for the develop-
ment team to correct. Testing then repeats enough tests to ensure that defect
corrections have been effective. So both are needed to achieve a quality result.

Static testing and dynamic testing

Static testing is the term used for testing where the code is not exercised. This
may sound strange, but remember that failures often begin with a human error,
namely a mistake in a document such as a specification. We need to test these
because errors are much cheaper to fix than defects or failures (as you will see).
That is why testing should start as early as possible, another basic principle
explained in more detail later in this chapter. Static testing involves techniques
such as reviews, which can be effective in preventing defects, e.g. by removing
ambiguities and errors from specification documents; this is a topic in its own
right and is covered in detail in Chapter 3. Dynamic testing is the kind that
exercises the program under test with some test data, so we speak of test
execution in this context. The discipline of software testing encompasses both
static and dynamic testing.

Testing as a process

We have already seen that there is much more to testing than test execution.
Before test execution there is some preparatory work to do to design the tests
and set them up; after test execution there is some work needed to record the
results and check whether the tests are complete. Even more important than this
is deciding what we are trying to achieve with the testing and setting clear objec-
tives for each test. A test designed to give confidence that a program functions
according to its specification, for example, will be quite different from one
designed to find as many defects as possible. We define a test process to ensure
that we do not miss critical steps and that we do things in the right order. We will
return to this important topic later, where we explain the fundamental test
process in detail.

SOFTWARE TESTING

Testing as a set of techniques

The final challenge is to ensure that the testing we do is effective testing. It might
seem paradoxical, but a good test is one that finds a defect if there is one present.
A test that finds no defect has consumed resources but added no value; a test that
finds a defect has created an opportunity to improve the quality of the product.
How do we design tests that find defects? We actually do two things to maximise
the effectiveness of the tests. First we use well-proven test design techniques, and
a selection of the most important of these is explained in detail in Chapter 4. The
techniques are all based on certain testing principles that have been discovered
and documented over the years, and these principles are the second mechanism
we use to ensure that tests are effective. Even when we cannot apply rigorous
test design for some reason (such as time pressures) we can still apply the general
principles to guide our testing. We turn to these next.

CHECK OF UNDERSTANDING

(1) Describe static testing and dynamic testing.
(2) What is debugging?

(3] What other elements apart from ‘test execution” are included in ‘testing’?

GENERAL TESTING PRINCIPLES

Testing is a very complex activity, and the software problems described earlier
highlight that it can be difficult to do well. We now describe some general testing
principles that help testers, principles that have been developed over the years
from a variety of sources. These are not all obvious, but their purpose is to guide
testers, and prevent the types of problems described previously. Testers use these
principles with the test techniques described in Chapter 4.

Testing shows the presence of bugs

Running a test through a software system can only show that one or more defects
exist. Testing cannot show that the software is error free. Consider whether the top
10 wanted criminals website was error free. There were no functional defects, yet
the website failed. In this case the problem was non-functional and the absence of
defects was not adequate as a criterion for release of the website into operation.

In Chapter 2, we will discuss retesting, when a previously failed test is rerun, to
show that under the same conditions, the reported problem no longer exists. In this
type of situation, testing can show that one particular problem no longer exists.

Although there may be other objectives, usually the main purpose of testing is to
find defects. Therefore tests should be designed to find as many defects as possible.

Exhaustive testing is impossible

If testing finds problems, then surely you would expect more testing to find
additional problems, until eventually we would have found them all. We discussed
exhaustive testing earlier when looking at the Ariane 5 rocket launch, and

16

THE FUNDAMENTALS OF TESTING

concluded that for large complex systems, exhaustive testing is not possible.
However, could it be possible to test small pieces of software exhaustively, and only
incorporate exhaustively tested code into large systems?

Exhaustive testing - a test approach in which all possible data combinations
are used. This includes implicit data combinations present in the state of the
software/data at the start of testing.

Consider a small piece of software where one can enter a password, specified to
contain up to three characters, with no consecutive repeating entries. Using only
western alphabetic capital letters and completing all three characters, there are
26 X 26 X 26 input permutations (not all of which will be valid). However, with a
standard keyboard, there are not 26 X 26 X 26 permutations, but a much higher
number, 256 X 256 x 256, or 224, Even then, the number of possibilities is higher.
What happens if three characters are entered, and the ‘delete last character’ right
arrow key removes the last two? Are special key combinations accepted, or do
they cause system actions (Ctrl + P, for example)? What about entering a charac-
ter, and waiting 20 minutes before entering the other two characters? It may be
the same combination of keystrokes, but the circumstances are different. We can
also include the situation where the 20-minute break occurs over the change-
of-day interval. It is not possible to say whether there are any defects until all
possible input combinations have been tried.

Even in this small example, there are many, many possible data combinations
to attempt.

Unless the application under test (AUT) has an extremely simple logical
structure and limited input, it is not possible to test all possible combinations
of data input and circumstances. For this reason, risk and priorities are used
to concentrate on the most important aspects to test. Both ‘risk’ and ‘priorities’
are covered later in more detail. Their use is important to ensure that the
most important parts are tested.

Early testing

When discussing why software fails, we briefly mentioned the idea of early
testing. This principle is important because, as a proposed deployment date
approaches, time pressure can increase dramatically. There is a real danger that
testing will be squeezed, and this is bad news if the only testing we are doing is
after all the development has been completed. The earlier the testing activity is
started, the longer the elapsed time available. Testers do not have to wait until
software is available to test.

Work-products are created throughout the software development life cycle
(SDLC). As soon as these are ready, we can test them. In Chapter 2, we will see
that requirement documents are the basis for acceptance testing, so the creation
of acceptance tests can begin as soon as requirement documents are available. As
we create these tests, it will highlight the contents of the requirements. Are indi-
vidual requirements testable? Can we find ambiguous or missing requirements?

17

SOFTWARE TESTING

Many problems in software systems can be traced back to missing or incorrect
requirements. We will look at this in more detail when we discuss reviews in
Chapter 3. The use of reviews can break the ‘error—defect—failure’ cycle. In early
testing we are trying to find errors and defects before they are passed to the next
stage of the development process. Early testing techniques are attempting to
show that what is produced as a system specification, for example, accurately
reflects that which is in the requirement documents. Ed Kit (Kit, 1995) discusses
identifying and eliminating errors at the part of the SDLC in which they are
introduced. If an error/defect is introduced in the coding activity, it is preferable to
detect and correct it at this stage. If a problem is not corrected at the stage in
which it is introduced, this leads to what Kit calls ‘errors of migration’. The result
1s rework. We need to rework not just the part where the mistake was made, but
each subsequent part where the error has been replicated. A defect found at
acceptance testing where the original mistake was in the requirements will
require several work-products to be reworked, and subsequently to be retested.

Studies have been done on the cost impacts of errors at the different development
stages. Whilst it is difficult to put figures on the relative costs of finding defects at
different levels in the SDLC, Table 1.1 does concentrate the mind!

Table 1.1 Comparative cost to correct errors

Stage error is found Comparative cost
Requirements $1

Coding $10

Program testing $100

System testing $1,000

User acceptance testing $10,000

Live running $100,000

This 1s known as the cost escalation model.

What is undoubtedly true is that the graph of the relative cost of early and late
1dentification/correction of defects rises very steeply (Figure 1.3).

The earlier a problem (defect) is found, the less it costs to fix.

The objectives of various stages of testing can be different. For example, in the
review processes, we may focus on whether the documents are consistent and no
errors have been introduced when the documents were produced. Other stages of
testing can have other objectives. The important point is that testing has defined
objectives.

18

THE FUNDAMENTALS OF TESTING

Figure 1.3 Effect of identification time on cost of errors

A

Cost

v

Time

Defect clustering

Problems do occur in software! It is a fact. Once testing has identified (most of)
the defects in a particular application, it is at first surprising that the spread
of defects is not uniform. In a large application, it is often a small number of
modules that exhibit the majority of the problems. This can be for a variety of
reasons, some of which are:

e System complexity.

e Volatile code.

e The effects of change upon change.
e Development staff experience.

e Development staff inexperience.

This is the application of the Pareto principle to software testing: approximately
80 per cent of the problems are found in about 20 per cent of the modules. It is
useful if testing activity reflects this spread of defects, and targets areas of the
application under test where a high proportion of defects can be found. However,
it must be remembered that testing should not concentrate exclusively on these
parts. There may be fewer defects in the remaining code, but testers still need to
search diligently for them.

The pesticide paradox

Running the same set of tests continually will not continue to find new defects.
Developers will soon know that the test team always tests the boundaries of con-
ditions, for example, so they will test these conditions before the software is deliv-
ered. This does not make defects elsewhere in the code less likely, so continuing to
use the same test set will result in decreasing effectiveness of the tests. Using
other techniques will find different defects.

For example, a small change to software could be specifically tested and an
additional set of tests performed, aimed at showing that no additional problems
have been introduced (this is known as regression testing). However, the software
may fail in production because the regression tests are no longer relevant to the

19

SOFTWARE TESTING

requirements of the system or the test objectives. Any regression test set needs to
change to reflect business needs, and what are now seen as the most important
risks. Regression testing will be discussed later in this chapter, but is covered in
more detail in Chapter 2.

Testing is context dependent

Different testing is necessary in different circumstances. A website where infor-
mation can merely be viewed will be tested in a different way to an e-commerce
site, where goods can be bought using credit/debit cards. We need to test an air
traffic control system with more rigour than an application for calculating the
length of a mortgage.

Risk can be a large factor in determining the type of testing that is needed. The
higher the possibility of losses, the more we need to invest in testing the software
before it is implemented. A fuller discussion of risk is given in Chapter 5.

For an e-commerce site, we should concentrate on security aspects. Is it possible
to bypass the use of passwords? Can ‘payment’ be made with an invalid credit
card, by entering excessive data into the card number? Security testing is an
example of a specialist area, not appropriate for all applications. Such types of
testing may require specialist staff and software tools. Test tools are covered in
more detail in Chapter 6.

Absence of errors fallacy

Software with no known errors is not necessarily ready to be shipped. Does the
application under test match up to the users’ expectations of it? The fact that no
defects are outstanding is not a good reason to ship the software.

Before dynamic testing has begun, there are no defects reported against the code

delivered. Does this mean that software that has not been tested (but has no
outstanding defects against it) can be shipped? We think not!

CHECK OF UNDERSTANDING

(1) Why is ‘zero defects’ an insufficient guide to software quality?
(2) Give three reasons why defect clustering may exist.

(3) Briefly justify the idea of early testing.

FUNDAMENTAL TEST PROCESS

We previously determined that testing is a process, discussed above. This process
is detailed in what has become known as the fundamental test process, a key
element of what testers do, and is applicable at all stages of testing.

The most visible part of testing is running one or more tests: test execution. We
also have to prepare for running tests, analyse the tests that have been run, and

20

THE FUNDAMENTALS OF TESTING

see whether testing is complete. Both planning and analysing are very necessary
activities that enhance and amplify the benefits of the test execution itself. It is
no good testing without deciding how, when and what to test. Planning is also
required for the less formal test approaches such as exploratory testing, covered
in more detail in Chapter 4.

The fundamental test process consists of five parts that encompass all aspects of
testing (Figure 1.4):

(1) Planning and control.

(2) Analysis and design.

(3) Implementation and execution.

(4) Evaluating exit criteria and reporting.

(5) Test closure activities.

Figure 1.4 Fundamental test process

Test planning and control

A 4

Test analysis and design

A 4
Test implementation
and execution

A 4
Evaluating exit criteria
and reporting

A

Test closure activities

Although the main activities are in a broad sequence, they are not undertaken in
a rigid way. An earlier activity may need to be revisited. A defect found in test
execution can sometimes be resolved by adding functionality that was originally
not present (either missing in error, or the new facilities are needed to make the
other part correct). The new features themselves have to be tested, so even
though implementation and execution are in progress, the ‘earlier’ activity of
analysis and design has to be performed for the new features (Figure 1.5).

We sometimes need to do two or more of the main activities in parallel. Time
pressure can mean that we begin test execution before all tests have been designed.

21

SOFTWARE TESTING

Figure 1.5 Iteration of activities

Test planning and control

F 3

A 4

Test analysis and design <

F 3

A 4
Test implementation
and execution

A 4
Evaluating exit criteria
and reporting

A 4

Test closure activities

Test planning and control

Planning is determining what is going to be tested, and how this will be achieved.
It 1s where we draw a map; how activities will be done; and who will do them.
Test planning is also where we define the test completion criteria. Completion
criteria are how we know when testing is finished. Control, on the other hand, is
what we do when the activities do not match up with the plans. It is the ongoing
activity where we compare the progress against the plan. As progress takes place,
we may need to adjust plans to meet the targets, if this is possible. Therefore we
need to undertake both planning and control throughout the testing activities.
We plan at the outset, but as testing progresses, undertake monitoring and
control activities (monitoring to measure what has happened, control to adjust
future activities in the light of experience). Monitoring and control feed back into
the continual activity of planning. The activities of planning and control are
developed in more detail in Chapter 5.

Test analysis and design

Analysis and design are concerned with the fine detail of what to test (test
conditions), and how to combine test conditions into test cases, so that a small
number of test cases can cover as many of the test conditions as possible. The
analysis and design stage is the bridge between planning and test execution.
It is looking backward to the planning (schedules, people, what is going to be
tested) and forward to the execution activity (test expected results, what
environment will be needed).

A part of the design process needs to consider the test data that will be required
for the test conditions and test cases that have been drawn up.

Test design involves predicting how the software under test should behave in
a given set of circumstances. Sometimes the expected outcome of a test is

22

THE FUNDAMENTALS OF TESTING

trivial: when ordering books from an online book retailer, for instance, under no
circumstances should money be refunded to the customer’s card without interven-
tion from a supervisor. If we do not detail expected outcomes before starting test
execution, there is a real danger that we will miss the one item of detail that is
vital, but wrong.

These topics will be discussed in more detail in Chapter 4, when test case design
techniques are presented. The main points of this activity are as follows:

e Reviewing requirements, architecture, design, interface specifications and
other parts, which collectively comprise the test basis.

e Analysing test items, the specification, behaviour and structure to identify
test conditions and test data required.

e Designing the tests, including assigning priority.
e Determining whether the requirements and the system are testable.

e Detailing what the test environment should look like, and whether there are
any infrastructure and tools required.

e Highlighting the test data required for the test conditions and test cases.

e Creating bi-directional traceability between test basis and test cases.

Test implementation and execution

The test implementation and execution activity involves running tests, and this
will include where necessary any set-up/tear-down activities for the testing. It
will also involve checking the test environment before testing begins. Test execu-
tion is the most visible part of testing, but it is not possible without other parts
of the fundamental test process. It is not just about running tests. As we have
already mentioned, the most important tests need to be run first. How do we
know what are the most important tests to run? This is determined during the
planning stages, and refined as part of test design.

One important aspect undertaken at this stage is combining test cases into an
overall run procedure, so that test time can be utilised efficiently. Here the logical
ordering of tests is important so that, where possible, the outcome of one test
creates the preconditions for one or more tests that are later in the execution
sequence.

As tests are run, their outcome needs to be logged, and a comparison made between
expected results and actual results. Whenever there is a discrepancy between the
expected and actual results, this needs to be investigated. If necessary a test incident
should be raised. Each incident requires investigation, although corrective action will
not be necessary in every case. Test incidents will be discussed in Chapter 5.

When anything changes (software, data, installation procedures, user documenta-
tion, etc.), we need to do two kinds of testing on the software. First of all, tests
should be run to make sure that the problem has been fixed. We also need to make
sure that the changes have not broken the software elsewhere. These two types
are usually called retesting and regression testing, respectively. In retesting we

23

SOFTWARE TESTING

are looking in fine detail at the changed area of functionality, whereas regression
testing should cover all the main functions to ensure that no unintended changes
have occurred. On a financial system, we should include end of day/end of
month/end of year processing, for example, in a regression test pack.

Test implementation and execution is where the most visible test activities are
undertaken, and usually have the following parts:

e Developing and prioritising test cases, creating test data, writing test
procedures and, optionally, preparing test harnesses and writing automated
test scripts.

e Collecting test cases into test suites, where tests can be run one after another
for efficiency.

e Checking the test environment set-up is correct.

e Running test cases in the determined order. This can be manually or using
test execution tools.

e Keeping a log of testing activities, including the outcome (pass/fail) and the
versions of software, data, tools and testware (scripts, etc.).

e Comparing actual results with expected results.

e Reporting discrepancies as incidents with as much information as possible,
including if possible causal analysis (code defect, incorrect test specification,
test data error or test execution error).

e Where necessary, repeating test activities when changes have been made
following incidents raised. This includes re-execution of a test that previously
failed in order to confirm a fix (retesting), execution of a corrected test and
execution of previously passed tests to check that defects have not been
introduced (regression testing).

Evaluating exit criteria and reporting

Remember that exit criteria were defined during test planning and before test
execution started. At the end of test execution, the test manager checks to see
if these have been met. If the criterion was that there would be 85 per cent
statement coverage (i.e. 85 per cent of all executable statements have been
executed (see Chapter 4 for more detail)), and as a result of execution the figure
1s 75 per cent, there are two possible actions: change the exit criteria, or run more
tests. It is possible that even if the preset criteria were met, more tests would
be required. Also, writing a test summary for stakeholders would say what was
planned, what was achieved, highlight any differences and in particular things
that were not tested.

The fourth stage of the fundamental test process, evaluating exit criteria,
comprises the following:

e Checking whether the previously determined exit criteria have been met.

e Determining if more tests are needed or if the specified exit criteria need
amending.

24

THE FUNDAMENTALS OF TESTING

e Writing up the result of the testing activities for the business sponsors and
other stakeholders.

More detail is given on this subject in Chapter 5.

Test closure activities

Testing at this stage has finished. Test closure activities concentrate on making
sure that everything is tidied away, reports written, defects closed, and those
defects deferred for another phase clearly seen to be as such.

At the end of testing, the test closure stage is composed of the following:

e Ensuring that the documentation is in order; what has been delivered is
defined (it may be more or less than originally planned), closing incidents
and raising changes for future deliveries, documenting that the system has
been accepted.

e Closing down and archiving the test environment, test infrastructure and
testware used.

e Passing over testware to the maintenance team.
e Writing down the lessons learned from this testing project for the future, and
incorporating lessons to improve the testing process (‘testing maturity’).

The detail of the test closure activities is discussed in Chapter 5.

CHECK OF UNDERSTANDING

(1) What are the stages in the fundamental test process (in the correct sequence)?
(2) Briefly compare regression testing and retesting.

(3] When should the expected outcome of a test be defined?

THE PSYCHOLOGY OF TESTING

A variety of different people may be involved in the total testing effort, and

they may be drawn from a broad set of backgrounds. Some will be developers,
some professional testers, and some will be specialists, such as those with
performance testing skills, whilst others may be users drafted in to assist with
acceptance testing. Who ever is involved in testing needs at least some under-
standing of the skills and techniques of testing to make an effective contribution
to the overall testing effort.

Testing can be more effective if it is not undertaken by the individual(s) who wrote
the code, for the simple reason that the creator of anything (whether it is software
or a work of art) has a special relationship with the created object. The nature of
that relationship is such that flaws in the created object are rendered invisible to
the creator. For that reason it is important that someone other than the creator

25

SOFTWARE TESTING

should test the object. Of course we do want the developer who builds a component
or system to debug it, and even to attempt to test it, but we accept that testing
done by that individual cannot be assumed to be complete. Developers can test
their own code, but it requires a mindset change, from that of a developer (to prove
it works) to that of a tester (trying to show that it does not work). If there are
separate individuals involved, there are no potential conflicts of interest.We
therefore aim to have the software tested by someone who was not involved in the
creation of the software; this approach is called test independence. Below are
people who could test software, listed in order of increasing independence:

e Those who wrote the code.
e Members of the same development team.
e Members of a different group (independent test team).

e Members of a different company (a testing consultancy/outsourced).

Of course independence comes at a price; it is much more expensive to use a
testing consultancy than to test a program oneself.

Testers and developers think in different ways. However, although we know

that testers should be involved from the beginning, it is not always good to get
testers involved in code execution at an early stage; there are advantages and
disadvantages. Getting developers to test their own code has advantages (as soon
as problems are discovered, they can be fixed, without the need for extensive
error logs), but also difficulties (it is hard to find your own mistakes). People and
projects have objectives, and we all modify actions to blend in with the goals.

If a developer has a goal of producing acceptable software by certain dates,

then any testing is aimed towards that goal.

If a defect is found in software, the software author may see this as criticism.
Testers need to use tact and diplomacy when raising defect reports. Defect
reports need to be raised against the software, not against the individual who
made the mistake. The mistake may be in the code written, or in one of the
documents upon which the code is based (requirement documents or system
specification). When we raise defects in a constructive way, bad feeling can be
avoided.

We all need to focus on good communication, and work on team building. Testers
and developers are not opposed, but working together, with the joint target of
better quality systems. Communication needs to be objective, and expressed in
impersonal ways:

e The aim is to work together rather than be confrontational. Keep the focus on
delivering a quality product.

e Results should be presented in a non-personal way. The work-product may be
wrong, so say this in a non-personal way.

e Attempt to understand how others feel; it is possible to discuss problems and
still leave all parties feeling positive.

26

THE FUNDAMENTALS OF TESTING

e At the end of discussions, confirm that you have both understood and been
understood. ‘So, am I right in saying that your aim was to deliver on Friday
by 12:00, even if you knew there were problems?’

As testers and developers, one of our goals is better quality systems delivered in a
timely manner. Good communication between testers and the development teams
1s one way that this goal can be reached.

CHECK OF UNDERSTANDING

(1) When testing software, who has the highest level of independence?

(2) Contrast the advantages and disadvantages of developers testing their
own code.

(3) Suggest three ways that confrontation can be avoided.

CODE OF ETHICS

One last topic that we need to address before we move onto the more detailed
coverage of topics in the following chapters is that testers must adhere to a code
of ethics: they are required to act in a professional manner. Testers can have
access to confidential and/or privileged information, and they are to treat any
information with care and attention, and act responsibly to the owner(s) of this
information, employers and the wider public interest. Of course, anyone can test
software, so the declaration of this code of conduct applies to those who have
achieved software testing certification! The code of ethics applies to the following
areas:

e Public — Certified software testers shall consider the wider public interest in
their actions.

e Client and employer — Certified software testers shall act in the best
interests of their client and employer (being consistent with the wider
public interest).

e Product — Certified software testers shall ensure that the deliverables they
provide (for any products and systems they work on) meet the highest
professional standards possible.

e Judgement — Certified software testers shall maintain integrity and
independence in their professional judgement.

e Management — Certified software test managers and leaders shall subscribe
to and promote and ethical approach to the management of software testing.

e Profession — Certified software testers shall advance the integrity and
reputation of the profession consistent with the public interest.

e Colleagues — Certified software testers shall be fair to and supportive of their
colleagues, and promote cooperation with software developers.

27

SOFTWARE TESTING

o Self — Certified software testers shall participate in lifelong learning regarding
the practice of their profession, and shall promote an ethical approach to the
practice of the profession.

The code of ethics is far reaching in its aims, and a quick review of the eight
points reveals interaction with other areas of the syllabus. The implementation of
this code of ethics 1s expanded on in all chapters of this book, and perhaps is the
reason for the whole book itself!

CHECK OF UNDERSTANDING

(1) Why do testers need to consider how they treat information they use?

(2) What eight areas should testers consider when conducting themselves in the
workplace?

(3] What other sections of this chapter have described how testers should conduct
themselves with colleagues?

SUMMARY

In this chapter, we have looked at key ideas that are used in testing, and
introduced some terminology. We examined some of the types of software
problems that can occur, and why the blanket explanation of ‘insufficient testing’
is unhelpful. The problems encountered then led us through some questions
about the nature of testing, why errors and mistakes are made, and how these
can be identified and eliminated. Individual examples enabled us to look at what
testing can achieve, and the view that testing does not improve software quality,
but provides information about that quality.

We have examined both general testing principles and a standard template for
testing: the fundamental test process. These are useful and can be effective in
1dentifying the types of problems we considered at the start of the chapter. The
chapter finished by examining how developers and testers think, and looked at
different levels of test independence, and how testers should behave by adhering
to a code of ethics.

This chapter is an introduction to testing, and to themes that are developed later
in the book. It is a chapter in its own right, but also points to information that

will come later. A rereading of this chapter when you have worked through the
rest of the book will place all the main topics into context.

REFERENCES

Kit, Edward (1995) Software Testing in the Real World. Addison-Wesley,
Reading, MA.

28

THE FUNDAMENTALS OF TESTING

Example examination questions with answers
E1. K1 question
Which of the following is correct?

Debugging is:

a. Testing/checking whether the software performs correctly.

b. Checking that a previously reported defect has been corrected.

c. Identifying the cause of a defect, repairing the code and checking the fix is
correct.

d. Checking that no unintended consequences have occurred as a result of a fix.

E2. K2 question
Which of the following are aids to good communication, and which hinder it?

(1) Try to understand how the other person feels.

(11)) Communicate personal feelings, concentrating upon individuals.

(111) Confirm the other person has understood what you have said and vice versa.
(iv) Emphasise the common goal of better quality.

(v) Each discussion is a battle to be won.

(1), 1) and (11) aid, (v) and (v) hinder.
(1i1), Gv) and (v) aid, (1) and (i1) hinder.
(@), (11) and (iv) aid, (1) and (v) hinder.
. (1), (11) and (iv) aid, () and (v) hinder.

peop

E3. K1 question
Which option is part of the “mplementation and execution’ area of the
fundamental test process?

Developing the tests.

Comparing actual and expected results.
Writing a test summary.

Analysing lessons learnt for future releases.

pe o

E4. K1 question
The five parts of the fundamental test process have a broad chronological order.
Which of the options gives three different parts in the correct order?

a. Implementation and execution, planning and control, analysis and design.

b. Analysis and design, evaluating exit criteria and reporting, test closure
activities.

c. Evaluating exit criteria and reporting, implementation and execution,
analysis and design.

d. Evaluating exit criteria and reporting, test closure activities, analysis
and design.

29

SOFTWARE TESTING

E5. K2 question
Which pair of definitions is correct?

a. Regression testing is checking that the reported defect has been fixed;
retesting is testing that there are no additional problems in previously tested
software.

b. Regression testing is checking there are no additional problems in
previously tested software; retesting enables developers to isolate the
problem.

c. Regression testing involves running all tests that have been run before;
retesting runs new tests.

d. Regression testing is checking that there are no additional problems in
previously tested software, retesting is demonstrating that the reported
defect has been fixed.

E6. K1 question
Which statement is most true?

Different testing is needed depending upon the application.
All software is tested in the same way.

A technique that finds defects will always find defects.

A technique that has found no defects is not useful.

pe o

E7. K1 question
When is testing complete?

a. When time and budget are exhausted.

b. When there is enough information for sponsors to make an informed
decision about release.

c. When there are no remaining high priority defects outstanding.

d. When every data combination has been exercised successfully.

E8. K1 question
Which list of levels of tester independence is in the correct order, starting with the
most independent first?

a. Tests designed by the author; tests designed by another member of
the development team; tests designed by someone from a different
company.

b. Tests designed by someone from a different department within the company;
tests designed by the author; tests designed by someone from a different
company.

c. Tests designed by someone from a different company; tests designed by
someone from a different department within the company; tests designed
by another member of the development team.

d. Tests designed by someone from a different department within the company;
tests designed by someone from a different company; tests designed by the
author.

30

THE FUNDAMENTALS OF TESTING

E9. K2 question
The following statements relate to activities that are part of the fundamental test
process.

(1) Evaluating the testability of requirements.
(1) Repeating testing activities after changes.
(111) Designing the test environment set-up.

(iv) Developing and prioritising test cases.

(v) Verifying the environment is set up correctly.

Which statement below is TRUE?

a. (1) and (11) are part of analysis and design, (i), (iv) and (v) are part of test
implementation and execution.

b. (@) and (iii) are part of analysis and design, (ii), (iv) and (v) are part of test
implementation and execution.

c. (1) and (v) are part of analysis and design, (i1), (ii1) and (iv) are part of test
implementation and execution.

d. (1) and (iv) are part of analysis and design, (i1), (i11) and (v) are part of test
implementation and execution.

E10. K2 question
Which statement correctly describes the public and profession aspects of the
code of ethics?

a. Public: Certified software testers shall act in the best interests of their client
and employer (being consistent with the wider public interest). Profession:
Certified software testers shall advance the integrity and reputation of their
industry consistent with the public interest.

b. Public: Certified software testers shall advance the integrity and reputation
of the profession consistent with the public interest. Profession: Certified
software testers shall consider the wider public interest in their actions.

c. Public: Certified software testers shall consider the wider public interest
in their actions. Profession: Certified software testers shall participate in
lifelong learning regarding the practice of their profession and shall promote
an ethical approach to the practice of their profession.

d. Public: Certified software testers shall consider the wider public interest
in their actions. Profession: Certified software testers shall advance the
integrity and reputation of their industry consistent with the public interest.

SOFTWARE TESTING

Answers to questions in the chapter
SA1. The correct answer is c.
SA2. The correct answer is b.
SA3. The correct answer is d.

Answers to example questions
E1. The correct answer is c.

a. 1s a brief definition of testing.
b. isretesting.
d. isregression testing.

E2. The correct answer is c.
If you are unsure why, revisit the section in this chapter on the psychology
of testing.

E3. The correct answer is b.

a. 1is part of ‘Analysis and design’.
c. 1is part of ‘Evaluating exit criteria and reporting’.
d. is part of ‘“Test closure activities’.

E4. The correct answer is b.
All other answers have at least one stage of the fundamental test process in the
wrong sequence.

E5. The correct answer is d.

Regression testing is testing that nothing has regressed. Retesting (or confirma-
tion testing) confirms the fix is correct by running the same test after the fix
has been made. No other option has both of these as true.

E6. The correct answer is a.
This is a restatement of the testing principle ‘Testing is context dependent’.

E7. The correct answer is b.
Sometimes time/money does signify the end of testing, but it is really
complete when everything that was set out in advance has been achieved.

E8. The correct answer is c.
This option has someone nearer to the written code in each statement. All other
options are not in this order.

E9. The correct answer is b.
All other answers contain an activity identified as analysis and design that is
part of implementation and test execution.

E10. The correct answer is d.

All the answers reflect the definition of two of the items from the code of ethics,
and care must be taken in searching for the Public item because ‘public’ or

32

THE FUNDAMENTALS OF TESTING

‘public interest’ are used in several of the eight items in the code. The key is

that ‘public’ is the main item, rather than a subsidiary. In the order given in the
options, a. reflects Client and employer and Profession while b. gives
Profession and Public (the correct choices, but the wrong way round). Option c.
gives Public and Self, leaving the last option d. to give Public and Profession.

33

INDEX

acceptance testing, 17, 39, 42,
47-48, Fig. 2.2

actors, 95, 96

ad hoc testing, 82, 118

agile software development, 41,
136, 141

alpha testing, 48

audit trails, 61

authors, 61, 63, 64, 66, 135

baselining, 144

beta testing, 48

black-box techniques see
specification-based techniques

boundary value analysis, 86-88

break-even points, 188, Fig. 6.1,
Fig. 6.4

builds, 178

business rules, 88, 95

Capability Maturity Model
Integration (CMMi), 204
capture playback tools, 185-186
changes
testing, 23-24, 41, 50
traceability, 41, 177
checklists, 64, 67
code
instrumentation, 190
interpreting, 97-100
reviewing, 59
source code, 68
static analysis, 68-70
code of ethics, 27-28
communication, 26-27, 60
compilers, 70, 180
completion criteria
coverage measures as, 80, 190
defining, 14, 22
see also exit criteria
component integration testing, 45,
69, 140
configuration management, 41,
159-160
configuration management tools,
177-179, Table 6.5
confirmation testing see retesting
contract acceptance testing, 48
control flow graphs, 68, 104-106,
108, Figs. 4.8-4.9
control structures, 43, Fig. 2.4
see also program structures
cost escalation models, 18, 37

costs
impact of errors, 18, Fig. 1.3,
Table 1.1
as metric, 148, 151
reducing, 60, 170

test tools, 179-180, 193, 194, 208

see also cost escalation models;
payback models
coverage measurement tools, 190,
Table 6.4
cyclical models see iterative
development models

dashboards, 151, Fig. 5.3
data quality assessment tools,
195-196
data-driven testing, 186, 194
databases
in test tools, 170, 174, 176
testing, 184-185, 194
debugging, 15, 50
debugging tools, 180, Table 6.5
decision coverage, 114-117
decision table testing, 88-91
decision testing, 114-117
decisions, 98, 100, 104
defect lists, 119
defects
absence of, 16, 20
causes, 10-11, Fig. 1.1
clustering, 19
dynamic analysis tools and, 192
early identification, 18, 57, 60
link with quality, 13
performance testing tools and,
194
preventing, 15, 69
raising constructively, 26
reviews and, 60
static analysis and, 70, 180,
181
developers
errors and, 135
role in testing, 26, 43, 45
test tools and, 170, 188,
Table 6.5
documents
errors in, 10, 15, 18
see also reviews; specifications
drivers, 45, 193
dynamic analysis tools, 192-193,
Table 6.5
dynamic testing, 15

early testing, 17-19
entry criteria, 147
equivalence partitioning, 84-86
error guessing, 118-119
‘error-defect-failure’ cycle, 18
errors
absence of, 20
clustering, 86
costs, 15,18
effect, 10-11, Fig. 1.1
finding, 59, 135
from unfamiliarity, 136
see also defects
‘errors of migration’, 18
ethics, 27-28
events, 92
executable statements
counting, 98, 110-111
testing, 107-108
execution postconditions, 77
execution preconditions, 77
exhaustive testing, 12, 16-17
exit criteria, 147-148, Table 6.4
evaluating, 24-25
measuring, 151, 190
see also completion criteria
experience-based techniques, 81,
82, 118-119
expert-based estimation, 148-149
exploratory testing, 119, 186

factory acceptance testing, 48
failure lists, 119
failure of software, 10-12
fault attack, 119
field testing, 48
flow charts, 100-103, 108,
Figs. 4.4-4.7, Fig. 4.10
formal reviews, 61-64, Fig. 3.1
Foundation Certificate
examination, 215-216, 219
learning objectives, 2
purpose, 1-2
question types, 216-218
revision, 6, 219-220
sample paper, 219
syllabus, Fig 0.1, 2-3, 220
functional requirements, 46, 47
functional specifications, 39, 46,
Figs. 2.1-2.2
functional testing, 49-50
fundamental test process (FTP),
20-25, Figs. 1.4-1.5

221

high-complexity measures, 68-69
hybrid flow graphs, 108,
Figs. 4.11-4.14

impact analysis, 51-52
impact of risk, 133
incident management, 156158
incident management tools, 169,
175-176, Table 6.5
incident reports, 157-158, 175,
Fig. 5.4, Table 5.4
incidents, 156
independent testing, 135-137
benefits, 25-26, 46, Table 5.1
levels of, 135-136, Fig. 5.1
informal reviews, 66
inspections, 67, 68
test tools for, 179-180
instrumentation code, 190
integrated test tools, 173, Fig. 6.3
integration strategies
big-bang integration, 43
bottom-up integration, 4445,

Fig. 2.5
top-down integration, 43—44,
Fig. 2.4
integration testing, 39, 43-45, 140,
Fig. 2.2

test tools for, 69
interoperability testing, 49
‘invalid’ transitions, 92, 93
iteration structures, 98, 99-100,

Fig. 4.6
iterative development models, 38,
40-41, Fig. 2.3

keyword-driven testing, 186

limited entry decision table, 89

linear models, 37

load generators, 193

load testing tools, 193—194,
Table 6.5

loops see iteration structures

maintenance testing, 51-52
managers, 64
master test plan, 143, 144, Fig. 5.2,
Table 5.2
maturity, 60, 204
metrics
coverage, 177
from reviews, 64
from static analysis, 68-69, 70
from test tools, 174-175, 180
monitoring, Fig. 5.3
test progress, 150-151
metrics-based estimation, 148
middleware, test harness for, 189,
Fig. 6.5
modelling tools, 181-182,
Table 6.5
moderators, 64, 67
monitoring tools, 195, Table 6.5

non-executable statements, 98, 102,
108

non-functional failures, 13

non-functional requirements, 13,
46-47, 83

non-functional testing, 13, 49, 50,
83

non-valid inputs, 78, 79, 84-85

‘null transitions’, 92, 93

222

operational acceptance testing,
48, 140
operational readiness testing, 48

pair programming, 66
Pareto principle, 19
partitions see equivalence
partitioning
path through program, 110,
Fig. 4.12
payback models, 169, 188, Fig. 6.1,
Fig. 6.4
performance monitoring, 194, 195
performance testing tools, 193-195,
Table 6.5
preventative test approach, 141
prioritization, 14, 17, 23
probability of risk, 133
process improvement
from incidents, 157, 176
from reviews, 67
from static analysis, 69
from test reports, 155
product risks, 133-135
program specifications, 39, 42,
Figs. 2.1-2.2
program structures, 98-100, 104,
108
programs, paths through, 110,
Fig. 4.12
progress data, 150-151
project risks, 132-133
project test plans, 142
prototyping, 41
pseudo code, 97-98
psychology of testing, 25-27

quality, 13, 27, 80

rapid application development
(RAD), 41
Rational Unified Process (RUP), 41
reactive test approach, 141
record tools, 185-186
regression testing, 19-20, 23-24,
41, 50
test tools for, 185, 187
regulation acceptance testing, 48
reports, 24-25, 154-155
incident, 157-158, 175, Fig. 5.4,
Table 5.4
test summary, 24, 154, Table 5.3
requirement specifications, 17-18,
39, 47, Figs. 2.1-2.2
requirements
changes to, 177
functional, 46, 47
non-functional, 13, 46-47, 83
requirements management tools,
177, Table 6.5
resources
for testing, 138, 140
triangle of, 13, Fig. 1.2
response times, 193-194
retesting, 16, 23-24, 50
reuse of testware, 175, 185
review leaders, 62, 64
review process support tools,
179-180, Table 6.5
reviewers, 61-62, 64
reviews, 18, 59-60
basic process, 61
formal, 61-64
formality level, 60-61, Fig. 3.2

objectives, 61, 67
roles and responsibilities, 62,
64-65
success factors, 67-68
tools for, 179-180, Table 6.5
types, 6567, Fig. 3.2
rework, 18, 63
risk, 132
product risk, 133-135
project risk, 132-133
in test selection, 12-13, 17,
20, 120
risk management, 134-135
risk registers, 133
risk-based testing, 134-135, 141
root cause analysis, 69

safety-critical systems
independent testing, 136
structure-based testing, 118
test tools, 183, 191, 193
scenarios, 95
scribes, 64, 66
security testing, 20, 49
security testing tools, 191-192,
Table 6.5
selection structures, 98, 99, Fig. 4.5
sequence structures, 98-99, Fig. 4.4
sequential models, 37
sequential statements, 100
site acceptance testing, 48
software development life cycle, 34
costs of errors during, 18,
Table 1.1
definition, 36
models, 36-41
testing during, 41-52
software development models
iterative models, 38, 4041,
Fig. 2.3
linear models, 37
V-model, 38-40, Fig. 2.2
waterfall model, 36-37, Fig. 2.1
software failures, 10-12
software models, 68
source code, 68
specification-based techniques, 50,
81-82
boundary value analysis, 86-88
decision table testing, 88-91
equivalence partitioning, 84-86
state transition testing, 91-95
use case testing, 95-96, Fig. 4.3
specifications, 39, 82, 83,
Figs. 2.1-2.2
see also individual specification
types
standards
in test approach, 141
test tools and, 175, 183
state tables (ST), 92-94, Table 4.1
state transition testing, 91-94,
Figs. 4.1-4.2
statement testing, 107-112
statements
executable, 98, 107-108, 110-111
non-executable, 98, 102, 108
sequential, 101
states, 91
static analysis, 68-69
static analysis tools, 69-70,
180181, Table 6.5
static testing, 15, 57, 59
reviews, 5968

static analysis, 68-70
tool support for, 69-70, 179-181
stochastic testing, 141
stress testing tools, 194, Table 6.5
structure-based techniques, 81, 97,
118
control flow graphs, 104-107
decision testing, 114-117
flow charts in, 100-104
statement testing, 107-112
stubs, 44
system integration testing, 45, 194
system testing, 39, 46-47, 140,
Fig. 2.2

technical reviews, 66
technical specifications, 39,
Figs. 2.1-2.2
test analysis, 22-23
test approaches, 140-142
test basis, 42, 82
models as, 83
test tools and, 182
test cases, 22, 77-80, 177
see also test design techniques
test charters, 119
test closure activities, 25
test comparators, 169, 184—185,
Table 6.5
test conditions, 22, 77
defining, 78, 82
and test tools, 174, 177
test control, 22, 155-156
test coverage, 80, 118
decision, 114-117
statement, 107-112
test tools, 190-191
test data preparation tools, 170,
183-184, Table 6.5
test design, 22-23
test design techniques, 15
black-box, 8296
categories, 81-82
choosing, 119-120
experience-based, 118-119
specification-based, 82-96
structure-based, 97-118
test design tools, 182183,
Table 6.5
test development process, 76—80
test drivers, 45, 193
test environments
preparation, 23, 139, 183-184
test tools and, 171, 205-206
test estimation, 148-150
test execution, 15, 20, 23-24
test execution schedules, 78, 80
test execution tools, 185-188, 190,
194, Table 6.5
test frames, 182
test harnesses, 170, 188-190,
Table 6.5

test implementation, 23-24
test leaders, 138-139
test levels, 42
acceptance testing, 47-48
integration testing, 43-45
system testing, 46—47
unit testing, 4243
see also test-level plans
test management information, 170,
175,176
test management tools, 173-175,
Table 6.5
test objectives, 15, 18, 119, 120
test oracles, 170, 183, Table 6.5
test organization, 135-140
test planning, 22, 39, 142
activities, 146-147
documentation, 133, 143-145,
146, Table 5.2
entry criteria, 147
exit criteria, 147-148
test procedure specifications, 77
Test Process Improvement (TPI),
204
test progress monitoring, 150-151
test scripts, 77, 185-186, 194
test strategies, 140-142
test summary reports, 24, 154,
Table 5.3
test tasks, 138-140
test tools, 167, Table 6.5
benefits, 169-170, 208
configuration management,
177-179
costs, 179-180, 193, 194, 208
coverage measurement, 190
data quality assessment,
195-196
definition, 169
dynamic analysis, 192-193
implementing, 204-208, Fig. 6.6
incident management, 169,
175-176
integrated, 173, Fig. 6.3
miscellaneous, 197-198
modelling, 181-182
monitoring, 195
payback models, 169, Fig. 6.1
performance testing, 193-195
requirements management, 177
review process support,
179-180
risks, 170-171, 209
security, 191-192
static analysis, 69-70, 180-181
test comparators, 169, 184-185
test data preparation, 170,
183-184
test design, 182—-183
test execution, 185-188
test harnesses, 170, 188-190
test management, 173-175

usability, 196-197
vendors, 167, 205, 206207
test-driven development, 40, 42, 43
test-level plans, 144, Fig. 5.2,
Table 5.2
testers
code of ethics, 27-28
developers and, 26-27, 135
independence and, 135-136
in review process, 42, 64—65
tasks, 139-140
testing
characteristics of good, 41-42
early, 17-19, 59-60
effectiveness, 16, 19, 25-26
inadequacy, 1
level of effort required, 149-150
nature and purpose, 14-16
principles, 16-20
psychology of, 25-27
reducing costs, 60, 170
resources, 140
for risk control, 135
stopping, 14, 80, 147
test types, 49-50
type required, 20
see also specific test types e.g.
functional testing
testware, 160, 175, 178
time-boxes, 40
traceability
from configuration management,
159, 179
in iterative development, 41
requirements changes and, 177
of test cases, 78-79
transaction times, 193-194
transitions, 91-92, 93

Unified Modelling Language
(UML), 68, 181

unit test framework tools, 188

unit testing, 39, 4243, Fig. 2.2

units, 42

usability test tools, 196-197

usage patterns, 193

use cases, 95-96, Fig. 4.3

user acceptance testing, 48, 140

user representatives, 39-40, 48

V-model, 38-40, Fig. 2.2

valid inputs, 78, 79, 84

validation, 38, 39—40

verification, 38

version numbers, 178, 179,
Table 6.1

walkthroughs, 66

waterfall model, 36-37, Fig. 2.1

white box techniques see
structure-based techniques

work-products, 17, 34, 37, 41

223

Enabling the
information society

Qualificati
from BCS

Are you ready to launch your
software testing career?

Prove it with the ISTQB - ISEB Certified
Tester Foundation certificate

BCS, The Chartered Institute for IT supports the value of software testers
globally and understands the critical role they play in the IT industry.

The ISTQAB - ISEB Certified Tester Foundation level
is the first step in the leading programme for the
development and certification of software
testers worldwide

Our relationship with ISTAB has enabled
us to provide you with the most up-to-date
and relevant qualification in the industry,
helping you to develop your career in
software testing.

Find out more at:
www.bcs.org/iseb/ctfl

SOFTWARE TESTING
An ISTQB-ISEB Foundation Guide

Second Edition

Brian Hambling (Editor), Peter Morgan, Angelina Samaroo,
Geoff Thompson and Peter Williams

This bestselling software testing title is the official textbook

of the ISTAB-ISEB Foundation Certificate in Software Testing.
It covers the 2010 update to the exam syllabus and is ideal for
those with some experience of software testing who wish to
cement their knowledge with industry-recognised techniques
and theory. The book includes self-assessment exercises,
sample examination questions and worked examples.

¢ The bestselling software testing title

¢ The official textbook of the ISTAB-ISEB Foundation
Certificate in Software Testing

¢ Complete overview of tools and techniques

ABOUT THE AUTHORS

The authors are all experienced ISEB examination setters and
markers and know the ISTAB-ISEB syllabus in depth. The editor
Brian Hambling has experienced software development from

a developer's, a project manager’s and a quality manager's
perspective in a career spanning over 30 years.

You might also be interested in:

SOFTWARE TESTING: An ISEB Intermediate Certificate
Brian Hambling and Angelina Samaroo

Chartere'
Institute

for IT

Invaluable for anyone
involved in testing and
would lift the game of
most VV&T staff
(including designers
doing their ‘informal’
reviews and tests) and
their project managers.
It is succinctly and
clearly written with

no nonsense. An
unreserved 5 for
value for money.

IT Training Magazine
(review of previous edition)

Information Technology

ISBN 978-1-906124-76-2

91 781906"124762

	Front Cover
	Software Testing
	BCS the chartered institute for IT
	Software Testing
	Contents
	Figures and tables
	Abbreviations
	Authors
	Introduction
	Nature and purpose of the book
	Purpose of foundation
	The certified tester foundation level syllabus
	Relationship of the book to the syllabus
	How to get the best out of this book

	1 The fundamentals of testing
	Background
	Introduction
	Why software fails
	Keeping software under control
	What testing is and what testing does
	General testing principles
	Fundamental test process
	The psychology of testing
	Code of ethics
	Summary
	References

	Index
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

